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Abstract. Defense in depth is vital as no single security product detects
all of today’s attacks. To design defense in depth organizations rely on
best practices and isolated product reviews with no way to determine the
marginal benefit of additional security products. We propose empirically
testing security products’ detection rates by linking multiple pieces of
data such as network traffic, executable files, and an email to the attack
that generated all the data. This allows us to directly compare diverse
security products and to compute the increase in total detection rate
gained by adding a security product to a defense in depth strategy not
just its stand alone detection rate. This approach provides an automated
means of evaluating risks and the security posture of alternative security
architectures. We perform an experiment implementing this approach
for real drive-by download attacks found in a real time email spam feed
and compare over 40 security products and human click-through rates
by linking email, URL, network content, and executable file attack data.
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1 Introduction

The modern Chief Security Officer’s (CSO) primary goal to secure an organiza-
tion in a cost effective manner is frustrated by a lack of formal empirical data
suitable for optimizing defense in depth architecture. Purchase price, mainte-
nance costs, cost of false positives on productivity, and the costs of damages
prevented by attacks blocked should all be taken into account during purchases
of security products. While all these aspects of the cost of security products are
important, in this work we focus on measurement of attacks blocked by various
products. CSOs can follow expert knowledge codified in best practices and com-
pliance standards such as HIPAA and PCI. This leads to deployment of many
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security products such as firewalls, intrusion detection systems (IDS), antivirus,
web application firewalls, patch management, and others to provide defense in
depth where a particular attack must evade many security products in order to
be successful. Intuitively the hope is that attacks that one security product might
miss will be detected by another, but such intuitive best practice assumptions
often fail or are incomplete as seen in a recent quantitative study of password
policy assumptions [1]

To illustrate the current ad hoc nature of defense in depth deployment, con-
sider the following hypothetical scenarios depicted in Figure 1. Imagine an orga-
nization with security products deployed across three layers of defense: a firewall,
an IDS/IPS, and host antivirus. Assume this organization suffers many attacks
against its hosts which could be detected by any of these three layers. In these
figures, the red squares represent attacks. For each security product consider it
capable of detecting any attacks that fall within its circle. Consider two scenarios
presented notionally in Figures 1A and 1B. Figure 1A illustrates the intuitive
hope of defense in depth where each security product is able to detect additional
attacks and few attacks are able to bypass all three. Figure 1B shows a pes-
simistic view where the security products only detect the same group of easily
detected attacks while leaving the organization vulnerable.

Additionally, consider the scenar-
ios in Figures 1A, 1C and 1D. In
these figures, we have not only differ- 4 0

ent layers of defense but consider spe- = | Host A
cific products. Figure 1A represents ’ A
an ideal setup, but consider an orga- ]

nization whose current products are i lns'fps

as seen in Figure 1C. Once aware of

the gap in coverage seen here, the or- Attack B
ganization could find a product that D .
closes their specific gap. This is seen . 'HDG;M

in Figure 1D where the organization
may replace firewall 3 with firewall
2 to achieve better coverage. While
similar in terms of detection rate and
absolute number of attacks detected,

firewall 2 and firewall 3 differ in terms
of which attacks they block. Current
product testing only shows per prod-
uct detection rates without indication
of what overlap might exist with other
products.

We address this issue by expand-
ing the standard security product de-

Fig. 1: Illustration of overlap and total
coverage of four defense in depth deploy-
ments. Each square represents an at-
tack. Each circle is a security product.
Attacks in a circle mean that those at-
tacks will be detected by that security
product.

tection rate testing in two ways. First, we track not only individual security
product detection rates, but also which attacks each security product detects.



This allows us to take a union of the sets of attacks an arbitrary group of se-
curity products detect in order to calculate the coverage or total detection rate
a set of security products have in aggregate against a set of attacks. Second,
rather than testing security products against isolated pieces of attack data, we
carefully record and link all data from a particular attack in its various forms so
that security products from multiple layers of defense can be tested against the
same attack.

This new approach to data gathering and testing could both validate the
need for a new security product and give a baseline to quantitatively measure
how much that security product improves the overall security posture of the
organization by calculating the increase in coverage (total detection rate) after
adding that product. Any inexpensive security product that is complementary
to the organizations’ current defense in depth becomes a good investment while
expensive products that add little relative improvement could be used only to
protect the most valuable of assets. Additionally, since the data sets and security
products only have to be gathered and tested by one security service provider
regardless of how many organizations make use of the data, this approach is
scalable with costs amortized across any number of benefiting organizations.

