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ABSTRACT

Tropical cyclone (TC) activity is analyzed in 14 models from phase 5 of the Coupled Model Intercomparison

Project (CMIP5). The global TCactivity in the historical runs is comparedwith observations. The simulation of TC

activity in theCMIP5models is not as good as in higher-resolution simulations. TheCMIP5 global TC frequency is

much lower than observed, and there is significant deficiency in the geographical patterns of TC tracks and for-

mation.Although all of themodels underestimate the global frequency of TCs, themodels present awide range of

globalTC frequency.Themodelswith the highest horizontal resolution have thehighest level of global TCactivity,

though resolution is not the only factor that determines model TC activity. A cold SST bias could potentially

contribute to the low number of TCs in themodels. Themodels show no consensus regarding the difference of TC

activity in two warming scenarios [representative concentration pathway 4.5 (RCP4.5) and RCP8.5] and the

historical simulation. The author examined in more detail North Atlantic and eastern North Pacific TC activity in

a subset ofmodels and found no robust changes acrossmodels inTC frequency. Therefore, there is no robust signal

across the CMIP5models in global and regional TC changes in activity for future scenarios. The future changes in

various large-scale environmental fields associated with TC activity were also examined globally: genesis potential

index, potential intensity, vertical wind shear, and sea level pressure. The multimodel mean changes of these

variables in the CMIP5 models are consistent with the changes obtained in the CMIP3 models.

1. Introduction

There is a huge interest in the potential change of

tropical cyclone behavior with global warming due to the

large impacts of tropical cyclones on coastal communities

around the world. Three approaches to inferring tropical

cyclone (TC) activity from climate models are (i) to

examine the statistics of TC-like storms generated by

models, (ii) to analyze the large-scale variables associated

with TC activity, or (iii) to perform statistical or dynam-

ical downscaling, and each of these approaches has pos-

itive and negative aspects. In this paper, we will apply

the first two approaches to data from the phase 5 of the

Coupled Model Intercomparison Project (CMIP5)

dataset (Taylor et al. 2012). First, we will examine the

ability of the models to simulate TC-like storms and

determine whether the models show robust global and

regional responses to warming. Second, we analyze the

changes in large-scale environmental variables associated

with TCs.

Low-resolution climate models can generate TC-like

structures (e.g., Manabe et al. 1970; Bengtsson et al.

1982; Vitart et al. 1997; Camargo et al. 2005). These

model TCs have some characteristics similar to observed

TCs, including temporal and spatial climatological dis-

tributions, but are much weaker and larger than ob-

served storms owing to the low resolution; other issues

in simulating TC-like storms in low-resolution models

are discussed in McBride (1984). Even when the TC

model mean frequency is not correctly simulated, these

models are able to capture interannual variability asso-

ciated with El Ni~no–Southern Oscillation (ENSO) and

have been used successfully to develop dynamical

(Vitart and Stockdale 2001; Camargo and Barnston

2009) and statistical–dynamical (Wang et al. 2009) sea-

sonal forecasts of TC activity. More recently, multiyear

hurricane forecasts have been developed using these

models (Smith et al. 2010; Vecchi et al. 2013).

In the last few years, many centers have started to use

high-resolution global climate models having more re-

alistic TC characteristics (e.g., Bengtsson et al. 2007a,b;
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Gualdi et al. 2008; Zhao et al. 2009) across a range of time

scales—including intraseasonal (Vitart 2009; Vitart et al.

2010; Jiang et al. 2012), seasonal (LaRow et al. 2008; Zhao

et al. 2009; Chen and Lin 2011), and longer time scales—

with considerable success (e.g., Oouchi et al. 2006; Chauvin

et al. 2006; Sugi et al. 2009). Inmost cases, these simulations

are forced with prescribed sea surface temperature (SST);

only in a few cases are fully coupled models used (e.g.,

Gualdi et al. 2008). Not all of these high-resolution global

models are able to simulate the most intense storms, and

downscalingmethods (statistical, dynamical, and statistical–

dynamical) have been employed to obtain more detailed

information about projected TC characteristics, espe-

cially intensity (Knutson et al. 2008; Bender et al. 2010;

Lavender andWalsh 2011; Zhao and Held 2010; Villarini

and Vecchi 2012, 2013). The most recent version of a

Japanese model [Meteorological Research Institute at-

mospheric general circulation model (MRI-AGCM)]

with 20-km resolution is able to simulate intense Cate-

gory 4 and 5 TCs (Murakami et al. 2012b).

As low-resolution climate models are better able to

simulate the large-scale environmental, rather than in-

dividual, storms, one attractive approach is to analyze

large-scale variables known to be associated with TC

activity, instead of model TCs directly. Gray (1979) first

developed a genesis index based on four parameters

associated with TC occurrence. Emanuel and Nolan

(2004) improved the Gray index, and further refinements

have been suggested by various authors (e.g., Emanuel

2010; Tippett et al. 2011; Bruy�ere et al. 2012). Although

these indices have some issues (see, e.g., Menkes et al.

2012), the simplicity of these indices is their main at-

traction, and they have been applied to infer TC activity

on various time scales, including intraseasonal (Camargo

et al. 2009), seasonal (Camargo et al. 2007a; Yokoi et al.

2009), future climate change (Vecchi and Soden 2007b,

hereafter VS07b; Yokoi and Takayabu 2009), and past

climates (Korty et al. 2012a,b). Following the same

principle used in the CMIP3 models (Vecchi and Soden

2007a, hereafter VS07a; VS07b), analysis of projected

changes of TC activity were performed using large-scale

environmental variables known to be associated with TC

activity such as potential intensity, vertical wind shear,

and humidity.

Given the scope of the CMIP5 experiment design,most

modeling centers contributed output from fairly low-

resolution models. Therefore, it is useful to consider the

large-scale environmental changes in addition to model

storms. We expect that the CMIP5 simulation of TC

activity will not be as good as in high-resolution simu-

lations, but want to know how close the CMIP5-class

models are. We are particularly interested in whether

the CMIP5 models project robust changes in the global

TC activity similar to those seen in the high-resolution

projections.

Until now, projected changes in TC activity are robust

only on a global scale, with an expected small reduction

in global TC frequency and a small increase in TC in-

tensity by the end of the twenty-first century (Knutson

et al. 2010). We want to know if the CMIP5 models re-

produce these projected changes. We will also explore

the robustness of regional changes in TC activity across

CMIP5 models focusing on the North Atlantic and

eastern North Pacific.

