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ABSTRACT 

It is well known that the radiative transfer equation (RTE) is the most accurate deterministic light 

propagation model employed in diffuse optical tomography (DOT). RTE-based algorithms 

provide more accurate tomographic results than codes that rely on the diffusion equation (DE), 

which is an approximation to the RTE, in scattering dominant media. However, RTE based DOT 

(RTE-DOT) has limited utility in practice due to its high computational cost and lack of support 

for general non-contact imaging systems. In this dissertation, I developed fast reconstruction 

algorithms for RTE-based DOT (RTE-DOT), which consists of three independent components: 

an efficient linear solver for forward problems, an improved optimization solver for inverse 

problem, and the first light propagation model in free space that fully considers the angular 

dependency, which can provide a suitable measurement operator for RTE-DOT. This algorithm 

is validated and evaluated with numerical experiments and clinical data. According to these 

studies, the novel reconstruction algorithm is up to 30 times faster than traditional reconstruction 

techniques, while achieving comparable reconstruction accuracy. 
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Chapter 1.  Introduction 

The overall goal of my dissertation is to develop fast image reconstruction algorithms that can be 

used for radiative-transfer-equation-based diffuse optical tomography (RTE-DOT). It is widely 

acknowledged that the radiative transfer equations (RTEs) provide the most accurate 

deterministic light propagation model for biological tissues [1-6]. In the most general case RTEs 

simply state that as a beam of radiation travels, it loses energy to absorption, redistributes energy 

by scattering out of the direction of travel, and gains energy by scattering into the direction of 

travel or energy emission (e.g. fluorophores). RTEs have application in a wide variety of subjects 

including optics, astrophysics, atmospheric science, and remote sensing. Analytic solutions to the 

radiative transfer equation (RTE) exist for simple cases but for more realistic media, with 

complex multiple scattering effects, numerical methods are required.  

Approximations to RTE, such as the diffusion equation (DE), are commonly employed 

when scattering effects dominate absorption effects. This is typically the case in many biological 

tissues. However, these approximations perform poorly if they are used in transport regime [1]. 

This regime includes cases such as small tissue volume, highly absorbing media, and tissue with 

void-like, fluid-filled regions. Clinically these cases occur in imaging of finger joints (small 

tissue volume), hematoma and hemorrhages (high absorbing media), and the brain, which is 

embedded in low-scattering cerebrospinal fluid. While RTE-DOT can be applied to these cases, 

the widespread use of the RTE in DOT is still limited because these codes are relatively 

inefficient and require long computation times. For example a reconstruction on a medium size 

finger joint can take 1~3 hours with the current traditional algorithms [7, 8], while the data 

acquisition only takes a few minutes. The inefficiency of these algorithms is mainly caused by 

the following three reasons:  
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(1) The high dimensionality of the RTE, which in addition to the spatial location contains a 

directional variable, leads to a large-scale linear equation 𝐴𝑥 = 𝑏 in the discretization. 

Moreover, the integral term in the RTE increases the number of non-zero entries in 𝐴 

significantly and those non-zero entries are mainly distributed off-diagonally. That 

lowers the convergence rate of the linear equation solver and increases the complexity of 

the preconditioning process. 

(2) The optimization problem for the image reconstruction requires repeated evaluations of 

RTE and the nature of the problem is highly ill-posed, non-convex and of large-scale. 

This makes RTE-DOT problems even slower and more difficult to solve. 

(3) Finally, large measurement data sets are required to counterbalance the noise and the ill-

posedness arising from high dimensionality of the RTE. Yet the widely employed fiber-

based imaging system cannot meet this requirement. Contact free imaging systems, 

which, for example, employ charged-coupled-device (CCD) camera as the light detector 

unit, can provide a large number of measurement points. However, the corresponding 

transport theory based measurement operator that describes the transition of the light 

from the object’s surface to the camera is rather complex. All existing models for this 

operator either assume the light propagates in a diffuse manner [9, 10] or impose strong 

assumption on the optical system [11]. A mathematical formulation for complex 

imaging system with general optical components, which takes angular-dependent 

photons emission into account, is still missing.  

This dissertation aims to overcome the aforementioned difficulties by developing an 

reconstruction technique for RTE-DOT that consists of an (a) efficient line solver for the forward 
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problems, (b) a novel optimization algorithm for the inverse problem and (c) a light propagation 

model in free space that full considers the angular dependency of photons. To reduce the cost, 

that may potentially become a further hindrance to the broad use of RTE-DOT, all the algorithms 

in this dissertation are designed to run on a PC, instead of clusters.  To achieve this, the 

following four specific aims are proposed. 

(1) Specific Aim 1: Develop an efficient linear solver for the forward problem in RTE-

DOT. This work consists of three steps. First, an incomplete LU factorization (ILU) 

based preconditioner will be designed for the linear operator in the discretized RTE is 

preconditioned. Then a novel linear solver, called block biconjugate gradient stabilized 

method (block BiCGStab), will be developed to solve the forward problems in RTE-

DOT in an all-at-once manner. Finally, multi-threading techniques will be implemented 

to further accelerate this block BiCGStab algorithm. With these steps I expect to obtain 

a speedup factor of at least 2, as compare to the traditional method. 

(2) Specific Aim 2: Investigate efficient optimization solvers for inverse problem in 

RTE-DOT. Two kinds of inverse solvers for RTE-DOT will be explored. First, I will 

improve the traditional BFGS algorithm, which is the state of the art algorithm in 

unconstrained optimization, by replacing the line search step with a step size estimation 

process. With this novel technique extra function evaluations are avoided and more 

precise step sizes are obtained. Second, I will implement the first full-space algorithm 

for RTE-DOT. This approach makes use of the full Hessian’s information to achieve 

higher convergence rate.  

(3) Specific Aim 3: Implement a transport-theory-based light propagation operator for 

free space imaging. I will model the light propagation in free space with back ray 
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tracing method, which will allow inclusion of angular dependent effects. This model will 

be able to provide measurement operator for RTE-DOT with complex non-contact 

imaging system with general optical components. 

(4) Specific Aim 4: Integrate the above three components into an image reconstruction 

algorithm that will be validate with existing clinical data from human finger joint 

imaging. 

If all the specific aims proposed in this dissertation are implemented successfully, a 

speedup factor over 10 as compared to the traditional reconstruction technique in RTE-DOT can 

be expected. Furthermore, more advanced optical designs can be employed and foreseeably 

make promising contribution to the RTE-DOT imaging system. All together, these 

improvements should lead to a greater clinical utility of RTE-DOT. 

The remainder of this dissertation is organized as follow. A succinct introduction to DOT 

is given in Chapter 2. Efficient numerical techniques for forward problems and inverse problems 

related to RTE-DOT are developed in in Chapter 3 and Chapter 4, respectively. The transport-

theory-based light propagation model for free space is developed in Chapter 5. The validation 

and performance evaluation of the overall algorithm with clinical data is presented in Chapter 6. 

Finally, a conclusion and discussion on future directions is provided in Chapter 7.   
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Chapter 2.  Diffuse Optical Tomography 

Diffuse optical tomography (DOT) is a biomedical imaging modality that may be best 

understood by comparing it to the more familiar modality of X-ray computed tomography (CT). 

DOT is similar to CT in a couple of aspects. First, both imaging modalities direct the 

electromagnetic radiation and receive measurements at multiple locations of an imaging object. 

Second, they both require some numerical inverse algorithms to generate a cross sectional image. 

However, unlike CT, which uses high-energy radiation in the wavelength range of 0.1nm < 𝜆 <

10nm, DOT uses low-energy near-infrared (NIR) light with wavelengths λ between 650nm and 

900nm. Hence, patients are not exposed to the risk accompanied by high-energy ionizing 

radiation.  In addition, DOT systems can be produced at a much lower cost compared to CT, are 

less complex, have a smaller footprint, and require less maintenance. Therefore, DOT has 

become a popular area of research over the last decade. The main areas of current applications 

include brain imaging [12-18], breast imaging [19-25], vascular imaging [26-31], small animal 

imaging [32-37] and imaging of finger joints [7, 38-41]. 

2.1. Light absorption and scattering in tissue 

In DOT, near-infrared light, in the wavelength range of 650nm < λ < 950nm is used to image 

tissue. This light can be absorbed and scattered when propagating inside the body. The energy 

being absorbed is determined by the tissue’s absorption coefficient (𝜇!  [cm!!]), while the 

scattered energy is determined by the scattering coefficient (𝜇!  [cm!!]). The probability that 

light is scattered into any particular solid-angle is given by scattering phase function 𝑝 𝜃,𝜙 . 
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2.1.1. Absorption  

Absorption is defined as the effect that a photon is annihilated and its energy is converted into 

the internal energy of molecules. Molecules that are responsible for the absorption of the visible 

and near-infrared light are called chromophores. In a simplified model for absorption, a 

chromophore has an absorption cross section with a certain radius which perfectly absorbs the 

beam of photons. The area of cross section of chromophores is denoted as 𝑎!   cm! , and 

typically, depends on the wavelength 𝜆 and properties of the specific chromophore. If the local 

volume density of chromophores is set to 𝜌!"#   cm!! , then the local absorption coefficient 𝜇! 

for light with wavelength 𝜆 is given by 

 𝜇! = 𝜌!"#𝑎!. (2.1) 

The absorption coefficient can also be expressed in another way 

 𝜇! = 𝑐𝛼!. (2.2) 

Here 𝑐 represents the concentration of the absorber that is independent of the wavelength 𝜆 and 

𝛼! is the absorptivity of the absorber that depends on the 𝜆.  

We define 𝑧 as the axis parallel to the light beam direction and 𝜓  [W cm!] as the light 

intensity of the beam. Then within an infinitesimal distance 𝑑𝑧, the light intensity change 𝑑𝜓 

within [𝑧, 𝑧 + 𝑑𝑧] can be expressed as 

 𝑑𝜓 𝑧 = −𝜇! 𝑧 𝜓 𝑧 𝑑𝑧. (2.3) 

Here the absorption coefficient 𝜇! and the light intensity 𝜓 are assumed to be functions with 

respect to location 𝑧. This first order linear ODE (2.3) can be solved by multiplying the 

exp 𝜇! 𝑧! 𝑑𝑧!
!
!  as an integrating factor and then conducting an integration on its the both 

sides. Its solution, that is also referred to as the Beer-Lambert Law is given as below,   
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 𝜓 𝑧 = 𝜓! exp − 𝜇! 𝑧! 𝑑𝑧!
!

!
. (2.4) 

In DOT, 𝜇! is referred to as the overall absorption coefficient that is contributed by different 

species of absorbers. So equation (2.2) is generalized to read  

 𝜇!,! = 𝑐!𝛼!,!

!

!!!

. (2.5) 

Here the overall 𝜇!,!  is expressed as a summation of products of concentration and the 

absorptivity for each individual species of absorber. Therefore, by reconstructing the overall 

absorption coefficient for different wavelength 𝜆s in DOT, the concentrations of certain species 

𝛼!,!  of absorbers can be derived by solving a linear equation. For biological tissue, the 

absorption coefficient usually ranges from 0.03cm!! to 1.6cm!!. 

2.1.2. Scattering 

In addition to being absorbed, light can be scattered when it is propagating in tissue. This 

scattering effect is mainly caused by random spatial variations in tissue density, refractive index and 

dielectric constant. The scattering coefficient 𝜇!  [cm−1] is used to describe the scattering property of 

a medium. 

To simplify the model, we assume that light is scattered when it encounters a “scattering 

unit”. A scattering unit is defined as a sphere with specific radius. Its cross section area is given 

by 𝑠!   cm!  in this model. In a medium that contains many scattering units with a volume 

density 𝜌!"#$   cm!! , the scattering coefficient 𝜇! is given by 

 𝜇! = 𝜌!"#$𝑠! (2.6) 
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When a scattering event occurs, light can be deflected into any directions. A phase function 

𝑝 𝜃,𝜙  is introduced to describe the probability of a photon being deflected into a solid angle 

𝜃   𝜃 ∈ −𝜋,𝜋 ,𝜙 𝜙 ∈ 0,𝜋  as compared to its original trajectory after being scattered. In 

general this phase function can be rather complex and analytical solutions of the Maxwell’s 

equation exist for simple scatter centers only (e.g. spheres, cylinders, etc.). A simplified 

analytical expression for 𝑝 was derived by Henyey and Greenstein [42] : 

 𝑝 𝜃 =
1− 𝑔!

4𝜋 1+ 𝑔! − 2𝑔𝜃 !/! (2.7) 

This so-called Henyey-Greenstein phase function only depends on θ  and is widely used in DOT.  

This equation contains the anisotropy factor 𝑔, which is the expectation of components on the 

original trajectory that is projected from the scattered direction of a photon, which is given by 

 𝑔 ≔ 𝑝 𝜃 cos𝜃 𝑑𝜃
!

!!
. (2.9) 

From this one can define the reduced scattering coefficient 𝜇!!    cm!! ≔ 1 − 𝑔 𝜇𝑠. For 

biological tissue 𝜇!!  usually ranges between 1.2cm!! and 40cm!!, and the anisotropic factor 𝑔 

varies from 0.7 to 0.99. 

2.2. Models of light propagation in tissue 

In general, diffuse optical tomography (DOT) requires a light propagation model that describes 

how photons are moving inside tissue. Two popular forward models are widely used in DOT, 

which are the radiative transfer equation (RTE) and diffusion equation (DE). 
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2.2.1. Radiative transfer equation (RTE) 

The radiative transfer equation (RTE) is widely acknowledged as the most accurate deterministic 

light propagation model [1-6]. The time-domain RTE (TD-RTE) models the radiance as a 

function of the location vector 𝒓 and the solid angle 𝒔 and the time 𝑡 following the energy 

conservation law, where the radiance is defined as the radiant flux energy per unit solid angle, 

per projected area at time 𝑡. It is given by the following equation: 

1
𝑣
𝜕
𝜕𝑡 + 𝐬 ⋅ ∇+ 𝜇! 𝒓 + 𝜇! 𝒓 𝜓 𝒓, 𝒔!, 𝑡 = 𝜇! 𝒓 𝑝 𝒔 ⋅ 𝒔! 𝜓 𝒓, 𝒔!, 𝑡 𝑑𝐬!

!!
+ 𝑞 𝒓, 𝒔, 𝑡 . 

 (2.9) 

Here 𝜓 𝒓, 𝒔, 𝑡  is the radiance in units of W cm! sr  and 𝑞 𝒓, 𝒔, 𝑡  is the source density in the 

unit of W cm! sr  at position 𝒓  at time 𝑡  in direction 𝒔 , 𝜇! 𝒓  and 𝜇! 𝒓  represent the 

absorption coefficient and scattering coefficient that are spatial functions with respect to 𝒓, 𝑣 

represents the light speed in the medium. The terms on the right-hand side represent the radiance 

gained per unit volume at position 𝒓 on direction 𝒔 at time 𝑡, including photons from the source 

and photon deflected into direction 𝒔 after scattering happens. The terms on the left hand side 

correspond to the radiance lost per unit volume at position 𝒓 on direction 𝒔 at time 𝑡, including 

the radiance change over time and photons that are absorbed by the media or scattered into other 

directions. 

To take into account the mismatch of the refractive index at air-tissue interface, the 

partially reflective boundary condition is commonly imposed, 

 𝜓 𝒓! , 𝒔 = 𝑞 𝒓! , 𝒔 + 𝑅 −𝒔 ⋅ 𝒏 𝜓 𝒓! , 𝒔! , 𝒔 ⋅ 𝒏 < 𝟎. (2.10) 

Here 𝒓! represents the position on the boundary, 𝒏 is the unit outgoing normal vector at 𝒓!, 

𝒔! = 𝒔− 2 𝒔 ⋅ 𝒏 𝒏 is the specular reflection of 𝒔, 𝑅 −𝒔 ⋅ 𝒏  is the reflectivity obtained by 

Fresnel’s equations,  
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𝑅 cos𝜃 =
1, 𝑛 sin𝜃 > 𝑛!

1
2
𝑛 cos𝜃 − 𝑛! cos𝜃!

𝑛 cos𝜃 + 𝑛! cos𝜃!

!

+
1
2
𝑛 cos𝜃! − 𝑛! cos𝜃
𝑛 cos𝜃! + 𝑛! cos𝜃

!

, 𝑛 sin𝜃 ≤ 𝑛!
 (2.11) 

Here 𝑛 and 𝑛′ are the refractive index inside and outside the medium, 𝜃! ≔ arcsin 𝑛 sin𝜃 𝑛′  is 

determined by the Snell’s law. Time 𝑡 is omitted in (2.10) since it can be used as boundary 

condition for FD-RTE and CW-RTE that are described below. 

Applying a Fourier Transform to equation (2.9), the corresponding frequency-domain 

RTE (FD-RTE) can be derived as [43]: 

𝑖𝜔
𝑣 + 𝒔 ⋅ ∇+ 𝜇! 𝒓 + 𝜇! 𝒓 𝜓 𝒓, 𝒔,𝜔 = 𝜇! 𝒓 𝑝 𝒔 ⋅ 𝒔! 𝜓 𝒓, 𝒔!,𝜔 𝑑𝒔!

!!
+ 𝑞 𝒓, 𝒔,𝜔 . 

  (2.12) 

where 𝑖 = −1   and 𝜔 represents the modulation frequency, which is sometimes omitted is it is 

fixed. 

A continuous-wave RTE (CW-RTE) is a special case of FD-RTE, which is obtained  

from  (2.12)  by  setting  the  modulation  frequency  𝜔 = 0.    

2.2.2. Diffusion approximation to RTE 

Under this assumption of isotropic scattering (e.g. each scattering direction has the same 

probability), the RTE can be approximated with the diffusion equation (DE). The time-domain 

DE is given as [43]: 

 
1
𝑣
𝜕
𝜕𝑡 + 𝜇! 𝒓 𝜙 𝒓, 𝑡 − ∇ ⋅ 𝐷 𝒓 ∇𝜙 𝒓, 𝑡 = 𝑞 𝒓, 𝑡 . (2.13) 

Here 𝜙  [W cm!] represents the photon density, the diffusion coefficient 𝐷 𝒓  is defined as 

𝐷 𝒓 ≔ 1 3 𝜇! 𝒓 + 𝜇!!(𝒓) , and 𝑞 𝒓, 𝑡  represents an isotropic source. 
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Similarly, the frequency-domain DE (FD-DE) can be obtained by taking Fourier 

Transform on (2.13): 

 
1
𝑣
𝜕
𝜕𝑡 + 𝜇! 𝒓 𝜙 𝒓,𝜔 − ∇ ⋅ 𝐷 𝒓 ∇𝜙 𝒓,𝜔 = 𝑞 𝒓,𝜔 , (2.14) 

and the continuous-wave DE (CW-DE) can be given by setting the modulation frequency in 

(2.14). 

2.3. Diffuse optical tomography as an optimization problem 

In DOT, low-energy NIR light is used to probe biological tissue. Measurements of transmitted 

and reflected light intensities are used to recover a spatial distribution of various optical 

properties, for instance, absorption and scattering coefficients (𝜇! and 𝜇!) inside the medium 

under investigation. From these coefficients other important physiological information can be 

derived, such as the concentrations of oxy-hemoglobin (HbO!), deoxy-hemoglobin (Hb), total 

hemoglobin, and water (H2O). These physiological parameters and tissues optical properties vary 

with location inside the tissue [44]. 

Unlike X-ray CT, no closed-form inversion expression for the general image 

reconstruction problem in DOT exists. Therefore, instead of the closed-form inverse Radon 

transform employed in X-ray CT, DOT inverse problems are mostly formulated as an 

optimization problem [43, 45], which is solved through iterative algorithms. In this approach the 

spatial distribution of the optical properties are determined by finding the best agreement 

between the experimental measurements and the results of the theoretical light propagation 

model with a given source condition. A flowchart for the general reconstruction process in DOT 

is shown in Fig. 2.1. 
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Figure 2.1: Flowchart for iterative reconstruction process in DOT. 

As indicated in Fig. 2.1, the light propagation model plays a very important role in DOT. 

Improper light propagation models lead to incorrect reconstruction results. DOT based on the DE 

as the forward model is widely used because of its simplicity and low computational cost. 

However, DE-based results are not accurate enough when media are considered that contain 

areas of where 𝜇! > 𝜇!, void-like regions, or are optically thin (small volume). Clinically these 

cases occur when one images finger joints (small tissue volume), hematoma and hemorrhages in 

the brain (high absorbing media), or the brain surface, which is embedded in low-scattering 

cerebrospinal fluid. Light propagation in these types of tissues can be much more accurately 

modeled by RTE-based codes [1]. 

Compared to DE-based DOT, RTE-DOT is more challenging because of the higher ill-

posedness and computational cost. This limits its widespread use in clinical applications. The 

difficulties mainly come from the following four aspects. 

First of all, the light intensity distribution in the RTE is a function of both position and 

direction. Thus, unlike in the DE, the RTE requires a directional discretization in the numerical 
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solver in addition to a spatial discretization. This leads to a much larger scale linear system, 

which is much larger than the DE-based linear system that requires spatial discretization alone.  

Secondly, the RTE is a partial integro-differential equation. This leads to much more 

non-zero off-diagonal entries in the linear system due to the integral term. In turn, this further 

lowers the convergence rate of any solver. Since RTE needs to be solved repeatedly during the 

image reconstruction process, the efficiency of the numerical solver is a critical factor that 

affects the overall performance of RTE-DOT. 

Thirdly, the reconstruction problem in DOT is in general formulated as a large scale, ill-

posed and non-convex optimization problem. The efficiency of the solver highly depends on the 

formulation and the optimization algorithm. Thus a proper formulation with a robust and 

efficient algorithm for DOT is required.  

Finally, more measurements are required to alleviate the ill-posedness and improve the 

quality of the reconstructed images. However, the number of measurements in practice is limited 

by commonly used optical-fiber-based imaging systems. Non-contact imaging systems with 

CCD camera as the detector unit can provide more measurement points, however, in RTE-based 

non-contact imaging system, a method that fully models the angular dependent light propagation 

in free space is required. 

These problems, due to the significant importance and irreplaceability of RTE-DOT in 

many applications, have attracted much attention in recent years [9-11, 46-52]. Yet, RTE-DOT 

still remains a challenging problem and there is considerable room to improve the efficiency of 

the solvers without sacrificing accuracy. 
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2.4. Discussion 

The widespread use of the RTE-DOT is limited by its high computational cost and ill-

posedness. The aim of the work in this dissertation is to construct a novel reconstruction 

algorithm for RTE-DOT to make it more applicable in practice. This goal is achieved through 

three components. 

First of all, I improve the efficiency in the forward problem solver in RTE-DOT, which is 

an important component in the reconstruction algorithm. Specifically, the forward problems in 

RTE-DOT are discretized as an all-at-once linear equation with multiple right-hand sides. 

Instead of solving for each right-hand side separately, I introduce a novel linear solver called 

block biconjugate gradient stabilized method (block BiCGStab) that makes full use of the shared 

information between different right-hand sides to accelerate solution convergence. Additionally, 

two multi-threading block BiCGStab methods are proposed for additional acceleration under 

limited threads and shared memory situation.   

Second, I investigate two novel inverse solvers for the optimization problem in RTE-

DOT. First, a novel line-search-free BFGS algorithm is proposed. This algorithm improves the 

efficiency of the traditional BFGS algorithm, one of the state of the art algorithm in 

unconstrained optimization, by replacing the line search step with a more accurate and efficiency 

step size estimation procedure. Furthermore, I implement the first full-space algorithm for RTE-

DOT, which pursue the descent direction in the full Hessian space instead of the reduced Hessian 

space. Therefore, it is expected to converge faster than the existing reduced-space algorithms. 

Third, I proposed a back ray-tracing model to simulate the photon transport process in 

free-space. Unlike current available models, the new approach fully considers the angular 

dependency of intensity and thus can be applied in RTE-DOT. Moreover, this proposed model 
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could handle photon transport problems with a generalized optical system between the object and 

the CCD camera to collect more signals that is often limited by the size of aperture. Thus it is 

reasonable to expect a better performance and more reliable result in non-contact DOT with this 

proposed model. 

Finally, a novel reconstruction algorithm for RTE-DOT is constructed by a combination 

of these three components. This reconstruction algorithm is then tested and validated with data 

from preclinical and clinical studies. It shows this newly developed algorithm enhances the 

applicability of RTE-DOT in clinical study by significantly reducing the reconstruction time and 

its capability of being applied with general non-contact image system.  
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Chapter 3.  Efficient Forward Solver in RTE-DOT 

3.1. Introduction 

The forward solver is a crucial component in DOT since this solver is called multiple times in 

most common iterative image reconstruction codes. Indeed, computing solutions of the forward 

problem typically makes up about 90% of the overall computational time. Hence, efficient fast 

forward solvers in RTE-DOT have been pursued by several groups [46, 53-55]. However, all 

existing algorithms for solving the RTE are designed based on solving a single right-hand side. 

Therefore, only one light-source is considered at any given time. Yet, in DOT one typically uses 

many light sources to illuminate the tissue of interest from many different positions. In this way 

many different light-transmission data sets (“views”) are obtained that contain different 

information. Used in an inverse image reconstruction algorithm this leads to more accurate 

images. Employing multiple light sources means the inverse problem involves multiple right-

hand sides.  

To increase the computational speed, some groups have recently implemented parallel 

computing methods, which make use of multiple processors, available on most modern computer 

systems [47, 56]. However, in these parallel computing methods each processor still solves a 

single right-hand-side problem, which required substantial computational resources that are very 

expensive and not always available. Therefore, I focus in this thesis on numerical methods for 

solving multiple right-hand sides simultaneously on a single PC with limited threads (threads 

number is less than or equal to the source number). 

To solve linear equations with multiple right-hand sides efficiently, I make full use of the 

fact that the same coefficient matrix is shared among multiple right-hand sides in the linear 

system resulting from multiple source illumination: 
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 𝐴Ψ = 𝐵, (3.1) 

where Ψ is the matrix of solution vectors 𝜓(!),𝜓(!),… ,𝜓(!!"#$%&)  and 𝐵  of right-hand sides 

𝑏(!), 𝑏(!),… , 𝑏(!!"#$%&) pertaining to the 𝑖th light source illumination. Methods for solving such 

linear systems with multiple right-hand sides have been extensively studied in other areas [57-

62]. The block Krylov subspace methods have been shown to be the most effective for many 

cases [63, 64]. In this dissertation, the Krylov subspace block BiCGStab algorithm [65] is 

introduced. Compared to other methods, this approach has the advantages of low memory 

requirement, simple structure and stable convergence. In addition, it can be readily combined 

with other numerical techniques such as high order differencing schemes or acceleration schemes 

to obtain additional speedup or increased accuracy. 

Furthermore, to obtain a higher convergence rate, an efficient preconditioner is necessary 

for the Krylov subspace type linear solvers. Incomplete LU factorization (ILU) and its variants 

[66-70] are among the most popular preconditioners for large-scale sparse linear systems and 

have been already applied into many areas [71-73]. However, ILU’s efficiency is jeopardized by 

the dense non-zero pattern generated by the integral term in RTE. To overcome this difficulty, a 

reduced linear operator is defined with much fewer non-zero entries to approximate the original 

linear system and the ILU factorization is conducted on this reduced linear system instead of the 

original one as the preconditioner. Although the convergence rate provided by the proposed 

preconditioner is slightly lower than the traditional ILU preconditioner, the factorization time 

and preconditioning time is significantly reduced, due to its much smaller non-zero entry number. 

Therefore, a lower computational cost for the overall solving process can be expected. 

The remainder of the chapter is organized as follows. The discretization of the RTE and 

the novel preconditioning technique are described in Section 3.2. Then the efficient linear solvers 
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are introduced in Section 3.3, including the preconditioned BiCGStab, block BiCGStab and 

multi-threading block BiCGStab. Performance of the proposed preconditioner and block solvers 

is evaluated through extensive numerical experiments in Section 3.4. This chapter concludes 

with a discussion in Section 3.5. 

3.2. Discretization and preconditioning of RTE 

3.2.1. Upwind finite volume discrete-ordinates discretization 

The RTE (2.12) is discretized by a finite volume scheme combined with the discrete ordinates 

method (𝑆!) [52]. First we discretized the direction domain with discrete ordinates method, thus 

the integral term on the right-hand side of Eq. (2.12) can be approximated with a weighted sum 

of the radiance field in different directions, 

 𝑝 𝐬! ⋅ 𝐬′ 𝜓 𝒓, 𝐬′ 𝑑𝐬′
!!

= 𝑝!"𝑤!𝜓 𝒓, 𝐬!

!!"

!!!

, (3.2) 

where 𝑁!" = 𝑛 𝑛 + 2  is the total number of solid angles in 𝑆! , 𝑝!" = 𝑝 𝒔! ⋅ 𝒔! , 𝑤!  is the 

spherical measure of solid angle 𝒔!. 

