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ABSTRACT

Tropical cyclone genesis indices (TCGIs) are functions of the large-scale environment that are designed to be

proxies for the probability of tropical cyclone (TC) genesis. While the performance of TCGIs in the current

climate can be assessed by direct comparison to TCobservations, their ability to represent futureTCactivity based

on projections of the large-scale environment cannot. Here the authors examine the performance of TCGIs in

high-resolution atmospheric model simulations forced with sea surface temperatures (SST) of future, warmer

climate scenarios. They investigate whether the TCGIs derived for the present climate can, when computed from

large-scale fields taken from future climate simulations, capture the simulated global mean decreases in TC fre-

quency. The TCGIs differ in their choice of environmental predictors, and several choices of predictors perform

well in the present climate. However, some TCGIs that perform well in the present climate do not accurately

reproduce the simulated future decrease inTC frequency. This decrease is capturedwhen the humidity predictor is

the column saturation deficit rather than relative humidity. Using saturation deficit with relative SST as the other

thermodynamic predictor overpredicts the TC frequency decrease, while using potential intensity in place of

relative SST as the other thermodynamic predictor gives a good prediction of the decrease’s magnitude. These

positive results appear to depend on the spatial and seasonal patterns in the imposed SST changes; none of the

indices capture correctly the frequency decrease in simulations with spatially uniform climate forcings, whether

a globally uniform increase in SST of 2K, or a doubling of CO2 with no change in SST.

1. Introduction

It is critically important to understand how greenhouse

gas–induced climate change will influence tropical cyclone

activity. To do this, we have to first know how the large-

scale climate will change and then how the large-scale

climate changes will influence tropical cyclones (TCs). We

focus here on the second question, given an answer to the

first.

Most model projections for the twenty-first-century cli-

mate are computed with relatively low-resolution models.

Most of the model simulations in phase 5 of the Coupled

Model Intercomparison Project (CMIP5), for example,
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have horizontal grid spacings of order 100 km or

greater. While these low-resolution models are able to

simulate tropical cyclone–like structures that have

grossly similar properties to observed TCs (Bengtsson

et al. 1982; Vitart et al. 1997; Camargo et al. 2005,

2007b), these low-resolution model cyclones are in-

adequate for detailed studies of the relation of TCs to

climate. The cyclones are too large and too weak, and,

in most cases, their climatological distributions in

space and time of year are significantly biased (Walsh

et al. 2013; Camargo 2013; Tory et al. 2013a,b). An

emerging generation of high-resolution coupled cli-

mate models is enabling the exploration of the climate

response of TCs more directly (e.g., Roberts et al.

2009; Delworth et al. 2012; Bell et al. 2013; Kim et al.

2014), yet these high-resolution models represent

a small fraction of the climate models presently used

around the globe.

Many methods for examining future tropical cyclone

activity involve downscaling the results of global cli-

mate models, using themodels to predict changes in the

large-scale atmospheric and oceanic environmental

fields that are statistically associated with tropical cy-

clone activity, and inferring likely changes in tropi-

cal cyclone statistics from those environmental fields,

rather than direct simulation by the climate model.

Since low-resolution climate models have better skill in

simulating the environmental fields than in simulating

TC-like structures themselves (e.g., Camargo 2013),

these strategies make better use of the climate models.

One possibility is to use the large-scale fields of the global

models to force regional climate models (Landman et al.

2005; Camargo et al. 2007a; Knutson et al. 2008). Another

possibility is to use a hybrid dynamical–statistical model

(e.g., Vecchi et al. 2011) as well as a dynamical

downscaling model that generates synthetic storms

based on environmental fields output from the models

(Emanuel et al. 2006; Emanuel 2006, 2013). Still another

option for downscaling is to use statistical models for

basin-integrated activity (Villarini and Vecchi 2012,

2013).

Another possibility, and the one explored here, is to

relate the models’ projections to tropical cyclone

changes using local (rather than basin-integrated) re-

lationships between the environmental fields and TC

activity in the recent historical climate. A local re-

lationship between environmental factors and the

probability of tropical cyclogenesis is known as a gen-

esis index.

Gray (1979) developed the first genesis index. Gray’s

index is not appropriate to explore TC activity in the

future, as it uses a fixed sea surface temperature (SST)

threshold. To the extent that such a threshold is a good

predictor, we expect that it will increase as the climate

warms (e.g., Johnson and Xie 2010) since relative SST

(the difference between local SST and the tropical

mean, or another reference, such as the tropical mean

upper tropospheric temperature) is a better predictor

than absolute SST (Vecchi and Soden 2007; Swanson

2008; Ramsay and Sobel 2011). Since then, many other

indices have been developed. Most of these improve on

Gray’s original index by replacing the fixed SST

threshold with thermodynamic predictors more appro-

priate for handling climate change. The first application

of a genesis index to climate change appeared in Ryan

et al. (1992), where Gray’s index was applied to the

environmental fields of a global climate model in pres-

ent and future climate simulations.

One of the most widely used indices is the genesis

potential index (GPI) developed by Emanuel and Nolan

TABLE 1. HiRAM simulations used in this study, including forcing, name, and duration.

Type Name Abbreviation Duration

Climatological SST Climatology CL 25 yr

Multimodel ensemble mean SST anomalies Warm W 20 yr

SST anomalies Canadian Centre for Climate Modeling and

Analysis (CCCMA) model

Warm CCCMA WC 10 yr

SST anomalies ECHAM5 model Warm ECHAM5 WE 10 yr

SST anomalies GFDL Climate Model, version 2.1 (CM2.1) Warm GFDL 2.1 WG 10 yr

SST anomalies GFDL CM2.0 model Warm GFDL 2.0 W0 10 yr

SST anomalies HadCM3 model Warm HadCM3 W3 10 yr

SST anomalies Hadley Centre Global Environment Model,

version 1 (HadGEM1)

Warm HadGEM1 W1 10 yr

SST anomalies Model for Interdisciplinary Research on

Climate (MIROC)

Warm MIROC WO 10 yr

SST anomalies Meteorological Research Institute

(MRI) model

Warm MRI WI 10 yr

2 times CO2 23CO2 23CO2 25 yr

SST plus 2K globally plus2K p2K 25 yr

9172 JOURNAL OF CL IMATE VOLUME 27



(2004). It replaces SST entirely, using potential intensity

instead. The GPI has been used in applications on var-

ious time scales, from intraseasonal to climate change

(Camargo et al. 2007a, 2009; Vecchi and Soden 2007;

Nolan et al. 2007; Lyon and Camargo 2009; Yokoi et al.

2009; Yokoi and Takayabu 2009; Camargo 2013). More

recently, Emanuel (2010) modified his original index,

using a variable associated with the entropy saturation

deficit in place of the relative humidity parameter used

in the original index. While having a similar spatial and

temporal distribution in the present climate, the hu-

midity saturation deficit differs from relative humidity—

being the difference between the specific humidity and

its saturation value, rather than the ratio, and thus in-

creasing systematically with warming if relative humid-

ity remains constant—in a way that is consequential, and

apparently better, for capturing the greenhouse gas–

forced climate change influence on TCs. Many other

alternative indices have been developed, using different

predictors or different functional dependences in their

indices (DeMaria et al. 2001; Royer et al. 1998; Sall et al.

2006; Bye and Keay 2008; Kotal et al. 2009; Murakami

and Wang 2010; Bruyère et al. 2012; Waters et al. 2012;

Tang and Emanuel 2012; Holland and Bruyère 2014;
Tang and Camargo 2014). A recent intercomparison of

various genesis indices, including the Tippett et al. (2011)

index used here, is given in Menkes et al. (2012).

Our goal here is to evaluate how well tropical cyclone

indices developed in the present climate are able to

predict changes in tropical cyclone frequency in future

climates. These indices are partly empirical. The pre-

dictors are selected based on our current physical un-

derstanding of the factors that control genesis; but that

understanding is imperfect, and the relationships be-

tween the predictors and the index are found using data

from the present climate. Thus, it is possible that they will

fail to capture the influence of future climate changes on

TCs. We cannot perform empirical tests of the indices’

ability to capture these changes using observations, since

there are no observations of future tropical cyclone ac-

tivity. As an alternative, we use a perfect model frame-

work to test our index methodology.

FIG. 1. First-position density (number of geneses per year) and tracks (a),(b) for the control simulation of HiRAM

and (c),(d) in observations. The control simulation is forced with climatological SST for 25 years, and the observed

data used is for the period 1981–2005.
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The decrease in TC frequency in the future is pro-

jected by an overwhelming number of climate models,

the behavior of the chosen model is expected to be very

typical. Therefore, in the absence of future observations,

we think our approach is a valid one. We are currently

applying the procedure described here to other high-

resolution climatemodels to further test this approach in

a multimodel setting. One of the only results where an

increase in global TC frequency was projected was

obtained by applying a dynamical downscaling to the

CMIP5 models (Emanuel 2013). However, the same

downscaling applied to the CMIP3 models also projected

a decrease in global TC frequency (Emanuel et al. 2006),

in agreement with other models. In summary, we chose

a state-of-the-art high-resolution climate model that

projects a decrease in global TC frequency in the future to

use in our perfect model framework.