In order to demonstrate the useful knowledge that is possible to gain from our
methodology, we created a prototype system, we call Security Posture Integration
and Correlation Engine (SPICE). SPICE covers four layers of security tested in
near real time (within a few minutes in most cases) against real in the wild
drive-by download attacks originating in widespread spam emails. To prevent
biasing results by using existing known malware, we use a real time spam feed
from Abusix [2] to send links to an instance of the Cuckoo Sandbox [3] honeypot
driving full virtual machines designed to be vulnerable to common in the wild
drive-by download exploits. The files, URLs visited, and full network packet
capture are then logged and linked to the email that sent the malicious URL.
We integrate a fifth layer of security, human click-through rates, into the system
via a user study utilizing the same attack data allowing us to directly link the
believability of spam emails to detection of the attack at other layers. While
this experiment and its data collection is specific to the widespread drive-by
download attack vector, we discuss applying our methodology (linking attack
data across layers and tracking individual attack detection by security products
rather than aggregate detection rates) to other attackers and attack vectors
in Section 2. The key innovation in SPICE over existing malware collection is
that we systematically and automatically link the data captured. Knowing for
example which HTTP link led to which Windows PE file being loaded onto
a victim machine allows us to compare a domain reputation system such as
Google SafeWeb to a host or network antivirus product. We can determine that
the attack would have been blocked had either successfully identified it.

This paper provides the following contributions:

1. We describe a practical methodology for calculating the coverage (total de-
tection rate) of a group of security products deployed across many layers of



security as defense in depth as well as the marginal detection rate gained by
adding a new security product.

. We apply this methodology to create SPICE, a prototype system, collecting

drive-by download attacks in near real time linking emails, domain names,
network traffic, and executables to each attack.

. With this data, we test over 40 security products across many layers of

defense. We report individual detection rates and delayed detections as well
as the correlation and total coverage of sets of security products.

. Using this methodology and prototype we are able to compare the results of

a user study on human click through rates for actual attack emails to other
security layers.

. The data we have gathered will be provided to the research community.

The linked attack components and detailed detection results may offer new
research opportunities for the research community.

The remainder of this paper is organized as follows. Section 2 discusses def-

initions, overall approach, and the challenges facing such comprehensive mea-
surement. Section 3 describes the SPICE system architecture. Section 4 presents
detection rate, coverage, correlation results, and user study results. Section 5
discusses related work on defense in depth, drive-by downloads, measurement
experiments, and best practices. Section 6 mentions future goals and directions
going forward. Finally, section 7 summarizes the findings and approach.

2

Methodology

2.1 Approach

The approach for measuring defense in depth consists of a series of steps.

1.

Choose a particular attack vector. This paper centers on a prototype exper-
iment for drive-by downloads. Other potential attack vectors include web
server attacks, insider attacks, data exfiltration, and so forth.

Find security products that are capable of detecting an attack for the chosen
attack vector.

Set up a honeypot capable of recording all the data from the attack that each
of these security products take as input. For example, ensure the honeypot
can capture the network traffic to test a network IDS and executable files to
test antivirus or host detectors.

Collect attack data and normal data if possible. In the case of testing against
widespread attacks as we do with SPICE this could come from a commer-
cial spam feed or existing honeypot. Real time in the wild data is ideal for
accurately measuring existing attacks.

Have the honeypot record all the attacks in real time and monitor for suc-
cessful attacks. Save all the data related to successful attacks and link the
attack components.



6. Test each security product against appropriate attack components of the
data collected and record the results. Use these results to determine which
security products detected which attacks.

7. With a set of detected attacks for each security product one can answer
questions such as what is the coverage (total detection rate) of a group of
security products, the marginal increase in detection rate by adding each
security product, and which ones detect the most difficult attacks.

This process is repeatable for each attack vector to develop a broad view
of the security posture of the defenses although additional attack vector specific
data collection methods would be required. The most difficult task is data collec-
tion, which in turns depends on the type of attacker an organization is interested
in defending against. SPICE is as reliant as any other testing framework on good
underlying data and ground truth.

2.2 Definitions

Attack: An instance of an attacker attempting to gain unauthorized access to
a system. For this experiment, we more specifically define an attack as a single
instance of a virtual machine in a honeypot visiting a drive-by download website
and getting infected with an executable file.

