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ABSTRACT

Supervised Design-Space Exploration

Hung-Yi Liu

Low-cost Very Large Scale Integration (VLSI) electronics have revolutionized daily life and ex-

panded the role of computation in science and engineering. Meanwhile, process-technology scaling

has changed VLSI design to an exploration process that strives for the optimal balance among mul-

tiple objectives, such as power, performance, and area, i.e. multi-objective Pareto-set optimization.

Besides, modern VLSI design has shifted to synthesis-centric methodologies in order to boost the

design productivity, which leads to better design quality given limited time and resources. How-

ever, current decade-old synthesis-centric design methodologies suffer from: (i) long synthesis tool

runtime, (ii) elusive optimal setting of many synthesis knobs, (iii) limitation to one design imple-

mentation per synthesis run, and (iv) limited capability of digesting only component-level designs

as opposed to holistic system-wide synthesis. These challenges make Design Space Exploration

(DSE) with synthesis tools a daunting task for both novice and experienced VLSI designers, thus

stagnating the development of more powerful (i.e. more complex) computer systems.

To address these challenges, I propose Supervised Design-Space Exploration (SDSE), an ab-

straction layer between a designer and a synthesis tool, aiming to autonomously supervise synthe-

sis jobs for DSE. For system-level exploration, SDSE can approximate a system Pareto set given

limited information: only lightweight component characterization is required, yet the necessary

component synthesis jobs are discovered on-the-fly in order to compose the system Pareto set.

For component-level exploration, SDSE can approximate a component Pareto set by iteratively re-

fining the approximation with promising knob settings, guided by synthesis-result estimation with

machine-learning models. Combined, SDSE has been applied with the three major synthesis stages,

namely high-level, logic, and physical synthesis, to the design of heterogeneous accelerator cores

as well as high-performance processor cores. In particular, SDSE has been successfully integrated



into the IBM Synthesis Tuning System, yielding 20% better circuit performance than the original

system on the design of a 22nm server processor that is currently in production.

Looking ahead, SDSE can be applied to other VLSI designs beyond the accelerator and the

programmable cores. Moreover, SDSE opens several research avenues for: (i) new development

and deployment platforms of synthesis tools, (ii) large-scale collaborative design engineering, and

(iii) new computer-aided design approaches for new classes of systems beyond VLSI chips.
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Chapter 1

Introduction

Design is an ubiquitous concept in every pursuit of knowledge, but has different connotations in

different fields. Yet in general, the process of design corresponds to the exploration of a large (often

infinite) space for creating complex objects. To facilitate the design process, a clear “taxonomy of

design” can help analyze various design paradigms. Hence, I first review a recent design taxonomy

and apply it to analyze common paradigms for designing complex computer systems. Then, I point

out major challenges for designing integrated electronic systems and propose Supervised Design-

Space Exploration for addressing these challenges.

1.1 What is Design?

Based on 33 proposals in existing literature, Ralph and Wand proposed in 2009 the following

definition for design (as a noun): a specification of an object, manifested by an agent, intended to

accomplish goals, in a particular environment, using a set of primitive components, satisfying a set

of requirements, subject to constraints [150]. The definition, illustrated in Figure 1.1, captures the

following elements.

• Object is the entity being designed, such as a physical artifact, a system, a process, or a policy.

The entity is not necessarily a physical object.
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Figure 1.1: A conceptual model of design (source: [150]).

• Specification is a description of the design object in terms of its structures, such as the

primitives used and their connections.

• Agent is the entity or group of entities that specifies the structural properties of the design

object, e.g., scientists, engineers, or government officials.

• Environment of the object is the context in which the object is intended to exist or operate.

On the other hand, Environment of the agent is the context in which the agent creates the

design.

• Goals describe the desired impacts of the design object on its environment.

• Primitives are the set of elements from which the design object may be composed.

• Requirements are structural or behavioral properties that the design object must possess. A

structural property is a quality the design object must possess regardless of environmental

conditions or stimuli. A behavioral property is a required response to a given set of environ-

mental conditions or stimuli.

• Constraints are structural or behavioral restrictions on the design object, where “structural”

and “behavioral” have the same meaning as for requirements. Even if the design agent had

infinite time and resources, a design is still constrained by, e.g., the law of physics.

Applying this definition, Table 1.1 gives two design examples of computer software and hardware

systems.
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Table 1.1: Examples of Design Elements.

Object Type Symbolic Script [150] Physical Artifact

Object a software system a hardware system

Specification software programs circuit layouts

Agent programmers engineers

Goals support management of support multimedia

customer information processing

Environment personal computers with printed circuit boards with

specific operating systems specific I/O protocols

Requirements identify customers with encode and decode certain

certain characteristics; multimedia standards;

query latency processing throughput

Primitives instructions in a transistors with a

programming language fabrication technology

Constraints CPU speed and memory size gate and wire delay

A clear taxonomy of “design” can help organize, share, and reuse design knowledge [150].

Furthermore, understanding the elements of design would be useful in determining the issues and

information relevant to the process of design and in planning this process [150]. Based on the

taxonomy [150], I examine complex computer system design in the next section and for each design

element present common approaches to addressing the system design complexity.

1.2 Coping with Complex Computer System Design

Computing is becoming ubiquitous [79], penetrating personal devices such as smart phones, smart

watches, and eye glasses. The ubiquitous computing is enabled by powerful computer systems,

which have been becoming more complex than ever. For example, Linux kernel 3.10 has 15,803,499

lines of code in its 2013 release, increasing by 90X with respect to its release in 1994 (176,250 lines

of code) [110]. The Intel Core i7 processor has 2.6B transistors in 2014, increasing by 473X with

respect to its Pentium Pro processor in 1995 (5.5M transistors) [90]. The trend of transistor density
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doubling every two years is known as Moore’s Law [115].

To cope with the design complexity of complex computer systems, many paradigm shifts have

taken place by efficiently handling the aforementioned design elements. For example:

• Specification: to raise the level of abstraction for more productive design capture, software

programming languages have evolved from machine/assembly code to various high-level lan-

guages, such as Java and Python, supporting high-level concepts like variables, objects, com-

plex arithmetic/control expressions, and threads. For synchronous digital circuit design, the

abstraction has also been raised from schematics to Register Transfer Level (RTL) hardware-

description languages, such as Verilog and VHDL, which can describe sequential elements

and combinational circuits. Sequential elements synchronize the circuit’s operation with

clock edges and stores the temporal operation results. On the other hand, combinational

logic performs all the logic functions in the circuit using proper connection of logic gates.

• Agent: aiming for high design productivity, Computer-Aided Design (CAD) tools are widely

adopted by human designers to automate (parts of) the design process, which leads to better

design quality given limited design time and resources. In large software designs that typically

involve multiple programmers, build-automation and version-control tools are essential for

the development, maintenance, and integration of the entire software. In circuit design, logic

synthesis tools are the standard for the automatic generation of gate-level netlists from RTL

descriptions.

• Environment: to reduce the gap between the object and the agent environments, software

developed for a guest machine can now run on a different host machine through virtual-

ization techniques [170]. For hardware design, emulation and simulation techniques also

become common practices, such as hardware prototyping using Field-Programmable Gate

Array (FPGA) [9] and logic verification using simulation programs [78].

• Goals: “design” as a verb is to explore a design space for achieving a design object that exhibits

multiple design objectives. The exploration process is illustrated in Figure 1.2, where two-

dimensional design and objective spaces are used as examples. The axes of the design space

represent the controllable knobs (aka variables or parameters) to manipulate the object within

a feasible region, which is confined by the design requirements and constraints. For instance,
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Figure 1.2: Design-space exploration. The function f for specification-to-object mapping corre-

sponds to the construction of the design object. Suppose that the objectives are design cost and

performance in terms of latency (both to be minimized). The red Pareto front features the opti-

mized objects.

the knobs of a software compiler are its compilation flags. On the other hand, the objective

axes stand for the qualities of the achievable objects. In many scientific and engineering

fields, the objectives are conflicting [23], e.g., the development cost, memory footprint, and

query efficiency of database design in computer science. Therefore, from an optimization

perspective, the “best” design objects are the ones that cannot improve in any objective

without sacrificing at least another. For instance, the database systems that are either “most

query efficient with largest memory usage” or “least memory hungry with longest query

latency” are equally best in a multi-objective setting. These design objects are considered

Pareto-optimal (or Pareto-efficient) and are called Pareto points [23]. The collection of Pareto

points are called Pareto set (or Pareto front, or Pareto curve) [23]. In Section 8.3, I survey

more computer-science applications of Pareto-set discovery.

• Primitives: to avoid reinventing the wheel, standard libraries are common features of high-

level programming languages. The libraries are collections of frequent and generic routines

that were optimized beforehand for later reuse, such as sorting on arbitrary data types.

Object-oriented programming also promotes the design of standard template libraries using
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abstract data types [95]. For circuit design, standard cells and Intellectual Property (IP)

blocks are finer- and coarser-grained design primitives, respectively: a standard cell is a group

of wired transistors that provides a basic Boolean function or a storage function; an IP block

is a functional unit that is synthesizable (aka soft IP) or already defined in a transistor-layout

format (hard IP) [155]. Both standard cells and IP blocks are instrumental in the success of

the fabless business model in the semiconductor industry [128].

• Requirements: to verify a specification with critical design requirements, such as safety re-

quirements, formal verification methods have been applied to both software and hardware

design in industrial settings. Formal methods, such as model checking [38], guarantee the

completeness (i.e., stimuli independent) and are able to return counterexamples for fixing

the specification. Another approach for tackling design requirements is based on correct-by-

construction methodologies. Software examples for algorithm design are the problem-solving

paradigms “divide and conquer” and “dynamic programming”, where the solution to the main

problem can be constructed from the solutions to its subproblems [44], A hardware example

for electronic system design is the “globally asynchronous locally synchronous” architecture for

composing locally-clocked IP components via asynchronous communication protocols, while

preserving semantics and avoiding deadlocks [146].

• Constraints: the limits of computing have been continuously pushed with new platforms, such

as networked, distributed, or parallel computer systems. Each computer unit in these systems

has also been continuously improved with new technologies. In the context of computer

hardware design, the next section introduces major technology breakthroughs and presents

new challenges.

1.3 Challenges of Electronic System Level Design

Low-cost Very Large Scale Integration (VLSI) electronics have revolutionized daily life and ex-

panded the role of computation in science and engineering [100]. The revolution was supported

by three main semiconductor areas: (i) device and manufacturing, (ii) circuits and architectures,

and (iii) CAD methodologies and tools. For the first two areas, the past decade has witnessed

some technology breakthroughs reaching production, e.g., new manufacturing technologies such
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as FinFET [46; 88] and 3D integration [47; 152], and new computer architectures such as multi-

core processors [97; 126; 127; 141; 183] and heterogeneous System-on-Chip (SoC) [37; 49; 103;

193]. In contrast, there have not been major CAD breakthroughs making an industrial impact

comparable to such innovations of the past as circuit simulation, automatic place and route, RTL

description languages, and logic synthesis. These CAD technologies were already mature in the 90s.

In order to continue sustaining the progress of the semiconductor industry in the face of growing

system-design complexity, CAD researchers must rely on design reuse to address the complexity [34;

155] and raise the level of abstraction above RTL to enable Electronic System Level (ESL) de-

sign [15; 76].

The heterogeneous SoC, which features a mix set of programmable cores and task-specialized

accelerators, has become the dominant computer architecture thanks to its energy efficiency1. The

SoC structure is composed of heterogeneous components, each responsible for either computation,

communication, or data cache. This modular structure addresses the ESL design complexity by

parameterizing, exploring, and integrating primitive components. These components can be pre-

designed, pre-verified, and pre-characterized as IP blocks, aiming for broad reuse in various systems

(or subsystems) for maximum design productivity, i.e. component-based design [34; 155]. In order

to achieve a 10X design-productivity improvement, ITRS predicted that by 2020 a stationary or

consumer SoC would consist of 90% reused components (assuming a constant tool effort) [91]. In

industry, the 2001–2013 CAGR of semiconductor-IP revenue is indeed a good 13% [65]. Preferably,

the design of SoC component is specified in high-level languages (i.e. soft IP’s), so that they can

be implemented with automatic synthesis tools to serve various ESL requirements.

The synthesis of RTL code from C-like languages (such as SystemC [4]) is known as High-Level

Synthesis (HLS) [48]. Empirically, when designers move from RTL to high-level specifications, the

code density can be reduced by 7X–10X [42], and therefore the specifications are easier to develop,

debug, and maintain. Given a high-level specification with user-specified knob settings (see foot-

note 2), HLS can automatically generate RTL implementations with different micro-architectures,

1 Section 2.1 provides more background for the rise of heterogeneous architectures.

2 A knob setting is a complete configuration of synthesis knobs onto a design specification. In other words, a knob

setting corresponds to a synthesis scenario or a synthesis script, which is conceptually depicted as the point x in

Figure 1.2. Throughout this dissertation, I use “knob setting” and “synthesis scenario” interchangeably.
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Figure 1.3: A synthesis-centric design flow.

each exhibiting unique trade-offs among multiple design objectives3. Moreover, by adopting high-

level languages, the co-design of software and hardware for embedded systems can start earlier in

the design cycle [175] using virtual platforms [111]. In industry, the 2001–2013 CAGR of ESL-tool

revenue (11%) is already ranked at the top among all the front-end VLSI-design tools, which include

logic synthesis, RTL simulation, formal verification, timing analysis, etc [65].

Overall, in order to realize component-based ESL design, powerful automatic synthesis tools are

essential, because the creation and maintenance of reusable components are estimated to be 2–5X

more difficult than their creation for one-time use [91]. A synthesis-centric design flow includes

three synthesis stages: HLS, logic synthesis, and physical synthesis (Figure 1.3). HLS translates a

high-level design specification to an RTL implementation, which is further synthesized to a gate-

level netlist by logic synthesis, and finally placed and routed by physical synthesis. The goals

of the three synthesis stages are different: (i) HLS optimizes RTL implementations with various

micro-architectural knobs, such as loop manipulation, function inlining, memory configuration,

and many others, (ii) logic synthesis optimizes the area/power of a netlist by restructuring Boolean

logic and mapping it to standard cells, under a clock-period constraint, and (iii) physical synthesis

3 The trade-offs are conceptually captured by the feasible region of the objective space in Figure 1.2. HLS (or

“synthesis” in general) is represented by the mapping function f in the figure.
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Figure 1.4: Challenges of ESL design with synthesis tools.

determines the layout of the netlist using various optimization techniques, such as gate/wire sizing,

buffer insertion/sizing, Vt swapping, routing layer/track assignment, and many others. Although

modern synthesis tools are powerful thanks to these many synthesis knobs, the runtime of a synthesis

job is significant, ranging from hours to days on modern workstations.

Across all the synthesis stages, the synthesis-driven design methodology faces several big chal-

lenges as described below. Figure 1.4 illustrates these challenges using a simple example of a system

design that is composed of three components (C1, C2, and C3).

• Design-Space Exploration (DSE) (represented by the Pareto points in Figure 1.4). Clas-

sical DSE optimizes one single objective given others as constraints, such as the area min-

imization with clock-period constraints that is used in logic synthesis. However, modern

VLSI design requires to explore a multi-objective design space, such as performance vs. en-

ergy [164] and other objectives such as area [52], power [119], manufacturability [36], and

reliability [102]. To this end, multi-objective DSE should search for a Pareto set, as opposed

to a single Pareto point. Unfortunately, existing synthesis tools can only return one imple-

mentation per synthesis run and that implementation is not even guaranteed to be a Pareto

point. Therefore, the search of the Pareto set requires extensive synthesis runs, each taking

significant runtime.
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• System-Level Composition (represented by the composition arcs in Figure 1.4). The de-

sign of heterogeneous SoCs relies on the effective reuse and integration of optimal component

implementations. As holistic synthesis is infeasible (due to prohibitively high requirements

in terms of tool runtime and memory occupation), efficient system-composition tools are

desirable for SoC optimization. The composition is done by first running component-level

synthesis and then combining proper component implementations that form the system-level

Pareto set. The ideal composition tool should be able to identify the critical components

that can have the most contributions to the system-level Pareto set. Moreover, considering

the long synthesis-tool runtime, this tool should be adaptive in spending component synthe-

sis jobs (top-down), without the need to fully characterize each component-level Pareto set

(bottom-up).

• Synthesis-Tool Usage (represented by the synthesis arcs in Figure 1.4). The elusive optimal

setting of synthesis knobs and the long runtime of synthesis jobs make synthesis tools hard

to use. The synthesis Quality of Results (QoR) is often design specific; there is no universal

recipe of knob settings for achieving the best QoR. Although the example of Figure 1.4 shows

only two knobs, the actual number of knob settings for HLS grows exponentially with the

specification complexity; for integrated logic and physical synthesis, the number can reach

O(2p) with the number of knobs p ∈ [100, 400]. The sheer number of synthesis scenarios (i.e.

knob settings) together with the long runtime required by each synthesis scenario prohibits

exhaustive synthesis in practice.

• Synthesis-Aware Specification Refinement (represented by the design space derived

from different versions of a component specification (C1 Ver. 1 and C1 Ver. 2) in Figure 1.4).

These versions satisfy the same functional requirements, but differ in the detailed descriptions,

e.g. using different algorithms for sorting. The exploration of synthesizable specifications has

long been done manually and is not addressed automatically by CAD tools. Very often, a

restructure of the specification can change the synthesis-explorable design space, thus yielding

different synthesis QoR. However, component-based design requires extensive reuse of high-

quality synthesizable components across product cycles, design teams, and system companies.

Therefore, as SoC designs are becoming more complex, the tool support for synthesis-aware
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Figure 1.5: (a) Traditional DSE is an ad hoc process to search one (or few) optimal design

implementation. (b) Supervised DSE (SDSE) is an abstraction layer that returns an approximate

Pareto set by autonomously supervising synthesis jobs.

specification refinement is becoming more and more desirable.

1.4 Thesis Contributions

In order to address the aforementioned challenges, I propose Supervised Design-Space Explo-

ration (SDSE): SDSE is an abstraction layer between a designer and a synthesis tool, aiming

to autonomously supervise synthesis jobs for design-space exploration. The system Pareto set is

approximated by combing the required component implementations, which are achieved by running

a minimum number of synthesis jobs. The synthesis jobs are adapted to the most influential system

components with the most effective knob settings for synthesizing them.

Specifically, my thesis makes the following contributions:

• I introduce a new abstraction layer for autonomous DSE with synthesis tools. Figure 1.5

illustrates the traditional and the supervised DSE approaches. The traditional approach re-

quires (i) human analysis on synthesis QoR and (ii) human decision among a huge number

of candidates to select the next synthesis scenario [123]. The manual efforts required by the
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traditional approach limit the exploration result to one (or few) optimal implementation. In

contrast, SDSE offloads the analysis and decision making to an autonomous process, such that

the designer can focus on extra design optimizations beyond synthesis exploration. Moreover,

SDSE aims at not only minimizing the number of synthesis jobs for DSE but also returning

an approximate Pareto set. The Pareto set brings the following benefits: (i) at the stage

of early design exploration, when the preferences of design objectives are unclear or subjec-

tive to change, the Pareto set provides a global view of equally good design options, thus

limiting the risk of being trapped into local optima, (ii) in a design/implementation flow,

the Pareto set can be refined at the next level(s) of abstraction without the need to start

from scratch, and (iii) for final design optimization, the Pareto set features a portfolio of

optimal implementations that can be reused in the future across design projects and design

teams/houses.

• I propose two novel compositional frameworks that can minimize the number of component

synthesis jobs for approximating the system-level Pareto set (to optimize the composition arcs

of Figure 1.4). Together with the frameworks, I propose novel algorithms for identifying the

most influential system components, so that most of the synthesis jobs are adapted to those

components for the maximum return of investment. The system Pareto set is approximated by

combining the component synthesis results. I have applied SDSE for system-level exploration

with commercial high-level and logic synthesis tools.

• I present two enhanced iterative-refinement frameworks that can minimize the number of

synthesis jobs for component-level DSE using advanced learning methods (to optimize the

synthesis arcs of Figure 1.4). The learning methods can better estimate synthesis QoR for

unknown synthesis scenarios, thereby avoiding unnecessary synthesis jobs and adapting in-

stead to the Pareto-promising scenarios. I have applied SDSE for component-level exploration

with industrial high-level and physical synthesis tools, and have successfully integrated SDSE

research into the IBM Synthesis Tuning System for production processor design.

• I consider SDSE extensible and general, seeing great potential for applications beyond synthe-

sis and electronic system design. SDSE is extensible with code-refactoring techniques which

introduce “virtual” knobs that are not natively offered by the synthesis tools (to optimize the
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Table 1.2: Thesis Contributions to The Design Elements [150].

Design Element Contributions Chapter

Specification a new abstraction layer between designers 3–6

and synthesis tools;

a code-refactoring methodology 7

Agent automatic setting of synthesis knobs; 3–6

automatic selection of component implementations; 3–4

automatic suggestion of code-refactoring options 7

Goals discovery of post-synthesis Pareto set 3–7

Environment learning methods as synthesis surrogates 5–6

for design evaluation

Requirements adaptive component synthesis while satisfying 3–4

system performance requirements

Primitives synthesis tools as query oracles 3–7

Constraints automation of large-scale 3–7

design-space exploration

component specification of Figure 1.4). In particular, I propose a pattern-based refactoring

methodology to further improve the DSE results in terms of both HLS QoR and tool run-

time. Moreover, SDSE could be generalized (i) to create a platform for synthesis knob/library

deployment/testing on real customer designs, (ii) to promote more collaboration between sys-

tem architects and component designers, and (iii) to explore designs beyond VLSI chips, for

applications which also require extensive CAD-tool invocations with different knob settings.

Table 1.2 summarizes my contributions to the design elements that were defined in Section 1.1.

1.5 Outline of The Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, I describe the background for the

rise of heterogeneous SoCs, existing CAD tools for SoC design, and the need for a new generation
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of CAD tools. I also present an overview of the related works on the topic of “multi-objective DSE

with CAD tools” in Chapter 2. Afterwards, the dissertation is partitioned into three parts before

Chapter 9 draws conclusions:

• Part I: System-Level Design-Space Exploration describes two SDSE frameworks for

compositional system exploration. In particular, this part presents “synthesis planning for

exploring ESL design” using HLS (Chapter 3) and “compositional approximation for SoC

characterization” using logic synthesis (Chapter 4).

• Part II: Component-Level Design-Space Exploration describes two SDSE frameworks

for iterative component exploration. In particular, this part presents “knob-setting opti-

mization for high-level synthesis” (Chapter 5) and “parameter tuning for physical synthesis”

(Chapter 6).

• Part III: Extending Supervised Design-Space Exploration describes a pattern-based

code-refactoring methodology to enhance the HLS DSE results (Chapter 7) and sketches

several future research directions based on SDSE (Chapter 8).

Finally, in Appendix A I describe four prototype SDSE tools that I develop:

• Synthesis Planning for Exploring ESL Design (SPEED): a prototype tool that implements

SDSE with HLS for system-level DSE. The SPEED methodology and its companion algo-

rithms are presented in Chapter 3.

• Compositional Approximation of Pareto Sets (CAPS): a prototype tool that implements SDSE

with logic synthesis for system-level DSE. The CAPS algorithm and its companion heuristic

modifications are presented in Chapter 4.

• Learning-based Exploration with Intelligent Sampling, Transductive Experimental Design, and

Refinement (LEISTER): a prototype tool that implements SDSE with HLS for component-

level DSE. LEISTER’s underlying algorithms are presented in Chapter 5.

• Enhanced gSpan (EgSpan): a prototype tool for enhanced DSE with pattern-based code-

refactoring. The code-refactoring methodology and the EgSpan algorithm are presented in

Chapter 7.

14



Chapter 2

Background

Semiconductor chips have been the major driving force for the advancements of diverse computer

systems, including personal computers, network servers, government/bank mainframes, and su-

percomputers. The semiconductor performance and cost continuously improve, making possible

the global expansion of information technology, which is estimated to ascribe up to 40 percent of

the global productivity growth in the period of 1993–2013 [17]. The improvements have, however,

become increasingly difficult ever since early 2000. This chapter gives a brief introduction to the

rise of heterogeneous System-on-Chip (SoC) and its design complexity, the existing Computer-

Aided-Design (CAD) tools for addressing the design complexity, and the need for a new generation

of CAD tools. After the introduction section, an overview of the related works on “design-space

exploration with CAD tools” is presented to highlight the novelty of SDSE.

2.1 Design Complexity of SoC with CAD Tools

Since mid 80s, the application-level uniprocessor performance and the semiconductor device speed

have increased by over 3,000X and 100X, respectively [87]; meanwhile, the fabrication cost per

semiconductor gate has decreased linearly up to the 28nm-technology node [89]. The improvements

were driven by a triplet of actions: (i) scale the process technology down, (ii) scale the supply

voltage down, and (iii) scale the clock frequency up. Technology scaling shrinks the feature size

(e.g. the size of the transistor gate), such that more transistors can be crammed onto a single

die at the next technology node. Ideally, power density should remain constant with technology
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scaling and voltage scaling (aka Dennard scaling [57]). However, voltage scaling slowed down due to

excessive leakage current [56]; meanwhile, frequency was scaled faster than dictated by technology

scaling [87]. Since technology scaling continued, processor design soon became power-limited and

the frequency scaling practically stopped in the early 2000.

Given the power constraint, processor design resorted to homogeneous multi-core architectures

by adding more processor cores to each die. Parallel processing allows each core to be more

energy efficient by having a lower peak performance (due to the lower frequency), whereas multiple

cores can increase the overall computing throughput performance. Even better, for maximum

power saving, each core can dynamically adjust its operating voltage and frequency according to

the currently-expected workloads, a technique known as Dynamic Voltage and Frequency Scaling.

However, parallelism alone hits diminishing returns at both the low-energy and high-performance

extremes [87]. That is, sacrificing large performance factors returns small energy savings, and vice

versa. Moreover, other factors affecting the effectiveness of parallelism exist: (i) the parallelizable

portions of an application can be limited by its nature (aka Amdahl’s law) [7], (ii) a parallel

algorithm may require higher time complexity than its sequential counterparts [116], and (iii) with

advanced technology, cache-memory power consumption can be comparable to the power spent

on computation [118]. As a result, homogeneous parallelism alone can not promise a long-term

performance scaling similar to the one allowed by technology scaling for four decades.

2.1.1 The Rise of Heterogeneous Architectures

Given the limitations of technology scaling and homogeneous parallelism, specialized hardware

components (aka accelerators) emerge as energy-efficient solutions to work together with general-

purpose processor cores. Accelerators are application-specific integrated circuits (ASICs) cus-

tomized for dedicated tasks with improved computation and memory-access efficiencies. Graphic

Processing Units (GPUs) can be regarded as a programmable form of accelerators [132]. A heteroge-

neous System-on-Chip (SoC) integrates general-purpose processor cores, GPU cores, and accelerator

cores, in addition to other components for on-chip communication and data caching [21]. In fact,

in the 2011–2013 period, the energy efficiency of commercial “processor + GPU” SoCs based on

22nm–32nm technologies is still below 10 MOPS/mW [49; 139; 192], while the efficiency of dedicated

hardware designs based on 65nm–0.13um technologies can already reach the 100–1,000 MOPS/mW
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range for applications such as multimedia [101], biomedicine [12], artificial intelligence [129], and

computer vision [138; 179].

Despite the energy advantage, SoC design is facing demanding time-to-market schedules as

well as ever increasing design costs. Typically, consumer processors or desktop SoCs follow a

12–18 month product cycle [6; 90], which is even shorter for mobile SoCs [148; 156]. Within the

stringent cycles, the design complexity of a consumer SoC ranging from 47M transistors (Intel 45nm

Atom, 2008) to 2B transistors (Apple 20nm A8, 2014) needs to be carefully addressed by usually

teams of 10’s–100’s of engineers [184]. Converted into design costs, the sheer design complexity

corresponds to high Non-Recurring-Engineering (NRE) investments. For instance, a 180M-gate chip

costs $80M–$90M with a 28nm technology, and a 240M-gate chip would cost $150M–$160M with

a 20nm technology [89; 94; 168]. Even worse, an over 300M-gate 16/14nm chip is projected to cost

more than $310M [89; 94; 168]. Moreover, the fabrication of an SoC from the photomask generation

to the chip packaging can take 6–8 weeks [184]. With all these economic factors considered, the

first-pass success is critical for commercial SoC design.

2.1.2 ASIC Design Flow

In order to address the enormous design complexity, Very Large Scale Integration (VLSI) design

methodologies have progressed over 40+ years, from full-custom (manual) design to computer-aided

design (CAD) with increasingly higher levels of abstraction for design capture. Fig. 2.1 depicts the

chronological evolution across four decades when chip design has progressed from (i) schematic

models to (ii) logic-gate (aka standard-cell) models, (iii) Register Transfer Level (RTL) models

described by hardware description languages such as VHDL or Verilog, and finally (iv) Transac-

tion Level Modeling (TLM) using high-level languages such as SystemC. By raising the level of

abstraction, VLSI designs are captured in coarser granularity. This makes the number of design

primitives remain manageable, thus increasing design productivity to handle the growing design

scale. The multi-decade evolution is a joint result of the tight collaboration between industry (in-

cluding worldwide design houses, CAD-tool vendors, and semiconductor foundries) and academia

(including dedicated publication venues of 10+ active IEEE and/or ACM journals and conferences).

From an economic perspective, the established ecosystem that makes building VLSI design suc-

cessful is a reason why replacing the semiconductor technology (e.g. with quantum computing) for
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Figure 2.1: The evolution of design abstraction for VLSI design (source: [157]).

resolving the power problem can be too expansive in the foreseeable future [87].

Fig. 2.2 shows a common ASIC design flow with CAD tools starting from high-level specifica-

tion1. The flow is divided into two parts: (i) front-end design and (ii) back-end design. Regarding

synthesis and verification, the front-end and back-end design focus on the functional and physi-

cal aspects, respectively. While the mainstream front-end design starts with a hand-crafted RTL

specification, High-Level Synthesis (HLS) is becoming popular as explained in Chapter 1. The flow

proceeds as follows.

• First, the high-level specification is synthesized by HLS tools into a synthesizable RTL speci-

fication. This needs to be verified that is behaviorally correct via simulation tools (e.g. virtual

platforms [111]) or formal approaches (e.g. sequential equivalence checking [124]). The high-

level design emphasizes micro-architectural optimization and its interaction with software.

• Afterwards, the RTL specification is synthesized by Logic Synthesis tools to a netlist of

standard cells which implements the design with logic gates (such as AND and OR), sequential

elements (such as registers and memories), and the connection among them. Also, the netlist

needs to be verified via logic simulation or equivalence checking. In addition, Static Timing

1 More details about an ASIC design flow can be found in [184]. For instance, Fig. 2.2 omits scan-logic insertion

for circuit testing, which per se is a research field in CAD [108].
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Figure 2.2: An ASIC design flow.

Analysis (STA) is performed on the netlist for assessing its performance (i.e. the minimum

clock period) based on primitive interconnect-load models.

• The verified netlist (i.e. structural specification) kicks off the back-end design by running

Physical Synthesis tools, which generate the circuit layout of the design. If the layout passes

physical verification and analysis (including STA with refined interconnect models, design-

rule checking, logic-versus-schematic checking, and many others), the circuit can be signed

off for fabrication (aka design closure).

Nowadays, this flow is not only common to ASIC design but also increasingly adopted for high-

performance processor design, in order to cope with its sheer complexity [196].

Each synthesis step in the ASIC design flow involves multiple computation-intensive tasks [52;

166]:

• Major HLS tasks include: (i) allocating resources (e.g. adders, multipliers, etc.) for im-

plementing target behaviors, (ii) scheduling operators (e.g. additions, multiplications, etc.)

across multiple clock cycles for optimizing the latency of the design and the utilization of

resources, and (iii) binding operators to resource instances and binding variables to register
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instances to minimize implementation costs such as area and power.

• Major logic-synthesis tasks include: (i) minimizing a multi-level Boolean network by factoring

with common sub-expressions and sharing minterms, (ii) mapping the Boolean network with

technology-dependent standard cells to minimize implementation costs, and (iii) iteratively

refining the synthesis results.

• Major physical-synthesis tasks include: (i) floor-planning large design blocks to minimize

their interconnect wire length and to construct robust power-supply networks, (ii) placing

standard cells in rows to minimize the total wire length and to avoid routing congestion, (iii)

synthesizing clock trees to distribute clock signals to registers with minimized clock skews,

(iv) routing the placed standard cells via multiple metal layers while honoring design rules

such as wire width, wire spacing, etc., and (v) restructuring the netlist, sizing standard cells,

and/or inserting buffer cells to optimize the circuit performance/power/area, if necessary.

2.1.3 Next Generation CAD Tools

Although the CAD-tool-based design flow has been instrumental in the commercial success of VLSI

design, new challenges arise around the existing tools with respect to Quality of Results (QoR),

tool runtime, design exploration, and user-tool interface.

• Most of the tasks in the three synthesis steps are computationally intractable (at least NP-

hard) [52; 166]. Because of this intractability plus the sheer size of VLSI design, practical

(commercial) synthesis tools are based on heuristics. However, they still require significant

CPU time per synthesis run, which can range from hour(s) to 10+ days to deliver acceptable

QoR.

• Traditionally, these synthesis tools were designed to perform performance-constrained area

or power optimization [52; 166], i.e., single-objective optimization. However, other objectives

due to aggressive technology scaling, such as design manufacturability [36; 189] and design

reliability [32; 102], are also becoming important when the synthesis results are evaluated.

Even with advanced synthesis features that can optimize these additional objectives during

synthesis, each synthesis run still only delivers one implementation, as opposed to a Pareto set

of implementations. In order to discover the Pareto set, “synthesis exploration” with extensive
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knob settings as well as “QoR analyses” with human decision making are inevitable. In fact,

analysis reports of the size of 1–2TB are common for the design of a 22nm 10B+ transistor

chip [173], showing the complexity of manual design exploration with CAD tools.

Moreover, the Pareto set is necessary to provide useful alternative designs when (i) the de-

signer does not (yet) have clear preferences over the multiple objectives (e.g. early in the design

cycle), (ii) the objectives are not well-defined (e.g. they are subjective to the preferences of

multiple designers) or hard to be quantified (e.g. the true cost function is not available [63]),

and (iii) the Pareto points are intermediate products for subsequent explorations in a design

flow (e.g. an area-efficient circuit placement may be unroutable).

• To achieve design closure faster, the steps in the design flow require customized settings and

sequences that are both tailored toward certain design objectives. In addition, due to the lack

of good predictive cost functions, the execution of the design flow cannot be accomplished

by a fixed set of discrete steps, but instead requires incremental cost analyses [157]. Put

together, these requirements call for a new generation of CAD tools that provide: (i) appro-

priate abstractions, (ii) simplified and standardized user-tool interfaces, (iii) intuitive design

environments, and (iv) scalable design methodologies [24].

All of these challenges reflect a perspective on the future of CAD research and, correspondingly,

of the Electronic Design Automation (EDA) industry: “Very few of these challenges require drastic

innovation in the key algorithms underlying the EDA tools. Instead they all point to the design

flows and the design environment through which the designers interact with design tools and to the

scale of problems that need to be solved.” [173] Nevertheless, in order to scale withe the problem

size, innovative scalable algorithms are still required at the design flow/methodology level [24].

