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ABSTRACT
Melanoma is themost lethal formofhumanskincancer.However, only limitedchemotherapy is currentlyavailable for themetastatic stageof the

disease.Sincechemotherapy, radiationandsodiumarsenite treatmentoperatemainly through inductionof the intrinsicmitochondrial pathway,

a strongly decreasedmitochondrial function inmetastatic melanoma cells, could be responsible for low efficacy of the conventional therapy of

melanoma. Another feature of metastatic melanoma cells is their proinflammatory phenotype, linked to endogenous expression of the

inflammatory cytokines, such as TNFa IL6 and IL8, their receptors, and constitutive NF-kB- and STAT3-dependent gene expression, including

cyclooxygenase-2 (PTGS2/COX2). In the present study, we treatedmelanoma cells with immunological (monoclonal antibody against TNFa or

IL6), pharmacological (smallmolecular inhibitorsof IKKb–NF-kBandJAK2–STAT3)orgenetic (specificRNAi forCOX-2)agents that suppressed

the inflammatory response incombinationwith inductionofapoptosisviaTRAIL.Asa resultof thesecombined treatments, exogenousTRAILvia

interactionswithTRAIL-R2/R1 strongly increased levels of apoptosis in resistantmelanomacells. Thepresent studyprovidesnewunderstanding

oftheregulationofTRAIL-mediatedapoptosis inmelanomaandwill serveasthefoundationforthepotentialdevelopmentofanovelapproachfor

a therapy of resistant melanomas. J. Cell. Biochem. 112: 463–475, 2011. � 2010 Wiley-Liss, Inc.
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S cientific observations indicate that the incidence of mela-

noma has significantly increased over the last 40 years in

the USA and worldwide, especially among young Caucasian women.

The probability of an American developing melanoma jumped from

1 in 1,500 in 1960, to 1 in 68 in 2000, and is projected to increase to

1 in 50 by the year 2010 [Rigel et al., 1996; Rigel, 2002]. In the USA

approximately 60,000 new cases were diagnosed and 8,420 deaths

occurred in 2008 (ACS, 2008). To date, the most effective single-

agent chemotherapies for melanoma treatment are the alkylating

drugs dacarbazine and temozolomide [Gogas et al., 2007]. However,

advanced melanomas respond poorly to chemo- and radiotherapy

and no effective therapy exists to inhibit the metastatic spread

of this cancer [Perlis and Herlyn, 2004; Chin et al., 2006]. Numerous

epidemiological studies have assessed risk factors associated with

melanomas. Even though UV exposure has been identified as one

of the major risk factors, the general etiology of melanoma remains

unclear.

The tumor-promoting effects of inflammation, which could be

a result of microbial infection, strong physical or chemical injury,

and obesity, are now widely recognized [Coussens and Werb, 2002;

Karin et al., 2006]. The inflammatory cytokines, TNFa, IL1b IL6,

and IL8, produced by the tumor microenvironment affect the

development and progression of the early stage melanomas in

vivo by regulating the expression of specific genes, which controls

proliferation and cell survival. In addition, as a result of Darwinian

selection, metastatic cancer cells (including melanomas) also

acquired the proinflammatory phenotype that was linked with

endogenous NF-kB-directed gene expression of proinflammatory

cytokines, their corresponding receptors and, finally, with con-

stitutive expression and strong enzymatic activity of cycloox-

ygenase-2 (COX-2), one of the critical enzymes involved in the

inflammatory response directing prostaglandin synthesis [Subbar-

amaiah and Dannenberg, 2003; Karin, 2009]. There is also a link

between chronic inflammation and deficiency of mitochondrial

function, which was observed during cancer progression [Pelicano

et al., 2006], as well as in neurodegenerative diseases [Beal, 2004].

A deficiency of normal mitochondrial respiratory function, but

increased production of reactive oxygen species are also known
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to be one of the characteristic features of the inflammatory response

[Alexeyev et al., 2004] and might be frequently found in cancer

cells, which have a tendency to change their energetic metabolisms

from oxidative phosphorylation to oxidative glycolysis (‘‘Warburg

effect’’) [Pelicano et al., 2006]. This critical link between

inflammation and tumorigenesis presents further challenges for

treatment of melanoma as establishing a connection between

proinflammatory phenotype and suppression of apoptosis in

metastatic melanoma cells.

Since the identification of TRAIL in 1995, this cytokine has been

intensively investigated, due to its strong and specific antitumor

effects through induction of apoptosis. In contrast to Fas, surface

expression of TRAIL-Receptors is mostly restricted to cancer,

but not to normal cells. However, many melanoma cell lines

demonstrated resistance to TRAIL based on numerous protective

mechanisms including downregulation of the endogenous death

receptor gene expression and strong upregulation of antiapoptotic

protein expression [Schaefer et al., 2007; Ashkenazi et al., 2008].

Furthermore, the genetic background of such resistance may include

upregulation of gene expression of growth factors, cytokines,

and their corresponding receptors controlling general cell survival

and antiapoptotic activity.

The main goal of the present study is to further elucidate

the mechanism of TRAIL-resistance and to increase sensitivity to

TRAIL-induced apoptosis in metastatic melanoma cells by suppres-

sion of their proinflammatory response. This study is ultimately

aimed to translate the results to the clinic, where this investigation

could lead to much needed improvement of melanoma therapy.