Thus based on Eq. (3.2), Eq. (2.12) is decomposed into a set of 𝑁!" coupled partial 

differential equations that correspond to 𝑁!" discretized photon propagation directions, 

𝑖𝜔
𝑣 + 𝒔! ⋅ ∇+ 𝜇! 𝒓 + 𝜇! 𝒓 𝜓! 𝒓 = 𝜇! 𝒓 𝑝!"𝑤!𝜓! 𝒓

!!"

!!!

+ 𝑞! 𝒓 , 𝑖 = 1,… ,𝑁!". (3.3) 

where 𝜓 𝒓, 𝒔!  is written in short as 𝜓! 𝒓 . 

The spatial domain is discretized with a node-centered mesh combined with the upwind 

differencing scheme, which not only can handle complex geometry but also guarantee the 

conservation law of energy. The resulting discretized RTE is given by 
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1
𝑉!

𝐴!! 𝒏!! ⋅ 𝒔! 𝑓!,!!
!!

!!!

+ 𝜇!,!𝜓!,!

                                                                                                                                                                          

+𝜇!,! 𝜓!,! − 𝑝!"𝑤!𝜓!,!

!!"

!!!

+
𝑖𝜔
𝑣 𝜓!,! = 𝑞!,! , 𝑗 = 1,… ,𝑁!" 

  (3.4) 

where 𝜇!,! , 𝜇!,! , 𝜓!,!  and 𝑞!,!  represent 𝜇! 𝒓! , 𝜇! 𝒓! , 𝜓! 𝒓!  and 𝑞! 𝒓!  in Eq. (3.4) 

respectively, 𝑉!  and 𝑁!  denote the volume and the neighbor number of the control volume 

centered at 𝒓!, 𝐴!!   and 𝒏!! are the area and outgoing unit normal vector of the 𝑙th surface of the 

control volume centered at 𝒓!, 𝑁!" is the total number of control volumes. With a slight abuse of 

notation, we will from now on use 𝑉! and 𝐴!! to indicate the control volume centered at 𝒓! and its 

𝑙th surface. The 𝑓!,!!  in Eq. (3.4) represents the directional flux per area on 𝐴!! , it can be 

approximated by the upwind scheme as applied to unstructured meshes: if 𝐴!! is not on the 

boundary and its neighboring volume of 𝑉! is indexed with 𝑗!, then 𝑓!,!!  is given by 

 𝑓!,!! =
𝜓!,! , 𝒏!! ⋅ 𝒔! > 0
𝜓!,!! , 𝒏!! ⋅ 𝒔! ≤ 0

 (3.5) 

if 𝐴!! is on the boundary, then 𝑓!,!!  can be obtained by 

 𝑓!,!! =
𝜓!,! , 𝒏!! ⋅ 𝒔! > 0
𝜓!,! , 𝒏!! ⋅ 𝒔! ≤ 0

 (3.6) 

where 𝜓!,! is given by the discretization of the reflective boundary condition (2.10) as follows, 

 𝜓!,! = 𝑞!,! + 𝑅 −𝒏!! ⋅ 𝒔! 𝜓!!,!  (3.7) 

where 𝜓!!,! represents 𝜓 𝒓! , 𝒔!!  and 𝒔!! denotes the reflective direction of 𝒔! on 𝐴!! that is given 

by 𝒔! − 2 𝒔! ⋅ 𝒏!! 𝒏!!. In practice, the existence of 𝒔! − 2 𝒔! ⋅ 𝒏!! 𝒏!! is not guaranteed in 𝑆! so we 

choose 𝒔!! as the direction in 𝑆! which is closest to 𝒔! − 2 𝒔! ⋅ 𝒏!! 𝒏!!.  
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Finally, by combining (3.4)~(3.7), we arrive at the following system of the algebraic 

equations for multiple sources: 

 𝐴𝜓 ! = 𝑏 ! , 𝑘 = 1,… ,𝑁!"#$%&. (3.8) 

Here 𝑏 !  is the right-hand side generated with the 𝑘 th source configuration, 𝜓 !  is the 

corresponding solution which is a vector formed by 𝜓!,! with all possible 𝑖 and 𝑗. 𝑁!"#$%& is the 

source number and 𝐴 is a 𝑁  ×𝑁 linear operator for the discretized RTE, where 𝑁 ≔ 𝑁!"×𝑁!". It 

is easy to check that the source configuration only contributes on the right-hand side term but is 

independent to 𝐴  in Eq. (3.8). So we can write an all-at-once equation for all source 

configurations since they all share the same linear operator as (3.1). 

In practice, the matrix 𝐴 in Eq. (3.8) and (3.1) is not constructed explicitly. Instead, we 

write Eq. (3.4) into the following matrix expression 

 𝐴!𝜓 + 𝐴!𝜓 + 𝐴!𝜓 + 𝑖
𝜔
𝑣 𝜓 = 𝑏, (3.9) 

where 𝐴!, 𝐴! and 𝐴! are three matrices corresponding to the first three terms in Eq. (3.4). Then 

by definition we have 

 𝐴 = 𝐴! + 𝐴! + 𝐴! +   𝑖
𝜔
𝑣 𝐼

! . (3.10) 

Here 𝐴! is a constant matrix that only depends on the discretization, 𝐼 !  is a 𝑁×𝑁 identity 

matrix, 𝐴! and 𝐴! are two block diagonals as follows,  

𝐴! =
𝜇!,!𝑉!𝐼 !!"

⋱
𝜇!,!!"𝑉!!"𝐼

!!"
, 𝐴! =

𝜇!,!𝑉!𝑊
⋱

𝜇!,!!"𝑉!!"𝑊
, (3.11) 
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where 𝐼 !!"  is a 𝑁!"×𝑁!"  identity matrix and 𝑊  is a 𝑁!"×𝑁!"  matrix with 𝑊!" = 𝑝!"𝑤! . 

Noticed 𝐴!  and 𝐴!  are functions of 𝜇!  and 𝜇!  respectively, where 𝜇! ≔ (𝜇!,!,… , 𝜇!,!!") and 

𝜇! ≔ (𝜇!,!,… , 𝜇!,!!"), (3.10) is also written as 

 𝐴 𝜇! , 𝜇! = 𝐴! + 𝐴! 𝜇! + 𝐴! 𝜇! +   𝑖
𝜔
𝑣 𝐼

! . (3.12) 

In iterative linear solvers, the explicit form of 𝐴 is not necessary if the expression of the matrix-

vector multiplication is provided. According to (3.10) and (3.11), the information of matrix 𝐴 

can be stored in a efficient way to the memory by saving three vectors 𝜇!, 𝜇! and 𝑉, two 

matrices 𝐴! and 𝑊 and a scalar 𝜔/𝑣.  

The scattering phase function for most biological tissues is strongly forward-peaked 

(𝑔 ≥ 0.8) [44]. Thus a large 𝑁!" in Eq. (3.2) is required to accurately describe such highly 

anisotropic scattering behavior, which leads to a considerable computational burden and memory 

requirement. To overcome this difficulty, Hielscher and Klose introduced the Delta-Eddington 

method [74], which allows using only a small number of discrete ordinates in RTE to 

approximate the original scattering function given by Eq. (2.7). In this dissertation the zeroth-

order Delta-Eddington approximation is employed since it has shown promising results as 

reported in literature [45, 75, 76]. The frequency-domain RTE is simplified with zeroth-order 

Delta-Eddington approximation as 

 
𝑖𝜔
𝑣 + 𝒔 ⋅ ∇+ 𝜇! 𝒓 + 𝜇!! 𝒓 𝜓 𝒓, 𝒔 =

𝜇!! 𝒓
4𝜋 𝜓 𝒓, 𝒔′ 𝑑𝒔′

!!
+ 𝑞 𝒓, 𝒔 , (3.13) 

where the scattering coefficient 𝜇!  and the anisotropic factor 𝑔 is combined into a reduced 

scattering coefficient 𝜇!! ≔ 1− 𝑔 𝜇!. 
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3.2.2. Preconditioning with incomplete LU factorization on the reduced linear 
operator 

The convergence rate of most iterative linear solvers for Eq. (3.8) or (3.1) highly depends on the 

matrix 𝐴’s condition number. A good preconditioner can significantly improve 𝐴’s condition 

number therefore reduce the required total iteration and overall computational time. 

The most widely used preconditioners for solving general-sparse and large-scale linear 

equations are multigrid preconditioners [77-80] and incomplete-factorization-based (IFB) 

preconditioners [66-70, 81, 82]. Compared to multigrid preconditioners, IFB preconditioners 

have two main advantages. First, their implementation is often simpler. Second, they don’t have 

the overhead required for setting up the multi-level meshes. Moreover, the factorization of the 

linear operator is independent of the right-hand side, so they are more suitable for solving 

multiple right hand sides simultaneously. Therefore, IFB preconditioners are preferred here. For 

RTE, the incomplete LU factorization (ILU) is used for preconditioning since it is considered as 

the most popular incomplete factorization based preconditioning techniques for non-Hermitian 

linear system.  

The general idea of the ILU preconditioning technique is described as follows: First, an 

incomplete LU factorization is performed on 𝐴 such that 𝐴 ≈ 𝐿𝑈, where 𝐿 and 𝑈 are lower and 

upper triangular sparse matrices respectively. Then the preconditioner 𝑃 is defined as 𝑃 = 𝐿𝑈, 

and instead of solving 𝐴𝑥 = 𝑏, we solve a left preconditioned equation 𝑃!!𝐴𝑥 = 𝑃!!𝑏 (other 

options could be right preconditioned equation 𝐴𝑃!!𝑦 = 𝑏 or two-sides preconditioned equation 

𝐿!!𝐴𝑈!!𝑦 = 𝑏). The new matrix 𝑃!!𝐴 often has a much smaller condition number since 

𝑃!!𝐴 ≈ 𝐼. On the other hand, the matrix-vector multiplication 𝑃!!𝐴𝑣 in the preconditioned 

linear system only introduces little extra computation as compared to 𝐴𝑣 since 𝑦 = 𝑃!!𝑣 can be 

efficiently obtained by solving 𝐿𝑤 = 𝑣 and 𝑈𝑦 = 𝑤 with back substitution algorithm. 
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However, there are two main difficulties with the traditional ILU preconditioner for 

matrix 𝐴. First, as aforementioned, the matrix 𝐴, which is required in ILU factorization, is not 

constructed explicitly for memory saving consideration. Moreover, the computational time 

related to ILU preconditioner, including the factorization time and the preconditioning time, 

highly depends on the sparsity of the matrix 𝐴, more non-zero entries inevitably lead to more 

expensive computational cost. However, the matrix 𝐴 in Eq. (3.8) and (3.1) contains relative 

large amount of non-zero entries derived from the integral term in Eq. (2.12), that may 

potentially lower the preconditioner’s efficiency. 

To overcome these difficulties, a novel preconditioner is proposed. First, a reduced linear 

operator 𝐴 to approximate the original matrix is defined as  

 𝐴 ≔ 𝐴! + 𝐴! + diag 𝐴! ,  

where matrices 𝐴!, 𝐴! and 𝐴! are defined the same as shown in Eq. (3.9), diag 𝐴!  represents 

the main diagonal of 𝐴!. Then we perform the ILU factorization on the reduced linear operator 𝐴 

as 𝐴 ≈ 𝐿𝑈. Finally the preconditioner 𝑃 for the original matrix 𝐴 is given by 𝑃 = 𝐿𝑈. The 

proposed preconditioner has several advatanges: First, it does not require the explicit expression 

of matrix 𝐴 and the reduced matrix 𝐴 can be easily obtained by a slight modification on 𝐷’s 

diagonal. Moreover, 𝐴 has the same non-zero pattern as 𝐷, which has significantly less non-zero 

entries than 𝐴. That will lead to a much faster factorization and preconditioning process. Finally, 

diag 𝐴!  preserves considerable proportion information in 𝐴! since it is a strongly diagonal 

dominant matrix, thus 𝐴 is a good approximation of 𝐴.  

3.2.3. Node-centered finite volume mesh generation 
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To convert the discretized RTE (3.4) into a linear equation as (3.8) or (3.1), the computational 

domain needs to be discretized with non-overlap finite volumes and certain geometry 

information for every control volume is required, such as its volume, its connectivity to 

neighbors and so on. Such information is determined only by the discretization itself and is 

totally independent of the optical properties and locations of sources and detectors. Therefore, all 

necessary geometry information for constructing (3.8) or (3.1) are extracted during spatial 

discretization and store it into a data structure named with FVM mesh in this dissertation. The 

FVM data structure is shown in Table 3.1. 

Table 3.1: Data structures used for FVM mesh’s construction. 

Structure name Contents 

FVM mesh • Vector of control volumes (control volume is defined below) 

Control volume • Volume (float number) 
• Vector of surfaces (surface is defined below) 

Surface 

• Area (float number) 
• Normal vector (vector of float numbers) 
• Neighbor index (integer) 
• Distance to the neighbor centroid (float number) 

To obtain the FVM mesh, the computational domain needs to be discretized with 

structured or unstructured grids with which necessary information is extracted. The fundamental 

difference between structured and unstructured grids is the regularity of the connectivity of grids 

[83]. Structure grids are identified by regular connectivity, in another word, the grids can be 

expressed as a 2D or 3D array in computational memory and the neighborhood relationships can 

be defined by their indices (examples include quadrilateral grids in 2D and hexahedra grids in 

3D). Whereas unstructured grids are identified by irregular connectivity, that means the 

connectivity information is not contained in their indices and must be specified explicitly 
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(examples include triangle grids in 2D and tetrahedron grids in 3D). With structured grids, it is 

usually much more straightforward to extract useful information in Table 3.1 for constructing the 

FVM mesh. However, generating high quality structured grids for an arbitrary object with 

complex boundary is very challenging and time-consuming [84], which makes it impractical. On 

the other hand, unstructured grids are more suitable for complex geometries since those grids can 

fit the physical boundary more accurately.  

Based on these considerations, the computational region is discretized with unstructured 

grids (triangle grids in 2D or tetrahedrons in 3D) in this dissertation. This process is done with 

commercial software named GID (Micromechatornics Inc. at http://www.mmech.com/). A 2D 

example of triangle grids generated with GID is shown in Fig. 3.1(a). In practice, the grid-node-

ratio is approximately 2 for 2D triangle grids and usually 4~6 for 3D tetrahedron grids. 

Therefore, to reduce the number of unknowns in the linear system (3.8) and (3.1), the median 

dual mesh [85] of the original GID mesh is used as the FVM mesh, in which every control 

volume is centered at an original node and is surrounded by boundaries formed by connecting 

the centroids of original grids, faces and edges. Fig. 3.1(a)’s corresponding 2D FVM mesh is 

shown in Fig. 3.1(b), the red dash lines represent the boundaries of control volumes. 

With the GID mesh, coordinates information for every node and connectivity between 

nodes are provided. To complete the FVM mesh structure defined in Table 3.1, Algorithm 3.1 

and 3.2 have been proposed to convert a GID mesh to a FVM mesh in both 2D and 3D cases, in 

which 𝑁!"#$ and 𝑁!"#$ represent the total number of nodes and grids in the original GID mesh, 

𝒏! is used to indicate the 𝑘th node as well as its coordinates in the GID mesh, we use a set of 

nodes to indicate a grid, a face, or an edge. It is easy to check that Algorithm 3.1 and 3.2 have the 

optimal computational complexity as Θ 𝑁!"!#  and a very low extra memory requirement as 
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𝑂 𝑁!"!#  for saving the boundary set 𝑆!"#$%&'(. These costs are negligible as compared to the 

computational cost and memory requirement in the forward iterative linear solver.  

  

(a) (b) 

Figure 3.1: Illustration of 2D unstructured grids and node-centered FVM mesh. (a) 2D unstructured grids; 
(b) 2D node-centered FVM mesh (grids are surrounded with red dash boundaries) 
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Algorithm 3.1: 2D GID mesh to FVM mesh conversion 
1. Allocate 𝑁!"#$ spaces in the control volume vector CVs and set 

CVs 𝑖 . volume = 0  
CVs 𝑖 . surfaces = ∅  

for 𝑖 = 1,… ,𝑁!"#$. 
2. Create an set 𝑆!"#$%&'( = ∅. 
3. Extract information for every triangle grid: 

for the 𝑗th triangle grid 𝑇! = 𝒏!! ,𝒏!! ,𝒏!! , 𝑗 = 1, 2,… ,𝑁!"!#: 
(1) Update boundary set 𝑆!"#$%&'(: 

for 𝑙 = 1 to 3: 
Construct a tuple 𝑡 ≔ 𝑘!, 𝑘!, 𝑘! − 𝑘! , 𝑘!  
if 𝑡 ∈ 𝑆!"#$%&'( then 𝑆!"#$%&'( = 𝑆!"#$%&'( − 𝑡  
else  𝑆!"#$%&'( = 𝑆!"#$%&'( ∪ 𝑡  
end if 

end for 
(2) Update interior surfaces and volume for every control volume: 

for every 𝑘!, 𝑘!, 𝑘! ’s permutation 𝑘!! , 𝑘!! , 𝑘!! : 
for 𝑙 = 1 to 3: 

Set 𝒄! as 𝒏!!! ,… ,𝒏!!! ’s centroid 
end for 
CVs 𝑘!! . volume =  CVs 𝑘!! . volume+ volume 𝒄!, 𝒄!, 𝒄!  
Construct a surface 𝑠 and set 
𝑠. area   = 𝒄! − 𝒄!   
𝑠.normal_vector   = 𝒄! − 𝒄!   / 𝒄! − 𝒄!   
𝑠.neighbor_index   = 𝑘!!     
𝑠. dist_to_neighbor   = 2 𝒄! − 𝒄!   

CVs 𝑘!! . surfaces = CVs 𝑘!! . surfaces ∪ 𝑠   
end for 

end for 
4. Update boundary surfaces for every control volume: 

for every 𝑡 = 𝑘!, 𝑘! , 𝑘! ∈ 𝑆!"#$%&'(: 
Construct a surface 𝑠 and set 
𝑠. area   = 𝒏!! − 𝒏!! /2  
𝑠.normal_vector   = 𝒏 with 𝒏 ⊥ 𝒏!! − 𝒏!! , 𝒏 = 1, 𝒏 ⋅ 𝒏!! − 𝒏!! > 0  
𝑠.neighbor_index = −1  (boundary surface has no neighbor) 
𝑠. dist_to_neighbor   = −1  

CVs 𝑘! . surfaces = CVs 𝑘! . surfaces ∪ 𝑠   
CVs 𝑘! . surfaces = CVs 𝑘! . surfaces ∪ 𝑠   

end for   
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Algorithm 3.2: 3D GID mesh to FVM mesh conversion 
1. Allocate 𝑁!"#$ spaces in the control volume vector CVs and set 

CVs 𝑖 . volume = 0  
CVs 𝑖 . surfaces = ∅  

for 𝑖 = 1,… ,𝑁!"#$. 
2. Create an set 𝑆!"#$%&'( = ∅. 
3. Extract information for every tetrahedron grid: 

for the 𝑗th triangle grid 𝑇! = 𝒏!! ,𝒏!! ,𝒏!! ,𝒏!! , 𝑗 = 1, 2,… ,𝑁!"!#: 
(1) Update boundary set 𝑆!"#$%&'(: 

for 𝑙 = 1 to 4: 
Construct a tuple 𝑡 ≔ 𝑘!, 𝑘!, 𝑘!, 𝑘! − 𝑘! , 𝑘!  
if 𝑡 ∈ 𝑆!"#$%&'( then 𝑆!"#$%&'( = 𝑆!"#$%&'( − 𝑡  
else  𝑆!"#$%&'( = 𝑆!"#$%&'( ∪ 𝑡  
end if 

end for 
(2) Update interior surfaces and volume for every control volume: 

for every 𝑘!, 𝑘!, 𝑘!, 𝑘! ’s permutation 𝑘!! , 𝑘!! , 𝑘!! , 𝑘!! :  
for 𝑙 = 1 to 3: 

set 𝒄! as 𝒏!!! ,… ,𝒏!!! ’s centroid 
end for 
CVs 𝑘!! . volume =  CVs 𝑘!! . volume+ volume 𝒄!, 𝒄!, 𝒄!, 𝒄!  
Construct a surface 𝑠 and set 
𝑠. area   = area 𝒄!, 𝒄!, 𝒄!   
𝑠.normal_vector   = 𝒄! − 𝒄!   / 𝒄! − 𝒄!   
𝑠.neighbor_index   = 𝑘!!     
𝑠. dist_to_neighbor   = 2 𝒄! − 𝒄!   

CVs 𝑘!! . surfaces = CVs 𝑘!! . surfaces ∪ 𝑠   
end for 

end for 
4. Update boundary surfaces for every control volume: 

for every 𝑡 = 𝑘!, 𝑘!, 𝑘! , 𝑘! ∈ 𝑆!"#$%&'(: 
Construct a surface 𝑠 and set 
𝑠. area   = area 𝑛!! ,𝑛!! ,𝑛!! /3  
𝑠.normal_vector   = 𝑛 with 𝑛 ⊥ 𝑛!! ,𝑛!! ,𝑛!! , 𝑛 = 1, 𝑛 ⋅ 𝑛!! − 𝑛!! > 0  
𝑠.neighbor_index = −1  (boundary surface has no neighbor) 
𝑠. dist_to_neighbor   = −1  

CVs 𝑘! . surfaces = CVs 𝑘! . surfaces ∪ 𝑠   
CVs 𝑘! . surfaces = CVs 𝑘! . surfaces ∪ 𝑠   
CVs 𝑘! . surfaces = CVs 𝑘! . surfaces ∪ 𝑠   

end for  
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3.3. Preconditioned block linear solver with multiple sources 

The efficient forward solvers for solving RTE are introduced in this section. We start with a brief 

introduction to traditional Krylov subspace methods and the biconjugate gradient stabilized 

method (BiCGStab). Then we move on to the block Krylov subspace methods and the block 

BiCGStab algorithm. Finally the further acceleration with multi-threading technique is discussed.  

3.3.1. Krylov subspace methods and BiCGStab algorithm 

Krylov subspace methods are the most widely used iterative methods so far for large-scale sparse 

linear system  𝐴𝑥 = 𝑏. In Krylov subspace methods, an affine space 𝐾!(𝐴, 𝑟!) that grows with 

iteration number 𝑛 is defined as follows: 

 𝐾! 𝐴, 𝑟! ≔ span 𝑟!,𝐴𝑟!,… ,𝐴!!!𝑟! , (3.14) 

where 𝑟! ≔ 𝑏 − 𝐴𝑥!  is the residual of the linear system with the initial guess  𝑥! , the 𝑛th 

iterate  𝑥! is an approximation to the exact solution  𝑥∗ that satisfies 𝑥! − 𝑥! ∈ 𝐾!(𝐴, 𝑟!).  

A large number of Krylov subspace solvers have been developed so far: the generalized 

minimal residual (GMRES) method [86], the biconjugate gradient (BiCG) method [87], the 

biconjugate gradient stabilized method (BiCGStab) method [88], the quasi-minimal residual 

(QMR) method [89], and the transpose-free quasi-minimal residual (TFQMR) method [90], to 

name a few. BiCGStab is one of the most popular solvers since it has three advantages over other 

types of Krylov subspace methods. 

(1) BiCGStab is a three-term recurrence method; therefore it has relatively low memory 

requirement.  

(2) BiCGStab does not require a transposed matrix multiplied by a vector; it only requires 

matrix-vector multiplication alone. 
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(3) BiCGStab often exhibits more stable convergence than other solvers. 

Thus, BiCGStab method is widely used in solving the linear equation arising from RTE. 

The details of a left preconditioned BiCGStab for the system 𝐴𝑥 = 𝑏 are described in Algorithm 

3.3 [88]. 

Algorithm 3.3: BiCGStab method with left preconditioner 𝑃 
1. Compute residual 𝑟! = 𝑃!!(𝑏 − 𝐴𝑥!) with the initial guess 𝑥! and the left preconditioner 
𝑃. 

2. Set  𝑝! = 𝑟!. 
3. Choose an arbitrary vector 𝑟 such that  𝜌! = 𝑟!𝑟! ≠ 0 
4. Given 𝜖 > 0, for 𝑖 = 0, 1, 2…  until 𝑟! / 𝑏 < 𝜖: 

(1) 𝑠! = 𝑃!!𝐴𝑝!, 
(2) 𝛾! = 𝑟!𝑠!, 
(3) 𝛼! = 𝛾!!!𝜌!, 
(4) 𝑥!!! = 𝑥! + 𝛼!𝑝!, 
(5) 𝑟!!! = 𝑟! − 𝛼!𝑠!, 
(6) 𝑡! = 𝑃!!𝐴𝑟!!!, 
(7) 𝜂! = (𝑡! , 𝑟!!!)/(𝑡! , 𝑡!), 
(8) 𝑥!!! = 𝑥! + 𝜂!𝑟!!!, 
(9) 𝑟!!! = 𝑟!!! − 𝜂!𝑡!, 
(10) 𝑝!!! = 𝑝! − 𝜂!𝑠!, 
(11) 𝜌!!! = 𝑟!𝑟!!!, 
(12) 𝛽! = 𝛾!!!𝜌!!!/𝜂!, 
(13) 𝑝!!! = 𝑟!!! + 𝛽!𝑝!!!. 

 

3.3.2. Block Krylov subspace methods and block BiCGStab algorithm 

In DOT, one has to solve the linear system with multiple right-hand sides as (3.1). Under this 

type of problem setting, it is more efficient to solve the linear system of 𝑁!"#$%& right-hand sides 

given by Eq. (3.1) simultaneously with block Krylov subspace methods than treat each right-

hand side separately. The block Krylov subspace method extends the definition of 𝐾! 𝐴, 𝒓!  in 

Eq. (3.14): a similar affine space 𝐾!∎(𝐴,𝑅!) that grows with iteration number 𝑛 is defined as, 

 𝐾!∎ 𝐴,𝑅! ≔ span 𝑅!,𝐴𝑅!,… ,𝐴!!!𝑅! , (3.15) 
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where 𝑅! ≔ 𝑟!
! , 𝑟!

! ,… , 𝑟!
!!"#$%& . In each iteration, the block Krylov subspace methods 

minimize the residual within space  𝐾!∎ 𝐴,𝑅! . It is obvious that when 𝑅! contains the column 

vector  𝑟!, then  𝐾! 𝐴, 𝑟! ⊂ 𝐾!∎ 𝐴,𝑅! , therefore faster convergence rate can be expected from 

block Krylov subspace methods since the residual is minimized within the larger subspace 

𝐾!∎ 𝐴,𝑅!  instead of   𝐾! 𝐴, 𝑟! . It is straightforward to generalize single right-hand side 

BiCGStab method (Algorithm 3.3) into a block version for the linear equation with multiple 

right-hand sides, the left preconditioned block BiCGStab algorithm can be summarized in 

Algorithm 3.4 [65]:  

Algorithm 3.4: block BiCGStab method with left preconditioner 
1. Compute residual 𝑅! = 𝑃!!(𝐵 − 𝐴Ψ!) with the initial guess Ψ! and the left preconditioner 

𝑃. 
2. Set  𝑃! = 𝑅!. 
3. Choose an arbitrary 𝑁!"#$%&×𝑁 matrix 𝑅 such that  𝜌! = 𝑅𝑅! ≠ 0. 
4. Given 𝜖 > 0, for 𝑖 = 0, 1, 2…  until 𝑅!(: , 𝑗) / 𝐵 : , 𝑗 < 𝜖 for 𝑗 = 1,… ,𝑁!"#$%&: 

(1) 𝑆! = 𝑃!!𝐴𝑃! 
(2) 𝛾! = 𝑅𝑆!, 
(3) 𝛼! = 𝛾!!!𝜌!, 
(4) Ψ!!! = Ψ! + 𝑃!𝛼!, 
(5) 𝑅!!! = 𝑅! − 𝑆!𝛼!, 
(6) 𝑇! = 𝑃!!𝐴𝑅!!!, 
(7) 𝜂! = 𝑇! ,𝑅!!! !/ 𝑇! ,𝑇! !, 
(8) Ψ!!! = Ψ! + 𝜂!𝑅!!!, 
(9) 𝑅!!! = 𝑅!!! − 𝜂!𝑇!, 
(10) 𝑃!!! = 𝑃! − 𝜂!𝑆!, 
(11) 𝜌!!! = 𝑅𝑅!!! 
(12) 𝛽! = 𝛾!!!𝜌!!!/𝜂!, 
(13) 𝑃!!! = 𝑅!!! + 𝑃!!!𝛽!. 