Specifically, we use the Geophysical Fluid Dynamics

Laboratory (GFDL) High Resolution Atmospheric

Model (HiRAM) forced with specified SST at 50-km

resolution. This model has been extensively examined

in the present and future climates. It has been shown

FIG. 2. Mean NTC per month for the HiRAM climatological simulation and observations (1981–2005) in the

(a) Southern Hemisphere, (b) Northern Hemisphere, (c) south Indian Ocean, (d) Australian region, (e) western

North Pacific, and (f) North Atlantic.

TABLE 2. Domain definitions used for basin integrations. All

Southern (Northern) Hemisphere basins are defined in oceanic

regions from the equator to 408S (408N).

South Indian 208–1058E
Australian 1058–1658E
South Pacific 1658E–708W
North Indian 408–1008E
Western North Pacific 1008E–1808
Central North Pacific 1808–1408W
Eastern North Pacific (ENP) 1408W to American coast

North Atlantic American coast to African coast

South Atlantic American coast to African coast
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to simulate both the current climatological global

distribution of tropical cyclone activity and recent

historical interannual variations in Atlantic tropical

cyclone activity well. It predicts a decrease in global

tropical cyclone frequency in a warmer climate, simi-

lar to most other comparable models (Knutson et al.

2010).

Our procedure is as follows:

(i) Use the model’s own TCs and large-scale environ-

mental fields, taken from a control simulation, to

derive a tropical cyclone genesis index.

(ii) Compute the resulting index from model environ-

mental fields taken from a simulation of a warmer

climate.

(iii) Compare the future changes in the indices to future

changes in the model’s own tropical cyclone fre-

quency.

We use the technique developed by Tippett et al.

(2011) to generate and test a number of different trop-

ical cyclone genesis indices in this fashion. The indices

differ in the predictors that are used. While our interest

here is in the changes due to warming, our procedure

also ensures that the indices capture the climatological

spatial distribution and seasonal cycle of tropical cy-

clogenesis in the control simulation from which the

index is derived. This feature is an important difference

between our method and those involving statistical

models, which are designed only to capture temporal

variations in basin-integrated activity for a single basin.

Each method has its advantages; the advantage of the

index methodology is that, being based on local re-

lationships between the probability of genesis and the

environment, it is closer to a physical theory for genesis

(though still not quite being one, since it is partly em-

pirical). An index that captures the seasonal cycle,

global spatial distribution, and temporal changes in

genesis frequency everywhere—if one were to exist—

would have more explanatory power than one that

captures only temporal changes in the basin-integrated

frequency for a single basin. If the goal is only to predict

variations in basin-integrated activity for one basin,

a model designed solely for that purpose may be best.

Our approach, instead, tests our understanding of the

local physics of genesis, to the extent that the indices

represent that.

In section 2, we summarize the procedure used by

Tippett et al. (2011) to construct a tropical cyclone

genesis index (TCGI). In section 3, we describe the

datasets, HiRAM, and themodel simulations. A summary

of the TC activity in HiRAM is given in section 4. We

apply the TCGI to HiRAM in section 5. Various alter-

native indices obtained using HiRAM environmental

fields and TCs are tested in section 6. In section 7, we

discuss our results.

2. Developing TCGI

a. Overview of the methodology

One objective of Tippett et al. (2011) was to develop

a TCGI using a robust, objective, and easily re-

producible procedure. Such a procedure allows the in-

dex to be rederived easily when new datasets become

available for either the environmental fields or tropical

cyclones or if new hypotheses aboutwhich environmental

fields should be used as predictors are developed. The

statistical method used is Poisson regression. The TCGI

in Tippett et al. (2011) was constructed using the ob-

served climatology of tropical cyclogenesis and large-

scale variables from the 40-yr European Centre for

Medium-Range Weather Forecasts (ECMWF) interim

reanalysis (ERA-40) and National Centers for Environ-

mental Protection (NCEP)–National Center for Atmo-

sphericResearch (NCAR) reanalysis, as well as retrievals

of column water vapor from satellite passive microwave

observations.

The regression methodology is objective and provides

a framework for the selection of the climate variables to

be used in the index. This method led us to select four

environmental variables for the index similar but not

identical to those used by Emanuel and Nolan (2004):

low-level absolute vorticity, relative humidity, relative

SST (difference between the SST and mean tropical

SST), and vertical wind shear. One result of Tippett

et al. (2011) is that the sensitivity of genesis on low-level

absolute vorticity saturates after the vorticity exceeds a

FIG. 3. Global number of TCs per year in each of the HiRAM

simulations. The label ‘‘CO2’’ is for the 23CO2 simulation.
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threshold; using a ‘‘clipped vorticity’’ parameter to account

for this saturation leads to a better fit of the index to the

genesis observations. Although the index was fit only to

the climatological data, it reproduces some aspects of

the interannual variability reasonably well. The same

procedure, with different predictors and predictands,

was recently applied successfully to describe the rela-

tionship of tornado activity over the United States to

environmental variables (Tippett et al. 2012, 2014), as

well as to hail occurrence (Allen et al. 2014, manuscript

submitted to J. Adv. Model. Earth Syst.).

The fact that the index can be easily rederived allows

us to customize it to HiRAM (or any other model or

reanalysis dataset). An index derived from TC obser-

vations and reanalysis fields will not perform well when

used with TCs and environmental variables from a

model, since the relationships between environment and

TCs in the model may differ from those in the real

atmosphere. To address this problem, we can simply

rederive our index using both TCs and large-scale fields

from the model itself. In this case, we know that the

resulting index will be faithful to the model’s own re-

lationship between environment and TCs, at least in the

simulation from which it was derived. If the resulting

index, when computed from the warmer climate simula-

tion, successfully predicts changes in TC genesis statistics,

FIG. 4. Difference in the first-position density climatology between the futureHiRAMsimulations with different SST anomalies and the

present. The first-position density was calculated using the reanalysis grid, as in Fig. 1a, and a Gaussian filter using a standard deviation

value of 0.5 over three rows and columns.
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it increases our confidence in both the index method-

ology and our ability to understand the reasons for the

TC changes in the simulated warmer climate.

b. Specifics

For each grid cell (on a latitude–longitude grid chosen

to match the environmental data) and calendar month,

we fit the index to the total number of TCs during a

40-yr period (in the case of the reanalysis index). We

use a log-linear model such that the logarithm of the

expected number of TCs is linearly related to the index

derived from the climate variables. We include a term

that takes into account the convergence of the meridians

so that the units of our index are the number of TCs per

unit surface area. We use the maximized log likelihood

and the Akaike information criteria (Akaike 1973) to

measure the model fit, and attempt to avoid the selection

of useless predictors and overfitting. We use a quasi-

Poisson method in which the coefficient estimates are the

same as in Poisson regression, but their standard errors

are inflated to reflect overdispersion. A characteristic of

the Poisson regressionmodel is that the coefficients of the

regression can be interpreted as sensitivities.

The form of the Poisson regression model is, for

example,

m5 exp(b1 bhh1 bHH1 bTT1 bVV1 log cosf) ,

where m is the expected number of tropical cyclones per

month in a 40-yr climatological period, b is a constant

term, and f is latitude. Here h, H, T, and V are, re-

spectively, the absolute vorticity at 850 hPa in 105, the

column-relative humidity in percent, relative SST in

8C (difference between the SST at each grid point and

the mean tropical SST), and vertical wind shear be-

tween 850- and 200-hPa levels in m s21. The best fit

obtained in Tippett et al. (2011), using reanalysis fields

to compute these predictors, together with observed

TC climatology data, has the following coefficients:

b 5 211.96, bh 5 1.12, bH 5 0.12, bT 5 0.46, and bV 5
20.13 (also given in Table 3). Here, we will consider

these same predictors but will also consider possible

substitutes for H and T.

We first apply the TCGI obtained from reanalysis

(TCGI-R) to HiRAM fields and compare it with the

number of TCs in HiRAM. In the second part of the

analysis, we will derive the index from HiRAM fields

and its TCs in the present climate, performing the

Poisson regression on those quantities to obtain a new

TCGI from HiRAM itself (TCGI-H). Having derived

this index from the HiRAM control simulation forced

with historical climatological SST, we then compute the

index using fields fromHiRAM simulations with warmer

SST and assess whether the index captures the TC fre-

quency changes simulated directly by the model. We re-

peat this procedure varying the predictors. We then

derive indices using environmental fields and TCs taken

directly from the warmer, future climate simulations in

HiRAM in order to examine the changes in the index that

result.