Our former investigations demonstrated that ionizing radiation

upregulated death receptor (FAS, TRAIL-Receptor1/DR4, and

TRAIL-Receptor2/DR5) total and surface expression in human

melanoma cells and increased TRAIL/TRAIL-R-mediated apoptosis

[Ivanov et al., 2007]. In contrast, numerous investigations have

indicated profound antiapoptotic effects of active STAT3 in different

types of cancer cells, including melanomas [Ivanov et al., 2001;

Kusaba et al., 2007]. In the present study, we focused attention

on pharmacological, immunological or genetic inhibition of the

TNFa/TNFR–NF-kB–IL-6/IL-6R–STAT3 signaling cascade [Griven-

nikov and Karin, 2008] to further suppress expression of its target

proteins, including antiapoptotic cFLIP, Bcl-xL, Mcl-1, Survivin,

and COX-2 [Kreuz et al., 2001; Ivanov et al., 2003; Subbaramaiah

and Dannenberg, 2003; Fulda and Debatin, 2006], and protein

regulators of cell proliferation, including Cyclin D1 [Darnell, 2002;

Leslie et al., 2006]. We expect that as a result of such treatment,

exogenous TRAIL/TRAIL-R interactions will induce apoptosis in

death-ligand-resistant melanoma cells. Furthermore, we anticipate

that suppression of COX-2, which is highly expressed in metastatic

melanoma cells [Ivanov and Hei, 2006a], will be especially

important for upregulation of TRAIL-induced apoptosis.

MATERIALS AND METHODS

MATERIALS

Human Killer-TRAIL was purchased from Alexis. PI3K inhibitor

LY294002, IKK inhibitor BMS-345541, STAT3 inhibitor-6 S3I-201

(also known as NSC 74859) and ATM inhibitor KU-55933 were

purchased from Calbiochem.

CELL LINES

Normal human fibroblasts TIG-3 were obtained from the Health

Science Research Resource Bank (Osaka, Japan). TIG-3 fibroblasts

and human melanoma cell lines LU1205 (also known as 1205lu),

WM9, WM35, WM793, WM852 [Satyamoorthy et al., 1997], A375,

FEMX, and HHMSX were maintained in DMEM medium supple-

mented with 10% fetal bovine serum (FBS), L-glutamine, and

antibiotics.

FACS ANALYSIS OF DR5 AND FAS LEVELS

Surface levels of DR4, DR5, and Fas were determined by staining

with the PE-labeled mAbs from eBioscience and from BD

Biosciences. A FACS Calibur flow cytometer (Becton Dickinson)

combined with the CellQuest program was used to perform flow

cytometric analysis.

TRANSFECTION AND LUCIFERASE ASSAY

The NF-kB luciferase reporter containing two kB binding sites, and

the STAT-Luc reporter containing three repeats of GAS sites were

used to determine NF-kB and STAT transactivation, respectively, in

transiently transfected cell lines.

APOPTOSIS STUDIES

Cells were exposed to soluble TRAIL (50 ng/ml) alone or in

combination with cycloheximide (2mg/ml). Different variations

of combined treatment were used in the presence or in the absence of

specific inhibitors of signaling pathways followed by TRAIL

treatment. After treatment, cell nuclei were stained by PI. Apoptosis

was then assessed by quantifying the percentage of hypodiploid

nuclei using FACS analysis. An additional approach was Annexin-

FITC plus PI staining, which allowed us to distinguish apoptotic

and necrotic cells, was performed according to the manufacture’s

protocol (BD Pharmingen).

CLONOGENIC SURVIVAL ASSAY

Cells were exposed to sodium arsenite (1–5mM), to soluble TRAIL

(50 ng/ml) alone or in combination with CHX (1mg/ml), BMS-

345541 (10mM), STAT3 inhibitor-6 (50mM) alone or in combination

with TRAIL for 24 h. Treated cells (500/dish) were then placed in

duplicate on 10-cm dishes for analysis of clonogenic survival

12 days after treatment. Colonies were stained using crystal violet

solution. The percentage of colony-formation (in relation to values

for untreated control cells) was calculated.

WESTERN BLOT ANALYSIS

Total cell lysates (50mg protein) were resolved on SDS–PAGE,

and processed according to standard protocols. The monoclonal

antibodies used for Western blotting included: anti-b-Actin

(Sigma); anti-FLIP (NF6) (Axxora); anti-COX-2 (Cayman Chemical).

The polyclonal antibodies used included: anti-DR5 (Axxora);

anti-phospho-AKT (Ser473) and anti-AKT; anti-STAT3 and anti-

phospho-STAT3 (Tyr705) (Cell Signaling). The secondary Abs were
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conjugated to horseradish peroxidase; signals were detected using

the ECL system (Amersham).

EMSA

Electrophoretic mobility shift assay (EMSA) was performed for the

detection of NF-kB DNA-binding activity as previously described.

Ubiquitous NF-Y DNA-binding activity was used as an internal

control [Ivanov and Hei, 2004].

REAL-TIME PCR ANALYSIS OF MITOCHONDRIAL DNA

Mitochondrial mtDNA copy number was determined by real-time

PCR using SYBR Green detection on an Applied Biosystems 7300

Real-time PCR System (Applied Biosystems). Products amplified

were a 188-bp fragment of the nuclear encoded 18S rRNA gene and

a 171-bp fragment of the mtDNA encoded 12S rRNA gene. The

primers were as follows: 18S sense, GGAGTATGGTTGCAAAGCTG;

18S antisense, CGCTCCACCAACTAAGAACG; 12S sense, AGAA-

CACTACGAGCCACAGC; and 12S antisense, ACTTGCGCTTACTTTG-

TAGCC. All reactions were done in triplicate. PCR conditions were as

follows: 958C for 15min followed by 40 cycles at 958C for 30 s, 558C
for 30 s, and 728C for 30 s. Relative quantification of mtDNA/nDNA

ratio was determined by the comparative threshold cycle (CT)

method as described previously [Partridge et al., 2007].