In the left preconditioned block BiCGStab method, only four 𝑁×𝑁!"#$%&  matrices 

𝑆! ,𝑅! ,𝑇! ,𝑃! and one 𝑁!"#$%&×𝑁 matrix 𝑅 (excluding 𝐴,Ψ,𝐵 and the preconditioner 𝑃) need to 

be stored in memory: therefore the total number of floating numbers to save is  (5𝑁𝑁!"#$%& +

𝑂(𝑁!"#$%&! )) , thus making the method memory-efficient. The left preconditioned block 
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BiCGStab method requires the evaluation of 2𝑁!"#$%&  matrix-vector products, 2𝑁!"#$%& 

preconditioning procedures and a total of  6𝑁𝑁!"#$%&! + 4𝑁𝑁!"#$%& + 𝑂(𝑁!"#$%&! ) multiplication 

operations per iteration. For a large-scale system where 𝑁 is not extremely large, the matrix-

vector product and preconditioning procedure dominate the overall computation time: therefore 

theoretically floating-point operations (FLOPS) for each single right-hand side per iteration in 

Algorithm 3.4 is almost the same as it in Algorithm 3.3. For any fixed relative tolerance 𝜖, it is 

obvious that the stopping criteria of Algorithm 3.4 is stronger than the Algorithm 3.3’s, which 

guarantees the Algorithm 3.4’s solution is at least as accurate as the Algorithm 3.3’s. 

3.3.3. Multi-threading acceleration for block BiCGStab algorithm 

In DOT, multi-threading techniques are often applied in solving forward problems with multiple 

right-hand sides to gain extra speed. Under limited resources case (the available threads number 

𝑁!!!"#$ < 𝑁!"#$%& ), the most commonly used method is as follows: (1) distribute 𝑁!"#$%& 

sources equally (or almost equally) into 𝑁!!!"#$ threads, (2) solve a group of forward problems 

within each thread. This method requires very little effort to separate the entire work into 

multiple tasks and there is no communication between those parallel tasks. Therefore, it has a 

straightforward implementation and is not affected by parallel slowdown effects, due to the 

overhead from communication/synchronization. However, this method still treats every single 

source independently, so it does not take the advantage of the shared information among 

different sources. Therefore, the efficiency can be improved by replacing the sequential solver 

with the proposed block linear solver. Here two multi-threading methods generalized from the 

block BiCGStab algorithm are proposed.  

In the first multi-threading method (see Algorithm 3.5) Algorithm 3.4 is directly 

parallelized with all the sources. In this algorithm, the main procedure remains the same while 
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the linear operations, including matrix-vector multiplications and preconditioning steps, are 

divided into multiple tasks. Therefore, this algorithm will converge with the same number of 

iterations as in Algorithm 3.4. However, due to synchronizations and communications between 

threads (see Step 5, 7:(4)(10)(17)), the algorithm may cause parallel slowdown effects with the 

increase of thread number. 

The second multi-threading approach is summarized in Algorithm 3.6. This method 

requires no synchronization and communication in its main computation step (Step 2); therefore 

there is no parallel slowdown effect due to communication or synchronization. However, since 

right-hand sides are split into available threads and each thread handles only part of right-hand 

sides, the method may requires more iterations to converge especially when 𝑁!"#$%&/𝑁!"#$%& is 

close to 1. 

To achieve higher efficiency in Algorithm 3.6, optimization of sources distribution across 

available threads is considered. According to the definition of 𝐾!∎ 𝐴,𝑅! , strong colinearity 

between 𝐾! 𝐴, 𝑟!
!  may introduce more numerical error in projection step (Step 4:(2) in 

Algorithm 3.4) and therefore lead to more iterations for convergence. In practice, grouping more 

distant sources together in the separation step can reduce this collinearity. Therefore Step 1 in 

Algorithm 3.6 is implemented by solving an optimization problem, which maximizes the 

minimum distance of every pair of sources within the same group. This optimization problem 

can be formulated as follows:  
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max𝑑  
subject  to
𝑧!
! ∈ 0,1 , 1 ≤ 𝑖 ≤ 𝑁!"#$%&, 1 ≤ 𝑘 ≤ 𝑁!"#$%&.

𝑧!
!

!!"#$%&

!!!

= 1, 1 ≤ 𝑖 ≤ 𝑁!"#$%&.

0 ≤    𝑧!
! − 𝑁!"#$%&/𝑁!"#$%& < 1.

!!"#$%&

!!!

𝑑 ≤   𝑑!"𝑧!
! 𝑧!

! , 1 ≤ 𝑖 < 𝑗 ≤ 𝑁!"#$%&, 1 ≤ 𝑘 ≤ 𝑁!"#$%&.

 (3.16) 

where 𝑧!
!  is a Boolean variable that indicates whether the 𝑖th source belongs to the 𝑘th thread, 

𝑧!
!!!"#$%&

!!! = 1 for 1 ≤ 𝑖 ≤ 𝑁!"#$%& means every source must be distributed to one specific 

thread, 0 ≤    𝑧!
! − 𝑁!"#$%&/𝑁!"#$%& < 1!!"#$%&

!!!  shows the source number difference between 

threads must be less equal than 1, 𝑑 ≤   𝑑!"𝑧!
! 𝑧!

!  for 1 ≤ 𝑖 < 𝑗 ≤ 𝑁!"#$%&, 1 ≤ 𝑘 ≤ 𝑁!"#$%& 

means only distance between sources within the same thread is considered. 
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Algorithm 3.5: multi-threading block BiCGStab with inter-thread communication 
(parallel block BiCGStab-ITC) 

1. Divide the right-hand side 𝐵 and the initial guess Ψ! equally (or almost equally) into 𝑁!" 
thinner matrices: 
𝐵 ! = 𝐵 ! ,… ,𝐵 !!"#$%& ,Ψ! = Ψ!

! ,… ,Ψ!
!!"#$%&   .    

2. Compute residual 𝑅!
! = 𝑃!! 𝐵 ! − 𝐴Ψ!

! , 𝑘 = 1,… ,𝑁!"#$%&. 

3. Set  𝑃!
! = 𝑅!

! , 𝑘 = 1,… ,𝑁!"#$%&. 

4. Setup a 𝑁!"#$%&×𝑁 matrix 𝑅 = 𝑅!
! ,… ,𝑅!

!!"#$%&
!
. 

5. Threads synchronization. 
6. Compute 𝜌!

! = 𝑅𝑅!
! , 𝑘 = 1,… ,𝑁!"#$%&. 

7. Given 𝜖 > 0, for 𝑖 = 0, 1, 2… until 𝑅!(: , 𝑗) / 𝐵 : , 𝑗 < 𝜖 for 𝑗 = 1,… ,𝑁!"#$%&: 
(1) 𝑆!

(!) = 𝑃!!𝐴𝑃!
! , 𝑘 = 1,… ,𝑁!"#$%&. 

(2) 𝛾!
! = 𝑅𝑆!

! , 𝑘 = 1,… ,𝑁!"#$%&. 
(3) Update 𝑃!, 𝑆! and 𝛾!:  

𝑃! = 𝑃!
! ,… ,𝑃!

!!"#$%& , 𝑆! = 𝑆!
! ,… , 𝑆!

!!"#$%& , 𝛾! = 𝛾!
! ,… , 𝛾!

!!"#$%& . 
(4) Threads synchronization. 
(5) 𝛼!

! = 𝛾!!!𝜌!
! , 𝑘 = 1,… ,𝑁!"#$%&. 

(6) Ψ!!!
! = Ψ!

! + 𝑃!
! 𝛼!

! , 𝑘 = 1,… ,𝑁!"#$%&. 
(7) 𝑅!!!

! = 𝑅!
! − 𝑆!

! 𝛼!
! , 𝑘 = 1,… ,𝑁!"#$%&. 

(8) 𝑇!
! = 𝑃!!𝐴𝑅!!!

! , 𝑘 = 1,… ,𝑁!"#$%&. 
(9) Compute 𝑐!

! = 𝑇!
! ,𝑅!!!

!
! ,𝑑!

! = 𝑇!
! ,𝑇!

!
!. 

(10) Threads synchronization and compute 𝜂! = 𝑐!
!!!"#$%&

!!! / 𝑑!
!!!"#$%&

!!! . 
(11) Ψ!!!

! = Ψ!
! + 𝜂!𝑅!!!

! , 𝑘 = 1,… ,𝑁!"#$%&. 
(12) 𝑅!!!

! = 𝑅!!!
! − 𝜂!𝑇!

! , 𝑘 = 1,… ,𝑁!"#$%&. 
(13) 𝑃!!!

! = 𝑃!
! − 𝜂!𝑆!

! , 𝑘 = 1,… ,𝑁!"#$%&. 
(14) 𝜌!!!

! = 𝑅𝑅!!!
! , 𝑘 = 1,… ,𝑁!"#$%&. 

(15) 𝛽!
! = 𝛾!!!𝜌!!!

! /𝜂! , 𝑘 = 1,… ,𝑁!"#$%&. 
(16) 𝑃!!!

! = 𝑅!!!
! + 𝑃!!!

! 𝛽!
! , 𝑘 = 1,… ,𝑁!"#$%&. 

(17) Threads synchronization. 
8. Return Ψ = Ψ!

! ,… ,Ψ!
!!"#$%&   . 

  
Algorithm 3.6: parallel block BiCGStab with no inter-thread communication (parallel 

block BiCGStab-NITC) 
1. Divide column vectors of 𝐵 and the initial guess Ψ! into 𝑁!"#$%& groups (See (3.16))  

𝐵 = 𝐵 ! ,… ,𝐵 !!"#$%& ,Ψ! = Ψ!
! ,… ,Ψ!

!!"#$%&   .  
2. Solve 𝐴Ψ ! = 𝐵 ! , 𝑘 = 1,… ,𝑁!"#$%& with Algorithm 3.6 in parallel. 
3. Return Ψ = Ψ ! ,… ,Ψ !!"#$%& . 
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3.4. Performance evaluation through numerical experiments 

In this section we focus on the performance of these linear solvers in comparison to the 

traditional sequential BiCGStab method. To be consistent with the configuration of 

reconstruction in practice, the Delta-Eddington approximation [91] is used as the forward model 

with the absorption coefficients 𝜇!  and the reduced scattering coefficients 𝜇!!  as the optical 

properties. Note that all the forward solvers considered here solve the same linear equation that 

has been obtained with the same numerical scheme as used in [52], which ensures fair 

comparison between different linear solvers. We set the same relative tolerance 𝜖 = 10!!" for all 

the linear solvers: in fact block solvers use equal or stronger stopping criteria than the traditional 

BiCGStab solver (see the difference between Algorithm 3.3(4) and Algorithm 3.4(4), Algorithm 

3.5(7) for comparison). An ILUT(0.01, 5) [66] preconditioner was applied here for all methods. 

All numerical experiments were performed with dual Intel Xeon CPU X5650 and 32GB physical 

memory. 

The performance of preconditioned block linear solver with respect to CPU time may be 

most affected by the following three factors: 1) the preconditioner 𝑃 that is used to approximate 

the matrix 𝐴 in linear equation (3.8); 2) the structure of the matrix 𝐴 that is determined by the 

anisotropic factor, optical properties, and spatial and angular discretization; 3) the total right-

hand side number and the number of threads used for computation. Therefore, we investigate 

here how these factors influence the performance of block BiCGStab methods compared to the 

traditional sequential BiCGStab method through extensive numerical experiments.  

3.4.1. Numerical phantoms 

A 2D circular phantom and a 3D cylinder phantom are considered here. For both phantoms, the 

refractive index is set to 1.4, which is a typical value for biological tissue, and source modulation 
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frequency is set to 600 MHz. The optical properties considered will be given later in the 

following subsections according to each specific case being examined. As shown in Fig. 3.2, the 

20 light sources for the 2D phantom and 32 light sources for the 3D phantom are located on the 

surface. The angular domain for both phantoms is discretized with 𝑆! and for spatial domain the 

2D phantom is discretized with a finite volume mesh (FVM) with 4117 control volumes (the 

element size is 0.03cm) and the 3D phantom with 17158 control volumes (the element size is 

0.1cm).  

   
(a) (b)  

Figure 3.2: Source locations for Phantom 1 and 2; (a) 2D phantom: 20 sources are regularly distributed 
along the perimeter of the disk; (b) 3D phantom: 32 sources are distributed on the lateral surface of the 
cylinder with 4 height levels 0.375cm, 1.125cm, 1.875cm and 2.625cm. On each level, there are 8 sources 
distributed with even distance. 

Table 3.2: The phantom settings of the 2D disk and 3D cylinder 

 Phantom 1 Phantom 2 
Dimension 2D 3D 
Shape Disk Cylinder 
Radius (cm) 1 1 
Height (cm) - 3 

 
3.4.2. Performance evaluation of the novel preconditioner  

In this subsection, we evaluate the performance of the novel preconditioner proposed in 3.2.2 on 

Phantom 1 with homogeneous optical properties. Multiple optical property combinations of 𝜇! 

 

 

Sources

 

 

Sources
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and 𝜇!!  (see Table 3.3) are tested. A 20 right-hand side linear system was solved through the 

traditional BiCGStab with no preconditioner (𝑃! in Table 3.3), traditional ILU preconditioner (𝑃! 

in Table 3.3), and the reduced linear system based ILU preconditioner (𝑃!  in Table 3.3), 

respectively (In all the ILU preconditioners, the drop tolerance is set to 0.001 and the fill factor is 

set to 5 [66]). The total required iteration number 𝑛!"#$, the total CPU time 𝑡!"" and CPU time for 

ILU factorization 𝑡! and preconditioning process 𝑡! are reported in Table 3.4. 

Table 3.3: Optical properties for Phantom 1 in performance evaluation 

Case Optical properties characteristics 𝜇![cm!!] 𝜇!! [cm!!] 
1 Normal biological tissue 0.1 10.0 
2 High absorbing medium 0.5 10.0 
3 Low absorbing medium 0.01 10.0 
4 High scattering medium 0.1 20.0 
5 Low scattering medium 0.1 1.0 
6 High absorbing and low scattering medium 0.5 1.0 
7 Void like medium 0.01 1.0 

 

Table 3.4: Performance comparison between 𝑃!, 𝑃! and 𝑃! preconditioned BiCGStab algorithm 

Case # 𝑡! 𝑃!/𝑃!/𝑃!  [s] 𝑡! 𝑃!/𝑃!/𝑃!  [s] 𝑡!"" 𝑃!/𝑃!/𝑃!  [s] 𝑛!"#$ 𝑃!/𝑃!/𝑃!  
1 - / 73 / 0.8 - / 458 /   77 585 / 614 / 177 4281 / 510 / 676 
2 - / 70 / 0.8 - / 319 /   61 404 / 450 / 138 2957 / 360 / 506 
3 - / 72 / 0.8 - / 477 /   87 617 / 634 / 196 4519 / 545 / 731 
4 - / 84 / 0.8 - / 625 / 108 579 / 806 / 248 4245 / 620 / 951 
5 - /   7 / 0.9 - /   40 /   35 NC /   75 /   79   NC / 180 / 278 
6 - /   7 / 0.9 - /   37 /   29 734 /   69 /   66 5384 / 159 / 233 
7 - /   7 / 0.9 - /   40 /   37 NC /   77 /   82   NC / 180 / 290 

NC: Not converge within 6000 iterations (300 iterations per right-hand side) 

One can observe that both 𝑃! and 𝑃! can effectively reduce the total iteration number. 

However, 𝑃! is usually more efficient in terms of CPU time. For case 1 to 4 (medium with 

normal or high scattering coefficients), BiCGStab preconditioned with 𝑃! solved the forward 

problems about 3 times faster than the other two, while BiCGStab preconditioned with 𝑃! is the 
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most time consuming solver (even slower than no preconditioning) due to its expensive 

factorization and preconditioning cost. For case 5 to 7 (medium with low scattering coefficients), 

The CPU times of BiCGStab preconditioned with 𝑃! and 𝑃! are very close, both are significantly 

less than 𝑃!. Overall, the efficiency of the reduced linear system preconditioner 𝑃! in all cases is 

optimal or very close to optimal. Therefore, it is preferred over the traditional ILU preconditioner 

due to its more stable performance.  

3.4.3. Influence of the anisotropic factor on the performance 

The linear operator 𝐴 in the discretized RTE (3.8) is affected by the pattern 𝑃 in 𝐴! (see (3.11)), 

which is part of 𝐴, is generated by the integral of the Henyey-Greenstein phase function that 

depends on the anisotropic factor 𝑔, and therefore we investigate here the influence of the 

anisotropic factor 𝑔  on the performance of the block BiCGStab algorithm. The tests are 

conducted on both 2D circular and 3D cylinder phantoms. The absorption coefficient for both 

phantoms is fixed to 0.1cm!!  and multiple reduced scattering coefficients (𝜇!!   [cm!!] =

1.0, 5.0, 10.0) are examined that lead to various combinations of different scattering coefficients 

and anisotropic factors. For each fixed 𝜇!! , four different anisotropic factors were tested, 

including the isotropic scattering case (𝑔 = 0) and three strong forward-peaking scattering cases 

(𝑔 = 0.8, 0.9, 0.95), which corresponds to their respective scattering coefficient 𝜇!! , 5𝜇!! , 10𝜇!! ,

20𝜇!! . The full RTE (2.12) is used as the forward model for every combination of 𝑔, 𝜇!  on each 

phantom, and the discretized linear equation with the Henyey-Greenstein phase function (2.7) is 

solved with both the traditional BiCGStab (Algorithm 3.3) and the block BiCGStab (Algorithm 

3.4). The CPU times of both algorithms (CPU1 for BiCGStab, CPU2 for block BiCGStab) and 

the speedup factors (BiCGStab CPU time / block BiCGStab CPU time) are reported in Table 3.5. 
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Table 3.5: Performance comparison between traditional and block BiCGStab algorithms on various 
combinations of 𝑔, 𝜇!!  

𝜇!! cm!!   𝑔                        𝜇! cm!!   2D circular phantom results 
(CPU1[s]/CPU2[s]/Speedup) 

3D circular phantom results 
(CPU1[s]/CPU2[s]/Speedup) 

1.0 0 1.0   71.0 /   42.3 /   1.7 1037 /   571 /   1.8 
1.0 0.8 5.0   91.9 /   49.7 /   1.8 1475 /   785 /   1.9 
1.0 0.9 10.0   95.3 /   52.3 /   1.8 1553 /   877 /   1.8 
1.0 0.95 20.0   87.4 /   52.1 /   1.7 1539 /   869 /   1.8 
5.0 0 5.0 145.7 /   52.3 /   2.8 1410 /   575 /   2.5 
5.0 0.8 25.0 239.9 /   83.2 /   2.9 2000 /   775 /   2.6 
5.0 0.9 50.0 183.6 /   66.4 /   2.8 1564 /   623 /   2.5 
5.0 0.95 100.0 140.4 /   51.7 /   2.7 1430 /   579 /   2.5 
10.0 0 10.0 200.6 /   70.0 /   2.9 1931 /   752 /   2.6 
10.0 0.8 50.0 322.6 / 108.7 /   3.0 3073 / 1163 /   2.6 
10.0 0.9 100.0 267.9 /   93.3 /   2.9 2132 /   819 /   2.6 
10.0 0.95 200.0 187.7 /   68.1 /   2.8 1363 /   555 /   2.5 

Table 3.5 shows that with the fixed 𝜇!!  the speedup factor of the block BiCGStab is not 

sensitive to the anisotropic factor 𝑔, although different anisotropic factors lead to different CPU 

times for both BiCGStab and block BiCGStab. This observation indicates that the zeroth-order 

Delta-Eddington approximation can provide sufficiently accurate information about the 

performance of the block solver, giving good insight into what speedup factors can be achieved 

with the full RTE using the original scattering phase function. Therefore, the following sections 

will be focused on the speedup factors of the block BiCGStab algorithm evaluated with solving 

the RTE (3.13) based on zeroth-order Delta-Eddington approximation.  

3.4.4. Influence of optical properties on the performance 

3.4.4.1. Tests on phantoms with homogeneous optical properties 

In this section, we investigate the influence of the optical properties on the performance of the 

block BiCGStab algorithm with both the 2D and 3D phantoms with homogeneous optical 

properties. A total of 100 combinations are generated of absorption and reduced scattering 

coefficients by uniformly sampling 10 each from their respective range 0.01, 1 cm!!  and 
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0.1, 10 cm!! , which is sufficient enough to characterize the performance of the two linear 

solvers being compared. These absorption and reduced scattering coefficient pairs are tested with 

the 2D and 3D phantoms. The overall CPU time and matrix-vector multiplication (MV) number 

per single right-hand side are reported for both block and traditional BiCGStab algorithms with 

respect to each pair of 𝜇! , 𝜇!! . Speedup factors based on CPU times and MV ratios (BiCGStab 

MV number / block BiCGStab MV number) with respect to 𝜇! , 𝜇!!  are also reported. 

In the 2D numerical experiments, the conventional (or standard) BiCGStab algorithm 

requires 16 to 74.7 MV operations per right-hand side and 50 to 228 seconds in total to solve the 

entire linear system with 20 sources, while block BiCGStab only needs 14 to 34 MV operations 

per right-hand side and 32 to 74 seconds in total to solve the same system with 20 sources. CPU 

times and MV operation numbers of the methods depend on optical properties as shown in Fig. 

3.3(a)(b)(d)(e): it is observed that both algorithms take more MV operations and thus more 

computational time to converge when scattering coefficient increases and absorption coefficient 

decreases, and vice versa. However, the speedup factors of 1.3 ~ 3.1 and the ratios of MV 

number of 1.0 ~ 2.2 (see Fig. 3.3(c)(f)) show that block BiCGStab is less dependent on the 

optical properties: the speedup factor of 2.5 and the MV ratio of 1.8 are achieved with absorption 

coefficients (< 0.3cm!!) and scattering coefficients (> 3cm!!) and the speedup factor of 1.8 

and the MV ratio of 1.3 are always guaranteed when scattering coefficient is greater than 

2.0cm!!. Similar results are observed for the 3D numerical experiments (see Fig. 3.4). The 

BiCGStab algorithm requires 22 to 68.75 MV operations per right-hand side and a total of 713 to 

2205 seconds of CPU time to solve the linear system with 32 right-hand sides, while block 

BiCGStab algorithm only takes 18 to 38 MV operations per right-hand side and a total of 404 to 

918 seconds, which leads to the speedup factors of 1.3 ~ 2.7 and the MV ratios of 1.0 ~ 2.0. With 
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scattering coefficients ≥ 2.0cm!!, a speedup factor of at least 1.8 and a MV ratio of at least 1.3 

can be achieved.  

 
                           (a)                                                   (b)                                                  (c) 

 
                           (d)                                                   (e)                                                  (f) 

Figure 3.3: Results for 2D disk phantom with homogeneous optical properties; (a) CPU time (BiCGStab); 
(b) CPU time (block BiCGStab) (c) Speedup factor of block BiCGStab; (d) MV number (BiCGStab); (e) 
MV number (block BiCGStab); (f) MV ratio (BiCGStab MV number / block BiCGStab MV number) 

We observe that the profile of speedup factor and the MV ratio are very similar in both 

2D and 3D cases (See Fig. 3.3(c)(f) and Fig. 3.4(c)(f)). This strong correlation shows the higher 

efficiency of block BiCGStab, as compared to single right-hand side BiCGStab. In the block 

BiCGStab approach fewer MV operations are required since it searches for solutions in a larger 

subspace in every iteration. Furthermore, in this experiment, the speedup factor is usually 30% 

higher than the MV ratio, which is robust to the optical property. This extra efficiency can be 

explained by the better memory cache usage of matrix-matrix multiplication in block BiCGStab 

as compared to multiple matrix-vector multiplications for multiple sources in sequential 
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BiCGStab [92]. We can observe that the CPU time of the block BiCGStab is less dependent on 

optical property because it treats multiple right hand sides simultaneously and therefore the 

solution search through extended Krylov subspace rather than the matrix nature by optical 

properties is a dominant factor affecting the overall CPU time, whereas the sequential solver 

deals with multiple right-hand sides individually and thus the individual CPU time that highly 

depends on the optical properties determines the total CPU time. 

 
                           (a)                                                   (b)                                                   (c) 

 
                           (d)                                                   (e)                                                   (f) 

Figure 3.4: Results for 3D cylinder phantom with homogeneous optical properties; (a) CPU time 
(BiCGStab); (b) CPU time (block BiCGStab) (c) Speedup factor of block BiCGStab; (d) MV number 
(BiCGStab); (e) MV number (block BiCGStab); (f) MV ratio (BiCGStab MV number / block BiCGStab 
MV number).  

3.4.4.2. Tests on phantoms with inhomogeneous optical properties 

In this subsection we conduct numerical experiments on Phantom 2 with inhomogeneous optical 

properties. Two spherical objects are located with heights 1cm and 2cm, respectively, and their 
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radius is 0.3cm for both (see Fig. 3.5). The background optical properties are set to 𝜇! =

0.1cm!!, 𝜇!! = 10.0cm!!.  

With this phantom two cases were tested. In the first case the two objects are high 

absorbing and low scattering (𝜇! = 1.0cm!!, 𝜇!! = 10.0cm!!); in the second case the phantom 

contains low-scattering and low-absorbing void like regions (𝜇! = 0.01cm!!, 𝜇!! = 1.0cm!!). 

Thus in both cases the two objects are in the transport regime. The results are shown in Table 

3.6, where CPU1 and CPU2 represent the computational time of the sequential and block 

BiCGStab algorithms respectively, MV1 and MV2 denote the average MV number per right 

hand side of the sequential and block BiCGStab algorithms respectively. 

 

Figure 3.5: Locations of two spherical objects in Phantom 2 

In the first case (high-absorbing and low-scattering objects), the MV ratio of 1.80 and 

speedup factor of 2.40 is achieved. In the second case (void-like inclusions), the MV ratio is 1.89 

and the speedup factor is 2.53. In general, the block BiCGStab provides very similar MV ratios 

and speedup factors. These results are very similar to the ones from homogeneous optical 

property case as discussed earlier with 𝜇! = 0.1cm!!, 𝜇!! = 10.0cm!! (See Row 3 in Table 3.6). 

This indicates that the MV ratio and the speedup factor depend mostly on the background optical 

properties, but little on the object optical properties.  
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Table 3.6: Results of tests on Phantom 2 with inhomogeneous optical properties 

Object type CPU1 (s) CPU2 (s) Speedup MV1 MV2 MV ratio 
High 𝜇!, low 𝜇!!  region 1780 744 2.40 70.1 39 1.80 
Void like region 1774 702 2.53 69.9 37 1.89 
No objects 1820 716 2.54 70.6 37 1.91 

3.4.5. Influence of spatial and angular discretization on the performance 

When optical properties are fixed in (3.13), the structure of the matrix 𝐴 in the linear equation is 

determined by both the spatial and angular discretization but in different ways. For example, for 

matrix 𝐴! in (3.11) finer spatial discretization leads to more diagonal blocks as well as smaller 

coefficients for pattern 𝑊 in every block but 𝑊 itself is kept the same while different angular 

discretization leads to different pattern 𝑊  but with total diagonal block number and 𝑊 ’s 

coefficients unchanged. So the spatial and angular discretization may potentially have different 

impact on the performance of linear solvers. Therefore in this subsection, the influence of spatial 

and angular discretization on the performance of block BiCGStab is examined separately. The 

3D phantom with homogeneous optical properties is re-considered in the experiments: the 

absorption and reduced scattering coefficients are set to 0.1cm!! and 10.0cm!!. To test how 

discretization affects the speedup factor, a number of spatial meshes varying element sizes in the 

range 0.08 ~ 0.13cm in the spatial domain together with different orders of discrete ordinates 

(𝑆! ∼ 𝑆!") in the angular domain have been created. Detailed information can be found in Table 

3.7 and 3.8.  

Table 3.7: Spatial meshes employed to study effects of spatial discretization 

Element size [cm] 0.08 0.09 0.10 0.11 0.12 0.13 
Node number 32940 23412 17158 12974 10021 7929 

Table 3.8: Discrete ordinates employed to study the effects of angular discretization 

Discrete Ordinates order 𝑆! 𝑆! 𝑆! 𝑆!" 𝑆!" 
Solid angle number 24 48 80 120 168 
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We examine the effects of spatial and angular discretization separately: First we 

investigate spatial discretization effect using variable spatial meshes with a fixed angle set of 𝑆!, 

and then we fix the spatial mesh at element size of 0.13cm and examine the influence of angular 

discretization. The CPU times, speedup factors and MV ratios are reported in Fig. 3.6.  

    
                                             (a)                                                                               (b) 

    
                                             (c)                                                                               (d) 

Figure 3.6: CPU times, speedup factors and MV ratios with respect to spatial and directional 
discretization; (a) CPU times comparison between BiCGStab and block BiCGStab on different spatial 
meshes with the fixed solid angle set 𝑆!; (b) speedup factor and MV number ratio on different spatial 
meshes with the fixed solid angle set 𝑆!; (c) CPU times comparison between BiCGStab and block 
BiCGStab on different orders of discrete ordinates (𝑆! ∼ 𝑆!") with the fixed spatial mesh; (d) speedup 
factor and MV number ratio on different orders of discrete ordinates (𝑆! ∼ 𝑆!").  