Making contributions toward these perspectives, I propose Supervised Design-Space Exploration

(SDSE), a novel abstraction layer which offloads manual design exploration processes in a design

flow to autonomous and scalable processes. Thus, SDSE shortens and simplifies the learning curve

of mastering synthesis tools. I have developed prototypes to apply SDSE to all the three synthesis

steps for the design of accelerator cores as well as processor cores, which all demand scalable

exploration algorithms.

21



2.2 Overview of Related Works

The majority of existing works on “DSE with CAD tools” treat a design as a whole object. Very

few of them take advantages of the SoC structure by compositionally exploring the system design.

A compositional approach combines the component implementations that form the system Pareto

set. The compositionality is revealed by satisfying system-level design requirements (e.g. system

throughputs) based on the guarantee of component-level requirements (e.g. component latencies)

in a way that is correct by construction.

This section first overviews the major existing works that can be applied to the SoC component

design and then switches to the works that explore the SoC system design compositionally. Detailed

comparisons with existing works are distributed into Chapters 3 to 7.

2.2.1 Component-Level Design-Space Exploration

Existing works for component-level DSE with CAD tools can be categorized into four types:

• First of all, local-search heuristics are the most popular choices, since they can flexibly en-

code and perturb knob settings in search for the Pareto-optimal ones. Typical heuristics

include: (i) Genetic Algorithm based approaches [11] (e.g., Strength Pareto Evolutionary

Algorithm [66] and Non-dominated Sorting Genetic Algorithm [114; 177]) and (ii) Simulated

Annealing based approaches [177] (e.g., Adaptive Simulated Annealing [159]). These local-

search heuristics, however, invoke a considerable number of trial synthesis jobs in each search

iteration, yet a large portion of the synthesis results is dropped as the algorithm proceeds.

Consequently, this type of approaches is not scalable when working with long-runtime synthe-

sis tools for large-scale DSE. In contrast, SDSE targets the application with synthesis tools,

which demand scalable exploration algorithms.

• To avoid the intensive computation required by synthesis tools, the second type of approaches

aims at predicting synthesis QoR, instead of invoking actual synthesis jobs to acquire the QoR.

For example, fuzzy systems or learning models are embedded into a Genetic Algorithm frame-

work to predict the QoR [11; 161; 43]. Similar approaches using statistical inference [18; 82;

120] or learning models [121; 133; 134; 186; 197] are employed within an iterative-refinement
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framework. In general, the iterative-refinement framework is shown to be superior to local-

search-based frameworks [121; 134; 186; 197]. However, all the iterative-refinement works

have been applied to processor simulators, as opposed to ASIC synthesis tools. Therefore,

the effectiveness of “learning-based iterative refinement” for synthesis-driven DSE remains

unclear. In contrast, SDSE features two enhanced iterative-refinement frameworks using ad-

vanced training, sampling, and learning methods. The effectiveness of SDSE is validated by

(i) accelerator-core design with commercial HLS tools and (ii) processor-core design with

industrial physical-synthesis tools.

• Alternatively, a third type of approaches applies pre-pruning of the design space in order

to reduce the search space. For instance, parameter-dependency graphs are utilized so that

Pareto points are first generated locally based on dependent parameters [77]. This prepro-

cessing is followed by exhaustive combination of the local Pareto points [77] (or accelerated

by local search [136]). Parameter-clustering [160] also belongs to this type of approaches.

Although these works can reduce the size of search space, the final exploration results de-

pend on the correctness of parameter dependencies, which in practice is not easy to obtain

a-priori. This type of approaches still requires substantial design expertise and is therefore

restricted to a small set of applications. In contrast, SDSE does not require the design-space-

reduction pre-processes to be scalable (Chapters 3, 4, and 5), but can still be augmented with

design-space-reduction techniques (Chapter 6).

• The fourth type of approaches generates Pareto points based on well-defined “knob-setting to

QoR” mapping functions. For instance, to uniformly sample a QoR space, a multi-objective

optimization problem can be transformed into a sequence of single-objective problems via

weighted sums of the objectives [169]. However, this technique works only for convex prob-

lem formulations; unfortunately, synthesis-derived Pareto sets can be non-convex [113]. An-

other algorithm for generating Pareto points has been presented for custom-instruction se-

lection [20]. In this application domain, the mapping function from knob settings to QoR

is well defined and polynomial-time computable. Still other similar works for custom circuit

design are based on differentiable closed-form mapping functions [14; 200]. Nevertheless, the

mapping functions of commercial synthesis tools are not publicly available. As a result, these
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techniques are not generally applicable to synthesis-driven DSE, which is the target of SDSE.

2.2.2 System-Level Design-Space Exploration

The prior works summarized in the previous subsection explore their target design as a whole ob-

ject. The holistic synthesis of an entire SoC, however, requires prohibitively-high computational

efforts such as CPU time and memory occupation. Alternatively, there are works (also for proces-

sor simulation) [20; 66; 75; 85; 167] that take advantages of the design hierarchy: they generate

Pareto points in a bottom-up fashion by first fully characterizing all the SoC components and then

exhaustively combining them. Hence, even in a compositional setting, these existing works are still

considered exhaustive. In contrast, I present two compositional SDSE frameworks for High-Level

and Logic Synthesis, respectively, which explore the system design space by dynamically identifying

the components that have the most impacts on the system-level Pareto set. Empirically, SDSE’s

top-down exploration approach can approximate the Pareto set with an order of magnitude fewer

synthesis jobs (or tool runtime) than the exhaustive approach.
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Part I

System-Level Design-Space

Exploration
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Chapter 3

Synthesis Planning for Exploring ESL

Design

The growing SoC complexity has motivated the adoption of soft-IP components and high-level

synthesis (HLS) tools, as introduced in Section 1.3. From an industrial viewpoint [106], the ideal

component-based design paradigm still requires major progress on two levels: (i) at the component-

level, in the design and cost/performance modeling of an IP component to increase its reusability

across potential SoC designs and to enable architecture exploration; (ii) at the system-level, in the

automatic integration of IP components to find an optimal implementation of a given SoC.

Contributions. In this chapter, we propose a HLS-driven design methodology for compositional

system-level design exploration that consists of two main steps. The first step is the development

of libraries of synthesizable components which are both designed in high-level languages and char-

acterized through HLS to maximize their reusability. In the second step, from the specification

of a given system we construct a system-level Pareto front where each point represents a distinct

implementation composed of optimal component instances, each of which is implemented in RTL

by synthesizing its high-level specification.

Our methodology aims at minimizing the total number of component synthesis to achieve a rich

set of target system implementations. In particular, we propose:

• a concise component-library format, which preserves the freedom of system designers to select

a wide range of component implementation alternatives to fit the specific design context of a
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system;

• an algorithm that, for a given system design context, prunes the design space of a component

to minimize the set of its implementation candidates for integration into the system.

• an algorithm for system-level design space exploration which performs HLS-planning before

invoking actual synthesis on the components. Thus, all the planned synthesis tasks can be

run in parallel to minimize the total exploration time.

• a CAD tool called SPEED that implements these two algorithms. SPEED stands for “Synthe-

sis Planning for Exploring ESL Design”. A prototype implementation of SPEED is described

in Appendix A.1

3.1 Problem Description

Model of Computation. We adopt timed marked graph (TMG), a subclass of Petri nets

(PN) [125], as the main model of computation. PN-based models allow compositional system-

level performance analysis [178]. The simplicity of TMG allows us to perform rapid static analysis

of interesting classes of systems without the need for simulation. Still, we also discuss extensions

of TMG to model more general systems.

Definition 1. A PN is a bipartite graph defined as a 5-tuple (P, T, F,w,M0), where P is a set of

m places, T is a set of n transitions, F : (P × T ) ∪ (T × P ) is a set of arcs, w : F → N+ is an arc

weighting function, and M0 ∈ Nm is the initial marking (i.e., the number of tokens at each p ∈ P )

of the net.

Let •t = {p|(p, t) ∈ F} denote the set of input places of a transition t and t• = {p|(t, p) ∈ F}

the set of output places. Let •p = {t|(t, p) ∈ F} denote the set of input transitions of a place p

and p• = {t|(p, t) ∈ F} the set of output transitions. When a transition t fires, w(p, t) tokens are

removed from each p ∈ •t and w(t, p) tokens are added to each p ∈ t•. As a firing rule we assume

that t fires as soon as it is enabled, i.e. each p ∈ •t has at least w(p, t) tokens. A PN is live iff no

transition can be disabled after any marking reachable from M0. A PN is safe iff the number of

tokens at each place does not exceed one for any marking reachable from M0. An example live and

safe PN with four transitions and five places is shown in Fig. 3.1(a).
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Figure 3.1: (a) A timed marked graph; (b) A stochastic timed free-choice net where the token

goes to t1 (t2) with a 30% (70%) probability; (c) A net that is not free-choice because •(p2•) =

{p1, p2} ̸= {p2}.

Definition 2. A TMG is a PN with w : F → 1 and ∀p ∈ P , | • p| = |p • | = 1, extended with a

transition firing-delay vector τ ∈ Rn, where τi denotes the duration time which the i-th transition

takes for a firing.

Fig. 3.1(a) also shows a simple TMG which models two concurrent data flows. The minimum

cycle time [151] of a strongly connected TMG is:

c = max
k∈K
{Dk/Nk} (3.1)

where K is the set of cycles in the TMG, Dk is the sum of transition firing-delays in cycle k ∈ K,

and Nk is the number of tokens in the cycle. For example, the minimum cycle time of the TMG in

Fig. 3.1(a) is max{4/1, 5/1} = 5.

Since every place of a TMG has exactly one input and one output transition, TMG cannot model

decisions/conflicts in a dynamic system. We then introduce another subclass of PN, free-choice net

(FC) [125], to model decisions by non-deterministic token movement from a place.

Definition 3. An FC is a PN with w : F → 1 and ∀p ∈ P , |p • | > 1 =⇒ •(p•) = {p}.

If |p• | > 1, the tokens at p can go to any t ∈ p•. The flexibility of FC enables modeling of data

dependencies, which commonly exist in stream-computing systems [163].
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Definition 4. A stochastic timed FC is an FC extended with: (i) a routing rate associated with

each arc (p, t) ∈ F if |p • | > 1 such that, for each such p, the sum of the routing rates equals 1,

and (ii) a transition firing-delay vector τ ∈ Rn.

Fig. 3.1(b) shows an example of stochastic timed FC. A live and safe stochastic timed FC can

be transformed to a behaviorally-equivalent TMG, whose minimum cycle time corresponds to the

average cycle time of the original FC [31]. Therefore, although for simplicity in this chapter we

focus on TMGs, our algorithmic findings are applicable to live and safe stochastic timed FC after

performing a proper graph transformation [31].

Effective Latency and Throughput. First, the effective latency λ of a component is the product

of its clock cycle count and clock period. Specifically, the effective latency corresponds to the total

elapsed time for a component to read an input token, process the token, and generate an output

token. Second, given a system consisting of a set of components, we use a TMG to model the

data flow of a system by representing each component with a transition ti whose firing delay τi

is equal to its effective latency. The maximum sustainable effective throughput θ of the system is

defined as the reciprocal of the minimum cycle time of its TMG if this is strongly connected and

as the minimum θ among its strongly-connected components, otherwise. In the sequel, we refer

to “maximum sustainable effective throughput” simply as “effective throughput”. The TMG of

Fig. 3.1(a) models a system of 4 components with a θ of 1/5 = 0.2.

The proposed methodology focuses on the design exploration of an SoC (or an SoC subsystem)

that is realized by combining components, often in a pipeline fashion, which are specified with

a high-level language. This fits well, for instance, a graphics or multimedia subsystem which is

specified as a pipeline of SystemC modules communicating through TLM channels. We express

the result of the system-level design exploration as a Pareto front which captures the system

implementation trade-offs between the effective throughput θ and the implementation cost α.

Ratio Distance. To quantify the quality of the Pareto front in characterizing the system-level

design space we adopt the concept of ratio distance (RD) [113]. Let the implementation cost and

the effective throughput of a system-design point d on the Pareto front be dα and dθ, respectively.

Intuitively, the ratio distance captures the greater ratio gap between the two points in terms of the

objectives α and θ.
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Table 3.1: Some Typical High-Level Synthesis Knobs and Their Settings

Knob Setting

Loop Manipulation Breaking, Unrolling, Pipelining

State Insertion Number of States

Memory Configuration Register Array, Embedded Memory

Clock Cycle Time Nano-seconds

Definition 5. Given Pareto-optimal system-design points d and d′ with d′α ≥ dα and d′θ ≥ dθ,

RD(d, d′) = max{d′α/dα − 1, d′θ/dθ − 1}.

Finally, we give a formal definition of the Compositional System-Level Design Exploration Prob-

lem, where we refer to synthesis tools as oracles and to “running the tools” as “querying the oracles”.

Problem 1. Given a HLS oracle, a target granularity δ > 0, and a TMG model of a system with its

components designed in high-level languages, construct a system-level Pareto front w.r.t. α versus

θ such that the maximum RD of two consecutive points on the front is less than δ, by querying the

HLS oracle on individual components as few times as possible.

3.2 An Exploration-and-Reuse Design Methodology

The main difficulties of solving Problem 1 are: (i) at the component level, to identify the HLS knobs

and their settings to query the oracle for optimal component instances, and (ii) at the system level,

to identify critical components to query and to reuse the queries whenever possible for efficient

Pareto front construction.

Knob-Settings. Table 3.1 lists a few typical HLS knobs and their settings. A knob may be applied

multiple times with different settings, e.g., different loops in a design can be manipulated in different

ways. Besides, some settings may involve multiple parameters, e.g., the initiation intervals and the

number of stages for loop pipelining can vary. A knob-setting (KS) is a particular setting of all the

knob applications in a design. Hence a KS corresponds to the core content of a HLS script.

Example. To illustrate the application of different KSs on a component, we designed a DCT as

a synthesizable SystemC component of an MPEG2 encoder. The DCT consists of nested loops
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Figure 3.2: HLS-driven implementation for a Discrete Cosine Transform.

of integer multiplications. Fig. 3.2 shows a characterization of the DCT implementation in terms

of area vs. effective-latency trade-offs which is obtained by running HLS with the application of

loop manipulations to the outermost loop (all inner loops are unrolled). Specifically, µ-arch-1 is

the result of completely unrolling the loop to perform DCT in a single clock cycle; µ-arch-2 and

µ-arch-3 are the results of partially unrolling the loop to perform DCT in 2 and 4 clock cycles,

respectively; and µ-arch-4 to µ-arch-6 are the results of pipelining the loop with different initiation

intervals and pipeline stages. For each µ-architecture, we sample its clock period to find the two

extreme effective latencies, λmin and λmax, between which the DCT can be synthesized.

In this example, we see intra-micro-architecture trade-offs explored by adjusting the clock pe-

riod. There are also inter-micro-architecture trade-offs. For example, µ-arch-1 can achieve shorter

effective latencies by parallelizing all the multiplications at the cost of greater area occupation due

to fully-duplicated multipliers. To distinguish the latter trade-offs, we denote two KSs as distinct

when they differ by at least one setting among all the knobs, except the technology-dependent

knobs such as the clock period. For instance, there are 6 distinct KSs in Fig. 3.2.

The Proposed Methodology. Fig. 3.3 illustrates the two main steps of our approach to solve

Problem 1.

First, feasible KSs of the component are determined based on the component designer’s knowl-

edge. Example infeasibleKSs include (but not restricted to): (i) arbitrary state insertion that causes

clock-cycle-count violations for real-time applications, (ii) loop unrolling that requires single-cycle

parallel data access that cannot be supported by limited memory read/write ports, and (iii) not
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Figure 3.3: The proposed design methodology.

inlining functions that involve both sequential and combinational paths. After determining the

feasible KSs, the component designer should also find the extreme-λ: this step requires only a

one-time effort and its results can be reused by different system designers.

Then, at the time of component integration, the system designer has the freedom to pre-select

a subset of the feasible KSs for each component based on the specific context of the given system

design. Hence, different pre-selection schemes will result in context-aware system Pareto fronts as

shown in Fig. 3.31. For example, in addition to typical costs like area and power, which have been

characterized in the component libraries, if system designers want to avoid the higher mask/testing

cost and/or limited yield due to the deployment of embedded memories [122], then they can set a

“don’t use” attribute to the knob-settings that involve embedded memories, before running HLS.

Since the KSs involving register arrays generally yield component instances with greater area than

those involving embedded memories, a reusable component library should not be limited to keep

only area-optimal KSs, which may be sub-optimal in terms of other design costs such as for mask

generation and circuit testing in the example involving embedded memories. Consequently, in order

to keep all the feasible KSs for any possible given system-design context while maintaining a concise

library format, we propose the notion of Component Knob-setting Trade-off (CKT) Library.

1In Fig. 3.3, each θ of the system is actually calculated from the λ’s of the components (one of each) as discussed

in Section 3.1.
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Figure 3.4: Our algorithm flowchart in the context of system design.

A CKT library, which is provided by component designers, stores all the distinct feasible KSs of

a component: each KS indicates its fixed clock-cycle count, its extreme implementation costs, αmax

and αmin, and its extreme effective latencies, λmin and λmax. The average or the worst-case clock-

cycle count can be used when the clock-cycle count is not deterministic. The fixed clock-cycle count

allows us to explore the intra-knob-setting α vs. λ trade-off space by adjusting the clock period to

synthesize the component. In addition, the extreme values of α and λ outline the sub-design space

of a KS.

To assist the system designer, we propose the algorithms charted in Fig. 3.4 to explore the

design space given the CKT libraries. In the context of a given system design, for each component

the CKT library can optionally be refined by pre-selecting KSs as desired and/or re-characterizing

the extreme α and λ if a different technology is considered (CKT library refinement in Fig. 3.4). For

each refined CKT library, we then apply component design space pruning to find out KS candidates

for deriving optimal component instances (Section 3.3). Next, for system design space exploration,

we propose a HLS-planning algorithm to identify critical oracle queries before actually invoking

them (Section 3.4).
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Figure 3.5: (a) An instance of Problem 2. (b) Dashed lines identify six non-overlapping λ intervals;

their optimal knob-setting candidates for deriving Pareto-optimal instances are shown below the λ

axis.

3.3 Component Design-Space Pruning

For each refined CKT library with s distinct KSs, we consider the following problem, where a

KS dominates another KS iff the former can achieve a lower implementation cost α w.r.t. a fixed

effective latency λ, or the former can achieve both a lower α and a shorter λ.

Problem 2. Given s distinct knob-settings, each of which yields a component sub-design space

bounded by (λi
min, α

i
max) and (λi

max, α
i
min), i ∈ {1, 2, . . . , s}, find the ordered list of non-overlapping

λ intervals, each of which indicates its non-dominated knob-settings.

Fig. 3.5(a) shows an instance of Problem 2 with six distinct KSs, each of which yields a design-

space rectangle bounded by upper-left and lower-right extreme points. In a certain λ interval, KS

3 is dominated by both KS 4 and KS 5 because they can always yield lower-cost instances than KS

3. A cross-λ-interval example is that KS 6 is dominated by KS 5. Obviously, only non-dominated

KSs should be kept as candidates for deriving Pareto-optimal component instances. Our goal is to

find the ordered list of non-overlapping λ intervals with their optimal KS candidates, as shown in

Fig. 3.5(b).

Theorem 1. Problem 2 requires an Ω(s log s)-time algorithm to compute exact solutions.

Proof. We first construct a problem-reduction procedure to reduce the positive-integer sorting

problem with an input size s to Problem 2. Since the sorting problem is known to hold an Ω(s log s)

time complexity [44], Theorem 1 can be proved if we show that (i) the reduction procedure with
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any algorithm that solves Problem 2 can solve the sorting problem and (ii) the reduction procedure

takes o(s log s) time.

• Problem reduction: (Step 1) Given s distinct positive integers {n1, n2, . . . , ns}, for each

ni create a unique KSi with (λi
min, λ

i
max, α

i
min, α

i
max) = (ni−0.5, ni, (ni−0.5)2, n2

i ). Without

loss of generality, assume nj < ni < nk and there does not exist nx such that nj < nx < ni

or ni < nx < nk (Assumption 1). Fig. 3.6 visualizes three such KSs for nj , ni, and nk

in the α vs. λ space. (Step 2) For each KSi whose (λi
min, λ

i
max) = (ni − 0.5, ni), convert

the λ’s to (λi
min, λ

i
max) = (−ni,−(ni − 0.5)) (i.e. reflect each KS across the α axis). (Step

3) Feed the converted KSs to Problem 2. The output of Problem 2 is an ordered list of

s + (s − 1) = 2s − 1 λ intervals, such that each interval Ii has either one or zero non-

dominating KSi with (λi
min, λ

i
max, α

i
min, α

i
max) = (−ni,−(ni− 0.5), (ni− 0.5)2, n2

i ). (Step 4)

Return a list of s integers −λi
min for i = 1, 3, 5, . . . , 2s− 1. The list is the sorted list of the s

input integers.

• Claim 1: the problem reduction procedure solves the sorting problem. First, by Assumption

1 in Step 1, the three KSs shown in Fig. 3.6 instantiate five non-overlapping λ intervals

λ1–λ5, such that λ1, λ3, and λ3 has one KS each, while λ2 and λ4 has none each. Second,

by Assumption 1 again, the three KSs instantiate five similar non-overlapping α intervals

α1–α5. Obviously, for the converted KSs, which are reflected across the α axis, each is a non-

dominating KS in the α vs. λ space. Moreover, the smaller a converted KS’s λmin and λmax,

the greater its αmin and αmax. Hence, the returned list of the above reduction procedure is

a sorted list of the input integers.

• Claim 2: the problem reduction procedure takes o(s log s) time. Steps 1, 2, and 4 in the

reduction procedure each takes O(s) time, so the claim is true.

By showing Claims 1 and 2, we proved Theorem 1.

Given s KSs with s pairs of extreme λ’s, (λi
min, λ

i
max), i ∈ {1, 2, . . . , s}, by regarding these s

pairs as s horizontal line segments with 2s end points, whose ordered x-coordinates are x1 < x2 <

· · · < x2s, we have the following 2s+1 atomic intervals: [−∞, x1], [x1, x2], . . . , [x2s−1, x2s], [x2s,∞].

Fig. 3.7(a) shows an example of 3 KSs and 7 atomic intervals: the middle horizontal line segments
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Figure 3.6: Visualization for the proof of Theorem 1.

are projected from the upper rectangles (i.e. the sub-design spaces of the 3 KSs), and the bottom

atomic intervals are derived from the middle line segments.

Next, we describe a tree-based data structure, which is used to store the input KSs as line

segments. A segment tree [51] is a balanced binary tree, such that: (i) each leaf node represents an

atomic interval, (ii) each non-leaf node u, with children v and w, represents an interval Iu = Iv∪Iw,

i.e., u represents a coarser interval partition of its children’s (see Fig. 3.7(b), where the common

x-coordinate xj of Iv and Iw is stored in node u), and (iii) an input line segment can be split into

several parts, each of which is stored in a tree node as close to the root as possible. Fig. 3.7(c)

shows an example segment tree, where the atomic intervals and the input line segments are copied

from Fig. 3.7(a) and shown below the tree; the number right above a tree node indicates the line

segments stored in that node.

To retrieve the line segments that enclose an x-coordinate x, we can start from the root and

proceed by binary search (comparing x with the x-coordinate stored in the non-leaf nodes) down

to the leaf node which encloses x. For instance, in Fig. 3.7(a), to retrieve the line segments that

enclose the atomic interval [x4, x5], we follow the dashed trace of Fig. 3.7(c) and obtain Segments 2

and 3. Since a stored line segment corresponds to a KS, the tree search procedure allows to retrieve

all the KSs whose [λmin, λmax] encloses any given atomic interval.

For each atomic interval which is enclosed by r KSs, we present the following procedure to

identify its non-dominated KSs. First, these r KSs have r pairs of extreme α’s. Similarly, we

regard these r pairs as r vertical line segments with 2r end points, whose ordered y-coordinates
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Figure 3.7: Illustration of Algorithm 1.

are y1 ≤ y2 ≤ · · · ≤ y2r. We assign two end-point types to each line segment, whose end-point

y-coordinates are yi < yj : (i) “bottom” for the yi-end and (ii) “top” for the yj-end (Fig. 3.7(d)

shows an example of three line segments). Trivially, the y1-end is a bottom end and the first/lowest

line segment is non-dominated. Iterating through yi for i = 2, 3, . . . , r, we check the end-point type

of yi: if yi is a bottom end, the yi-corresponding line segment must overlap the previous one(s), and

therefore is non-dominated; otherwise, we stop iterating. For example, in Fig. 3.7(d), the procedure

stops after knowing that y3 is a top end, and thus identifies [y1, y3] and [y2, y4] as non-dominated

line segments.

Algorithm 1 gives the pseudocode of our complete procedure for Problem 2. Lines 1–2 setup a

segment tree for the input KSs. In the main loop (lines 4–15), we iterate through atomic intervals

from left to right. For each atomic interval, enclosing KSs are retrieved (line 5), and non-dominated

KSs are identified (lines 7–15). Note that lines 3, 6, and 16 prune the KSs which are dominated

across atomic intervals or dominated by a minimum α (represented by the variable ymin in the

pseudocode). For example, in Fig. 3.5(a), KS 6 is pruned because it is dominated by KS 5. Besides,

the shaded region of KS 4 can be pruned because of the upper-left extreme point of KS 5, so can

37



 80000

 100000

 120000

 140000

 160000

 20  40  60  80  100  120

A
re

a 
(u

m
2 )

Effective Latency (ns)

line 1
line 2

fitting points
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divider (DIV) component.

the shaded region of KS 5 because of the lower-right extreme point of KS 4.

A real example of the execution of Algorithm 1 on a double-precision floating-point divider

(DIV) component is shown in Fig. 3.8. In this example, we explored 16 alternative micro-architectures

(i.e. 16 KSs). The seven non-dominated and nine dominated KSs are represented by red and black

rectangles in the figure, respectively. There are 15 atomic intervals, each of which has 0–6 non-

dominated KSs with an average number of 1.3. That is, on average in each interval, we only need

to consider around 8% (1.3/16) of all the KSs for oracle query. This shows the effectiveness of the

algorithm for component design-space pruning .

We remark here that Algorithm 1 outputs at most 2s − 1 non-overlapping (atomic) intervals,

some of which can be further merged if they contain an identical set of non-dominated KSs. We

skip this merge optimization in our pseudocode because the number of output intervals is already

economic in practice (O(s)). Most importantly, even without the merge, the actual synthesis jobs

are not redundant because we cache the required KSs before running the synthesis with them (see

Section 3.4).

Theorem 2. The running time of Algorithm 1 is O(s log s + sr log r), where s is the number of

distinct knob-settings and r is the max number of enclosing knob-settings of an atomic interval.
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Algorithm 1 Component Design Space Pruning

Input: s distinct knob-settings with extreme λ’s and α’s

Output: atomic λ intervals w/ non-dominated knob-settings

1: I ≡ [−∞, x1], . . . , [x2s,∞]← sort knob-settings by λ

2: Υ← build a segment tree for I

3: ymin ←∞

4: for i = 1→ 2s− 1 do

5: S ← search Υ by x = (xi + xi+1)/2

6: prune S by ymin

7: y1 ≤ · · · ≤ y2r ← sort S by α

8: for j = 1→ r do

9: if the yj-end is a bottom end then

10: output the yj-corresponding knob-setting

11: else

12: stop this loop

13: end if

14: j ← j + 1

15: end for

16: update ymin

17: i← i+ 1

18: end for

Proof. The sorting in Line 1 takes O(s log s) time. Line 2 also requires O(s log s) time because the

construction of a segment tree for s line segments is O(s log s) [51]. Therefore, the initialization of

the algorithm (Lines 1-3) takes O(s log s) time.

In each atomic interval, the search of its non-dominated KSs (Line 5) takes O(log s + r) time

(O(log s) for segment-tree traversal [51] and O(r) for bookkeeping the KSs). The pruning and

sorting in Lines 6 and 7 takes O(r) and O(r log r) time, respectively. The whole nested “for” loop

(Lines 8–15) requires only linear time O(r). Overall, the body of the outer “for” loop (Lines 5–17)

takes O(log s+ r log r) time.

Since the outer “for” loop (Line 4) needs O(s) iterations, the major steps of the algorithm (Lines
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4–18) takes O(s log s+ sr log r), which dominates the algorithm initialization time and thereby the

whole algorithm running time.

Note that since r ≤ s, in the worst case the running time of Algorithm 1 is O(s2 log s), whereas

in the case of r log r = O(log s) the algorithm runs in O(s log s) time, which achieves the theoretical

lower bound indicated by Theorem 1. Hence, Algorithm 1 is not only exact but also optimal in the

latter case.

3.4 System Design-Space Exploration

Given a strongly connected TMG, to compute its minimum cycle time (Equation (3.1)), Maggot

proposed the linear program [117]:

min c

s.t. Aσ +M0c ≥ τ−

c ≥ 0,

(3.2)

where c is the minimum cycle time, σ ∈ Rn is the transition-firing initiation-time vector, M0 ∈ Nm

is the initial marking, τ− ∈ Rm is the input-transition firing-delay vector (i.e., τ−i equals the

firing-delay τk of the tk ∈ •pi), and A ∈ {−1, 0, 1}m×n is the incidence matrix such that

A[i, j] =


1 if tj is the output transition of pi,

−1 if tj is the input transition of pi,

0 otherwise.

In this linear program, c and σ are decision variables.

We give a running example of the linear program for the TMG shown in Fig. 3.1(a) as follows.

min c

s.t. σ2 − σ1 ≥ 1

σ3 − σ1 ≥ 1

σ4 − σ2 ≥ 2

σ4 − σ3 ≥ 3

σ1 − σ4 + 1× c ≥ 1

c ≥ 0,

(3.3)
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The minimum cycle time c to Equation (3.3) is 5 and an optimal σ is [0, 1, 1, 4]. Therefore, the

effective throughput of this example is 1/5 = 0.2.

Based on Equation (3.2), we propose the following effective-throughput-θ-constrained cost-

minimization linear program (recall that c = 1/θ):

min
∑n

i=1 fi(τi)

s.t. Aσ +M0/θ ≥ τ−

τ−min ≤ τ− ≤ τ−max,

(3.4)

where the function fi yields the ith component’s implementation cost given the firing-delay τi of

the transition ti (i.e., the λ of the ti-corresponding component equals τi), and τ−min and τ−max are

given according to the extreme λ’s of the components. The decision variable is the vector τ , i.e.

the λ requirements of the components.

Equation (3.4) works for strongly-connected TMGs. For acyclic TMGs (such as the example

TMG in Fig. 3.1(a) if one assumes to remove the feedback path from transition t4 to transition t1),

we propose the following linear program:

min
∑n

i=1 αi

s.t. τi ≤ 1/θ, for i = 1, 2, . . . , n

f−1
i (αi) ≤ τi, for i = 1, 2, . . . , n

τ−min ≤ τ− ≤ τ−max,

(3.5)

where αi is the implementation-cost variable of the ith component, and f−1
i () is the inverse function

of the function fi() in Equation (3.4).

In general, the cost functions fi’s in Equation (3.4) are unknown a-priori. However, based on our

experimental results and recent publications [92; 104], we observe that these cost functions generally

exhibit convexity [22]. Therefore, for each component, given its pruned design space (discussed in

Section 3.3), we propose to approximate its cost function fi with convex piecewise-linear functions.

Fig. 3.9 shows an illustrative approximation using a convex piecewise-linear function2

f̄(λ) = max
j=1,2

(ajλ+ bj),

where aj and bj are coefficients. A real fitting example on the DIV component is also shown

in Fig. 3.8, where the red fitting points are derived by the ymin variable in Algorithm 1 for each

2Generally, the larger number of linear functions are used, the more accurate the approximation can be.
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Figure 3.9: (a) Pruned component design space: shaded space is sub-optimal. (b) Pruned-space

approximation by a convex piecewise-linear function.

atomic interval. Note that fitting a given set of data points using a convex piecewise-linear function

while minimizing its total squared-fitting errors can be solved optimally in polynomial time with

quadratic programming [22]. Moreover, the derivation of the inverse function of a piecewise-linear

function is straightforward.

Due to the design space pruning procedure presented in Section 3.3, the fitting function f̄

is not only convex piecewise-linear but also monotonically decreasing. If we replace the fi’s in

Equation (3.4) with the fitting functions f̄i’s, the objective function
∑n

i=1 f̄i will also be convex

piecewise-linear and monotonically decreasing. A minimization linear program with its objective

function being convex piecewise-linear can be transformed to a standard linear program [22] and,

therefore, is polynomial-time solvable. Besides, the monotonically-decreasing objective function

guarantees that all the components not in the performance-critical cycle of the TMG will be run

at their maximum possible λ values to minimize their implementation costs. As a result, our

linear program is not only computationally tractable, but can also minimize the number of distinct

non-critical component instances across different system throughput θ requirements.

Finally, Algorithm 2 gives the pseudocode of our complete procedure for Problem 1. The first

loop (lines 1–4), for each component, prunes its design space by using Algorithm 1 and approxi-

mates its implementation cost function. The second loop (lines 8–11) iterates through a geometric

progression of θ requirements with a ratio 1 + δ (δ is the target granularity of Problem 1; see

Fig. 3.10(a) for illustration). For each θ requirement, after solving the proposed linear program

(line 9), we cache the optimal λ requirements of the components in a hash table Π, which is initial-
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Algorithm 2 System Design Space Exploration

Input: a HLS oracle, a target granularity δ, and a TMG model of a system with a set of compo-

nents

Output: α vs. θ trade-off

1: for all components do

2: Σi ← run Algorithm 1 for the current component

3: f̄i ← run convex piecewise-linear fitting for Σi

4: end for

5: Π← an empty hash table for optimal λ requirements

6: θ ← min throughput w/ all components at max λ’s

7: θ̂ ← max throughput w/ all components at min λ’s

8: while θ ≤ θ̂ do

9: Π← solve Equation (3.4) with f̄i

10: θ ← θ × (1 + δ)

11: end while

12: Π← solve Equation (3.6) whenever necessary

13: query the oracle according to Π and Σ

ized in line 5. After the loop, to see if the current maximum RD is less than or equal to δ, we check

if there exists any θi+1 = θi×(1+δ) whose corresponding αi+1 and αi differ by αi+1/αi−1 > δ (see

Fig. 3.10(b)). If so, we explore between αi and αi+1 (line 12) by a similar geometric progression

of α (e.g., the (1 + δ)jαi, for j = 1 and 2, in Fig. 3.10(b)) and solve the following α-constrained

θ-maximization linear program3:

max θ

s.t. Aσ +M0/θ ≥ τ−∑n
i=1 f̄i(τi) ≤ α

τ−min ≤ τ− ≤ τ−max,

(3.6)

where θ and τ are decision variables of a total size equal to 1+n (n is the number of components).

3 The current forms of Equations (3.6) and (3.7) are non-linear. However, their equivalent c-minimization programs

are linear because the minimum cycle time c is equal to 1/θ.
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Figure 3.10: Illustration of Algorithm 2.

In the final step of Algorithm 2 (line 13), we invoke all the oracle queries on components, according

to the λ requirements cached in Π and the KS candidates found by Algorithm 1.

On the other hand, for acyclic TMGs, the α-constrained θ-maximization linear program is

modified as follows:

max θ

s.t. τi ≤ 1/θ, for i = 1, 2, . . . , n

f̄−1(αi) ≤ τi, for i = 1, 2, . . . , n∑n
i=1 αi ≤ α

τ−min ≤ τ− ≤ τ−max.