OXYGEN CONSUMPTION

Oxygen consumption in intact cells was assayed as described

previously [Partridge et al., 2007]. Briefly, 1� 107 cells were

suspended in 1.5ml of DMEM lacking glucose, and oxygen

concentration was assayed over 3min at 378C in a Hansatech

(MA) Clark’s oxygen electrode unit.

ELISA

Antibodies pairs used in sandwich ELISA for this study was all

commercially available. Kits to detect IL6 and TNFa were from

Invitrogen.

STATISTICAL ANALYSIS

Data were calculated as means and standard deviations. Compar-

isons of results between treated and control groups were made by the

Students’ t-test. A P-value of 0.05 or less between groups was

considered significant.

RESULTS

PARTIAL DEPLETION OF MITOCHONDRIAL DNA AND

DOWNREGULATION OF MITOCHONDRIAL FUNCTIONS IN

MELANOMA CELL LINES

Multiple cell functions, including programmed cell death, are

dependent on mitochondria. Consequently, numerous studies have

targeted mitochondria as a probable tool for cancer therapy

[Costantini et al., 2000; Fulda et al., 2010]. The biogenesis of

mitochondria and general mitochondrial functions in cancer cells

could be substantially different when compared to normal cells.

Substantial change of mitochondrial functions is also involved in

the proinflammatory response of the cells. A frequent suppression

of mitochondrial respiration in cancer cells might be regulated by

genetic mechanisms, depending on both mutations/deletions in

mtDNA targeting critical mitochondrial proteins and general

depletion (decreased copy number) of mtDNA [Pelicano et al.,

2006]. These specific features of mitochondriogenesis have not been

previously investigated in melanoma cells. What are the actual

levels of mtDNA copy number and mitochondrial respiration in

metastatic melanoma cells compared to normal cells?

To address this question, we used normal human embryonic

fibroblasts TIG-3, human melanocytes and several human mela-

noma lines representing different phases of cancer development:

WM35 is a radial-growth-phase melanoma cells; WM793 is a

vertical-growth-phase melanoma cells; LU1205 (also known as

1250lu) andWM9 aremetastatic melanoma cells. All four melanoma

lines have normal NRAS, but mutated BRAF (V600E). WM35

and WM9 express functional PTEN, endogenous inhibitor of PI3K–

AKT, while in WM793 cells PTEN expression is down-regulated;

finally in LU1205 cells PTEN is inactivated by mutation [Krasilnikov

et al., 2003; Satyamoorthy et al., 2003]. Additionally, we used

HHMSX and FEMX metastatic melanoma lines. FEMX cells have

normal BRAF and PTEN, while HHMSX cells have mutated BRAF

(V600E) [Krasilnikov et al., 2003; Ivanov and Hei, 2005].

Analysis of the mtDNA by real-time PCR in these cell lines

demonstrated a pronounced decrease in mtDNA copy numbers for

several melanoma lines (with exception for FEMX). Sequencing

mtDNA demonstrated increased levels of mutations in the D-Loop

region of mtDNA from HHMSX and FEMX melanoma cells.

However, these mutations were all previously reported polymorph-

isms (Fig. 1A). Importantly, oxygen consumption, the main

reflection of mitochondrial respiration, was substantially decreased

in all melanoma lines, besides FEMX, and was well correlated with

down-regulation of mtDNA content (Fig. 1A,B). These observations

suggested that a partial downregulation of mitochondrial function

might be based on depletion of mtDNA that resulted in a decrease

of mitochondrial gene expression and substantial changes of

mitochondriogenesis in the corresponding melanoma cells.

Downregulation of mitochondriogenesis in cancer cells might

also be correlated with decreased activity of the endogenous, ATP-

dependent, mitochondrial apoptotic pathway due to a deficiency

of ATP production by mitochondria. Additionally, upregulation of

AKT activity in melanoma cells based on increased surface

expression of growth factor receptor kinases, such as EGFR, IGF1R,

or FGFR, in concert with a downregulation of PTEN, an endogenous

inhibitor of the PI3K–AKT pathway, could also inhibit the

mitochondrial apoptotic pathway [Krasilnikov et al., 2003; Wu

et al., 2003; Pelicano et al., 2006]. Indeed, vertical-growth phase

WM793, metastatic LU1205 (with mutated PTEN), and WM9

melanoma cells were characterized by pronounced surface expression

of EGFR and substantial upregulation of the basal phospho-AKT

activity compared tomelanocytes and normal TIG-3 cells, while FEMX

melanoma cells (with normal PTEN and low surface EGFR levels)

only contained trace levels of active phospho-AKT (Fig. 1C,D).

Interestingly, the early melanoma WM35 cells still contained

pronounced levels of the active AKT that was phosphorylated via

alternative receptor kinases (different from EGFR).