As shown in Fig. 3.6(a), the CPU times of both algorithms increase linearly with the node 

number with the fixed solid angle set, which leads to almost constant speedup factors over the 

node numbers tested (Fig. 3.6(b)). However, the methods exhibit a different behavior in the CPU 

times when the solid angle set is altered with the node number fixed. Fig. 3.6(c)(d) show that 

with increasing solid angle numbers block BiCGStab has linearly increasing CPU times whereas 

for the traditional BiCGStab algorithm the CPU time increases superlinearly, which leads to a 
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linear increase in the speedup. We can also observe in Fig. 3.6(b)(d) that the MV ratio is not 

sensitive to the spatial discretization and the solid angle set, thus the result indicates that the 

block BiCGStab algorithm can benefit most the RTE solution that deals with a large number of 

solid angles since the extra efficiency of the better cache usage can provide will increase with 

large solid angle set. 

3.4.6. Influence of the number of right-hand sides on the performance 

In this subsection, we explore the influence of the number of sources on the performance of the 

block BiCGStab algorithm. To this end, the 2D phantom is considered here. The optical property 

is set as 𝜇! = 0.1cm!! and 𝜇!! = 10.0cm!!. The performance of the block BiCGStab algorithm 

was tested with various numbers of sources (𝑁! = 1 ∼ 25 ). The sources are uniformly 

distributed on the medium’s surface. The average CPU time, speedup factor and MV ratio are 

recorded and reported in Fig. 3.7. 

     
                                            (a)                                                                                   (b) 

Figure 3.7: Performance of the block BiCGStab algorithm with different number of sources: (a) Overall 
CPU time required in the sequential and block BiCGStab algorithms with various source numbers. (b) 
The speedup factor and MV ratio of the block BiCGStab algorithm compared with the traditional 
BiCGStab algorithm with various source numbers. 

As shown in Fig. 3.7(a), the CPU time grows approximately linearly for both solvers with 

respect to the source number when 𝑁!"#$%& ≥ 10 but with different rates. The slope of the block 

BiCGStab CPU time curve is significantly smaller, which means that the block BiCGStab treats 
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the increased right-hand side due to the increased number of sources computationally much more 

efficiently than the BiCGStab solver. The speedup factor of the block BiCGStab and the MV 

ratio between two solvers are shown in Fig. 3.7(b). We can find when 𝑁!"#$%& ≤ 15, the MV 

ratio and speedup factor increase sublinearly with respect to source number. When 𝑁!"#$%& > 15, 

the MV ratio has stopped increasing and the speedup factor remains approximately constant, thus 

there being no additional speedup that can be obtained by increasing the source number. On the 

other hand, Fig. 3.7(b) shows that the speedup factor is always higher than the MV ratio one, 

which clearly indicates that the block solver obtains additional speedup from more efficient 

memory usage. This also explains why a considerable speedup factor (1.5 or higher) can also be 

achieved even with small source number (~5), which makes the block BiCGStab algorithm more 

attractive in practical applications. 

3.4.7. Test on multi-threading block BiCGStab methods 

To evaluate the performance under the multi-threading computation environment, two proposed 

parallel block BiCGStab methods (Algorithm 3.5 and 3.6) were tested with a 3D homogeneous 

cylinder phantom. We consider two cases with the optical properties: (1) 𝜇! = 0.1cm!! , 

𝜇!! = 10.0cm!! for normal tissue; (2) 𝜇! = 0.5cm!!, 𝜇!! = 1.0cm!! for high absorbing and low 

scattering case. In both cases, the forward problems were solved with the single threading and 

multi-threading block solver with 1, 2, 4, 8, 16 threads, the performance from both algorithms is 

reported and compared with the traditional sequential solver. 

Theoretically, with the increase of the thread number, the speedup factor of both 

Algorithm 3.5 and 3.6 as compared to the traditional sequential BiCGStab solver will decrease 

for different reasons. For Algorithm 3.5, this is mainly because more threads lead to more 

synchronization and communication cost, while for Algorithm 3.6 more threads will result in 
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fewer right-hand sides on each thread which in turn limits the search space and therefore the 

block solver will take MV operations to convergence. The preference of these two algorithms 

will also depend on the optical properties of the problem being solved.  

For the normal tissue case, the performance of two parallel block solvers as compared to 

the parallelized traditional sequential solver and is shown in Fig. 3.8. The CPU time in seconds 

and the average MV number are shown in Fig. 3.8(a) and (c), and the speedup factor and MV 

ratio in Fig. 3.8(b) and (d). As expected, Fig. 3.8(c) shows that the average MV number remains 

constant with various thread numbers both for parallel sequential method and Algorithm 3.5 but 

it increases for Algorithm 3.6. Fig. 3.8(a)(b) shows the effect of the number of threads on the 

speedup factor of two parallel codes. As mentioned in the preceding paragraph, while the 

speedup factors of both parallel algorithms generally decrease with increasing treads, Algorithm 

3.5 exhibits less deterioration in performance with increasing threads (especially with 2, 4, and 8 

threads). That is because as the number of threads increases additional computational efforts due 

to increased MVs in Algorithm 3.6 dominates the parallel slowdown effect due to 

communication in Algorithm 3.5. With 16 threads, very little improvement is obtained for both 

of the two parallel solvers since the synchronization and communication cost in Algorithm 3.5 

become as much dominant as extra MVs in Algorithm 3.6.  

For high-absorbing and low-scattering media, the CPU time, speedup factor, average MV 

number and MV ratio with respect to thread number are shown in Fig. 3.9 for parallel sequential 

method and two parallel block BiCGStab algorithms. In this case, there is an insignificant 

difference in required MV number between traditional sequential solver and Algorithm 3.5 (see 

Fig. 3.9(c)). Therefore for Algorithm 3.5, the parallel slowdown by the synchronization and 

communication cost, become the most important factor. On the other hand, Algorithm 3.6 suffers 
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mush less from this effect; therefore, a considerable speedup factor can still be achieved by more 

efficient memory usage in the block solver. So in this case, Algorithm 3.6 gives better 

performance than Algorithm 3.5, with thread number less than or equal to 8, a speedup factor of 

~1.5 can be achieved. 

    
                                          (a)                                                                                (b) 

    
                                          (c)                                                                                (d) 

Figure 3.8: CPU time, speedup factor, MV number and MV ratio comparison respect to thread number in 
normal tissue case (𝜇! = 0.1cm!!, 𝜇!! = 10.0cm!!): (a) CPU time comparison; (b) Speedup factor 
comparison; (c) Average MV number comparison; (d) MV ratio comparison.  
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                                            (a)                                                                                   (b) 

    
                                            (c)                                                                                   (d) 

Figure 3.9: CPU time, speedup factor, MV number and MV ratio comparison respect to thread number in 
high absorbing and low scattering medium case (𝜇! = 0.5cm!! , 𝜇!! = 1.0cm!! ): (a) CPU time 
comparison; (b) Speedup factor comparison; (c) Average MV number comparison; (d) MV ratio 
comparison.  

3.5. Discussion 

In this chapter, a novel method has been presented for solving the forward problem in RTE-

DOT. By exploiting the common optical properties shared among multiple right-hand sides, the 

new method solves the forward problems with multiple right-hand sides simultaneously within 

the framework of block Krylov subspace. In particular, I have focused on the block BiCGStab 

algorithm that searches an approximate solution in each iteration within the span of Krylov 

subspace generated with all right hand sides and therefore requires much fewer iterations than 

the traditional sequential algorithm. In addition, the results showed that more efficient cache 

memory usage in the block BiCGStab algorithm could lead to additional savings in the total 

computational time. Moreover, two multi-threading block BiCGStab algorithms are also 

proposed here for limited computation resource cases (thread number ≤ sources number). The 
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performance of the proposed block solver has been evaluated in terms of MVs numbers and CPU 

times with comparison to the traditional sequential solver. 

The numerical simulation shows that the block BiCGStab algorithm provides results 1.3 

to 3.0 times faster than traditional one-hand side approaches depending on the number of right-

hand sides, the number of threads, and on the optical properties. For normal-tissue optical 

properties (e.g. 𝜇! = 0.1𝑐𝑚!!, 𝜇!! = 10.0𝑐𝑚!!), the, serial block BiCGStab gave a speedup 

factor of 2.5 or higher and the parallel block BiCGStab solvers showed a speedup factor of up to 

2.4 for over 20 sources. In this range of optical properties, the efficiency in the parallel block 

BiCGStab-ITC was less deteriorated with increasing threads than it in the parallel block 

BiCGStab-NITC. On the other hand, with high absorbing and low scattering medium (e.g. 

𝜇! = 0.5𝑐𝑚!!, 𝜇!! = 1.0𝑐𝑚!!), a speedup factor of 1.5 or higher is obtained. In this case, 

however, the speedup mainly comes from the more efficient memory usage rather than the 

reduction on the required MV operation. Therefore the parallel block BiCGStab-NITC, which 

has no synchronization and communication cost, leads to a higher speedup factor (~1.5) than the 

parallel block BiCGStab-ITC. Additional tests show that the performance of the block BiCGStab 

solver is not strongly tied to a specific minimum number of sources to obtain a significant 

speedup factor, which means a considerable speedup (1.5 or higher) can still be obtained even 

for the limited source number (~5), 

Overall, the forward problems with multiple sources in RTE-DOT can be solved much 

more efficiently without losing any accuracy with the proposed block BiCGStab solver. 

Moreover, the efficiency of the block solver can be further improved when using multiple 

threads (thread number < source number) by the proposed algorithms, depending on the optical 

properties. Since the forward solver is usually considered as the most time-consuming 
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component in the inverse solver, one can expect a significant speed on image reconstruction by 

applying the block BiCGStab as the forward solver, which makes RTE-DOT more practical in 

clinical applications. 
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Chapter 4.  Efficient Inverse Solvers in RTE-DOT  

4.1. Introduction 

RTE-DOT is an imaging modality that recovers the spatial distributions of optical properties and 

important physiological parameters inside the target medium. It does so by using light 

transmission and/or reflection measurements obtained from the surface and information of the 

source locations and boundary conditions. In this inverse problem the RTE is employed as a 

forward model for light propagation [93]. There is no closed-form inversion for general cases, 

and hence, the resulting inverse problem is typically formulated as the following optimization 

problem, 

 min
!,!

  
1
2 𝑄Ψ−𝑀 !

! +   𝑅 𝜇

s. t.𝐴(𝜇)Ψ = 𝐵
 (4.1) 

where 𝜇 represents the optical properties that are to be reconstructed; 𝐴(𝜇)Ψ = 𝐵 denote the 

discretized forward model for all sources and 𝐴(𝜇) denotes the linear operator that depends on 𝜇; 

Ψ represents the predicted light intensity distribution that leads to experimental measurements 𝑀 

for all sources; 𝑄 is the measurement operator that transforms the light intensity distribution Ψ 

into the detector readings; ⋅ !  represents the Frobenius norm [94] and 𝑅 𝜇  is the 

regularization term on 𝜇. 

The optimization problem (4.1) is very challenging and the efficiency of the RTE-DOT 

highly depends on its numerical solver. Therefore it has attracted lots of researchers’ attention in 

the past decade and many numerical methods have already been developed. These algorithms 

can be mainly classified into two categories: algorithms based on unconstrained optimization and 

algorithms based on constrained optimization. Algorithms of unconstrained optimization treat Ψ 
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as a dependent variable of an independent variable 𝜇 and eliminate the constraints 𝐴(𝜇)Ψ = 𝐵 in 

Eq. (4.1), which allows one to obtain the following unconstrained optimization problem, 

 min
!
  
1
2 𝑄𝐴 𝜇 !!𝐵 −𝑀 !

! +   𝑅 𝜇 . (4.2) 

Then some classical unconstrained optimization techniques are employed for solving problem 

(4.2): the non-linear conjugate gradient method [95-99], the Gauss-Newton method [49, 100-

102], the BFGS method [103-106] and the Levenberg-Marquardt method [50, 107, 108] to name 

a few. The main disadvantage of unconstrained algorithms is their computational inefficiency 

mainly caused by the requirement that the accurate solution to the forward problem Ψ =

𝐴 𝜇 !!𝐵 should be evaluated repeatedly, especially within a line search step. In RTE-DOT, with 

a given updated direction, a step size that satisfies certain criteria needs to be found and this 

process often requires multiple trials on various step sizes. However, for every potential step size, 

the objective function evaluation requires solving forward problems 𝐴 𝜇 Ψ = 𝐵 accurately, 

which is the most time-consuming part of an unconstrained optimization solver. To overcome 

this difficulty, the other type of algorithms, which is often referred to as PDE-constrained 

optimization and solves (4.1) directly with more sophisticated optimization techniques, has been 

extensively explored. These algorithms treat both 𝜇 and Ψ as an independent variable, so the 

objective function evaluation in (4.1) becomes trivial with descent directions on both variables 

provided, thus not having to solve the forward problem repeatedly. Existing research in this type 

can be found in [48, 52, 56, 109, 110]. These constrained optimization algorithms are all based 

on the reduced-space methods (RSMs) [111]. RSMs replace the full Hessian system with the 

reduced Hessian system that is generated with Quasi-Newton methods and the linearized 

constraint equation. The reduced Hessian is then used to find the descent direction for both 

forward and inverse variables. However, compared to the full-space methods (FSMs), which 
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make use of the full Hessian information to update all the variables, RSMs often have a lower 

convergence rate and take more iterations to converge [111]. FSM-based optimization algorithms 

are widely used in many other areas [112-114], but have not been applied in the field of DOT so 

far. 

In this dissertation, I explore the possibility to overcome the aforementioned limitations 

for existing constrained and unconstrained algorithms in two directions. For the unconstrained 

optimization formulation (4.2), a novel method is developed to determine the step size without 

multiple objective function evaluations. This method makes use of partial information of the 

second order derivative of the objective function and generates accurate step size that minimizes 

the objective function along the descent direction with low computational cost. Then a line-

search-free BFGS inverse solver is constructed by combining this line-search-free step size 

scheme with the traditional BFGS method. The proposed algorithm requires no computational 

effort on line search process in each inverse iteration as well as maintains its simple structure as 

an unconstrained optimization solver. In practice, substantial speedup can be expected from the 

proposed line-search-free BFGS unconstrained method as compared to the traditional line search 

based BFGS unconstrained methods. 

For the original constrained optimization formulation (4.1), the full-space algorithm for 

RTE-DOT has been developed for the first time. This algorithm utilizes the information of full 

Hessian for finding descent direction; therefore, it is able to provide higher quality descent 

direction as compared to the reduced-space algorithms. As in line-search-free BFGS 

unconstrained algorithm, I propose here a new efficient method to determine the step size for the 

full-space method. Due to higher quality descent direction by the proposed full-space method, 

one can expect the method to have a higher convergence rate with significantly fewer iterations. 
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The remainder of this chapter is organized as follows. The new step size estimation 

scheme and the line-search-free BFGS algorithm for unconstrained optimization formulation are 

described in Section 4.2. The full-space inverse solver for the constrained optimization 

formulation is then proposed in Section 4.3. Validation and performance evaluation are 

conducted in Section 4.4. This chapter concludes with a discussion in Section 4.5. 

4.2. A line-search-free BFGS inverse solver for unconstrained 
optimization formulation  

4.2.1. Newton’s method and quasi-Newton methods 

In this section I briefly introduce Newton’s method and quasi-Newton methods. Consider a 

general unconstrained optimization problem 

 min
!
   𝑓 𝜇 , (4.3) 

where 𝑓(𝜇) is a twice continuously differentiable objective function.  

In Newton’s method, 𝑓 𝜇  is approximated with the second order Taylor expansion 

around the 𝑘th iterate, 

 𝑓 𝜇 ≈ 𝑓 𝜇! + 𝑔!! 𝜇 − 𝜇! +
1
2 𝜇 − 𝜇! !𝐺! 𝜇 − 𝜇! , (4.4) 

where 𝑔!  and 𝐺!  are the gradient and the Hessian matrix of 𝑓 at 𝜇!  respectively. Under the 

assumption that 𝐺! is positive definite, the right-hand side of (4.4) is minimized as below to get 

the updating direction Δ𝜇! ≔ 𝜇 − 𝜇!, 

 min
!!!

𝑓 𝜇! + 𝑔!!Δ𝜇! +
1
2Δ𝜇!

!𝐺!Δ𝜇! . (4.5) 
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Thus the quadratic approximation (4.5) to the original objective function (4.4) is minimized to 

give an updating direction as below, 

 Δ𝜇! = −𝐺!!!𝑔! . (4.6) 

Then 𝜇! is updated to 𝜇!!! by 𝜇!!! = 𝜇! + Δ𝜇!. 

It has been proved that Newton’s method has a locally quadratic convergence rate [111]. 

And it can be modified to achieve global convergence by performing a line search step and some 

regularization on the Hessian matrix when it is near singular [111].  

However, Newton’s method requires in each iteration an explicit Hessian matrix to 

achieve quadratic convergence. In many applications, including the unconstrained optimization 

formulation (4.2), the exact Hessian matrix is computationally very expensive to obtain. 

Moreover, the exact Hessian matrix sometimes is dense and not separable, which increases 

numerical inefficiency in solving (4.6) when the problem scale is large. Therefore, alternatives 

that only require the information of the objective function and its first order derivative are often 

considered in practice. 

Quasi-Newton methods are believed as the most effective first order optimization 

technique for unconstrained optimization when they are applicable. Instead of computing the 

exact Hessian matrix in (4.6), they construct an approximate inverse Hessian (or Hessian) using 

current and previous objective function values and gradient information to reduce the 
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computational burden. On the other hand, the approximate inverse Hessian (or Hessian) can 

guarantee a super-linear convergence rate under certain conditions [111]. 

To understand the conditions that the approximate inverse Hessian (or Hessian) must 

satisfy, we take another derivative on the Taylor expansion (4.4) in the 𝑘 + 1 th iteration, 

 𝑔 𝜇 ≈ 𝑔!!! + 𝐺!!! 𝜇 − 𝜇!!! .  

We let 𝜇 = 𝜇!, 𝑠! = 𝜇!!! − 𝜇! and 𝑦! = 𝑔!!! − 𝑔!, then we have  

 𝐺!!!!! 𝑦! ≈ 𝑠! .  

Based on this relation, we require the approximate inverse Hessian matrix 𝐻!!!  (or the 

approximate Hessian matrix 𝐵!!!) in quasi-Newton methods to satisfy the following condition, 

 𝐻!!!𝑦! = 𝑠!    𝐵!!!𝑠! = 𝑦! . (4.7) 

Equation (4.7) is often referred to as the quasi-Newton condition. In every iteration in quasi-

Newton methods, the existing approximate inverse Hessian (or approximate Hessian) is updated 

with low cost to satisfy this condition. A general quasi-Newton method is described as 

Algorithm 4.1.  

In real world applications, Quasi-Newton methods are often preferred over Newton’s 

method for solving unconstrained optimization problems due to the following advantages: 

(1) Quasi-Newton methods only require the first order derivatives, while Newton’s method 

requires both the first order and second order derivatives. 
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(2) The approximate inverse Hessian 𝐻! (the approximate Hessian 𝐵!) in quasi-Newton 

methods is always positive definite, therefore the direction found in Step 3:(1) of 

Algorithm 4.1 is guaranteed to be a descent direction, while the exact Hessian matrix 𝐺! 

can be indefinite for non-convex objective functions. 

(3) In quasi-Newton methods the descent direction can be efficiently computed, while in 

Newton’s method, a linear equation is required to obtain the descent direction.  

Algorithm 4.1: General quasi-Newton methods 
1. Given the starting point 𝜇!, relative convergence tolerance 1 > 𝜖 > 0, and initial inverse 

Hessian approximation 𝐻! ∈ 𝑅!×! (or 𝐵! ∈ 𝑅!×!). 
2. Let 𝑘 = 0. 
3. While 𝑔! > 𝜖 𝑔! : 

(1) Compute the descent direction by Δ𝜇! = −𝐻!𝑔! (or 𝛥𝜇! = −𝐵!!!𝑔!), 
(2) Find a proper step size 𝛼! along the Δ𝜇! direction, then let 𝜇!!! = 𝜇! + 𝛼Δ𝜇!. 
(3) Modify 𝐻! (or 𝐵!) to get a 𝐻!!! (or 𝐵!!!), which is positive definite and satisfies the 

quasi-Newton condition (4.7). 
(4) 𝑘 = 𝑘 + 1. 

4.2.2. A line-search-free BFGS inverse solver 

The key component in quasi-Newton methods is the updating scheme (Step 3:(3) in Algorithm 

4.1) for 𝐻! (or 𝐵!). Numerous updating schemes have been proposed so far, including the DFP 

method [115], the BFGS method [116], the SR1 method [117], the Broyden’s method [118], etc. 

The BFGS method, which is one of the most popular quasi-Newton methods, is used for the 

unconstrained optimization problem. The updating formula for 𝐻! is given as below: 

 𝐻!!! = 𝐻! −
𝐻!𝑠!𝑠!!𝐻!
𝑠!!𝐻!𝑠!

+
𝑦!𝑦!!

𝑦!!𝑠!
. (4.8) 
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To reduce the computational cost and memory requirement, the approximate inverse 

Hessian 𝐻! in the BFGS algorithm does not have to be explicitly constructed, instead, two 

sequences of 𝑠!  and 𝑦!  with the initial guess 𝐻! are memorized for the descent direction’s 

computation (Step 2:(1) in Algorithm 4.2). A general description of the BFGS algorithm can be 

found in Algorithm 4.2 (outer loop) and its descent direction calculation is described in 

Algorithm 4.3 (inner loop). 

Algorithm 4.2: The BFGS algorithm for unconstrained optimization problem (4.3). 
(outer loop) 

1. Given the starting point 𝜇!, relative convergence tolerance 1 > 𝜖 > 0, and initial inverse 
Hessian approximation 𝐻! ∈ 𝑅!×! (or 𝐵! ∈ 𝑅!×!). 

2. While 𝑔! > 𝜖 𝑔! : 
(1) Compute the descent direction by Δ𝜇! according to Algorithm 4.3. 
(2) Find a proper step size 𝛼 along the Δ𝜇! direction, then let 𝜇!!! = 𝜇! + 𝛼Δ𝜇!. 
(3) Compute and save 𝑠! = 𝛼Δ𝜇! and 𝑦! = 𝑔!!! − 𝑔!. 

   
Algorithm 4.3: The BFGS algorithm for unconstrained optimization problem (4.3). 

(inner loop) 
Target: Compute Δ𝜇! with 𝑔! and 𝑠! !!!

!!!,   𝑦! !!!
!!!. 

1. Let 𝑞 = 𝑔!. 
2. For 𝑖 = 𝑘 − 1 :−1: 0 

(1) 𝛼! = 𝑠!!𝑦! !!𝑠!!𝑞. 
(2) 𝑞 = 𝑞 − 𝛼!𝑦!. 

3. Let Δ𝜇! = 𝐻!𝑞. 
4. For 𝑖 = 0: 𝑘 − 1  

(1) 𝛽 = 𝑠!!𝑦! !!𝑦!!Δ𝜇!. 
(2) Δ𝜇! = Δ𝜇! + 𝛼! − 𝛽 𝑠!. 

5. Return Δ𝜇!. 

To apply Algorithm 4.2 on (4.2), we need to derive the formulation of the gradient 𝑔 with 

the objective function 𝑓 𝜇  defined as 𝑄Ψ−𝑀 !
! 2+   𝑅 𝜇 , where Ψ is an implicit function 

of 𝜇 given by 
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 𝐶 𝜇,Ψ = 𝐴 𝜇 Ψ− 𝐵 = 0. (4.9) 

According to the chain rule, we have 

 𝑔 = ∇𝑓 = ∇!𝑓 + ∇!𝑓∇!Ψ = ∇!𝑅 + 𝑄! 𝑄Ψ−𝑀 ∇!Ψ, (4.10) 

where ∇!Ψ can be given by the implicit function algorithm, 

 ∇!Ψ = − ∇!𝐶 !!∇!𝐶 = −𝐴 𝜇 !! ∇!𝐴 𝜇 . (4.11) 

By plugging (4.11) back into (4.10), we have the final expression of 𝑔, which is applied in 

Algorithm 4.2. 

 𝑔 = ∇!𝑅 − 𝐴 𝜇 !!𝑄! 𝑄Ψ−𝑀 ! ∇!𝐴 𝜇 Ψ (4.12) 

Another important part required in Algorithm 4.2 is the step size 𝛼  in Step 2:(2). 

Traditionally 𝛼 is usually determined with a backtracking line search method [119], which starts 

with a relative large estimate of 𝛼 and then shrinks it iteratively until certain stopping criteria are 

satisfied. Such stopping criteria include Armijo rule [120], Wolfe conditions [121, 122], 

Goldstein condition [123], etc. However, the backtracking line search method requires multiple 

function evaluations and/or gradient computations, which are computationally very expensive for 

the unconstrained optimization formulation in DOT. To overcome this difficulty, a step size 

estimation algorithm that is specifically designed for Eq. (4.2) is proposed. It can provide quite a 

good estimation of 𝛼 with lower computational cost as compared to the traditional line search-

based step size searching. 

In the 𝑘th iteration, we can derive the Ψ’s directional derivative along Δ𝜇! with the 

implicit function theorem (4.11) as 
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 ΔΨ! ≔ ∇!!!Ψ! =   ∇!Ψ! ⋅ Δ𝜇! = −𝐴 𝜇! !! ∇!𝐴 𝜇! ⋅ Δ𝜇! Ψ! . (4.13) 

For sufficient small 𝛼, we have the following Taylor expansion to the first order, 

 Ψ 𝜇! + 𝛼Δ𝜇! = Ψ! + 𝛼ΔΨ! + 𝑜 𝛼 ΔΨ! ≈ Ψ! + 𝛼ΔΨ! . (4.14) 

Therefore, the objective function 𝑓 𝜇! + 𝛼Δ𝜇!  can be approximated with 

 𝑓 𝜇! + 𝛼Δ𝜇! ≈ ℎ 𝛼 ≔
1
2 𝑄 Ψ! + 𝛼ΔΨ! −𝑀 !

! + 𝑅 𝜇! + 𝛼Δ𝜇!  (4.15) 

Then the step size 𝛼 can be determined by solving the following optimization problem, 

 min
!
ℎ 𝛼 . (4.16) 

It should be noted that ℎ 𝛼  is a function of a scalar variable 𝛼 alone and therefore a 

closed-form solution that minimizes (4.16) can be found easily, which reduces computation time 

significantly since no line search is required. 

The line-search-free BFGS inverse solver for unconstrained optimization problem (4.2) is 

summarized in Algorithm 4.4.  

Algorithm 4.4: A line-search-free BFGS algorithm for unconstrained optimization 
problem (4.2) 

1. Given the starting point 𝜇!, relative convergence tolerance 1 > 𝜖 > 0, maximum iteration 
number 𝑛!"#$ and initial inverse Hessian approximation 𝐻! ∈ 𝑅!×! (or 𝐵! ∈ 𝑅!×!). 

2. Set 𝑘 = 0. 
3. While 𝑘 < 𝑛!"#$: 

(1) Compute Ψ! = 𝐴 𝜇! !!𝐵. 
(2) Compute 𝑔! according to (4.12). 
(3) If 𝑔! < 𝜖 𝑔! , then break, else continue. 
(4) Compute Δ𝜇! according to Algorithm 4.3. 
(5) Compute ΔΨ! according to (4.13). 
(6) Solve (4.16) to get the step size 𝛼, then let 𝜇!!! = 𝜇! + 𝛼Δ𝜇!. 
(7) 𝑘 = 𝑘 + 1. 

4. Output 𝜇!. 
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In Algorithm 4.4, three forward solvers are called (Step 3:(1)(2)(5)) in each inverse 

iteration. They are the most time consuming steps and their efficiency can be significantly 

improved by the following three ways: 

(1) Using the (multi-thread) block BiCGStab solver proposed in Chapter 3 instead of 

traditional sequential solvers. 

(2) Setting a proper relative tolerance 𝜖! for the forward solvers. Lower relative tolerance 

converges fast. On the other hand, the accuracy of the forward solver also depends on 𝑔!; 

in other words, the solution provided by the forward solver should be relatively more 

accurate than 𝑔!  such that an efficient decrease is allowed. Therefore, an adaptive 

forward relative tolerance 𝜖!,!  in the 𝑘th iteration defined as 10!!min 1.0, 𝑔!  is 

applied in this work, which turned out to be much more efficient than an uniform 𝜖!. 