In section 2, we describe themodels, data, andmethods

used in this paper. Section 3 discusses the global TC

activity in the CMIP5 models, with a detailed analysis of

TCs in the eastern North Pacific and North Atlantic

region presented in section 4. The changes in large-scale

environment from the end of the twentieth century to

the end of the twenty-first century are presented in sec-

tion 5. A discussion of the results of our analysis is given

in section 6. A few of the results presented here also

appear in the U.S. National Oceanic and Atmospheric

Administration/Modeling Analysis and Prediction Pro-

gram (MAPP) synthesis papers on North American cli-

mate in theCMIP5models (Sheffield et al. 2013;Maloney

et al. 2013, manuscript submitted to J. Climate).

2. Models, data, and methods

a. CMIP5 models

The choice of models used in this analysis was based

on their data availability in the CMIP5 data portals

(Taylor et al. 2012). Tracking TC-like storms in the

models using the Camargo and Zebiak (2002) algorithm

requires 6-hourly environmental variables (viz., vortic-

ity at 850 hPa, temperature and winds on various pres-

sure levels, and surface pressure), and this requirement

was the main restriction in our model choices since not

all models provided the necessary variables at this out-

put frequency at the time of our analysis.

Furthermore, the data had to be accessible for specific

scenarios [more details in Taylor et al. (2012)]. Our

analysis includes a historical simulation and two future

warming scenarios. The historical simulation is forced

with observed atmospheric composition changes (natu-

ral and anthropogenic), as well as time-evolving land

cover. The historical simulations are available from the

mid-nineteenth century to the near present, but we re-

stricted our analysis to the period 1950–2005. For the

future scenarios, we chose two projection simulations

forced with specified atmospheric concentrations, also

called representative concentration pathways (RCPs).

The first one is a midrangemitigation emissions scenario

15 DECEMBER 2013 CAMARGO 9881



(RCP4.5), and the second a high emissions scenario

(RCP8.5). To include a model in our analysis, we re-

quired 6-hourly data for the historical run as well as the

RCP4.5 and/or RCP8.5 future scenarios. In Table 1 we

list the models used in this study.

For the calculations based on monthly data (e.g., po-

tential intensity, genesis potential index), we used all

available ensemble members available, even if they

were different than that used in tracking the cyclones. A

list of the 14 models analyzed and number of ensemble

TABLE 1. CMIP5 models used to track TC-like structures using 6-hourly data: model acronym, name, modeling center, and approximate

horizontal resolution (Taylor et al. 2012).

Acronym Model name Number Modeling center Resolution Reference or link

CanESM2 Second Generation

Canadian Earth System Model

M1 Canadian Centre for Climate

Modeling and Analysis

2.88 3 2.98 http://www.ec.gc.ca

CCSM4 Community Climate System

Model, version 4

M2 National Center for

Atmospheric Research

1.28 3 0.98 Gent et al. 2011

CSIRO Mk3.6.0 Commonwealth Scientific

and Industrial Research

OrganizationMark,

version 3.6.0

M3 Commonwealth Scientific and

Industrial Research Organization

and Queensland Climate Change

Centre of Excellence

1.98 3 1.98 Rotstayn et al. 2012

FGOALS-g2 Flexible Global Ocean–

Atmosphere–Land

System Model gridpoint,

version 2

M4 LASG, Institute of Atmospheric

Physics, Chinese Academy of

Sciences and CESS, Tsinghua

University

2.88 3 3.08 Bao et al. 2013

GFDL CM3 Geophysical Fluid Dynamics

Laboratory Climate Model,

version 3

M5 NOAA/Geophysical Fluid

Dynamics Laboratory

2.58 3 2.08 Donner et al. 2011

GFDL-ESM2M Geophysical Fluid Dynamics

Laboratory Earth System

Model with Modular Ocean

Model 4 (MOM4) component

M6 NOAA/Geophysical Fluid

Dynamics Laboratory

2.58 3 2.08 Donner et al. 2011

HadGEM2-ES Hadley Centre Global

Environment Model,

version 2–Earth System

M7 Met Office Hadley Center 1.98 3 1.28 Jones et al. 2011

INM-CM4.0 Institute of Numerical

Mathematics Coupled Model,

version 4.0

M8 Institute of Numerical Mathematics 2.08 3 1.58 Volodin et al. 2010

IPSL-CM5A-LR L’Institut Pierre-Simon Laplace

Coupled Model, version 5,

coupled with NEMO, low

resolution

M9 L’Institut Pierre Simon Laplace 3.78 3 1.98 Voldoire et al. 2013

MIROC-ESM Model for Interdisciplinary

Research on Climate, Earth

System Model

M10 Japan Agency for Marine-Earth

Science and Technology,

Atmosphere and Ocean

Research Institute (University

of Tokyo), and National Institute

for Environmental Studies

2.88 3 2.88 Watanabe et al. 2011

MIROC5 Model for Interdisciplinary

Research on Climate,

version 5

M11 Japan Agency for Marine-Earth

Science and Technology,

Atmosphere and Ocean

Research Institute (University

of Tokyo), and National Institute

for Environmental Studies

1.48 3 1.48 Watanabe et al. 2010

MPI-ESM-LR Max Planck Institute Earth

System Model, low resolution

M12 Max Planck Institute for

Meteorology

1.98 3 1.98 Zanchettin et al.

2012

MRI-CGCM3 Meteorological Research

Institute Coupled

Atmosphere–Ocean General

Circulation Model, version 3

M13 Meteorological Research

Institute

1.18 3 1.28 Yukimoto et al. 2012

NorESM1-M Norwegian Earth System Model,

version 1 (intermediate

resolution)

M14 Norwegian Climate Centre 2.58 3 1.98 Zhang et al. 2012
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members used for 6-hourly and monthly data calcula-

tions is given in Table 2.

b. Data

The observed TCs data used in this paper are based on

best-track datasets from the National Hurricane Center

(North Atlantic and eastern North Pacific) and the Joint

Typhoon Warning Center (western North Pacific, north

Indian Ocean, and Southern Hemisphere) and are

available online (Jarvinen et al. 1984; Neumann et al.