Numerous investigations demonstrated a relative resistance of

normal human cells to low doses of sodium arsenite (1–5mM), while
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many types of cancer cells died after such treatment [Mathas et al.,

2003; Amadori et al., 2005] (Fig. 2A). The reason for this difference

between normal and cancer cells is still unclear. However, among

melanoma cell lines, a protective role for EGF/EGFR–PI3K–AKT

signaling pathway against cytotoxic effects of sodium arsenite,

which directly targeted mitochondria, was established [Ivanov and

Hei, 2005; Partridge et al., 2007]. Indeed, sodium arsenite (5mM)

induced higher levels of apoptosis only in FEMX cells (Fig. 2A)

that demonstrated the normal mitochondrial function and low

active AKT levels before treatment (Fig. 1B,C). In contrast, sodium

arsenite induced relatively low levels of apoptosis in LU1205

and WM9 cells (Fig. 2A,B), which were characterized by decreased

Fig. 1. Mitochondrial (mt) DNA content, mitochondrial respiration and AKT levels in human melanoma cell lines. A: Content of mitochondrial (mt) DNA was determined using

the real-time PCR as described in the Materials and Methods Section. Number of mutations in the D-loop of mtDNA is indicated. All of these mutations represent previously

reported polymorphisms. B: The rate of oxygen consumption for normal human fibroblasts TIG-3, human melanocytes and melanoma lines was determined using an oxygen

electrode unit. C: Western blot analysis of total and phospho-AKT levels in melanocytes, TIG-3 fibroblasts and indicated melanoma lines. D: Surface levels of EGFR and NGFR1

p75 in human melanoma cells were determined by immunostaining with anti-EGFR-PE and anti-NGFR1-PE mAbs using FACS analysis; n.s., nonspecific staining.
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mitochondrial respiration and high basal AKT activity before

treatment (Fig. 1B,C). Furthermore, sodium arsenite (5mM)

substantially decreased mitochondrial respiration in melanoma

cells, while normal human melanocytes were more resistant to

arsenite treatment. As expected, melanocytes and TIG-3 normal

fibroblasts were also relatively resistant to arsenite-induced

apoptosis (Fig. 2A,C and Suppl. Fig. 1C). Costimulation with EGF

(50 ng/ml) efficiently down-regulated arsenite-induced death of

LU1205 and WM9 melanoma cells, but not FEMX (Fig. 2B). On the

other hand, arsenite-induced cell death was substantially decreased

by zVAD-fmk, a universal caspase inhibitor, LEHD, a caspase-9

inhibitor, and IETD, a caspase-8 inhibitor, highlighting a role of

the activation of both the mitochondrial apoptotic pathway and

death receptor-mediated pathway after arsenite exposure (Fig. 2B).

In spite of high levels of nerve growth factor receptor-1 (NGFR1

p75) surface expression on WM35, WM793, LU1205, and WM9

melanoma cells (Fig. 1D), NGF-b (100 ng/ml) in the media did not

protect these cells against arsenite-induced killing indicating

attenuation of NGFR1-mediated signaling in the melanoma lines

used. (Fig. 2B). This was in contrast to the highly protective action

of NGF-b against arsenite-induced apoptosis in differentiated

neuron-like PC12 cells (Suppl. Fig. 1A,B) via AKT activation

[Kimmelman et al., 2000]. On the other hand, melanoma cells

displayed substantially increased cytotoxicity after sodium arsenite

treatment, as compared to apoptosis (Fig. 2D), suggesting the

involvement of necrotic mechanisms in sodium arsenite action.

Taken together, our data demonstrated a relatively low efficacy of

apoptotic pathways induced by sodium arsenite for specific killing

melanoma cells with decreased mitochondrial function and

permanently active AKT (most metastatic melanoma lines), but

highlighted a usefulness of such an approach for killing some

types of melanoma cells (FEMX) with non-suppressedmitochondrial

function and low levels of the basal AKT activity.

We also screened two additional metastatic melanoma cell lines

for sensitivity to arsenic. Surprisingly, A375 andWM852 melanoma

cells with very low basal AKT activity [Dhawan et al., 2002; Hilmi

et al., 2008] were sensitive to cytotoxic effects of sodium arsenite (5–

10mM), and thus were killed mostly through necrotic, rather than

apoptotic mechanisms (Suppl. Fig. 2). These data indicated that AKT

deficiency correlated with increased levels of arsenic-induced total

cell death (which could be driven either apoptotic or necrotic

mechanisms). Furthermore, inhibition of PI3K–AKT activity by

Fig. 2. The mitochondrial death pathway in human melanoma cell lines. A,B: Cell cycle-apoptosis analysis of melanocytes, FEMX, LU1205, and WM9 melanoma cells, which

were treated sodium arsenite (5mM) in the presence or absence of either NGF-b (100 ng/ml) or EGF (50 ng/ml) for the next 24 h; non-treated control cells were designed as

(Con). Caspase inhibitors, zVAD, LEHD, and IETD (50mM), were additionally used. After treatment, cells were stained with PI and analyzed by FACS assay. Error bars represent

mean� SD (Student’s t-test, P< 0.05). C: Effects of sodium arsenite on oxygen consumption of melanocytes (M-cytes), FEMX and LU1205 melanoma cells 24 h after

treatment. D: Clonogenic survival assay of melanoma cell lines 12 days after sodium arsenite treatment.
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LY294002 strongly increases levels of arsenite-induced death in

resistant melanoma lines and unfortunately, also in TIG-3 normal

fibroblasts and neuron-like PC12 cells. Necrotic effects of arsenite

treatment were also increased in response to AKT inhibition (Suppl.

Fig. 1). Trying to avoid non-specific cytotoxicity linked to direct

targeting of mitochondria in normal cells, we refocused our

attention on other characteristic features of the proinflammatory

response in metastatic melanoma cells and their possible role in the

regulation of apoptosis.