(3) Providing proper initial guess for some of the forward solvers. For Step 3:(1) in 

Algorithm 4.4, one can use Ψ!!! (i.e., the previous iterate) as an initial guess to solve 

for the next iterate Ψ!, which reduces the forward iterations in Step 3:(1).  

The implementation details for computing the gradient 𝑔 in (4.12) and solving (4.16) can 

be found in Appendix A.1.  
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4.3. A full-space algorithm for the constrained optimization 
formulation 

4.3.1. Full-space Newton’s method for constrained optimization 

The following more general constrained optimization problem is considered in this subsection, 

 
min 𝑓 Ψ, 𝜇
s. t.𝐶 Ψ, 𝜇 = 0 (4.17) 

where 𝑓 Ψ, 𝜇 ≔ !
!
𝑄Ψ−𝑀 !

! +   𝑅 𝜇  and 𝐶 𝜇,Ψ ≔ 𝐴 𝜇 Ψ− 𝐵, 𝜇 and Ψ are both variables 

to be optimized in (4.17). Since Ψ is an implicit function with respect to 𝜇 given by 𝐶 Ψ, 𝜇 = 0, 

both 𝜇 and Ψ are considered as the independent variable. 

To derive the optimality conditions for (4.17), the Lagrangian function 𝐿 is introduced as 

 𝐿 Ψ, 𝜇; 𝜆 ≔ 𝑓 Ψ, 𝜇 + 𝜆!𝐶 Ψ, 𝜇 , (4.18) 

where 𝜆 is the Lagrangian multiplier (or the adjoint variable). Then the first order optimality 

conditions, also referred to as the Karush-Kuhn-Tucker (KKT) conditions [124], state that the 

gradient of 𝐿 at a local minimum must vanish: 

 𝜕𝐿 =
𝜕!𝐿
𝜕!𝐿
𝜕!𝐿

=
𝜕!𝑓 + 𝜕!𝐶 !𝜆
𝜕!𝑓 + 𝜕!𝐶

!𝜆
𝐶

= 0 (4.19) 

To simplify the notations, we use 𝐹! and 𝐹!" to denote 𝜕!𝐹 and 𝜕!(𝜕!𝐹) hereafter. So the 

KKT conditions (4.19) is simplified as  

 𝜕𝐿 =
𝐿!
𝐿!
𝐿!

=
𝑓! + 𝐶!!𝜆
𝑓! + 𝐶!!𝜆

𝐶
= 0 (4.20) 
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In the full-space algorithm, the KKT conditions (4.20) are treated as a system of 

nonlinear equations, which can be solved with Newton’s method. A single Newton step is given 

by 

 

𝐿!! 𝐿!! 𝐶!!

𝐿!! 𝐿!! 𝐶!!

𝐶! 𝐶! 0

ΔΨ
Δ𝜇
Δ𝜆

= −
𝑓! + 𝐶!!𝜆
𝑓! + 𝐶!!𝜆

𝐶
, (4.21) 

where the concatenated vector (ΔΨ,Δ𝜇,Δ𝜆) is the descent direction for the concatenated variable 

Ψ, 𝜇, 𝜆  in the current iteration. To simplify the notation, a short form 𝐾𝑑 = 𝑔 is used to refer to 

(4.21), where 𝑑 ≔    (ΔΨ,Δ𝜇,Δ𝜆)  and 𝑔  represents the right-hand side. Solving (4.21) with 

iterative linear solver in practice requires derivation of the right-hand side, the specific definition 

of the inner product of two vectors, and detailed expression for matrix-vector multiplication on 

the left hand side. These implementation details are provided in Appendix A.2. 

The wide use of traditional Newton’s method is often limited due to the numerical 

difficulties brought by the exact Hessian matrix. In another word, the exact Hessian matrix of the 

Lagrangian 𝐿 may be very difficult to derive and also dense in many cases, which makes a linear 

solvers computationally very expensive. However, these limitations do not exist in the 

constrained optimization formulation of DOT. Firstly, the Hessian matrix 𝐾 in (4.21) is a 3×3 

block matrix and each block can be simply derived. Moreover, the sparsity of the Hessian matrix 

𝐾 is guaranteed due to the special structure of the objective function and constraints in (4.9). 

Compared to the reduced Hessian methods, the full Hessian information is used in Newton’s 

method. Therefore, a quadratic convergence rate instead of superlinear convergence rate can be 

expected. The Lagrange-Newton method for (4.9) is given in Algorithm 4.5.  
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Algorithm 4.5: Lagrange-Newton method for (4.9) 
1. Choose initial guess 𝜇, Ψ and 𝜆. 
2. While NOT converge 

(1) Construct the Lagrange function and its first order KKT conditions. 
(2) Construct linear equation 𝐾𝑑 = 𝑔 (Eq. (4.21)). 
(3) Solve 𝐾𝑑 = 𝑔 (Eq. (4.21)) to get 𝑑 =    (ΔΨ,Δ𝜇,Δ𝜆). 
(4) Find an appropriate step size 𝛼 on the descent direction 𝑑. 
(5) Update 𝜇 by 𝜇 = 𝜇 + 𝛼Δ𝜇. 
(6) Update Ψ by Ψ = Ψ+ 𝛼ΔΨ. 
(7) Update 𝜆 by 𝜆 = 𝜆 + 𝛼Δ𝜆. 

4.3.2. Preconditioned Krylov solver for the KKT system 

The key step in Algorithm 4.5 is Step 2:(3), which solves the linear equation (4.21). Compared to 

linear problems in RSM-based methods, this one is much more challenging for several reasons. 

First, the linear system (4.21) is more than 2𝑁!"#$%& times larger than linear systems in the RSM-

based methods. Furthermore, it is usually ill-posed and may not be positive definite on the 

constraint null space. Therefore, an appropriate preconditioner becomes mandatory.  

Several preconditioning variants based on block decomposition for matrix 𝐾 have already 

been proposed [112-114, 125]. In this dissertation, the preconditioner 𝑃 for Eq. (4.21) is based 

on the most popular and robust one that was proposed in [125] with a slight modification, 

 𝑃 =
𝐿!!𝐶!!! 0 𝐼
𝐿!!𝐶!!! 𝐼 𝐶!!𝐶!!!

𝐼 0 0

𝐶! 𝐶! 0
0 𝐼 0
0 𝐿!! − 𝐿!!𝐶!!!𝐶! 𝐶!!

 (4.22) 

According to (4.9), 𝐶! = 𝐴(𝜇) and therefore 𝐶!!! and 𝐶!!! in (4.22) are well defined. With this 

preconditioner, the resulting preconditioned KKT matrix is given by 

 𝑃!!𝐾 =
𝐼 0 0
0 𝑊 0
0 0 𝐼

, (4.23) 

where 𝑊 = 𝐶!!𝐶!!!𝐿!!𝐶!!!𝐶! − 𝐶!!𝐶!!!𝐿!! − 𝐿!!𝐶!!!𝐶! + 𝐿!! . We can see that 𝑃!!𝐾 is an 

identity matrix except for the central block 𝑊, which has a relatively small size as compared 
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other blocks in RTE-DOT. Therefore a faster convergence rate can be expected in solving the 

following left preconditioned KKT system， 

 𝑃!!𝐾𝑑 = 𝑃!!𝑔 (4.24) 

Krylov type linear solvers [112, 114] are often suggested to solve the linear equation 

(4.24). In this dissertation, the traditional BiCGStab algorithm (Algorithm 3.3), which has been 

introduced in Chapter 3, is reused here. So the preconditioning process within the matrix-vector 

multiplication needs to be provided, which is described in Algorithm 4.6. 

Algorithm 4.6: Preconditioning process with the preconditioner in (4.22) 

Target: With a right-hand side 𝑏 = 𝑏!, 𝑏! , 𝑏!
!
, compute 𝑥 = 𝑃!!𝑏 

1. 𝑡! = 𝐶!!!𝑏!. 
2. 𝑦! = 𝑏! − 𝐿!!𝑡!. 
3. 𝑥! = 𝑏! − 𝐿!!𝑡! − 𝐶!!𝐶!!!𝑦!. 
4. 𝑡! = 𝐶!!!𝐶!𝑥! . 
5. 𝑥! = 𝑡! − 𝑡!. 
6. 𝑥! = 𝐶!!! 𝐿!!𝑥! − 𝐿!!𝑡! . 
7. Return 𝑥 = 𝑥!, 𝑥! , 𝑥!

!
. 

As can be seen in Algorithm 4.6 (Step 1, 3, 4, 6), four forward linear systems have to be 

solved in the preconditioning process, which is computationally inefficient. So an approximated 

preconditioner 𝑃 is constructed here by  

 𝑃 =
𝐿!!𝐶!!! 0 𝐼
𝐿!!𝐶!!! 𝐼 𝐶!!𝐶!!!

𝐼 0 0

𝐶! 𝐶! 0
0 𝐼 0
0 𝐿!! − 𝐿!!𝐶!!!𝐶! 𝐶!!

, (4.25) 

where 𝐶!  and 𝐶!!  are the proposed ILU-based preconditioners in Chapter 3 of 𝐴  and 𝐴! , 

respectively. With this modification, computational efficiency is significantly boosted because 

no linear solver is required for the preconditioning process. On the other hand, the 

preconditioned linear system (4.24) is still very ill-posed, so the norm of the residual decreases 
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very slow or even gets stuck at certain stage of iterative process. Therefore a maximum iteration 

number is used here as the stopping criterion in order to avoid the case that the relative tolerance 

is never achieved.  

4.3.3. Updating with the descent direction 

After the descent direction 𝑑 =    (ΔΨ,Δ𝜇,Δ𝜆)  in (4.21) is obtained, traditional full-space 

methods often employ a line search procedure, with 𝐿 Ψ, 𝜇; 𝜆 ! as the merit function, to find a 

proper step size 𝛼 (Algorithm 4.5, Step 2:(4)) to update the independent variables Ψ and 𝜇, and 

the adjoint variable 𝜆 all together (Algorithm 4.5, Step 2:(5)(6)(7)). However, in RTE-DOT, the 

traditional linear search and updating scheme may lead the full-space method to fail for several 

reasons. First, the accuracy of the solution to (4.24) is not guaranteed with the maximum 

iteration as the stopping criteria, and then with inaccurate updating direction, 𝐿 Ψ, 𝜇; 𝜆 ! will 

converge very slowly due to its very large dimensionality. Furthermore, the inaccuracy in the 

previous inverse iteration will have negative impacts on all the following iterations. Moreover, 

because of the inconsistency between the merit function and the objective function, 𝑓 Ψ, 𝜇  is 

not guaranteed to decrease for every iteration, which leads to instability problems. These 

problems are also mentioned in some existing research [113]. 

Therefore, another novel updating scheme is proposed here for the RTE-DOT, which 

borrows ideas from both the line-search-free BFGS algorithm and RSM-based methods [52]. In 

this updating scheme, Δ𝜇 is retained after 𝑑 in (4.21) is solved. Then the same procedure as in 

the line-search-free BFGS algorithm in Section 4.2 is used to get ΔΨ according to (4.13) and a 

proper step size 𝛼 according to (4.16). Then the inverse variable 𝜇 is updated according to Step 

2:(5) in Algorithm 4.5. Finally, the forward variable Ψ and adjoint variable 𝜆 are updated by 
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vanishing the first and third KKT equations in (4.20), which is equivalent to solving the forward 

and adjoint equations in the RSM-based algorithms.  

Two main advantages can be obtained by this updating scheme: 

(1) There is no stability issue. This new updating scheme inherits its stability property from 

the line-search-free BFGS method, and therefore the objective function is guaranteed to 

decrease in each inverse iteration. 

(2) Better initial guess for Ψ, 𝜇, 𝜆  for equation (4.20) is regenerated for each inverse 

iteration. After 𝜇 is updated, the new Ψ and 𝜆 are obtained by solving the forward and 

adjoint equations in RSM-based method, and therefore in equation (4.20) the first and 

third equations are very close to zero, which tends to make the overall residual of 

equation (4.20) smaller as compared to updating Ψ and 𝜆, simply with Step 2:(6)(7) in 

Algorithm 4.5. 

On the other hand, the fast convergence property of the full-space algorithm is still 

retained since the updating direction Δ𝜇 is given by solving Newton’s linear system (4.21), 

which makes use of the exact Hessian information. 

4.3.4. Full-space algorithm for PDE-constrained optimization in RTE-DOT  

The full-space algorithm for PDE-constrained optimization in RTE-DOT is summarized in 

Algorithm 4.7. As in the line-search-free BFGS algorithm, the relative tolerance for forward 

solvers in the 𝑘th iteration in Algorithm 4.7 can be adaptively set to 𝜖!,! = 𝜖! 𝑔!  to gain extra 

efficiency in CPU time.  
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Algorithm 4.7: Full-space based PDE-constrained optimization algorithm for (4.16) 
1. Given an initial guess 𝜇! , the inverse and forward relative tolerance 1 > 𝜖! > 0 , 

1 > 𝜖! > 0 and maximum iteration numbers 𝑛! and 𝑛! for inverse and forward solvers.  
2. 𝑘 = 0. 
3. Compute Ψ! = 𝐶!,!!! 𝐵  by the block BiCGStab linear solver with 𝜖!  as the relative 

tolerance, also record the residual 𝑟! ≔ 𝐶!,!Ψ! − 𝐵. 
4. for 𝑘 = 1:𝑛! 

(1) Compute 𝜆! = −𝐶!,!!! 𝑓!,! by the block BiCGStab linear solver with 𝜖! as the relative 
tolerance, also record the residual 𝑟! ≔ 𝐶!,!! 𝜆! + 𝑓!,! 

(2) Compute all the block matrices for construction of 𝐾. 
(3) Compute 𝑔! = 𝑓! + 𝐶!,!! 𝜆! and set 𝑔! = 𝑟!,𝑔! , 𝑟!

!
. 

(4) If 𝑘 = 0, set 𝜖 = 𝜖! 𝑔! . 
(5) If 𝑔! < 𝜖 then break, else continue. 
(6) Solve 𝑃!!𝐾𝑥 = 𝑃!!𝑔! with the sequential BiCGStab linear solver with 𝑛! as total 

iteration number to get 𝑥 = (~,Δ𝜇,~), where 𝑃 is given by (4.25) 
(7) Compute ΔΨ according to (4.13). 
(8) Compute a proper step size 𝛼 by solving the scalar optimization problem (4.16). 
(9) Update 𝜇!!! = 𝜇! + 𝛼Δ𝜇 and compute Ψ!!! = Ψ! + 𝛼ΔΨ 
(10) Compute Ψ!!! = 𝐶!,!!!!! 𝐵 by the block BiCGStab linear solver with 𝜖! as the relative 

tolerance and Ψ!!! as an initial guess, also record the residual 𝑟! ≔ 𝐶!,!!!Ψ!!! − 𝐵. 
5. Return 𝜇!. 

4.4. Validation and performance evaluation through numerical 
simulations 

4.4.1. Numerical phantoms and experiment settings 

For numerical simulations a 2D circular phantom and a 3D cylinder phantom are considered 

here. For the 2D phantom, 10 sources and 40 detectors are distributed with equal distance on its 

perimeter (see Fig. 4.1(a)). For the 3D phantom, 16 sources and 64 detectors are distributed into 

four rings corresponding to four different height levels (0.375cm, 1.125cm, 1.875cm, 2.625cm) 

and all the sources and detectors within the same ring are located with equal distance on a circle 

on its height level (see Fig. 4.1(b)). The refractive index of both phantoms is set to 1.4, which is 

typical for biological tissue, and the modulation frequency of light source is set to 600MHz. The 

background absorption coefficient and reduced scattering coefficient of both phantoms are set to 

0.1cm!! and 10.0cm!! respectively. The 2D phantom has 3 circular objects inside it and the 3D 
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phantom has 2 ball shape objects inside it. The geometric details on both phantoms can be found 

in Table 4.1.  

 

   
(a) (b)  

Figure 4.1: Source and detector locations for Phantom 1 and 2; (a) 2D phantom: 10 sources and 40 
detectors are uniformly distributed along the perimeter of the disk; (b) 3D phantom: 16 sources and 64 
detectors are distributed on the lateral surface of the cylinder with 4 height levels 0.375cm, 1.125cm, 
1.875cm and 2.625cm. On each level, there are 4 sources and 16 detectors distributed with equal distance. 

Table 4.1: The phantom settings of the 2D disk and 3D cylinder 

 Phantom 1 Phantom 2 
Dimension 2D 3D 
Shape Disk Cylinder 
Radius (cm) 1 1 
Height (cm) - 3 
Source number 10 16 
Detector number 40 48 
Object 1 center (-0.4, 0.3) (-0.5, 0, 1) 
Object 1 radius 0.25 0.3 
Object 2 center (0.4, 0.3) (0.5, 0, 2) 
Object 2 radius 0.25 0.3 
Object 3 center (0, -0.5) - 
Object 3 radius 0.25 - 

To test the proposed inverse solvers, extensive numerical experiments are conducted with 

the 2D and 3D phantoms. In these experiments, 12 cases of different optical properties within the 

objects are considered: the phantoms in Case 1~5 has homogeneous reduced scattering 

coefficient but objects with different absorption coefficient from the background value; the 

Object 1 Object 2

Object 3



 73 

phantoms in Case 6~10 has homogeneous absorption coefficient but objects with different 

reduced scattering coefficient from the background value; in Case 11 and Case 12 the phantoms 

has inhomogeneity in both absorption and reduced scattering coefficients. The optical properties 

for all cases are shown in Table 4.2. 

Table 4.2: Test cases for absorption coefficients reconstruction 

Case Dimension # of objects 𝜇!,! 𝜇!,! 𝜇!,! cm!!  𝜇!,!! 𝜇!,!! 𝜇!,!! cm!!  
1 2D 1   0.20 / ----- / ----- 10.0 / ----- / ----- 
2 2D 2 0.20 / ----- / 0.05 10.0 / ----- / 10.0  
3 2D 3 0.20 / 0.15 / 0.05 10.0 / 10.0 / 10.0 
4 3D 1 0.20 / ----- / ----- 10.0 / ----- / ----- 
5 3D 2 0.20 / 0.05 / ----- 10.0 / 10.0 / ----- 
6 2D 1 0.10 / ----- / ----- 20.0 / ----- / ----- 
7 2D 2 0.10 / ----- / 0.10 20.0 / ----- /   5.0  
8 2D 3 0.10 / 0.10 / 0.10 20.0 / 15.0 /   5.0 
9 3D 1 0.10 / ----- / ----- 20.0 / ----- / ----- 
10 3D 2 0.10 / 0.10 / ----- 20.0 /   5.0 / ----- 
11 2D 3 0.30 / 0.30 / 0.10 10.0 /10.0 / 15.0 
12 3D 2 0.30 / 0.10 / ----- 10.0 /  5.0 / ----- 

 

In all the numerical experiments, a forward problem is solved with very accurate stopping 

criterion 𝜖 = 10!!" to generate pseudo measurements. Then reconstructions are run with the 

pseudo measurements through the line-search-free BFGS algorithm or the full-space algorithm. 

Finally the results from the proposed inverse solver are compared with the results from the 

traditional BFGS algorithm. The RTE is discretized with the upwind finite volume discrete 

ordinates discretization as introduced in Section 3.2.1. The angular domain of both phantoms is 

discretized with 𝑆! and for spatial domain the 2D phantom is discretized with a FVM mesh with 

4117 control volumes (the element size is 0.03cm) and the 3D phantom is discretized with a 

FVM mesh with 10021 control volumes (the element size is 0.12cm). All numerical experiments 

were conducted on a PC with dual Intel Xeon CPU X5650 and 32GB physical memory. 
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4.4.2. Performance evaluation with numerical tissue models 

The correlation factor 𝑐(𝜇, 𝜇∗) and the deviation factor 𝑑 𝜇, 𝜇∗  are used to quantify the quality 

of reconstruction, where 𝜇 and 𝜇∗ are the reconstructed optical property and the ground truth 

optical property respectively. The definition of 𝑐(𝜇, 𝜇∗) and 𝑑 𝜇, 𝜇∗  is given as  

 

𝑐 𝜇, 𝜇∗ ≔
𝑉! 𝜇! − 𝜇 𝜇!∗ − 𝜇∗

!!"
!!!

𝑉!
!!"
!!! 𝜎 𝜇 𝜎 𝜇∗

𝑑 𝜇, 𝜇∗ ≔
𝑉! 𝜇! − 𝜇!∗ !!!"

!!! 𝑉!
!!"
!!!

𝜎 𝜇∗

 (4.26) 

where 𝑉!  is the volume of the 𝑖th control volume, 𝜇 and 𝜎 𝜇  are the weighted average and 

standard deviation, which are defined as  

𝜇 ≔ 𝑉!𝜇!
!!"

!!!
𝑉!

!!"

!!!
, 𝜎 𝜇 ≔ 𝑉! 𝜇! − 𝜇 !

!!"

!!!
𝑉!

!!"

!!!
 

The correlation factor 𝑐(𝜇, 𝜇∗) characterizes the correlation between the reconstructed 

and the benchmark optical property, while the deviation factor 𝑑 𝜇, 𝜇∗  describe the absolute 

discrepancy between them. The ranges of 𝑐(𝜇, 𝜇∗) and 𝑑 𝜇, 𝜇∗  are −1,1  and [0,+∞), larger 

𝑐(𝜇, 𝜇∗) and smaller 𝑑 𝜇, 𝜇∗  indicate higher quality of the reconstruction result. 

4.4.3. Reconstruction of absorption coefficient  

In this subsection, the reconstruction is conducted only on 𝜇! using phantoms (Case 1~5) with 

homogeneous reduced scattering coefficients.  

First, the 2D phantom (Case 3) is considered with one low absorbing object and two high 

absorbing objects. The absorption coefficients for these three objects are 0.2cm!!, 0.15cm!! 

and 0.05cm!! respectively. The absorption coefficient distribution is reconstructed with noise 



 75 

free measurements with the traditional BFGS, the line-search-free BFGS, and the full-space 

algorithm. To make the overall CPU time comparable, I run the line-search-free BFGS and the 

traditional BFGS algorithms for 30 iterations and the full-space algorithm for 15 iterations.  The 

reconstructed distributions of absorption coefficients are shown in Fig. 4.2 for each case. The 

results show that the line-search-free BFGS gives better quality than the other two, which yield 

similar results. 

  
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.2: Absorption coefficient distribution in the two-dimensional phantom. (a) Exact distribution; (b) 
Traditional BFGS; (c) Line-search-free BFGS; (d) Full-space algorithm 

To quantify the quality of the reconstructions, the correlation factor 𝑐 𝜇! , 𝜇!∗  and 

deviation factor 𝑑 𝜇! , 𝜇!∗  are reported in Table 4.3 for the three algorithms, where 𝜇!∗  represents 

the exact absorption distribution. As shown in Table 4.3, the line-search-free BFGS algorithm 

has highest 𝑐 𝜇! , 𝜇!∗  and lowest 𝑑 𝜇! , 𝜇!∗ , which indicates the highest reconstruction accuracy. 

The accuracy of the results from the traditional BFGS algorithm and the full-space algorithm is 

about the same. 

Table 4.3: Correlation factors and deviation factors of 𝜇! reconstruction results from the traditional and 
line-search-free BFGS algorithms on Case 3. 

Algorithm 𝑐 𝜇! , 𝜇!∗  𝑑 𝜇! , 𝜇!∗  
Traditional BFGS 0.80 0.60 
Line-search-free BFGS 0.85 0.53 
Full-space algorithm 0.80 0.60 

The convergence behavior of the traditional BFGS, the line-search-free BFGS and the 

full-space algorithm for this case are shown in Fig. 4.3, where the relative change in the 
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objective function value is plotted over iterations and CPU time, as well as the required iteration 

number and CPU time taken to decrease the relative objective function to certain tolerance 

levels. BFGS1 and BFGS2 are used to represent the traditional BFGS and the line-search-free 

BFGS respectively. It can be observed that the line-search-free BFGS algorithm is more efficient 

than the traditional BFGS algorithm both in terms of iteration number and CPU time. The full-

space algorithm shows fastest convergence with respect to the iteration number and its objective 

value drops significantly faster than the other two algorithms at the early stage of iterations. 

However, in terms of CPU time, the full-space method converges about at the same rate as the 

traditional BFGS algorithm since each inverse iteration in the full-space algorithm is 

computationally more expensive than in the BFGS type algorithms. In other words, to reduce the 

relative objective function value to 10!!, the full-space requires about 65% fewer iterations than 

the traditional BFGS algorithm and 45% fewer iterations than the line-search-free BFGS 

algorithm according to Fig. 4.3(c), while the line-search-free BFGS algorithm requires about 

40% less CPU time than the other two algorithms according to Fig. 4.3(d). 

The next example for absorption coefficient reconstruction is Case 5, in which 𝜇! is 

reconstructed for a 3D cylinder phantom with high absorbing object and low absorbing object. 

The absorption coefficients for the two ball-shape objects are 0.20cm!! and 0.05cm!! 

respectively. As before, the reconstruction is conducted with noise free measurement. To make 

the overall CPU time comparable, the line-search-free BFGS and the traditional BFGS 

algorithms are run for 50 iterations and the full-space algorithm for 20 iterations. The cross 

sections of the reconstructed absorption distribution are shown in Fig. 4.4. It can be seen from 

the results that the line-search-free BFGS algorithm produces the highest resolution around the 

objects as well as the best contrast between the objects and the background. The traditional 
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BFGS algorithm generates the second best reconstruction result. The correlation and deviation 

factors are reported in Table 4.4 for the reconstruction results from all three algorithms. 

 
                                                (a)                                                                                        (b) 

 
                                                (c)                                                                                        (d) 

Figure 4.3: Performance profile of the traditional BFGS (BFGS1), the line-search-free BFGS (BFGS2) 
and the full-space algorithm: (a, b) Relative function value over iteration number and CPU time; (c, d) 
Required iteration number and CPU time to converge the objective function value to certain levels.   

Table 4.4: Correlation factors and deviation factors of 𝜇! reconstruction results from the traditional and 
line-search-free BFGS algorithms on Case 5. 

Algorithm 𝑐 𝜇! , 𝜇!∗  𝑑 𝜇! , 𝜇!∗  
Traditional BFGS 0.74 0.67 
Line-search-free BFGS 0.79 0.62 
Full-space algorithm 0.69 0.73 
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(a1) 

 
(b1) 

 
(c1) 

 
(d1) 

  
(a2) 

 
(b2) 

 
(c2) 

 
(d2) 

 

 
(a3) 

 
(b3) 

 
(c3) 

 
(d3) 

Figure 4.4: Absorption coefficient distribution in cross section 𝑥 = 0 (Row 1), 𝑧 = 1 (Row 2) and 𝑧 = 2 
(Row 3) of the three-dimensional phantom: (a1,2,3) Exact distribution; (b1,2,3) Traditional BFGS; 
(c1,2,3) Line-search-free BFGS; (d1,2,3) Full-space algorithm. 

The convergence history of the traditional BFGS, the line-search-free BFGS, and the full-

space algorithm in this case are shown in Fig. 4.5. The relative change of the objective function 

value is plotted over iterations and CPU time, as well as the required iteration number and CPU 

time taken to decrease the relative objective function to certain tolerance levels in Fig. 4.5 

(a)(b)(c)(d), respectively. As shown in Fig. 4.5, the line-search-free BFGS algorithm is more 

efficient than the traditional BFGS algorithm both with respect to the iteration number and CPU 

time. According to Fig. 4.5(a), the objective value reduction in the full-space algorithm is 

significantly larger in the first iteration than the other two methods, but the efficiency of the full-

µ
a
[c
m

�
1
]



 79 

space method significantly deteriorates with increasing the iteration number. Fig. 4.5(b) shows 

the full-space method in this case is the least efficient algorithm out of the three in terms of CPU 

time, while the line-search-free BFGS is the most efficient one. Fig. 4.5(c)(d) shows that the full-

space algorithm and the line-search-free BFGS algorithm require about 30%~40% fewer 

iterations than the traditional BFGS algorithm to reach the relative objective function value of 

10!!.!, while the line-search-free BFGS algorithm takes about 25% less CPU time than the 

traditional BFGS algorithm and over 50% less CPU time than the full-space algorithm. 

 
                                                (a)                                                                                        (b) 

 
                                                (c)                                                                                        (d) 

Figure 4.5: Performance profile of the traditional BFGS (BFGS1), the line-search-free BFGS (BFGS2) 
and the full-space algorithm: (a,b) Relative function value over iteration number and CPU time; (c,d) 
Required iteration number and CPU time to converge the objective function value to certain levels. 