1999; Chu et al. 2002). The National Centers for Envi-

ronmental Prediction–National Center for Atmospheric

Research (NCEP–NCAR) reanalysis dataset was used

in the calculation of the present climate genesis poten-

tial index (Kalnay et al. 1996; Kistler et al. 2001). The sea

surface temperature from NOAA was also used in our

analysis (Smith et al. 2008).

c. Methods

The Camargo–Zebiak detection and tracking algorithm

was used to identify and trackTC-like storms in theCMIP5

model 6-hourly output (Camargo and Zebiak 2002). This

algorithm has been used extensively in global (e.g.,

Camargo et al. 2005;Walsh et al. 2010;Kimet al. 2012) and

regional climate models (Landman et al. 2005; Camargo

et al. 2007b) and operationally in the International Re-

search Institute for Climate and Society (IRI) TC seasonal

dynamical forecast (Camargo and Barnston 2009). Here

the algorithm was slightly modified to use 850-hPa wind

speed instead of surface wind speed and three instead of

four temperature levels (850, 500, and 300hPa) due to

their unavailability in the CMIP5 6-hourly data.

The Camargo–Zebiak algorithm is an objective algo-

rithm for detection and tracking of individual storms and

TABLE 2. CMIP5 models and number of ensemble members used to calculate 6-hourly and monthly mean environmental variables.

Model Number

Storms tracking: 6-hourly data Environmental fields: monthly data

Historical RCP4.5 RCP8.5 Historical RCP8.5

CanESM2 M1 1 1 1 5 5

CCSM4 M2 1 1 1 6 3

CSIRO Mk3.6.0 M3 1 1 1 10 5

FGOALS-g2 M4 2 0 1 5 1

GFDL CM3 M5 1 1 1 1 1

GFDL-ESM2M M6 1 1 1 1 1

HadGEM2-ES M7 1 1 1 4 4

INM-CM4.0 M8 1 1 1 1 1

IPSL-CM5A-LR M9 1 1 1 5 4

MIROC-ESM M10 1 1 1 3 1

MIROC5 M11 2 3 2 4 3

MPI-ESM-LR M12 3 3 3 3 3

MRI-CGCM3 M13 5 1 1 4 1

NorESM1-M M14 1 1 1 3 1

TABLE 3. Thresholds used for vorticity (1025 s21), 850-hPa wind speed (m s21), and vertical integrated temperature anomaly (8C) for
defining TC-like storms for all models in the western North Pacific. Also shown are global thresholds for the relaxed vorticity (1025 s21)

used to track the storms in the models, which are defined by the model resolution.

Model Number

Thresholds

Vorticity Wind speed Temperature Relaxed vorticity

CanESM2 M1 3.1 13.0 1.7 1.5

CCSM4 M2 3.8 12.9 1.2 3.5

CSIRO Mk3.6.0 M3 3.9 13.3 2.1 2.7

FGOALS-g2 M4 3.1 12.8 1.1 1.4

GFDL CM3 M5 3.4 13.4 2.0 2.0

GFDL-ESM2M M6 3.1 11.3 3.0 2.7

HadGEM2-ES M7 4.1 13.9 2.0 2.6

INM-CM4.0 M8 3.2 11.9 1.4 0.6

IPSL-CM5A-LR M9 2.9 13.0 3.0 1.6

MIROC-ESM M10 3.4 14.8 3.4 3.3

MIROC5 M11 3.9 11.7 1.4 2.7

MPI-ESM-LR M12 3.6 12.8 1.9 3.5

MRI-CGCM3 M13 4.7 13.9 2.0 3.5

NorESM1-M M14 3.1 12.8 1.1 2.0
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was developed based, substantially, on prior studies

(Bengtsson et al. 1995; Vitart et al. 1997). The algorithm

detects and tracks structures with local maximum vor-

ticity (850hPa) and wind speed, minimum surface pres-

sure, and a warm core (based on temperature and wind

fields). To be defined as a model storm, the 6-hourly

values of the vorticity, wind speed, and local temperature

anomaly have to be above model and basin-dependent

thresholds and last at least two days. The algorithm has

two parts. In the detection part, vortices that meet en-

vironmental and duration criteria are identified. First,

we identify grid points in the model 6-hourly output that

are above specific dynamical and thermodynamical

thresholds based on model climatology at each ocean

basin in the present climate. Then potential storm lo-

cations that belong to the same storm are connected in

time and space and only storms that last at least two days

are considered. In the tracking part, the storm centers

are first obtained from the vorticity centroid, which

defines the center of the TC-like storm; the location

magnitude of the vorticity centroid in the next (and

previous) time steps in nearby grid points are found; and

the process is repeated until the vorticity value is below

a relaxed value for the vorticity threshold (lower than

the vorticity threshold used in the detection part). The

procedure is performed for all storms obtained using the

FIG. 1. TC tracks in 14CMIP5models (historical runs) and in observations for the period 1980–2005. Only one ensemblemember is shown

for each model.
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detection algorithm. Then, the tracks obtained are

compared to be sure that there are no repeated tracks.

These thresholds are based on statistics of the 6-hourly

output of the historical runs. The definition of the

thresholds was based on a study of the joint probability

distribution of these environmental variables in a cli-

mate model (Camargo and Zebiak 2002). The vorticity

threshold is defined as twice the vorticity standard de-

viation in each basin. The wind speed (for the CMIP5

models 850 hPa, usually 10m or 1000 hPa) threshold is

calculated as the sum of the oceanic global wind speed

plus the wind speed standard deviation in each basin.

The last threshold is for the vertically integrated local

anomalous temperature Tv and is defined as the stan-

dard deviation of Tv in each basin. Although there is

some spread of these thresholds in different basins, there

are much larger differences among different models. The

same thresholds are used for the future climate projection

simulations. Once the vortex passes these criteria, the

6-hourly positions that belong to the same storm are

identified and finally the track is extended in time

backward and forward using a relaxed vorticity threshold.

These thresholds are defined objectively and quanti-

tatively, so there is no ‘‘tuning.’’ There is a resolution

dependence embedded in this algorithm as well, as the

values of maximum vorticity, minimum sea level pressure,

FIG. 2. TC first position in the tracks of 14CMIP5 models (historical runs) and observations for the period 1980–2005 (shown in Fig. 1).

Only one ensemble member is shown for each model.
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and temperature anomaly are defined in a 53 5 gridpoint

box, which is increased to 73 7 or 93 9 as the horizontal

resolution increases. Values of the three thresholds for

the 14models analyzed in thewesternNorth Pacific in the

present climate are given in Table 3 for comparison. The

second relaxed threshold for the vorticity is global (i.e.,

the same for all basins) and is defined based on model

resolution only (see Table 3), similar to the definition of

the wind speed threshold given in Walsh et al. (2007).

One advantage of this methodology is that there are no

subjective definitions of the thresholds and all models are

examined using exactly the same criteria for all. When

comparing TC activity in models that are defined using

different tracking routines, an objective comparison of

the TC activity in these models would be dependent on

the differences between these tracking routines.