PROINFLAMMATORY RESPONSE OF METASTATIC MELANOMA

CELLS AND REGULATION OF TRAIL-INDUCED APOPTOSIS:

A ROLE FOR NF-kB

Besides directly targeting mitochondria with different drugs and

natural compounds, stimulation of the death receptor-dependent

apoptotic pathways has been widely used for treatment of

melanoma cells. However, most metastatic melanoma cell lines

were relatively resistant to death ligands, FasL, and TRAIL.

Numerous observations demonstrated expression and secretion of

proinflammatory cytokines by cancer cells, including malignant

melanoma cells in culture and in vivo [Mattei et al., 1994;

Yurkovetsky et al., 2007]. We wondered whether cytokine-mediated

inflammatory signaling, which could perform many functions in

cell–cell communications, might also be involved in anti-apoptotic

protection of melanoma cells.

To address this question, we first determined levels of secretion of

TNFa and IL6, crucial proinflammatory cytokines, in cell media of

several melanoma lines using specific ELISA. WM9 metastatic

melanoma cells were characterized by high basal expression and

secretion of TNFa and IL6, while LU1205 metastatic melanoma cells

secreted substantially decreased levels of these cytokines 24 h after

refreshing cell media. On the other hand, the early phase WM35

melanoma cells produced modest levels of TNFa and zero levels of

IL6. Human melanocytes did not produce detectable levels of TNFa

and IL6 (Fig. 3C,D). Stress exposure, such as g-radiation at dose of 2–

5Gy, could notably upregulate IL6 secretion by WM9 cells (1.5- to

2.0-fold increase was detected 24 h after irradiation). Furthermore, a

high-level IL8 expression and secretion was previously observed in

WM9 cells [Peng et al., 2007].

Transcription factors NF-kB and STAT3 are the master regulators

of the proinflammatory response in cells at the level of cytokine

gene expression [Grivennikov and Karin, 2008; Yu et al., 2009]. As

expected, BMS-345541, an inhibitor of the IKKb–NF-kB pathway,

strongly decreased the nuclear NF-kB DNA-binding activity and

NF-kB-dependent transcription in general (Fig. 3A,B). It signifi-

cantly decreased the basal levels of secretion of TNFa and,

especially, IL6 in LU1205 and WM9 cells (Fig. 3C,D) that was

correlated with the critical role of NF-kB in TNF and IL6 gene

expression. TNFR1 surface levels were relatively high in LU1205

cells, establishing efficient NF-kB activating loop in these cells,

while WM9 cells exhibited substantially lower surface TNFR1 levels

(Fig. 3E). Furthermore, suppression of nuclear NF-kB activity

(Fig. 3A; EMSA), NF-kB transacting functions (Fig. 3B) and NF-kB-

target gene expression (Fig. 3A, Western data) by BMS-345541

(10mM) was accompanied by variable-level apoptosis (Fig. 3F). As a

result, almost 90% ofWM9 cells and 50% of LU1205 cells were killed

48 h after exposure to BMS-345541 (10mM), while the early

melanoma cells WM35 were relatively resistant.

Even though targeting NF-kB is an important tool for treatment

of some metastatic melanomas [Ivanov et al., 2000; Yang et al.,

2006, 2009], it appears not to be a universal approach for killing

melanoma cells. Our next task was to elucidate any additional

enhancing effects of IKKb–NF-kB suppression of the apoptotic

response induced by TRAIL in melanoma cell lines. Inhibition of NF-

kB activation and NF-kB target gene expression resulted in down-

regulation of anti-apoptotic protein levels, such as Bcl-xL, COX-2,

and Survivin (Fig. 3A), in concert with other numerous NF-kB

transcriptional targets. As a result, combined treatment with TRAIL

(30 ng/ml) and BMS-345541 (10mM) additively increased apoptotic

levels in LU1205 cells 24–48 h after exposure (Fig. 3F). Such

treatment after 48 h had no additional effects for WM9 cells that

were already very sensitive to both TRAIL and BMS-345541

exposure, while still enhanced apoptotic response in these cells 24 h

after treatment (Fig. 3F). WM35 cells with low sensitivity to TRAIL,

due to deficiency in surface DR5/DR4 expression (see Fig. 4B), did

not up-regulate levels of BMS-induced apoptosis in the presence of

TRAIL (Fig. 3F). Clonogenic survival assay further confirmed

additive effects of BMS-345541 and TRAIL for efficient killing

LU1205 and WM9 cells (Fig. 3G).