Attack Cluster: A group of similar attacks presumably launched by the same
attacker. For SPICE, we group attacks into attack clusters based on email con-
tents!.

Layer: In this work we use ’layer’ to refer to all the security products deployed in
a defense in depth architecture that use a particular type of data. For instance,
a defense in depth architecture with regards to the drive-by download attack
vector is made up of many layers such as security products operating on email
content, security products operating on network traffic, etc.

2.3 Linking Attack Vector Data

We link attack data so that security products from different layers can be tested
against the same attack based on whatever data that attack generates suitable
for each layer. Recording and linking this data takes different forms based on
the attack vector. For instance in the drive-by download scenario one would
capture the spam email, the initial malicious link, the network traffic as a vir-
tual machine visits the link and gets infected, and the files and processes loaded
onto the victim machine. For web application attacks, one would capture incom-
ing network packets, reassembled HTTP requests, server host data such as file

! We cluster emails with a similarity score greater than .8 computed between two
emails’ content by taking the ratio of the sum of the lengths minus the Levenshtein
distance with weight two for character replacement and the sum of the lengths.



system accesses and system calls, network traffic to the database backend, and
database queries linking all this data together by time window and other signa-
tures such as IP address and process ID. For the insider threat attack vector, we
could track user activity logging into each server, file transfers, host data such
as file access and system calls, and outbound network traffic linking this data
together by user login and machine IP address. Each security product is tested
as to whether it can detect the attack through whichever piece(s) of this data
it is designed to process. For example, user education would be tested on the
spam email content from the attack while a network intrusion prevention system
would read the network data from the same attack.

While SPICE deals only with the initial attack vector data crossing four
layers of security, additional layers of security play an important role, especially
against more sophisticated adversaries. The stages of an attack after initial infec-
tion such as propagation, downloading additional malicious features, and even-
tually data capture and exfiltration provide the potential for many more layers
of security to accurately detect some stage of an attack. SPICE can incorpo-
rate these additional layers of data if additional data collection capabilities are
added. The most straightforward extension would be simply to leave any infected
honeypots online and observe future behaviors. This could capture any generic
botnet traffic, but without exposing any sensitive data. We believe that a more
sophisticated honeypot solution where attacks are run on servers with enticing
but fake data such as described in [4] could be constructed. This would allow
for excellent data collection and the ability to accurately test security products
designed for data loss prevention or multistage infections.

2.4 Discussion of Data Sets and Adversarial Capabilities

We define each class of adversary by the additional resources/capabilities they
bring to bear. While certainly not perfect, we believe that definitions along these
lines provide clear means of separation and data gathering while still giving
organizations a good idea of the level of sophistication of adversaries they are
vulnerable to. Some of these adversaries lend themselves to easy data collection
using honeypots collecting real data on the internet. Others, especially as they
grow in sophistication raise the cost of in the wild collection with sparser data and
the expense of fielding sophisticated honeypots. For many of these we propose
approximate synthetic data set generation that while not ideal could at least
provide a picture of the threat. Note that the scope of this experiment is limited
to the widespread untargeted exploit kit attackers as described below.

Widespread Untargeted Exploit Kit Attackers One drive-by download
adversary class is what we term a widespread untargeted exploit kit attacker.
This is an adversary that not only makes general nontargeted attacks, but does
so against any email address available. A perfectly representative data set is
then easily collected from honeypot emails. The only challenge in modeling such
an adversary is sorting through the enourmous amounts of non-harmful spam to



find those spam emails that contain malicious links. These links seem to point to
standard (and perhaps even outdated) exploit kits with well known exploits and
mostly not so subtle executable payloads. What makes this adversary dangerous
is that an organization must be prepared to deal with the attacks as they are
widespread enough that they will certainly reach the organization. This is the
adversary class that our experimental data set represents.

Targeted Exploit Kit Attackers Another class of adversary is one we term as
targeted exploit kit user. This adversary would still lack the innovation and/or
resources to field any true zero-day exploits, but is capable of using the available
attack tools to their fullest. This adversary also is capable of making targeted at-
tacks using spear-phishing and brand new clean domains in order to compromise
higher value targets. This is the level of adversary where inexpensive security
products like domain reputation and email spam filtering start to fail. Classes
of security products such as fully patched systems, sophisticated antivirus with
whitelisting and behavioral analysis, host IDS, honey files, and data loss preven-
tion systems become important if not necessary. Modeling this adversary class
with in-the-wild data becomes difficult unless an organization has the opportu-
nities to capture such attacks with its own honeypots for later analysis. Due to
this class of adversary’s reliance on existing exploit kits and available tools, we
believe that a reasonable data set could be manufactured using those same tools.
The challenge here is to maintain up to date copies of widely available attack
tools and exploit kits especially when new exploits are added to the exploit kits
before patches are widely available.