Even imposing a warm core requirement on the

storms, extratropical storms are not completely elimi-

nated by our algorithm—a common problem in tracking

algorithms (Horn et al. 2013). Therefore we impose an

additional constraint here that we only consider storms

forming in the tropics (308S–308N) over the ocean. It

should be noted that, in contrast to the results showed

here, in Sheffield et al. (2013) and Maloney et al. (2013,

manuscript submitted to J. Climate) this additional

tropical formation constraint was not imposed and a

uniform (for all models) relaxed vorticity criteria with a

value of 3.5 3 1025 s21 was used.

The genesis potential index (GPI) used here was de-

veloped in Emanuel and Nolan (2004) and discussed in

detail in Camargo et al. (2007a). The GPI has been ex-

tensively applied and analyzed (e.g., Camargo et al.

2007e; Nolan et al. 2007; VS07a; Camargo et al. 2009;

Tippett et al. 2011; Menkes et al. 2012). The GPI is a

measure of potential formation of TCs based on four en-

vironmental variables: namely, low-level vorticity, vertical

wind shear, midlevel relative humidity, and potential in-

tensity. To facilitate comparison among the models, the

GPI was calculated on a 28 latitude3 28 longitude grid for

all models with all model fields being first interpolated to

this grid before the GPI was calculated.

There are many possible genesis indices to choose

from in the literature (e.g., Emanuel 2010; Tippett et al.

2011; Bruy�ere et al. 2012): a recent comparison of a few

genesis indices is given in Menkes et al. (2012). There

are indeed significant differences among them: in the

case of Bruy�ere et al. (2012), for instance, with an index

developed for the North Atlantic region, the moisture

and vorticity are not considered to contribute to the

capacity of the index in reproducing the number of

storms in the region. In Tippett et al. (2011), however,

with an index developed globally using different meth-

odology, the analysis showed that there is a minimum

amount of climatological vorticity necessary for the

formation of storms but, once that amount is reached,

increasing climatological vorticity does not lead to the

formation of more storms. The reason why we chose the

Emanuel and Nolan GPI, instead of any of the other

indices, is for a more direct comparison with the results

of CMIP3, as VS07a used this index in their analysis.

Potential intensity (PI) is a theoretical limit for TC

intensity (Emanuel 1988). The procedure for calculating

the PI was first developed in Emanuel (1995) and later

modified to take into account dissipative heating (Bister

and Emanuel 1998, 2002a,b). The PI depends on sea

surface temperature, sea level pressure, and profiles of

temperature and humidity. PI has been extensively used

as a proxy of TC intensity in analysis of low-resolution

climate models (e.g., VS07b; Camargo et al. 2013), as

local PI has a high correlation with actual TC intensities

at various time scales (Emanuel 2000; Wing et al. 2007).

Similarly to the case of the GPI, the PI was calculated on a

28 3 28 uniform grid for all models.

The cluster analysis was developed in Gaffney (2004)

and is described in detail in Gaffney et al. (2007). The

cluster technique constructs a mixture of quadratic re-

gression models, which are used to fit the geographical

shape of TC tracks. Finite mixture models are able to fit

highly non-Gaussian probability density functions using

few component probability distribution functions. The

model is fit to the data by maximizing the likelihood of

the parameters conditioned on the data. One important

FIG. 3. Distribution of the global number of TCs per year in each

of the models for the historical runs and in observations in the

period 1980–2005. When more than one ensemble member is

available, all ensemblemembers are used in themodel distribution.

The box denotes the range from the 25th to 75th percentile of the

distributions, with the median marked by the line inside the box

and the values outside of the middle quartile being marked by

dashes and crosses.
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advantage of this method is that it easily accommodates

tracks of different lengths. Each TC track is assigned to

one of the clusters. The number of clusters to be used is

not uniquely determined; the optimal choice depends on

the log-likelihood values (interpreted as goodness of

fit) and within-cluster spread (distance of all tracks in

the cluster from the mean regression track). As the

number of clustersK increase, the log-likelihood values

increase and the within-cluster spread decreases, but

both curves show diminishing improvement in fit for K

higher than a certain value, which leads to an optimal

range ofK choices. The final selection within this range

is usually based on the knowledge of the system. This

technique has been applied to observed TC tracks in

various regions, including the western North Pacific

(Camargo et al. 2007c,d), the eastern North Pacific

(Camargo et al. 2008), the Fiji Islands (Chand and

Walsh 2009, 2010), the North Atlantic (Kossin et al.

2010), and more recently the Southern Hemisphere

(Ramsay et al. 2012).

3. Historical and future global TC activity

Models tracks and first position locations in the eight

models for the period 1980–2005 are shown inFigs. 1 and 2,

respectively. Only one ensemble member is shown

for models with more than one ensemble member. The

models present a wide range of global TC activity. A few

models (CCSM4, INM-CM4.0, and NorESM1-M) have

very few TC tracks overall. Some models are relatively

active in the SouthPacific: for example,CanESM2,CSIRO

Mk3.6.0, and HadGEM2-ES. A few other models have

FIG. 4. Seasonal climatological genesis potential index in the models and the NCEP reanalysis for the period 1971–2000. The Northern

(Southern) Hemisphere show the GPI seasonal mean for the August–October (ASO) [January–March (JFM)] season.
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few TCs in some basins but almost none in others (e.g.,

CCSM4, IPSL-CM5A-LR, and MIROC-ESM).

The models with the highest level of TC activity are

CanESM2,CSIROMk3.6.0,GFDLCM3,GFDL-ESM2M,

HadGEM2-ES, MIROC5, andMPI-ESM-LR, but there

are significant differences among these models and all

models have biases compared with observations. Both

GFDL models are very active in the Pacific and Indian

Oceans, with relatively fewer storms in the North At-

lantic. Another interesting characteristic of the GFDL

models is that TCs occur very close to the equator in the

central and western Pacific and Indian Oceans but not in

the eastern Pacific and North Atlantic. MRI-CGCM3is

the most active model globally.

Therearevery fewNorthAtlantic storms in theCanESM2,

CSIROMk3.6.0, FGOALS-g2, andHadGEM2-ESmodels,

with most TC activity occurring in the Southern Hemi-

sphere, western North Pacific, and Bay of Bengal. The

low production of TCs in the North Atlantic is a common

issue among low-resolution models (see, e.g., Camargo

et al. 2005), and many models have problems simulating

well the TC activity in theNorthAtlantic, even if they are

active in the western Pacific and Indian Oceans. There

a few possible reasons for this problem: one is that the

North Atlantic is marginal regarding the formation of

storms and, therefore, minor model biases can easily lead

to a reduction of the TC activity in the region. Further-

more, the production of the model storm is strongly re-

lated to the model easterly waves activity, and very often

these waves are not well represented in the climate

models. Similarly, the eastern North Pacific is commonly

underactive, which has been related to easterly waves not

FIG. 5. Difference of SST in the models and Reynolds SST for the period 1971–2000. The Northern (Southern) Hemisphere show the GPI

seasonal mean for the ASO (JFM) season.
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crossing into that basin from the Atlantic, as well as a

poor representation of the Central Americamountains in

low-resolution models.