A ROLE FOR STAT3 IN ANTI-APOPTOTIC PROTECTION

It was well established that the NF-kB-dependent expression and

secretion of IL6 further activated the IL6/IL6R–JAK2–STAT3

pathway and STAT3-mediated gene expression via autocrine and

paracrine mechanisms in inflammatory and cancer cells [Karin,

2009; Yu et al., 2009]. To determine a role for STAT3 and STAT3-

transcriptional target genes in the regulation of apoptosis, we used

STAT3 inhibitor-6, S3I-201 (also known as NSC 74859) (Fig. 4A),

which worked through inhibition of STAT3 dimerization and

activation [Lin et al., 2009]. As expected, we observed dose-

dependent inhibition of STAT-reporter activity (Fig. 4A, the upper

panel), suppression of Tyr705 STAT3 phosphorylation and

decreased protein expression of COX-2, one of the STAT3

transcriptional targets following treatment with S3I-201

(Fig. 4A, the lower panel). WM9 cells were highly sensitive to

S3I-201, as evidenced by increased apoptosis, while LU1205 cells

demonstrated only pronounced changes in cell cycle distribution

(with G2/M and S-phase arrest) following exposure to this inhibitor

(Fig. 4C). WM9 and LU1205 cells exhibited pronounced DR5 surface

expression (Fig. 4B), but displayed quite different sensitivity to

TRAIL (Fig. 4C). On the other hand, levels of TRAIL-induced

apoptosis were further up-regulated by S3I-201 only in LU1205

cells, while a combination of TRAIL and S3I-201 induced high levels

of death of WM9 cells not only via apoptosis [that was relatively

stable at 66–61% (Fig. 4C)], but probably also by necrosis. Indeed, a

clonogenic survival assay demonstrated complete killing of WM9

cells by a combination of TRAIL and S3I-201 12 days after treatment

(Fig. 4D). The increased resistance of LU1205 to TRAIL-induced

apoptosis, compared to WM9 cells, was probably based on the

substantially higher levels of NF-kB activity in LU1205 cells (see

Fig. 3A).
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Fig. 3. A role of NF-kB for expression and secretion of TNFa and IL6 and regulation of TRAIL-induced apoptosis in human melanoma cell lines. A: Effect of an IKK-NF-kB

inhibitor BMS-345541 (10mM) on the NF-kB DNA-binding activity determined by EMSA. Position of two main DNA-binding complexes is shown. DNA-binding activity of the

ubiquitous transcription factor NF-Y was used as an internal control. Effect of BMS-345541 on expression levels of indicated proteins in LU1205 cells was determined by

Western blot analysis. B: Effect of an IKK-NF-kB inhibitor BMS-345541 (10mM) on 2xNF-kB-Luc reporter activity in transiently transfected melanoma cell lines. C,D: Effect of

BMS-345541 (10mM) on TNFa and IL6 secretion by human melanocytes (MC) and melanoma cell lines determined by ELISA. E: Surface expression of TNFR1 was determined by

immunostaining with anti-TNFR1-PE mAb and FACS analysis; n.s., nonspecific staining. F: Effects TRAIL (30 ng/ml) alone or in combination with BMS-345541 (10mM) on

apoptosis (24 and 48 h after exposure) in indicated melanoma lines. Apoptosis levels were determined, as described above. Error bars represent mean� SD (Student’s t-test,

P< 0.05). G: Effects of TRAIL (30 ng/ml) and BMS-345541 (10mM) on clonogenic survival melanoma cell lines.
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Interestingly, treatment with a combination of inhibitors for both

IKK-NF-kB and STAT3 (BMS-345541 and S3I-301) demonstrated

additive effects for killing LU1205 48 h after treatment (Fig. 5A).

Furthermore, simultaneous inhibition of NF-kB and STAT3 notably

increased levels of TRAIL-induced apoptosis for resistant FEMX and

HHMSX cells (Fig. 5A). Taken together, these results further

confirmed a role for the transcriptional regulators, NF-kB and

STAT3, in suppression of TRAIL-induced apoptosis in melanoma

cells. As a complementary approach, we used monoclonal inhibitory

antibodies to block TNFa and IL6 transmission and to inhibit

aurocrine/paracrine stimulation of melanoma cells by these

cytokines, which further regulated NF-kB and STAT3 activation.

This resulted in pronounced upregulation of TRAIL-induced

apoptosis for WM793, LU1205, and WM9 cells after suppression

of TNFa or IL6 transmission (Fig. 5B,C). Furthermore, the

proapoptotic effect was especially strong after treatment with a

combination of both inhibitory antibodies (Fig. 5C). These data are

a direct demonstration of a protective role of TNFa and IL6 against

TRAIL-induced apoptosis in malignant melanoma cells.

A ROLE OF COX-2 FOR THE SUPPRESSION OF TRAIL-INDUCED

APOPTOSIS IN MELANOMA CELLS

NF-kB and STAT3 are direct transcriptional regulators of numerous

genes. Since one of the critical enzymatic regulators of the

inflammatory response, cyclooxygenase-2 (COX-2), was a tran-

scriptional target of both NF-kB and STAT3 [Kanekura et al., 2002;

Lo et al., 2010], we further focused our attention on the significance

of COX-2 in anti-apoptotic protection of human melanoma cells.

Suppression of STAT3 activity, as well as NF-kB activity, was indeed

accompanied by down-regulation of protein expression of COX-2

in LU1205 and WM9 melanoma cells (see Figs. 3A and 4A).

On the other hand, inhibition of COX-2 enzymatic activity by a

specific inhibitor NS398 (50mM) further increased TRAIL-induced

apoptotic levels in LU1205, WM9, and FEMX metastatic melanoma

cells, while demonstrating no additional effects in WM35, and

HHMSX melanoma cells, as well as in normal TIG-3 cells (Fig. 6A).

As we previously demonstrated [Ivanov et al., 2008], TIG-3, WM35,

and HHMSX cells possess low levels of DR5 surface expression

and negligible DR4 surface expression (see also Fig. 4D).