3. Data and HiRAM models and simulations

The observed tropical cyclone data are from the best

track datasets of the National Hurricane Center (NHC)

for the North Atlantic and eastern North Pacific (NHC

2013) and the Joint Typhoon Warning Center (JTWC)

for theNorth Indian, westernNorth Pacific, and Southern

Hemisphere (JTWC 2013). The reanalysis fields used to

FIG. 5. Climatology of TCGI-R per year for (a) HiRAM clima-

tology, (b) NCEP reanalysis, and (c) ERA-40. The values of TCGI

for HiRAM integrated give the number of genesis events per year.

The values of the TCGI for both reanalyses were normalized by the

ratio of the grid sizes between the reanalysis and HiRAM for

a direct comparison with the HiRAM TCGI-R.
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calculate the TCGI are from the NCEP–NCAR re-

analysis (Kalnay et al. 1996; Kistler et al. 2001) and the

ERA-40 (Uppala et al. 2005).

The column-integrated relative humidity for obser-

vations and HiRAM were calculated following the

procedure developed in Bretherton et al. (2004). In the

case of observations, the observed retrievals of column-

integrated water vapor W for all available Special Sen-

sor Microwave Imager (SSM/I; Wentz and Spencer

1998), is as described in detail in Tippett et al. (2011).

The column-relative humidity is calculated by first cal-

culating the daily averaged saturation water vapor path

W* using reanalysis data. The daily column-relative

humidity is defined as the ratio W/W*; monthly means

and climatological values are then calculated.

HiRAM is a modified version of the GFDL Atmo-

spheric Model, version 2.1 (AM2.1), as described in

detail in Zhao et al. (2009). The version used here has

50-km horizontal grid spacing. The tropical cyclone ac-

tivity in this model has been examined in many studies,

including Zhao et al. (2009, 2010) and Zhao and Held

(2010, 2012). The climatological TC activity in HiRAM

is similar to that in the observations in its spatial and

temporal characteristics, although the storm frequency

is lower than observed in the North Atlantic, eastern

North Pacific, and south Indian basins and higher than

observed in the western North Pacific and South Pa-

cific. HiRAM is able to reproduce the interannual

variability and trends of the TC activity in the period

1981–2005 in the North Atlantic with a high degree of

FIG. 6. Climatology of TCGI-R for HiRAM runs forced with different SST anomalies, as described in Table 1.
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fidelity when forced with observed SST. The model is

skillful in interannual hindcast mode (i.e., given the

SST) in most basins, with the exception of the north

Indian Ocean.

We will first examine the set of simulations with

HiRAM forced by different specified SST fields. The

same simulations were discussed in Zhao et al. (2009)

and Zhao and Held (2012). Each SST field is a function

of position and time of year but has no interannual or

submonthly variability. The first simulation is a 25-yr

control run, in which the model is forced with the cli-

matological SST from the Hadley Centre. For the future

climate runs, the climatological SSTs aremodified by the

addition of SST anomalies from the CMIP3 simulations

(Zhao and Held 2012).

The atmospheric CO2 concentration is also increased

in the model to be consistent with the A1B scenario for

the period 2081–2100, from which the SST anomalies

were calculated. The anomalies were calculated as the

differences between the multimodel ensemble mean

2081–2100 SSTs in theA1B scenario with the SSTs in the

historical simulations in the period 2001–20 for the

multimodel ensemble mean. The simulation forced with

the SSTs anomalies from the multimodel ensemble

mean is called ‘‘warm’’ here and lasts 20 years. The

simulations with the individual model SST anomalies

FIG. 7. Difference in the climatology of TCGI-R for the future simulations with different SST anomalies and the present control

simulation, using the following as TCGI-R predictors: vorticity, vertical shear, column relative humidity, and RSST.
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are named by the model and last 10 years each. The SST

anomalies are calculated separately for each month and

grid point and are discussed in Zhao and Held (2012).

The two final simulations, considered in a separate

section, last 25 years each. In the first one, the SST is

kept at the present climatological values, and only the

CO2 in the model is doubled (23CO2). In the second

one, a uniform warming of 2K is added to the climato-

logical SST, but CO2 is not increased; this is called

the ‘‘plus 2 K’’ or ‘‘p2K’’ simulation. The response of

HiRAM to an increase of CO2 with fixed SST and the

comparison of that to the response in the p2K simulation

was analyzed by Held and Zhao (2011). Table 1 sum-

marizes the 12 simulations considered in this study.

The relative SST (RSST) is defined as the SST at each

grid point minus the mean SST of the region 208S–208N
(Vecchi and Soden 2007; Vecchi et al. 2008). The po-

tential intensity (PI) was calculated using the algorithm

developed by Kerry Emanuel and based on the procedure

described in Emanuel (1995) and Bister and Emanuel

(1998, 2002a,b). The column relative humidity forHiRAM

was calculated as the ratio of themonthly fields of column-

integrated water vapor W and saturated water vapor W*
(i.e., W/W*). The saturation deficit is defined as the dif-

ference of these quantities (i.e., W2W*).

4. Tropical cyclone activity in HiRAM

The tropical cyclone activity in HiRAM has been dis-

cussed extensively in previous studies (Zhao et al. 2009,

2010; Zhao and Held 2010, 2012; Held and Zhao 2011).

Here we give only a short summary of the results. The

algorithm used to define and track model storms is based

onVitart et al. (1997, 2003) andKnutson et al. (2007) and

described in detail in the appendixB ofZhao et al. (2009).

The first position density and the tracks in both ob-

servations and the control simulation with HiRAM are

shown in Fig. 1. The model’s first position density pattern

is quite similar to the observed pattern. Biases are no-

ticeable only in a few regions. For example, storms form

in the model, unrealistically, near the Nordeste coast of

Brazil. The genesis density in the central North Pacific is

too high. The genesis rate of subtropical storms is greater

than that in observations in the Southern Hemisphere.

The HiRAM tracks are also, overall, very similar to

observed tracks. However, in some regions, the HiRAM

tracks tend to be longer than the observed ones, espe-

cially in the Southern Hemisphere, the eastern North

Pacific, and the Arabian Sea. The mean numbers of

storms per month in both hemispheres and in a few in-

dividual basins in the HiRAM control run and in ob-

servations are shown in Fig. 2, with the basins definition

given in Table 2. The seasonal cycle of the HiRAM

mean number of TCs (NTC) is very similar to the sea-

sonal cycle derived from the observations in both

hemispheres. However, in both hemispheres, the model

produces too many TCs in the off-season. In the peak

season of each hemisphere, the model NTC is very close

to the observations but is slightly below the observed

mean in August (Northern Hemisphere) and February

(Southern Hemisphere). When we examine a few in-

dividual basins, there are regions in which the model

performs better than in others. For instance, while

the model has a tendency to produce too many TCs in

the south Indian Ocean (Fig. 2c), the peak season in the

Australian region (Fig. 2d) has too few TCs. The for-

mation of storms in the off-season is more concentrated

in the western North Pacific (Fig. 2e) than in the North

Atlantic (Fig. 2f). Because of model resolution (50 km),

HiRAM is not expected to be able to simulate the most

intense TCs (categories 4 and 5), for which much higher

resolution would be necessary [or additional downscal-

ing could be used (e.g., Bender et al. 2010)].

In summary, as shown in many previous papers,

HiRAM’s TC activity in the present climate is close to

observed with respect to the seasonal cycle, location,

and shapes of the tracks. A multimodel comparison of

the ability of the high-resolution climate models to

simulate TC activity (Shaevitz et al. 2014) shows that

HiRAM is one of the top models of the current

generation of high-resolution climate models. This

FIG. 8. Deviance as a function of the number of environmental

parameters used in the Poisson regression. Error bars indicate the

6 standard deviation.
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suggests that the model ought to be a good tool with

which to examine frequency changes of TCs in various

future scenarios.

Our main interest in this analysis is to determine to

what extent the genesis indices are able to predict the

differences between the future and present TC frequency.

Knutson et al. (2010) have shown that high-resolution

models agree on two main robust results regarding future

TC activity: a slight reduction in the global frequency of

TCs and a shift toward more intense storms. The magni-

tudes of these changes vary from one model to the next.

The global reduction in frequency is a good test for a

genesis index derived by fitting the spatial and seasonal

variations in genesis. It should be noted, though, that a

recent downscaling of theCMIP5models led to an increase

in the global TC frequency in the future (Emanuel 2013), in

contrast to previous results using the same methodology

(Emanuel et al. 2008) and other climate models.

Figure 3 shows the global number of TCs in the present

and future cases forced with SST anomalies, while the

differences in first-position climatology between future

cases and the present are shown in Fig. 4. In all future

simulations, there is a reduction of the number of TCs in

the future (with differentmagnitudes), depending on the

SST pattern. The SST anomalies are clearly correlated

with the regions of increase and decrease of TC activity.1

This is the main issue we want to address here: how well

can the TCGI (and other genesis indices) reproduce the

global reduction of TCs in the future runs while still

capturing the spatial and seasonal structure of genesis in

the control climate?We will use HiRAM’s own TCs and

environmental variables to examine this question in the

next sections.