Some models tend to have very long tracks in the

Southern Hemisphere (e.g., CanESM2, CSIROMk3.6.0,

GFDLCM3,GFDL-ESM2), leading to a high level of TC

activity more poleward than in observations. Here we

only show storms with genesis in the tropical band (308S–
308N). The frequency of storms forming in the subtropics

and extratropics (not shown) has large differences among

models. One possible explanation for this behavior is

that the tracking scheme is not distinguishing well be-

tween tropical and extratropical storms for those specific

models, despite one of the criteria being that the storm

has a warm core, a common issue among tracking schemes

(e.g., Horn et al. 2013). However, as this high-level activity

out of the tropics only occurs in a few models, this issue

needs to be examined further in more detail. Preliminary

diagnosis of this issue was performed, but no clear so-

lution was found.

The distribution of the global number of TCs per year

in the period 1980–2005 in the models and in observa-

tions is given in Fig. 3. Typical of low-resolution climate

models (Camargo et al. 2005, 2007e), all models have too

few storms per year. There is not a clear relationship

between model horizontal resolution and TC activity

level, but the model with highest horizontal resolution

(MRI-CGCM3, seeTable 1) is themost active and closest

to observed values. However, resolution does not com-

pletely explain TC activity level. For instance, CCSM4

has a similar resolution to MRI-CGCM3 but is very in-

active and the GFDL models have a lower resolution

thanMPI-ESM-LR (Table 1) but their global TC activity

levels are quite similar.

Comparison with the TC activity in the CMIP3

models (Meehl et al. 2007) is discouraging, with little

FIG. 6. Global tracks of the MPI-ESM-LR TCs for (a) ensemble member 1 (ENS1) and (b) ENS2. (c) Mean MPI-

ESM-LR global NTC per month for five ensemble members (ENS1, ENS2, ENS3, ENS4, and ENS5) in the period

1950–2005. (d) Distributions of MPI-ESM-LR global NTC per year for three ensemble members in the period 1950–

2005. Range boxes as in Fig. 3.
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improvement in the CMIP5 model simulations of TC

activity (Walsh et al. 2010, 2013). TC activity was seen to

be better in CMIP3 models with higher horizontal reso-

lution. Simulated TC frequency increases with increasing

resolution if all other factors are kept constant in many

cases (Bengtsson et al. 1995; Murakami and Sugi 2010),

but not always (Strachan et al. 2013). However, model

resolution is clearly not the only factor responsible for the

quality of the TC simulations. TC frequency and spatial

distribution in climate models are sensitive to changes in

model convection schemes (Vitart et al. 2001; Kim et al.

2012; Reed and Jablonowski 2011a; Zhao et al. 2012).

Walsh et al. (2013) pointed to dramatic changes in model

TC frequency in two versions of theCMIP3GFDLmodel

with different dynamical cores and the same convection

parameterizations. An extensive analysis of idealized

simulations using different dynamical cores for the same

model showed that the quality of the TC simulation was

dependent on the interaction of the different model dy-

namical cores and moist convection parameterizations

(Reed and Jablonowski 2012). In summary, increasing

model horizontal resolution is not sufficient to improve its

simulation of TC frequency, as the model TC activity is

sensitive to physical parameterizations and dynamical

cores.

A few models (MIROC5, MPI-ESM-LR, and MRI-

CGCM3) are very active in the South Atlantic basin,

a region where very few storms occur in observations.

Hurricane Catarina (2004) was a very unusual event

(Pezza and Simmonds 2005; McTaggart-Cowan et al.

2006). The occurrence of South Atlantic hurricanes in

climate models is not unusual (e.g., Gualdi et al. 2008),

but the level of activity in the MPI-ESM-LR and MRI-

CGCM3 models in that region is quite high.

The climatological mean GPI is shown in Fig. 4 for all

models and the NCEP reanalysis for the period 1971–

2000. There is a large spread in the values of GPI among

the models, as well as a variety of climatological pat-

terns. As noted in previous studies (Camargo et al.

2007e; Tippett et al. 2011; Walsh et al. 2010, 2013), the

GPI values in the models are much higher than in the

reanalysis. These studies attributed the difference to

the lower values of relative humidity in mid levels in the

reanalysis compared to the climate models, as there are

known differences between the relative humidity in the

40-yr European Centre for Medium-Range Weather

Forecasts Re-Analysis (ERA) and NCEP reanalysis

(Daoud et al. 2009) and biases in the midtroposphere

relative humidity in the NCEP reanalysis (Bony et al.

1997). We calculated the difference between the models

and NCEP reanalysis for the annual zonal-mean clima-

tological relative humidity at 600 hPa between 408S and

408N for the period 1950–2005, and all models, with

exception of CanESM2, have larger values than the re-

analysis. Note that CanESM2 is the model with the

smallest values of GPI.

One aspect of interest is the relationship betweenGPI

and the TC occurrence in models. Low-resolution cli-

mate models tend to have more realistic patterns of GPI

than of TC occurrence and there is no good relationship

betweenGPI andTCoccurrence in themodels (Camargo

et al. 2007e; Walsh et al. 2013). The same is true here: for

instance, while CCSM4, INM-CM4.0, and NorESM1-M

have very few TC geneses in the tropics and a very dif-

ferent pattern than observations, their GPI pattern is

quite similar to the reanalysis. MRI-CGCM3, the model

with the highest resolution, shows the best agreement

between GPI and TC frequency, which is in agreement

with Walsh et al. (2013). Even in the South Atlantic

this relationship holds, with the MRI-CGCM3 GPI in

that region being quite high and the model producing

many TCs.

Figure 5 shows the difference betweenmodel SST and

the NOAA observed SST for the period 1971–2000. In

most models, the SST is colder than observations and

this cold SST bias could potentially help to explain the

low number of storms. It interesting to note that the

MRI-CGCM3 SST is too warm in the Southern Hemi-

sphere, where the model’s GPI is high and the model

produces too many TCs. A few models have warm SST

anomalies in the western boundaries of the American

continent. Various studies showed that future TC pro-

jections are sensitive to the specific SST patterns in the

models (VS07b; Sugi et al. 2009; Villarini et al. 2011).