(3.7)

We remark that in Algorithm 2: (i) we do not invoke oracle queries until we have identified all

the non-redundant λ requirements, thereby minimizing the number of actual queries, whose runtime

dominates the whole exploration procedure, and (ii) we can parallelize all the linear-program solving

(lines 9 and 12, by pre-computing the geometric progressions of θ and α), and most importantly,

the time-consuming oracle queries (line 13).

3.5 Experimental Results

We implemented Algorithms 1 and 2 as part of a tool called SPEED (Synthesis Planning for Ex-

ploring ESL Design). SPEED was tested on four benchmark designs with various data flows, whose

TMG models are shown in Fig. 3.11: (a) a JPEG decoding system (JPEG) including three com-

ponents with a pipelined data stream, (b) a Reed-Solomon decoding system (RS) including five

components with concurrent data flows, (c) a double-precision floating-point sine approximation

system (DFSIN) including five components with concurrent data flows, feedback paths, and mul-
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Figure 3.11: The TMG models of the four benchmark systems (a) JPEG, (b) RS, (c) DFSIN,

and (d) MPEG2. The transitions represented by solid lines are for modeling the token generation,

receiving, or synchronization, whose transition times are small constants and are independent of the

system exploration (so they are ignored when computing the effective throughputs of the systems).

tiple places with initial tokens, and (d) an MPEG encoding/decoding system (MPEG2) including

fourteen components with multiple concurrent data flows and a feedback path. All the systems

were designed in SystemC and synthesized with a commercial HLS tool for an industrial 45nm

technology.

Over all the system components, we characterized on average 12.2 distinct KSs per component

to build the CKT libraries. Note that these CKT libraries can thereafter be reused in system

designs other than the four benchmark systems. In the experimental system-design context, we

simply kept all the distinct KSs as implementation alternatives. After applying SPEED to prune

these CKT libraries, we got on average 2.5 non-dominated KSs per atomic interval. This result

shows that in order to derive an optimal component instance given its λ requirement, we can prune

on average 80% ((12.2−2.5)/12.2) of HLS invocations, instead of synthesizing with all the available

KSs.
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Figure 3.12: System design-space-exploration results for JPEG, RS, DFSIN, and MPEG2 in terms

of area vs. throughput trade-off, with a target granularity δ = 0.2.

We then applied SPEED with a target granularity δ = 0.2 to explore the area vs. throughput

trade-off of the four benchmark systems. For each pruned component design space, we used 1–3

linear functions to compose a convex piecewise-linear approximation. The exploration results are

shown in Fig. 3.12, where the “HLS planning” points result from solving Equations (3.4) and (3.6)

(Equations (3.5) and (3.7)) on DFSIN and MPEG2 (on JPEG and RS), while the “HLS result”

points are obtained by invoking actual HLS.

To quantify the mismatch between an “HLS planning” point d1 and an “HLS result” point d2

w.r.t. a specific system throughput, we apply the following area-mismatch (AM) metric:

AM(d1, d2) = |d1α − d2α|/d2α,

where d1α (d2α) is the area of d1 (d2). The explorations in Fig. 3.12 yield 17, 9, 9, and 19 system-

design points for JPEG, RS, DFSIN, and MPEG2, respectively, with an average AM of 1%–2%

and a max AM of 4%–7%. Over the four benchmarks, good 78%–89% system-design points have

an AM below 3%. This result shows that the component-design approximation based on piecewise-

linear functions delivers a good first-order approximation for estimating the system Pareto front.

Fig. 3.13 shows the component query distributions to achieve the exploration results in Fig. 3.12.4

4Note that an oracle query may invoke the HLS tool more than once, depending on the number of non-dominated
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Figure 3.13: Component query distributions for the explorations in Fig. 3.12.

For each benchmark system, the maximum number of queries on a component is equal to the num-

ber of system points, i.e. to query each component once for each system throughput requirement.

However, SPEED can identify critical queries by solving Equations (3.4)–(3.7), cache the effective-

latency requirements, and reuse them. Hence, as shown in Fig. 3.13, JPEG, RS, and DFSIN have

each one to two critical components that get queried most frequently (on the right ends of the

query distributions), while the non-critical components only get queried far less than the number

of system points by 66%–82%. In total, 21, 22, and 18 component queries were made for JPEG, RS,

and DFSIN, respectively. In comparison with exhaustive queries (requiring “# of system points

× # of components” queries), SPEED achieves a 2.0×–2.5× query efficiency. Moreover, for the

MPEG2 system, 57 component queries were made in total (a 4.7× query efficiency), including ten

non-critical components each getting queried less than five times and four critical ones each getting

queried six–nine times. We show the MPEG2 component queries in the area vs. effective-latency

space in Fig. 3.14, where the critical-component results are placed in the top row. The critical

components are MotionEstimation, Quantization, DCT8x8 ieee ID X, and MotionCompensation,

which are automatically discovered by SPEED.

knob-settings. Therefore, we use the terms “oracle query” and “synthesis invocation” separately: a query may invoke

more than one synthesis jobs.
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In terms of the aggregated HLS runtime, the explorations in Fig. 3.12 require 5-, 22-, 40-, and

35-hour sequential HLS-tool invocations for JPEG, RS, DFSIN, and MPEG2, respectively, whereas

the sequential exhaustive synthesis requires 7, 27, 54, and 124 hours, respectively. That is, SPEED

achieves a 1.2×–3.5× speed-up. The speed-ups for JPEG, RS, and DFSIN are smaller than that

for the MPEG2 because the HLS runtime of the critical components of the first three systems is

much longer than the runtime of the non-critical counterparts. As the critical components get

synthesized more often, the speed-up diminishes for those three systems, although their query

efficiencies are still more than 2× than the efficiency of the exhaustive query. In fact, compared

with the other steps in Algorithm 2 that run in seconds, the HLS tool invocation dominates the

whole exploration runtime. Considering that the maximum runtime of a single component synthesis

over the four systems is around 2.5 hours, the power of being able to parallelize all the synthesis

tasks is significant. This ability is another advantage of SPEED.

We summarized the results for δ = 0.2 in Table 3.2, where the results for δ ∈ {0.15, 0.1} are

also listed. As δ decreases from 0.2 to 0.1, the number of explored system-design points increases

as expected. In terms of the approximation accuracy, the average AM remains at 1%–2% as δ

varies. Although the maximum AM may increase slightly as δ decreases, there are constantly

88% points with AM ≤ 3%, thus showing the general approximation robustness even though we

improve the granularity δ. Furthermore, the total number of component queries also grows as we

decrease δ in order to explore more system-design points. Meanwhile, as δ decreases, the query

efficiency compared with exhaustive queries improves for all four systems, implying that critical

queries are reused even more effectively among system-design points. The same trend can also

be found w.r.t. the sequential HLS tool runtime which increases as δ decreases; meanwhile, the

speed-up over exhaustive synthesis goes up as well. Both trends suggest that SPEED scale well

with the target granularity δ.

3.6 Remarks

SPEED can effectively (i) prune sub-optimal component-implementation alternatives by accurate

design-space approximation and (ii) reuse and parallelize component-HLS plans for efficient system-

level exploration. In addition to these advantages, SPEED’s static performance-analysis models
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Figure 3.14: Adaptive component query of the MPEG2 system. The top row from left to right

shows the query results (red from planning; green from HLS) of the MotionEstimation, Quantization,

DCT8x8 ieee 1D X, and MontionCompensation components. These components are the top-4 most

influential components toward the area-throughput optimization of the MPEG2 system.

enable rapid system-level exploration at the early design stage. In particular, the automatic discov-

ery of system bottlenecks (critical components) promotes tighter collaboration between the system

architect and the component designers:

• The system architect can explore alternative system topologies and estimate potential cost

and performance improvements. Examples of topological changes include splitting critical

components and/or merging non-critical components. The splitting of critical components

can be realized by shrinking component I/O sizes and adding more concurrent data flows to

the system (or iteratively processing on smaller chunks of data). The merge of non-critical
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Table 3.2: System area vs. throughput exploration as function of δ.

Benchmark δ 0.2 0.15 0.1

# System-Design Points 17 21 30

Average AM 1% 1% 1%

Maximum AM 7% 8% 9%

JPEG # Points w/ AM ≤ 3% 15 19 27

Total # Queries 21 26 36

Query Efficiency 2.4× 2.4× 2.5×

Sequential HLS Tool Runtime 5hr 6hr 8hr

Runtime Speed-up 1.4× 1.4× 1.5×

# System-Design Points 9 12 17

Average AM 2% 2% 1%

Maximum AM 4% 5% 5%

RS # Points w/ AM ≤ 3% 7 11 14

Total # Queries 22 28 36

Query Efficiency 2.0× 2.1× 2.4×

Sequential HLS Tool Runtime 22hr 29hr 39hr

Runtime Speed-up 1.2× 1.2× 1.3×

# System-Design Points 9 10 14

Average AM 2% 2% 2%

Maximum AM 4% 13% 9%

DFSIN # Points w/ AM ≤ 3% 7 9 12

Total # Queries 18 19 23

Query Efficiency 2.5× 2.6× 3.0×

Sequential HLS Tool Runtime 40hr 41hr 49hr

Runtime Speed-up 1.3× 1.4× 1.6×

# System-Design Points 19 24 35

Average AM 1% 1% 1%

Maximum AM 7% 10% 11%

MPEG2 # Points w/ AM ≤ 3% 17 22 31

Total # Queries 57 63 77

Query Efficiency 4.7× 5.3× 6.4×

Sequential HLS Tool Runtime 35hr 38hr 46hr

Runtime Speed-up 3.5× 4.1× 5.0×
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components can rebalance the component implementation efforts, including synthesis runtime

and query efficiency. Then, the system architect updates the cost/performance targets for

the affected components and provides this information back to the component designers.

• Knowing particular new optimization goals, a responsible component designer can fine tune

the component implementation with more aggressive or cost-effective optimizations, such as

hand-crafting part of the design at RTL, applying a new or broader set of HLS knob settings,

or a combination of the two optimizations. If the new optimization goals are achievable, the

system architect should verify the optimization with a re-characterized component library. If

they are not, then the system architect should resort to other optimization alternatives at

the system level.

The above exploration process repeats until the final optimization goals are met. To this end, a

rapid performance-analysis mechanism (such as the one used in SPEED) is instrumental in the fast

convergence of the exploration process.

Related Work. General design space exploration algorithms include local-search heuristics like

Simulated Annealing [159] and Genetic Algorithms [145]. Techniques based on clustering dependent

parameters were proposed to prune the search space before exploration [77; 160]. Techniques based

on predicting design qualities were also proposed to reduce the number of simulation/synthesis

during exploration [18; 120]. However, all these approaches treat a system design as a whole

entity, which unfortunately cannot be digested by current synthesis tools with practical runtime

and memory requirements.

For component-based design, various approaches which exploit design hierarchies to compose

system-level Pareto fronts have been proposed, e.g. [75; 85; 113]. Among these, our work is closer to

the top-down approach of the “supervised exploration framework” [113], which adaptively selects

RTL components for logic synthesis and thus gradually improves the accuracy of the system Pareto

front. However, the important differences are that we operate at a higher level of abstraction, can

handle components specified in SystemC, and can parallelize HLS runs to construct system Pareto

fronts.

Concluding Remarks. We have presented a compositional methodology for HLS-driven design-

space exploration of SoCs. Our approach is based on two new algorithms that combined allow
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us to derive a set of alternative Pareto-optimal implementations for a given SoC specification by

selecting and combining the best implementations of its components from a pre-designed soft-IP

library.
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Chapter 4

Compositional Approximation for

SoC Characterization

In the previous chapter, I have presented the SDSE framework for system-level exploration with

HLS. In this chapter, I present a complementary framework for the exploration with logic synthesis

(LS), as RTL currently remains the mainstream entry point for IC design. Nevertheless, as the

entry point moves to the system level, the two frameworks can be combined by using the HLS-based

framework to explore micro-architectures and the LS-based counterpart to explore synthesizable

clock periods.

Contributions. We present a novel and general approach to effectively coordinate the execution

of logic-synthesis runs needed to explore the design space of a system that consists of a set C of

interacting components. We model this computational task as a bi-objective optimization problem,

in a rigorous mathematical framework, which we then solve with caps, a new algorithm that can

derive an approximation of the Pareto set of the system by iteratively invoking a logic-synthesis

tool (the oracle) to synthesize various instances of the components and, in doing so, implicitly build

approximations for their Pareto sets (Fig. 4.1). For a given approximation error ϵ, caps minimizes

the number k of queries necessary to derive the corresponding Pareto set of the system. Dually,

for a given budget k of queries, caps is guaranteed to return an approximation of the Pareto set

with the best approximation error ϵ. A typical application of our approach is the characterization

of the power-performance trade-offs in the implementation of a medium-size IP core. In particular,
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Figure 4.1: Supervised design-space exploration by Compositional Approximation of Pareto Sets

(CAPS).

our algorithm:

• is an efficient online approximation algorithm, within a natural framework of bi-objective

optimization problems, in terms of (i) the accuracy of the returned approximation and (ii)

the CPU time needed to achieve such an approximation;

• is inherently scalable; it works only on the single components, and never runs a synthesis of

the whole system, which would be impractical and/or infeasible for large systems;

• copes with the inherent limited-information setting in our context: i.e. the fact that no

information about any of the components is known a-priori, and that at any given step the

synthesis tool can only sample one point of the design space of one component;

• works on a bi-objective optimization problem coping with the typical asymmetry of synthesis

tools, which allow controllability only on the clock period, but leave just observability on the

power and area of the returned implementation.

• because of its simplicity, is amenable to parallelization and various heuristic improvements

that may potentially improve its performance in practice.
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A prototype CAD tool based on caps is described in Appendix A.2.

4.1 Problem Description

A multi-objective optimization problem Π has a set I of valid instances, every instance I ∈ I has a

set of feasible solutions S(I). There are d objective functions, f1, . . . , fd, each of which maps every

instance I and solution s ∈ S(I) to a value fj(I, s). The problem specifies for each objective whether

it is to be maximized or minimized. We assume that the objective functions have positive values.

In our context, a “feasible solution” at the system (resp. component) level is an implementation of

the system (resp. component).

Dominance Relation, Pareto Set. We say that a d-vector u dominates another d-vector v if it

is at least as good in all the objectives, i.e. uj ≥ vj if fj is to be maximized (uj ≤ vj if fj is to be

minimized). Similarly, we define domination between any solutions according to the d-vectors of

their objective values. Given an instance I, the Pareto set P (I) is the set of undominated d-vectors

of values of the solutions in S(I). Note that for any instance, the Pareto set is unique.

Approximate Dominance Relation, Approximate Pareto Set. We say that a d-vector u

ϵ-covers another d-vector v (ϵ ≥ 0) if u is at least as good as v up to a factor of 1 + ϵ in all the

objectives, i.e. uj ≥ vj/(1 + ϵ) if fj is to be maximized (uj ≤ (1 + ϵ)vj if fj is to be minimized).

Given an instance I and ϵ > 0, an ϵ-Pareto set Pϵ(I) is a set of d-vectors of values of solutions that

(1 + ϵ)-cover all vectors in P (I).

Throughout this chapter, we will be concerned with bi-objective problems (i.e. optimization

problems with two criteria / objective functions). We will use the symbols x and y to denote the

two objective functions. In the experiments of Section 4.3 x is the clock period of a circuit and y

is either its power dissipation or area occupation. Hence, in our setting, both objectives are to be

minimized. Consider the plane whose coordinates correspond to the two objectives. Every feasible

solution (design) is mapped to a point on this plane. If q is a point, we use x(q), y(q) to denote its

coordinates; that is, q =
(
x(q), y(q)

)
.

Ratio Distance. We now define the ratio distance from p to q as RD(p, q) = max{x(q)/x(p) −

1, y(q)/y(p) − 1, 0}. By definition, the value RD(p, q) is the minimum value of ϵ ≥ 0 such that

q ϵ-covers p. The ratio distance RD(p, q) intuitively captures the following: “how much worse is
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Figure 4.2: The point b ϵ-covers all points in the shaded region (left). Illustration of the ratio

distance between two curves S, S′ (right).

point q from point p”. Note that this notion is asymmetric in p and q, which is why the ratio

distance is not symmetric (see the example below). We also define the ratio distance between sets

of points. If S, S′ ⊆ R2
+, then RD(S, S′) = maxq∈S minq′∈S′ RD(q, q′). In words, for a given point

q in S, we find its closest point q′ in S′ (according to the ratio distance), and then we take the

maximum over all points in S. As a corollary of this definition, the set S ⊆ A is an ϵ-Pareto set

for A if and only if RD(A,S) ≤ ϵ. See Fig. 4.2 for an illustration of these definitions.

Example: Consider the points q1 = (1, 10) and q2 = (5, 6). Intuitively, we would like to say that

q2 is four times worse than q1 (because of the ratio in the first coordinate), while q1 is only 2/3

times worse than q2 (because of the ratio in the second coordinate). This is captured by the ratio

distance and approximate dominance relation. According to our definitions, RD(q1, q2) = 4 and q2

4-covers q1. On the other hand, RD(q2, q1) = 2/3 hence q1 2/3-covers q2.

Restricted Problem and Oracle Access. It should be stressed that the objective space of our

bi-objective problem is not given explicitly, but rather implicitly through the instance. In particular,

we access the objective space I of Π via an appropriate oracle. We now describe our way of accessing

the Pareto set for each individual component. We assume we can efficiently minimize one objective

(the y-coordinate, aka power) subject to a constraint on the other (the x-coordinate, aka clock

period). Our oracle is an efficient program that solves the following optimization problem.

Restricted Problem (for the y-objective): For a given component Ci (e.g. with a set of possible

feasible designs S(Ci) discoverable by the commercial tool) and a bound b, either return a feasible
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Figure 4.3: The oracle solves the Restricted Problem (left) while guaranteeing that there are no

solution points in the shaded region (right).

solution point (i.e. an implementation for this component) qi satisfying x(qi) ≤ b and

y(qi) ≤ min {y over all designs q ∈ S(Ci) with x(q) ≤ b}

or report that there does not exist any solution q such that x(q) ≤ b.

For simplicity, we will drop the instance from the notation and use Restrict(i)(y, x ≤ b) to denote

the solution returned by the corresponding oracle. (The superscript “(i)” means that we are dealing

with the i-th component.)

We call ideal an oracle that satisfies the above. For the rest of this section, we assume an ideal

oracle. In presenting the experimental results of Section 4.3 we will discuss the performance of our

approach when the oracle presents a noisy behavior. In practice, if the oracle does not return a

solution, it returns its best achievable value for x, i.e. its lowest bound (Fig. 4.3.)

Combining Components. Let n ≥ 1 be the number of components {Ci}ni=1. Let qi ∈ S(Ci),

i ∈ [n] be a feasible design for the i-th component and q be the design for the system obtained as

the union of the qi’s. (In particular, qi is a 2-dimensional vector—a point in the xy plane—whose

first coordinate is the x-value, i.e. the clock period of the corresponding design, and whose second

coordinate is its y-value, e.g. power.) We assume there are two combining functions fx, fy : Rn → R

that tell us how q is related to the qi’s. In particular, x(q) = fx(x(q1), . . . , x(qn)) and y(q) =

fy(y(q1), . . . , y(qn)). Both functions are assumed to be monotone increasing in each coordinate

and efficiently computable. Note that, in our concrete setting, we have fx(x1, . . . , xn) = maxi xi

and fy(y1, . . . , yn) =
∑

i yi. The clock period is the maximum among the clock periods of the
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Algorithm 3 Single-Component Characterization Algorithm

Input: Oracle for the component’s Restricted Problem

Output: Pareto set approximation for the component

1: (bmin, bmax)← the (min, max) values of the x–objective

2: qr ← Restrict(y, x ≤ bmax)

3: ql ← Restrict(y, x ≤ bmin)

4: Q← {ql, qr}

5: while Error ≥ ϵ and queries < k do

6: Sort Q = {q1, q2, . . .} in increasing x-coordinate.

7: for all intervals (qi, qi+1) do

8: compute Errori

9: end for

10: I ← (qj , qj+1) s.t. j = argmaxiErrori

11: b←
√

x(qj) · x(qj+1)

12: q ← Restrict(y, x ≤ b)

13: Q← Q ∪ {q};

14: end while

components and the total power is the sum of the individual component powers.

Formally, we consider the following problems:

Primal Problem. Given an error tolerance ϵ, compute an ϵ-Pareto set for the system using as

few queries to the oracle as possible.

Dual Problem. Given a budget k on the number of queries, make k queries to the oracle and

compute an ϵ-Pareto set for the system for the minimum possible value of ϵ.

4.2 Compositional Approximation of Pareto Sets

We first analyze the case of a system comprising of a single component, and then present the caps

algorithm for the case of many components.

4.2.1 Single Component
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Figure 4.4: A geometric interpretation of the algorithm for the case of one component. The ideal

oracle guarantees that there exist no solution points in the dark-shaded region.

We describe an algorithm for characterizing a single-component system. We start by providing

an intuitive explanation of the algorithm. See Algorithm 3 for a detailed pseudo-code.

Our algorithm is iterative. In every step, it maintains an upper approximation and a lower

approximation to the Pareto set. As the number of iterations increases, these two approximations

become finer and finer, hence the error decreases.

The algorithm starts by finding the extreme points ql = (x(ql), y(ql)) (leftmost), qr = (x(qr), y(qr))

(rightmost) of the Pareto set (see Fig. 4.4). Each such point can be computed using appropriate

queries to the oracle. Consider the point p1 = (x(ql), y(qr)). At this point, the algorithm knows

that the exact Pareto set lies entirely to the right of ql and above qr (see Fig. 4.3). Consider

the triangle △(qlp1qr). By definition, the error of the initial approximation {ql, qr} is at most

RD(p1, {ql, qr}). That is, {ql, qr} is the current upper approximation to the Pareto set, while p1

is the current lower approximation. If RD(p1, {ql, qr}) ≤ ϵ, then the algorithm terminates and

returns {ql, qr}. Otherwise, we call the oracle for b1 being the “midpoint” of ql, qr. In particular,

we set b1 =
√

x(ql) · x(qr). This step corresponds to a geometric subdivision procedure; that is, a

“binary search” in the logarithms of x and y. The reason we use a geometric subdivision is that

our error measure (the ratio distance) is defined multiplicatively, as opposed to additively.

Let qm be the obtained point. The right part of Fig. 4.4 shows the information we obtain about

the space after qm is returned. In particular, this implies that the error in the interval {ql, qm} is

at most RD(p2, {ql, qm}), while in the interval {qm, qr} is at most RD(p3, {qm, qr}). The question
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that now arises is which interval to update next. The algorithm uses a greedy criterion: it selects to

update the interval in which the error is maximum. Similarly to the first stage, it divides the chosen

interval geometrically and queries the oracle appropriately. Note that the algorithm is essentially

the same for both the primal problem (ϵ is given) and the dual problem (k is given). The only

difference is in the termination condition. In the former case, the algorithm terminates when the

desired accuracy is attained, while in the latter case when the budget on the number of queries is

exhausted.

4.2.2 Many Components

In the following, we describe an adaptive online algorithm caps to solve both the primal and the

dual problems for the case of many components. Our algorithm is “online” in the following sense:

it discovers the objective space by querying the oracle appropriately and uses the returned solutions

(points) to compute an ϵ-Pareto set.

Consider a system comprising of many components. If we had access to the oracle to solve

the Restricted Problem for the system, then it would be possible to implement Algorithm 3 and

obtain the desired approximation. The main difficulty arises from the fact that we only have

access to the oracle to solve the Restricted Problem for the individual components. However, we

can overcome this difficulty as follows: at every step we identify the interval at the system-level

where the approximation error is maximum. To achieve this, we first combine all component-level

points to derive system-level Pareto points by fx and fy, and then compute for each system-level

interval its corresponding approximation error by ratio distances. At this point, another difficulty

arises. Since we can afford only one query at the given step, we need to select which component to

update for the selected system-level interval. In fact, there are several ways to update an interval

at the system-level (potentially as many as the number of components). We choose to update the

component that can potentially reduce the system error as much as possible. This requires the

application of fx, fy, and the ratio distance for each component to estimate a potential system-

level error reduction due to that component. Once we decide which component to update and

the relevant interval in that component, we update that interval by dividing it into halves as in

Algorithm 3. This step sends a query to the oracle and updates the selected component’s points.

Finally, we add (still by fx and fy) a new system-level point according to the component update,
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Algorithm 4 CAPS

Input: Oracle for the components’ Restricted Problem

Output: System Pareto set approximation

1: (bmin, bmax)← the (min, max) values of the x–objective

2: for i = 1, 2, . . . , n do

3: q
(i)
r ← Restrict(i)(y, x ≤ bmax)

4: q
(i)
l ← Restrict(i)(y, x ≤ bmin)

5: end for

6: Q = (q1, . . . , qm)← combine qr’s and ql’s by fx, fy

7: sort Q by increasing x–coordinates, i.e. from left to right

8: while Error ≥ ϵ and queries < k do

9: for all interval (qi, qi+1) do

10: compute Errori

11: end for

12: I ← (qj , qj+1) s.t. j = argmaxi=1,...,mErrori

13: Cl ← component w/ max potential error reduction in I

14: (q
(l)
k , q

(l)
k+1)← the relevant interval of Cl

15: bm ← (x(q
(l)
k ) + x(q

(l)
k+1))/2

16: q
(l)
m ← Restrict(l)(yl, xl ≤ bm)

17: qsys ← derive a new system point using fx, fy, considering q
(l)
m

18: add qsys into Q, sorted by increasing x–coordinates

19: end while

and then proceed to the next system-level interval for error reduction. The iteration continues until

a termination condition (discussed below) is satisfied.

The pseudocode for caps, given as Algorithm 4, is basically the same for both the primal and

the dual problems. The only difference is the termination condition. For the Primal Problem, it

terminates when the error falls below ϵ. For the Dual Problem, it terminates when it makes k

queries.
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4.3 Experimental Results

In this section we experimentally verify: (i) the accuracy of the approximated Pareto set produced

by caps i.e. the ratio distance from the exact Pareto curve to the approximation, and (ii) the

convergence time of caps i.e. the time it takes to deliver the required approximation (or, dually,

the best approximation within the time budget). We will show that besides having approximation-

accuracy guarantees on its worst-case performance, in practice caps can return results that are

more accurate in a shorter time, even in case of a non ideal (i.e., noisy) oracle.

Experimental Set-Up. We implemented the caps algorithm and evaluated its efficiency by

applying it to characterize three designs, which were specified at the RTL level in synthesizable

Verilog/VHDL. Specifically, we used (a) StereoDepth, an SoC for video-rate stereo depth measure-

ment that consists of 4 components [50]; (b) an MPEG2 Encoder consisting of 26 components; and

(c) MinSoC, which consists of 8 components and was designed by starting from a public-domain

extensible SoC based on the OR1200 processor [3] and adding two more cores compatible with the

Wishbone standard (a DVI/VGA Video Controller and an SD Card Controller).

To play the role of the oracle of Fig. 4.1, we chose a widely-adopted commercial tool for logic

synthesis equipped with two industrial standard-cell libraries developed for two different technology

processes (90nm and 45nm). While the three designs can be considered as fairly small with respect

to state-of-the-art SoCs, they are large enough to require the execution of logic synthesis in a

compositional fashion on their constituent components. Further, they are good candidates to

represent medium-size IP cores that need to be designed for reusability to enable design space

exploration of future multi-core SoCs for embedded applications as discussed at the beginning of

this chapter.

We define performance as the maximum clock frequency at which the design can run. This is

the inverse of the target clock period Tclk that is given to the oracle as the controllable constraint.

To increase Tclk generally leads to the synthesis of circuit implementations that have both smaller

power dissipation and area occupation. Hence, we used caps for exploring both power/performance

and area/performance trade-offs as examples of two different bi-objective optimization problems.

We will see that this choice allows us to evaluate caps in the presence of both ideal and noisy

oracle behaviors.

Power/Performance Trade-offs. Fig. 4.5 shows the final approximation that we obtained by
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Figure 4.5: Power/performance trade-off of StereoDepth at 90nm (ϵ = 3%).

running caps to solve the Primal Problem (with error tolerance ϵ = 3%) to characterize the

power/performance trade-offs of StereoDepth with the 90nm standard-cell library. As the returned

clock period, i.e. the clock period returned by the oracle, varies between 2ns and 5ns the power

dissipation varies between 550mW and 1400mW .

The ratio distance between the approximation curve and the “hypothetical” lower-bound curve

that are dynamically computed by caps matches the target error upper bound ϵ. The points

of these curves are computed iteratively through a sequence of 65 oracle queries which required

an aggregate 63 hours until the target ϵ = 3% is matched. This is just 25% of the number of

queries (and about 50% of the CPU time) necessary to compute the exact Pareto set, whose curve

lays between the approximation and lower bound curves as we expected and as it is shown also

in Fig. 4.5. Now, the exact Pareto set can generally be obtained by executing a long sequence

of synthesis runs (corresponding to a series of equally-spaced values of Tclk) for each component.

Instead, caps dynamically adapts the distribution of the queries to the portions of the design space

that actually need to be explored to improve the accuracy of the approximation. For instance in

the case of StereoDepth, as shown in Fig. 4.6, caps repeatedly invokes the oracle on block2 and,

to lesser extents, on block0 and block1, while avoiding block3 after the initial queries necessary to

establish its extreme points. This is possible because in its effort to approximate efficiently the

Pareto set of a system, caps keeps track of its improvements on approximating the Pareto set

of its components as well as the impact that each component has on the overall system design.

Indeed, the richer the Pareto set of a component is and the more a component impacts the design
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Figure 4.6: Component sampling of StereoDepth at 90nm to build the system approximation of

Fig. 4.5.

exploration of the system in which it operates, the more caps samples its design space.

Fig. 4.7 shows the evolution of the guaranteed error ϵ for each new query that we obtained

by running caps to solve the Primal Problem (with error tolerance ϵ = 3%) to characterize the

power/performance trade-offs of the MPEG2 Encoder with the 45nm library. As expected, the

error decreases monotonically over time, until it reaches the target approximation. Since for these

experiments we also computed the exact Pareto set, we can evaluate also the actual approximation

error ϵa, i.e. the ratio distance between the exact and the approximated Pareto sets. In practice,

as shown in Fig. 4.7, after each query caps returns an actual error ϵa that is much lower than

the guaranteed error ϵ. For example, in this case we aimed at ϵ = 3% and caps returned the

approximated set after 93 iterations (22 hours). In practice, though, the actual error ϵa at the end

of the run is lower than 3% while the 3% error was achieved much earlier, after only 62 queries

(16 hours). Note that for this design the derivation of the exact Pareto set needs a total of 1430

queries (142 hours). Hence, in practice, with 8× less queries (or CPU time) to the oracle, we can

approximate the Pareto curve of power/performance with an error lower than 3%.

caps adapts the convergence time to the design space that can be explored, depending on

the design, the number of components, and the technology. Table 4.1 shows the results for each

benchmark. Columns “Exhaustive Search” combines pre-computed component curves to derive
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Table 4.1: Power/Performance trade-offs by CAPS. Note that the unit of CPU time is hours, and

the parenthesized value of “k” and “CPU Time” is a ratio over Exhaustive Search.
Exhaustive Search caps Primal (ϵ = 4%) caps Dual

Design Tech (ϵ = 0%) ϵ (guaranteed) ϵa (actual) (k = 60)

k CPU Time k CPU Time k CPU Time ϵ ϵa CPU Time

StereoDepth 90nm 260 126 50 (19%) 49 (39%) 44 (17%) 44 (35%) 3.2% 3.1% 60 (48%)

MinSoC 90nm 520 27 96 (18%) 9 (33%) 87 (17%) 8 (30%) 6.0% 4.7% 6 (22%)

MinSoC 45nm 520 29 37 (7%) 4 (14%) 25 (5%) 3 (10%) 2.7% 2.0% 7 (24%)

MPEG2 Encoder 45nm 1430 142 65 (5%) 16 (11%) 45 (3%) 11 (8%) 4.2% 3.0% 15 (10%)

an exact system curve. “caps Primal”, given ϵ = 4%, finds an ϵ-Pareto curve for the system in k

queries, and “caps Dual”, given k = 60, finds a system Pareto curve with guaranteed error ≤ ϵ. For

all the benchmarks, caps Primal requires only 5–19% queries and 11–39% CPU time of Exhaustive

Search to achieve a guaranteed 4% ϵ (and even less for a 4% ϵa). On the other hand, caps Dual

can achieve a guaranteed 2.7–6.0% ϵ (again, an even better ϵa) in 60 queries.

Sensitivity Analysis on System Decomposition. With the efficiency that caps can offer for

system characterization, we are able to further apply it to facilitate the sensitivity analysis on

system decomposition. How a system is decomposed could impact its design quality (e.g. total

power consumption) versus design efforts (e.g. synthesis tool runtime). In RTL design, if a system is

synthesized as a whole entity, synthesis tools have opportunities to perform aggressive optimization
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(a) Exact Characterization (b) CAPS Approximation (ϵ = 3%)

Figure 4.8: Power/performance trade-offs of StereoDepth at 90nm composed of 1, 2, and 4

components, by (a) exact characterization and (b) CAPS approximation with ϵ = 3%.

across the boundary among system hierarchies to achieve better quality of results in exchange for

longer runtime and more memory. On the other hand, tools can gain runtime/memory reduction

by separately synthesizing individual components of the system, while leaving input/output logic

of the components unoptimized. A case study on the benchmark StereoDepth at 90nm is shown in

Fig. 4.8.

In Fig. 4.8(a), we first compare the power/performance trade-offs of the exact Pareto sets of

StereoDepth which comprises 4 components (i.e., the original design), 2 clustered components, and

one supercluster component. As expected, the fewer components the system is decomposed into,

the less total power consumption it requires, due to more synthesis optimization across hierarchical

boundaries. Over all the points in the three exact Pareto sets, we see 3% and 9% average power con-

sumption overheads of the 2- and 4-component cases, respectively, compared with the 1-component

case. However, the CPU time required for the exact characterization of the 2- and 1-component

cases, compared with the 4-component case which requires 126 hours, is on average 1.5× and 2.1×

longer, respectively. This trend illustrates the power overhead and runtime advantage incurred by

decomposing a system into more components for synthesis.

In Fig. 4.8(b), we apply caps with ϵ = 3% to approximate the exact Pareto sets shown in

Fig. 4.8(a). caps takes 63 hours (50% of the exact characterization) to approximate the 4-

66



(a) Power Consumption Overhead (b) Characterization Runtime Speedup

Figure 4.9: Sensitivity analysis by comparing multi-component synthesis with whole-system

(single-component) synthesis, in terms of (a) power consumption overhead and (b) characterization

runtime speedup. caps runs with ϵ = 3% on both benchmarks.

component set, and 2.1× and 2.9× longer for the 2- and 1-component sets, respectively. The

average power overheads of the approximate 2- and 4-component sets, compared with the approx-

imate 1-component set, is 4% and 10%, respectively. The additional 1% overhead over the exact

characterization comes from the approximation error, and is bounded by user-specified ϵ (in this

case study, 3%). Overall, for the sensitivity analysis on StereoDepth (3 Pareto sets), compared

with exact characterization, caps offer 1.7× total runtime speedup (329 hours vs. 554 hours) with

very limited inaccuracy (1%).