Zero-day, insiders, and more sophisticated attackers As attackers in-
crease in sophisticated data goes from hard to collect to nearly impossible. Even
if any such data becomes available, it would likely be of a historical nature and
scarce. Even historical data could be interesting to test with as security products
could have their updates rolled back to a date before the data was sent. Any
conclusions drawn based on historical data would still be suspect as the nature
of sophisticated attacks is to be fairly unique.

3 System Architecture

The Security Posture Integration and Correlation Engine (SPICE) prototype
system, depicted in Figure 2 extends a traditional honeypot by carefully linking
attack data across different layers in a database such that security products even
from different layers of defense can all be compared. In this way, the coverage of
an organization’s defense in depth architecture can be evaluated. As an attack
hits the honeypot, pieces of it are logged and then scanned by the appropriate
security products once confirmed as malicious. As these pieces are linked, we can
determine which security products detect the attack even if they run on different
pieces of data linked to the same attack.
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Fig. 2: An overview of SPICE. We build upon a traditional honeypot by carefully
linking attack data in order to see how security products from different layers of
defense overlap or complement each other.

We use an existing spam stream from spamfeed.me by Abusix [2]. It is a real-
time spam feed that is captured through a large number of spam traps online. We
receive 1 million emails a day. Fach email is individually parsed, and all URLs
from that email are then extracted and put into a database. Unfortunately,
while such a feed guarantees that the emails are spam, the distribution of spam
is highly skewed. Of the emails that even had links, the vast majority point to
pharmaceutical spam with only a fraction of a percent serving active malicious
content, handfuls per day from unique sites. We filter out links visiting only one
from each domain for any twelve hour period in order to reduce the load on the
VM clusters visiting each link.

To visit the URLs in emails, we use four clusters of virtual machines (VM),
with 40 in each cluster that run on top of VirtualBox [5] across two physical
machines. These virtual machines run off RAMdisk to minimize the impact of
disk IO towards running and reverting virtual machines. Each cluster of virtual
machine has its own configuration, with variations of browsers installed and its
plugins such as Java, Adobe Flash, Adobe Acrobat Reader. We then validate
each cluster’s setup against CANVAS [6] a white hat penetration testing tool,
making sure they are indeed vulnerable to existing exploits known to be targeted
by exploit kits. We use Cuckoo Sandbox [3] to drive these virtual machines to
visit each link logging host activity and new files created.

Each cluster has it own driver, which takes the URL feed and instructs the
browser inside each machine to visit the link. We visit each URL three times
per VM cluster, to compensate for the instability of the exploits. Sometimes
exploits fail to infect even vulnerable machines, most likely due to poor code or
nondeterministic exploit conditions. After waiting at least one minute, the VM
is reverted to a clean state.

Each time, a VM visits a link the honeypot generates a log that contains a
pcap file of the network traffic generated, and records details of the execution of



programs in the operating system as well as new files generated. SPICE scans log
files to determine if any executable files have been generated. The appearance
of a new executable file is a strong indicator of an attack successfully occurring
and provides a high confidence of malicious behavior, with a zero false positive
rate as far as can be determined. Every successfully created new executable is
eventually identified as malicious by at least one of the antivirus products tested.
This classification is also used in other recent literature on drive-by download
attacks [7]. If a new executable is found, we flag this as an attack and store the
executable files as well as the email, pcap file, and the URLSs visited during that
attack linked to the attack in a central database.

We have installed three host based antivirus software programs, which scan
the new files within a minute after the file has been logged and inserted into the
central database. The antivirus programs rescan the files every six hours to test
if new updates to the antivirus program are capable of detecting the attack. All
the antivirus software is configured to update regularly. At the same time, we
send the executable files to VirusTotal [8] once every 12 hours.

On top of scanning the executable files, we have the email and pcap file
that are associated with the attack. We run Spam Assassin [9] on the email and
Snort [10] a network IDS on the pcap file. Both of them follow the same rule
for processing the incoming data: within a minute after arrival and rescans at
6 hour intervals. Spam assassin is configured to use the most up to date rules
from the Internet automatically. Snort updates its rules daily from the Emerging
Threats [11] public rulesets.