However, similar to GPI, the direct relationship of TC

FIG. 7. Global number of TCs per year in models for the his-

torical (H) run for the period 1951–2000 and in the future scenarios

RCP4.5 (45) andRCP8.5 (85) in 2051–2100.Range boxes as in Fig. 3.
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frequency and SST bias is not enough to explain the

differences among models in TC activity.

One point of interest is the variability of global TC

activity between different ensemble members of the

same model. Figure 6 shows the global tracks of two

ensemble members of MRI-CGCM3, as well as the

mean number of TCs (NTC) per month and the spread

of the NTC per year for the five ensemble members.

There is a clear similarity of the global tracks and NTC

characteristics among the ensemble members of MRI-

CGCM3. This result is in agreement with the assessment

of ensemble member uncertainty in TC activity of Reed

and Jablonowski (2011b), which concluded that the

dominant differences were due to different model ver-

sions and resolutions and not due to internal variability.

Next we want to examine the model projections of

global TC frequency in the twenty-first century. Here we

exclude from our analysis the six models with mean

NTC closest to zero globally (see Fig. 3). The distribu-

tions of global NTC per year in the historical runs and

the two projection scenarios (RCP4.5 and RCP8.5) are

shown in Fig. 7. There is little consistency among the

models. While there is a slight increase in NTC in the

future for the GFDL-ESM2M (M6) and MPI-ESM-LR

(M12) models, there is a large increase in MRI-CGCM3

(M13) and a small decrease for the CanESM2 (M1),

CSIROMk3.6.0 (M3), GFDL CM3 (M5), HadGEM2-ES

(M7), andMIROC5 (M11) models. Knutson et al. (2010)

analyzed the projections of global TC frequency in many

high-resolution climate models, and the robust response

among them was a small (but significant) decrease in the

global frequency of TCs at the end of the twenty-first

century. The lack of consistency among themodels can be

partly explained by the low resolution and bias in NTC in

the models analyzed here. Recent results using a down-

scaling technique for the CMIP5 models (Emanuel 2013)

resulted in an increase in global TC frequency in the

twenty-first century.

In the case of MRI-CGCM3, the model with highest

resolution in this set of CMIP5 models, the horizontal

resolution is the same (120 km) as the lowest resolution

model in Knutson et al. (2010). It is interesting that here

FIG. 8. (top) Distribution of the NTC in North Atlantic and eastern North Pacific in the period 1950–2005 for models

and observation per year and (bottom) mean NTC per month. Range boxes as in Fig. 3.
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MRI-CGCM3 (Mizuta et al. 2012) projects an increase

the frequency of TCs in the future, while previous results

with the various versions of this atmospheric model

projected a decrease in the global frequency of TCs

when forced with fixed SSTs (Sugi et al. 2009, 2012;

Murakami et al. 2012a,b), even for simulations with the

same resolution that MRI-CGCM3 has in the CMIP5

(Murakami and Sugi 2010). The reasons for the differ-

ences in these results could have multiple sources: cou-

pled ocean instead of fixed SSTs, coupling with chemical

and carbon models, and differences in the algorithm

used for detection and tracking TCs (including thresh-

olds definitions; e.g., Walsh et al. 2007); however, in the

case of this particular model, resolution is not one of the

possible reasons for the differences. Similarly, the MPI-

ESM-LR projections for an increase in global NTC,

though not as dramatic as in the case of MRI-CGCM3,

are still in contrast with results with previous projections

using a high-resolution version of the model (Bengtsson

et al. 2007b). It is particularly interesting that the two

GFDL models have opposite projections for the future,

but the differences between future and present pro-

jections are quite small in both cases.

4. TC activity in the North Atlantic and eastern
North Pacific

We explore now in more detail the TC characteristics

of these simulations in the North Atlantic (NATL) and

the eastern North Pacific (ENP). Previous studies have

shown thatmost low-resolutionmodels have difficulty in

simulating the mean NTC in those regions, even when

they are able to simulate well the interannual variability

(Bengtsson et al. 1995; Vitart et al. 1997; Camargo et al.

2005, 2007a; Walsh et al. 2010).

Projections of NATL TC activity have been the focus

ofmany studies usinghigh-resolution global climatemodels

(Zhao et al. 2009), regional climate models (Knutson et al.

FIG. 9. Tracks of the MPI-ESM-LR TCs for (a) ensemble members (a) ENS1 and (b) ENS2 and the mean MPI-

ESM-LR NTC per month in the (c) North Atlantic and (d) eastern North Pacific for three ensemble members (E1,

E2, and E3) in the period 1950–2005. Distributions of MPI-ESM-LR NTC per year for three ensemble members in

(e) the North Atlantic and (f) the eastern North Pacific in the period 1950–2005. Range boxes as in Fig. 3.
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2008, 2013; Bender et al. 2010), and statistical–dynamical

downscaling (Emanuel et al. 2008). We would like to

examine if the CMIP5 model regional projection of the

Atlantic TC activity is robust and if it is in agreement

with these studies. Recently, Villarini and Vecchi (2012)

used a statistical downscaling methodology to examine

the twenty-first-century projections of Atlantic storms

using the CMIP5 models. They obtained an increase in

the number of TCs in the first half of the twenty-first

century but obtained ambiguous results when the whole

twenty-first century was considered. In the case of the

ENP, there is no robust signal among models for that

region (e.g., Emanuel et al. 2008).

The averageNTCpermonth in theNATL andENP in

models and observations is shown in Fig. 8 for five and

six models, respectively. In both basins all models have

too few TCs per year; note that the other models (see

Fig. 1) have even fewer storms or almost none. Exami-

nation of the annual cycle reveals that the models pro-

duce too few TCs during the active season and, in

contrast, too many TCs during the inactive season when

there are none or very few TCs in observations.

Figure 9 shows the tracks for two ensemble members

of MPI-ESM-LR and the NTC distribution per year and

the mean NTC per month for three MPI-ESM-LR en-

semble members in the historical runs. Similar to global

case for MRI-CGCM3, it is clear that, though there is

variability in number and track patterns among the en-

semble members of the same model for specific regions,

these are much more similar to each other than to other

models.

We now compare present TC activity with RCP4.5

and RCP8.5 projections of TC activity in the Atlantic

and ENP. Figure 10 shows the distribution of TCs per

year in the models in the present and future. There is no

robust signal across models in changes of Atlantic NTC

by the end of the twenty-first century. This result is not

completely unexpected given the differences in the NTC

climatology in the Atlantic in the models analyzed here.