5. TCGI-R applied to HiRAM

As a first step in our analysis, we applied the TCGI

developed using reanalysis fields (Tippett et al. 2011) to

data from HiRAM. We calculated the values of the

TCGI-R using the monthly output data of each simula-

tion. The resulting TCGI-R fields for the control (forced

with climatological SST) are shown together with those

computed from the NCEP and ERA-40 reanalyses in

Fig. 5. The climatology of HiRAM for the present is very

similar to that of the reanalysis. The main differences are

the higher values of the index in the eastern North Pacific

and South Pacific and the shift in the location of the

westernNorthPacificmaximumnortheastward, compared

with the reanalysis climatology for the period 1961–2000.

Similarly, we calculated the climatologies for the fu-

ture scenarios forced with SST anomalies. These are

shown in Fig. 6. As might have been expected, the gross

features of the climatologies are very similar, with dif-

ferences in the maxima’s locations and strengths in each

case varying according to the SST anomaly patterns

in each case. The main differences in the patterns of

TCGI-R in the various future scenarios occur in their

magnitude in the Pacific Ocean, in particular the eastern

and central North Pacific and the South Pacific.

Next, we compare the future climatologies of TCGI-R

with that in the present in the HiRAM simulations. The

TABLE 3. Coefficients of the Poisson regression between TCGI-R (Tippett et al. 2011) and TCGI-H using various predictors. The

humidity predictor can be the CRH, theRH at 600hPa, the SD, the vertical velocity at 500 hPa (VV), or the convective precipitation (CP).

The thermal predictor can be the SST, RSST, or PI. For the reanalysis case, only the coefficients for the CRH and RSST are shown. Note

that the index procedure wasmodified for theVV andCP indices, with themonthly varying fields used in the Poisson regression, instead of

climatological monthly fields (used for the CRH, RH, and SD TCGI-H indices, as well as the TCGI-R index).

Index Vorticity Humidity Thermal Shear Constant AIC 3 104 s2 3 104

TCGI-R 1.12 0.12 0.46 20.13 211.96 1.2213 0.0003

CRH and RSST 1.20 0.10 0.40 20.12 214.34 2.8528 2.2833

CRH and SST 1.24 0.10 0.42 20.12 226.02 2.8579 2.2883

CRH and PI 1.41 0.12 0.08 20.13 221.18 2.8628 2.2983

RH and RSST 1.18 0.05 0.35 20.12 210.32 2.8799 2.3154

RH and SST 1.22 0.06 0.36 20.13 220.39 2.8759 2.3114

RH and PI 1.38 0.06 0.08 20.13 216.01 2.8891 2.3246

SD and RSST 1.21 0.13 0.57 20.13 24.61 2.8607 2.2962

SD and SST 1.27 0.14 0.59 20.13 220.72 2.8530 2.2884

SD and PI 1.45 0.13 0.11 20.14 212.14 2.9044 2.3399

VV and RSST 1.96 20.12 0.39 20.11 211.17 93.992 92.543

VV and SST 2.00 20.12 0.39 20.11 221.82 94.112 92.266

VV and PI 2.09 20.12 0.06 20.12 215.26 95.511 93.367

CP and RSST 2.09 0.15 0.36 20.10 212.21 92.700 91.253

CP and SST 2.12 0.15 0.35 20.10 221.69 92.935 91.487

CP and PI 2.17 0.15 0.05 20.11 215.58 93.997 92.549

1 The SST anomaly patterns of a few cases are shown in Fig. 12 of

Zhao et al. (2009).
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differences between them are shown in Fig. 7. The

largest differences occur in the North Pacific, with the

index having large increases in that region in many fu-

ture runs, in particular the Hadley Centre Coupled

Model, version 3 (HadCM3). While the number of TCs

in all future scenarios decreases globally compared with

the present, the difference in TCGI-R is positive when

integrated globally, indicating that the index predicts an

increase in the number of TCs (see Table 5). The TCGI-

R index fails to predict the reduction in the number of

TCs observed in HiRAM, as shown by the fractional

change of the mean number of TCs and index-predicted

number of tropical cyclones (INTC, defined as the in-

tegrated value of the TCGI) using TCGI-R in future

scenarios compared with the present climate (shown in

Table 5). In the present climate, the root-mean-square

error (RMSE) of the global INTC by year obtained using

the TCGI-R is actually larger than inmost future scenarios

(as shown in Table 6). Furthermore, RMSE of the differ-

ence (D) and fractional change (FC) between present and

future scenarios between global mean NTC and INTC

predicted by TCGI-R are also large (as shown in Table 7).

6. TCGI obtained from HiRAM

One possible reason for the TCGI-R to increase in the

future while the NTC decreases in the same simulations

could be that the index was obtained using a statistical

FIG. 9. Difference in the climatology of TCGI-H for the future simulations with different SST anomalies and the present control

simulation, using the following as TCGI-H predictors: vorticity, vertical shear, column relative humidity, and RSST.
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regression between reanalysis variables and observed

TCs, instead of using themodel output itself to derive the

index. Therefore, we repeat the TCGI fitting procedure

using the HiRAM simulations of present-day climate

fields and HiRAMTCs. Besides the variables used in the

TCGI-R, we test various other variable combinations for

our predictands. We will call the indices obtained from

HiRAM data TCGI-H and will test their abilities to

predict the global number of future TCs in the model.

First, we determine the optimal number of parameters

for the TCGI-H index. We consider the same group of

variables used in Tippett et al. (2011) [i.e., clipped vor-

ticity, vertical shear, column relative humidity (CRH),

relative humidity at 600 hPa (RH), sea surface temper-

ature, relative sea surface temperature, and potential

intensity]. We also consider one additional variable,

saturation deficit (SD), which is similar to the variable

that was used in Emanuel (2010): entropy saturation

deficit. Figure 8 shows the deviance computed using the

HiRAM fields for the present climate. Our procedure is

the same described in Tippett et al. (2012). It is a forward

selection procedure in which one variable is added at

a time, and the variable whose additionmost reduces the

deviance is identified. The deviance is calculated using

cross validation, with the data randomly separated in 10

subsets, 9 of which are used to estimate the regression

coefficients, and 1 is used to calculate the deviance,

leading to 10 estimates of the deviance to each partition

of the data. Here we use 10 partitions and obtain 100

estimates of the deviance. The mean and standard de-

viation of the deviance as a function of the number of

environmental parameters are shown in Fig. 8. There are

significant decreases in deviance as the number of the

environmental parameters increases from one to four,

but further increases in the number of parameters do not

result in significant decreases in deviance.

The four environmental parameters chosen as de-

scribed above are exactly the same as those obtained

using the reanalysis and observed TC data to derive the

TCGI-R [i.e., low-level vorticity, vertical wind shear, col-

umn relative humidity, and RSST]. As a consequence, we

obtained a new index, TCGI-H, with the same variables

but slightly different coefficients than TCGI-R. The co-

efficients ofTCGI-RandTCGI-Hare compared inTable 3.

Note that the large difference in the constant coefficient is

due to the difference in horizontal resolution between

HiRAMand the reanalysis. The coefficients, the deviance,

and the Akaike information criteria (AIC) for this and

various other four-parameter indices are given in Table 3.2

We then used the HiRAM environmental variables to

calculate the values of the ‘‘best’’ TCGI-H index in the

present-climate and warm scenarios. The climatological

patterns are very similar to those shown in Figs. 5a and 6

and are not shown. The difference in the future sce-

narios and the present climate of the TCGI-H index is

shown in Fig. 9. Similarly to what we obtained when

using TCGI-R, TCGI-H leads to an increase in TC ac-

tivity in HiRAM, while there is a decrease in the mean

global NTC, and the largest increases in the index oc-

curred in the North Pacific.

Given that our first choice of predictors did not lead to

the reduction of TC activity in the model, we tested

various other combinations of four predictors, as shown

in Table 3. In each case, we examined the ability of the

resulting index to simulate a reduction in global TC

frequency in the future, as well as the AIC in the present

climate. Similarly to Tippett et al. (2011, 2012), we used

a forward selection procedure in which one variable is

added at a time to each of these genesis indices, and the

variable whose addition most reduces the deviance is

identified. For the prediction combinations obtained for

monthly climatology (top 9 TCGI-H indices in Table 3),

the same order of predictors was obtained in all cases:

namely, thermodynamical variable, clipped vorticity,

humidity variable, and vertical shear. To determine how

much of the deviance each of the predictors can explain,

we added one predictor at a time to the index in this

order and calculated the deviance R-squared (Cameron

and Windmeijer 1996). The results are given in Table 4,

showing that the predictor that explains most of the

deviance is the thermodynamical variable in all cases.