Another sensitivity analysis on the benchmark MPEG2 Encoder at 45nm is summarized in

Fig. 4.9 with the StereoDepth benchmark results. The original MPEG2 Encoder contains 26 com-

ponents, and was clustered into 4, 2, and 1 components for the analysis. Fig. 4.9(a) shows that the

growth of average power overhead of MPEG2 Encoder becomes saturated at 7–9% as the number of

components increases from 2 to 26. Also, the power overhead coming from approximation errors is

bounded to 1–2% by ϵ, which we set to 3% in the analysis. On the other hand, in Fig. 4.9(b) we see

that the exact-characterization runtime of the MPEG2 multi-component cases remains 1.3–1.5×

faster than its 1-component case. Even better, the runtime speedup by caps keeps growing from

2.3× to 3.8× as the number of components increases. Moreover, the total runtime required to per-

form the sensitivity analysis on the MPEG2 Encoder (4 Pareto sets) by caps is 3.9× less than the

case of exact characterization (165 hours vs. 641 hours). Since our benchmarks approximately rep-
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Figure 4.10: The importance of synthesis for power/performance characterization. Tclk and Trun

are the target clock frequency during synthesis and the operative clock frequency, respectively.

resent medium-size IP cores, all the experimental results suggest that (i) component-based design

is practical and inevitable for a big and complex SoC to shorten its design process, and (ii) caps

provides effective and efficient realization of supervised design space exploration for characterizing

such SoC in RTL.

Importance of Synthesis-Driven Power/Performance Characterization. While we limited

our experiments to varying the target clock frequency Tclk for the nominal voltage supply, the

reader may wonder why it is not sufficient to synthesize just a single implementation for the

smallest possible value of Tclk at design time, and then simply reuse it also with higher values of

the operative clock period Trun across various designs at run time. After all, this is what is typically

done when applying dynamic clock frequency scaling methods for low power design. The answer

is given by Fig. 4.10 which, for the case of the OR1200 processor core of MinSoC, shows that

power dissipation not only scales down with the running frequency of the clock, but also with the

clock frequency targeted during synthesis, i.e. the inverse of Tclk. Each of the individual points in

Fig. 4.10 represents the estimated power consumption returned by the oracle for a given Tclk, i.e.

corresponding to a distinct circuit implementations of the processor that can be chosen at design

time. The four lines, instead, show the power trend for four of these implementations corresponding

to scaling the operative clock frequency Trun. Notice that the points are always below the lines,

meaning that a circuit synthesized for the clock frequency Trun at which it will operate never

wastes power with respect to another circuit that was over-optimized for Tclk and then clocked
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Figure 4.11: Comparing the oracle behavior in terms of: (a) returned power and (b) area when

synthesizing the block2 component of StereoDepth at 90nm for various Tclk values. The diagonal

line shows the returned clock period.

for Trun > Tclk. Also, note that every point that is not below the lines is actually a dominated

point in the Pareto set, which caps automatically eliminates. Given the importance of design for

reusability and the growing trends of designing multi-core SoCs with multiple clock domains, the

accurate synthesis-driven characterization of the power/performance of an IP core is essential to

demonstrate its best performance across a large dynamic range of power and frequency.

Area/Performance Trade-offs (and Noisy Oracle Behaviors). While power/performance

trade-off is the most important characterization of an IP core, we analyze also the area/performance

trade-off because it allows us to evaluate the caps algorithm when the oracle manifests a noisy

behavior. Different from the power/performance design space, the area and operative clock period

Trun are independent at run time: the area can be traded off for performance only at design time,

by changing the target clock period Tclk. Fig. 4.11 compares the returned values estimated by

the oracle for power dissipation (a) and area occupation (b) as well as the values of the returned

clock period (the diagonal line in both figures) for values of Tclk increasing between 2ns and 5ns.

First, it is clear that the oracle is able to match Tclk with the returned clock period well, as it

is expected: in fact, most synthesis tools are built to first meet a target performance constraint
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and then do a “best effort” optimization for other objective functions such as area and power. 1

Also, the returned power values are monotonically decreasing for increasing values of Tclk thanks

to the strict decreasing dependency of the dynamic power portion on the operative clock period

Trun. This is a confirmation that, to characterize power/performance trade-offs, our oracle behaves

practically as the ideal oracle defined in Section 4.1. This is not the case, however, for the returned

area values which do not decrease monotonically as Tclk decreases. For instance, when requested to

synthesize a circuit that can run at 300MHz (Tclk = 3.3ns) the oracle returns an implementation

that has an area larger than the one returned for a circuit that can run at 500MHz (Tclk = 2ns).

This is what we refer to as a noisy oracle behavior. Practically, it can be explained as follows: in

an effort to achieve 500MHz, the commercial logic synthesis tool activates some additional, more

time-consuming, heuristics that turn out to be beneficial also in terms of area; for less demanding

timing constraints, the tool avoids to invoke unnecessary optimizations, advantaging instead a

minimization of CPU time. The implication of having a noisy oracle is that it can return a point

in the area/performance plane that is not part of the Pareto set, with a probability that is not

negligible. In particular, two scenarios may arise:

• The returned point dominates other previously-returned points. In this case, caps treats the

query as valid and progresses regularly. The only difference is that after this query the current

approximation error might have temporarily increased, thus violating monotonicity. In fact, during

the previous steps, the approximation of the Pareto set of the system (and, particularly, the lower-

bound point that dictates the error) was based on some value that now cannot be considered valid

anymore because it became dominated by the new acquired point.

• The returned point is dominated by the current Pareto set. Here, a more interesting problem

arises. Not only is the query wasted, since it does not reduce the current approximation error of the

system Pareto set, but also the portion of the space that has been just queried will likely remain

the source of the biggest error (unless there is another portion that has exactly the same error) and

caps will re-attempt the same query.

In order to overcome the source of deadlock due to the second scenario, we introduce a practical

heuristic that drives the selection of the next query: when a query returns a dominated point, caps

1Indeed, this is why in our approach we define the restricted optimization problem in an asymmetric way with

only one controllable objective function.
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Figure 4.12: Area/performance trade-offs (coping with a noisy oracle behavior) for StereoDepth at

90nm.

performs a second query in the middle of the right semi-space, where the clock period is longer.

The rationale behind this decision is the following: if the returned point is dominated, then the

noise of the oracle is a consequence of very limited room for exploration in the left semi-space,

i.e., the considered clock-period increase from the faster design that we already sampled (left-hand

bound) is not enough to allow the tool to reduce the area by much. Hence, it is likely that the

space that deserves to be explored lies on the right semi-space, where the clock-period increase is

even bigger. However, if the exploration in the right semi-space keeps returning a dominated point,

we turn to explore the left semi-space. Finally, if a dominated point is still encountered, we search

in other components.

Fig. 4.12(a) shows that even when caps has to rely on a noisy oracle to characterize StereoDepth

at 90nm for its area/performance trade-off, the approximation of the Pareto set can still converge

to a target ϵ = 2%. The missing bars in the figure represent queries that returned a dominated

point. Note that, even though the oracle is very noisy for at least one component, the returned

point is dominated only in two occasions. Further, this happens mostly at the beginning, where

the space to be searched is bigger. After just a few queries, the regions of the space where a

trade-off is meaningful will keep being queried, while caps mitigates the noise of the oracle for the

other regions. Note that, as expected, caps converges much more quickly for area than power,

because the area trade-off space is smaller. Finally Fig. 4.12(b) shows the area distribution of the

71



approximated and the reference exact Pareto sets for StereoDepth at 90nm.

4.4 Remarks

Related Work. Multi-objective optimization, which provides the theoretical framework for design-

space exploration, is an area at the interface of operations research and computer science that has

been being extensively investigated in the literature [67]. While our model is very similar to the

standard multi-objective framework defined by Papadimitriou and Yannakakis in [137] (and further

studied in [59; 60; 61; 180]), our algorithmic results are novel and are not implied by these works.

The main differences between these works and our setting lies in (i) the compositional aspect of

the current work and (ii) the metric defining the performance ratio.

Roughly, the results in [59; 60; 61; 180] correspond to the case of one component. However, we

point out that, even for the single-component setting, our oracle in this work is different (in fact,

weaker) than the corresponding oracles used in those works. This is dictated by our underlying

application, since we used a commercial tool to implement the oracle. More specifically, the afore-

mentioned related works use a symmetric oracle (which allows in addition to minimize x subject

to a bound on y).

Moreover, in this work, we are interested in minimizing the number of queries to the oracles,

while the authors of [59; 60; 61; 180] consider the minimum number of points in an ϵ-approximation.

While these notions are related for the case of one component, they can be very different even for

a system of two components.

Concluding Remarks. We have presented a novel supervised design space exploration framework

for system-level characterization, whose Pareto set is accurately constructed by combining approx-

imated Pareto sets of components. The framework queries oracles on individual components only,

and does not require a-priori knowledge about the components. In particular, for RTL to gate-level

synthesis oracles, we have proposed an online approximation algorithm, which can coordinate the

order of synthesis runs to derive the system-level approximation in the shortest possible time.
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Part II

Component-Level Design-Space

Exploration
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Chapter 5

Knob-Setting Optimization for

High-Level Synthesis

The SDSE frameworks for system-level exploration (presented in Part I) are based on the character-

ization of the component designs that are ready for release. However, the design of the components

per se is challenging due to the bottlenecks described next.

The industrial adoption of HLS tools is still at an evaluation stage [123]. One of the major

bottlenecks is that DSE with HLS requires substantial efforts for setting the micro-architecture

knobs, whose cardinality in general grows exponentially with the size of real design. Another

bottleneck is the long runtime of HLS tools: in fact, a simple Discrete Fourier Transform (DFT)

design in SystemC may require half to an hour of CPU time for one HLS run to complete on a

modern computer. Combined, these two challenges are a major roadblock towards the successful

realization of automatic ESL design.

To address these challenges, DSE methods based on iterative refinement with learning models are

becoming popular [112; 121; 134; 186; 187; 197; 198]. These methods leverage learning, training,

refinement, and sampling optimizations to boost the effectiveness and the efficiency of the DSE

process. The learning optimization corresponds to the selection of a machine-learning model that

is responsible for predicting the HLS QoR without the need to actually invoking an HLS job. Each

design objective requires a dedicated model instance for the prediction. The prediction accuracy

of a learning model is affected by the generation of initial training examples (i.e. the training
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optimization) and the expansion of the training examples (i.e. the refinement optimization). The

training examples are a set of actual mappings from an HLS script to an objective value of a

design implementation. Along with the DSE process, the learning models are used to identify

Pareto-promising knob settings (i.e. the sampling optimization). A Pareto-promising knob setting

is a knob setting that is likely to yield a Pareto-optimal implementation based on the predicted

objective values.

In this chapter, targeting the HLS of hardware accelerators within an ASIC design flow, we

make the following contributions to address the DSE-with-HLS challenges.

• We apply the general iterative-refinement framework [134] to HLS, with three particular en-

hancements: (i) a general training optimization based on Transductive Experimental Design

for improving the accuracy of an arbitrary learning model, (ii) a scalable sampling using

randomized selection for handling large design spaces, and (iii) a learning-model selection

tailored to the synthesis of accelerators in ASIC designs. Our enhancements are complemen-

tary to the enhancement presented by Xydis et al. [187], who focus instead on the refinement

optimization. Also, compared to recent works that also focus on the optimizations of design-

space sampling and learning-model selection [197; 198], our approach for DSE-with-HLS offers

a more accurate learning model that can achieve a faster convergence of the DSE process.

Furthermore, the duration of the DSE process can be further reduced by the application of

our training optimization.

• We developed a tool for DSE with HLS called LEISTER which stands for “Learning-based

Exploration with Intelligent Sampling, Transductive Experimental design, and Refinement.”

With two execution modes, LEISTER offers a unique freedom to switch between (a) searching

the optimal DSE results and (b) saving the DSE turnaround time. A prototype implementa-

tion of LEISTER is described in Appendix A.3.

• We applied LEISTER to the design of eight hardware accelerators for eight benchmark appli-

cations from the CHStone suite. In summary, our experimental results show that compared

with the previous approach [197; 198]: (i) LEISTER can converge faster by 2.20X on average

and (ii) the learning model of LEISTER is more accurate in predicting the circuit execution

latency by 7.01% and the circuit area by 2.87%, with a 50% less runtime for model evalua-
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tion. Moreover, with the scalable sampling optimization, LEISTER can further reduce the

average runtime for training sample generation by 93.31X and for training sample expansion

by 7.98X.

5.1 Problem Description

We refer to the directives used in a HLS script for determining micro-architecture choices as knobs.

Table 3.1 has already listed some common knobs and their settings available in modern HLS tools.

Depending on the knob types, the choices of each knob setting can vary. For example, while the

choice of function inlining is binary (either to inline or not to), loop manipulation offer many

alternative options. Let us denote by c the max number of choices of a given knob setting.

Given a design specified in high-level languages, e.g. C or SystemC, HLS tools generate an

optimized RTL by taking a set of knob settings as input constraints. For a given design specification,

the number of places where HLS knobs can be applied can vary and is generally large. For instance,

even a small SystemC design may have many functions, many (nested) loops, many arrays, and

so on. Let p denote the number of knob-applicable places. Then the total combination of knob

settings grows exponentially (O(cp)).

To give an example of the design complexity, we use a case study of DFT designed in SystemC.

The DFT design implements an iterative-FFT algorithm [44] with a synthesizable fix-point library

using 45nm technology. The maximum number of knob-setting combinations for the DFT design is

360,448. In order to establish a ground truth for the analysis of Pareto optimality, we synthesized a

restricted set of 242 knob settings, which cover 11 loop manipulations, 2 function-inlining choices,

and 11 feasible clock periods. The 242 HLS runs took an aggregated 84-hour CPU time with a

commercial HLS tool. Throughout this chapter, we refer to the 242 knob settings as the knob-

setting space of the DFT.

In general, the exponentially-growing knob-setting space makes DSE with HLS very different

from DSE with processor simulators or IP generators. In the latter cases, p can be assumed to be

a constant, in practice. For example, only a limited set of parameters needs to be determined for

processor simulators, such as the number of cores and the size of L1/L2 cache, and similarly for

IP generators, for which the parameters are the I/O size, algorithms, etc. Instead, the fact that
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p is typically a large constant for DSE with HLS makes it a more challenging problem. Since to

exhaustively explore the set of all possible RTL designs that can be obtained with HLS is unfeasible,

the goal of DSE with HLS is to approximate the Pareto set of RTL designs.

We define the DSE with HLS problem as follows.

Problem 3. Given a high-level design specification and HLS tool with a budget of b runs, find the

best approximate Pareto-optimal set of RTL designs without exceeding b.

Note that we consider a multi-objective DSE problem. Although throughout this chapter we

focus on 2-objective cases for simplicity, all our discussions and findings are generally applicable to

higher dimensional cases.

In order to measure the quality of an approximate set of Pareto-optimal designs, we utilize the

metric of average distance from reference set (ADRS) [134]. Consider a two-dimensional (area A

vs. effective-latency T ) design space1. For both objectives, the smaller the objective, the better

the RTL implementation. Given a reference Pareto set Π = {π1, π2, . . . |πi = (a, t), a ∈ A, t ∈ T }

and an approximate Pareto set Λ = {λ1, λ2, . . . |λj = (a, t), a ∈ A, t ∈ T },

ADRS(Π,Λ) =
1

|Π|
∑
π∈Π

min
λ∈Λ

δ(π, λ),

where

δ(π = (aπ, tπ), λ = (aλ, tλ)) = max{0, aλ − aπ
aπ

,
tλ − tπ

tπ
}.

Note that the lower ADRS(Π,Λ), the closer the approximate set Λ to the reference set Π.

5.2 An Iterative Refinement Framework

Fig. 5.1 illustrates an iterative-refinement framework [121; 134; 186; 197]. The main idea of the

framework is twofold: (i) to approximate the HLS tool H by a learning model H̃, and (ii) to use the

fast H̃ for predicting the Quality-of-Result (QoR) space, instead of invoking the time-consuming

H. Algorithm 5 implements the major steps of the framework. Initially, the framework trains H̃ by

spending some HLS runs (the training stage in Lines 6–8), and then finds an approximate Pareto

1We define the effective latency as the product of (i) the clock period of the circuit and (ii) the clock cycle count

to execute a task.
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Figure 5.1: An iterative-refinement DSE framework [121; 134; 186; 197].

set by iteratively refining H̃ and the current Pareto approximation (the refinement stage in Lines

9–16).

Clearly, the effectiveness of the iterative-refinement framework relies on the accuracy of H̃.

Intuitively, guided by a highly-accurate H̃, the refinement stage could search in the right space.

However, spending too many HLS runs in the training stage while aiming for highly-accurate H̃,

may not necessarily guarantee the final Pareto optimality, since the total number of HLS runs is

limited to a given budget b. We approach this dilemma by suggesting a more accurate learning

model for HLS in Section 5.3 and a more effective training scheme that is beneficial for general

models in Section 5.4. Moreover, in Section 5.5, we propose novel algorithms to improve the

scalability of the framework. All our algorithmic findings are inspired by recent advancements of

machine-learning theory.

5.3 Learning-Model Selection

We examined nine advanced learning models for predicting the DFT’s area and effective latency.

These models include Gaussian Process Regression (GPR) [153], Multivariate Adaptive Regres-

sion Splines (MARS) [71], Regression Tree (RT) [26], Boosted Regression Tree (BRT) [72], Ran-

dom Forest (RF) [25], Neural Network (NN), Radial Basis Function Network (RBF) [29], Support
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Algorithm 5 Iterative-Refinement Framework

Input: HLS tool H, HLS budget b, input design D

Output: Approximate Pareto set Λ

1: Let K be the knob-setting space of D

2: Let H̃ be a learning model

3: Let K̃ ⊂ K be a training set

4: Let S = ϕ be the set of all HLS results

5: /** Training Stage **/

6: synthesize all k̃ ∈ K̃; add the results to S

7: remove K̃ from K

8: train H̃ by (K̃,S)

9: /** Refinement Stage **/

10: Λ← current Pareto approximation of S

11: for i = |S|+ 1→ b do

12: Q̃ ← predicted HLS results ∀k ∈ K by H̃

13: pick one q ∈ Q̃ for HLS; add q’s result to S

14: move q’s knob setting from K to K̃

15: retrain H̃ by (K̃,S)

16: Λ← current Pareto approximation of S

17: end for

Vector Regression (SVR) [64], and Transductive Regression (TR) [45]2. They cover non-linear

non-parametric models (GPR and MARS), tree-based models (RT, BRT, and RF), network-based

models (NN, RBF, and SVR), and models that know all the testing instances in advance (TR).

Fig. 5.2 shows the prediction accuracy of these models that were trained on randomly-sampled

training sets3. The results show that RF is consistently more accurate than GPR, which was

previously reported as the best model for processor simulators and IP generators. The adoption of

2All these models are publicly available in separate R packages [149], except TR [45], which we implemented in R

by ourselves. Notice that we finely tuned all these models via model selection [162] to achieve the best accuracy.

3Throughout this chapter, all the DFT results involving randomized procedures are the average results obtained

from 100 trials.
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Figure 5.2: Learning-model accuracy for predicting DFT area (left) and effective latency (right).

The training sets are randomly sampled.

RF for HLS instead of GPR brings the following benefits:

• The tree-based RF model can easily handle binary decisions by introducing a node with two

branches separating the two decisions. HLS knobs which provide binary choices are common,

e.g., function inlining for a function call, state insertion for a certain edge in the control/data

flow graph, array implementation in either registers or memory, and others. In this regard,

GPR assumes that any combination of knob variables follows a joint Gaussian distribution,

which is less effective for modeling the HLS knobs.

• RF is an ensemble model consisting of multiple regression trees [25]. Given a training set,

the set is internally and randomly partitioned for training individual trees. Then, the final

prediction is made by collective vote from the individual trees. The two steps combined are

capable of minimizing both the generalization error and prediction variance. A recent study

in the machine learning literature also shows the superior accuracy of RF, especially for high

dimensional data [33].

• We observe that the CPU time required for training and prediction with RF is around 50%

less than that with GPR. Moreover, the internal partitioning-then-training scheme by nature

makes RF suitable for running on multi-core machines. From an implementation viewpoint,

this is another advantage of adopting RF.
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Assuming that the learning model H̃ is either GPR or RF, we face the following decision: how

to select a best knob-setting for next HLS in the refinement stage, i.e., Line 13 in Algorithm 5. For

GPR, the prediction of a design objective consists of a mean and a variance. The mean represents

the predicted value and the variance suggests the uncertainty of GPR about the prediction. There-

fore, as suggested in [197], a predicted Pareto set Λ̃ is first extracted from the predicted QoR space

Q̃ (i.e., Line 12 in Algorithm 5), and then the element in Λ̃ with the max variance (uncertainty)

across all objectives is selected for the next HLS. On the other hand, for RF, since the prediction

uncertainty is minimized by RF’s collective-vote scheme, we can randomly pick one element in Λ̃

for next HLS.

5.4 Transductive Experimental Design

In the prior work [121; 197], the training set K̃ is randomly sampled from the knob-setting space K

(Line 3 in Algorithm 5). Alternatively, we introduce transductive experimental design (TED) [190],

that aims for selecting representative as well as hard-to-predict K̃, in order to effectively train the

learning model for predicting K. Note that TED assumes no priori knowledge about the learning

model and should therefore be beneficial for any model.

Assume that overall we have n knob settings (|K| = n), from which we want to select a training

subset K̃ such that |K̃| = m. In order to minimize the prediction error H(k)− H̃(k) for all k ∈ K,

TED is shown to be equivalent to the following problem [190]:

maxK̃ T
[
KK̃⊤(K̃K̃⊤ + µI)−1K̃K⊤

]
s.t. K̃ ⊂ K, |K̃| = m,

(5.1)

where T [ ] is the matrix trace and µ > 0 is a given regularization parameter [162]. The solution

to the problem can be interpreted as follows. It tends to find representative data samples K̃ that

span a linear space to retain most of the information of K [190].

Equation 5.1 corresponds to TED sampling for linear regression. For non-linear regression,

TED can be extended by a kernel function

f(u,v) = θ(u) · θ(v),

where u,v ∈ Rd, θ : Rd → F is a function mapping from the knob-setting space to a feature
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Algorithm 6 Sequential TED

Input: Set K of n knob settings, training-set size m

Output: Training set K̃

1: F← Fk,k

2: K̃ ← ϕ

3: for i = 1→ m do

4: select ki ∈ K with the largest ||Fki
||2/(f(ki,ki) + µ), where Fki

and f(ki,ki) are ki’s

corresponding column and diagonal entry in current F

5: add ki to K̃,

6: denom← f(ki,ki) + µ

7: (F)jk ← (F)jk −
(F)ji(F)ki
denom , ∀1 ≤ j, k ≤ n

8: end for

space [162]. Specifically, we use the Gaussian [190]:

f(u,v) = e
||u−v||2

2σ2 ,

where σ is a given non-zero constant. Then, kernelized TED can be expressed as

maxK̃ T
[
Fkk̃(Fk̃k̃ + µI)−1Fk̃k

]
s.t. K̃ ⊂ K, |K̃| = m,

(5.2)

where the matrix entries (Fkk̃)ij equals f(ki, k̃j), (Fk̃k̃)ij equals f(k̃i, k̃j), (Fk̃k)ij equals f(k̃i,kj),

vectors ki,kj are the row and column vectors of K, and vectors k̃i, k̃j are the row and column

vectors of K̃.

Unfortunately, both TED problems (Equations 5.1 and 5.2) are proven to be NP-hard [190].

Therefore, to solve Equation 5.2, we apply an efficient greedy algorithm called sequential TED [190].

The algorithm (given as Algorithm 6) can be interpreted as follows. Once a best ki ∈ K is selected

(Line 4), the kernel matrix F is updated (Line 7) to represent the residual knob settings, so that the

next selection would be picked among those under-represented by previously selected knob settings.

In other words, the algorithm tends to select the knob settings that cannot be well represented by

the already selected ones, i.e., to favor potentially hard-to-predict knob settings if they are not

selected as training examples.
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Figure 5.3: Training-set sampling by Transductive Experimental Design (TED).

Fig. 5.3 illustrates the TED sampling results of the DFT knob-setting space. We follow the

suggestion in [190] to set µ = 0.1 for Algorithm 6 and σ = 0.1 for the Gaussian kernel. As a result,

a training set of 10 knob settings (red squares) is selected from the 242 candidates (green pluses).

We can see that TED indeed selects representative samples by distributing its selections in the

whole space, without having dense clusters. Besides, TED distributes 6 out of the 10 selections

to the subspace where the loop-configuration ID number is greater than 6, i.e., a subspace where

candidates are sparser than its counterpart. The loop configurations are generated by varying one

loop-manipulation knob for consecutive configurations. Hence, the knob settings (green pluses)

that are close to each other are very likely to produce similar HLS QoR. Based on this assumption,

TED considers the samples in the sparse subspace hard-to-predict, thereby selecting more samples

from the sparse subspace.

Fig. 5.4 shows the prediction accuracy of the combination of random/TED sampling with

GPR/RF models. Starting from the sample size of 20 knob-settings for predicting area and 30

knob-settings for predicting effective latency, TED indeed reduces the prediction error for GPR

and RF, respectively (see the dashed vs. solid lines). On the other hand, for very small training-set

size, random sampling is helpful to escape from local optimal where the sequential-TED algorithm

could be trapped. In general, TED is effective for sampling good training sets for any learning

models. We also remark that with the aid of TED sampling, the prediction error of RF is still
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Figure 5.4: Learning-model accuracy for predicting DFT area (left) and effective latency (right).

“Random” and “TED” indicates training-set sampling algorithms. “GPR” and “RF” are learning

models.

consistently lower than that of GPR (see the dashed lines in Fig. 5.4).

Finally, similar to the distribution in the knob-setting space (Fig. 5.3), the corresponding dis-

tribution in the QoR space would not likely have dense clusters either. In fact, through our

experimental results on designs with large design spaces, the TED-generated distribution in the

QoR space empirically also corresponds to a good initial approximate Pareto set. On the other

hand, blind random sampling not only can generate biasing training examples, but also often leads

to an initial approximate Pareto set that is inferior to the one achieved by TED.

5.5 Scalable Design-Space Sampling

The size of knob-setting space K grows exponentially as explained in Section 5.1. Therefore, even

if a very fast learning model H̃ is used, the exhaustive search in K (Line 12 in Algorithm 5) can

incur noticeable computational overheads. From now on, we refer to Problem 3 with very large

K as the Extreme DSE-with-HLS Problem, and refer to Problem 3 with tractable K as the Basic

DSE-with-HLS Problem.

To solve the Extreme DSE-with-HLS Problem, we introduce the following theorem on random-

ized selection [162].

Theorem 3 (Ranks on Random Subsets). Let M = {x1, . . . , xα} ⊂ R, and let M̃ ⊂ M be a
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Algorithm 7 Randomized TED

Input: Set K of n knob settings, training-set size m

Output: Training set K̃

1: K̃ ← ϕ

2: for i = 1→ m do

3: M̃ = {m1, . . . ,mNrted
} ← a random subset of K

4: M̃ = M̃ ∪ K̃; F← Fm,m

5: ∀mi ∈ K̃, update F as Lines 6–7 in Algorithm 6

6: select mi ∈ M̃ as Line 4 in Algorithm 6; add mi to K̃

7: end for

random subset of size β. Then the probability that max M̃ is greater than γ elements of M is at

least 1− ( γα)
β.

According to the theorem, if we draw a random subset M̃ of size 59 (β = 59), then max M̃

would be greater than 95% ( γα = 95%) elements of M with at least 1− 5% = 95% confidence, since

( γα)
β = 0.9559 < 5%. Note that the sample size 59 is a constant for any large-sized M to achieve a

95% confidence in the 95% percentile range.

Based on Theorem 3, we propose a simple modification for selecting the next HLS knob-setting

in Algorithm 5 (Lines 12–13): draw a random subset M̃ ⊂ K of size Nnext, and then pick the q ∈ M̃

with the smallest

H̃A(q) + H̃T (q), (5.3)

where H̃A(q) and H̃T (q) are the predicted area and effective latency of q, respectively. Clearly,

Theorem 3 also applies to selecting a minimum element. Consequently, we pick the best q∗ ∈ M̃

for HLS, based on the cost function defined as Equation 5.3, which predicts the aggregated QoR of

any q ∈ M̃ . Note that to set Nnext = 59 should suffice to achieve a very good approximation even

for a very large K, as inferred from Theorem 3.

Consider again the prohibitively large size of K of the Extreme DSE-with-HLS Problem. This

makes even the training-set sampling by TED not scalable because an O(|K|2) matrix computation

is required in the sequential-TED algorithm. To address this scalability issue, inspired again by

Theorem 3, we propose the randomized TED algorithm (as Algorithm 7). The main idea is that in
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Table 5.1: Comparison of DSE Methods

Method Reference Learning Model Training-Set Sampling Next-HLS Selection

baseline [197; 198] GPR random sampling exhaustive search

basic Section 5.3 RF random sampling exhaustive search

basic-ST Section 5.4 RF sequential TED exhaustive search

extreme Section 5.5 RF random sampling randomized selection

extreme-RT Section 5.5 RF randomized TED randomized selection

each iteration we draw a random subset M̃ ⊂ K of size Nrted and add previously selected samples

to M̃ . Subset M̃ is now treated as the K in the sequential-TED algorithm. We update the kernel

matrix as if the previously selected samples are selected again in this iteration. Then, we follow

the same criterion as in the sequential-TED algorithm to select the best residual m ∈ M̃ , and

we iterate until m samples are selected. Overall, our algorithm utilizes the randomized-selection

scheme to reduce the computational cost, while still preserving the principle of TED.

5.6 Case Study on DFT

We continue our DFT case study to compare the four DSE methods that we have presented, with

respect to the existing method proposed in [197; 198], which we denote as baseline. Table 5.1

summarizes the five methods. We call basic our method that utilizes RF as the learning model,

random sampling for selecting training knob-settings, and exhaustive search for selecting the next

HLS knob-setting. We call basic-ST the variant of basic that utilizes sequential TED for selecting

training knob-settings. Then, we refer to our method that utilizes RF as the learning model,

random sampling for selecting training knob-settings, and randomized selection for selecting the

next HLS knob-setting, as extreme. And finally we call extreme-RT the variant of extreme that

utilizes randomized TED for selecting training knob-settings.

For each DSE method, we prepared training sets of size m ∈ {10, 20, . . . , 60}. For each value of

m, we set a HLS budget ∈ {m+ 10,m+ 20, . . . , 120} and we tracked the average ADRS that each

method can achieve, with the exact Pareto set as a reference set. The HLS budget was capped

at 120, i.e., less than 50% of DFT’s knob-setting space. Across all training-set sizes, each method
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Table 5.2: Number of HLS Runs to Find the Exact Pareto Set

Training-Set Size 10 20 30 40 50 60

baseline 120 NA NA NA NA NA

basic 115 113 NA NA NA NA

basic-ST 112 91 100 100 109 119

should have 11 + 10 + 9 + 8 + 7 + 6 = 51 ADRS records.

5.6.1 Basic DSE-with-HLS Results

For the Basic Problem, we compare three methods: basic, basic-ST, and baseline.

Table 5.2 summarizes the total number of HLS runs that each method requires to find the exact

Pareto set (i.e., ADRS = 0). We can see that basic-ST, which utilizes TED to sample training sets,

is the only method that can find the exact Pareto set within 120 HLS runs for any training-set size.

Besides, for any training-set size, both basic and basic-ST, which adopt the RF learning model,

outperform baseline, which adopts GPR instead. These results confirm that a more accurate

learning model with a more effective training-set sampling scheme (in our case, RF with TED)

indeed facilitates the convergence of the iterative-refinement framework. Also note that the best

training-set size happens at 20, followed by 30 and 40. This result suggests that basic-ST only

requires small training sets to achieve its best performance, because TED can judiciously select

those representative and hard-to-predict knob-settings as training examples.

As explained in Section 5.1, in real applications of DSE with HLS it is infeasible to search for

the exact Pareto set. Therefore, we now examine the performance of the three DSE methods given

different HLS budgets. For HLS budget b ∈ {20, 30, . . . , 120}, Table 5.3 summarizes the best DSE

method, its average ADRS, and the training-set size it requires. We can observe that for smaller

budgets (20 ≤ b ≤ 50), basic (abbreviated as bs in Table 5.3) can yield the minimum average-

ADRS, requiring a training-set of size around 20. For greater budgets (60 ≤ b ≤ 120), basic-ST

(abbreviated as ST) stands out to achieve the minimum average-ADRS, requiring a training-set of

size around 30. For this DFT design, basic-ST starts with a higher ADRS because TED sampling

does not particularly favor the knob-settings that can result in Pareto-optimal RTLs, whereas they
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Table 5.3: baseline vs. basic (bs) vs. basic-ST (ST) given HLS budget b

Budget b 20 30 40 50 60 70 80 90 100 110 120

Best Method bs bs bs bs ST ST ST ST ST ST ST

Average ADRS (%) 21.54 9.01 3.58 1.74 0.98 0.21 0.11 0.01 0.00 0.00 0.00

Training-Set Size 10 20 20 20 30 30 30 20–30 20–40 20–50 ≥10

could be sampled at random instead. However, the advantage of random sampling vanishes when

applied to large design spaces (which we will see later in Section 5.7). On the other hand, basic-ST

can approach the exact Pareto set faster, due to the more accurate learning model resulting from the

aid of TED. These two reasons combined explain why basic performs better for smaller HLS budgets

for small designs, whereas basic-ST is better for greater budgets. Overall, both our methods, basic

and basic-ST, outperform baseline.

5.6.2 Extreme DSE-with-HLS Results

For the Extreme Problem, we focus on two methods: extreme and extreme-RT.

First we compare extreme with basic to see how effective the approximation using randomized-

selection can be. For extreme, we set Nnext = 59 for drawing a random subset of size 59 to select

the next knob-setting for HLS. As expected, most of the ADRS achieved by extreme are higher

(worse) than those achieved by basic, but we find that the difference is small: for training-set size

10 ≤ m ≤ 30, the max difference is less than 3.0%, and for 40 ≤ m ≤ 60, the max difference is even

less than 0.8%. These small differences show that the approximation using randomized-selection

can be very effective. Moreover, since the ADRS differences are marginal, we observed that 41 out

of 51 (80%) ADRSs achieved by extreme are also lower (better) than those achieved by baseline.

For Nnext ∈ {59, 79, 99}, we see no significant difference on ADRS: in fact, 46 out of 51 (90%)

ADRS differences are less than 0.9%. Therefore, we set Nnext = 59 by default for extreme.

Next, we show the results of extreme-RT. For extreme-RT, we fix its Nnext = 59 and set Nrted ∈

{59, 79, 99} for drawing a random subset of size Nrted to select a training knob-setting by the

randomized-TED algorithm. Comparing with extreme, if we set extreme-RT’s Nrted to be 59, we

observe that only 17 out of 51 (33%) ADRSs achieved by extreme-RT are lower (better). If we

increase the Nrted to 79, then 30 out of 51 (59%) ADRSs are better. The improvement saturates
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Table 5.4: extreme (ex) vs. extreme-RT (RT) given HLS budget b

Budget b 20 30 40 50 60 70 80 90 100 110 120

Best Method RT RT RT RT RT tie ex ex RT RT tie

Average ADRS (%) 19.12 9.23 5.82 3.52 2.00 1.09 0.58 0.17 0.10 0.04 0.01

Training-Set Size 10 20 20 20 20 30/50 40 40 40 40 40

at Nrted = 99, where 31 out of 51 (61%) ADRSs are better. As a result, the randomized-TED

algorithm works best with Nrted = 99. Therefore, we set Nrted = 99 by default for extreme-RT.