The correlation and deviation factors on the reconstructed absorption coefficient are 

given in Table 4.5 for all methods tested. With the BFGS type methods, 30 iterations are run for 

the 2D phantom and 50 iterations for the 3D phantom, while with the full-space algorithm, 15 

iterations are taken for the 2D phantom and 20 iterations for the 3D phantom. Thus as shown in 
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Fig. 4.3 and 4.5, the overall CPU time for the full-space algorithm is longer than or comparable 

to the CPU time for the other two algorithms. The correlation factors are denoted by 𝑐!, 𝑐!, 𝑐! 

and the deviation factors by 𝑑!,𝑑!,𝑑! to compare the accuracy between the traditional BFGS, 

the line-search-free BFGS, and the full-space algorithm. As shown in Table 4.5, the line-search-

free BFGS always gives the best results to the 𝜇! reconstruction with highest correlation factor 

and lowest deviation factor. The comparison between the traditional BFGS and the full-space 

algorithm depends on the dimensionality of the phantom. The correlation and deviation factors 

for the 2D reconstructions are very close for both algorithms, while for the 3D phantoms the 

traditional BFGS algorithm outperforms the full-space algorithm in both accuracy metrics. 

Table 4.5: Correlation factors and deviation factors of 𝜇!  reconstruction results from the 
traditional BFGS, the line-search-free BFGS and the full-space algorithm on Case 1~5. 

Case 𝑐! 𝑐! 𝑐!  𝑑! 𝑑! 𝑑! 
1 0.80 / 0.85 / 0.80 0.60 / 0.53 / 0.60 
2 0.81 / 0.86 / 0.82 0.58 / 0.51 / 0.57 
3 0.80 / 0.85 / 0.80 0.60 / 0.53 / 0.60 
4 0.74 / 0.78 / 0.69 0.67 / 0.62 / 0.73 
5 0.74 / 0.79 / 0.69 0.67 / 0.62 / 0.73 

4.4.4. Reconstruction of reduced scattering coefficient  

In this subsection, the numerical simulations are conducted on the reconstruction of the reduced 

scattering coefficient using phantoms (Case 6~10) with the homogeneous absorption coefficient. 

A 2D phantom is reconsidered here with two low scattering objects and one high 

scattering object. The reduced scattering coefficients of these three objects are 1cm!!, 5cm!! 

and 20cm!! respectively. The distribution of 𝜇!!  is reconstructed with noise free measurements. 

For comparison, both the line-search-free BFGS and the traditional BFGS algorithms are run for 

30 iterations, and the full-space algorithm for 15 iterations. The reconstructed 𝜇!!  distribution is 

shown in Fig. 4.6. The reconstructions of the two low scattering objects as shown in figures are 

similar for all the methods, while the line-search-free BFGS algorithm reconstructs the high 
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scattering object more accurately. The correlation factor and deviation factor are reported in 

Table 4.6 for all the reconstruction results for this case. As expected, the line-search-free BFGS 

algorithm has the highest 𝑐 𝜇!! , 𝜇!!∗  and lowest 𝑑 𝜇!! , 𝜇!!∗  out of the three, and the traditional 

BFGS method is slightly more accurate than the full-space algorithm.  

  
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4.6: Reduced scattering coefficient distribution in the two-dimensional phantom. (a) Exact 
distribution; (b) Traditional BFGS; (c) Line-search-free BFGS; (d) Full-space algorithm.  

Table 4.6: Correlation factors and deviation factors of 𝜇!!  reconstruction results from the traditional 
BFGS, the line-search-free BFGS and the full-space algorithm on Case 8. 

Algorithm 𝑐 𝜇!! , 𝜇!!∗  𝑑 𝜇!! , 𝜇!!∗  
Traditional BFGS 0.85 0.52 
Line-search-free BFGS 0.87 0.50 
Full-space algorithm 0.84 0.55 

 
The comparison in the convergence rate between all the three algorithms is shown in Fig. 

4.7, in which the relative objective function values are plotted over iterations and CPU time, the 

required iteration number and CPU time. Fig. 4.7 shows that the line-search-free BFGS is only 

slightly more efficient than the traditional BFGS algorithm both in terms of the iteration number 

and CPU time. The full-space algorithm has much slower convergence with respect to CPU time 

than the other two. For instance, to reduce the objective function value to 10!!.! and 10!!, the 

full-space algorithm requires about 100% and 200% CPU time than the other two algorithms. On 

the other hand, the full-space algorithm shows a dramatic decrease in the objective function 

value for the first 5 iterations but significantly slows down after the first 5 iterations. This can be 

observed in Fig. 4.7(c) as well: compared to the line-search-free BFGS algorithm, the full-space 
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algorithm requires about 45% fewer iterations to reduce the objective function to 10!!, while the 

algorithm exhibits slow convergence to 10!!.  

 
                                                (a)                                                                                        (b) 

 
                                                (c)                                                                                        (d) 

Figure 4.7: Performance profile of the traditional BFGS (BFGS1), the line-search-free BFGS (BFGS2) 
and the full-space algorithm: (a,b) Relative function value over iteration number and CPU time; (c,d) 
Required iteration number and CPU time to converge the objective function value to certain levels.  

Next the numerical experiments are performed on the 3D phantom with homogeneous 

absorption coefficient (Case 10). A high scattering object and a low scattering object are located 

in the phantom, with reduced scattering coefficient as 20cm!! and 5cm!!. The reconstruction is 

conducted with noise free measurements. For comparison, the line-search-free BFGS and the 

traditional BFGS algorithms are run for 50 iterations and the full-space algorithm for 20 

iterations. Three cross sections of the reconstructed 𝜇!!  distribution are shown in Fig. 4.8. In this 

case, the reconstruction quality of the low scattering object is very similar for all the three 

algorithms. However, the high scattering object is reconstructed less accurately by the full-space 

algorithm than the other two. No significant difference is observed in Fig. 4.8 between the 
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reconstruction results from the traditional BFGS and the line-search-free BFGS algorithm. The 

correlation and deviation factors for 𝜇!!  reconstruction are given in Table 4.7 for all the three 

methods. The results show that the line-search-free BFGS algorithm is of highest accuracy, and 

the traditional BFGS algorithm is almost as accurate as the line-search-free BFGS algorithm. The 

reconstruction accuracy of the full-space algorithm is significantly lower than the other two.  

  
 

 
(a1) 

 
(b1) 

 
(c1) 

 
(d1) 

  
(a2) 

 
(b2) 

 
(c2) 

 
(d2) 

 

 
(a3) 

 
(b3) 

 
(c3) 

 
(d3) 

Figure 4.8: Reduced scattering coefficient distribution in cross section 𝑥 = 0 (Row 1), 𝑧 = 1 (Row 2) and 
𝑧 = 2 (Row 3) of the three-dimensional phantom: (a1,2,3) Exact distribution; (b1,2,3) Traditional BFGS; 
(c1,2,3) Line-search-free BFGS; (d1,2,3) Full-space algorithm.  

The convergence behavior is shown in Fig. 4.9 for the traditional BFGS, the line-search-

free BFGS and the full-space algorithm. The traditional BFGS and the line-search-free BFGS in 

this case have very similar convergence properties as shown in both Fig. 4.9(a) and Fig. 4.9(b), 
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where the line-search-free BFGS is slightly more efficient than the others in terms of both 

iteration number and CPU time. The full-space algorithm does not show any advantage over the 

BFGS type algorithms for this case. 

Table 4.7: Correlation factors and deviation factors of 𝜇!!  reconstruction results from the traditional 
BFGS, the line-search-free BFGS and the full-space algorithm on Case 10. 

Algorithm 𝑐 𝜇!! , 𝜇!!∗  𝑑 𝜇!! , 𝜇!!∗  
Traditional BFGS 0.75 0.67 
Line-search-free BFGS 0.76 0.66 
Full-space algorithm 0.67 0.76 

 

 
                                                (a)                                                                                        (b) 

 
                                                (c)                                                                                        (d) 

Figure 4.9: Performance profile of the traditional BFGS (BFGS1), the line-search-free BFGS (BFGS2) 
and the full-space algorithm: (a,b) Relative function value over iteration number and CPU time; (c,d) 
Required iteration number and CPU time to converge the objective function value to certain levels. 

The correlation factors and deviation factors on the scattering coefficient reconstructions 

are reported in Table 4.8 for both methods on Case 6~10. With the BFGS type methods, 30 

iterations are taken for the 2D phantom and 50 iterations for the 3D phantom. With the full-space 

algorithm, 15 iterations are run for the 2D phantom and 20 iterations for the 3D phantom. As 
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shown in Fig. 4.7 and 4.9, the overall CPU time for the BFGS type methods is less than or 

comparable to it in the full-space algorithm. In Table 4.8, 𝑐!, 𝑐!, 𝑐! are used to denote the 

correlation factors and 𝑑!,𝑑!,𝑑! are used to denote the deviation factors for the results from the 

traditional BFGS, the line-search-free BFGS, and the full-space algorithm, for the comparison 

purpose. Table 4.8 shows the most accurate reconstruction results of 𝜇!!  are from the line-search-

free BFGS, which have the highest correlation factors and the lowest deviation factors. The 𝜇!!  

reconstruction results from the traditional BFGS are slightly less accurate than them from the 

line-search-free BFGS algorithm but the difference is insignificant. The comparison between 

BFGS type algorithms and the full-space algorithm’s performance highly depends on the 

dimensionality of the experimental phantom: for 2D phantoms, their accuracies are very close, 

while with the 3D phantoms, the accuracy of the full-space algorithm is significantly lower than 

the BFGS type algorithms.  

Table 4.8: Correlation factors and deviation factors of 𝜇!!  reconstruction results from the traditional 
BFGS, the line-search-free BFGS and the full-space algorithm on Case 6~10. 

Case 𝑐! 𝑐! 𝑐!  𝑑! 𝑑! 𝑑! 
6 0.87 / 0.88 / 0.87 0.48 / 0.47 / 0.50 
7 0.85 / 0.87 / 0.83 0.53 / 0.50 / 0.57 
8 0.85 / 0.87 / 0.84 0.53 / 0.50 / 0.55 
9 0.80 / 0.81 / 0.74 0.60 / 0.58 / 0.68 
10 0.75 / 0.76 / 0.67 0.67 / 0.66 / 0.76 

4.4.5. Reconstruction of both absorption and reduced scattering coefficients 

In this subsection, Case 11 and Case 12 are considered with the reconstruction of both the 

absorption coefficient and the reduced scattering coefficient. 

The 2D phantom (Case 11) with three objects is considered first. The absorption 

coefficients for these objects are 0.3cm!! , 0.3cm!!  and 0.1cm!! , while the scattering 

coefficients are 10cm!!, 10cm!! and 15cm!! respectively. The absorption coefficient 𝜇! and 
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the reduced scattering coefficient 𝜇!!  are reconstructed with noise free measurements. For 

comparison, the line-search-free BFGS and the traditional BFGS algorithms are taken for 50 

iterations and the full-space algorithm for 20 iterations, the reconstructed 𝜇! and 𝜇!!  are shown in 

Fig. 4.10. For reconstructions of 𝜇!, three high absorbing regions can be seen in the results from 

all the three algorithms, with two corresponding to the high absorbing objects and one 

corresponding to the cross-talk from the high scattering object. With the line-search-free BFGS 

algorithm, 𝜇! of two high absorbing objects are reconstructed most accurately compared to the 

benchmark and the least cross-talk out of the three.  The traditional BFGS algorithm has the 

second best result on the 𝜇! reconstruction. For the full-space method, the two high absorbing 

objects are not clearly separated and their absorption coefficients are highly undervalued. For the 

reconstruction of 𝜇!! , the line-search-free BFGS algorithm has the best contrast to the background 

value and the traditional BFGS algorithm has the second best reconstruction result, while the 

full-space algorithm again highly underestimates the 𝜇!!  in the high scattering object. 

  
(a1) 

 
(b1) 

 
(c1) 

 
(d1) 

  
(a2) 

 
(b2) 

 
(c2) 

 
(d2) 

Figure 4.10: (Top) 𝜇!  and (bottom) 𝜇!!  distribution in the two dimensional phantom. (a1,2) Exact 
distribution; (b1,2) Traditional BFGS; (c1,2) Line-search-free BFGS; (d1,2) Full-space algorithm 
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To conduct quality comparison between three algorithms, their correlation factors and 

deviation factors on 𝜇! and 𝜇!!  reconstruction are given in Table 4.9. The line-search-free BFGS 

algorithm is shown to have highest correlation and lowest deviation factors of the three. The 

correlation factor and deviation factor from the traditional BFGS algorithm, which is the second 

most accurate algorithm in this case, are significantly higher than those from the full-space 

algorithm. 

Table 4.9: Correlation factors and deviation factors of 𝜇!  and 𝜇!!  reconstruction results from the 
traditional BFGS, the line-search-free BFGS and the full-space algorithm on Case 11. 

Algorithm 𝑐 𝜇! , 𝜇!∗  𝑑 𝜇! , 𝜇!∗  𝑐 𝜇!! , 𝜇!!∗  𝑑 𝜇!! , 𝜇!!∗  
Traditional BFGS 0.67 0.74 0.81 0.60 
Line-search-free BFGS 0.77 0.65 0.87 0.51 
Full-space algorithm 0.63 0.78 0.71 0.74 

The convergence characteristics on Case 11 is examined and reported in Fig. 4.11 for the 

traditional BFGS, the line-search-free BFGS and the full-space algorithm. It is observed that the 

full-space algorithm has the lowest objective function value for the first 5 iterations, and the line-

search-free BFGS method takes the lowest thereafter. Therefore, the line-search-free BFGS and 

the full-space algorithm require the same number of iterations, which is about 30% less than the 

traditional BFGS algorithm, to reduce the relative objective function to 10!!. In terms of CPU 

time, the line-search-free BFGS algorithm is the most efficient out of the three, while the full-

space algorithm is the most time consuming one. To reduce the objective function value to 10!! 

and 10!!, the line-search-free BFGS requires about 30% and 40% less CPU time than the 

traditional BFGS algorithm respectively, and both BFGS algorithms are several time faster than 

the full-space algorithm.  
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                                                (a)                                                                                        (b) 

 
                                                (c)                                                                                        (d) 

Figure 4.11: Performance profile of the traditional BFGS (BFGS1), the line-search-free BFGS (BFGS2) 
and the full-space algorithm: (a,b) Relative function value over iteration number and CPU time; (c,d) 
Required iteration number and CPU time to converge the objective function value to certain levels. 

Next the 3D phantom (Case 12) is considered that contains a ball shape high absorbing 

object with 𝜇! = 0.3cm!! and a ball shape low scattering object with 𝜇!! = 5cm!!. Therefore, 

both objects are in the transport regime. The absorption coefficient 𝜇! and the reduced scattering 

coefficient 𝜇!!  are reconstructed with the traditional BFGS, the line-search-free and the full-space 

algorithm. BFGS type algorithms are run for 70 iterations and the full-space method for 25 

iterations in order to guarantee comparable CPU time. Three cross sections of 𝜇!  and 𝜇!!  

reconstruction results are shown in Fig. 4.12 and Fig. 4.13 respectively. From the first two rows 

in Fig. 4.12, one can observe that 𝜇! of the object is more accurately reconstructed with the line-

search-free BFGS algorithm. Moreover, artifacts due to crosstalk are least in the line-search-free 

BFGS algorithm according to Row 1 and 3 in Fig. 4.12. For the 𝜇!!  reconstruction, the 𝜇!!  

reconstruction by the line-search-free BFGS algorithm has the most accurate size and scattering 
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coefficient for the low scattering object as shown in the first and the third row of Fig. 4.13. The 

traditional BFGS is the second most accurate one in both 𝜇! and 𝜇!!  reconstructions. 
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Figure 4.12: Absorption coefficient distribution in cross section 𝑥 = 0 (Row 1), 𝑧 = 1 (Row 2) and 𝑧 = 2 
(Row 3) of the three-dimensional phantom: (a1,2,3) Exact distribution; (b1,2,3) Traditional BFGS; 
(c1,2,3) Line-search-free BFGS; (d1,2,3) Full-space algorithm.  

The correlation and deviation factors for both 𝜇!  and 𝜇!!  reconstruction results are 

computed and reported in Table 4.10 for all algorithms. As expected, the line-search-free BFGS 

algorithm outperforms the other two algorithms in all the accuracy metrics. The traditional BFGS 

algorithm ranks the second in accuracy and the full-space algorithm ranks the last.  
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Figure 4.13: Absorption coefficient distribution in cross section 𝑥 = 0 (Row 1), 𝑧 = 1 (Row 2) and 𝑧 = 2 
(Row 3) of the three-dimensional phantom: (a1,2,3) Exact distribution; (b1,2,3) Traditional BFGS; 
(c1,2,3) Line-search-free BFGS; (d1,2,3) Full-space algorithm. 

Table 4.10: Correlation factors and deviation factors of 𝜇!  and 𝜇!!  reconstruction results from the 
traditional and line-search-free BFGS algorithms on Case 12. 

Algorithm 𝑐 𝜇! , 𝜇!∗  𝑑 𝜇! , 𝜇!∗  𝑐 𝜇!! , 𝜇!!∗  𝑑 𝜇!! , 𝜇!!∗  
Traditional BFGS 0.43 1.05 0.78 0.63 
Line-search-free BFGS 0.48 0.99 0.80 0.59 
Full-space algorithm 0.38 1.09 0.68 0.73 

 
The convergence property of the traditional BFGS, the line-search-free BFGS and the 

full-space algorithm are examined and reported in Fig. 4.14, which shows the relative objective 

function values with respect to iterations and CPU time, and required iteration number and CPU 

time to decrease the objective function to some certain levels. Fig. 4.14(b) shows that in terms of 
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CPU time the line-search-free BFGS reduces the objective function with the fastest speed, while 

the full-space algorithm is the slowest. According to Fig. 4.14(d), the line-search-free BFGS 

algorithm requires about 30% and 65% less CPU time than the traditional BFGS and the full-

space algorithm to reduce the objective function value to 10!!. In terms of iteration number, the 

objective value in the full-space algorithm decreases faster than the other two algorithms at the 

very early stage. However, its convergence speed drops down quickly with growing iteration 

number. Therefore the objective function value in the full-space algorithm becomes larger than 

the line-search-free BFGS and the traditional BFGS algorithm after 10 and 15 iterations 

respectively.  

 
                                                (a)                                                                                        (b) 

 
                                                (c)                                                                                        (d) 

Figure 4.14: Performance profile of the traditional BFGS (BFGS1), the line-search-free BFGS (BFGS2) 
and the full-space algorithm: (a,b) Relative function value over iteration number and CPU time; (c,d) 
Required iteration number and CPU time to converge the objective function value to certain levels.  
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4.4.6. Influence of noise 

In the previous numerical experiments, it is assumed the measurements are noise free and no 

regularization is conducted on the optimization problem. However, actual measurements are 

contaminated with noise, which will affect the accuracy of the reconstruction result. Therefore, 

in this section the effects of noise on the traditional BFGS, the line-search-free BFGS, and the 

full-space algorithm is examined by varying the SNR from the infinity (noise free) to 20dB and 

15dB, with the later two representing the typical noise levels in DOT [126]. The regularization 

function 𝑅 𝜇  is employed in this case, which is given by 

 𝑅 𝜇 = 𝜇! − 0.1 !/10. (4.27) 

The relative tolerance 𝜖 is set to 10!! as the stopping criteria for the traditional BFGS (BFGS1), 

the line-search-free BFGS (BFGS2), and the full-space algorithm. The correlation factor, 

deviation factor, iteration number and CPU time for different SNR level are evaluated and 

reported in Table 4.11 for the three algorithms tested.  

Table 4.11: The reconstruction quality and the CPU time with the traditional and the line-search-free 
BFGS algorithms for different noise levels. 

 SNR BFGS1 BFGS2 Full-space 

𝑐 𝜇! , 𝜇!∗   
Noise free 0.66 0.66 0.66 
20dB 0.57 0.57 0.57 
15dB 0.44 0.44 0.44 

𝑑 𝜇! , 𝜇!∗   
Noise free 0.78 0.78 0.78 
20dB 0.87 0.87 0.86 
15dB 1.28 1.28 1.28 

CPU time (s) 
Noise free 1343 799 1596 
20dB 1243 937 1943 
15dB 1220 791 1920 

Iteration number 
Noise free 12 9 5 
20dB 13 10 6 
15dB 13 9 6 
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As expected, higher noise level leads to lower correlation factor and higher deviation 

factor, which indicates the lower reconstruction quality. With the same optimization formulation 

and stopping criteria, 𝑐 𝜇! , 𝜇!∗ s and 𝑑 𝜇! , 𝜇!∗ s are approximately the same for all algorithms. 

The full-space algorithm requires the fewest iterations but the most CPU time to converge while 

the line-search-free BFGS algorithm needs the second fewest iterations and the least CPU time 

for convergence.  With the traditional BFGS algorithm as a benchmark, the line-search-free 

BFGS requires about 25% fewer iterations and 25% ~ 40% less CPU time, while the full-space 

algorithm requires about 55% fewer iterations but 20% ~ 55% more CPU time to meet the same 

stopping criteria.  

 

Figure 4.15: Absorption coefficient distribution in the two-dimensional phantom reconstructed with SNR 
level +∞ (Row 1), 20dB (Row 2), 15dB (Row 3) by different algorithms. (a1,2,3) Traditional BFGS; (b) 
Line-search-free BFGS; (c) Full-space algorithm. 
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The reconstruction results of the traditional BFGS, the line-search-free BFGS, and the 

full-space algorithm with different SNR level are shown in Fig. 4.15. With the same noise level, 

no visible difference is found between reconstruction results from different methods, which 

indicate that these three algorithm converges to the same point with the same optimization 

formulation, measurements and initial guess used as inputs.  

4.4.7. Influence of the initial guess 

In all the previous experiments, the background optical properties are used as an initial guess to 

the reconstructions. However, this background optical property may not be known a priori  in 

practice. Thus there can be some mismatch between the true background optical property and the 

initial guess value used, which has significant impacts on the reconstruction quality. Therefore, 

the effect of the biased initial guess on the reconstruction results is investigated in this section. 

For this study the Case 2 is revisited again. The initial guess 𝜇! is set to the exact 

background value 0.1cm!!  and 0.08cm!!  ,  0.12cm!!   respectively in three trials, with the later 

two 20% lower and higher than the exact 𝜇!. The regularization term is given as (4.27), and the 

stopping criteria is set to 𝜖 = 10!!  for both traditional BFGS and line-search-free BFGS 

algorithms. The correlation factor, deviation factor, iteration number and CPU time for different 

initial guess 𝜇! are reported in Table 4.12 for two algorithms.  

In Table 4.12 we can observe that with the exact initial guess, the deviation factor of the 

reconstruction result is significantly lower but the correlation factor is just slightly lower than the 

other two. That means the optical property may be undervalued or overvalued but its general 

trend can be reconstructed in the reconstruction results. The line-search-free BFGS algorithm 

converges the fastest with respect the CPU time, while the full-space algorithm requires the 

fewest iteration number to reach the stopping criteria. 



 95 

Table 4.12: The reconstruction quality and the CPU time with the traditional and the line-search-free 
BFGS algorithms for different initial guess.  

 Initial guess BFGS1 BFGS2 Full-space 

𝑐 𝜇! , 𝜇!∗   
Exact 0.66 0.66 0.66 
20% higher 0.64 0.64 0.64 
20% lower 0.60 0.60 0.60 

𝑑 𝜇! , 𝜇!∗   
Exact 0.78 0.78 0.78 
20% higher 1.00 1.00 1.00 
20% lower 0.98 0.98 0.98 

CPU time (s) 
Exact 1343 799 1596 
20% higher 1218 768 982 
20% lower 974 565 1307 

Iteration number 
Exact 12 9 5 
20% higher 12 8 3 
20% lower 10 7 4 

 
  

 

Figure 4.16: Absorption coefficient distribution in the two-dimensional phantom reconstructed with initial 
guess equal to (Row 1), 20% higher than (Row 2) and 20% lower than the background value by different 
algorithms. (a1,2,3) Traditional BFGS; (b) Line-search-free BFGS; (c) Full-space algorithm.  
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The reconstruction results of the traditional BFGS, the line-search-free BFGS and the 

full-space algorithm with different initial guess are shown in Fig. 4.15. In all the three trials, the 

high absorbing and low absorbing areas are successfully reconstructed, which shows the 

robustness of the proposed algorithms. However, with higher initial guess 𝜇!, some sparse low 

absorption noise can be found in the reconstruction results and vise versa. This can be explained 

by the effect of the regularization term. For instance, if one regularizes the objective function 

with the higher initial guess, then the reconstruction will tend to generate locally low absorption 

noise with lower 𝑅 𝜇  in the background to correct for the mismatch between the initial guess 

and the actual background optical property. There is no noticeable difference in the 

reconstructions from different algorithms in this case, which again shows that with the same 

optimization formulation, initial guess and stopping criteria, all three algorithms gives the same 

results. 

4.5. Discussion 

In his chapter, I presented the line-search-free BFGS algorithm and the first full-space algorithm 

for RTE-base DOT in this chapter. In the line-search-free BFGS algorithm, the image 

reconstruction in DOT is formulated as an unconstrained optimization problem. A BFGS 

algorithm is then used to find the descent direction Δ𝜇 for the inverse variables 𝜇. Instead of 

conducting a line search process to find a proper step size 𝛼, I use the first order Taylor 

approximation to the forward RTE to derive the change ΔΨ  of the forward variables Ψ 

corresponding to Δ𝜇. Finally an optimization problem is solved to obtain 𝛼 with the original 

objective function as the merit function. This optimization has only one scalar variable 𝛼 and the 

function it minimizes often has a very straightforward form. Therefore, one can expect very low 

computational costs. The line-search-free BFGS algorithm has two main advantages: Firstly, one 
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can obtain the step size by solving an optimization problem. The determined step size 𝛼 is 

approximately the optimal step size, with which the objective function decreases the most. 

Secondly, the proposed line-search-free BFGS algorithm does not need extra objective function 

evaluations from the line search process, which requires solving forward problems in the 

traditional BFGS algorithm. Therefore, one can expect higher efficiency of the line-search-free 

BFGS algorithm in term of both iteration number and CPU time as compared to the traditional 

BFGS algorithm. 

I also developed the first full-space algorithm for RTE-DOT. In this algorithm, the RTE-

DOT is formulated as a constrained optimization problem. The Lagrangian multiplier method is 

applied in order to get the first order KKT condition, which is later solved with Newton’s 

method with a left preconditioned BiCGStab linear solver. Due to the high ill-posedness in the 

DOT problem, only the component corresponding to the inverse variables 𝜇 is retained as a 

descent direction after the KKT condition is solved to avoid the instability issue. This is different 

from all existing full-space algorithms, which use all the components to update the forward, 

inverse, and adjoint variables. Since the full Hessian is used to update the descent direction, 

higher convergence rate can be expected, which lead to fewer iterations in the image 

reconstruction process. 

Both algorithms are validated and their performances are evaluated with traditional 

BFGS, the state of art algorithm in unconstrained optimization, as a benchmark. The numerical 

experiments show the line-search-free BFGS is more efficient than the traditional BFGS 

algorithm in terms of both iteration number and CPU time. For instance, to reduce the relative 

objective function value to 10!! with the noise free measurements, the line-search-free BFGS 

algorithm requires 10% ~ 40% fewer iterations and 10% ~ 40% less computational time than the 
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traditional BFGS algorithm, depending on the problem. For the full-space algorithm, its 

objective value with respect to iteration number usually decreases much faster than the 

traditional BFGS algorithm at the early stage; however on the other hand, each inverse iteration 

is much more time consuming than in the traditional BFGS algorithm. Therefore, its CPU time is 

usually longer than the traditional BFGS to meet a certain criterion, though the required iteration 

number in most of the time is less. It is also observed that the efficiency of the full-space 

algorithm drops quickly with growing iteration number. This is because any preconditioning was 

not conducted on the Hessian matrix 𝑊 corresponding to the inverse variable 𝜇. Therefore the 

improvement of the condition number in the KKT system is limited, which makes it difficult to 

solve, especially when 𝜇 is close to the optimal solution. It still remains as a challenging topic 

and future work on how to precondition the Hessian matrix 𝑊 in RTE-DOT. One can expect 

significant efficiency boost of the full-space algorithm in RTE-DOT if one can find a proper 

preconditioner for 𝑊. 

The robustness of the proposed line-search-free BFGS algorithm and the full-space 

algorithm were tested by running reconstructions with noise-contaminated measurements and 

different initial guess. A very strong agreement in the results was observed between the 

traditional BFGS algorithm, the line-search-free BFGS algorithm and the full-space algorithm, 

which shows that the second two algorithms are reliable and robust to noise and biased initial 

guess. 