The mean number global of genesis events for all

versions of the TCGI-H, as well as the fractional change

in INTC in future scenarios, is also given in Table 5. In

TABLE 4. Deviance basedR-squared (Cameron andWindmeijer

1996) for the 9 top TCGI-H defined in Table 3. The humidity

predictor can be the CRH, the RH at 600 hPa, or the SD. The

thermal predictor can be the SST, RSST, or PI. The forward se-

lection procedure picked the order of the predictors as thermal,

clipped vorticity, humidity, and vertical shear for all cases. When

calculating the deviance based R-squared, we added one predictor

at a time in this order.

Index Thermal Vorticity Humidity Shear

CRH and RSST 0.191 0.261 0.301 0.336

CRH and SST 0.185 0.259 0.303 0.337

CRH and PI 0.149 0.230 0.297 0.334

RH and RSST 0.191 0.261 0.292 0.329

RH and SST 0.185 0.259 0.294 0.330

RH and PI 0.149 0.230 0.288 0.327

SD and RSST 0.191 0.261 0.298 0.335

SD and SST 0.185 0.259 0.301 0.337

SD and PI 0.149 0.230 0.277 0.322

2 The vertical velocity and convection precipitation TCGI-H

indices will be discussed later.
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Table 6 we show the root-mean-square error of the

INTC for TCGI-R and the various TCGI-H indices.

Furthermore, in Table 7 the RMSE of the mean INTC

changes and fractional changes for all indices are shown.

All indices with the column relative humidity predict an

increase in TC activity in the future of varying magni-

tude depending on which thermodynamic variable is

considered (SST, RSST, or PI).

Emanuel (2010) pointed out the importance of using

the entropy saturation deficit in predicting future trop-

ical cyclone activity. When the saturation deficit is used

as one of the index predictors (Fig. 10, right panels), we

obtain a reduction in future cyclone frequency, if the

saturation deficit is used in conjunction with either PI or

RSST (see Table 5). We also show in Fig. 10 the dif-

ference of the mean global NTC in the present and the

mean global NTC in the future scenarios (white bars) for

the 3 TCGI-H indices with the saturation deficit. While

the combination of both PI and RSST with saturation

deficit results in a reduction of the index, amounting to

a prediction of a decrease of TC activity in the future,

the magnitude of the decrease is higher than that which

occurs in the model-simulated NTC when RSST is one

of the predictors. On the other hand, the fractional de-

crease in the index constructed using the combination of

saturation deficit and PI is very close to the model

fractional decrease in NTC, as can be confirmed by

comparing the fractional changes (Table 5) and RMSE

values of INTC with NTC (Table 6) and their fractional

changes (Table 7).

Using the change in the global tropical cyclone fre-

quency in future and present as our measure for the best

TCGI-H index, the pairing of saturation deficit and PI

seems to be the best choice of those we tried. These

predictors are very similar to those Emanuel (2010) used

in his improved genesis potential index, although the

methodologies by which the two were derived are very

different. However, if we apply the Emanuel (2010)

TABLE 5. NTCglobally in each of theHiRAMsimulations and the FC inNTC, defined as the difference of themeanNTC in climatology

and in the future runs divided by the mean NTC in the climatology, are shown. INTC predicted using the reanalysis index TCGI-R and

various versions of the HiRAM index TCGI-H (with different predictors), as well as the INTC FC in each scenario are labeled according

to the two predictors that vary in each TCGI-H case. The global distributions of NTC in all future scenarios are significantly different than

the distribution of the global NTC in the present climate using a t test (99% significance level) and are marked in bold face. If the

distribution of number of the global INTC in future and present climates are statistically distinct using a t test, the future INTC values are

shown in bold face. In the case of convection precipitation and vertical velocity, we used the median of the distributions instead of the

mean.

CL W WC WE WG W0 W3 W1 WO WI 23CO2 P2K

HiRAM 114.3 85 80.9 82.6 87.8 93.8 95.4 84.9 91.1 85.4 101.8 101.9

FC 20.26 20.29 20.28 20.23 20.18 20.16 20.26 20.20 20.25 20.11 20.11

TCGI-R 65.0 81.1 64.9 67.4 68.6 72.3 71.1 67.4 65.1 65.0 270.1 20.1

FC 0.25 0 0.04 0.06 0.11 0.09 0.04 0 0 3.17 20.69

CRH and RSST 124.0 148.1 123.3 127.7 128.0 136.2 132.7 126.3 123.5 123.3 399.0 46.9

FC 0.19 20.01 0.03 0.03 0.10 0.07 0.02 0 20.01 2.22 20.62

CRH and SST 104.6 262.2 230.8 307.1 221.9 251.6 231.1 256.1 346.0 205.7 335.8 91.6

FC 1.51 1.21 1.94 1.12 1.41 1.21 1.44 2.31 0.97 2.21 20.12

CRH and PI 134.5 182.7 155.8 167.7 152.0 163.1 157.2 162.7 168.3 147.9 527.4 56.1
FC 0.36 0.16 0.25 0.13 0.21 0.17 0.21 0.25 0.10 2.92 20.58

SD and RSST 142.6 117.4 86.7 74.8 91.9 95.0 95.4 83.1 65.7 92.6 422.2 29.4

FC 20.18 20.39 20.47 20.36 20.33 20.33 20.42 20.54 20.35 1.96 20.79

SD and SST 121.2 277.8 219.0 262.6 206.9 233.2 217.0 231.8 285.5 198.3 390.6 71.6
FC 1.29 0.81 1.17 0.71 0.92 0.79 0.91 1.36 0.64 2.22 20.41

SD and PI 144.7 133.5 107.3 98.6 107.0 109.4 110.4 105.8 90.3 106.6 389.4 44.9

FC 20.08 20.26 20.32 20.26 20.24 20.24 20.27 20.38 20.26 1.69 20.69

VV and RSST 114 106 110 99.5 114 113.5 130.5 125.5 112.5 105.5 103 106
FC 20.07 20.03 20.13 0 0 0.14 0.10 20.01 20.07 20.10 20.07

VV and SST 119 218 239 269 229 241 267 296 357 207.5 106 240

FC 0.83 1.01 1.26 0.92 1.03 1.24 1.49 2.00 0.74 20.11 1.01

VV and PI 99 100 109 103.5 106.5 105 121.5 126 119.5 99 84 111

FC 0.01 0.10 0.04 0.08 0.06 0.23 0.27 0.21 0 20.15 0.12

CP and RSST 108 127.5 123 146.5 134 122 170 141 151 117 105 115

FC 0.18 0.14 0.36 0.24 0.13 0.57 0.31 0.40 0.08 20.03 0.06

CP and SST 118 258.5 257.5 377.5 264 253.5 341.5 313 439.5 222 115 250

FC 1.19 1.18 2.20 1.24 1.14 1.89 1.65 2.72 0.88 20.02 1.12

CP and PI 84 106 106 128.5 108.5 101.5 136 122.5 142 95.5 78 106

FC 0.26 0.26 0.53 0.29 0.21 0.62 0.46 0.69 0.14 20.07 0.26
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index to the HiRAM environmental variables, it pre-

dicts an increase in the TC activity in all scenarios (not

shown), similar towhat happens when using the Emanuel

andNolan (2004) originalGPI (not shown).Although the

predictors are very similar, the weights (or coefficients)

given to each variable in each index are different. As

shown here, small changes in the coefficients can lead to

different predictions by the various indices. This is par-

ticularly true for the global mean changes, which contain

much cancellation from larger (percentagewise) changes

in individual basins.

Given that the combination of saturation deficit and

PI gives the best results for the global mean change in

HiRAM, we examine the spatial pattern of the clima-

tology of this index in all the simulations (Fig. 11), as

well as the differences between the future and present

TCGI-H for that combination of variables (Fig. 12). The

magnitude of this TCGI-H index in the present climate

is significantly higher overall than that of the TCGI-R

(Fig. 5a) but especially in the eastern North Pacific and

the South Pacific.

While the decrease in TC activity in the future is ap-

parent in all cases in Fig. 12, the Southern Hemisphere,

particularly the South Pacific, is the location with the

highest negative anomalies. Figure 13 is designed to

examine whether the reduction in the frequency of

storms in the model is similarly greater in the Southern

Hemisphere compared with the Northern Hemisphere.

Figure 13 shows the NTC per year in each hemisphere in

future scenarios normalized by the mean NTC per year

in the control run in each hemisphere. While there is

a percentage reduction overall in both Northern and

Southern Hemispheres, in most scenarios the reduction

is larger in the Southern than the Northern Hemisphere.