Furthermore, using a statistical downscaling technique,

no robust changes in Atlantic NTC for the end of the

twenty-first century were obtained either (Villarini and

Vecchi 2012). However, dynamical downscaling points

toward a decrease in the number of storms in the At-

lantic for the CMIP5 and CMIP3 models (Knutson et al.

2013). Similar to the Atlantic, there is no robust change

in the ENP NTC across the models.

Another aspect of TC activity that we would like to

investigate is the possibility of track changes in the At-

lantic. Given that TC landfall location is determined by

its track, if there are significant changes in track types,

these could lead to significant changes in landfall fre-

quency and location. As an example, we apply cluster

analysis to theMPI-ESM-LR andMRI-CGCM3models

in the Atlantic, as these models have more ensemble

members available and the track patterns of thesemodels

are not completely unrealistic. With cluster analysis, we

separate the TC tracks into groups with similar track

types (Fig. 11) and compare the model track types with

the observed ones, as well as between models, identi-

fying model biases and possible track shifts in the future

climates.

We used all of the tracks in all scenarios and ensem-

bles members to construct our cluster analysis. Details

of the methodology can be found in Camargo et al.

(2007e, 2008) and Kossin et al. (2010). Figure 11 shows

the result of the cluster analysis for the MPI-ESM-LR

(left panels) and MRI-CGCM3 (right panels) Atlantic

tracks. The optimal number of cluster choice for ob-

served tracks wasK5 4 (Kossin et al. 2010). Here we use

the same number of clusters. The four clusters in obser-

vations include a cluster of subtropical storms, one of Gulf

of Mexico storms, and two types of deep tropics storms,

one with formation more to the east of the basin and the

other near the Caribbean islands (see Fig. 1 in Kossin

et al. 2010).

MPI-ESM-LR has four clusters in the Atlantic that

are similar to the observed, but the formation in the deep

tropics near the Caribbean is weak (Fig. 11). The main

difference inMRI-CGCM3 tracks and the observations is

the existence of one additional subtropical cluster, with

no correspondence to the observations, in the eastern

Atlantic (Fig. 11h) and lack of formation in the deep

tropics (Fig. 11f).

Analyzing the differences of cluster assignment of

tracks between the historical and future scenarios of

FIG. 10. NTC per year in the models in (top) the North Atlantic

and (bottom) the easternNorth Pacific for the historical (H) period

1951–2000 and RCP4.5 (R45) and RCP8.5 (R85) future scenarios

(2051–2100). Range boxes as in Fig. 3.
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MPI-ESM-LR, there is a statistically significant increase

in the percentage of storms in the subtropical cluster

(K5 2) and a decrease in the percentage of storms in the

tropical cluster (K 5 1). In the case of MRI-CGCM3,

there is an increase in the Gulf of Mexico storms and a

decrease in the subtropical storms: namely, K 5 1 and

K5 4, the latter having no counterpart in the observations.

The Atlantic tracks in the high-resolution version of

MRI-CGCM3 used in Murakami and Wang (2010) are

much more similar to the observed Atlantic tracks.

There are nowesternAtlantic subtropical tracks, as seen

here. Murakami and Wang (2010) examined possible

changes in NATL storms using high-resolution simula-

tions of MRI-CGCM3 and found significant zonal track

changes with a decrease (increase) of TC occurrence in

the western (eastern) part of the basin. They attributed

these track changes to changes in genesis locations, not

to changes in circulation. Colbert et al. (2013) used the

winds of the CMIP3models to obtain Atlantic TC tracks

simulated by a beta advection model. They obtained

a statistically decrease in straight-moving tracks (west-

ward) and an increase in the recurving tracks in the twenty-

first century, which could also be viewed as a west–east

zonal shift.

5. Changes in the large-scale environment

Given that TC activity in most CMIP5 models is still

not realistic, it is important to use an alternative approach

to infer future changes in TC activity. We expect that the

CMIP5 models are better able to simulate changes in the

large-scale environment than the TCs themselves. Al-

though the large-scale environmental fields are not very

good predictors of the TC model frequency in specific

regions in the CMIP5 models, we expect that they will

relatewell to the TCs in the real world. Therefore, wewill

now examine changes in the large-scale environment in

the RCP8.5 scenario, compared with the historical

FIG. 11. North Atlantic TCs tracks by cluster (K1 to K4) for the (left) MPI-ESM-LR and (right) MRI-CGCM3

models. Tracks for one ensemble member of the historical, RCP4.5, and RCP8.5 runs are shown together for each

cluster and model.
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simulations in all models. In Fig. 12 we show the dif-

ference in the climatological genesis potential index in

the future and present for all models and themultimodel

mean. The climatological GPI in the historical simula-

tion for the samemodels was shown in Fig. 4. The model

mean GPI difference is positive in most regions, with

the exception of the central south Pacific. An increase in

the GPI in the future can be interpreted as an increase

in the global TC frequency in these models in a future

climate. However, in some cases model GPI is observed

to increase even when the model frequency decreases

(Camargo et al. 2012), therefore we need caution in in-

terpreting this result. For instance, the model with the

largest increase ofGPI is theMIROC5 (M11), which has

a decrease in the number of TCs globally in this scenario

(Fig. 5) as well. In some models, the GPI difference

patterns are shifts in location, such as in the Southern

Hemisphere (M2, M3, M4, M13, and M14) and western

North Pacific (M2, M4, M7, M8, and M14). These shifts

resembleGPIENSOdifference patterns (El Ni~nominus

La Ni~na), discussed in Camargo et al. (2007a). Another

interesting feature is the decrease of GPI in the MRI-

CGCM3 (M13) in the South Atlantic, where there is an

unrealistically high number of TCs in the historical run

(Fig. 1g). It is important to note that Emanuel (2013)

obtained an increase in a genesis index (Emanuel 2010)

at the end twenty-first century for the CMIP5 models, as

well as an increase in the global frequency of TCs at the

FIG. 12. Difference of model GPI climatology between the RCP8.5 future scenario (2071–2100) and historical (1971–2000) simulation.

The multimodel mean difference is shown in the bottom right panel. In all panels, the difference in ASO (JFM) is shown in the Northern

(Southern) Hemisphere. All ensemble members available are used to calculate the GPI climatology per model and scenario.
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end of twenty-first century when downscaling the CMIP5

models.