Finally, for the Extreme Problem with different HLS budgets, Table 5.4 summarizes the best

method, its average ADRS, and the training-set size it requires. We see that extreme-RT (abbre-

viated as RT) almost outperforms extreme (abbreviated as ex) for every budget b. This result is

different from the basic vs. basic-ST result (see Table 5.3), where basic (basic-ST) works better

for smaller (greater) budgets. This is because the random-subset drawing used in the randomized-

TED algorithm can alleviate the high initial ADRS otherwise caused by the sequential-TED algo-

rithm. Overall, we find extreme-RT very effective for addressing the Extreme Problem, because our

randomized-TED algorithm successfully avoids the exhaustive search in the full knob-setting space

while still selecting representative and hard-to-predict knob-settings as training examples.

5.7 Additional Results on CHStone Suite

In this section, we present additional experimental results on large benchmarks from the CHStone

suite [84]. CHStone includes eight benchmarks, each having a design space with more than 5K

HLS configurations4: (1) adaptive differential pulse code modulation encoder for voice compression

(adpcm), (2) encryption function of advanced encryption standard (aes), (3) encryption function

of data encryption standard (blowfish), (4) double-precision floating-point sine function involv-

ing addition, multiplication, and division (dfsin), (5) linear predictive coding analysis of global

4 We do not include the mips benchmark (a simplified microprocessor) from CHStone because of its very limited

design space. The mips benchmark is described as a simple switch statement that performs primitive operations

based on the opcodes. It has none of the advanced features that are common to modern processors, such as branch

prediction, hazard detection, out-of-order execution, simultaneous multi-threading, etc. In general we expect our

DSE methods to be effective for exploring complex processor designs as well.
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Table 5.5: Benchmark Characteristics

Benchmark Application Input Token Output Token #LoopC #StateC #FuncC #ArrayC #TotalC

ADPCM DSP 2 16-bit int 1 16-bit int 1 8 128 4 20,480

AES Security 64 16-bit int 32 16-bit int 18 1 64 2 11,520

BLOWFISH Security 40 8-bit char 40 8-bit char 243 1 4 4 19,440

DFSIN Arithmetic 1 64-bit int 1 64-bit int 8 2 256 1 20,480

GSM DSP 160 16-bit int 8 32-bit int 27 1 32 4 17,280

JPEG DSP 128 16-bit int 64 16-bit int 54 1 32 4 34,560

MOTION DSP 32 8-bit char 32 8-bit char 9 4 32 1 5,760

SHA Security 16 32-bit int 5 32-bit int 243 1 8 4 38,880

system for mobile communications (gsm), (6) JPEG image decompression (jpeg), (7) motion vec-

tor decoding of MPEG-2 (motion), and (8) transformation function of secure hashing algorithm

(sha).

Table 5.5 lists some important characteristics of the eight benchmarks (see [84] for more de-

tails). The benchmarks cover application domains from DSP, security, and arithmetic. For each

benchmark, we also list its input/output token size, such that the effective latency of a benchmark

corresponds to the total elapsed time for: reading an input token, processing the token according

to the benchmark, and generating an output token.

5.7.1 Experimental Setup

We setup the benchmark design spaces as follows.

• Loop Manipulation: We consider loop breaking, partial/full unrolling with different numbers

of loop bodies, and pipelining with different initiation intervals and pipeline stages for each

major loop. Trivial loops such as initializing an array or copying values between two arrays

are all completely unrolled. The total number of loop configurations is listed in column

“#LoopC” in Table 5.5.

• State Insertion: We consider the insertion of extra states for the benchmarks that have few

major loops in their source descriptions. The insertion is mainly for breaking long combi-

national paths in order to improve the circuit performance, meet the target clock period, or

promote resource sharing among different clock cycles. The total number of state configura-
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tions is listed in column “#StateC” in Table 5.5.

• Function Inlining: We either inline or do not touch a function for all the function definitions

in a source description. Function inlining restructures the design hierarchy, which may affect

synthesis QoR due to different degrees of resource-sharing opportunities [41; 80]. However,

trivial functions such as functions that are only called once or twice are all inlined. The total

number of function configurations is listed in column “#FuncC” in Table 5.5.

• Array Configuration: We either flatten an array with registers as memory elements or apply

the default prototype-memory settings provided by the HLS tool. In general, flattened arrays

allow parallel accesses to the array values at the cost of larger implementation area. Therefore,

trivial (small) arrays are flattened by default. The total number of array configurations is

listed in column “#ArrayC” in Table 5.5.

• Target Clock-Period Setting: For each benchmark we consider the five target clock periods

in the set {0.8 × Tclk, Tclk, 1.2 × Tclk, 1.4 × Tclk, 1.6 × Tclk}, where Tclk is the synthesized

clock period when configured with maximal loop unrolling, minimal state insertion, maximal

function inlining, and maximal array flattening.

Given the above setups for each benchmark, its total number of HLS configurations is “#TotalC”

= “#LoopC” × “#StateC” × “#FuncC” × “#ArrayC” × 5. Note that the maximum “#TotalC”

could be even larger if the trivial configurations were also considered.

On the eight large benchmarks, we applied the best basic DSE method basic-ST and the best

extreme DSE method extreme-RT against the baseline method. In light of the large design spaces,

we set the number of training examples to be 30 for each of the DSE methods, and let each method

run for additional 200 iterations at the refinement stage. Besides, for extreme-RT, we set the size

of a random subset Nnext for model evaluation per iteration to be 59 and the size of a random

subset Nrted for generating training examples with randomized TED to be 199. Every result in the

following discussions was averaged based on ten trials.

Since we cannot afford to exhaustively search the exact Pareto set for each benchmark, we

take the approximate Pareto set that was collectively discovered by the three DSE methods as the

reference Pareto set. In other words, the reference Pareto set is the Pareto set obtained from a

collection of 690 HLS results because each DSE method submits 230 HLS jobs per DSE run.
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Table 5.6: Comparison of DSE Method Convergence
Initial ADRS (%) # Refinement Iterations to Reach ADRS ≤ 2%

Benchmark Baseline Basic-ST Diff Extreme-RT Diff Baseline Basic-ST Improvement Extreme-RT Overhead

ADPCM 12.15 7.09 -5.05 10.02 -2.13 168 88 1.91X N/A N/A

AES 15.48 13.59 -1.89 11.35 -4.13 79 35 2.26X 162 2.05X

BLOWFISH 10.20 5.90 -4.30 8.33 -1.88 102 39 2.62X 145 1.42X

DFSIN 14.38 7.86 -6.52 11.38 -3.00 178 63 2.83X N/A N/A

GSM 15.70 7.51 -8.19 10.94 -4.76 168 68 2.47X N/A N/A

JPEG 14.35 9.38 -4.98 13.05 -1.31 125 57 2.19X 182 1.46X

MOTION 13.20 9.90 -3.30 12.33 -0.88 86 38 2.26X 148 1.72X

SHA 22.11 11.92 -10.19 15.79 -6.32 125 55 2.27X N/A N/A

Average 14.70 9.14 -5.55 11.65 -3.05 122 55 2.20X 159 1.66X

5.7.2 Discussions

Fig. 5.5 plots the average ADRS (%) vs. the number of refinement iterations for the three methods

on the eight benchmarks. The red, green, and blue curves represent the results from baseline,

basic-ST, and extreme-RT, respectively. We observe that all the three DSE methods can refine the

approximate Pareto set as the number of refinement iteration increases from 0 to 200. With less

than 4% (230/5,760) of the design space explored, the room for Pareto-set refinement in terms of

ADRS is 10% on average.

We extract the initial ADRSs and the number of refinement iterations required to achieve a

target 2% ADRS from Fig. 5.5 and list them in Table 5.6. For the initial ADRSs, baseline generally

starts with the worst (highest) ADRSs (with an average of 14.70%), outperformed by extreme-RT

(average 11.65%), and further outperformed by basic-ST (average 9.14%). Therefore, basic-ST has

an advantage of low initial-ADRS (we will discuss why in the next bullet) and extreme-RT is the

second best in this regard.

Moreover, in terms of convergence speed, taking a 2% target ADRS for example, baseline can

converge to the target in 122 refinement iterations on average. In contrast, basic-ST only needs 55

iterations on average for the convergence (a 2.20X improvement). On the other hand, extreme-RT

can only converge for four of the eight benchmarks and, if it succeeds, it requires 1.66X more

iterations on average than baseline (“N/A” in Table 5.6 denotes the failure of convergence).

Overall, basic-ST is a clear winner in terms of both the starting ADRS and the convergence

speed. As for baseline and extreme-RT, the former converges faster but the latter starts with a

lower ADRS. We continue to evaluate these three methods in greater detail with three pairwise
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Figure 5.5: The average ADRS (%) vs. the number of refinement iterations for DSE methods

baseline, basic-ST, and extreme-RT.
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comparisons.

Comparison 1: basic-ST vs. baseline. In Fig. 5.5, across all the benchmarks, the basic-ST curves

are always below the baseline curves, showing that basic-ST constantly works the best in terms

of Pareto optimality. The optimality comes from (i) lower starting ADRSs (thanks to TED) and

(ii) faster convergence speed because of higher model prediction accuracies (thanks to RF).

First, for large design spaces, we observe that random sampling cannot generate a good initial

approximate Pareto set as it does in the DFT case. This is due to the limited sampling budget

(30) versus the very large sample space (of size greater than 5K, i.e., the budget/size ratio is less

than 0.6%). In contrast, the sample-space size was 242 for DFT (the ratio was 12.4%). However,

using a training set with size larger than 5K×12.4%=620 (i.e. to run more than 620 HLS jobs up

front) requires too much CPU/memory resources to be practical. In this regard, basic-ST, which

uses TED for generating representative training examples as the original goal, is also robust and

practical for generating the initial approximate Pareto set to explore large design spaces.

Second, the prediction accuracy of RF (used in basic-ST) is constantly higher than GPR (used in

baseline). Fig. 5.6(a) and Fig. 5.6(b) show the accuracies for predicting area and effective-latency,

respectively. For area prediction on average, the minimum, maximum, average, and standard de-

viation of RF prediction errors are each better (lower) than those of GPR counterparts by 0.09%,

9.26%, 2.87%, and 1.98%, respectively. Similarly, for effective-latency prediction, the average im-

provements are 0.19%, 23.83%, 7.01%, and 5.34%, respectively (note the greater improvements

compared with the prediction of area). The two results combined show the advantage of RF over

GPR in terms of both quality and robustness.

We also observe that for both RF and GPR, their prediction error rates are higher in predicting

effective latencies than predicting area. This is because the prediction of effective latency relies on

the predictions of both the number of clock cycles and the synthesized clock period. Despite the

difficulty, the advantage of RF over GPR is even more significant for predicting effective latencies.

Comparison 2: extreme-RT vs. baseline. In Fig. 5.5, the final ADRSs of the extreme-RT curves

are higher (worse) than those of the baseline curves, even though the extreme-RT curves generally

start with lower (better) ADRSs. The slower convergence of extreme-RT is due to the random

subset sampling for efficient model evaluation, whereas the lower ADRS is due to the same reason

we discussed in Comparison 1. Nevertheless, we want to note here that: (i) in a shorter DSE
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Figure 5.6: Model prediction error rates with GPR and RF for (a) area prediction and (b) effective-

latency prediction. Each candlestick shows from top to bottom: the maximum, the average plus

standard deviation, the average, the average minus standard deviation, and the minimum errors.

run (less than around 32 refinement iterations on average), the extreme-RT’s ADRS can still be

better (lower) than the baseline’s ADRS, and (ii) in a long DSE run (200 iterations in this study),

extreme-RT can still approximate the best basic-ST results by an average 2.06% difference in terms

of the final ADRS. Moreover, extreme-RT offers unique advantages in saving computational time,

which we discuss next.

Comparison 3: basic-ST vs. extreme-RT. Although basic-ST has a clear advantage in Pareto

optimality, it may require substantial CPU time for the execution of TED and the exhaustive

evaluation with RF per refinement iteration. Fig. 5.7(a) compares the CPU time required by TED

(used in basic-ST) and randomized TED (or RTED, used in extreme-RT). Over all the benchmarks,

TED requires 58 seconds to 3599 seconds (around 1 hour) with an average of 1165 seconds (around

20 minutes) for generating 30 training HLS scripts. On the other hand, RTED only needs 8 seconds

to 34 seconds with an average of 15 seconds to do so (i.e. 93.31X faster).

Moreover, Fig. 5.7(b) compares the aggregated times (over 55 iterations5) for retraining the RF

model plus predicting all or a subset of 199 unknown knob-setting QoRs. Recall that basic-ST

predicts all unknown QoRs, whereas extreme-RT predicts a random subset of them. The aver-

age aggregated time for the exhaustive-prediction case (indicated by “RF (all)” in Fig. 5.7(b)) is

202 seconds. In contrast, the average aggregated time with random subsampling (“RF (199)” in

5 With 55 refinement iterations on average, basic-ST can hit a target 2% ADRS as reported in Table 5.6.
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Figure 5.7: CPU time for (a) generating 30 training HLS scripts (without running HLS) and

(b) retraining a learning model and evaluating the new model on all or 199 unseen HLS scripts,

aggregated over 55 iterations. For each benchmark, the factor over each red bar shows the ratio of

the height of the red bar over that of the green bar. The average factors are 93.31X and 7.98X for

(a) and (b), respectively.

Fig. 5.7(b)) is only 29 seconds (i.e. 7.98X faster).

Note that although the CPU-time saving of RTED over TED is once per DSE run, the CPU-

time saving of “RF (199)” over “RF (all)” will continue accumulating if the refinement goes beyond

55 iterations. As an additional note, although not shown in Fig. 5.7(b), the average aggregated

time with GPR as the learning model is around 1.5X more than that of “RF (all)”, further showing

the efficiency of RF-based DSE methods.

Finally, we examine how much the CPU-time savings can contribute to the total elapsed time

of a DSE run. Fig. 5.8 compares the total elapsed times with basic-ST (abbreviated as BST in the

figure) and extreme-RT (abbreviated as ERT) using: (a) high-effort HLS and (b) low-effort HLS6.

In Fig. 5.8(a), the total high-effort HLS runtime dominates the total elapsed time, so the sum of the

training-time saving (previously shown in Fig. 5.7(a)) and the retraining-time saving (previously

shown in Fig. 5.7(b)) is minor (2% on average) with respect to the total elapsed time. Alternatively

speaking, to achieve the best DSE results using basic-ST with high-effort HLS, the runtime overhead

6 Optimization effort is a common HLS-tool option for trading off between synthesis QoR and tool runtime. High

HLS effort generally delivers better QoR at the cost of longer runtime. Our exploration results (Fig. 5.5, etc.) were

obtained with high-effort HLS.
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Figure 5.8: Total CPU time with (a) high-effort HLS and (b) low-effort HLS. For each benchmark,

“BST” and ”ERT” stand for the results obtained by basic-ST and extreme-RT, respectively. For

each stacked bar, the “HLS” time includes 30 and 55 HLS runs at the training and the refinement

stages, respectively; the “Training” and “Retraining” times are the CPU times shown in Fig. 5.7(a)

and Fig. 5.7(b), respectively. Therefore, for the two stacked bars of each benchmark, the “HLS”

time is constant, while the “Training” and “Retraining” times can vary. For each benchmark, the

factor below the benchmark name shows the ratio of the height of the “BST” bar over that of the

“ERT” bar. The average factors are 1.02X and 2.00X for (a) and (b), respectively.

is marginal (2% on average). On the other hand, in Fig. 5.8(b), the total low-effort HLS runtime

can be comparable with the training and retraining time. Therefore, on average the total elapsed

time with extreme-RT can be reduced by 2.00X compared with the time with basic-ST. In other

words, to minimize the DSE runtime using extreme-RT with low-effort HLS, the runtime saving is

significant (2X on average).

5.8 Remarks

DSE processes are essential for both final design optimization and early design evaluation. In

general, the final optimization targets ultimate implementation QoR at the cost of acceptable DSE

effort. On the other hand, the early evaluation aims for short turnaround time while the design

specification, including its associated library and models, is still evolving. To switch between these

two DSE modes, our tool LEISTER equipped with methods basic-ST and extreme-RT offers a
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unique flexibility with the following recommended usages:

• LEISTER-S or the standard mode. LEISTER-S employs the basic-ST method, and set the

HLS effort to standard or high, aiming for the best DSE results. This mode should be used

for final accelerator implementations.

• LEISTER-L or the lightweight mode. LEISTER-L runs the extreme-RT method under the

hood, and applies low-effort HLS, aiming for rapid DSE with short turnaround time. The

lightweight mode should be used for early exploration on accelerator designs whose specifi-

cations are still under change, as it allows the system architect to estimate the accelerator’s

implementation costs and operating range.

We also note here that our DSE methods have been independently implemented and verified by

Xydis et al. on another set of eight different DSP kernels [187]. The DSP kernels were synthesized

as co-processors, while we targeted ASIC accelerators instead. Their study shows a clear ADRS

advantage of the LEISTER methods over both the baseline and a local-search method, given the

same budgets of HLS runs. Moreover, by relaxing the number of HLS runs per iteration from

one (our setting) to a larger constant, the average ADRS can be further improved using spectrum

analysis in each refinement iteration. This enhancement to the interactive refinement framework is

complementary to our contributions, as we focus on the effective training scheme (TED), scalable

sampling (randomized TED), and learning-model selection (RF).

Related Work. Due to the large solution (design) space, general multi-objective DSE algorithms

rely on local-search techniques, e.g., Genetic Algorithms [53] or Simulating Annealing [171]. When

applied with CAD tools, however, these algorithms require actual simulation/synthesis runs at

every step to acquire solution qualities (i.e. the implementation QoR). Therefore, the total elapsed

DSE runtime is still significant.

To reduce the DSE runtime, Learning-based methods were proposed to guide the DSE process

by predicting solution qualities before running actual simulation/synthesis jobs (the earliest works

are [18; 133; 134]). Compared with the local-search techniques, these methods can also discover bet-

ter implementation QoR with fewer synthesis/simulation jobs. Among these learning-based meth-

ods, Beltrame et al. adopted an approach based on Markov Decision Processes, which intrinsically

traverses an exponentially-growing state space [18]. Alternatively, Palermo et al. presented an effi-
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cient DSE-with-processor-simulation framework based on iterative refinement [134], which has been

further improved by several other researchers [121; 197; 198]. In particular, two recent studies by

Mariani et al. [121] and Zuluaga et al. [197] independently reported that Gaussian Process [197], aka

Kriging [121], was the most promising learning model, superior to Artificial Neural Network [133;

134] and other simple models. These results were obtained from DSE with processor simulators [121]

or DSE with IP generators [197].

In the context of DSE with HLS tools, although specific techniques for incremental DSE [158]

and loop-array exploration [142; 195] are emerging, learning-based DSE methods remain popular

for their general applicability and efficiency [112; 161; 186; 187; 197]. Shafer and Wakabayashi were

among the first to apply machine learning to the problem of general DSE-with-HLS [161]. They

used a learning-model-assisted local-search approach that is more efficient than a pure Genetic

Algorithm approach while still achieving a comparable Pareto set. On the other hand, in their

method the model accuracy is not refined as in the iterative-refinement framework [134]. Several

studies have shown that a refinement-based approach can lead to better DSE results than leaning-

model-assisted local-search approaches [186; 187; 198]. An early refinement-based work for DSE

with HLS was presented by Zuluaga et al. [197; 198]. Their work used Gaussian Process Regression

as the underlying learning model and showed its effectiveness to explore the IP generation of DFT

and Sorting Network. Another early related work was presented by Xydis et al. to explore co-

processor designs [186] and was later improved by the same authors in [187]. Their latest work

enhances the model-refinement scheme of the iterative-refinement framework [134] by spending a

subset of non-Pareto-promising HLS jobs in addition to the Pareto-promising ones, in order to

refine the learning-model accuracy more quickly. Ultimately this leads to faster convergence of

the entire DSE process. The enhancement was validated by synthesizing co-processors for DSP

applications.
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Chapter 6

Parameter Tuning for Physical

Synthesis

The previous chapter focuses on component-level design exploration with HLS. In this chapter, I

present an industrial system that automates the DSE process for the logic and physical synthesis

steps within an VLSI design flow. This system was successfully used during the design of an

IBM high-performance 22nm server processor [182] that is currently in production and was crucial

for achieving timing closure and meeting power targets. The original system (Section 6.2) was

developed at IBM Research. Through my internship with IBM, I enhanced the system with new

algorithms (Sections 6.3.2 and 6.3.3) based on the principles of Supervised Design-Space Exploration

(SDSE). The SDSE enhancements achieved ∼20% better circuit performance than the original

system on the design of a diverse set of components from the production processor.

6.1 Problem Description

Synthesis programs continue to become more sophisticated and provide numerous parameters that

can significantly influence design quality. As an example of the wide design space available from

modifying synthesis parameters, Figure 6.1 shows the scatter plot of achievable design points for a

portion of a synthesized floating point multiplier, which is an example of a macro in our context1.

1 The term macro, used throughout this chapter, refers to a circuit partition which may range in size from 1K

to 1M gates. Macros are synthesized and then integrated into the overall chip. A large industrial processor contains
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Figure 6.1: An example of the available design space by modifying synthesis parameters. The

macro in this specific case is a portion of a floating point multiplier.

Each point denotes the timing and power values achieved by tuning the input parameters of the

synthesis program. The ultimate goal of this process is to reach timing closure at the lowest

achievable power. Quite often the default values for the parameters are not ideal for a specific

macro, which would benefit instead from parameter customization. The figure also highlights three

scenarios (A, B, and C) along the Pareto set. These scenarios show the available trade-offs between

timing closure and power reduction, e.g., point A closes timing with a 9% power reduction, whereas

point C improves timing by 55% with a 29% power reduction. These points along the Pareto

set provide a number of potential steps towards the ultimate goal, depending on the additional

techniques at the designer’s disposal beyond parameter tuning. This example of a relatively simple

macro underscores how significantly the parameters settings can affect a design.

However, the high flexibility and sophistication of advanced synthesis tools increases their com-

plexity and makes navigating the design space difficult, sometimes non-intuitive, for their users.

Since the number of parameters for synthesis tools can be in the thousands and synthesis runs may

100’s of macros.
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take several hours, or even days, exhaustive parameter-tuning is typically infeasible. Furthermore,

while Figure 6.1 portrays the design space of two metrics, designers often need to consider many

more metrics, sometimes dozens, when evaluating the quality of a synthesis scenario. In sum-

mary, efficient DSE using advanced synthesis tools is increasingly challenging for even experienced

professional designers and daunting for novice designers.

To efficiently and fully utilize the optimization potential of advanced synthesis tools, IBM Re-

search built a system for managing the design space exploration process that is called the Synthesis

Tuning System (SynTunSys). The system amounts to a new level of abstraction where the hu-

man designer offloads the DSE task to automated tools. SynTunSys has been fully implemented

and deployed during the design of an IBM high-performance 22nm server processor. A systematic

study of ∼200 macros during the actual processor design cycle shows that SynTunSys provides, on

average, 36% improvement in total negative slack and 7% power reduction. Further, it improves

the macro internal negative slack by 60%, on average. Since the tapeout of the processor design,

SynTunSys has been enhanced with SDSE algorithms in preparation for future processor design.

6.2 IBM Synthesis Tuning System

In order to perform automatically the tuning of synthesis parameters, SynTunSys constructs syn-

thesis scenarios, runs the synthesis jobs, analyzes the results, and iteratively refines the solutions.

The system employs parallel and iterative black-box search techniques to explore a design space

which has been reduced by prior expert knowledge. In doing so, SynTunSys can efficiently scale to

use the available resources in a compute cluster.

Figure 6.2 shows the SynTunSys architecture. We employ this system to tune the logical and

physical synthesis steps in a VLSI design flow. Although the architecture of the system is general

and could be applied to earlier steps (e.g. HLS) or later steps (e.g. routing) in a flow, we focus on

the logical and physical synthesis steps because they have more accurate timing/area/power models

(wrt HLS) and offer a stronger return on investment (ROI) of the compute resources (wrt routing).

SynTunSys consists of a main tuning loop that, at each iteration, involves running multiple synthesis

scenarios in parallel, monitoring the jobs in flight, analyzing the results of the jobs, and making

a decision for the next set of scenarios. A second background loop archives the results of all runs
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Figure 6.2: Architecture of the SynTunSys process. The program employs a parallel and iterative

tuning process to optimize macros.

from all macros, users, and projects. As described later in the chapter, this archive is a database

that can be mined for historical trends across multiple macros and to provide feedback in terms of

the performance of synthesis parameters.

The SynTunSys process begins at Point (1) in Figure 6.2 where the initial synthesis scenarios

are generated based on the following input data: (a) standard input data for circuit-level synthesis,

which typically include an RTL description, a physical abstract view providing macro boundaries,

pin locations, and timing assertions; (b) a “SynTunSys Rules” file specifying the primitives for the

design space exploration and a cost function describing the optimization goals, among other options;

and (c) a library of primitives that contains the detailed definitions of all potential exploration

options. More details on (b) and (c) are provided later in this section. At Point (2) in Figure 6.2,

multiple synthesis jobs are submitted in parallel to a compute cluster by issuing batch calls to

the underlying synthesis tool. Following this submission, SynTunSys starts a monitor process that

tracks the synthesis jobs (Point (3)). When either all jobs complete, or a large enough fraction of

jobs complete, or a time limit is reached, the monitor process initiates the collection and analysis

of the results of the parallel synthesis jobs (Point (4)). Based on the collected results, a decision

algorithm at Point (5) creates a new set of scenarios (synthesis parameter settings) to be run in the

next iteration. These new jobs begin with the initial input data and are again run in parallel, i.e. the
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Table 6.1: An example library of primitives

Primitive Name Primitive Description

restruct a Logic restructuring to reduce area

restruct t Logic restructuring to improve timing

rvt lvt10 Native RVT, allow 10% LVT

rvt lvt50 Native RVT, allow 50% LVT

vtr he High effort VT recovery

area he High effort area reduction

wireopt t Wire optimization for timing

wireopt c Wire optimization for congestion

next iteration does not modify the output of the prior iteration, but resynthesizes the macro from

the beginning. The process iterates as it attempts to improve upon results until an exit criteria is

met, e.g., the maximum number of user specific iterations is reached or the DSE algorithm exhausts

the targeted search space.

6.2.1 Initial Design Space Reduction

Parameters. Advanced synthesis tools can have a vast number of tunable parameters making

an exhaustive design space search infeasible. In our specific case, the synthesis tool we employ

has over 1000 parameters. These parameters span the logic and physical synthesis space and

the control settings for modifying the synthesis steps, such as: logic decomposition, technology

mapping, placement, estimated wire optimization, power recovery, area recovery, and/or higher

effort timing improvement. The parameters also vary in data type (Boolean, integer, floating

point, and string). Considering that an exhaustive search of only 20 Boolean type parameters leads

to over one million combinations, it is clear that intelligent search strategies are required.

Primitives. To reduce the ∼1000 multi-valued parameter space up front, we recast this DSE

problem to have a ∼100 Boolean parameter space. This design space reduction involves a one-time

offline effort to create a library of primitives. A primitive contains one or more synthesis parameters

set to specific values. Table 6.1 shows an example of a small primitive library. The actual primitive
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Figure 6.3: Illustration of the interaction of parameters, primitives, and scenarios. Primitives can

consists of one or more parameters.

library in our case consists of ∼300 primitives. In general, a primitive targets a singular action and

we use a short name for the primitive representative of the action. Thus, a SynTunSys primitive

is a binary decision, whereas setting one or more parameters individually may require many more

decisions.

Scenarios. SynTunSys ultimately creates scenarios consisting of one or more primitives that each

contain one or more parameters. These scenarios are then run by SynTunSys as batch calls to

the underlying synthesis tool. Figure 6.3 shows an example of the interaction between parame-

ters, primitives, and scenarios. Scenarios are assembled by selecting one or more primitives and

primitives contain one or more parameters set to specific values. The construction of scenarios is

not trivial, motivating the need for intelligent decision algorithms (see Section 6.3). In particu-

lar, some primitives are complementary, e.g., restruct t and wireopt t for timing optimization,

which however may require additional wireopt c to compensate for routability. Other primitives

are non-complementary, such as restruct t and area he; the former may upsize standard cells

for larger driving strength or duplicate downstream cells for smaller capacitance load, while the

latter may do the opposite changes for maximal area reduction. In practice, the optimal scenarios

are macro-specific with respect to a set of weighted design objectives. In fact, a universal scenario

recipe should not exist, as the default synthesis settings generally yield sub-optimal results (see

Figure 6.1).

The library of primitives was created based on the aggregate expert knowledge of many de-

105



Figure 6.4: Components of the SynTunSys Rules file: A) the primitives to be explored during

DSE; B) the cost function guiding the DSE; C) the search algorithm selection and configuration

parameters.

signers. Although SynTunSys provides an official and documented primitive library, designers can

extend it as needed to include new user-defined primitives. The official primitive library is also

periodically updated as either designers or EDA developers provide new primitives suggestions,

while primitives that have consistently performed poorly are removed.

To further reduce the design space to a reasonable size, independent of the size of the primitive

library, we selected a subset of primitives from the primitive library for a specific SynTunSys run.

The selected primitives are based on the optimization goals for a specific tuning run. As a rule of

thumb, the number of selected primitives is comparable to the number of synthesis jobs that can

be submitted in parallel to the compute cluster. The optimization goals and selected primitives for

a specific tuning run are conveyed via the SynTunSys Rules file.

6.2.2 Rules File and Cost Function

The SynTunSys Rules file contains configuration settings for a specific tuning run. Figure 6.4

shows examples of the key sections of the “SynTunSys Rules” file: A) the primitives to be explored

during the design space search; B) the cost function that will guide the DSE; C) the overall search

algorithm as well as the parameters to configure the search algorithm. These parameters can adjust

the effort level of the search as well as the exit criteria, and are often modified depending on the

available compute resources and/or the size of the macro.

Cost Function. The SysTunSys cost function is a key setting that conveys the optimization goals
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for the tuning run. It converts multiple design metrics into a single cost number, which allows cost-

ranking scenarios. The user composes the cost function from one or more metrics based on data

available from the results collection process. Examples of available metrics include: multiple timing

metrics, power consumption, congestion metrics, utilized area, electrical violations, runtime, etc.

The selected metrics are assigned weights to signify their relative importance. The cost function

example in Figure 6.4 is a balanced cost function in terms of timing, power, and congestion. Each

of the three metric categories has a total weight equal to three. The weight values in the timing

category are uniformly divided across the three specific timing metrics. The overall cost function

is then a normalize weighted sum of the m selected metrics, expressed by

Cost =
m∑
i=1

Wi ·Norm(Mi), (6.1)

where Wi is the weight of Norm(Mi), the normalized value of metric Mi across all the scenario

results in a SynTunSys run.

In practice, multiple instances of the Rules files are created a priori for a chip design project that

vary by cost function and search effort. Designers select an appropriate Rules file and optionally

modify it for their specific needs. Designers also have the option to add their own user primitives

to the search process, making the entire system expandable and customizable.

6.2.3 Tuning/Archiving Loops and Macro Construction Flow

The main tuning loop of SynTunSys begins when the monitor senses the completion of the current

synthesis jobs, i.e., Step (3) in Figure 6.2. This process includes a thresholding step that eliminates

scenarios with erroneous or missing results data and also scenarios that fail to meet minimum

design criteria, as specified by the designer. The resulting scenarios are all valid for cost analysis,

as described in the previous subsection. After cost ranking, an optional diversity enforcement

routine may be applied. This process ensures that there is diversity among the parameters driving

the DSE, e.g., primitives having higher cost than competitors across a dimension of the primitive

space may be removed. The decision engine is the final step of the main tuning loop. This step is

responsible for determining whether the process continues to a new iteration as well as the scenarios

for the new iteration. Section 6.3 describes multiple decision engines developed during the system’s

evolution.
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Running in parallel to the main tuning loop is a background loop that archives the results of all

runs in a database, i.e., Step (5b) in Figure 6.2. The archived data provides a history of all previous

runs that SynTunSys uses for multiple purposes. Archived data consists of high-level summaries

of the input Rules files, output synthesis results for the entire tuning run, and more detailed log

files from the synthesis runs. For this work we used the high-level summaries, but future work may

make use of all log files. One use of the archived data is to generate DSE scenarios from historical

primitive performance, represented by Arc (6b) in Figure 6.2. More details on this process are

given in Section 6.3.3. The SynTunSys Rules files are periodically updated based on analysis of

historical primitive performance. The historical performance is also useful feedback to the synthesis

tool development team.

The overall macro construction flow covers logic synthesis to post-route optimization, as Fig-

ure 6.5 illustrates. For our case, SynTunSys operates on the logical and physical synthesis steps, as

we see the highest ROI for DSE early in the post-RTL design flow; however, under other circum-

stances SynTunSys could include later steps as well. After SynTunSys, we employ a tailored design

flow that selects a subset of the most attractive scenarios based on SynTunSys results. These sce-

narios continue through the routing phase of the construction flow. After routing, a smaller subset

of scenarios is run through post-routing tuning algorithms and finally the top scenario is promoted

to production data.

6.2.4 Addressing SynTunSys Overhead

Since SynTunSys runs multiple parallel synthesis jobs and multiple iterations, it inherently has a

runtime and disk space overhead when compared to a single synthesis job. Knowing this up front,

we aimed at minimizing the overall latency of a tuning run (number of iterations), the total number

of synthesis jobs, and the disk space requirements for synthesis output data. These overheads, but

also the quality of results, naturally scale with the size of the exploration design space, i.e., number

of initial primitives and iterations.

The following section describes the SynTunSys decision algorithms for efficient DSE. Overall,

these algorithms reduce the number of SynTunSys iterations to about 3–5 iterations, leading to a

little over a 3–5X runtime increase versus a single synthesis run. Although this overhead may seem

costly, within the scope of a large multi-year design project it is quite tolerable and provides a
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Figure 6.5: Overview of the DSE-based macro construction flow.

high ROI for the following reasons. First, running SynTunSys is not necessary every time a macro

is synthesized; SynTunSys needs only to be run at certain points in the design cycle to locate

customized parameters for a specific macro; during subsequent synthesis runs, the SynTunSys

scenarios can be reused such that subsequent synthesis runs have no runtime overhead. Second,

SynTunSys is an autonomous system that does not require designer effort once initiated. Thus,

while the CPU runtime may be higher, the effort required from the designer is effectively the same

as a single synthesis run. Thus, the ROI in terms of designer effort is very high (see the results

presented in Section 6.4).

In terms of computing requirements, the algorithms described in the following section often

lead to about 100–200 synthesis jobs across 3–5 iterations. However, the overall SynTunSys disk

space footprint requirement is far less. SynTunSys minimizes the disk space usage by keeping only

necessary data from promising scenarios (lowest cost scenarios) and dynamically deleting all other

output data. This dynamic disk space recovery process often leads to a 75% reduction in disk

requirements, i.e., resulting in a 25–50X disk space overhead for the 100–200 synthesis jobs.
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Figure 6.6: The Base decision algorithm, where each colored bubble represents a primitive, a

horizontal sequence of adjacent bubbles represents a scenario, and “i” denotes the iteration number.

6.3 Decision Engine Algorithms

The SynTunSys decision engine and tuning algorithms are a key component of the system that

determines the number of tuning iterations and the scenarios to be run during each iteration, as

illustrated by Step (5) in Figure 6.2. The decision engine is also a component that can be upgraded

independently. The goal of the design engine is to solve the following problem.