We also test domain reputation systems. We use the domain reputation data
from four public domain blacklists to test each link that is associated with the
attack to see if the domain is flagged as malicious. Whenever there is any result
from the scanning system, they are added to the database for further analysis
and rescanned periodically.

In order to test the efficacy of security education for users in an organization,
we conducted a user study to measure the human factor in drive-by download
attacks such as performed in [12]. User education has the potential to be a
beneficial layer of defense as it complements almost all existing layers. If users
can spot suspicious links and not click on them in the first place then the attack is
thwarted. To test the likelihood of users clicking on a malicious link in the spam
emails, we took one email from each of the attack clusters. After adding a unique
identifier to and changing the malicious link to point to a benign web server with
an unaffiliated domain name, we then sent the email to 10 randomly selected
users from (anonymized) (IRB approval was received and will be cited) for each
cluster resulting in a total of 360 emails sent. We send these emails from a clean
account with an old nonmalicious domain for the links to evade reputation based
spam filters, but content based spam filters could still affect this experiment so
the results will represent more of a lower bound. If a user visited that unique
link we recorded the click through and displayed a webpage detailing the study
as well as warning of the dangers of clicking unknown links. By using the same
attack data used by the other security products for testing, we can use this user



study to see how human click-through rates overlap with other attack detection.
In the future, one could experiment with different user education techniques
and by comparing their effectiveness directly against other security products
one could determine whether user education is more cost effective than buying
additional technical security products.

In summary, the entire list of products employed in SPICE includes:

. One email spam detector

. Human spam click through measurement
Four domain reputation systems

. One network IDS

. Three host antivirus programs

. Forty antivirus engines via VirusTotal [8]

N R N

4 Results

4.1 Attack Data Collected

The 1463 virtual machines infected in the course of the five and a half week
experiment cover attacks from 730 unique emails. With an average of about two
infections per email out of the twelve times each link is visited (three per four
virtual machine setups) we note that capturing in the wild drive-by download
attacks is not reliable. The low rate of infections can be attributed to a combi-
nation of factors that make precise measurements difficult. A particular attacker
may not have an effective exploit for some versions of vulnerable software. We
mitigate this by confirming that in the wild exploits target the versions of vulner-
able software each virtual machine setup runs. An attacker may blacklist repeat
visits from the same IP or to the same unique link to thwart probing. In this
case the best we can hope for is to be infected the first time. Some exploits are
more reliable than others. Also, an exploit can fail or take longer to compromise
a virtual machine than SPICE monitors.

Associated with these attacks are 942 distinct domains visited by virtual
machines during the course of the infection and 576 unique executable files. The
overlap of exactly the same files being used by attacks that started with separate
emails indicates that many of these attacks are originating from the same attack
campaign. In fact, most emails end up being a slight polymorphic variation of
each other presumably to evade basic exact match spam filters. Once we cluster
these similar emails (see Section 2.2 for details) we derive only 36 clusters. Unlike
phishing emails or pharmaceutical spam, these emails’ sole purpose is to get a
user to visit the URL, which then launches a drive-by download attack.

In reporting successful detection of an attack cluster for a security product,
we choose a pessimistic view. As launching additional attacks is inexpensive for
an attacker, if a security product fails to raise at least one alert per attack in that
cluster, then we claim that that security product does not detect the attack. We
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believe that this is the most realistic scenario since as long as one of the attacks
gets through then the adversary succeeds.

Clustering attacks based on email similarity yields a view untainted by re-
peated high volume attacks seen in Figure 3. We anonymize the commercial
products in order to avoid any apparent bias or endorsement. The graph shows
the number of attack clusters detected at first scan as well as those eventually
detected, which is discussed further below. A wide range of individual security
product effectiveness is displayed varying from products completely ineffective
upon first scan to those that detect the vast majority of attack clusters. Here
we see that while many security products still perform well, a need exists for
multiple security products to fill gaps in coverage as no single security product

detects all attacks.