Due to the high efficiency in CPU time, the line-search-free BFGS algorithm is 

recommended for the RTE-DOT. 
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Chapter 5.  Measurement Operators for general Non-
contact DOT Systems  

5.1. Introduction 

Imaging systems for RTE-DOT have long relied on bringing and collecting light to the tissue 

of interest through optical fibers. These fibers are typically in contact with the tissue [127-

129]. This has often limited the number of detectors, which highly restricts the resolution of the 

reconstructed image in RTE-DOT. Furthermore, the fibers need to be rearranged according to the 

geometry of the object for every different experiment, which brings lots of inconvenience and 

may introduce very strong noise if any fiber does not well contact the tissue surface. 

To overcome these disadvantages, non-contact measurements that involve so-called 

charged-coupled-device (CCD) or complementary metal–oxide–semiconductor (CMOS) cameras 

have been explored in recent years. These approaches have shown significant advantages in 

detection sensitivity, image quality and system simplicity [130-132]. In non-contact imaging a 

way to model photon transport in free space is required, in addition to a model for light 

propagation inside tissue. All proposed numerical algorithms [133, 134] to simulate the light 

propagation in tissue are very computationally expensive for photon-transport process in free 

space. Monte-Carlo simulation [135-137], as a universal method, can handle this problem. 

However to obtain a reasonable result, a large number of photons is needed for the simulations, 

which leads to a relatively low efficiency. To overcome this problem, Ripoll et al proposed an 

efficient free-space light transport model [11] that does not employ statistical MC methods. 

Instead they compute an integral of light intensity for every point on the focal plane over the 

directions that can lead the photon to the aperture through that point. Based on this model, 

Schulz et al. proposed a simplified model [130] using perspective projection method by replacing 
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the camera lens with a virtual pinhole. In 2009 and 2010, X. Chen et al. published two improved 

models [138, 139] that are based on the hybrid radiosity-radiance theorem. The influence of the 

camera lens was analyzed with the thin lens assumption in both models. In addition, in one of the 

models, the influence of the camera lens diaphragm was taken into account. 

Yet, all existing models so far still have two major limitations. First, they do not fully 

consider the angular dependency of the light intensity in the model so they only work in the limit 

of the diffusion equation (DE). Second, they do not take additional optical elements that are 

typically used into account. To gather more information of the surface light intensity distribution, 

an optical system, such as mirrors system or lens group, is often placed between the object and 

the CCD camera. Lack of consideration of such cases also limits the applications of the 

aforementioned researches in practice. 

To overcome these problems, a back ray-tracing model is proposed to simulate the 

photon transport process in free-space. In this model, the pseudo photons are shot from the CCD 

chip and transported back to the object’s surface. In this way a mapping is established between 

the angular dependent photons on the surface of the object and those on the detector of CCD 

camera. Then a coordinate transformation is applied to convert the integral over the solid angle 

on the object surface to an integral over solid angle on the CCD chip. The determinant of the 

transformation Jacobian matrix is estimated with the perturbation method. With this model, the 

contribution of photons from different surface locations and directions to signals received on the 

CCD camera can be expressed as an linear operator, which is required for formulating the 

optimization problem in DOT. The proposed model fully considers the angular dependency of 

intensity, and thus can be applied in RTE-DOT, which provides higher accuracy in many cases. 

Moreover, this proposed model could handle photon transport problems with a generalized 
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optical system between the object and the CCD camera to collect more signals, which is often 

limited by the size of aperture. That can highly improve the performance in receiving photons 

from more perspectives. Thus it is reasonable to expect a better performance and more reliable 

result in non-contact DOT with this proposed model.  

The remainder of the chapter is organized as follows. The detailed derivation of the novel 

backward ray-tracing algorithm is given in Section 5.2. Then this model is validated with 

numerical experiments and reconstruction results in Section 5.3. This chapter finally concludes 

with a discussion in Section 5.4.  

5.2. Theory and methods 

5.2.1. Surface radiation coordinate system 

According to the knowledge of surface radiation theory [140], once the radiative light intensity 

distribution 𝜓(𝒓, 𝒔) [W/mm!/sr] in an object 𝑂 has been already given, the total emission 

power of 𝑃!"#$ [W] on a small area Γ on its surface 𝜕𝑂 can be given by 

 𝑃!"#$ 𝛤 = 𝜓 𝒓, 𝒔 1− 𝑅 𝒔 ⋅ 𝒏 𝒓
!!

𝒔 ⋅ 𝒏 𝒓 𝑑𝒔
Γ

𝑑𝒓, (5.1) 

where 𝒓 is a position vector that indicate the location on the surface of the object; 𝒔 and 𝒏(𝒓) are 

two unit vectors that represent the photon’s propagation direction and the outgoing normal vector 

on the surface respectively, where the normal vector is a function of the location; 𝑅 ⋅  represents 

the reflectivity on the tissue-air boundary, which is defined in the same way as it in (2.10).  

Therefore, the infinitesimal power 𝑑𝑃 𝒓, 𝒔  that emits from the infinitesimal solid angle 𝒔 

centered at  𝒓 is given by 

 𝑑𝑃!"#$ 𝒓, 𝒔 = 𝜓 𝒓, 𝒔 1− 𝑅 𝒔 ⋅ 𝒏 𝒓 𝒔 ⋅ 𝒏 𝒓 𝑑𝒔𝑑𝒓, 𝒓 ∈ Γ. (5.2) 
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To use the (5.2) numerically, we express the vector 𝒓 and 𝒔 with parametric coordinate 

system. The solid angle vector 𝒔 is commonly represented with the spherical coordinate system 

 𝒔 = 𝒔 𝜃,𝜑 ≔ sin𝜃 cos𝜑 , sin𝜃 sin𝜑 , cos𝜃 . (5.3) 

Since the location vector 𝒓 in (5.2) is on a local piece Γ of a 2D manifold 𝜕𝑂, it is convenient to 

parameterize it by a locally differentiable parametric equation with two free parameters 𝜆!, 𝜆! , 

 𝒓 = 𝒓 𝜆!, 𝜆! . (5.4) 

Options for 𝜆! and 𝜆! are not unique. However, with the tetrahedron mesh discretization, the 

object surface is discretized with triangle elements correspondingly (see a cylinder example in 

Fig. 5.1(a)). It is natural to assume Γ is a triangle element on the surface (See Fig. 5.1(b)) and to 

consider the parametric coordinate system for 𝒓 ∈ Γ. 

Here the 2D barycentric coordinate system [141] (also referred to as the areal coordinates 

system) is briefly introduced. Assume the location vectors of the three vertices of the host 

triangle element are 𝒓!, 𝒓!, 𝒓! , we define three vectors 𝒗!" ≔   𝒓! − 𝒓!, 𝒗!" ≔   𝒓! − 𝒓! and 

𝒗≔   𝒓− 𝒓! (See Fig. 5.1(b)). Therefore, equation 𝒗 = 𝜆!𝒗!" + 𝜆!𝒗!"  has a unique pair of 

solution 𝜆!, 𝜆!  and it is used as 𝒓’s local parametric coordinates. This coordinate system leads 

to a straightforward expression of 𝒓 𝜆!, 𝜆!  (in Fig. 5.1(b)), which is given by 

 𝒓 𝜆!, 𝜆! ≔ 𝝀!𝒗!" + 𝝀!𝒗!" + 𝒓! (5.5) 

Another benefit from this coordinate system is the normal vector 𝒏 is a constant and doe not 

depend on the location 𝒓 within Γ. Therefore, according to (5.3) and (5.5), we have 

 
𝒏𝑑𝒓 = 𝜕𝒓 𝜕𝜆! × 𝜕𝒓 𝜕𝜆! 𝑑𝜆!𝑑𝜆! = 2 Γ 𝑑𝜆!𝑑𝜆!
𝒔𝑑𝒔 = sin𝜃 𝒔𝑑𝜑𝑑𝜃  (5.6) 

where Γ  is the area of triangle element Γ and can be pre-calculated after the mesh generation.  
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(a) 

 

(b) 

Figure 5.1: An illustration of (a) surface discretization with triangle elements and (b) a triangle element Γ 
and a location vector 𝒓. 

With (5.6), we can construct a four dimensional coordinate system to express the angular 

dependent the light intensity on 𝐴 and the infinitesimal power 𝑑𝑃 Γ  in (5.2) can be given by 

 𝑃!"#$ Γ = 𝑞!"#$ 𝜆!, 𝜆!,𝜑,𝜃 𝑑𝜑𝑑𝜃𝑑𝜆!𝑑𝜆!
!𝒓(!)×!𝒔(!)

, (5.7) 

where Ω𝒓(Γ) and Ω𝒔(Γ) represents the feasible set for location vector 𝒓 and direction vector 𝒔 

under this coordinate system,  

 
Ω𝒓 Γ ≔ 𝜆!, 𝜆! : 𝒓 𝜆!, 𝜆! ∈ Γ ,
Ω𝒔 Γ ≔ 𝜑,𝜃 : 𝒔 𝜑,𝜃 ⋅ 𝒏 Γ > 0 . 

 

𝑞!"#$ 𝜆!, 𝜆!,𝜑,𝜃  is the power density function on the surface under this coordinate system, 

which is given by 

 𝑞!"#$ 𝜆!, 𝜆!,𝜑,𝜃 =   2 sin𝜃 Γ 1− 𝑅 𝒔 ⋅ 𝒏 𝜓 𝒓, 𝒔  (5.8) 

In practice, 𝜓 𝒓, 𝒔  is solved with discretized forward solvers thus it is only available for 

the triangle vertices 𝒓!, 𝒓! , 𝒓!  and for certain solid angles 𝑠! !!!
!!" , so we can approximate 

rA

rB

rC

rvAC

vAB
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𝜓 𝒓, 𝒔  for any  𝒔 and 𝒓 ∈ Γ with the linear interpolation in the spatial domain and the nearest 

neighbor method in the solid angle domain. 

 𝜓 𝒓 𝜆!, 𝜆! , 𝒔 ≈ 1− 𝜆! − 𝜆! 𝜓 𝒓!, 𝒔 + 𝜆!𝜓 𝒓! , 𝒔 + 𝜆!𝜓 𝒓! , 𝒔               

 ≈ 1− 𝜆! − 𝜆! 𝜓 𝒓!, 𝒔! + 𝜆!𝜓 𝒓! , 𝒔! + 𝜆!𝜓 𝒓! , 𝒔! ,                     (5.9) 

where 𝑘 = argmin! 𝒔− 𝒔! . 

5.2.2. CCD camera acceptance coordinate system 

To reduce the complexity of the model, the CCD camera is assumed to only consist of a single 

thin lens 𝛺!"#$  (the aperture) with a radius as 𝑅!"#$[mm] and a CCD chip Ω!!"  with size 

𝑙!!",! mm × 𝑙!!",! mm  (See Fig. 5.2). Under this assumption, the readings on the CCD chip 

are contributed by effective photons those pass through the aperture and finally reach the CCD 

chip after the refraction (the red solid arrow line in Fig. 5.2). Any effective photon can be 

uniquely identified with two location vectors: (1) 𝒓!"#$ defined as the intersection point between 

its optical path and Ω!"#$ and (2) 𝒓!!" defined as its final position on Ω!!" (see Fig. 5.2). 

Therefore the total energy that received by the CCD chip 𝑃!!" [W] can be calculated with an 

integral over the light intensity 𝐽 𝒓!"#$, 𝒓!!"  on Ω!"#$×Ω!!",  

 𝑃!!" = 𝐽 𝒓!"#$, 𝒓!!" 𝒓!!" − 𝒓!"#$ ⋅ 𝒏!!"𝑑𝒓!"#$𝑑𝒓!!"
!!"#$×!!!"

, (5.10) 

where 𝒏!!" is the normal vector of the CCD chip that points to the other side of  𝒓!"#$.  
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Figure 5.2: An illustration of a simplified model of the CCD camera 

Based on the circular shape of the aperture and the rectangular shape of the CCD chip, 

we represent 𝒓!"#$ and 𝒓!!" with the polar coordinate system 

 
𝒓!"#$ = 𝒓!"#$ 𝜌,𝜔 , 0 ≤ 𝜌 ≤ 𝑅!"#$, 0 ≤ 𝜔 < 2𝜋
𝒓!!" = 𝒓!!" 𝑥,𝑦 , 0 ≤ 𝑥 ≤ 𝑙!!",!, 0 ≤ 𝑦 ≤ 𝑙!!",!

 (5.11) 

With this parametric expression (5.10) can be written as 

 𝑃!!" = 𝑞!!" 𝜌,𝜔, 𝑥,𝑦 𝑑𝜌
!!"#$

!
𝑑𝜔

!!

!
𝑑𝑥

!!!",!

!
𝑑𝑦

!!!",!

!
, (5.12) 

where the energy density 𝑞!!" 𝜌,𝜔, 𝑥,𝑦 [W/mm!/sr] under this coordinate system is to be 

calculated in the next section.  

5.2.3. Light propagation in free space and coordinate transformation 

The status of any photon that emits from the object surface and is finally received by the CCD 

chip (also referred as the effective photons) can be described with the coordinates 𝜌,𝜔, 𝑥,𝑦  or 

with an triangle element Γ and its corresponding ordinates 𝜆!, 𝜆!,𝜑,𝜃 . Therefore, we can 

define two set based on these two coordinate systems to describe the status of effective photons. 

 
𝑆!"#$ ≔ Γ, 𝜆!, 𝜆!,𝜑,𝜃 :photon  with  status   Γ, 𝜆!, 𝜆!,𝜑,𝜃   is  effective  
𝑆!!" ≔ 𝜌,𝜔, 𝑥,𝑦 :photon  with  status   𝜌,𝜔, 𝑥,𝑦   is  effective     



 106 

Therefore for any Γ, 𝜆!, 𝜆!,𝜑,𝜃 ∈ 𝑆!"#$ , we have 𝜆!, 𝜆! ∈ Ω𝒓 Γ  and    𝜑,𝜃 ∈ Ω𝒔 Γ ; for 

any 𝜌,𝜔, 𝑥,𝑦 ∈ 𝑆!!" , 0 ≤ 𝜌 ≤ 𝑅!"#$ , 0 ≤ 𝜔 < 2𝜋 , 0 ≤ 𝑥 ≤ 𝑙!!",!  and 0 ≤ 𝑦 ≤ 𝑙!!",!  are 

satisfied. We can also consider 𝑆!"#$  as the initial status set of effective photons since it 

characterizes the starting positions and directions, on the other hand, 𝑆!!" can be considered as 

the final status set of effective photons since it contains information on the CCD camera side. 

In non-contact imaging, some optical systems, such as conical mirror, are often employed 

to magnify the signal received by the CCD camera. To track the contribution of photons in 

complex optical system, we represent the light propagation in free space with an operator 𝐹, 

which maps from the initial status set 𝑆!"#$ to its final status set 𝑆!!". In this dissertation, the 

following assumptions are imposed on the operator 𝐹: 

(1) The operator 𝐹 is a one to one and onto deterministic function from 𝑆!"#$ to 𝑆!!" . 

Therefore the light propagation operator 𝐺 ≔ 𝐹!! is well defined. 

(2) The operator 𝐹 is locally differentiable. In another word, 𝐹!: 𝜆!, 𝜆!,𝜑,𝜃 → 𝜌,𝜔, 𝑥,𝑦 , 

which is defined as 𝐹 constrained on the surface triangle element Γ, and its inverse 𝐺! 

are differentiable. 

(3) There is no loss of energy during the travel of the light from the surface to the CCD 

chip. 

These assumptions are not strong and satisfied by most of the general optical systems. 

Under these assumptions, we consider the total energy received from an infinitesimal unit 

volume 𝑑𝜌𝑑𝜔𝑑𝑥𝑑𝑦 around 𝜌,𝜔, 𝑥,𝑦  by the CCD chip, which is given by 

 𝑑𝑃!!" 𝜌,𝜔, 𝑥,𝑦 = 𝑞!!" 𝜌,𝜔, 𝑥,𝑦 𝑑𝜌𝑑𝜔𝑑𝑥𝑑𝑦. (5.13) 
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On the other hand, we can assume 𝑑𝑃!!" 𝜌,𝜔, 𝑥,𝑦  is all contributed from photons emitted from 

one triangle element Γ. Therefore a coordinate transformation can be conducted on (5.13) to 

express 𝑑𝑃!!" 𝜌,𝜔, 𝑥,𝑦  with 𝜆!, 𝜆!,𝜑,𝜃  in Γ, 

 𝑑𝑃!!" 𝜌,𝜔, 𝑥,𝑦 = 𝑞!!" 𝐹! 𝜆!, 𝜆!,𝜑,𝜃
𝜕𝐹! 𝜆!, 𝜆!,𝜑,𝜃
𝜕 𝜆!, 𝜆!,𝜑,𝜃

𝑑𝜆!𝑑𝜆!𝑑𝜑𝑑𝜃, (5.14) 

where 𝜕𝐹! 𝜆!, 𝜆!,𝜑,𝜃 /𝜕(𝜆!, 𝜆!,𝜑,𝜃)   is the Jacobian matrix of the coordinate transformation, 

⋅  represents the absolute value of the determinate of a matrix. In short, (5.14) is also written as 

 𝑑𝑃!!" 𝜌,𝜔, 𝑥,𝑦 = 𝑞!!" 𝐹! 𝜆!, 𝜆!,𝜑,𝜃 ∇𝐹! 𝑑𝜆!𝑑𝜆!𝑑𝜑𝑑𝜃 (5.15) 

In (5.15), 𝑞!!" 𝐹! 𝜆!, 𝜆!,𝜑,𝜃 ∇𝐹!  on the right-hand can also interpreted as the power density 

under coordinates 𝜆!, 𝜆!,𝜑,𝜃 , which should be identical to 𝑞!"#$ 𝜆!, 𝜆!,𝜑,𝜃  in (5.7). Thus, 

we have 

 
𝑞!"#$ 𝜆!, 𝜆!,𝜑,𝜃 = 𝑞!!" 𝐹! 𝜆!, 𝜆!,𝜑,𝜃 ∇𝐹! , in  Γ
𝑞!!" 𝜌,𝜔, 𝑥,𝑦 = 𝑞!"#$ 𝐺! 𝜌,𝜔, 𝑥,𝑦 ∇𝐺!

 (5.16) 

Since 𝑞!"#$’s values are known according to (5.8) if the intensity distribution 𝜓(𝒓, 𝒔) is derived, 

(5.16) provides an analytical solution for 𝑞!!" 𝜌,𝜔, 𝑥,𝑦  in (5.12).  

5.2.4. Numerical algorithm for measurement operator 

In non-contact RTE-DOT, the detector reading of the 𝑖th pixel centered at 𝑥! ,𝑦!  on the CCD 

chip is given by  

𝑀! ≈ 𝐴!"#$% 𝑞!!" 𝜌,𝜃, 𝑥! ,𝑦! 𝑑𝜌
!!"#$

!
𝑑𝜔

!!

!
≈ 𝐴!"#$%Δ𝜌Δ𝜔 𝑞!!" 𝜌! ,𝜔! , 𝑥! ,𝑦!

!!

!!!

!!

!!!

, 

  (5.17) 
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where 𝐴!"#$% represents the area of a pixel on the CCD chip, 𝜌! !!!
!!  and 𝜔! !!!

!!  are uniform 

discretization point sets for   0,𝑅!!"  and 0,2𝜋 , with Δ𝜌 and Δ𝜔 as the step size respectively, 

𝑞!!" 𝜌,𝜃, 𝑥,𝑦  is the extended energy density function which is given by 

𝑞!!" 𝜌,𝜃, 𝑥,𝑦 ≔ 𝑞!!" 𝜌,𝜃, 𝑥,𝑦 1!!!" 𝜌,𝜃, 𝑥,𝑦 = 𝑞!"#$ 𝐺! 𝜌,𝜔, 𝑥,𝑦 ∇𝐺! 1!!!" 𝜌,𝜃, 𝑥,𝑦  

  (5.18) 

where 1!!!" 𝜌,𝜃, 𝑥,𝑦  is the indicator function that returns 1 if 𝜌,𝜃, 𝑥,𝑦 ∈ 𝑆!!" and returns 0 

otherwise. In (5.18), Γ and 𝐺! 𝜌,𝜔, 𝑥,𝑦  can be obtained by the backward ray-tracing technique 

that tracks the photon reversely from the CCD chip to the object surface, then ∇𝐺!  can be 

estimated with the perturbation method. 

In this model, one can notice that the detector readings in the non-contact RTE-base DOT 

system is a linear function with respect to the light intensity distribution in the object. In the 

discretized model, the light intensity is only given on the 𝑗th solid angle in the 𝑖th control 

volume, which is represented with 𝜓!,! (1 ≤ 𝑖 ≤ 𝑁!", 1 ≤ 𝑗 ≤ 𝑁!"). In practice, one usually use 

a vector 𝜓 ≔ 𝜓!,!,𝜓!,!,… ,𝜓!,!!" ,… ,𝜓!!",!,… ,𝜓!!",!!"
!
 to save all the 𝜓!,!s and a vector 

𝑀 ≔ 𝑀!,𝑀!,… ,𝑀!!"#$%

!
to represent readings from the pixels on the CCD chip, where 𝑁!"#$% 

is the total pixel number used for measurement collection. Then the model for light propagation 

in free space can be represented with  

 𝑀 = 𝑄𝜓, (5.19) 

where 𝑄 is a sparse matrix with its row indices corresponding the pixels on the CCD chip and its 

column indices corresponding the control volumes and solid angles. Matrix 𝑄 is also referred to 

as the measurement operator, which is a mandatory component in optimization problem (4.1). 
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This model provides a way to derive 𝑄 with (5.17), (5.18), (5.8) and (5.9), the algorithm is 

summarized as Algorithm 5.1.  

Algorithm 5.1: Back ray-tracing algorithm for 𝑸’s construction 
1. Discretize 0,𝑅!!"  and 0,2𝜋  uniformly with 𝜌! !!!

!!  and 𝜔! !!!
!!  with step size equal 

to Δ𝜌 and Δ𝜔. 
2. Set 𝑄 as a 𝑁!"#$%× 𝑁!"𝑁!"  matrix with all entries equal to 0. 
3. for 𝑖 = 1:𝑁!"#$% 

Get the coordinates 𝑥! ,𝑦!  and the pixel size 𝐴!. 
for 𝑗 = 1:𝑁! 

for 𝑘 = 1:𝑁! 
Backtrack the photon with 𝜌! ,𝜔! , 𝑥! ,𝑦!  as its final status. 
if this photon hits a triangle element Γ on the object surface 

• Get the three node indices 𝑖! , 𝑖!  and 𝑖!  of the vertices of Γ (the control 
volume indices in FVM mesh) 

• Get the normal vector 𝒏! and the area Γ . 
• Compute 𝜆!, 𝜆!,𝜑,𝜃 = 𝐺! 𝜌! ,𝜔! , 𝑥! ,𝑦! , define 𝜆! ≔ 1− 𝜆! − 𝜆!. 
• Estimate ∇𝐺!  with perturbation method. 
• Find the index 𝑡 of the solid angle closest to the direction 𝒔(𝜑,𝜃)  
𝑡 = argmin! 𝒔(𝜑,𝜃)− 𝒔!   

• Compute 𝑐 = 2𝐴!   Δ𝜌  Δ𝜔 ∇𝐺! sin𝜃 Γ 1− 𝑅 𝒔(𝜑,𝜃)    ⋅ 𝒏! . 
• for 𝑙 = 1: 3 

𝑄 𝑖, (𝑖! − 1)𝑁!" + 𝑡 = 𝑄 𝑖, (𝑖! − 1)𝑁!" + 𝑡 + 𝜆!𝑐  
end for 

end if 
end for 

end for 
end for 

4. Return 𝑄. 
 

5.3. Validation of the back ray-tracing model 

5.3.1. Validation through analytical solution 

In this section, I designed and performed a phantom experiment to test the validity and accuracy 

of the proposed algorithm. In the experiment, the light propagation in the direct illumination case 

(no intermediary optical components), which has an analytical solution, is examined. The 

experiment is set as shown in Fig. 5.3.  
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Figure 5.3: Experiment settings for the direct illumination case 

A thin round plate with radius 𝑅!   was set perpendicular to the optical axis with the center 

aligned on the optical axis, beyond the lens with radius  𝑅!"#$ and focal length  𝑓. The light 

intensity was set uniformly on the plate as 𝜓. The distance from the aperture to the plate and the 

image plane were denoted by  𝑙! and  𝑙! respectively. Furthermore, the focal length  𝑓 and two 

distances  𝑙! and  𝑙! are set to follow the equation  1 𝑓 =   1 𝑙! + 1 𝑙! in the testing system. Then 

according to the Cosine fourth Power Law [142], the analytical solution 𝑀! for the received 

power per area on the image plane under these settings can be written as: 

 𝑀! 𝑥,𝑦 =

𝜋𝜓𝑅!"#$! 𝑙!!𝑙!!

𝑙!! + 𝑅!"#$! 𝑙!! + 𝑥! + 𝑦! ! , 𝑥! + 𝑦! ≤
𝑅!!𝑙!!

𝑙!!

0, 𝑥! + 𝑦! ≤
𝑅!!𝑙!!

𝑙!!

 (5.20) 

In the numerical validation, 𝜓 was set as 1W/mm2/sr, 𝑙!, 𝑙! and 𝑓 were set as 1050 mm, 

52.5mm and 50mm respectively, 𝑅!"#$ and 𝑅!  were set as 6.25mm and 1050 mm respectively. 

For validation purpose, the size of the numerical CCD chip is set to 105mm×105mm. 

The CCD chip is discretized by 501×501 pixels. The predicted measurement 𝑀! is computed 

on every pixel with the light propagation model. The aperture is discretized with 𝑁! = 10 and 

𝑁! = 30. The comparison between 𝑀! and 𝑀! is shown in Fig. 5.4. No noticeable difference 
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between the analytical measurement 𝑀! (Fig. 5.4(a)) and the predicted measurement 𝑀! (Fig. 

5.4(b)) is observed. Fig. 5.4(c) shows the relative error of 𝑀! is always in range 0,5×10!! . To 

further quantify the performance of the back ray-tracing algorithm, the correlation factor 

𝑐 𝑀! ,𝑀!  and deviation factor 𝑑 𝑀! ,𝑀!  of the computed measurement are reported, with the 

definitions of 𝑐 𝑀! ,𝑀!  and 𝑑 𝑀! ,𝑀!  given in (4.26). 

 
𝑐 𝑀! ,𝑀! = 1− 1.4564×10!!"

𝑑 𝑀! ,𝑀! = 3.5114×10!!
 (5.21) 

Therefore, the high correlation factor and low deviation factor and relative error indicate that the 

free space light propagation model has very high accuracy for this case.  

  
          (a) 

 
        (b) 

 
                       (c) 

Figure 5.4: Comparison between the exact and the computed measurement on the image plane. (a) The 
exact measurement; (b) The measurements computed with the back ray-tracing model; (c) The relative 
error of the computed measurement.  
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5.3.2. Validation through fluorescence molecular tomography result 

A double conical mirror system has been designed to capture multi-directional views 

simultaneously in small animal imaging [143] (See Fig. 5.5). The schematic plot of the system is 

shown in Fig. 5.6, where the field of view (dot line) by the camera B is equivalent to the field of 

view by two mirrors and the camera A. The first mirror facing a target animal captures a surface 

of a target and the second mirror facing a detection camera reflects and projects the captured 

images by the first mirror onto the detection camera. Depending on the shape of a target, the 

shape of first and second mirrors can vary like flat or conical or oval or two combined shape. For 

this system, since the target is a small animal like mice, a conical shape is chose to capture whole 

body surface of a small animal. The conical mirror size was designed to cover a 40 mm diameter, 

80 mm length cylinder, the size of which is enough to cover a small animal.  

 

Figure 5.5: A picture of the double conical mirror system 

Fig. 5.7 shows the positioning of a coke can as a target in the imaging unit and the taken 

image by a camera. As shown in the captured image, because of the conical shape of mirrors, 

there is an image distortion and to do tomographic reconstruction, we need to know the location 
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on the target and the corresponding direction of the photons in the captured image came from. 

Therefore with any fixed geometry of the imaging object, the measurement operator that 

measures the contribution of photons from various surface locations and direction to the image is 

constructed with the back ray-tracing model that is proposed in the previous section.  

 

 
 

Figure 5.6: Double conical mirror scheme: the first mirror and the second mirror were designed to cover a 
40mm diameter 80mm length cylinder target. 

 
Figure 5.7: A picture of the coke can with the double conical mirror system. (a) Positioning of the coke 
can in the imaging unit; (b) the captured image on the camera. 