Problem 4. Given a set of initial primitives, a cost function (the weights of Equation (6.1)), and

a constant N , return the N lowest-cost scenarios.

6.3.1 The Base Decision Algorithm

The initial SysTunSys decision algorithm, which we call the Base algorithm, was designed to emulate

the manual DSE process that the designers would employ in absence of an automated system. It is

a pseudo-genetic algorithm involving a survival of the fittest comparison (sensitivity test), followed

by a dense search using the top primitives, as illustrated in Figure 6.6.

This algorithm begins with SynTunSys reading the Rules file and launching an initial iteration

(i=0) consisting of one scenario for each primitive in the rules file. Each synthesis job in i=0

has only the single primitive enabled (1-hot), thus i=0 tests the sensitivity of each primitive as a

scenario. When the SynTunSys monitor senses the completion of the current iteration and the cost
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ranking is complete, the Base algorithm selects the top N (lowest cost N) scenarios as a survivor

set and proceeds to iteration 1 (i=1).

Iteration 1 generates a stream S1 of more complex scenarios, consisting of combinations of

primitives from the survivor set. The most common configuration is for each iteration i to generate

all possible combinations of i+1 primitives.

Although this algorithm fully searches the design space of the survivor set, one limitation is

that the size of the survivor set is often restricted due to compute resource requirements, i.e., the

possible combinations of the survivor set determine the total number of scenarios to be run. To

provide some relief to the issue of a restricted survivor set, an S2 stream of scenarios can also be

added to the i>0 iterations. These scenarios are an attempt to search beyond the survivor set. The

S2 scenarios are rule-based guesses, including: (1) combine the M lowest cost primitives (M > N ,

e.g. the middle S2 scenario in Figure 6.6), or (2) combine all the primitives that have lower cost

than the default primitive or another reference primitive, (e.g. the bottom S2 scenario). In addition,

the S2 scenarios also include the combination of all survivors (e.g. the top S2 scenario, which is

essentially the S1 scenario from the last iteration), thus speeding up the overall tuning process (see

“i=3” in Figure 6.6). Although the S2 scenarios were a late addition to Base algorithm to cover a

known deficiency, they provided a bridge to allow search capabilities outside the survivor set until

SDSE enhancements could be implemented.

6.3.2 The SDSE Learning Algorithm

Within the framework of the Base algorithm (i.e., a sensitivity test followed by iterative combination

of scenarios), we present an SDSE decision algorithm, which we call the Learning algorithm. The

Learning algorithm addresses two deficiencies of the Base algorithm: (1) a non-constant scenario

count per iteration, which underutilizes parallel-computing resources for running multiple synthesis

jobs, and (2) a search space restricted to the survival set, which was previously relieved by static

search rules (the S2 scenarios), as described in Section 6.3.1. In contrast, the Learning algorithm

always selects a constant number k of scenarios in each iteration as parallel synthesis jobs (i.e. max

utilization), and dynamically adapts to the k scenarios that are more likely to return lower costs

(i.e. adaptive exploration).

Figure 6.7 illustrates the main idea of the Learning algorithm. Following the sensitivity test
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Figure 6.7: Illustration of the Learning decision algorithm.

(i=0) on the initial primitives (each as a scenario), the Learning algorithm estimates the cost of

an unknown composite scenario by taking the average cost of its contributing scenarios as a cost

predictor. For example, to estimate the cost of a scenario that comprises three primitives (shown in

blue, red, and yellow), the Learning algorithm calculates the average cost of the three contributing

scenarios that comprise the blue, red, and yellow primitives, respectively. The estimation is effective

when the contributing scenarios are complementary. The max number of contributing scenarios to

be evaluated is limited to a user-defined combination order (3 is used in Figure 6.7), so that the

total number of scenario combinations would not explode to make the cost estimation infeasible.

After the cost estimation, the Learning algorithm selects the top-k composite scenarios with the

lowest estimated costs (i.e. a potential set) and then submits k parallel synthesis jobs with the

selected scenarios. The estimation-selection-submission process repeats for every iteration until an

exit criterion is met (e.g., the maximum value of i is reached).

The Learning algorithm leverages the iterative process to continuously refine its cost-estimation

accuracy on non-complementary combinations. Specifically, at any iteration i, whenever a com-

posite scenario, say “A+B”, was predicted good (i.e. low cost) and selected for synthesis, but the

synthesis result turned out to be bad (high cost), then the algorithm “learns” the actual effec-

tiveness of combining scenarios A and B, and therefore at future iterations (>i) will demote any

composite scenario that involves “A+B” (because as a unique contributing scenario, the cost of

“A+B” is high). In summary, the Learning algorithm uses cost estimation to avoid non-promising

scenarios and refines its estimation after learning the actual synthesis results.
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Figure 6.8: Cost estimation process for the Learning algorithm.

Moreover, in order to better estimate the cost based on non-trivial contributing scenarios (i.e.,

scenarios comprising more than one primitive), the Learning algorithm also includes a fine-grained

cost estimation. For instance, as shown in Figure 6.8, given two scenarios, s1 = (blue + red) and

s2 = (blue + yellow + green), the Learning algorithm regards the average cost of s1 and s2 as the

coarse-cost, and additionally considers a fine-cost which is defined as follows. The fine-cost is the

average cost of the reference scenarios that have been run in previous iterations and include a pair

of primitives, such that one primitive comes from s1 and the other from s2 (see pair-1 and pair-2

in Figure 6.8). The scenarios listed to the left of pair-1 and pair-2 are the reference scenarios that

include these pairs. Therefore, the fine-cost of s1 and s2 is the average cost of such listed scenarios.

Overall, the cost-estimation function of the Learning algorithm is a weighted sum of the coarse-

and fine-cost with a weighting factor α for the coarse-cost and a factor (1 − α) for the fine-cost,

where 0 ≤ α ≤ 1. For determining α we used the formula α = βi−1 where 0 < β < 1 and i is

the number of the current iteration. When i increases (and α decreases at a speed controlled by

β), the Learning algorithm puts less weight on the coarse-cost, but more weight on the fine-cost.

The rational is twofold: (1) as i increases, the reference scenarios comprise more primitives and

(2) more reference scenarios become available. Figure 6.8 shows the change in α with increasing i,

given β = 0.9.
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Figure 6.9: Illustration of the Jump-Start sensitivity test.

6.3.3 The SDSE Jump-Start Sensitivity Test

Another SDSE enhancement to the SynTunSys decision engine targets the reduction of the overhead

of the sensitivity test, i.e., iteration i=0. The enhancement employs the archived data from prior

SynTunSys runs on different macros. It can be applied to both Base and Learning algorithms. We

use the Base algorithm to present the idea of the enhancement.

The default sensitivity test of the Base algorithm provides three levels of tuning effort: low,

medium, and high, featuring 19, 38, and 54 initial primitives, respectively. In order to increase

the efficiency of the sensitivity test (i.e., to approach the higher-effort exploration result based on

a lower-effort sensitivity test), we present the Jump-Start test. The Jump-Start test is based on

the archived high-effort tests from other macros. As illustrated in Figure 6.9), the idea is to run

a low-effort sensitivity test for the current macro as a pseudo test TL, and to take TL’s ranking

of the initial primitives as a signature. Then, the Jump-Start test retrieves, from the archive, a

high-effort test TH which has the most similar primitive ranking to TL’s signature. Finally, the

Jump-Start test adopts TH ’s primitive ranking as the outcome of the sensitivity test and then uses

the retrieved primitives to kick off the search iteration (i=1). The final exploration result should

improve if the number of primitives in TH is greater than that in TL, and the primitive rankings

(signatures) of TH and TL are very similar.

We measure the similarity between two signatures using the Length of Longest Common Sub-

sequence (LLCS) metric. Each signature is represented by a sequence in the order according to the

primitive ranking. For example, given primitives in [a . . . z], the longest common subsequence of two
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signatures < a, b, c, d > and < a, f, d > is < a, d > with LLCS equal to two. Figure 6.9 illustrates

a low-effort sensitivity test TL with six primitives, while in the archive the high-effort sensitivity

tests with more than six primitives are identified and sorted according to their LLCS with respect

to TL’s signature. Among these high-effort tests, TH #1 has the maximum LLCS (five). Thus, the

complete sensitivity-test result of TH #1 is taken to kick off the first search iteration (i=1).

As a tie-breaker for selecting among TH ’s with equal LLCS, we favor the TH that includes more

high-ranking primitives, e.g., TH #3 is considered more similar to TL than TH #2 in Figure 6.9.

6.4 Experimental Results

We describe the use of SynTunSys during the design of an IBM high-performance server pro-

cessor [182] in a 22nm technology. The processor underwent two chip releases (tapeouts) over

a multi-year design cycle. The chip consists of a few hundred macros that average around 30K

gates in size, with larger macros in the 300K gate range. SynTunSys was applied during both

tapeouts, but with slightly different usage models. Also, at the time of this chip design, only the

Base tuning algorithm was available, as most of the SynTunSys development effort involved scaling

to widespread use across a large design team. In Sections 6.4.2 and 6.4.3, we validate the SDSE

enhancements to SynTunSys on macros from the production processor.

6.4.1 Application to an IBM 22nm Server Processor

During the first chip release, a dedicated SynTunSys team performed tuning for hundreds of macros

across the chip. In parallel, a number of designers further tuned the macros they owned, as needed.

Based on the efforts of the dedicated tuning team we were able to track SynTunSys results on

approximately 200 macros from the processor. The “pass 1” rows of Table 6.2 show the average

improvements achieved by SynTunSys over the best solution previously achieved by the macro

owners for the first chip release. Note that these results are based on the routed macro timing and

power analysis; in most cases the best known prior solutions included manual parameter tuning

by the macro owner. The first chip release of the processor targeted a very aggressive cycle time

and SynTunSys was typically applied for timing, power, and congestion improvement. The first

pass of SynTunSys resulted in a 36% improvement in total negative slack, a 60% improvement in
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Table 6.2: Average SynTunSys improvement over best known prior solution based on post-route

timing and power analysis

SynTunSys Pass (Chip Release) Latch-to-Latch Slack Total Negative Slack Total Power

Improvement (%) (%) (%)

Pass 1 60 36 7

Pass 2 24 2 3

Sum of 200 macros (ps) (ps) (arb. units)

Pre-pass 1 -1929 -2150385 17770

Post-pass 1 -765 -1370731 16508

Sum of 25 macros (ps) (ps) (arb. units)

Pre-pass 2 -260 -185087 3472

Post-pass 2 -198 -180896 3379

worst latch-to-latch slack (macro internal slack), and a 7% power reduction. The actual values of

the metrics, summed across all the macros, underscores that the changes in the absolute numbers

were significant. In terms of timing, the summed values are in picoseconds.

Following a successful use of SynTunSys during the first chip release, the design requirements

for the second chip release included a second SynTunSys tuning run by the macro owners to further

improve timing and power. These second-pass tuning runs build off the prior tuning run results

to further search the design space. In some cases the macro logic was also quite different in the

second chip release, leading to a different design space. In these cases we had a less controlled

study, but wider usage by macro owners. Based on data from 25 macros (Table 6.2, “pass 2”) we

still see considerable improvements after the second SynTunSys pass on macros during the second

chip release. While latch-to-latch slack improved by 25% and power was reduced by 3% (about

half the rate as the first-pass tuning run), we believe the total negative slack reduction was gated

by overly aggressive boundary assertion timing constraints.

While we saw a highly successful deployment of SynTunSys to a production processor design,

we noted many potential enhancements to the system that could improve prediction performance

and efficiency for future designs. In the following subsections we describe the SDSE enhancements
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Table 6.3: Macros for Tuning Learning-Based Algorithms

Macro Datapath Modeling Accuracy # Gates

1 Yes Gate-level 16K

2 Yes Transistor-level 3K

3 No Gate-level 13K

4 No Transistor-level 18K

that we achieved since the second processor tapeout.

6.4.2 Learning vs. Base Algorithm Results

The new Learning algorithm provides a number of configuration settings that can be fine-tuned to

improve its performance. In this subsection we compare various configurations against the Base

algorithm on a set of representative medium-sized macros to find the top settings for the Learning

algorithm. We then compare the winning Learning algorithm with the Base algorithm on larger

macros.

Table 6.3 lists the set of macros used for the comparisons. These macros feature a mix set

of datapath vs. non-datapath types and gate-level vs. transistor-level accuracy for cost modeling.

They also come from different units of a processor core. Overall, these macros pose completely

different challenges to the synthesis tool.

Our experiments consider a relatively balanced cost function in terms of timing, power, and

congestion, by putting a weight of 4 (36%)to total power consumption, 4 (36%)to multiple timing

metrics, and 3 (27%)to congestion (for routability). The multiple timing metrics include total

negative slack, worst overall slack, and worst latch-to-latch slack.

Table 6.4 shows the configurations of the algorithms for comparison. We let each Learning-

based algorithm run for three iterations in addition to the sensitivity test. Thus, with the same

total iteration count (i.e., 4, which is the latency of the exploration processes), the total scenario

count (excluding the sensitivity test) of each Learning-based algorithm can be 3×20 = 60, whereas

the total scenario count of the Base algorithm is inherently restricted to C5
2 +C5

3 +C5
4 +C5

5 = 26.

Note that in this experiment each algorithm explores 19 initial primitives.
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Table 6.4: Algorithm Configuration

Algorithm Survival/Potential Set Size Combination Order Cost Estimation

Base 5 2 None

Learning2 20 2 Coarse

Learning3 20 3 Coarse

Learning3+ 20 3 Coarse + Fine

Figure 6.10: Results comparing the Base vs. Learning algorithms.

We compare these algorithms in terms of the average cost of their final top-N results, with

N ∈ {1, 5, 10}. When comparing two algorithms, we put all explored results from both algorithms

together and calculate the cost of each result according to the balanced cost function. Figure 6.10

shows the cost comparison (the lower the better), where Learning-based algorithms are each com-

pared with Base (i.e., Base as 1.0). Overall, the winner is Learning3+, which consistently outper-

forms Learning3, which in turn outperforms Learning2. The Learning3+ victory over the other

Learning algorithm variants can be conceptually justified with two hypotheses: 1) the higher com-

bination order allows exploring scenarios that combine more primitives during earlier iterations and

2) the addition of the Fine-Cost component in the cost estimation does indeed improve prediction

accuracy. Note that all the Learning-based algorithms outperform the Base algorithm regardless

of the cost-prediction functions or combination setting. This result validates the idea of adaptive

exploration, which differentiates the Learning-based algorithms from Base.

Furthermore, we compare the Learning3+ algorithm directly against Base on the largest test
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Figure 6.11: Iteration-by-iteration costs: Learning3+ vs. Base.

macro (Macro 4), and let Learning3+’s potential-set size vary in {20, 15, 10}. This means that

the total scenario count (excluding the sensitivity test) for Learning3+ varies in {60, 45, 30}. The

iteration-by-iteration cost comparison is shown in Figure 6.11, where the cost of Base is normalized

as 1.0. We can see that Learning3+ outperforms Base even with an equal number of scenarios.

Moreover, Learning3+ not only wins, but wins by a larger margin as the number i of iterations

increases (see the trend indicated by the red arrows).

With the same balanced cost function, now we compare Learning3+ against Base on a test suite

of 12 macros spanning a variety of sizes. These 12 macros range in size from 1K to 110K gates, with

an average size of 31K gates, which is the same average macro size as the server processor. The goal

of this study is to validate and quantify the Learning3+ improvements over Base. In order to push

the exploration results further, we considered 49 initial primitives. In addition, Learning3+ ran for

5 iterations besides the sensitivity test, and Base considered the 6 best primitives for its survivor

set. Thus, the total scenario count (excluding the sensitivity test) of the Learning3+ can be 20×5 =

100, whereas the total scenario count of Base is inherently restricted to C6
2+C6

3+C6
4+C6

5+C6
6 = 57.

Note, however, that the maximum scenario count per iteration of these two algorithms is the same

(i.e., 20 or C6
3 ), which is the max throughput of the exploration processes.

The exploration results are summarized in Table 6.5. For this study we did not route the

macros and, therefore, we report only post-synthesis statistics. In lieu of routing, we include a

routability metric called route-score, in which a lower value denotes less congestion and a more

routable macro. Over all the metrics, the results reported in Table 6.5 are in the same average
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Table 6.5: Comparison of Learning3+ and Base algorithms across a 12 macros test suite that is

representative of a larger processor

Timing Power Routeability

Worst Slack Latch to Latch Slack Total Negative Slack Total Power Route Score

Improvement (%) (%) (%) (%) (%)

Base 24 43 42 11 46

Learning3+ 35 70 62 10 43

12 macro sum (ps) (ps) (ps) (a. u.) (a. u.)

Default -256 -105 -77505 1125 129

Base -195 -60 -45104 1003 69

Learning3+ -167 -32 -29138 1007 74

improvement range for the Base algorithm as the results reported for the industrial processor design

in Table 6.2. However, the Learning3+ algorithm achieves an additional 20% total negative slack

improvement over the Base results as well as significant improvements across all timing metrics.

On the other hand, the power and congestion improvements are essentially the same for the Base

and Learning3+ algorithms. Note that if further power or congestion improvements were desired,

increasing the weight of these metrics in the cost function is one avenue.

In terms of how results may differ across macros, Figure 6.12 provides a macro-by-macro break-

down of the percentage of change for each metric category in the cost function. In an attempt to

simplify the plot, the improvements of the three timing components are averaged for a single timing

improvement factor. The plot shows only one macro that suffers a degradation (macro H) with the

Learning3+ algorithm, while three macros do so with the Base algorithm. Note that degradation

in the route-score can often be tolerated, if the initial macro has low congestion.

To provide a visual representation of the explored design space during a SynTunSys run, we

plot the design space of the two largest macros in Figure 6.13. These plots show total power (top

row) and a route-score (bottom row) vs. total negative slack (all values normalized). The less

the power/route-score/negative-slack, the better the quality of result (i.e., the optimization goal

is the lower-right corner of the plots). We can see that Learning3+ effectively optimizes all the

three metrics for macro K. The results also illustrate that Learning3+ indeed adapts to the more

promising design space: the “i=5” dots are more focused on the lower-right region of the spaces
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Figure 6.12: Macro-by-macro breakdown of Learning3+ vs. Base.

than the “i=3” dots. On macro L, Learning3+ adapts to optimizing the timing and power, whereas

the Base algorithm finds solutions with better route score. Nevertheless, if we compare the best

macro L based on the balanced cost function (Figure 6.12), Learning3+ actually outperforms Base

in each metric, including route score. Overall, both algorithms achieve better results than the

default scenario.

6.4.3 Jump-Start Sensitivity Test Exploration

Next, to explore the effectiveness of the Jump-Start sensitivity test, we use the same set of smaller

macros listed in Table 6.3, and compare it against the standard sensitivity test. For this study we

use the Base algorithm for the comparison; however, since the Base and Learning algorithm rely

on the same initial sensitivity test, the results of this study are representative of both algorithms.

The Jump-Start test is based on an archive of hundreds of high-effort sensitivity tests. By default,

the low-effort and high-effort Base algorithms are given 19 and 54 initial primitives, and search in

survival sets of size five and six (corresponding to total 19 + 26 = 45 and 54 + 57 = 111 scenarios

to be explored), respectively.

Figure 6.14 shows the cost comparison between the default low-effort Base algorithm (whose cost

is normalized as 1.0) and the low-effort Base algorithm with Jump-Start sensitivity test. Though

with the same actual scenario count (45), the Base algorithm with Jump-Start can outperform
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Figure 6.13: Power (top row) and Route-Score (bottom row) vs. Total Negative Slack for large

macros K (left column) and L (right column).

the default Base algorithm, thanks to the high-effort primitives retrieved from the archive. The

improvement does not require an actual high-effort tuning run, which needs 111 scenarios in total.

The reduced effort (i.e. reduced turn-around time) is particularly useful for early design evaluation,

e.g., when the logic design is still under significant change.

6.5 Remarks

Related Work. SynTunSys addresses a black-box parameter tuning problem for logic and phys-

ical synthesis. Black-box search is a common problem seen across a number of fields, e.g., Arcuri

and Fraser look at the problem in terms of software engineering [10]. This problem has also

been approached using a number of techniques, e.g., genetic programming [16] and Bayesian opti-

mization [181]. Similarly, black-box parameter tuning problems have been explored for high-level
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Figure 6.14: Average cost comparison between the Just-Start test vs. the Base test (Base as 1.0).

synthesis (HLS), e.g. [197]. However, to our knowledge, SynTunSys is the first self-evolving and

autonomous parameter tuning system for logic and physical synthesis levels. Furthermore, whereas

many problem formulations involve a sequential process for parameter tuning, SynTunSys performs

both a parallel and iterative DSE to reach attractive solutions with relatively low latency.

Concluding Remarks. By taking over the process of tuning the input parameters and by learning

automatically from the information of previous synthesis runs, SynTunSys realizes a new level of

abstraction between designers and tool developers. The application of SynTunSys to an IBM 22nm

high-performance server processor yielded on average a 36% improvement in total negative slack and

a 7% power reduction. SynTunSys has been further enhanced with SDSE algorithms in preparation

for future processor projects. This work opens new avenues of research such as automatic feature

extraction of parameters and primitives for design-space reduction and enhanced mining of archived

data to improve scenario combinations.
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Part III

Extending Supervised Design-Space

Exploration
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Chapter 7

Code Refactoring with Frequent

Patterns

The SDSE frameworks presented in Parts I and II fully rely on synthesis tools for the DSE process.

This requirement incurs the following limitations, especially for the HLS-based frameworks.

Limitation 1. HLS takes an IP specification as a fix input; thereby its HLS-explorable design space

is intrinsically confined by the synthesis knobs that are applicable to the specification. However,

there are few existing works on enhancing the IP reusability at the functional specification level,

i.e., by restructuring the design specification to provide better DSE starting points.

Limitation 2. Most commercial HLS tools suffer from limited Quality of Result (QoR). The

QoR is limited to what is achievable with the scheduling and binding on primitive operations (such

as additions, multiplications, etc), as opposed to composite operations (aka patterns; a pattern is

composed of multiple primitive operations). However, pattern-based optimization has long been

proven successful at different abstraction levels, e.g., technology mapping [99] and logic transfor-

mation [107], thanks to the common structural regularity in digital design. In this regard, the HLS

solution space covered by patterns turns out to be hardly reachable by most commercial tools.

Limitation 3. We have shown that commercial HLS tools suffer from long runtime in Chapters 3

and 5. Although SDSE frameworks can reduce the number of HLS jobs for DSE, the HLS tool

runtime per se does not changed. Therefore, in the worst case the aggregated HLS runtime may

still explode to make the DSE process infeasible.
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Figure 7.1: Enhanced DSE with HLS using automatic and interactive processes.

7.1 Problem Description

To address the aforementioned three limitations, we define the problem of Code Refactoring for

Enhanced Design Exploration with High-Level Synthesis as follows.

Problem 5. Given a synthesizable C-based specification, refactor it such that its HLS-explorable

design space is enhanced for greater IP reusability, better HLS QoR, and less HLS runtime.

Fig. 7.1 illustrates the motivations behind Problem 5. In the context of HLS, an automatic-

DSE process (e.g. [98; 112; 160]) finds the best knob configurations for running HLS on a given

design specification, in order to discover its Pareto front. Fig. 7.1 shows three such automatic-

DSE processes in a cost-vs.-performance design space. Each of these processes starts with a unique

version of a design specification. These versions (Ver. 1–3) differ in their code structure, but preserve

the same functional behavior, thereby exposing different opportunities for knob applications. On

the other hand, code refactoring [70] has long been a common practice in software engineering for

improving software quality, but is now becoming popular for hardware description [172; 194]. By

applying code-refactoring to DSE, we aim at pushing the design frontier (i.e. the IP reusability and

the HLS QoR), e.g., from Ver. 1 to Ver. 2 to improve mostly the performance or from Ver. 1 to

Ver. 3 to reduce mostly the cost. In addition, Ver. 1 and 3 should each require less HLS runtime

compared with Ver. 1.

The fundamental novelty of Problem 5 with respect to related research problems is that we

focus on the optimization of the design specifications as opposed to the synthesis engines. After

all, it is the optimized specifications that are reused across SoCs/design-teams/system-companies,
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not the (so many) HLS tools. As a major contribution, we point out this critical missing piece for

enhancing DSE with HLS and promoting soft-IP reuse. Other contributions are listed as follows.

• We propose an interactive-DSE methodology to enrich the design space that HLS tools can

explore. Our methodology does so by suggesting code-refactoring options to designers, so that

the starting point of the DSE process can improve, without changing design functionalities

and HLS engines.

• As a concrete realization of our interactive methodology, we present a code-refactoring design

flow based on automatic pattern discovery. In the flow, frequent patterns are to be regrouped

into custom C function calls. By doing so, HLS engines can be unleashed to schedule and

bind each of these function calls as a composite operation. Moreover, we present a pattern-

discovery tool (whose prototype implementation is described in Appendix A.4) to identify the

top-k patterns that appear frequently in a given design.

• By optimizing the design specification, our methodology makes the optimization result avail-

able in a soft-IP form, which can work seamlessly with most C-based commercial HLS tools.

In fact, there were up to 17 commercial HLS products available in 2014 [1] and most of them

do not offer in-synthesis pattern discovery. Therefore, an HLS-agnostic methodology like ours

can have a general impact.

7.2 A Code-Refactoring Design Methodology

Fig. 7.2 shows a simple example to motivate the idea of code refactoring. The original specification

is shown in Fig. 7.2(a) and we assume that each primitive operation (’∗’, ’+’, and ’≫’) takes

one clock cycle. For the original specification, a heuristic scheduling algorithm such as the List

algorithm [52] may generate a schedule as the one shown in Fig. 7.2(b). In this schedule, although

the multipliers in cycles C1 and C2 can be shared to save circuit area, this sharing would require a

multiplexer to choose the right input (x∗2 or 2∗m) for the adder that is shared in cycles C3 and C5.

Instead, if the multiplier in cycle C1 were scheduled to cycle C2, we could remove the multiplexer

because the multipliers for “x ∗ 2” and “2 ∗m” would become the same one by safely overwriting

the register that stores the multiplication results. Note that the total numbers of multipliers and
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Figure 7.2: (a) Example original specification. (b) A sub-optimal schedule for the original specifi-

cation. (c) Suppose that a frequent pattern consisting of two multipliers plus an adder is selected.

Accordingly, we can refactor the specification with a customized function call mac, which is essen-

tially a composite operation if mac is not inlined during HLS.

adders are not changed for these two different schedules. The later (better) schedule, however,

requires the prior knowledge of a pattern that consists of the two multipliers and the adder. To

achieve this better schedule, we can guide the HLS heuristic by customising a function call mac

that is essentially the pattern composed of two multipliers and an adder, and then refactor the

original specification by calling mac properly, as shown in Fig. 7.2(c). Thus, the HLS heuristic

could avoid the local optima by first synthesizing mac, followed by the synthesis of the code that

calls mac using a reduced number of multiplexers (Advantage 1).

The refactoring can also bring other advantages in addition to area saving. First, the refactoring

may help HLS escape from local optima in terms of design performance (e.g. clock periods) as well

(Advantage 2). The potential performance improvement is again caused by the heuristic nature

of HLS algorithms. The change of the code structure corresponds to perturbing the input to the

HLS, i.e. jumping to different starting points from a local search perspective [44]. Although the

performance improvement is not guaranteed, the refactoring does not deteriorate the design at all,

because the original specification can be completely recovered by inlining the custom functions.

Second, the refactoring with patterns could also save HLS runtime (Advantage 3). The potential

runtime saving comes from hierarchical synthesis that treats patterns as composite operations [27].

With hierarchical synthesis, the total number of operations to be scheduled can be reduced, i.e.
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Figure 7.3: A code-refactoring design methodology for enhanced DSE with HLS.

the problem size for HLS scheduling can be shrank. For example, the six multiplication/addition

operations shown in Fig.7.2(a) become twomac operations for themain function in Fig. 7.2(c). Note

that the reduction applies to wherever mac is called, so the aggregated reduction can be significant.

Finally, Advantages 1 and 2 combined could result in a better Pareto front as already illustrated in

Figure 7.1. However, with the current HLS technology the Pareto-front optimization is not portable

unless all the HLS tools feature in-synthesis pattern discovery (which is patent-protected [93]) or

there is a dominating HLS tool with that feature (which is currently not true [1]). On the other

hand, code refactoring can provide an alternative solution for preserving and spreading the desired

optimization, since a properly-refactored design specification can be reused to expand the HLS-tool

explorable design space (Advantage 4). To our knowledge, there is no prior work on improving

the IP reusability with high-level specification languages.

To maximize the odds of the aforementioned advantages, we need to identify frequent patterns in

the original specification and use them to refactor it properly. Based on this principle, we propose

a code-refactoring methodology, as shown in Fig. 7.3, which consists of the following steps.

(A) The starting point is a C-based design specification of the IP core that can be synthesized

by HLS tools. An HLS tool takes the specification and generates an intermediate represen-

tation that is used for resource allocation, scheduling, and binding. A common intermediate

representation is a set of data flow graphs (DFGs) [52].

(B) A set of trial HLS runs are done for profiling the to-be-mapped resources in terms of their
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implementation costs (area/power/etc.) under tight and loose timing constraints. The goal is

to obtain the extreme operating conditions of each type of resources. The conditions are quite

dependent on the implementation platforms (ASIC vs. FPGA), IP libraries, and technology

nodes.

(C) The top-k frequent patterns (composite operations) are identified. The selection criterion is

based on the number of DFGs that include a pattern. A pattern that appears in more DFGs

has more chances to be shared across the DFGs, thereby reducing its total implementation

costs. A list of k pattern suggestions with their appearances in the source code is presented

to the designer.

(D) The designer selects patterns from the top-k list, considering their potential return of in-

vestment based on the analysis from Step B. If a less frequent pattern needs larger or more

power-hungry resources, then the designer should re-rank the pattern to a higher position for

potentially better cost reduction via resource sharing. We present other selection guidelines

later in Section 7.2.1. At the end of this step, each of the selected patterns forms a customized

function call. The original design specification is then refactored with these function calls as

shown in the example of Fig. 7.2. The customized function calls will be treated as composite

operations if the calls are not inlined during HLS, thereby enabling coarse-grained optimization

and hierarchical synthesis.

(E) The selected patterns can be separately optimized via aggressive custom design or mapped to

existing in-house or third-party IPs. This step is optional, depending on the available design

efforts. Alternatively, the patterns can still be implemented via HLS.

(F) The final DSE process can be done via exhaustive search in a knob-configuration space on

small/medium designs or via advanced techniques (e.g. [8; 11; 18; 77; 85; 98; 112; 145; 165;

160]) on medium/large designs. If there are more patterns available for alternative or further

refactoring, the designer can go back to Step D; otherwise, stop here.

The methodology leverages the expertise of designers whose insights are critical for pattern

selection as we discuss in Section 7.2.1. For the actual code refactoring, there exist automatic C-

function-extraction tools such as Klockwork [2], but even manual refactoring with a pattern takes
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only minutes for practical designs (see other manual refactoring examples in [172] for reference on

the refactoring effort). For Step C, we developed an automatic pattern-discovery tool for assisting

the analysis, which would otherwise become the productivity bottleneck in the methodology. Our

pattern-discovery algorithm is presented in Section 7.3, following the presentation of the pattern-

selection guidelines in the next subsection.

7.2.1 Pattern Selection

By applying our methodology to many experiments, we have learned the following practical guide-

lines for pattern selection.

(1) Through trial HLS runs, we observed that multipliers and adders contribute the most to the

overall implementation area, whereas other resources are smaller than multiplexers. Since

to share resources incurs additional multiplexers, sharing resources that are way too small

leads to suboptimal micro-architectures. Hence, the selected patterns should include at least a

multiplier, an adder, or a complex composition of other resources.

(2) It is not worth considering patterns with mostly constant inputs because modern HLS front-end

can perform aggressive resource optimization via constant propagation and variable life-time

analysis. For instance, consider a pattern ROT(x, n) that rotates a 32-bit integer x by n bits:

(x << n)|(x >> (32−n)). If this pattern are only called as either ROT(x, 5) or ROT(x, 30), the

parameter n is essentially constant and therefore can be optimized away. However, patterns

that include constant operands internally are generally fine, as HLS can still optimize their

implementation. For instance, the pattern ROT(x, n) is fine if both its parameters are unknown

at the compile time.

(3) It is not worth regarding two patterns as identical if their function is the same but their input

bit widths are very different (for example, differ by more than 8 bits). In this case, pattern

sharing would force redundant area/power for unnecessary bits.

(4) It is worth prioritizing patterns that reside in major loop bodies. A major loop is usually

the computation bottleneck in an application, and the manipulation of the loop (by breaking,

unrolling, and pipelining) can generate a rich set of micro-architecture alternatives that offer
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various degrees of resource sharing for the loop body [112; 165; 160]. In this case, a pattern

sharing across the loop iterations can be especially effective in HLS QoR/runtime improvements.

(5) Non-trial refactoring opportunities can help. Fig. 7.4 shows a non-trial refactoring example

from a double-precision floating-point application (dfsin, one of the benchmarks used in our

experiments). The example includes a function func in the original specification as shown in

Fig. 7.4(a). Suppose that we are given a pattern that is represented by the top2 function in

Fig. 7.4(b) and that the top2 pattern is already frequent outside the function func. At first

glance, the “if” statement of function func in Fig. 7.4(a) seems unable to be refactored with

top2 because (i) the less-then and the less-than-or-equal-to comparators are not equivalent and

(ii) the left-shifting results are taken in different orders by the comparators, which are not

commutative operations. However, a refactoring with top2 turns out to be possible if we apply

the following transformation steps: (i) negate the predicate of the “if” statement in Fig. 7.4(a)

as shown by the comment S1 below the function func, (ii) refactor the negated predicate with

the top2 function as show by S2 below func, and then (iii) remove the negation and restructure

the if-else statements to produce the refactored func as in Fig. 7.4(b). Thus, the sharing

opportunity of top2 can be increased without incurring extra operations (such as negation)

or dramatically changing the control flow. Our experimental results for this benchmark show

significant QoR improvements by the refactoring with top2.

(6) Complex patterns are not necessarily better. The more complex is a pattern, the less frequent

it appears in the whole design. Therefore, the sharing opportunities of a complex pattern can

be less than those of a simpler pattern. Conversely, a simpler pattern can offer more effective

optimization opportunities than a complex pattern. The final effectiveness should account for

other guidelines such as 1 to 5. Our experimental results also confirm this observation.

We argue that there does not exist a universal cost function that can model all the above guide-

lines with perfect weighting factors. Especially in our problem setting, which is general and HLS-

tool agnostic for maximal IP reusability, the designer’s expertise would be extremely valuable for

the pattern selection process. In this regard, our methodology lets the refactoring-recommendation

tool narrow the design choices down to a human-manageable subset and then allows the design

expert to make the final selection.
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Figure 7.4: (a) Example original specification. Under func body, we list two transformation steps

S1 and S2 that derive equivalent “if” statements to the original “if” in func. (b) A refactoring of

func with top2.

7.3 Pattern Discovery Algorithms

A common intermediate representation of HLS is a set of data-flow graphs (DFGs), where a graph

node represents a primitive operation (e.g. addition, multiplication, etc.), and graph edges denote

the sequences of operations translated from a given design specification [52]. Top-k Pattern Discov-

ery is the task of identifying the k subgraphs which correspond to those patterns that are present

in the highest numbers of DFGs. The rationale is that the more frequent a pattern is, the more

likely it can be shared across multiple DFGs by properly multiplexing the inputs to the pattern.