4.2 Late Detections

Although the initial detection of an
attack is most important and what is
typically measured, we also continue
to test security products over time
to see if they eventually detect at-
tacks that they initially missed. See
these eventually detected attacks in
Figure 3. For the initial test of each
attack’s appropriate data (file for an-
tivirus, PCAP for NIDS, etc) against
each security product we averaged
11.3 detected of the 36 clusters. In the
weeks following the initial infection as
we daily retested each attack that av-
erage eventually swelled to 27.3 detec-
tions of the 36 clusters per security
product. The mean time between the
attack occurring and the rescan that
successfully detected previously unde-
tected attack is 5.7 days on average
for the security products we tested.
This does vary significantly by secu-
rity product as seen in Figure 4 with
some security products averaging less
than a day delay and others taking
upwards of 25 days. This striking re-
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Fig. 5: Graphic display of the first time
each security product is tested with an
attack cluster. Each concentric circle is
a security product and each arc is one
attack cluster. If that security product
detects the attack cluster then the in-
tersection of the circle and arc is dark
otherwise it is light.

sult confirms the need for testing to be done in real time as a significant delay
can radically alter the results. The security products tested via VirusTotal may
even have inflated initial detection rates as the hours delayed between capturing
a new malicious file and their servers testing it could give vendors enough time



to add new signatures that would not have been present during a real time at-
tack. Based on the large number of attacks that are missed initially by security
products on VirusTotal but eventually detected, we suspect that most vendors
have a significant lag time in updates. While the delayed detection is certainly
not ideal, this pattern of eventually detecting attacks could perhaps be leveraged
into a system that saves and rescans data for an organization in order to detect
what machines have been compromised in the past.

4.3 Correlation of Security Products

One of the key questions we set out
to answer is whether and to what ex-
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attack generates, we have the data to earson Correlation Casfficient

answer these questions for the secu-  Fig 6: Histogram of Pearson correlation
rity products tested here. We present  cqefficients of each pair of security prod-

this data in three Figures 5, 6, 7. ucts. A higher coefficient means that the
The first figure illustrating the cor- products overlap more.

relation or overlap of the security

products is Figure 5. In this figure, we

show data similar to Figure 3 except

that instead of each security product being a column, each security product is a
concentric circle with its detection results lined up such that each arc of all the
circles represents the same attack cluster. In this way rather than showing the
detection rate of each security product, we can easily see which security products
detect the same or different attacks. By drawing a line from outside the circle to
the center, one can see which security products detected the attack represented
by that arc. In order to have detected all attacks with at least one security prod-
uct, one would have to choose a sufficient number of concentric circles such that



any line drawn from outside the circle to its center is detected by at least one
concentric circle. This visualization has its roots in a common metaphor using a
castle to illustrate layers of defense. Consider each security product represented
by a concentric circle as a moat or castle wall and many armies (attacks) sur-
rounding it each attacking its own section. A detection means that the particular
army (attack) is unable to breach that security product.

Figure 6 uses the Pearson product-
moment correlation coefficient to ob-

tain a numerical measurement that n
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relative to its absolute individual de-
tection rate, but by less than if it was
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Fig. 7: Plot of the expected value of the
overlap between each pair of security

products if those products’ detection
rates were independent versus the actual
overlap. Points below the line show more
overlap than random.

randomly detecting attacks at its indi-
vidual detection rate. For example, if
an existing security product detected
90% of attacks and one added a secu-
rity product with Pearson coefficient
of 0.2 with regards to the existing security product and a detection rate of 80%,
one would expect slightly less than 98% combined detection rate. While skewed
slightly towards positive correlations, these results show a number of negative
correlations where two security products combined perform better than if their
total detection probability was a simple product of their detection rates. For
instance in the above example this would mean that the total detection rate
would be above 98% instead.

Figure 7, also focused on the correlation of security products, graphs the
number of attack clusters detected by both security products for each pair of
security products versus the expected overlap in their attack cluster detection
if each security product detected attacks at random based on its detection rate.
Points above the line indicate a pair of security products that are more comple-



mentary than random while points below the line indicate a pair of products that
overlap more than random detections. This result naturally mirrors the previous
histogram of Pearson coefficients in indicating that on average security products
appear to be slightly more redundant than if detections were random based on
overall detection rates.

Intuitively, most products would
use the same techniques and signa-
tures making them mostly redundant,
but we find that security products
are only slightly redundant on aver-
age with many doing as well as com-
pletely independent detection mecha-
nisms and some performing even bet-
ter. While security products seem to
vary greatly in their detection rates,
even the less effective overall seem to
occasionally detect an attack that by-
passes most other security products.
These results may come from a lack of
attack intelligence sharing by the se-
curity industry, a wider than expected
rf‘inge of effective proprietary algo_ / Each Slice represents an attack
rithms, or the challenge and chance Each Ring repsents one layer of defense
associated with trying to detect in- B Detected [ Missed
creasingly polymorphic malware [13].