Furthermore, the only case in which there is a significant

increase in the distribution of the percentage NTC in the

future occurs in the Northern Hemisphere (HadCM3

SST). However, the interhemispheric asymmetry seems

to be larger in the index than in the simulated NTC.

a. Vertical velocity and convective precipitation

Held and Zhao (2011) argued that changes in genesis

in HiRAM in different future scenarios followed

changes in the mean vertical motion, reflecting changes

in convective mass fluxes. Zhao and Held (2012) ana-

lyzed the changes in the frequency of TC formation in

the sameHiRAMsimulations thatwe analyze here. They

computed correlations between different environmental

variables individually and percentile changes in TC fre-

quency. The variable with the highest correlation to TC

TABLE 6. RMSE between the global NTC per year in each of the HiRAM simulations and global INTC per year predicted using the

reanalysis index TCGI-R and various versions of the HiRAM index TCGI-H (with different predictors).

CL W WC WE WG W0 W3 W1 WO WI 23CO2 p2K

TCGI-R 50.2 10.4 17.1 17.3 20.8 22.4 25.6 19.5 26.8 22.8 170.0 82.4

CRH and RSST 13.0 64.0 42.5 45.9 40.9 43.0 38.1 42.2 33.1 39.4 298.1 55.9

CRH and SST 12.9 177.6 150.0 224.7 134.3 158.1 136.0 171.4 255.0 120.8 234.8 14.7

CRH and PI 22.5 98.5 75.2 85.8 64.8 69.7 62.5 78.5 77.5 63.5 426.7 47.0

SD and RSST 29.7 33.9 8.2 11.5 9.1 6.8 7.9 8.6 26.2 12.8 321.5 73.1

SD and SST 11.0 139.2 138.2 180.3 119.4 139.7 121.9 147.2 194.6 113.5 289.7 31.9

SD and PI 32.4 50.0 27.5 19.2 21.3 16.9 17.6 23.3 6.54 23.8 288.6 58.0

VV and RSST 9.0 29.4 29.6 18.4 27.9 27.7 42.8 44.4 22.7 22.2 9.7 15.5

VV and SST 11.7 114.9 158.8 183.9 141.7 158.9 188.4 215.5 266.2 123.5 10.0 145.3

VV and PI 16.2 25.7 29.1 22.3 20.9 15.8 38.3 44.2 29.3 16.8 20.2 20.4

CP and RSST 11.9 181.7 48.9 111.6 69.1 29.5 103.7 58.0 67.9 34.1 11.2 117.9

CP and SST 15.4 416.9 191.9 437.9 215.1 159.2 313.1 229.2 379.8 140.2 17.7 371.8

CP and PI 29.4 152.6 32.3 100.0 39.1 10.0 80.4 39.5 59.6 17.6 24.9 110.4

TABLE 7. RMSE between the difference in meanNTC in each of

the HiRAM simulations in future and present climates (DNTC)

and the mean or median (for vertical velocity and convective

precipitation cases) difference of INTC in present and future sce-

narios (DINTC) predicted using the reanalysis index TCGI-R and

various versions of the HiRAM index TCGI-H (with different

predictors) are shown in the first and third columns. The RMSE of

the fractional change of NTCbetween theHiRAMsimulations and

the fractional changes in INTC are shown in the second and fourth

columns. In the two first columns, the RMSE is calculated using

only the warm scenarios, while the two last columns (All) also in-

clude the 23CO2 and p2K scenarios.

Index DW FC W DAll FC All

TCGI-R 31.7 0.31 72.5 1.04

CRH and RSST 33.7 0.29 94.0 0.76

CRH and SST 184.1 1.74 182.0 1.72

CRH and PI 55.4 0.45 133.6 1.01

SD and RSST 30.1 0.17 97.1 0.68

SD and SST 145.7 1.22 157.3 1.31

SD and PI 15.9 0.09 83.2 0.58

VV and RSST 26.4 0.23 23.4 0.21

VV and SST 172.2 1.45 161.1 1.36

VV and PI 38.2 0.36 35.5 0.33

CP and RSST 68.9 0.52 63.7 0.47

CP and SST 256.2 1.89 240.5 1.75

CP and PI 72.2 0.64 67.5 0.59

15 DECEMBER 2014 CAMARGO ET AL . 9185



frequency in their analysis, globally and by basin, was the

500-hPa pressure vertical velocity. This suggests that we

should consider using 500-hPa pressure vertical velocity

as a possible predictor for the index. Another predictor

that was used in other TC genesis indices was the con-

vective precipitation (e.g., Royer et al. 1998). We test

here whether including 500-hPa vertical velocity or the

convective precipitation as one of our predictors allows us

to obtain a better relationship between the changes in the

index and the changes in NTC in HiRAM in present and

future climates.

The first step was to test if, using either vertical ve-

locity or convective precipitation, we still have the same

optimal number of predictors (four) that we obtained

previously. This was indeed the case (not shown), and

we obtained plots of the number of predictors very

similar to that in Fig. 8 when including either climato-

logical vertical velocity or convective precipitation in

our analysis. Therefore, even though the vertical ve-

locity by itself is a good predictor for changes in TC

frequency changes, as shown in Zhao andHeld (2012), it

is necessary to use four predictors in deriving TCGI-H.

As an additional test, we derived TCGI-H indices using

only three predictors: vorticity, vertical shear, and one of

the following: vertical velocity, column relative humid-

ity, saturation deficit, or 600-hPa relative humidity (i.e.,

SST, PI or RSST were not included). Analyzing the re-

sulting climatologies of these indices (not shown), we

can see that when one of the thermodynamical pre-

dictors (SST, RSST, or PI) is omitted, it is not possible to

reproduce the climatological pattern of the TC activity

globally. Thus, if we wish to have an index that is able to

reproduce both the spatial and seasonal patterns of TC

activity in the present, as well as to predict changes in

future TC activity, four predictors are indeed necessary,

confirming the results of our deviance analysis.

FIG. 10. Difference of globally integrated indices, (DINTC in black bars) in the future (all warm scenarios) and the

control simulation, using as predictors low-level vorticity, vertical wind shear, and either (left) column relative hu-

midity or (right) saturation deficit, as well as (top) PI, (middle) RSST, or (bottom) SST. Difference of mean global

NTC in future scenarios and present climatology for HiRAM (DNTC in white bars).
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In our second step, we used as dynamical predictors

the climatological values of low-level vorticity and ver-

tical shear, but instead of either column relative hu-

midity or saturation deficit (used above), we considered

either the vertical velocity or the convective pre-

cipitation. In conjunction with these three predictors, we

included the RSST, PI, or SST as the fourth possible

predictor. While the climatological patterns of the ver-

tical velocity and the convective precipitation are

smooth fields, their monthly values are quite noisy,

much more so than the humidity variables used pre-

viously. As a consequence, when we used the co-

efficients obtained using the Poisson regression from the

climatological fields to calculate monthly varying

indices, the resulting indices had very large-amplitude

spatial and temporal variability. The global and 25-yr

means of these integrated indices calculated with

monthly varying fields were very different from that

obtained from the climatological fields (i.e., with the

parameters time averaged first, before computation of

the index). The magnitudes of the coefficients for the

index obtained using climatological means of either

convective precipitation or vertical velocity are appar-

ently too large when those indices are subsequently

computed from monthly varying fields. Our solution for

this problem was to use a different procedure for the

Poisson regressions when considering either the con-

vective precipitation or the vertical velocity as one of the

FIG. 11. Climatology of TCGI-H using as predictors vorticity, vertical shear, saturation deficit, and potential for the HiRAM present

climatology and different future runs, as described in Table 1.
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predictors. Instead of using the climatological fields as in

all previous cases, we used all 25 years of monthly data in

the present climate (i.e., without averaging over all

years, when calculating those indices). The resulting

coefficients, INTC, and RMSE values are shown in

Tables 3, 5, 6, and 7.We can notice that in all cases where

we used convective precipitation as a predictor, we ob-

tained an increase in the number of genesis events in

future scenarios, independently of the other thermody-

namic variable considered.

On the other hand, the indices obtained using the

vertical velocity either have a very small decrease or stay

nearly constant (RSST) or increase in the global mean

(SST and PI), implying a prediction of either almost very

small decrease or an increase in the TC frequency. None

of them predicts a substantial decrease in the HiRAM

TC frequency such as actually occurs in the model.When

vertical velocity and RSST are chosen as the predictors,

while inmost scenarios there is a small decrease ofTCGI-H

in the South Pacific, there is also an increase of the index

in the North Pacific. Together these lead to an overall

small decrease or very small increase of the global index,

depending mainly on the size and magnitude of the in-

crease in the North Pacific in each scenario. The small

decrease in the South Pacific (in size andmagnitude) has

a greater degree of similarity across all the scenarios.