VS07a calculated the model mean difference of GPI

in future and present climates for the CMIP3 models in

the June–November period (Fig. 4d in VS07a). In that

case, there was also an increase in most of the Northern

Hemisphere GPI in the ensemble mean with a maximum

in the western North Pacific, with exception of the ENP

where the GPI decreased. Here the model mean differ-

ence is positive in the whole Northern Hemisphere.

Another quantity of interest is the potential intensity,

which is the theoretical maximum of TCs. Figure 13 shows

the difference of the potential intensity in the RCP8.5 and

historical scenarios for the individual models and model

mean. The PI increases in most of the Northern Hemi-

sphere in allmodels, with exception of a small region of the

eastern part of the NATL and Pacific Oceans. In some

models, the decrease in PI in the NATL is restricted to

a small region near Africa, while in other models a larger

region in the NATL has negative PI differences, including

FIG. 13. As in Fig. 12, but of potential intensity.
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the Gulf of Mexico and MDR region. In the Southern

Hemisphere, there is an increase in PI in most regions. In

all models there is a strong decrease in PI in the southeast

Pacific and Atlantic, regions where normally TCs do not

occur. The VS07a and VS07b analysis of the PI of the

CMIP3 models for the June–November season has a very

similar pattern in the Northern Hemisphere to that shown

here: an increase in PI in most of the Northern Hemi-

sphere, with one maximum near Hawaii and the other

centered on the equator near the date line, and a decrease

in PI in the NATL, which was attributed to changes in the

remote SST (VS07b). The NATL negative region in the

CMIP5 model mean PI differences is smaller and more

restricted to the easternAtlantic than in the case ofCMIP3.

We also analyzed changes in the magnitude of the ver-

tical wind shear in future and present climates (Fig. 14).

Most models have large regions of increased (decreased)

vertical shear in the subtropical (tropical) latitudes of the

Southern Hemisphere, which could lead to an equatorial

shift of the TC activity in the Southern Hemisphere. In

the Northern Hemisphere, many models show an in-

crease in the vertical shear in the ENP and Caribbean

region, extending in some cases into the Gulf of Mexico.

In contrast, the eastern part of the Atlantic, western

North Pacific, and northern IndianOcean have a reduction

of the vertical wind shear. Once more, the model mean

pattern is extremely similar to that obtained in the CMIP3

models in VS07a for the Northern Hemisphere TC sea-

son. These changes in vertical shear are associated to

the projected decrease in the Pacific Walker circulation

(VS07a), while the near-equatorial vertical shear weak-

ening was related to the near-equatorial zonal overturning

FIG. 14. As in Fig. 12, but of climatological model vertical wind shear. The vertical wind shear magnitude is calculated as the magnitude of

the difference between the 200- and 850-hPa winds.
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(VS07a; Vecchi and Soden 2007c; Vecchi et al. 2006) due

to global thermodynamic constraints (Held and Soden

2006).

The difference of sea level pressure (SLP) in theRCP8.5

and historical runs is shown in Fig. 15. The movement of

TCs (i.e., their tracks) is largely determined by the ambient

flow, or steering winds, with modifications due to the

beta effect (Chan 2005). The steering winds are strongly

related to the position and strength of the subtropical

highs. Therefore, any future changes in the subtropical

highs will be associated with shifts in TC tracks (Colbert

and Soden 2012). The differences in SLP in the NATL

shown in Fig. 15 for most models are associated with

a westward expansion of the subtropical high, which

could potentially lead to more landfalls in the southeast

region of the United States. Li et al. (2013) has noticed

this extension of the NATL subtropical high in the

CMIP5 models for the RCP4.5 scenario and it was also

present in the CMIP3 models (Li et al. 2011). In the

western North Pacific, the increase in the SLP in the

RCP8.5 projections could indicate a southwestward shift

of the subtropical high. Similarly, the increase of SLP in

FIG. 15. As in Fig. 12, but of climatological sea level pressure.
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the Southern Hemisphere could be related to an equa-

torial shift of the subtropical high in the South Pacific

and south Indian Ocean.

6. Summary

An assessment of the TC activity in eight CMIP5

models was presented. Although the typical model res-

olution increased since the previous CMIP3 assessment,

model global TC frequency is still much lower than

observed. Only in the model with the highest resolution

is global TC occurrence near the observed value, but this

number includes a high number of Southern Hemisphere

TCs, some in regions with very low frequency in obser-

vations. Furthermore, there are still deficiencies in the

geographical patterns of the TC tracks and formation,

with many models being relatively active in the western

North Pacific, Indian Ocean, and Southern Hemisphere

and inactive in the North Atlantic and eastern North

Pacific. There is no robust signal across the models in

changes in global TC frequency for future scenarios. An

analysis of the regional TC activity in theENPandNATL

did not detect any robust changes in TC frequency in

those two regions either.

Given the current state of the art of the CMIP5 in

generating model TC activity, it is fundamental to con-

tinue using different approaches to infer future TC ac-

tivity. One way to do that is to examine the large-scale

environmental variables projection changes associated

with TC activity. The CMIP5models projected large-scale

environmental changes are very consistent with the

CMIP3 results. These changes in the environmental fields

in future projections will hopefully be related to TC ac-

tivity in the future, even if they are not strongly related

to the model TCs with low resolution. More detailed

analysis of the environmental changes is necessary: for

instance, the seasonality of PI, which had changes in the

CMIP3 models (Sobel and Camargo 2011). As basin-

wide PI trends can be larger than actual local potential

intensity (PI) trends (Kossin and Camargo 2009), cau-

tion must be taken not to overestimate future trends

when using basinwide large-scale variables.

It is also important to continue using a variety of down-

scaling methods (statistical and dynamical) to infer future

projections of TC frequency, intensity, and tracks (e.g.,

Knutson et al. 2008; Villarini andVecchi 2012, 2013).High-

resolution models forced with fixed SST from the CMIP5

models (e.g., Zhao et al. 2009) and statistical–dynamical

downscaling results (e.g., Emanuel et al. 2008) should still

give a better assessment of future track and frequency

projections than one using low-resolution models.

The first studies that used downscaling techniques for

the CMIP5models have just been published. In Emanuel

(2013) downscaling of the CMIP5 models led to an in-

crease in the global TC frequency in the twenty-first

century, contrasting a decrease in the global frequency of

TCs at the end of twenty-first century obtained when

downscaling the CMIP3models with the same technique.

A dynamical downscaling of the CMIP3 and CMIP5

model projections over theNorthAtlantic (Knutson et al.

2013) resulted in a significant reduction of TC frequency

by the end of the twenty-first century and an increase in

frequency of very intense storms (Categories 4 and 5), in

agreement with previous results (Knutson et al. 2008;

Bender et al. 2010).
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