A small animal fluorescence imaging experiment was conducted with a tumor-bearing 

mouse with the double conical mirror imaging system. The tumor cells (1×10! cells/ml in 

100µL PBS) were injected subcutaneously near the left kidney of a mouse. Then the mouse was 

imaged one week after to measure the tumor growth with fluorescence molecular tomography 

(FMT). Details can be found in [144]. 
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With one single illumination on the tumor area, 37558 data points were obtained on the 

CCD image as the measurements for reconstruction. The reconstructed tumor location is shown 

in Fig. 5.7, which was confirmed by the results from planar imaging using the Kodak In-vivo 

Multispectral imaging System FX (Carestream Health, Inc.). Moreover, the proposed model has 

been already applied for measurement operator derivation in several published work [143-145] 

and more promising results were achieved. These results evidently support the validity of the 

back ray-tracing model for light propagation in free space. 

 

Figure 5.8: Reconstruction results of the tumor growth one week after subcutaneous tumor injection. 

5.4. Discussion 

In this work, a novel free-space, angular-dependent photon transport model was developed for 

deriving the measurement operator in non-contact DOT imaging system. In this model, the 

backward ray-tracing method was employed to calculate the contribution of the surface radiation 
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to each pixel on the CCD chip in an efficient way. For every pixel on the CCD chip, multiple 

possible final statuses for photons are generated according to the discretization of the aperture 

and the location of that pixel. Then for each final status, a corresponding pseudo photon is shot 

reversely into the system and the back ray-tracing technique is applied to locate its initial 

direction 𝒔 and position 𝒓 on the object surface. Finally the weight of the contribution to this 

pixel from the local light intensity 𝜓 𝒓, 𝒔  is determined with a coordinate transformation and 

perturbation method. Thus, this model provides a numerical method to calculate the 

measurement operator that maps linearly from the light intensity distribution of the imaging 

object to the signals received by the CCD camera, which is a fundamental component in 

optimization problem setup DOT. Additionally, since the angular dependency of the light 

intensity is fully considered and only several weak assumptions are imposed on the imaging 

system, this model can be used in RTE-DOT imaging system with general optical components. 

To test this algorithm, firstly a numerical experiment with an analytical solution was 

considered.  The performance of the proposed algorithm was evaluated with correlation factor, 

deviation factor and relative error. From the results, we can observe that the correlation factor 

was very close to 1 and the deviation factor was very close to 0, which indicates an extremely 

strong agreement between the output of the proposed model and the analytical solution, yet 

indicated the validity and accuracy of the back ray-tracing model. Secondly, the proposed 

algorithm has been applied to provide the measurement operator for a double conical mirror 

imaging system. Promising results including source reconstruction of the phantom study and 

small animal fluorescence imaging have provided strong evidence for its validity [143, 145]. 
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To sum up, this model will aid image reconstruction by providing angular dependent 

measurements without expensive computation and further makes RTE-based non-contact DOT 

with complex optical components realistic in practice. 
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Chapter 6.  Algorithm evaluation with clinical data 

In this chapter I discuss a performance of the proposed algorithm as applied to clinical data 

obtained for finger joints. Optical properties (𝜇! and 𝜇!! ) of human finger joints are reconstructed 

with the reconstruction algorithm as described in Chapter 4. Then feature extraction and 

classification are conducted on the reconstructions results. The performance of the proposed 

algorithm is evaluated in terms of diagnostic accuracy (i.e., sensitivity and specificity) as 

compared to the traditional reconstruction algorithm.  

6.1. Clinical data 

In this study, the optical properties of finger proximal interphalangeal (PIP) joints are 

reconstructed. The clinical data set includes 33 unhealthy subjects with various stage of 

rheumatoid arthritis (RA) and 20 healthy control subjects [7]. Each subject was evaluated by a 

rheumatologist and diagnosed for RA according to guidelines set by the ACR [146]. The 

clinically dominant hand of each subject was imaged with ultrasound and low-field MRI. 

The ultrasound and MRI images were evaluated by a radiologist and a rheumatologist in 

a double blind review. The images were evaluated for the presence of effusion, synovitis, and 

erosion in PIP joints II to IV. Each reviewer classified each subject into one of five sub-groups 

on the basis of these findings (Table 1). A third reviewer served as a tiebreaker in cases where 

the initial reviewers had differing opinions (none in this study). Subjects without signs of joint 

effusion, synovitis, and erosion were divided into two subgroups: (1) subjects with RA and (2) 

subjects without RA. 
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Table 6.1: Diagnostic table based on clinical evaluation and radiological imaging (ultrasound and MRI). 

Group Effusion Erosion Synovitis RA 
A No No No Yes 
B Yes No No Yes 
C No Yes No Yes 
D No No Yes Yes 
E Yes Yes Yes Yes 
H No No No No 

 
Imaging with a frequency-domain DOT sagittal laser scanner of PIP joints II to IV was 

performed on the clinically dominant hand of subjects with RA and on both hands of the control 

group. A frequency-modulated laser beam (670 nm, 8 mW, 1.0 mm diameter) scanned the dorsal 

side of the finger from proximal to distal end, stopping at 11 discrete locations to allow for data 

acquisition. Transillumination was recorded from each source position on the ventral side of the 

finger with an intensified CCD camera (See an example in Fig. 6.1). The 3-D geometry of the 

scanned finger was obtained with a separate laser-scanning unit (650 nm, 5 mW, 0.2 mm line 

width). Imaging was performed at 0, 300, and 600 MHz. In total, 219 fingers were imaged. The 

600 MHz transillumination measurements were used to reconstruct tissue 𝜇! and 𝜇!!  coefficients 

with the new RTE-based algorithm as described in Chapter 4.  

 

Figure 6.1: Transillumination captured by a CCD camera during a scan of PIP joint II. 

To perform image reconstruction, the geometry of each finger is discretized with about 

7500 nodes and over 30000 tetrahedral grids (See 4.18(a)). The locations of 11 sources and about 
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150 selected detectors are mapped into the surface nodes on the discretized mesh (See 6.2(b)(c)). 

The angular domain is discretized with 𝑆!, which contains 24 solid angles. The zeroth-order 

Delta-Eddington approximation (3.13) is used in the forward problem for reconstruction. The 

reconstructions are run on an Intel i7-4960HQ processor with 16GB DDR3 memory.  

 

(a) 

 

(b) 

 

(c) 

Figure 6.2: Discretization of a sample PIP joint and locations of sources and detectors. (a) Tetrahedral 
mesh of a finger that contains 7424 nodes and 32207 tetrahedrons. (b) Locations of 11 sources on the 
dorsal surface of the joint (c) Locations of 145 detectors on the palmar surface of the joint. 

6.2. Reconstruction, classification and performance comparison 

6.2.1. Reconstruction results 

A volumetric distribution of 𝜇!  and 𝜇!!  within a given finger is obtained for each subject. 

Examples of cross sections of 𝜇! and 𝜇!!  are shown in Fig. 6.3. The most pronounced differences 

between joints of subjects affected by RA and of subjects not affected by RA occur at the center 

of the images, where the joint cavity is located. As expected, in healthy joints, both 𝜇! and 𝜇!!  are 

significantly lower in this region than in the surrounding tissues, due to the lower 𝜇! and 𝜇!!  of 

the synovial fluid that fills the joint cavity. Joints affected by RA typically do not show a strong 

drop in optical properties in these regions.  
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Absorption coefficient [cm!!] 

 
Reduced scattering coefficient [cm!!] 

(a) Finger with RA (b) Fingers without RA (c) Finger with RA (d) Fingers without RA 

Figure 6.3: Absorption (a and b) and reduced scattering (c and d) coronal cross sections of PIP joints from 
subjects with RA (a and c) and without RA (b and d).  

However, diagnosis on the basis of visual inspection alone may mislead false positive or 

missed diagnose. Therefore, I explore feature extraction and classification to enhance diagnostic 

accuracy.  

6.2.2. Classification on the reconstruction results 

6.2.2.1. Feature extraction 

Features are extracted separately from the 3D 𝜇!  and 𝜇!!  reconstruction images. To reduce 

negative impacts by artifacts present in the 3D reconstructed image, the highest 5% and lowest 5% 

of the reconstructed values are removed from the data set. Then the maximum, minimum, mean, 

variance, and the ratio of the minimum to maximum of each data set are calculated as features. 

Therefore 10 features in total are obtained for each finger. The mean, standard deviation (std) 

and the p-value from the student t-test were calculated for all these features for all the fingers 



 121 

with and without RA. The summary is presented in Table 6.2.  All the features show significant 

difference (𝑝 < 0.05) between the affected group and the healthy control group except for 

min 𝜇!! , with 𝑝 = 0.064 > 0.05. This is consistent with what has been reported in [7]. 

Table 6.2: Mean values, standard deviations and p-values from the t-test for individual features 

Features   Affected  Group  
(mean ± std)  

Healthy  Group  
(mean ± std)   p-­‐value  

max 𝜇!      0.3212 ± 0.0125     0.3259 ± 0.0158     0.018    
min 𝜇!      0.2141 ± 0.0319     0.1928 ± 0.0353     6.34×10!!    
mean 𝜇!      0.2929 ± 0.0045     0.2916 ± 0.0048     0.041    
std 𝜇!      0.0171 ± 0.0060     0.0210 ± 0.0070     1.53×10!!    
ratio 𝜇!      0.6661 ± 0.0938     0.5932 ± 0.1135     6.89×10!!    
max 𝜇!!      11.220 ± 0.4691     11.692 ± 0.7187     5.44×10!!    
min 𝜇!!      8.5238 ± 0.5932     8.3793 ± 0.5473     0.064    
mean 𝜇!!      10.001 ± 0.0641     10.031 ± 0.0802     3.17×10!!    
std 𝜇!!      0.3232 ± 0.1055     0.3966 ± 0.1232     5.22×10!!    
ratio 𝜇!!      0.7610 ± 0.0620     0.7193 ± 0.0620     2.22×10!!    

6.2.2.2. Classification results 

Previous studies show that multiple features can be combined together to achieve higher 

performance than single feature classification in this problem [7, 147-149]. However, on the 

other hand, less feature number is always preferred since the predictive power reduces as the 

dimensionality increases with a fixed number of training samples, which is also referred as to the 

Hughes phenomenon [150, 151]. To provide guidance on the number of features that should be 

used in the classification, the principle component analysis (PCA) [152] was conducted on the 

normalized feature set. The result shows over 99.5% of the variance can be explained with the 

first two principle components. In another word, for any feature combination, there must exist at 

most two features that all other features can be approximately expressed as their linear 

combination. This suggests to use only one or two features in the classification. Therefore, in this 

thesis, the performances of all the individual features and two-feature combinations were tested 

with the linear discriminant analysis (LDA) [153] as the classifier. 
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To remove the bias that might be introduced from treating each finger as an independent 

sample, a modified version of the leave-one-out cross-validation (LOOCV) is employed here to 

train the test. In contrast to the standard LOOCV procedure, where one sample (finger) is used 

for testing while the remaining samples are used for training, all samples (fingers) belonging to 

one single subject (three fingers for subjects with RA six fingers for subjects without RA) are left 

out. The remaining samples are used for training the algorithm. In the testing phase, each of the 

testing samples is classified as true positive (TP), true negative (TN), false positive (FP), or false 

negative (FN). This process is repeated for each of the 53 distinct subjects (each repetition is 

called an iteration). The overall performance of an algorithm is computed by summing the TP, 

TN, FP, and FN values computed from each of 53 LOOCV iterations. From these results, the 

sensitivity (Se≔   TP/(TP+ FN)), the specificity (Sp≔   TN/(TN+ FP)), and the Youden 

index (Y≔ Se+ Sp− 1) are computed for each feature combination. A summary of feature 

combination with 10 highest Youden indices is presented in Table 6.3. It can be seen that the 

highest Youden index achieved is 0.66 with std 𝜇!  and max 𝜇!!  as the features. Fig. 6.4 show 

the decision boundary with the features std 𝜇!  and max 𝜇!!  as applied to the entire dataset. 

The feature combination of mean 𝜇!  and max 𝜇!!  gives the highest sensitivity 0.93, while 

ratio 𝜇!  combined with ratio 𝜇!!  generates the highest specificity 0.76. The individual feature 

that gives the best performance on Youden index is ratio 𝜇! , with Se = 0.86, Sp = 0.74, and 

Y = 0.60.  These promising results strongly support that the proposed fast reconstruction 

algorithm can be used with reliable accuracy for clinical diagnosis.  
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Table 6.3: Summary of classification results of feature combinations with 10 highest Youden indices 

Rank Feature combination Sensitivity Specificity Youden index 
1 std 𝜇! ,max 𝜇!!   0.92 0.74 0.66 
2 min 𝜇! ,max 𝜇!!   0.91 0.73 0.64 
3 ratio 𝜇! ,max 𝜇!!     0.90 0.74 0.64 
4 mean 𝜇! ,max 𝜇!!   0.93 0.71 0.64 
5 min 𝜇! ,mean 𝜇!!   0.92 0.72 0.64 
6 mean 𝜇! , ratio 𝜇!    0.88 0.74 0.62 
7 std 𝜇! ,mean 𝜇!!   0.91 0.71 0.62 
8 ratio 𝜇! ,mean 𝜇!!    0.90 0.72 0.62 
9 ratio 𝜇! , ratio 𝜇!!   0.85 0.76 0.61 
10 min 𝜇! ,min 𝜇!!   0.88 0.72 0.61 

 

 

Figure 6.4: Decision boundary of LDA separating affected from healthy data using std(𝜇!) and max 𝜇!!  
as features.  

6.2.3. Performance comparison 

The CPU times between the new reconstruction algorithm and the traditional reconstruction 

algorithm are reported in this section. To this end, the numerical experiment is conduced on the 

3D mesh as obtained for the real finger with 11 sources and 155 detectors. In the new 

reconstruction algorithm, the line-search-free BFGS is used as the inverse solver and the forward 

problems in RTE-DOT are solved with the new efficient solver described in Chapter 3. In the 
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traditional reconstruction algorithm, the single thread sequential BiCGStab algorithm is used for 

solving the forward problems in RTE-DOT, which are preconditioned with the traditional ILU 

preconditioner. In both algorithms, the reconstruction was terminated when the relative objective 

function value becomes below 0.2. The reconstructions of 𝜇! and 𝜇!!  from the two algorithms are 

shown in Fig. 6.5, in which no significant discrepancy is observed in results from different 

algorithms. Fig. 6.6 shows the convergence history for both algorithms with respect to CPU time. 

To reduce the relative objective value to 0.2, the traditional reconstruction algorithm takes 3812 

seconds, while the new reconstruction algorithm presented here only takes 127 seconds, which is 

30 times faster.  

    

 
Absorption coefficient [cm!!] 

 
Reduced scattering coefficient [cm!!] 

(a) (b) (c) (d) 

Figure 6.5: Reconstruction results of 𝜇! (a and b) and 𝜇!!  (c and d) from the traditional BFGS algorithm (a 
and c) and the fast reconstruction algorithm (b and d). 

 

Figure 6.6: Convergence path of relative objective value with respect to the CPU time 
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6.3. Conclusion 

In this Chapter, the new reconstruction algorithm has been applied to reconstructions of clinical 

data obtained for human finger joints. The algorithm is validated and evaluated both with respect 

to diagnostic performance and CPU times with clinical data, which contains 99 affected joints 

and 120 healthy ones.  

First, clinical performance of the algorithm is evaluated through classification. To this 

end, all the fingers are reconstructed with the new reconstruction algorithm. Then 10 statistical 

features (5 for 𝜇! and 5 for 𝜇!! ) are extracted from the reconstruction result of each individual 

finger. All the individual features and two-feature combinations are evaluated in leave-one-

subject-out cross validation with LDA as the classifier. The highest 10 Youden indices achieved 

are all above 0.6, with the highest one as 0.66. These promising results strongly support that the 

new reconstruction algorithm provides reliable DOT images for clinical diagnosis with RA. 

A CPU time is compared between the new reconstruction algorithm and the traditional 

reconstruction algorithm as applied to the 3D finger case. Both algorithms are of similar 

accuracy, but in terms of CPU times the new reconstruction algorithm is faster by a factor 30 

than the traditional reconstruction algorithm. In other words, only 2 ~ 3 minutes are taken for one 

finger reconstruction by the new reconstruction algorithm. It is expected that this significant 

improvement in CPU time will broadly expand clinical applicability of RTE-DOT.   
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Chapter 7.  Conclusion 

The focus of this dissertation was to develop an efficient reconstruction algorithm for RTE-DOT 

that can be widely used in practice. To achieve the goal, the developments and the 

implementations of numerical algorithms are presented that enhance the computational 

efficiency of the image reconstruction as well as expand the applicability of the RTE-DOT to the 

more complex imaging system with general optical components.  

This dissertation firstly presented a fast forward solver that calculates the light 

propagation in biological tissue. This solver consists of a preconditioner, a block-linear solver for 

linear equations with multiple right-hand sides, and two multi-threading acceleration technique. I 

showed that this code can solve the forward problems in the RTE-DOT up to 25 times faster than 

traditional single-thread sequential solvers. The code acceleration mainly depends on the optical 

properties, the number of sources, and the thread number. This acceleration is of great 

significance, as the efficiency bottleneck comes from the forward solver in many RTE-DOT 

reconstruction algorithms. Moreover, this forward solver was designed to run on a PC, instead of 

clusters. So it does not require extensive resource as other parallel computing algorithms do. 

Finally, except for the preconditioner, the other two techniques in this forward solver are 

independent of the numerical discretization scheme or even the forward model. Thus this 

forward solver is not only limited to RTE-DOT but can be adapted to DE-based DOT problems 

as well. 

Secondly, two optimization schemes, named as the line-search-free BFGS algorithm and 

the full-space algorithm, have been explored. I used the widely employed BFGS algorithm as 

benchmark for the validation and performance evaluation of the two algorithms. I numerical 

studies, I found that the line-search-free BFGS compares favorably with the traditional BFGS 
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and the full-space algorithm in terms of computational efficiency. It showed about 10% ~ 40% 

faster speed than the traditional BFGS algorithm due to the improvement of the line search 

process. The full-space algorithm usually converges very fast in the early stag of the iterative 

process. However, the convergence rate drops down quickly due to the insufficient 

preconditioning of the Hessian matrix. Another drawback of this algorithm is that each inverse 

iteration is much more time consuming. Thus the overall CPU time is much longer when 

compared to algorithms based on reduced Hessian matrix. Therefore, this algorithm is considered 

impractical for clinical applications. 

Third, I proposed the first light propagation model in free space that fully considers the 

angular dependency., This imposes only very weak assumptions on the optical system and thus 

can be used in most image system with general optical components. This model was validated 

with numerical simulations as well as with a pre-clinical experiment involving a fluorescent 

mouse. This model is a great asset to the RTE-DOT since it provides researchers with bread 

flexibility in system design as well as possibilities for potential cost reduction in RTE-based 

imaging system. 

The overall reconstruction algorithm was applied to data obtained in a previous clinical 

study concerning rheumatoid arthritis in human finger joints. The data set contains measurement 

data from 99 fingers with RA and 120 healthy fingers joints. Overall 10 features were extracted 

from the 𝜇!  and 𝜇!!  reconstruction results. According to the analysis, significant statistical 

difference between fingers with RA and healthy fingers can be found in 9 out of these 10 

features. All the single feature and two-feature combinations were tested in classification with 

LDA as the classifier. The best Youden index achieved is 0.66 and all the highest 10 Youden 

indices are above 0.60. For the computational performance aspect, the comparison between the 
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reconstruction results and CPU times from the fast reconstruction algorithm and the traditional 

reconstruction technique was conducted. It showed a reconstruction for an individual finger only 

cost 120~180 seconds on a PC with the reconstruction algorithm, while similar results were 

generated with the traditional reconstruction algorithm in about one hour. 

To sum up, a reconstruction algorithm in RTE-DOT has been develop in this dissertation. 

A speedup factor about 30 as compared to the traditional reconstruction technique in RTE-DOT 

was achieved. Furthermore, this algorithm can provide enough support for more advanced 

designs and foreseeably make promising contribution to the RTE-DOT imaging system. 

Therefore, one can expect the work in this dissertation to be widely applied in RTE-DOT and yet 

broadly expand its applicability DOT in clinical use. 
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Appendix A:  Implementation details in inverse solvers 

We provide the implementation details for the line-search-free BFGS algorithm and the full-

space algorithm in appendix A. The original constrained optimization problem we consider is 

(4.1), where 𝜇 = 𝜇! , 𝜇!!  and 𝐴 𝜇 = 𝐴! + 𝐴! 𝜇! + 𝐴! 𝜇! +    𝑖𝜔 𝑣 𝐼 !  with detail definition 

in (3.12).  The regularization term 𝑅 𝜇  is given as 

 𝑅 𝜇 =
1
2 𝑡!! 𝜇! − 𝜇!∗ ! +

1
2 𝑡!!

! 𝜇!! − 𝜇!!∗ !, (A.1) 

where 𝑡!!  and 𝑡!!!  are regularization parameters, 𝜇!∗  and 𝜇!!∗  are the prior belief on the 

background 𝜇! and 𝜇!!  in the imaging object. 

In the optimization problem, we often need to consider vectors with length 𝑁 = 𝑁!"𝑁!", 

with the its 𝑘th 𝑁!"  consecutive entries representing values corresponding to the 𝑁!"  solid 

angles in the 𝑘th control volume. Therefore we define the following symbol for a vector 𝑥 with 

length 𝑁, 

 𝑥 ! = 𝑥 !!! !!"!!, 𝑥 !!! !!"!!,… , 𝑥!!!"
! . (A.1) 

With the above definition, we define an operator “∗” that projects two complex vectors 𝑥 and 𝑦 

with length 𝑁  to a real vector with length 𝑁!", 

 𝑥 ∗ 𝑦 = Re 𝑥 ! ⋅ 𝑦 ! ,Re 𝑥 ! ⋅ 𝑦 ! ,… ,Re 𝑥 !!" ⋅ 𝑦 !!" , (A.2) 

where “⋅” represents the inner product of two vectors, 𝑣 represents the conjugate of a complex 

vector, Re ⋅  is a function on a complex value that returns the real part of it. 
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A.1. Implementation details in the line-search-free BFGS algorithm 

A.1.1.  Gradient of the objective function 

The gradient 𝑔 of the objective function in the unconstrained optimization is given by 

 𝑔 = ∇!𝑅 − 𝐴 𝜇 !!𝑄! 𝑄Ψ−𝑀 ! ∇!𝐴 𝜇 Ψ (A.3) 

It can be obtained by the following steps: 
 

1. Compute 𝑏 = 𝑄! 𝑄Ψ−𝑀 . 

2. Solve the linear equation 𝐴 𝜇 !𝜆 = 𝑏. 

3. Set 𝑣 as a length 𝑁!" vector with all entries equal to 1.  

4. Compute 𝑔!! = 𝑡!! 𝜇! − 𝜇!
∗ − 𝜆 ∗ 𝐴! 𝑣 𝛹 . 

5. Compute 𝑔!!! = 𝑡!!! 𝜇!
! − 𝜇!!∗ − 𝜆 ∗ 𝐴! 𝑣 𝛹 . 

6. 𝑔 = − 𝑔!!
! ,𝑔!!!

! !
 

For 𝜇! or 𝜇!!  reconstruction only, the gradient corresponding to the other optical property 

is set to 0 after all the steps above.  

A.1.2.  Projected descent direction on the forward variable 

Once the descent direction 𝛥𝜇 is found, the projected descent direction ΔΨ on the forward 

variable is given by 

 ΔΨ = −𝐴 𝜇 !! ∇!𝐴 𝜇 ⋅ Δ𝜇 Ψ  (A.5) 

It can be obtained by the following steps: 

1. Decompose Δ𝜇 = 𝛥𝜇!! ,𝛥𝜇!!
! !

. 

2. Compute 𝑏 = 𝐴! 𝛥𝜇! + 𝐴! 𝛥𝜇!! . 

3. Solve linear function 𝐴 𝜇 ΔΨ = −𝑏 to obtain Δ𝛹. 



 142 

A.1.2.  Solution for the optimization problem for step size determination 

The following optimization problem needs to be solved in order to determine the step size after 

Δ𝜇 and ΔΨ are obtained, 

 min
!

1
2 𝑄 Ψ+ 𝛼ΔΨ −𝑀 !

! + 𝑅 𝜇 + 𝛼Δ𝜇  (A.6) 

This optimization problem can be solved with the following steps: 

1. Decompose Δ𝜇 = 𝛥𝜇!! ,𝛥𝜇!!
! !

, 𝜇 = 𝜇!! , 𝜇!!
! !

. 

2. Compute 𝑎 = 𝑄𝛥𝛹 !
! + 𝑡!! 𝛥𝜇! ! + 𝑡!!! 𝛥𝜇!

! !. 

3. Compute 𝑏 = Re 𝑄𝛥𝛹 ⋅ 𝑄𝛹 −𝑀 + 𝑡!!𝛥𝜇! ⋅ 𝜇! − 𝜇!
∗ + 𝑡!!!𝛥𝜇!

! ⋅ 𝜇!! − 𝜇!!∗ . 

4. Set 𝛼 =   −𝑏 2𝑎. 

A.2. Implementation details of the Newton step in the full-space 
algorithm 

The Newton step in the full-space algorithm that is described in (4.21) and revisit below: 

 

𝐿!! 𝐿!! 𝐶!!

𝐿!! 𝐿!! 𝐶!!

𝐶! 𝐶! 0

ΔΨ
Δ𝜇
Δ𝜆

= −
𝑓! + 𝐶!!𝜆
𝑓! + 𝐶!!𝜆

𝐶
. (A.7) 

With a decomposition of 𝜇, the above equation is converted to  

 

𝐿!! 𝐿!!! 𝐿!!!! 𝐶!!

𝐿!!! 𝐿!!!! 𝐿!!!!! 𝐶!!
!

𝐿!!!! 𝐿!!!!! 𝐿!!!!!! 𝐶!!!
!

𝐶! 𝐶!! 𝐶!!! 0

ΔΨ
Δ𝜇!
Δ𝜇!!
Δ𝜆

= −

𝑓! + 𝐶!!𝜆
𝑓!! + 𝐶!!

! 𝜆
𝑓!!! + 𝐶!!!

! 𝜆
𝐶

. (A.8) 

We define 𝑣 as a length 𝑁!" vector with all entries equal to 1. The first three terms on 

right-hand side of (A.8) is calculated as below (The fourth entry is already given in (4.9)): 
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𝑓! + 𝐶!!𝜆 = 𝑄! 𝑄𝛹 −𝑀
𝑓!! + 𝐶!!

! 𝜆 = 𝑡!! 𝜇! − 𝜇!
∗ + 𝜆 ∗ 𝐴! 𝑣 𝛹

𝑓!!! + 𝐶!!!
! 𝜆 = 𝑡!!! 𝜇!

! − 𝜇!!∗ + 𝜆 ∗ 𝐴! 𝑣 𝛹
 (A.9) 

To solve with Krylov subspace algorithm, we needs define the inner product for vectors 

and matrix-vector multiplication in (A.8). The inner product of two vectors 𝛹!, 𝜇!,!, 𝜇!,!! , 𝜆!  

and 𝛹!, 𝜇!,!, 𝜇!,!! , 𝜆!  is defined as 

𝛹!, 𝜇!,!, 𝜇!,!! , 𝜆! ⋅ 𝛹!, 𝜇!,!, 𝜇!,!! , 𝜆! ≔ Re 𝛹! ⋅𝛹! + 𝜆! ⋅ 𝜆! + 𝜇!,! ⋅ 𝜇!,! + 𝜇!,!! ⋅ 𝜇!,!!  

  (A.10) 

We give the expression of matrix-vector multiplication for every non-zero block in the 

matrix on the left hand side of (A.8) as below, 

 

𝐿!!𝑥 = 𝑄!𝑄𝑥
𝐿!!!𝑦 = 𝐴! 𝑦 !𝜆
𝐿!!!!𝑦 = 𝐴! 𝑦 !𝜆
𝐶!!𝑥 = 𝐴(𝜇)𝑥
𝐿!!!𝑥 = 𝜆 ∗ (𝐴! 𝑣 𝑥)
𝐿!!!!𝑦 = 𝑡!!𝐼

!!"

𝐿!!!!!𝑦 = 0
𝐶!!
! 𝑥 = 𝜆 ∗ 𝐴! 𝑣 𝑥

𝐿!!!!𝑥 = 𝜆 ∗ (𝐴! 𝑣 𝑥)
𝐿!!!!!𝑦 = 0
𝐿!!!!!!𝑦 = 𝑡!!!𝐼

!!"

𝐶!!!
! 𝑥 = 𝜆 ∗ 𝐴! 𝑣 𝑥
𝐶!𝑥 = 𝐴(𝜇)𝑥
𝐶!!𝑦 = 𝐴! 𝑦 𝛹
𝐶!!!𝑦 = 𝐴! 𝑦 𝛹

 (A.11) 

where 𝑥  and 𝑦  are vectors with length 𝑁  and 𝑁!"  respectively,   𝐼 !!"  is a 𝑁!"×𝑁!"  identity 

matrix. 