Fig. 4. Effects of STAT3 inhibition on melanoma cell apoptosis. A: Dose-dependent effect of STAT3 inhibitor-6 (S3I-201) on STAT-dependent luciferase activity. WM9 cells

were transiently transfected with 3xSTAT-Luc reporter and then treated for 6 h using S3I-201. Western blot analysis of phospho-Tyr705–STAT3 and COX-2 levels after 6-h

exposure with S3I-201. Actin was used as a loading control. B: Surface expression levels of DR5 were determined for indicated cell lines using with anti-DR5-PE mAb and flow

cytometry. C: Effects of S3I-201 (50mM) alone or in combination with TRAIL on cell cycle-apoptosis in LU1205 and WM9 melanoma cells. Results of a typical experiment are

presented (one from three). D: Clonogenic survival assay of LU1205 and WM9 cells 12 days after treatment with S3I-201 (50mM), TRAIL (30 ng/ml) or their combination.

Double star indicates zero survival of WM9 cells after combined treatment. Error bars represent mean� SD (Student’s t-test, P< 0.05).
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Furthermore, pronounced downregulation of COX-2 protein

levels by COX-2 RNAi [Ivanov and Hei, 2006b] was also

accompanied by a decrease in cFLIP protein levels, a critical

inhibitor of caspase-8 activity, and the subsequent upregulation

of TRAIL-induced caspase-8-mediated apoptosis in LU1205 cells.

For TRAIL-sensitive WM9 cells, effects of COX-2 suppression were

also significant, but less pronounced (Fig. 6B). Downregulation

of COX-2 levels by specific RNAi was accompanied by increased

TRAIL-induced apoptosis in WM9 and LU1205 cells (Fig. 6C).

An important role of cFLIP, which by itself was a transcriptional

target of NF-kB and STAT3, in the negative regulation of TRAIL-

induced apoptosis in melanoma cells was reported previously

[Ivanov and Hei, 2006b]. Effect of pharmacological inhibition of

COX-2 on downregulation of cFLIP levels in cancer cell lines was

also previously reported [Liu et al., 2006]. Taken together, our results

confirmed that inhibition of COX-2 (as a STAT3 and NF-kB

transcriptional target in the inflammatory response) further

upregulated TRAIL-induced apoptosis in melanoma cells.

ADDITIONAL INHIBITORS OF PROINFLAMMATORY GENE

EXPRESSION, INCREASED THE SUSCEPTIBILITY OF MELANOMA

CELLS TO TRAIL

The polyphenolic phytoalexin, resveratrol (RSV), is an efficient

inhibitor of both NF-kB- and STAT3-dependent transcription in

melanoma lines as well as in different cancer cell lines in concert

with extensive activation of ATM-p53 and MAPK pathways

[Aggarwal et al., 2004; Ivanov et al., 2008]. Production and

secretion of TNFa and IL6, as well as protein expression of COX-2

(Fig. 7A–C) were substantially decreased by RSV treatment of

melanoma lines. RSV exposure also further decreased mitochondrial

respiration in cancer cells (Fig. 7D), similar to the effects of sodium

arsenite treatment (see Fig. 2). These data highlighted the general

anti-inflammatory effects of RSV in melanoma cells. RSV by

itself demonstrated only modest levels of melanoma cell killing

determined by decreased clonogenic survival following RSV

exposure (Fig. 7E). However, a combination of TRAIL and RSV

was extremely effective in the induction of high levels of cell death

Fig. 5. Double inhibition of NF-kB and STAT3: effects on TRAIL-induced

apoptosis. A: Cells were treated with BMS-345541 (10mM), S3I-201 (50mM),

TRAIL (30 ng/ml) individually or in combination. Apoptotic levels were deter-

mined using PI staining of DNA and flow cytometry. B,C: Effects of anti-TNFa

(aTNF) (5mg/ml), anti-IL6 (aIL6) (5mg/ml) mAbs or their combination

on TRAIL-induced apoptosis in melanoma cell lines. Error bars represent

mean� SD (Student’s t-test, P< 0.05)

Fig. 6. Effects of downregulation of COX-2 on TRAIL-induced apoptosis.

A: Effects of NS398 (50mM), an enzymatic inhibitor of COX-2, on TRAIL

(30 ng/ml) or TRAILþ CHX (1mg/ml) induced apoptosis in fibroblasts and

indicated melanoma lines. B: Effects of COX-2 suppression by specific COX-2

RNAi on COX-2 and cFLIP-L protein expression levels in WM9 and LU1205

melanoma cells. Cell cultures stably transfected by control or COX-2 RNAi were

previously described. C: TRAIL-induced apoptosis in control and COX-2 defi-

cient cell cultures. Apoptotic levels were determined 48 h after treatment

using PI staining and the flow cytometry. Error bars represent mean� SD

(Student’s t test, P< 0.05).
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in several melanoma lines based on results of a clonogenic survival

assay (Fig. 7E), further extending previous observations on

proapoptotic activity of a combination of TRAIL and RSV in cancer

cells [Fulda and Debatin, 2004; Ivanov et al., 2008], while the effect

of this combination on TIG-3 normal fibroblasts was only marginal.

Taken together, the present results and previously published data

allow us to link proapoptotic effects of RSV in a combination with

TRAIL, at least partially, with suppression of anti-apoptotic

functions by NF-kB and STAT3 in melanoma cells.