In summary, when large-scale vertical velocity is used

in conjunction with other environmental variables in the

FIG. 12. Difference in the climatology of TCGI-H for the future simulations with different SST anomalies and the present control

simulation, using the following as TCGI-H predictors: vorticity, vertical shear, saturation deficit, and potential intensity.
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construction of an index that is fit to the climatological

spatial distribution and seasonal cycle of genesis, the

resulting index is unable to predict the global mean

changes in NTC inHiRAM. This is the case even though

vertical velocity by itself does have a correlation with

basin-integrated changes in NTC, as shown in Zhao and

Held (2012).

b. Additional cases

All the future scenarios discussed until now were

based on adding spatially and seasonally varying SST

anomalies to the SST climatology as the boundary

condition for HiRAM. We had available to us two ad-

ditional simulations. In the first one, the historical cli-

matological (i.e., control) SST is used, while the CO2

concentration in the model was doubled. We call this

case 23CO2. In the other case, we changed the SST by

adding 2K uniformly to the SST climatologies, called

here plus 2K or p2K, but CO2 was kept constant. These

cases were analyzed previously in Held and Zhao (2011)

and Zhao and Held (2012); those authors concluded that

the changes in the TC activity in the future could be at-

tributed to both the changes in CO2 and to the changes in

SST, with a nearly equal contribution from each factor.

Here we examine the TCGI-H predictions for these

two scenarios. In both cases, the global NTC is reduced,

as shown in Fig. 3. While the climatology of the various

TCGI-H indices in the present are very similar to the other

cases and to each other, the changes in the future for the

indices for these two scenarios are very different fromwhat

we obtained in the other scenarios, as shown in 11.

Figure 14 shows the difference between the future and

present for the 23CO2 scenario using many TCGI-H

choices, with various combinations of predictors. Simi-

larly, Fig. 15, shows these differences for the p2K sce-

nario. Figures 14 and 15 are close to being opposites of

each other for all panels. While the indices constructed

with column relative humidity and PI predict a signifi-

cant uniform increase in TC activity regions in the future

for the 23CO2 scenario, there is a very similar decrease

in the p2K scenario. In contrast, the indices with vertical

velocity and convective precipitation showmuch smaller

and sporadic differences, with the values of the indices

slightly decreasing for the 23CO2 case and slightly in-

creasing in the p2K case. It is puzzling how different the

changes in the indices are in these two scenarios com-

pared to the changes found in the cases examined above.

The INTC for these two cases for various indices is given

in Table 5, with the TCGI-H indices including column

relative humidity and saturation deficit predicting a

large increase in the number of cyclones for the 23CO2

simulation and a large decrease in the p2K simulation.

Only the vertical velocity TCGI-H indices with PI and

RSST decrease the INTC for the 23CO2 and the p2K

simulations; however, the decrease is not large enough,

especially for the p2K simulation, as shown by the

RMSE values (Tables 6 and 7).

In an attempt to diagnose the reason for these dispa-

rate results for the 23CO2 and p2K scenarios, we re-

peated the Poisson regression procedure for three future

scenarios—the warm, 23CO2, and p2K scenarios—for

many combinations of four predictors, as shown inTable 8.

Comparing these with the coefficients obtained when

training the TCGI-H in the present climate (Table 3),

the warm indices have higher coefficients for the vor-

ticity and thermal coefficients, with the best index ob-

tained with the column relative humidity and SST. In

contrast, the 23CO2 indices have smaller dependences

on the humidity. Finally, the p2K indices have stronger

dependence on the vorticity, similar to the warm case,

but the thermal coefficients are similar to those of the

present climate. The best indices for both the 23CO2

and p2K scenarios are obtained using the combination

of the saturation deficit and the SST. These differences

express the different characteristics of the environ-

mental conditions in the 23CO2 and p2K scenarios

when compared with the warm and present climatology.

At this point, we do not have a truly satisfactory ex-

planation for the apparent failure of our index meth-

odology in the case of the 23CO2 and p2K experiments.

At a somewhat superficial level, it seems that our index

is more successful when changes in the environment for

TCs are caused by climate change with some spatial

structure, here imposed through the SST field. This is

broadly consistent with arguments based on relative

SST; on the other hand, such arguments suggest that

FIG. 13. Box plot of the difference in NTC per year (Southern

Hemisphere July–June season) in future scenarios normalized by

the mean NTC per hemisphere in the climatological simulation in

the (a) Southern and (b) Northern Hemisphere.
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there might be cancellation between NTC changes in

different regions (since, by definition, relative SST

cannot have the same sign everywhere). In this light, the

fact that our index—if saturation deficit and PI are

chosen as the thermodynamic predictors—is able to

capture the global mean change in the various CMIP-

based SST scenarios is encouraging. At the same time,

our index fails to capture global NTC changes when

the imposed forcings, whether SST or CO2, have no

spatial structure. We leave this as an open problem for

future work.

c. Regional aspects

The last issue we explore is the regional variations of

the indices in the HiRAM simulations. Given that our

indices were obtained by using variables and global TC

distribution, one does not expect that these indices

would perform as well as indices that are trained for

specific regions [e.g., North Atlantic genesis indices

(Bruyère et al. 2012; Waters et al. 2012)]. In Table 9, we

show the mean NTC, mean INTC and their fractional

change for two TCGI-H in the present climate andwarm

scenario for the column relative humidity and RSST, as

well as the saturation deficit and PI indices. In the

Southern Hemisphere for the present climate, both in-

dices overestimate the activity in the Australian region

(AUS) and the South Pacific (SP), as well as the South

Atlantic (SA). In contrast, in the south Indian Ocean

(SI), the CRH index underestimates the TC activity,

while the SD INTC is very similar to the mean NTC in

that region. This is reflected in the RMSE values shown

in Table 10. Both indices seem to behave better in the

Northern Hemisphere, with the value of INTC much

closer than the mean NTC in all four basins [north In-

dian (NI), western North Pacific (WNP), central North

Pacific (CNP), and North Atlantic (ATL)], with the

FIG. 14. Difference in the climatology of TCGI-H for the future simulations with double CO2 and the present

control simulation, using the following as TCGI-H predictors: vorticity; vertical shear; (a),(b) column relative hu-

midity; (c),(d) saturation deficit; (e),(f) vertical velocity; and (g),(h) convective precipitation, as well as (left) po-

tential intensity or (right) RSST.
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largest RMSE occurring in the WNP, which is the basin

with the highest NTC globally.

When we consider the INTC and NTC in the warm

scenario, as expected from our analysis for the globe, the

CRH index predicts an increase in activity in almost all

basins, with the exceptions of the South Pacific and the

South Atlantic, where very small decreases are pre-

dicted. The RMSE values of the CRH index in the warm

scenario increases substantially in most basins, with the

exception of the south Indian Ocean. In contrast, the

RMSE of the SD index decreases or has smaller in-

creases overall. On the other hand, examining the

RMSE of the DINTC (Table 10), it is clear that the SD

index has a hard time predicting the changes in the

Australian region, the South Pacific, and the eastern

North Pacific, where the RMSE values for the CRH are

smaller. However, if we consider the fractional changes,

the RMSE values of the SD index are smaller than those

of the CRH index in all basins, except the eastern North

Pacific.

In summary, when we analyze the performance of two

of the indices in specific basins, in the present climate,

the CRH index performs better, as is expected. How-

ever, similarly to the global results, the SD index has

a better performance in general, in the warm scenario, as

it captures well the magnitude of the decrease of activity

that occurs in most basins and the increase in activity in

the eastern North Pacific, although it overestimates the

mean activity in the Southern Hemisphere.

Genesis indices have been widely used in the climate

community as a proxy for TC activity in models globally

and regionally. Given that climate models are usually

better at simulating the large-scale climate features than

they are at simulating the TCs themselves, genesis in-

dices are potentially useful for inferring TC activity in

simulated present (e.g., seasonal forecasts) and future

FIG. 15. Difference in the climatology of TCGI-H for the future simulations with 2K added uniformly to the SST

and the present control simulation, using the following as TCGI-H predictors: vorticity; vertical shear; (a),(b) column

relative humidity; (c),(d) saturation deficit; (e),(f) vertical velocity; and (g),(h) convective precipitation, as well as

(left) potential intensity or (right) RSST.
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climates. However, it has been shown that the re-

lationship of models’ own TCs and genesis indices

computed from the samemodels’ large-scale fields is not

optimal; a strong relationship between them occurs only

in specific cases [e.g., in some basins andmodels (Camargo

et al. 2007b) for low-resolution climatemodels]. In the case

of genesis indices developed specifically for the North

Atlantic, a relationship between the genesis index and the

number of TCs is only valid when smaller subbasins are

considered (Bruyère et al. 2012) or when incorporating

medium-to-high-frequency variability (Waters et al. 2012).

Regional comparisons of genesis indices and regional cli-

mate models have also be shown to be successful in some

cases (Chauvin et al. 2006; Jourdain et al. 2011). Walsh

et al. (2010) found that the agreement between one genesis

index (GPI) andmodel TCs tended to increase withmodel

resolution.