The pattern-discovery task is similar to the following Frequent Subgraph Mining task taken from

Data-Mining research [188]:

Task 1. Given a set D = {G0, G1, . . . , Gn} of n graphs, support(g) denotes the number of graphs

(in D) in which g is a subgraph. Find any subgraph g such that support(g) is at least as big as a

given minimum support threshold.

To reduce the top-k pattern-discovery task to Task 1, we can take the following naive procedure:

(i) set the minimum support threshold to be equal to two, (ii) sort all the returned subgraphs by

their support values, and (iii) pick the top-k subgraphs as the patterns. However, since task 1

is computationally intractable [188], this naive procedure is inherently inefficient. In practice,

in the field of Data Mining there exist various algorithms working well for task size |D| up to
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Figure 7.5: An example DFS-Code Tree.

several hundreds, with each Gi ∈ D including several tens of nodes and edges. Among the popular

algorithms, gSpan [188] stands out for several good properties, which can be leveraged to further

enhance the algorithm for fast top-k pattern discovery.

7.3.1 The gSpan Algorithm

When performing a depth-first search (DFS) on a connected graph, the discovery times of the graph

nodes forms a linear order [44]. As a result, a connected graph can be encoded with this order,

aka DFS code [188]. But there can be multiple DFS codes for one particular connected graph.

Hence, gSpan introduces a DFS lexicographic order among subgraphs and maps each subgraph to

a minimum DFS code as its canonical representation. Two subgraphs are isomorphic if and only if

their minimum DFS codes are identical [188].

Using the DFS-code representation, gSpan searches in a DFS-Code Tree for frequent subgraphs.

An example DFS-Code Tree is illustrated in Fig. 7.5. Each node in the tree contains a DFS-code

representation and a list of DFGs that include the DFS code as a subgraph. In addition, a node

at depth i corresponds to a subgraph with i edge(s). Thus, the root node contains an empty

subgraph and a list of all the DFGs; each depth-1 node corresponds to a one-edge subgraph and

a list of DFGs that include the one-edge subgraph. By the DFS lexicographic order, gSpan can

systematically enumerate valid child nodes for each parent node and then generate their lists of

DFGs accordingly.
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Property 1. [188] The pre-order traversal of DFS-Code Tree follows the DFS lexicographic order.

According to Property 1, as long as a tree node p′ is not minimum (in terms of the DFS

lexicographic order [188]), p′ (and all its descendant nodes) can be pruned away during the traver-

sal, because there must exist a minimum node p that is isomorphic to p′ and has been tra-

versed/enumerated (see Fig. 7.5). The combined enumeration and pruning scheme avoids the

Subgraph Isomorphism Test, which is NP-complete, thereby making the gSpan search very effi-

cient.

At each tree node g, gSpan counts support(g) by the size of g’s list of DFGs and then outputs

subgraph g if its support value meets the minimum threshold1.

7.3.2 Enhanced gSpan

To find the top-k patterns directly, we propose an enhanced gSpan algorithm, which does not need

to first find out and then sort all the frequent patterns. This characteristic is particularly appealing,

as our design methodology prefers small k’s in order to reduce the number of iterations in Fig. 7.3.

Moreover, due to the recursive nature of the gSpan algorithm, the enhanced gSpan can scale very

well in terms of both CPU time and memory usage. We enhance the gSpan algorithm based on

the following property.

Property 2. [188] The support value of a parent node is greater than or equal to that of its

individual child node.

Therefore, during the pre-order traversal, the enhanced gSpan maintains a heap [44] of size

k that stores the current top-k support values. At each tree node g, if support(g) is less than

the current minimum support stored in the heap, then the node is pruned. Thus, only the top-k

patterns will be returned at the end of the traversal. The DFS-Code Tree searched by the enhanced

gSpan is guaranteed to be a sub-tree of the tree searched by the original gSpan. As a result, the

enhanced gSpan is even more efficient.

Property 3. The support value of any node is upper bounded by the total number of DFGs.

1When counting support values, we use the terms node and subgraph interchangeably.
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Table 7.1: Benchmark Characteristics

Benchmark Application Input Token Output Token top1 Pattern top2 Pattern

ADPCM DSP 2 16-bit int 1 16-bit int Multiplier & Shifter Multiplier & Comparator

AES Security 64 16-bit int 32 16-bit int 3 XORs Shifter & AND & array access

BLOWFISH Security 40 8-bit char 40 8-bit char 2 Adders & 2 XORs & AND 6 Shifters & (6 ORs or 8 ANDs)

DFSIN Arithmetic 1 64-bit int 1 64-bit int 2 Adders Shifter & Comparator

GSM DSP 160 16-bit int 8 32-bit int Multiplier & Adder Multiplier & Adder & Shifter & AND

JPEG DSP 128 16-bit int 64 16-bit int 8 Multipliers & 4 Adder & 4 Shifters 6 Multipliers & 4 Adders & 4 Shifters

MIPS Processor 2 32-bit int 1 32-bit int Multiplier & 2 ANDs & Shifter 2 Adders & Shifter

MOTION DSP 13 16-bit int 8 16-bit int 2 Adders & Shifter 2 Adders

(1) 2 XORs

SHA Security 16 32-bit int 5 32-bit int 4 Adders (2) 3 ANDs & 2 ORs

(3) 2 ANDs & OR & NOT

This property can be proved by combining Property 2 and the fact that the root node of DFS-

Code Tree contains a list of all the DFGs. Therefore, during the pre-order traversal, if (i) the heap

has already stored k support values and (ii) the current minimum value among them equals the

total number of DFGs, then the algorithm can stop the traversal immediately and directly return

the current top-k patterns.

Our code-analysis tool based on the enhanced gSpan algorithm also outputs all the line numbers

(of the original specification) where a given pattern appears, so that designers can quickly locate

the code regions that are interesting for refactoring.

7.4 Experimental Results

We applied our methodology and tool to the CHStone suite [84] that includes nine benchmarks2:

(1) adaptive differential pulse code modulation encoder for voice compression (adpcm), (2) encryp-

tion function of advanced encryption standard (aes), (3) encryption function of data encryption

standard (blowfish), (4) double-precision floating-point sine function involving addition, multi-

plication, and division (dfsin), (5) linear predictive coding analysis of global system for mobile

communications (gsm), (6) JPEG image decompression (jpeg), (7) simplified MIPS processor

(mips), (8) motion vector decoding of MPEG-2 (motion), and (9) transformation function of se-

cure hashing algorithm (sha). These benchmarks span over four application domains (see Table 7.1

2 The dfsin benchmark contains three other sub-benchmarks dfadd, dfmul, and dfdiv.
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and [84] for more details).

For top-k pattern discovery, we adapted the LLVM front-end to output DFGs and feed them

to the enhanced gSpan algorithm. The primitive operations in the LLVM-generated DFGs were

annotated with their locations in the source code for easy lookup. For each of the benchmarks, the

enhanced gSpan can discover the top-20 patterns within just a few seconds.

In our experiments, we explored a two-objective area vs. effective-latency design space. The

effective latency is defined as the product of the number of clock cycles and the length of the clock

period. In other words, an effective latency is the total elapsed time for: reading an input token,

processing the token according to the application, and generating an output token. The token sizes

of each benchmark are listed in Table 7.1.

To trade-off between area and effective latency, we applied various loop manipulations (breaking,

partial/full unrolling with different numbers of loop body, and pipelining with different initiation

intervals and pipeline stages) on the major loops of each benchmark and selected the Pareto-

dominating micro-architectures for each. Loop manipulation has been shown to be very effective

for generating rich design alternatives [112; 165; 160]. Each of the selected micro-architectures was

further swept by running HLS with several target clock-period settings. We refer to the synthesized

implementations that cannot be further improved in area without sacrificing effective latency (or

vice versa) as the Pareto implementations. A Pareto implementation in the “area vs. effective

latency” space is also called a Pareto point. A set of Pareto points is called a Pareto front.

The DSE results are plotted in Fig. 7.6, where base, top1, top2, and top1 2 stand for the design

specifications in its original form, refactored with the top-1 pattern, with the top-2 pattern, and

with both the top-1 and -2 patterns, respectively. These patterns are also listed in Table 7.1. Take

the motion benchmark in Fig. 7.6 for example: its top1 Pareto front covers effective latencies (ns)

in [1.8, 2.2] and areas (um2) in [3940, 4042] and its top2 Pareto front covers effective latencies

in [1.8, 5.7] and areas in [4192, 5163]. Across the nine benchmarks, the Pareto points render a

design space with an average 1.6X span in area and an average 2.9X span in effective latency. We

regard the Pareto points in the (i) upper-left, (ii) close to the origin, and (iii) lower-right regions in

the design space as (i) performance-critical, (ii) area-performance-balanced, and (iii) area-efficient

implementations, respectively.

All the synthesis results were obtained using a state-of-the-art commercial HLS tool with an

137



 60000

 65000

 70000

 75000

 80000

 85000

 90000

 95000

 100000

 0  5  10  15  20  25  30  35  40  45

A
re

a 
(u

m
2 )

Effective Latency (ns)

adpcm

base
top1
top2

top1_2

 360000

 380000

 400000

 420000

 440000

 460000

 480000

 500000

 520000

 20  25  30  35  40  45

A
re

a 
(u

m
2 )

Effective Latency (ns)

aes

base
top1
top2

top1_2

 180000
 190000
 200000
 210000
 220000
 230000
 240000
 250000
 260000
 270000
 280000
 290000

 12  16  20  24

A
re

a 
(u

m
2 )

Effective Latency (us)

blowfish

base
top1
top2

top1_2

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 100  150  200  250  300  350  400
A

re
a 

(u
m

2 )

Effective Latency (ns)

dfsin

base
top1
top2

top1_2

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 200  300  400  500  600  700  800

A
re

a 
(u

m
2 )

Effective Latency (ns)

gsm

base
top1
top2

top1_2

 180000

 200000

 220000

 240000

 260000

 280000

 60  80  100 120 140 160 180 200 220 240

A
re

a 
(u

m
2 )

Effective Latency (ns)

jpeg

base
top1
top2

top1_2

 100000

 105000

 110000

 115000

 120000

 125000

 130000

 600  700  800  900

A
re

a 
(u

m
2 )

Effective Latency (ns)

mips

base
top1
top2

top1_2

 3500

 4000

 4500

 5000

 5500

 6000

 6500

 1.5  2  2.5  3  3.5  4  4.5  5  5.5  6

A
re

a 
(u

m
2 )

Effective Latency (ns)

motion

base
top1
top2

top1_2

 100000

 120000

 140000

 160000

 180000

 200000

 40  60  80  100 120 140 160 180 200 220

A
re

a 
(u

m
2 )

Effective Latency (ns)

sha

base
top1
top2

top1_2

Figure 7.6: DSE results on the CHStone suite. Each point represents a distinct implementation

synthesized by HLS.
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industrial 45nm standard-cell library. Note that this HLS tool is unable to discover frequent

patterns within its synthesis engine, but is able to treat custom functions as composite operations

and synthesize the functions hierarchically.

7.4.1 DSE Result Improvements

We refer to the Pareto points from base specifications as the original Pareto points, the ones from

refactored specifications as the new, and the two combined as the final. We evaluate the DSE result

improvements with respect to three metrics:

M1: the percentage of the new Pareto points contributing to the final. Take the adpcm

benchmark in Fig. 7.6 for example: eight out of the eleven (73%) final Pareto points come from

the refactored specifications: four from top1, two from top2, and two from top1 2.

M2: the maximum area/latency improvements given by the new Pareto points with respect to

their closest original. Take the gsm benchmark in Fig. 7.6 for example: its top1 Pareto point with

effective latency around 270ns is 12% smaller than the closest base Pareto point from above and

also 29% faster than the closet base Pareto point on the right.

M3: the minimum achievable area/latency by the new Pareto points over the original. Take the

sha benchmark in Fig. 7.6 for example: its minimum effective latency is 62ns from top1. Compared

with the base minimum effective latency of 82ns, the improvement is 25%.

Intuitively, higher M1 suggests better design specifications for DSE; larger M2 indicates deeper

Pareto fronts; and greater M3 provides broader usage of the design as an IP across various system-

level design requirements (i.e. a metric to measure the IP reusability). All the improvements are

summarized in Table 7.2, where the “-” mark stands for “no change”. Next, we discuss the DSE

result improvements.

M1: the size of the final Pareto set ranges from 3 to 10 points with an average of 6.11. Out of the

final points, 68% on average come from the refactored specifications. Four benchmarks (blowfish,

jpeg, motion, and sha) are even 100% improved by the refactoring. At the low end, the mips

from CHStone suite cannot be improved because of its very simple behavior and structure. Note

that the mips is described as a simple switch statement that performs primitive operations based

on the opcodes. It has none of the advanced features that are common to modern processors,

such as branch prediction, hazard detection, out-of-order execution, simultaneous multi-threading,
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Table 7.2: DSE Result Improvements
M1 M2 M3

Benchmark —Final— % New Area Latency Area Latency

ADPCM 11 73% 10% 25% - -

AES 7 14% 1% 0% - -

BLOWFISH 3 100% 12% 8% 15% -

DFSIN 8 88% 9% 15% - 15%

GSM 8 38% 12% 29% - -

JPEG 7 100% 8% 0% 4% -

MIPS 5 0% 0% 0% - -

MOTION 3 100% 20% 8% 14% -

SHA 4 100% 9% 25% - 25%

Average 6.22 68% 9% 12% 4% 5%

etc. However, in general we expect the refactoring to be effective for optimizing complex processor

designs.

M2: the maximum area improvement by refactoring is up to 20% with an average of 9%, and the

latency improvement is up to 29% with an average of 12%. Overall, refactoring successfully improves

eight out of the nine benchmarks in terms of area and six out of the nine benchmarks in terms

of latency. Notably, the improvements apply to performance-critical or area-performance-balanced

implementations, as we see very marginal area-latency trade-offs for area-efficient implementations

(the long tails in Fig. 7.6).

M3: refactoring improves the minimum achievable area of three benchmarks (blowfish, jpeg,

and motion) by 4%–15% and the minimum latency of two benchmarks (dfsin and sha) by 15%–

25%. The area improvement is due to course-grained resource sharing. On the other hand, the

latency improvement is due to the shorter clock periods that HLS can achieve. Note that these im-

provements also imply greater IP reusability as these refactored designs can sustain more stringent

requirements and thus support more system-level designs.

7.4.2 HLS Runtime Reduction

As described in Section 7.2, the function customization with patterns enables hierarchical synthesis,

which could reduce the HLS scheduling problem size in terms of the total number of operations to

be scheduled, ultimately reducing the HLS runtime. In order to analyze the average runtime per
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Table 7.3: Reduction of Average Initial Operations and Average HLS Runtime (Minute)
avg op avg cpu

Benchmark base top1 diff top2 diff top1 2 diff base top1 diff top2 diff top1 2 diff

ADPCM 193 193 0% 193 0% 193 0% 30 29 -3% 29 -3% 28 -6%

AES 74 74 0% 74 0% 74 0% 27 27 0% 27 0% 27 0%

BLOWFISH 358 182 -49% 358 0% 182 -49% 371 320 -14% 353 -4% 332 -11%

DFSIN 221 226 2% 253 14% 233 5% 182 171 -6% 184 1% 174 -4%

GSM 836 616 -26% 790 -5% 620 -25% 97 58 -40% 112 15% 58 -40%

JPEG 362 311 -14% 320 -11% 269 -25% 25 26 4% 27 8% 28 12%

MIPS 17 17 0% 17 0% 17 0% 16 16 0% 16 0% 16 0%

MOTION 18 14 -22% 17 -5% 16 -11% 4 4 0% 3 -25% 3 -25%

SHA 82 46 -43% 94 14% 58 -29% 8 8 0% 8 0% 8 0%

Average -16% 0% -14% -7% 0% -8%

HLS run (avg cpu), we also measured the average number of initial primitive operations (avg op)

that are generated by the HLS tool from an input specification. During scheduling and binding

in HLS, the operations may be duplicated and/or combined for optimization. Therefore, although

avg op is a key factor that may affect HLS runtime, the actual runtime also depends on other

factors such as the complexity of the control-data flow graph, the synthesis algorithm, the timing

constraint, etc.

Table 7.3 lists the avg op and avg cpu for each benchmark with various specifications. Since each

benchmark has three refactored versions (top1, top2, and top1 2), there are 27 refactored entries

across the nine benchmarks. We observed 13 out of 27 entries (48%) with less avg op compared

with base and 12 out of 27 (44%) with less avg cpu; on the other hand, only 4 out of 27 (8%)

with higher avg op and 6 out of 27 (22%) with higher avg cpu. In general, this trend meets our

expectation that less avg op could lead to less avg cpu.

The average avg cpu reductions for the nine benchmarks are 7%, 0%, and 8% with top1, top2,

and top1 2, respectively. For the top-3 benchmarks that require the longest HLS runtime (blow-

fish, dfsin, and gsm), the average avg cpu reduction is 20% and 15% with top1 and top1 2,

respectively, which is a significant improvement. For the benchmarks that turned out needing

longer HLS runtime with refactoring (dfsin, gsm, and jpeg), the HLS engine may have termi-

nated early on the base specification after seeing little optimization potential [105]. In this regard,

we do see in the previous subsection that the refactored versions can indeed produce better DSE

results (at the cost of longer HLS runtime).
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Figure 7.7: (a) User CPU time for the execution of gSpan and EgSpan. (b) Numbers of visited

DFS Code Tree nodes and numbers of found patterns. (c) Peak stack memory usage. For all plots,

the left vertical axis corresponds to the G group of input sets (where the number G of graphs in a

set varies), and the right vertical axis corresponds to the N group of input sets (where the average

number N of nodes in each graph varies.) The horizontal axes represent the size of an input set,

which is equal to G ·N .

7.4.3 gSpan vs. Enhanced gSpan

To evaluate the scalability of the enhanced gSpan algorithm, we also performed experiments for

gSpan and the enhanced gSpan with large randomly generated input graphs. We used TGFF [62]

to generate an extensive collection of directed acyclic graphs. Then we observed trends in CPU

time and memory usage for gSpan and the enhanced gSpan with respect to the size of an input set,

as presented in Fig. 7.7.

The size of an input set depends on two main factors: the number G of graphs in the input

set and the number N of nodes in each graph. In Fig. 7.7, the horizontal axes represent the total

number of nodes in a set, which is equal to G · N . We constructed two groups of the input sets,

the G group (marked in blue) where N is averaged at about 200 and G varies from 200 to 1000 by

200-steps, and the N group (marked in red) where G is fixed at 200 and N varies from around 200

to 1000. There are 20 types of nodes (primitive operations), and they follow a Gaussian distribution

with mean (20− 1)/2 = 9.5 and standard deviation 20/5 = 4.

Fig. 7.7(a) shows the average user CPU times (on Linux with 2.667 GHz cores) for the execution
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of gSpan and the enhanced gSpan (referred to as EgSpan hereafter in the discussion). The left

vertical axis represents the CPU time for the G group of input sets. Each marked point represents

an average over ten input sets. Time for gSpan (filled circle) generally increases with the input size,

except for the size of 120, 000 where N ≈ 200 and G = 600. In fact, among the ten input sets of this

size, one particular set takes about ten times longer than others. The empty circle, which follows

the increasing trend, indicates the average CPU time excluding this outlier. Fitting a power law

relation to this data (including the outlier) yields ‘CPU time = 23.61 · input size2.0396(+ constant)’

with R2 = 0.8721 (R2 is the coefficient of determination for measuring the fitting quality. R2 = 1

indicates a perfect fitting). This means that the CPU time for gSpan increases roughly at the rate

of a square of the input size. On the other hand, EgSpan invocations with k = 10, 20, 30, and 40 all

finish within 2.5 seconds on average. One with k = 20 is depicted with ‘×’ markers at the bottom of

the plot area. A power curve fit for this data is ‘CPU time = 0.4667 · input size0.8631(+ constant)’

with R2 = 0.8733, implying a slower than linear increase in CPU time for EgSpan. Similarly, the

N group’s results are depicted with square markers for gSpan and ‘+’ markers for EgSpan with

k = 20, according to the scale of the right vertical axis. The power curves for gSpan and EgSpan

are ‘CPU time = 14.589 · input size2.8795’ (R2 = 0.9577), and ‘CPU time = 0.3659 · input size0.8367’

(R2 = 0.8793), respectively.

The CPU time for gSpan increases more rapidly for the N group since its input sets have larger

graphs (in the number of nodes), resulting in a generally larger DFS-Code Tree. Both gSpan and

EgSpan search a DFS-Code Tree, as described in the Section 7.3, but EgSpan has an additional

pruning condition (by Property 2) and an early termination condition (by Property 3). Fig. 7.7(b)

illustrates the average numbers of visited DFS-Code Tree nodes and the patterns found by gSpan

and EgSpan. The numbers of nodes visited by gSpan for the G group are marked by filled circles

and the numbers of found patterns are marked by empty circles, according to the left vertical axis.

The power curves are determined as ‘DFS nodes = 2, 675, 199 · input size1.9414’ (R2 = 0.9642) and

as ‘found patterns = 376, 807 · input size1.9113’ (R2 = 0.9682). In contrast to this phenomenon, the

numbers of nodes visited by EgSpan with k = 20 are depicted with ‘×’ markers at the bottom, and

the numbers of found patterns are constant at 20. The curve ‘DFS nodes = 3969.9 · input size0.2446’

fits to this data with R = 0.9982, indicating a very slow increase in the number of visited nodes.

This is due to the additional pruning effect, while an early termination is not observed for these

143



input sets. EgSpan terminates early, however, for randomly generated sets with even larger graphs

or with smaller number of node (operation) types, for which gSpan takes much longer. Furthermore,

unlike EgSpan that returns the top-k patterns, gSpan returns all the found patterns unsorted. Thus,

in addition to the time gap shown in Fig. 7.7(a), extra time on the order of n log n is needed for

the gSpan approach for sorting (where n increases at the rate of about 1.9). Similarly, the results

for the N group are presented with filled and empty square markers for visited nodes and found

patterns by gSpan, according to the right vertical axis. The exponents for the curve fitting are

2.5104 (R2 = 0.9853) and 2.4147 (R2 = 0.9915), respectively. These are greater than the exponents

for the G group, which matches the CPU time results.

As gSpan searches a less pruned DFS-Code Tree, it requires more memory space to store the

states. Fig. 7.7(c) compares the peak stack usage by gSpan and EgSpan. The usages were measured

using Valgrind. For both the G group and the N group, gSpan utilizes three to five times larger

stack memory space than EgSpan with k = 20. gSpan’s peak heap memory usage is also 0 ∼ 20%

greater for the G group and 7 ∼ 12% greater for the N group, ranging from 3.8 MB for small inputs

to 20.0 MB for large inputs. For this experiment, both gSpan and EgSpan read in text files of

size 1.0 ∼ 5.7 MB containing the input graphs information, which seem to take up the majority

of the whole program memory space. Nonetheless, EgSpan, as demonstrated above, performs at a

sustainable CPU-time cost despite a considerable increase in the input size, while gSpan fails to do

so.

7.5 Remarks

Limitations. Our pattern-based refactoring methodology is effective in optimizing computa-tion-

intensive applications thanks to their heavy requirements of arithmetic and logic operations and

to the need for sharing/multiplexing these operations for resource optimization. However, it is less

effective for applications with simple behavior simply because they have intrinsically few composite

operations. The methodology is also less effective for control-/memory-dominated applications such

as AES because the pattern-based refactoring cannot affect the data movement in the application.

Related Work. The closest related works lie in the fields of (i) code-refinement methodology and

(ii) automatic DSE with CAD tools. We discuss first these two categories and then related works
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on pattern discovery.

Code-refinement methodology is an emerging research topic [172; 194; 199]. Stitt et al. [172]

introduced for the first time a set of C-based manual refinement guidelines for performance improve-

ment (but not including pattern-based refactoring). Zeng and Huss [194] presented VHDL-AMS

refinement techniques for making behavior models synthesizable while maintaining the model read-

ability. Recently, Zuo et al. [199] proposed loop-transformation techniques for stencil/matrix appli-

cations, aiming for FPGA area minimization. Overall, our work is complementary to these works

as it introduces pattern-based refactoring for area-performance co-optimization. Our refactoring

technique can additionally reduce the average HLS tool runtime.

Automatic DSE with CAD tools is also an active area of research [8; 11; 18; 77; 85; 98; 112; 145;

160]. The value of automatic DSE is to minimize the number of invocations of synthesis/simulation

tools for Pareto-front generation. However, the effectiveness of automatic DSE with HLS is re-

stricted to the knobs provided by the HLS tool and their applications to the input design specifica-

tion. Our work enables the extension of the tool-explorable design space through a code-refactoring

technique to improve the quality of the input specification. In addition, the refactored specification

requires less average HLS tool runtime, which is not achievable by automatic DSE.

Pattern discovery within HLS was first patented in 2007 [93] and later studied by Cong and

Jiang [41] and by Hadjis et al. [80]. These HLS works focus on synthesizing a single RTL implemen-

tation that minimizes area under given timing constraints. Instead, our goal is to optimize a synthe-

sizable C-based specification for area-performance co-optimization, soft-IP reuse, and HLS-runtime

reduction. Moreover, for the pattern-discovery task, our work presents a different formulation that

seeks directly the top-k patterns, without the need to list and sort all patterns satisfying either a

frequency constraint [41] or a size constraint [80]. The latter two formulations do not fit into our

methodology because a small minimum-frequency/size threshold may produce too many patterns

for running multiple HLS (inefficient), while a large minimum threshold may end up finding very

few patterns (ineffective). In practice, the users would not know a proper threshold in advance,

whereas the selection of k is very intuitive.

Many other variants of the pattern-discovery task can also be found in the instruction-set exten-

sion literature [73]. However, these problem formulations generally require pattern input/output

constraints [13; 191] or pattern size constraints [185]. Some algorithms only discover single-output
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patterns [40; 140], search patterns in only a single DFG [19], or require heavy Subgraph Isomor-

phism Test [28; 40]. Although our top-k pattern-discovery task might be reduced to these existing

problem formulations as outlined by the procedure in Section 7.3, we have empirically demonstrated

the scaling advantage of a native top-k pattern-discovery algorithm, such as the enhanced gSpan,

in terms of both CPU time and memory usage.

Concluding Remarks. In this chapter, we defined the problem of Code Refactoring for Enhanced

Design Exploration with High-Level Synthesis. To solve this problem, we presented a pattern-based

code-refactoring methodology, which brings advantages on expanding soft-IP reusability, improving

HLS QoR, and reducing HLS-tool runtime. Our methodology is supported by a native top-k

pattern-discovery algorithm, which empirically scales with large input graphs.
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Chapter 8

Future Research Directions

Modern VLSI chips are embracing application-specific components (i.e. accelerators) for energy

efficiency. Unfortunately, the hardware designers who know how to design optimized accelerators

are often a distinct group from the software programmers who develop new applications [87]. By

automatically supervising synthesis tools, SDSE has been able to reduce and simplify the learning

curve of using synthesis tools for developing application-specific hardware. Looking forward, SDSE

also paves the ways for (i) creating a platform for developing and deploying synthesis tools, (ii)

promoting collaborative design exploration at an unprecedented scale, and (iii) exploring new

classes of systems beyond VLSI chips and tools for electronic design automation.

8.1 SDSE as a Platform

SDSE can be implemented as a platform for in-house CAD teams to deploy and test new synthesis

knobs and/or libraries on production designs, as Figure 8.1 illustrates. SDSE allows a small number

of experimental knob settings (and/or libraries) to be run as part of DSE, enabling a DevOps-like

deployment pipeline [69]. These new experimental knob settings can be either provided to designers

as part of the standard synthesis runs or run directly by the CAD team. In both cases SDSE should

be able to collect synthesis-run statistics and keep a history of results for all designs. The results

can be analyzed off-line to determine a knob setting’s impact on design quality as well as trends

across multiple knob settings and designs.

Another usage of SDSE is to deploy SDSE as a third-party platform. This SDSE platform
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Figure 8.1: SDSE as a platform.

enables a new degree of collaboration between EDA vendors and design houses. Traditionally, the

EDA vendors develop their tools based on in-house test designs, which typically do not capture

well the characteristics of real designs. On the other hand, the design houses are reluctant to share

their designs with the vendors, who have design know-how and also collaborate with other design

houses. As a third-party platform, SDSE can resolve this concern by treating EDA tools as black

boxes and reading only their QoR (e.g. performance metrics) but not necessarily their outcome

(e.g. synthesized RTL). On this SDSE platform, EDA vendors can optimize hidden knobs (i.e. the

parameters used within the tools but not exposed to the tool users) based on real customer designs.

Also, design houses can use this SDSE platform for optimizing design flows that combine tools with

different versions, features, and/or vendors.

Challenges. A designer-friendly platform can simplify the creation of application-specific hard-

ware. To make SDSE a platform requires a standardized tool-user interface, i.e., application pro-

gramming interfaces for both CAD tool developers and their users (i.e. the designers). Further-

more, in order to make SDSE a third-party platform that can serve multiple EDA vendors and

design houses on limited computing resources, the platform should leverage cloud infrastructures

for the submission, execution, and management of CAD-tool runs. Underlying the platform, the

design-QoR data (a form of Big Data) will pose unprecedented analytics challenges (but also new

opportunities) to both the CAD and design communities: (i) what makes a good knob? (ii) when

and where to apply a knob to a given design? (iii) how to refine the design towards better QoR (this

requires to locate design bottlenecks first). However, SDSE alone is not enough for maximizing the

power of the envisioned platform. The next section sketches a complementary approach to SDSE.
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8.2 Collaborative Design-Space Exploration

SDSE is fully automatic because it relies on synthesis tools for design optimization. However,

the design space SDSE can explore and the Pareto set it can obtain are limited by the features

that a synthesis tool can support. There exist many other design-optimization techniques that can

be semi-automatically exploited, for example, by refactoring the design specification (Chapter 7),

changing the underlying platform (ASIC vs. FPGA), and/or expanding the underlying libraries

(with different functional units or technology nodes). All these optimizations are regarded as

design revision techniques (or virtual knobs). Clearly, the revision-explorable space is larger than

the synthesis-explorable space.

To progress from a synthesis-explorable space to another that permits better synthesis QoR,

it is often necessary to apply multiple design revisions. Although some of the revision techniques

may eventually be absorbed by synthesis tools, others are arguably hard to be due to unclear cost

functions, high problem complexities, or limited computing resources [172]. Therefore, designer’s

expertise and involvement remain essential to achieve optimal design implementations. Moreover,

collaborative engineering is essential for team-based design exploration, which is already the norm

in the case of complex SoC designs. However, the tool support for inspiring a designer’s creativity

in revising the design has long been paid little attention.

In order to assist (as opposed to replacing) designers, Collaborative Design-Space Exploration

(CDSE) should include two ingredients.

• Revision Ranking: given a design specification, CDSE suggests a set of revision techniques

associated with their estimated synthesis-QoR improvements. Revision ranking assists both

novice designers with a portfolio of revision techniques and experienced designers with chances

to escape from local optima.

• Revision Planning: given a design specification and a revision database that accumulates

revision history of legacy designs done by experienced designers, CDSE suggests reference

sequences of revision techniques. Revision planning assists designers with multiple revision

techniques that may be applied together as a bigger step, in order to accelerate the entire

revision process.
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Figure 8.2: CDSE by revision ranking.

Figure 8.3: CDSE example: (a) Ver. 1: initial design. (b) Rev. 1: pattern-based customization after

Ver. 1. (c) Rev. 2: conversion to constants after Ver. 1. (d) Rev. 3: function/thread parallelization

after Rev. 1.

8.2.1 Revision Ranking

CDSE with revision ranking is an interactive process, as illustrated in Figure 8.2. Starting with an

initial specification (Ver. 1), CDSE suggests a ranked list of potential revision techniques (Rev. 1,

Rev. 2, etc.) with an estimated QoR improvement for each (in percentage). Then, it is the designer’s

turn to pick up a suggestion and revise the specification accordingly. Suppose Rev. 1 is adopted.

The interactive process repeats with a new list of suggestions (e.g., Rev. 3 to Rev. 5, as shown in

gray in the figure). The process terminates if no more suggestions are available, or the designer is

satisfied with the current QoR after applying SDSE to the revised specification.

Motivating Example. Consider the initial specification (Ver. 1) shown in Figure 8.3(a). The main

function calls a function f, which does fir filtering after initializing an array of coefficients (float

coef[128] is initialized in initCoef). Assume the content of coef is read-only in f. Following f,
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main performs a sequence of Multiplication and Accumulation (MAC) operations to compute the

value of variable r.

Given the initial design and a set of revision techniques, CDSE may suggest two top-ranked re-

visions: (Rev. 1) pattern-based customization (Chapter 7; the revised code shown in Figure 8.3(b))

and (Rev. 2) conversion to constants [172] (Figure 8.3(c)). Rev. 1 groups a set of frequent, non-

primitive functional units, i.e. the MACs, into a new function mac, such that the HLS tools can

bind and share the MAC, which is optimized separately and used as a new library component.

On the other hand, observing that coef is essentially constant in the context of fir (but may be

modified elsewhere in main, not shown in the example), Rev. 2 introduces a wrapping function

wrapper for running fir, such that advanced HLS engines can utilize constant propagation for

optimizing the implementation of fir. Overall, different revisions bring different cost-performance

trade-offs; therefore divergent paths emerge in the revision process (Figure 8.2). After analysis,

CDSE estimates that the overall QoR improvement of Rev. 1 would be greater than that of Rev. 2

(i.e. revision ranking). The ranking marks the end of the first iteration of CDSE.

The second iteration starts after the code is actually revised by the designer, say, Rev. 1 as

in Figure 8.2. At this point, CDSE may propose another revision suggestion (Rev. 3) such as

function/thread parallelization [74], an optimization that aims for a coarser granularity of resource

sharing above the functional-unit level. Figure 8.3(d) shows Rev. 3 that combines functional-unit

customization (Rev. 1) and function/thread parallelization. The parallelization is done by grouping

the sequence of MAC operations into a new function g, which is independent from function f; thus,

f and g can be scheduled to run in parallel for better performance. Similarly, CDSE may also

provide other suggestions that follow Rev. 1 (e.g., Rev. 4, Rev. 5 and others that are not shown

in Figure 8.2). Again, CDSE ranks these suggestions by their estimated QoR improvements, and

then hands over the decision to the designer.

Challenges. The effectiveness of CDSE with revision ranking relies on the identification of

commonly-effective revision techniques that are not integrated into general synthesis tools. More-

over, the analysis engines that estimate the revision QoR improvements need to be efficient and

scalable, providing rapid suggestions during the interactive process. Examples include the engines

for pattern-based customization (Chapter 7), communication channel reordering [58], and memory

system configuration [144]. Stitt et al. discussed other revision techniques that are believed hard
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to be automated for implementation [172]. However, from CSDE’s perspective, the question of

whether these techniques are hard to be analyzed remains open.

8.2.2 Revision Planning

A modern SoC is a complex system with a large number of heterogeneous components. Big engi-

neering teams are involved in the exploration of its large design space. CDSE with revision planning

aims at pioneering the design methodologies and tools that promote collaborative engineering. The

planning should be based on (i) a revision database that can accumulate expertise on commonly-

used design patterns over time and (ii) a learning model that can synthesize useful information

from the revision database.