Among additional suppressors of inflammation, a small

molecular inhibitor of the ATM-NF-kB/STAT3 signaling pathway,

KU-55933 (10mM), demonstrated pronounced anti-inflammatory

effects (determined by downregulation of IL6 secretion) and

upregulation of TRAIL-mediated apoptosis in human melanoma

Fig. 7. Resveratrol (RSV), a natural inhibitor of NF-kB and STAT3 activation, negatively regulates secretion of TNFa and IL6, COX-2 expression and increases TRAIL-induced

apoptosis in melanoma lines. A,B: Effects of RSV (25–100mM) on TNFa and IL6 secretion. C: Western blot analysis of COX-2 protein levels following RSV exposure. D: RSV

(50mM) suppressed oxygen consumption in melanoma cells. E: Effects of RSV, TRAIL, and their combination on clonogenic survival of melanoma cell lines. Error bars represent

mean� SD (Student’s t-test, P< 0.05).
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cells (Suppl. Fig. 3) confirming our recent observations on a role

of ATM kinase activity in the regulation of apoptosis in melanoma

cells [Ivanov et al., 2009].

DISCUSSION

Since many melanoma cell lines exhibit profound resistance to

TRAIL treatment, we and others investigated the origin of this

resistance and demonstrated an upregulation of TRAIL/TRAIL-R-

mediated apoptosis in metastatic melanoma cells using different

types of co-treatment for suppression of strong anti-apoptotic

mechanisms in cancer cells [Hersey et al., 2006; Ivanov et al., 2007].

Melanoma has multifactorial etiology and, quite predictably,

different approaches should be used for successful treatment of

this disease. An interesting and potentially important difference

between melanoma lines observed in the present study was the

different levels of mitochondrial function that could probably

predict different effects of drugs targeting mitochondria. Melanoma

cells with suppressed mitochondrial function responded poorly to

sodium arsenite or other mitochondrial target drugs. This was based

on downregulation of the mitochondrial pathway of apoptotic

death, which actively required energy produced by mitochondria, in

advanced melanomas. In some cases (OM431 and SW1 melanoma

cells), an additional suppression of the mitochondrial apoptotic

pathway was based on strong downregulation of APAF1 levels,

a critical adaptor protein of this pathway [Soengas and Lowe, 2003;

Ivanov and Hei, 2006b]. We investigated a role of the proin-

flammatory response of melanoma cells via TNFa/TNFR-NF-kB-

IL6/IL6R-STAT3 pathways in regulation of apoptosis to consider

alternative approaches for treatment of metastatic melanomas.

Although a general link between inflammation and tumorigen-

esis is well established [Karin, 2009], there are many different

aspects to this problem. The focus of our study was the

proinflammatory response of metastatic melanoma cells based

on the endogenous NF-kB- and STAT3-transcriptional activation of

cytokine gene expression, establishing an autocrine loop with

further activation of NF-kB- and STAT3-dependent anti-apoptotic

genes, including COX-2 and cFLIP. We further demonstrated that

suppression of this protective loop at several points (TNFa, IKKb–

NF-kB, IL6, JAK2–STAT3, COX-2) substantially upregulated TRAIL-

induced apoptosis in melanoma cells. Unfortunately, for some

melanoma lines, even increasing apoptotic response to TRAIL still

did not achieve high levels of apoptosis. The preliminary

upregulation of TRAIL-R2/R1 (DR5/DR4) levels using different

approaches might further help to upregulate TRAIL-induced

apoptosis in these melanoma lines [Ivanov et al., 2007].

Numerous mechanisms that control either direct physical

interaction between NF-kB RelA subunit and STAT3 [Yang et al.,

2007] or extensive cross-talking between signaling pathways

targeting gene expression and activation of NF-kB and STAT3

have been elucidated in the inflammatory network, including in

cancer cells [Grivennikov and Karin, 2008]. One of the critical results

of NF-kB and STAT3 interactions in tumorigenesis also targets the

mitochondria. A deficiency of normal mitochondrial respiratory

function, but increased production of reactive oxygen species, one

of the characteristic features of the inflammatory response

[Alexeyev et al., 2004], might be frequently found in cancer cells,

which have a tendency to change their energetic metabolism from

oxidative phosphorylation to oxidative glycolysis (‘‘Warburg

effect’’) [Jones and Thompson, 2009]. Such downregulation of

mitochondrial function could be achieved via direct depletion

of mtDNA with suppression of mitochondriogenesis, as we observed

in the present study. Alternatively, transcription factors, such as NF-

kB and STAT3 could play multiple roles in the control of

mitochondrial function. By transcriptional regulation of COX-2

and iNOS, both NF-kB and STAT3 positively control ROS and NOS

production. On the other hand, via transcriptional regulation of

antioxidant enzymes, such as Mn-superoxide dismutase, NF-kB

could balance ROS levels and abrogate destructive effects of ROS

on mitochondria [Luo et al., 2005].

The present study and our previous work [Ivanov et al., 2007,

2009] provide significant understanding of the regulation of TRAIL-

mediated apoptosis in melanoma cells and will potentially foster

translational development of a new therapy for treatment of

currently therapy-resistant metastatic melanomas. This strategy

for treatment of human melanomas, which could be further used

in translational research, is based on: (i) dramatic upregulation of

surface expression of death receptor (TRAIL-R1/DR4 and TRAIL-R2/

DR5) in metastatic melanomas using ionizing radiation;

(ii) increasing sensitivity to apoptosis using inhibition (immuno-

logical, pharmacological or by specific RNAi) of the TNFa/TNFR–

NF-kB–IL-6/IL-6R–STAT3–COX2 signaling cascade in human

melanoma cells. Our study also demonstrates that dual inhibition

of NF-kB and STAT3-dependent gene expression (through small

molecular inhibitors or natural agents, such as resveratrol [Fulda

and Debatin, 2004]) was especially efficient for increasing the

TRAIL-response in some human melanoma lines.
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