7. Discussion

In this study, we explored the relationship of objec-

tively derived genesis indices to the frequency of TCs

TABLE 8. Coefficients of the Poisson regression of the TCGI-H using various predictors for the warm simulation (W), the 23CO2

simulation and the p2K simulation. The humidity factor can be the CRH, the RH, or the SD. The thermal factor can be the SST, theRSST,

or the PI.

Type Index Vorticity Humidity Thermal Shear Constant AIC 3 104 s2 3 104

W CRH and RSST 1.42 0.10 0.35 20.13 214.89 1.9858 1.6224

W CRH and SST 1.47 0.09 0.37 20.13 225.74 1.9814 1.6180

W CRH and PI 1.64 0.11 0.08 20.13 221.46 1.9795 1.6160

W RH and RSST 1.40 0.05 0.31 20.13 211.11 2.0056 1.6420

W RH and SST 1.44 0.05 0.32 20.13 220.53 2.0026 1.6389

W RH and PI 1.58 0.05 0.07 20.14 216.24 2.0019 1.6436

W SD and RSST 1.42 0.11 0.48 20.13 26.14 1.9875 1.6241

W SD and SST 1.49 0.11 0.51 20.13 220.97 1.9803 1.6169

W SD and PI 1.66 0.11 0.10 20.15 213.07 1.9910 1.6329

23CO2 CRH and RSST 1.24 0.08 0.42 20.12 213.97 2.6069 2.1034

23CO2 CRH and SST 1.29 0.08 0.44 20.12 226.22 2.6014 2.0979

23CO2 CRH and PI 1.46 0.09 0.09 20.13 220.74 2.6103 2.1131

23CO2 RH and RSST 1.24 0.05 0.36 20.12 210.54 2.6157 2.1120

23CO2 RH and SST 1.28 0.05 0.37 20.12 220.77 2.6110 2.1074

23CO2 RH and PI 1.43 0.06 0.08 20.13 216.04 2.6189 2.1205

23CO2 SD and RSST 1.24 0.10 0.51 20.12 26.34 2.6078 2.1043

23CO2 SD and SST 1.31 0.11 0.54 20.13 221.03 2.6005 2.0970

23CO2 SD and PI 1.48 0.12 0.10 20.14 212.74 2.6194 2.1259

p2K CRH and RSST 1.33 0.11 0.35 20.13 214.28 2.6041 2.1026

p2K CRH and SST 1.37 0.11 0.36 20.13 224.99 2.6008 2.0993

p2K CRH and PI 1.52 0.12 0.07 20.13 220.17 2.6203 2.1150

p2K RH and RSST 1.30 0.05 0.32 20.13 210.74 2.6243 2.1226

p2K RH and SST 1.34 0.05 0.32 20.13 220.29 2.6216 2.1199

p2K RH and PI 1.49 0.06 0.07 20.13 216.03 2.6307 2.1336

p2K SD and RSST 1.34 0.12 0.55 20.13 24.00 2.6072 2.1058

p2K SD and SST 1.41 0.13 0.57 20.13 220.67 2.6003 2.0988

p2K SD and PI 1.55 0.09 0.10 20.16 212.02 2.6312 2.1643

TABLE 9. Mean NTC (NTC)per basin over all years in the present climate and in the warm HiRAM simulations and mean INTC

(INTC) predicted using two versions of theHiRAM indexTCGI-H (with different predictors) and their fractional change. In the Southern

Hemisphere basins, the number of TCs is calculated in the period July–June, while in the Northern Hemisphere, the calendar year is used.

Quantity Type SI AUS SP NI WNP CNP ENP ATL SA

HiRAM NTC CL 18.2 8.3 8.2 6.8 36.8 4.9 18.6 12.1 0.7

HiRAM NTC W 14.2 6.3 4.9 6.5 22.4 1.5 22.8 7.8 0.6

HiRAM FC W 20.22 20.24 20.40 20.04 20.39 20.69 0.23 20.35 20.17

CRH and RSST INTC CL 13.0 11.7 16.1 5.4 39.5 6.6 15.7 14.6 1.5

CRH and RSST INTC W 15.3 14.0 15.4 7.1 51.2 9.0 20.2 14.6 1.4

CRH and RSST FC W 0.18 0.20 20.04 0.32 0.29 0.36 0.29 0.00 20.04

SD and PI INTC CL 18.7 22.3 26.4 7.5 32.1 5.9 15.0 15.3 3.2

SD and PI INTC W 15.5 16.5 16.2 6.5 24.3 3.4 15.7 8.8 2.0

SD and PI FC W 20.17 20.26 20.39 20.13 20.24 20.42 0.04 20.42 20.38
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simulated by a high-resolution atmospheric model. We

used a previously developed methodology that allows us

to derive genesis indices easily and reproducibly from

environmental fields (from reanalysis or model output)

and TC frequency (from observations or models). Our

goals were both to test the methodology used to derive

the index for its applicability to the climate change

problem and to look for further insights into the reasons

for the global mean decrease in TC number in the model

under SST changes derived from greenhouse gas–forced

warming scenarios.

Our primary conclusions are as follow:

(i) Many genesis indices developed for the present

climatology are not able to capture the reduction of

global TC activity in a warmer world, at least within

the context ofHiRAM.A successful fit to the present

climatology, or even success in interannual prediction

or other independent data, is not a guarantee that the

index will capture the response to greenhouse gas–

induced warming.

(ii) Our results suggest that the global reduction in TC

frequency in warmer climates simulated byHiRAM

is attributable to the increasing saturation deficit, as

temperature increases while relative humidity stays

close to constant. This effect is partly compensated

by increases in PI, which reduce the magnitude of

the decrease in TC frequency.

(iii) Our results show the value of an objective and

reproducible method to derive genesis indices, as

derived in Tippett et al. (2011). As either new

observations of TCs Landsea et al. (2008, 2012) or

large-scale fields (or both) become available or new

insights emerge regarding which environmental

variables are important to genesis, our methodol-

ogy will allow us to derive better indices.

(iv) However, our methodology fails here to capture

the global TC changes found in which the forcings—

either SST or CO2—have no spatial structure. At

present, we do not understand whether this is

a failure of the index methodology itself, a poor

choice of predictors, or some other issue.

By highlighting the role of the saturation deficit, our

analysis suggests that that thermodynamic parameter is

an important factor in the decrease in NTC predicted in

the warming scenarios by HiRAM (at least those for

which the index performs well; that is, all but those with

spatially uniform forcings). Our analysis does not, on the

other hand, provide any independent evidence as to

whether that decrease predicted by HiRAM is correct.

At least one set of results using a high-resolution down-

scaling technique (Emanuel 2013) and various genesis

indices applied directly to fields from lower-resolution

coupled climate models (Camargo 2013) predict an in-

crease in TC activity under future warming scenarios. It

remains possible that the reduction of global TC fre-

quency found in most higher-resolution atmospheric

models (Knutson et al. 2010) could be due to common

errors in the way those models generate TCs. It is well

known that the TC frequency in models is very sensitive

to model configuration, especially convection scheme

(Vitart and Stockdale 2001; Kim et al. 2012; Reed and

Jablonowski 2011; Zhao and Held 2012) and dynamical

core (Reed and Jablonowski 2012;Walsh et al. 2013), and

the frequency decrease in models could potentially be

sensitive to these details. The present study does not

resolve this issue. It does show, however, that the ap-

plication of empirical genesis indices to such questions

is not a simple matter. Our results show that many in-

dices that give similar results for the present climate

may nonetheless give qualitatively different results for

the global mean response of TC number to a forced

climate change.
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TABLE 10. RMSE between the NTC and INTC per year in each basin in CL and in the warmHiRAM simulations using two versions of

the HiRAM index TCGI-H (with different predictors). RMSE between the difference and the FC of the mean NTC and mean INTC per

basin in the HiRAM simulation predicted using the two versions of the HiRAM index TCGI-H (with different predictors) for all warm

simulations.

Index RMS Type SI AUS SP NI WNP CNP ENP ATL SA

CRH and RSST NTC CL 6.3 4.0 8.3 2.2 6.8 2.6 4.4 3.7 1.0

CRH and RSST NTC W 2.6 7.7 10.5 2.3 26.6 4.3 4.9 6.5 1.3

SD and PI NTC CL 3.7 14.3 18.5 2.0 8.2 2.2 5.1 4.2 2.6

SD and PI NTC W 4.9 14.2 13.7 2.4 9.5 2.3 5.0 4.4 2.2

CRH and RSST D All W 5.2 2.9 3.1 2.6 15.3 4.3 3.1 3.6 0.3

SD and PI D All W 2.2 4.2 8.8 1.2 7.6 3.6 4.9 3.9 1.3

CRH and RSST FC All W 0.30 0.30 0.34 0.43 0.41 0.74 0.17 0.30 0.47

SD and PI FC All W 0.12 0.11 0.28 0.16 0.21 0.71 0.29 0.27 0.27
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