Motivating Example. Consider again the examples of Figure 8.3, assuming the same revision

names as in Figure 8.2. Suppose the initial design is a DSP application that presents some design

patterns that are similar to those that have been used by other engineers working on this project

or on previous projects. For instance, DSP applications commonly: (i) include sequences of MAC

operations and (ii) use lookup tables for storing coefficients and initialize them with standard

function calls to compute sine or cosine values. Equipped with a learning model applied to the

knowledge of similar DSP applications, CDSE can directly suggest the best revision sequence (e.g.,

Rev. 1 → Rev. 4 in Figure 8.4), which consists of “pattern-based customization” and “conversion

to constants”. Moreover, a common co-optimization with conversion to floating-point constants is

to use a fixed-point library for better synthesis QoR. This latter revision is represented as Rev. 5

in Figure 8.4. Hence, CDSE will suggest also a revision tuple (Rev. 4, Rev. 5) because it knows in

advance (via learning) that Rev. 5 is most frequently combined with Rev. 4. Overall, a designer

can take all these suggestions together to revise the initial design in one bigger step. In general,

the length of the sequence can be specified by the user: the shorter the sequence, the higher the

estimation accuracy that can achieve. In the long run, the ability of CDSE to suggest revision

will improve as more and more design specifications and designers’ decisions are collected in the

revision database.

Challenges. The effectiveness of CDSE with revision planning relies on the information stored

in the revision database. The information should be modeled by an intermediate representation

that is capable to capture interesting design patterns. Furthermore, an effective learning model
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Figure 8.4: CDSE with revision planning.

(perhaps hybrid models are required) is crucial for the analysis of designs that come from different

application domains, revised by different designers, implemented with different synthesis tools, and

released at different stages in a design cycle. Also, a user-friendly interface for comparing the

current design and the referenced designs is important for the designer to evaluate the credibility

of revision planning.

8.3 Beyond Synthesis and SoC-Design

SDSE was invented for SoC design, especially for SoC’s computation components that primarily

rely on synthesis tools for implementation. Nevertheless, the SDSE approach should be extensible

to other cases of design exploration, e.g. design explorations based not only on the use of synthesis

tools but also simulation tools. Also, SDSE can be extended to discover the Pareto set of other

SoC components such as the network on chip (NoC). Existing multi-objective NoC-exploration

works (e.g. [109]) are based on local-search algorithms and do not consider the real network traf-

fics generated from the software stack. The real traffics can be better captured using full-system

simulators such as virtual platforms. Another SDSE extension is to consider non-traditional de-

sign objectives in exploring an SoC component, such as design manufacturability. There exist

works that use Monte Carlo simulation to discover manufacturability-aware Pareto sets [96; 135;

177]. However, these works either use local-search algorithms [177], assume differentiable and

convex cost functions [96], or treat the system design as a whole object [135]. Overall, the NoC

and manufacturability simulations (like synthesis) are parameterizable and computation-intensive.

Therefore, a compositional-exploration approach (like SDSE) that is assisted with learning models
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Table 8.1: Computer-Science Applications of Pareto-Set Discovery.

Application (Publication Year) Area Design Objectives

Parameter Tuning (2012) [154] Algorithm Quality, Runtime

Mesh Simplification (2013) [30] Graphics Accuracy, Simplicity

Optical Flow Computation (2014) [55] Vision Accuracy, Runtime

Motion Control (2013) [5] Animation Effort, Height

Robot Design (2013) [176] Robotics Speed, Energy, Stability

Model Selection (2006) [174] Learning Accuracy, Complexity

Attack Detection (2013) [130] Security Risk, Surveillance, Cost

Resource Management (2012) [143] Cloud Energies, Performance

Anaphora Resolution (2011) [68] Linguistics Multiple Scoring Metrics

Community Detection (2014) [131] Network Heterogeneous Connection Types

for simulation-result estimation should be able to approximate the Pareto sets much more efficiently.

Beyond SoC design, Pareto-set discovery has been also becoming popular in general computer-

science research. In particular, I surveyed ten recent such applications across different areas of

computer science. These applications are briefly described below and summarized in Table 8.1.

• Parameter tuning in algorithm design is the optimization of meta-heuristics (such as the

temperature scheduling of Simulated Annealing) for the trade-off between solution quality

and computation runtime. Typically, the quality can improve at the cost of more runtime,

but the return would diminish in a long run. The trade-off is therefore useful for choosing

problem-specific meta-heuristics for solving computationally-intractable problems such as the

Traveling Salesman.

• Mesh simplification in computer graphics aims to reduce the number of faces used in a 3D

polygonal surface model while keeping the overall shape, boundaries, and volume. Obviously,

the model accuracy and simplicity are conflicting goals: more faces preserve the model accu-

racy but incur more computation for model visualizations and simulations, and vice versa.

• Optical flow computation in computer vision is a technique for estimating displacement and
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velocity fields. The computation requires several integration and differential equations, which

ultimately require to be approximated by solving numerical methods. The numerical methods

are iterative methods, which (like meta-heuristics) require trade-offs between their approxi-

mation accuracy and computation runtime.

• Motion control in computer animation requires the pre-computation of a family of motion

controllers for real-time physics-based simulation. For a motion such as a jump, the solution

family of interest is described by the Pareto set that defines the trade-off between jump effort

and jump height.

• Robot design in robotics involves multiple competing objectives, e.g., performance metrics

of the physical system such as speed and energy efficiency. Moreover, one problem when

teleoperating a robot is that the large movement of the robot head, which houses a camera,

can cause operators to become disorientated. Therefore, the stability is also a common robot-

design objective.

• Model selection in machine learning is to select a learning model that has high classification

accuracy with low model complexity (i.e. short model evaluation time). For instance, the

model complexity of a Support Vector Machine (SVM) is expressed by its number of support

vectors. An SVM that achieves high classification rates with many support vectors may be

over-fitting its training examples and requires longer evaluation time for classifying unknown

examples. The trade-off is considered crucial for applications such as bioinformatics and

computational biology [83].

• Attack detection in computer security is based on distributed multi-agent cooperation for

detecting malware or cyber attacks. Each agent can either scan or not scan the target under

protection (e.g. a website), and every configuration of two agents is assigned a risk value

and a surveillance value: both “scan” (“not scan”) result in lowest (highest) risk but highest

(lowest) surveillance. Also, the cost of scan varies agent by agent. Overall, an optimal agent

configuration is a trade-off among risk (security), surveillance (privacy), and cost.

• Resource management in cloud computing makes the decisions of service migration and place-

ment across data centers. It aims to balance the trade-offs among conflicting optimization
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objectives such as renewable energy consumption, cooling energy consumption and response

time performance.

• Anaphora resolution in computational linguistics (aka natural language processing) is a feature-

selection problem. There is no generally accepted metric for measuring the performance of

anaphora resolution systems. Systems optimized according to one metric tend to perform

poorly with respect to other ones, making it very difficult to compare anaphora resolution

systems. The multi-objective approach is to optimize the systems according to multiple met-

rics simultaneously.

• Community detection in social network analysis is based on the network-edge semantics, e.g.

indicating friend relationships. However, there are heterogeneous types of connections, e.g.

the correspondence in an email dataset vs. the semantic correlation in the email body. These

distinct groups of edges are referred to as layers (i.e. the union of all layers is the original

network). An example multi-objective analysis is to bisect the network into equal parts in a

way that attempts to minimize the cut-size on each layer. Thus, the Pareto-optimal cut sizes

across multiple layers might be useful in determining differences in structure between layers.

Across these ten applications the number of design knobs can be ten or more, and for most of

the applications the time required for evaluating the knob-setting qualities (i.e. design qualities)

is short (a few seconds). So far, all these applications are handled using local-search algorithms

and they treat the design as a whole object. One exception is the robot-design application, whose

design evaluation time can be long (tens of minutes to experiment with prototype robots), so its

optimization has adopted learning models for estimating the robot qualities. Although machine-

learning methods have not been extensively adopted with multi-objective design exploration, they

have already become popular for individual design tasks in areas such as graphics [81], vision [147],

security [35], cloud [86], linguistics [39], and network [54].

Following the evolution of computer system design introduced in Chapter 1, general scien-

tific/engineering designs will eventually become more complex (i.e. powerful), featuring more com-

ponents within the entire design and involving more interactions with the physical world. Therefore,

the creation and evaluation of a design configuration will inevitably become more time-consuming

because of the growing system complexity and physical constraints. I consider SoC a successful
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forerunner of complex system design, and I believe that the principles of SDSE can benefit the

design of future complex systems beyond SoCs.
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Chapter 9

Conclusions

I have presented Supervised Design-Space Exploration (SDSE), a novel abstraction layer for or-

chestrating multiple timing-consuming synthesis jobs for component-based design. SDSE has been

applied to the design of heterogeneous hardware accelerators as well as high-performance processor

cores, which all rely on synthesis tools for automatic implementation. Besides performance, these

designs demand cost-effective implementations in terms of both design quality (e.g. area or power)

and time to market (e.g. synthesis effort). However, current decade-old synthesis-centric design

methodologies suffer from: (i) long synthesis tool runtime, (ii) elusive optimal setting of many

synthesis knobs, (iii) limitation to one design implementation per synthesis run, and (iv) limited

capability of digesting only component-level designs as opposed to holistic system-wide synthesis.

SDSE addresses these challenges by adapting dynamically to the most influential component de-

signs and to the most promising knob settings for synthesizing them, ultimately approximating the

system Pareto set by combining component-synthesis results.

For system-level design exploration, I have presented two SDSE frameworks (and their com-

panion algorithms) for supervising High-Level Synthesis (HLS) and Logic Synthesis (LS) tools,

respectively. These frameworks can autonomously approximate a system Pareto set given limited

information: only lightweight component characterization is required, yet the necessary component

synthesis jobs are discovered on-the-fly. The frameworks can work together by using HLS for ex-

ploring micro-architectures and using LS for determining clock periods. In parallel the HLS-based

framework can work with designs initially specified in high-level languages, while the LS-based

framework targets traditional RTL design entries.

158



For component-level design exploration, I have presented two SDSE frameworks (and their

companion algorithms) for supervising HLS and Physical Synthesis (PS) tools, respectively. These

frameworks can autonomously approximate a component Pareto set by iteratively refining the ap-

proximation, guided by synthesis-result estimation with learning models. The capability of adapting

to promising knob settings can significantly improve the Pareto approximation quality given a lim-

ited budget of synthesis jobs. In particular, I have successfully integrated SDSE algorithms into an

IBM PS tuning system, yielding 20% better macro performance than the original system on the

design of a 22nm server processor that is currently in production.

SDSE is extensible with “virtual” knobs, such as specification restructuring, and opens new

research revenues for synthesis-driven Design-Space Exploration (DSE). I have presented a pattern-

based code-refactoring methodology for enhancing HLS-driven DSE. The methodology can enhance

the Pareto approximation quality, increase design reusability, and reduce average HLS tool runtime.

More generally, based on SDSE I have sketched future research directions to incorporate more

“design revision” techniques beyond the refactoring methodology and to promote collaborative

design engineering to a larger degree. If it turns out to be successful, I believe this theme of research

will drive a new wave of innovative uses of computing, thanks to the reduced and simplified learning

curve of electronic system design.

Even more generally, I regard the techniques developed and the lessons learned as a valuable

asset for complex system design beyond VLSI. There are increasing interests in applying Pareto-set

discovery to a diverse set of computer applications. These applications have not yet taken advantage

of system compositionality and have rarely used learning models to guide the exploration process.

In general, as computer applications are becoming more powerful and sophisticated, involving a

greater number of components interacting in complex behaviors, I believe that SDSE has advanced

the frontier of DSE research that can benefit general computer-aided design.
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Appendix A

Prototype Tools

This appendix describes the following four prototype tools that I developed as part of my disserta-

tion:

• Synthesis Planning for Exploring ESL Design (SPEED): a prototype tool that implements

SDSE with High-Level Synthesis (HLS) for system-level DSE. The SPEED methodology and

its companion algorithms are presented in Chapter 3.

• Compositional Approximation of Pareto Sets (CAPS): a prototype tool that implements SDSE

with Logic Synthesis for system-level DSE. The CAPS algorithm and its companion heuristic

modifications are presented in Chapter 4.

• Learning-based Exploration with Intelligent Sampling, Transductive Experimental Design, and

Refinement (LEISTER): a prototype tool that implements SDSE with HLS for component-

level DSE. LEISTER’s underlying algorithms are presented in Chapter 5.

• Enhanced gSpan (EgSpan): a prototype tool for enhanced DSE with pattern-based code-

refactoring. The code-refactoring methodology and the EgSpan algorithm are presented in

Chapter 7.

Throughout the appendix, the term “effective latency” refers to the product of (i) the synthe-

sized clock period of the circuit and (ii) the simulated clock cycle count to execute the entire task

of the circuit. Moreover, a tutorial example is provided for each tool.
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A.1 SPEED

This section describes the SPEED software package (speed-p.tar.gz), including its software re-

quirements and file structure. A tutorial is also included to explain the usage of SPEED.

A.1.1 Software Requirements

The following software and libraries are required for the execution of SPEED. The version number

enclosed by the parentheses denotes the software/library version that has been tested with SPEED.

• Cadence C-to-Silicon (CtoS) Compiler (14.10-p100, 64-bit): a commercial HLS tool that can

synthesize RTL Verilog from SystemC.

• R (2.14.1): a free MATLAB-like software environment for statistical computing and graph-

ics. R can be downloaded at http://cran.r-project.org/, which also provides 6K+ free

statistical-computing packages written in R, such as the following two packages.

• SiZer (0.1-4): an R package for two-segment linear curve fitting.

• strucchange (1.5-0): an R package for multi-segment piecewise linear curve fitting.

• GLPK (4.45): SPEED uses the GLPK package for solving linear programming. GLPK can

be downloaded at http://www.gnu.org/software/glpk/.

• g++ (4.6.3): The g++ compiler is used to compile SPEED’s C++ code.

A.1.2 File Structure

The speed-p.tar.gz tarball includes the following directories.

• prune contains a C++ program prune.cc for component-level design-space pruning.

• fit features a bash script fit.sh for piecewise linear curve fitting based on the user’s choice

of curve-fitting methods.

• plan provides (i) a bash script gen tmg template.sh for the generation of Timed Marked

Graph (TMG) models, (ii) a C++ program gen lp model.cc for the generation of linear
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Figure A.1: The TMG model of dfsin.

programs given the TMG models, and (iii) a bash script plan hls.sh for the planning of

HLS jobs for each component.

• dfsin is an example of a system design that includes five component designs. Section A.1.3

uses dfsin to explain the usage of SPEED.

• examples contains more examples besides dfsin: (i) mpeg: an MPEG encoding/decoding

system including fourteen components, (ii) jpeg: a JPEG decoding system including three

components, and (iii) rs: a Reed-Solomon decoding system including five components.

A.1.3 Tutorial

dfsin is a double-precision floating-point sine approximation system with concurrent data flows,

feedback paths, and multiple places with initial tokens. It is composed of five components: dfadd,

dfdiv, dfgec, dfitf, and dfmul. The TMG model of dfsin is shown in Figure A.1.

A.1.3.1 Component-Level Exploration

For each component com of dfsin, take the following steps within the com directory for component-

level DSE.

1. provide a CtoS template directory that includes four subdirectories: src (SystemC design),

tb (test bench), syn (CtoS scripts), and sim (for clock-cycle-count simulation). An example

template directory is provided as ks template, which can be instantiated with different knob

settings, each corresponding to a distinct CtoS synthesis script.
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2. run the script ./gen test dir.sh to generate a test CtoS directory ks i test for each knob

setting i.

3. run the scripts ./run test *.sh to synthesize the component with all the knob settings.

Based on the synthesis results, the user determines the minimum target clock period for each

knob setting.

4. run the script ./gen minmax dir.sh to generate CtoS directories with the minimum and

maximum target clock periods. The example script applies a fix multiplication factor (e.g.

1.5) to the minimum period for setting the maximum period. In order to set a more accurate

maximum period, the user can sweep the target clock periods with a fixed step or using binary

search.

5. run the scripts ./run min *.sh and ./run max *.sh to synthesize the component with all

the knob settings, each using either the minimum or the maximum target clock period.

6. run the script ./collect results.sh to obtain a Component Knob-setting Trade-off (CKT)

library com.ckt. Each line of com.ckt follows the format:

id min elat max area max elat min area lat

where id is the knob setting ID, min(max) elat is the minimum (maximum) effective latency,

min(max) area is the minimum (maximum) synthesized area, and lat is the simulated clock

cycle count.

7. run the command ../../prune/prune com.ckt com.ilt com.fdt to prune away the sub-

optimal knob settings. This step generates Interval Lookup Table com.ilt and Curve Fitting

Data com.fdt.

8. edit the script ../../fit/fit.sh with the name of the component (e.g. dfadd) and the user

choice of curve-fitting methods: fit1, fit2, or fit3. fit1 does linear line fitting (for the

case of only one knob setting available), fit2 does two-segment linear fitting (sufficient for

general cases), and fit3 does multi-segment linear fitting (for the case of many knob settings

available). Run the edited script ../../fit/fit.sh to generate a (piecewise) linear fitting

model com.pwl.
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A.1.3.2 System-Level Exploration

After finishing the steps in the previous section for each component design, switch the work directory

to plan for system-level DSE. Follow these steps:

1. edit the script ./gen tmg template.sh with the name of the system design (dfsin in this

example) and the full path to the system design directory. Run the edited script

./gen tmg template.sh to generate a template TMG model file system.tmg.

2. edit the file system.tmg by replacing the “TO BE FILLED” line of each component with

proper TMG connection and initial markings, following the format:

n D1 M1 D2 M2 . . . DN Mn

where n is the number of destination components,Di is the name of the destination component

i, and Mi is the initial marking from the current component to Di.

3. edit the script ./plan hls.sh with the name of the system design and the desired characteri-

zation granularity δ (0.2 by default). In addition, turn off the option “thru max” by setting it

to 0 for system-throughput-constrained area exploration. Run the edited script ./plan hls.sh

to identify the necessary component-synthesis jobs with their knob settings and target clock

periods. The planning results will be returned as output files in the directory hls plan/δ.

4. optionally, the user can run system-area-constrained throughput exploration by turned on the

option “thru max” (set to 1) in the script ./plan hls.sh. In addition, the user should

provide a system-area range [minarea, maxarea] for the exploration. Run the edited script

./plan hls.sh again, and the planning results will be appended to the files in the directory

hls plan/δ.

After the synthesis planning, switch back to each component directory for additional component

synthesis as follows.

1. edit the script ./gen implement dir.sh with (i) the name of the component design, (ii) the

target clock period used for testing the knob settings (i.e., the clock setting used in Step 2,

Section A.1.3.1), and (iii) the system characterization granularity δ used in the previous

Step 3. Run the edited script ./gen implement dir.sh to generate CtoS synthesis directories.
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2. run the script ./run implement.sh to synthesize the component with all the planned knob

settings.

After finishing the planned synthesis jobs for all the components, switch again back to the plan

directory for the final “plan vs. synthesis” comparisons. Run the script ./collect hls result.sh

after editing the system design name and the characterization granularity δ in the script. The

comparisons will be returned as an output in the directory hls result/δ/.

A.2 CAPS

This sub-appendix describes the CAPS software package (caps-p.tar.gz), including its software

requirements and file structure. A tutorial is also included to explain the usage of CAPS.

A.2.1 Software Requirements

The following software and libraries are required for the execution of CAPS. The version number

enclosed by the parentheses denotes the software/library version that has been tested with CAPS.

• Synopsys Design Compiler (I-2013.12-SP1): a commercial Logic Synthesis (LS) tool that can

synthesize a netlist from RTL Verilog/VHDL.

• g++ (4.6.3): The g++ compiler is used to compile CAPS’s C++ code.

A.2.2 File Structure

The caps-p.tar.gz tarball includes the following directories.

• init contains text files (*.ini), each describing the two extreme points of all the components

in a system design.

• data is a directory that contains all the CAPS outputs.

• vision provides a tutorial example described in Section A.2.3.

• examples contains more examples besides vision: (i) mpeg: an MPEG encoding/decoding

system including 26 components and (ii) msoc: an SoC based on the OR1200 procssor [3]

including eight components.

188



A.2.3 Tutorial

This tutorial uses a system design for video-rate stereo-depth measurement (StereoDepth) to ex-

plain the usage of CAPS. StereoDepth is designed in RTL Verilog and consists of four components:

chip0, chip1, chip2, and chip3.

To characterize StereoDepth, take the following steps.

1. under the directories vision/chip*, provide a template directory with the scripts to run Logic

Synthesis for each component. An example template directory is provided as template, which

can be instantiated with different target clock periods.

2. under the directory init, provide a text file vision.ini that describes the extreme points

of the four components in the following format:

min x

max x0 min y0 max y0 Ninst0

max x1 min y1 max y1 Ninst1

max x2 min y2 max y2 Ninst2

max x3 min y3 max y3 Ninst3

where (i) min x is the minimum target clock period (ns) of all the components (and the

system), (ii) max xi is the maximum target clock period (ns) of chipi, (iii) min yi and

max yi are the minimum and maximum total power (mW) of chipi, respectively, and (iv)

Ninsti is the number of instances of chipi in the StereoDepth system (which is 1 in this

example, i.e., no duplicated component). These extreme points can be obtained by running

a sequence of trial Logic Synthesis up front with a coarse-grained sweeping of target clock

periods. Based on the trial synthesis results, the minimum target clock period can be set to

the minimum achievable clock period and the maximum target clock period can be set to the

clock period whose returned circuit area starts to reach a plateau.

3. under the caps-p directory, run the command ./caps ϵ Niter init/vision.ini, where

ϵ constrains the approximation accuracy (0 ≤ ϵ < 1) and Niter is the constraint of the

maximum number of synthesis jobs. Setting either ϵ or Niter to zero tells CAPS to ignore

that constraint. See also the bash script run caps.sh for command examples.
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CAPS outputs the approximate Pareto sets in the text files data/*.dat. Each line of a

.dat file shows the target clock period (ns) and the synthesized total power (mW). The file

data/approximation.dat shows the system Pareto set and the file data/error.dat shows the

approximation error per CAPS iteration.

A.3 LEISTER

This sub-appendix describes the LEISTER software package (leister-p.tar.gz), including its

software requirements and file structure. A tutorial is also included to explain the usage of LEIS-

TER.

A.3.1 Software Requirements

The following software and libraries are required for the execution of LEISTER. The version num-

ber enclosed by the parentheses denotes the software/library version that has been tested with

LEISTER.

• Cadence C-to-Silicon (CtoS) Compiler (14.10-p100, 64-bit): a commercial HLS tool that can

synthesize RTL Verilog from SystemC.

• R (2.14.1): a free MATLAB-like software environment for statistical computing and graph-

ics. R can be downloaded at http://cran.r-project.org/, which also provides 6K+ free

statistical-computing packages written in R, such as the following package.

• randomForest (4.6-10): an R package for classification and regression based on a forest of

trees using random inputs.

• g++ (4.6.3): The g++ compiler is used to compile LEISTER’s C++ code.

A.3.2 File Structure

The leister-p.tar.gz tarball includes the following directories.

• gen ks provides a reference way for the generation of a knob-setting library for a given

SystemC design. The library defines the design space that can be explored by perturbing HLS
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knob settings. Since the explorable design space is application-specific, the utility scripts of

gen ks require a certain degree of customization for the application (SystemC code) at hand.

The customization can also control the granularity of the design space to be explored.

• train is used for the training stage of LEISTER to generate an initial Pareto set.

• refine is used for the refinement stage of LEISTER to refine the Pareto-set approximation.

• examples contains the following examples: (i) adpcm: adaptive differential pulse code mod-

ulation encoder for voice compression, (ii) aes: encryption function of advanced encryp-

tion standard, (iii) blowfish: encryption function of data encryption standard, (iv) dfsin:

double-precision floating-point sine function involving addition, multiplication, and division,

(v) gsm: linear predictive coding analysis of global system for mobile communications, (vi)

jpeg: JPEG image decompression, (vii) motion: motion vector decoding of MPEG-2, and

(viii) sha: transformation function of secure hashing algorithm.

A.3.3 Tutorial

This tutorial uses a SystemC design of the Secure Hashing Algorithm (SHA) to explain the usage

of LEISTER.

A.3.3.1 Knob-Setting Library Generation

To begin with, in the gen ks directory an initial knob-setting library sha.ks and a final knob-setting

library sha.fks for SHA need to be generated. For each initial knob setting, low-effort synthesis

and cycle-accurate simulation are run, in order to (i) quickly filter out the non-synthesizable knob

setting and (ii) obtain the clock cycle count required by the knob-setting derived micro-architecture.

The clock cycle counts are then annotated with the initial library sha.ks. The annotated library

is called the final knob-setting library sha.fks. Thus, in the later training and refinement stages,

the remaining unsynthesized knob-settings are all synthesizable (unless there are problems caused

by high-effort synthesis1). Moreover, cycle-accurate simulations are no longer required because a

1 Compared with low-effort synthesis, CtoS performs additional analyses (and optimizations) such as using Logic

Synthesis for evaluating detailed timing feasibility. It is possible (but not often) that a certain knob setting is

synthesizable with low-effort synthesis but not with high-effort synthesis due to a too stringent clock-period constraint.
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lookup into the final library sha.fks is sufficient to obtain the clock cycle counts. The following

steps generate the initial and the final knob-setting libraries.

1. provide a CtoS template directory ks template that includes four subdirectories: src (Sys-

temC design), tb (test bench), syn (CtoS scripts), and sim (for clock-cycle-count simulation).

An example template directory is provided as ks template, which can be instantiated with

different knob settings.

2. edit the script ./gen ks.sh according to the actual SystemC design, such that a user-desired

set of knob settings can be parameterized. The example gen ks.sh shows a way to generate

an initial knob-setting library of SHA with 243 loop configurations, 4 function configurations,

and 4 target clock periods, resulting in a design space of size 3,888. The parameterization

also requires the corresponding editing of CtoS scripts ks template/syn/syn temp.tcl and

ks template/syn/micro.tcl. Run the edited script ./gen ks.sh to instantiate CtoS direc-

tories ks i for i ∈ {1, 2, . . . , 3888}, and to generate the initial knob-setting library sha.ks,

which enumerates the 3,888 settings, each associated with a unique knob-setting ID.

3. edit the script ./get sim list.sh with the name of the SystemC design (i.e. “sha” in this

example). This script should be adapted from the script ./gen ks.sh, so that all the knob-

setting IDs are consistent. Note that if the knob-settings only differ by, for instance, function-

inlining and/or clock-period configurations, then only one of them is sufficient for the sim-

ulation of the clock cycle count, since all of them should have the same number of clock

cycle count. Therefore, for the SHA example, the required number of simulations is only

243. Moreover, in ./get sim list.sh, the user can define the number of simulation threads

(thread) and the maximum number of simulation jobs per thread (maxjob). Run the edited

./get sim list.sh, which will generate thread simulation scripts sim thread *.sh.

4. run in parallel the scripts sim thread *.sh, which launch low-effort syntheses and cycle-

accurate simulations.

5. edit the script ./collect lat.sh, which again should be adapted from the script ./gen ks.sh

However, even if an HLS job is failed during the Pareto-refinement stage, LEISTER can analyze the HLS log to

determine the exit status of the current HLS job and still progress to select the next HLS job without stopping.
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for the consistency of knob-setting IDs. The script ./collect lat.sh will filter out non-

synthesizable knob settings and annotate the simulated clock cycle counts for the synthesiz-

able knob settings. Run the edited script ./collect lat.sh to generate the final knob-setting

library sha.fks.

A.3.3.2 The Training Stage

Under the train directory, there are two subdirectories: (i) ted for training with the sequential

TED algorithm and (ii) rted for training with the randomized TED algorithm. Both algorithms

take the final knob-setting library sha.fks as an input and generate sample (training) knob-

settings. At the end of the training stage, three files are generated:

• sample.qor is the training set of sha.fks yet additionally annotated with HLS QoR in terms

of the synthesized clock period, the effective latency, and the circuit area,

• pareto.qor is an initial Pareto-set approximation in terms of area vs. effective latency

(pareto.qor is also a subset of sample.qor), and

• test.dat is the set of knob settings whose HLS QoR are still unknown (i.e. sha.fks minus

sample.qor).

Under the ted subdirectory, the training stage includes the following steps.

1. edit the R script ./ ted temp.R with the full path to the ted directory.

2. edit the script ./ted.sh with name of the design (“sha” in this example), the number of

knobs (8 for SHA), the number of training-sample size (20 by default), and the number of

synthesis jobs per synthesis thread (5 by default). Run the edited script ./ted.sh to generate

(20/5 = 4) run thread *.sh scripts.

3. run in parallel the run thread *.sh scripts to synthesize SHA with the sampled knob settings.

4. after all the run thread *.sh scripts have finished, edit the script collect qor.sh with the

number of knobs. Run the edited script collect qor.sh to generate the final output files

sample.qor, pareto.qor, and test.dat.
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On the other hand, the training steps using randomized TED (in the rted directory) are

basically the same, except for the need of editing the script rted/rted.sh in Step 2 by specifying

the size of a random subset (num rted, which is 200 by default). Repeat the above four steps in

the rted directory with all the keyword ted being replaced with rted.

A.3.3.3 The Refinement Stage

Under the refine directory, there are two subdirectories: (i) basic-ST for Pareto-set refinement

with Random Forests using exhaustive QoR prediction and (ii) extreme-RT for Pareto-set refine-

ment with Random Forests using random-sampling for QoR prediction.

Under the basic-ST subdirectory, the refinement stage includes the following steps.

1. edit the R script rf.R with the full path to the basic-ST directory and the number of knobs

(num knob), which is this case is equal to 8.

2. edit the script query.sh with the name of the design (“sha” in this example).

3. setup the initial DSE results by creating a directory called itr 0 and link the initial Pareto-

set approximation obtained at the training stage. Run the commands mkdir itr 0; ln -s

../../train/ted/FILE itr 0/FILE, for FILE ∈ {sample.qor, pareto.qor, test.dat}.

4. edit the C++ program basic-ST.cc by defining the number of knobs (NUM KNOB, which is 8

for SHA in this example). Compile the edited program by running the command make.

5. start the Pareto-set refinement by running the command ./basic-ST itr 0/sample.qor

itr 0/test.dat Niter, where Niter is the user-desired number of refinement iterations (i.e.

the number of HLS jobs, which in this case is equal to 20).

On the other hand, the refinement steps using the method extreme-RT are basically the same,

except (i) in Step 1, the path should point to the extreme-RT directory, (ii) in Step 3, ted in

the command should be replaced with rted, (iii) in Step 4, edit extreme-RT.cc by defining not

only NUM KNOB but also RAND SELECT SIZE, which is the size of the random subset for QoR predic-

tion (59 by default), and (iv) in Step 5, the command becomes ./extreme-RT itr 0/sample.qor

itr 0/test.dat Niter.
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For both methods basic-ST and extreme-RT, the final Pareto set will be output in the file

itr Nitr/pareto.qor. Each line of itr Nitr/pareto.qor indicates one Pareto point in the fol-

lowing format:

ks id elat area

where ks id is the knob-setting ID, elat is the effective latency, and area is the circuit area. Note

that there is one Pareto-set approximation pareto.qor in each iteration directory itr Nitr for

Nitr being 0, 1, 2, . . ., so that the approximation can be tracked as opposed to being overwritten.

A.4 EgSpan

This sub-appendix describes the EgSpan software package (egspan-p.tar.gz), including its soft-

ware requirements and file structure. A tutorial is also included to explain the usage of EgSpan.

A.4.1 Software Requirements

The following software and libraries are required for the execution of EgSpan. The version number

enclosed by the parentheses denotes the software/library version that has been tested with EgSpan.

• LLVM (2.9): The LLVM compiler framework for the generation of Data-Flow Graph (DFG)

files.

• LegUp (3.0): An open-source HLS tool that adapts LLVM as the C-to-Verilog synthesis

front-end. Note that LegUp is only used for DFG generation and not for high-level synthesis.

• g++ (4.6.3): The g++ compiler is used to compile EgSpan’s C++ code.

A.4.2 File Structure

The egspan-p.tar.gz tarball includes the following directories.

• llvm-modify provides two modified LLVM source files for generating the DFG files that can

be processed by EgSpan.

• raw2egi contains a C++ program to convert the DFGs files to the EgSpan input format.

• adpcm is a tutorial example described in Section A.4.3.
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• examples contains more examples besides adpcm: (i) aes: encryption function of advanced

encryption standard, (ii) blowfish: encryption function of data encryption standard, (iii)

dfsin: double-precision floating-point sine function involving addition, multiplication, and di-

vision, (iv) gsm: linear predictive coding analysis of global system for mobile communications,

(v) jpeg: JPEG image decompression, (vi) motion: motion vector decoding of MPEG-2, and

(vii) sha: transformation function of secure hashing algorithm.

A.4.3 Tutorial

This tutorial use an Adaptive Differential Pulse Code Modulation (ADPCM) encoder as an ex-

ample to explain the usage of EgSpan. Before starting the tutorial, follow the LegUp man-

ual (legup-3.0/legup-3.0-doc.pdf) to install LLVM (clang+llvm-2.9-x86 64-linux.tar.bz2)

and LegUp (legup-3.0.tar.gz). The two modified LLVM source files (egspan-p/llvm-modify/

SchedulerDAG.*) should replace the corresponding original LLVM versions in legup-3.0/llvm/lib/

Target/Verilog/ before starting the tutorial. These modifications can generate DFG files whose

vertices (representing LLVM primitive operations2) are annotated with their locations in the orig-

inal source code.

To generate the DFG files for (ADPCM), run make in the directory legup-3.0/examples/

chstone/adpcm. The name of the generated DFG files should end with raw. Move all the gen-

erated DFG files (*.raw) to the directory egspan-p/adpcm/raw/. Change the work directory to

egspan-p/adpcm/raw/.

EgSpan Input: EgSpan reads an input text file (input.egi) that contains at least one of the

following section which represents a DFG:

t

v <vertex-index> <vertex-label>

...

e <edge-from> <edge-to> <edge-label>

...

where t denotes the beginning of a DFG representation, and each line starting with v (e) represents

2 Documents of LLVM primitive operations can be found online at

http://llvm.org/releases/2.7/docs/LangRef.html#instref.
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a DFG vertex (edge). The <vertex-label> is the ID of the vertex’s primitive operation. The

<edge-label> is currently not used, but it can be adapted to model the edge characteristics if

needed. All the indices start at zero, and the labels are unsigned integers.

EgSpan Output: EgSpan outputs three text files:

• dfg map provides a list of the raw DFG file names. Note that in dfg map the ID of the DFG

file listed at “Line i” is “i− 1”. The DFG IDs start at zero.

• op map provides a mapping of primitive operations and their IDs. The primitive-operation

IDs also start at zero.

• output.ego provides a list of frequent patterns (i.e. subgraphs), each following the format:

<pattern>

<id>pid</id>

<support>sup</support>

<what>

v <vertex-index> <vertex-label>

...

e <edge-from> <edge-to> <edge-label>

...

</what>

<where>gid list</where>

</pattern>

where pid is the pattern ID, sup is the support count of the pattern, and gid list is a list of

IDs denoting the DFGs that contain the pattern. The subgraph (pattern) enclosed between

<what> and /what> follows the same DFG format as in the input file input.egi.

Under the adpcm directory, edit the script ../run.sh by specifying the value of k for discovering

the top-k patterns. Run the edited script ../run.sh, which will (i) convert the raw DFG fills into

the input file input.egi, (ii) execute EgSpan, and (iii) generate the three output files. Use the

three output files and the raw DFG files to look up the pattern locations in the original C source

code.
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