The results indicate that perhaps ex- Fig. 8: Graph of top AV (outer ring), top
tensive usage of what might intu- domain reputation system, Snort, Spam
itively seem to be redundant security ~Assassin, and human click rate (red if
products could in fact significantly in- at least 1 in 10 users clicked a link in
crease security. While using multiple the email) (inner ring). Each arc is one
inline host sensors is impractical, the attack cluster. If that security product
results suggest that using multiple do- detects the attack cluster then the in-
main reputation systems and network tersection of the circle and arc are dark
based antivirus engines could increase otherwise it is light.

the detection rate of the whole defense

in depth strategy.

An advantage of SPICE is that while being able to evaluate the weaknesses
of a particular security architecture, the approach also provides direction as to
how to mitigate those weaknesses. The ability to find complementary security
products is one of the largest contributions of SPICE. An organization rather
than blindly picking security products that appear to be good in absolute detec-
tion rate, may now determine additional security products that detect attacks
that are missed. This simple but crucial shift in evaluating security architecture
should help organizations close existing security holes and allocate resources



more efficiently. This complementary nature of security products is fundamental
to the very idea of defense in depth.

4.4 Human Factor

We ran a user study for all 36 attack clusters sending 10 emails per cluster for a
total of 360 emails sent to separate users. See Section 3 for details. After three
days we received click throughs on 17 of the 360 unique identifiers sent out. These
hits are somewhat focused with 4 of the clusters receiving two click throughs,
20% of the users tested for those clusters. Additional education of those 5% of
users who click through if effective could lead to a strong complementary layer
of security. Attack clusters with emails that users fall for seem to be roughly
as difficult to detect by other means. Compare the inner circle in Figure 8 with
security products from other layers. The average attack is detected by about 15
security products while clusters with at least one user clicking on the link are
detected by 14 security products on average. This increases slightly if we only
take the clusters that at least two users clicked on the link for. From this limited
study and widespread spam emails leading to drive-by downloads, we saw no
significant correlation in click throughs and other security product detection of
attacks. The percentage of users clicking through is lower for the study than
other human factor studies [12] perhaps due to the fact that all the spam emails
involved here are targeted to a general population rather than targeted to a
particular organization or individual. Also note that these results likely represent
a lower bound on the number of people who would click on the email as any spam
filters in use by the users studied could block the email before it reached them.
We took the precautions of sending from a clean source email address and having
the links point to a clean domain name in order to mitigate this concern as much
as possible, but the email content being that of real attack data could still trigger
spam filters.

4.5 Use Case

To further illustrate the usefulness of SPICE consider a hypothetical case study
based on the results. Assume a small organization with a CSO who did extensive
research and deployed an antivirus and domain reputation system with the best
stand-alone detection rates. In the experiment, the best stand alone detection
rate for an antivirus was 29/36 attack clusters and for domain reputation 22/36.
This is the current state of the art for product comparisons with both of these
being best in class at least for this data set. The natural question here is what
is the overlap of these two security products and do they together detect all
of the attack clusters. SPICE can be used to answer this question. These two
security products together managed to detect 33 of the 36 attack clusters (see
the outer two circles of Figure 8). Notice that three arcs representing attacks
are all light meaning that those three attack clusters went undetected by both
security products.



Now assume that this hypothetical CSO wants to improve his organization’s
security against such widespread attacks. Considering new security products is a
proper next step. The network IDS Snort [10] with the Emerging Threat rules [11]
detected 27 of these same 36 attack clusters, but more importantly it detects 2
of the 3 attack clusters that were missed by the antivirus and domain reputation
system. Measuring the current state of user click throughs we see users did not
respond to 23/36 attack clusters including one of the three missed by both the
antivirus and domain reputation system. Similarly, we can check Spam Assassin
[9] an email spam detection product, which as expected considering the data set
is based on widespread spam, had a strong detection rate identifying 31/36 of
the attack clusters including all three that the antivirus and domain reputation
system failed to detect. See Figure 8 for a visualization of all layers together.
In this situation installing Spam Assassin alone covers against these attacks but
also one could choose to install Snort for extra redundancy. An organization
could only look at sets that already include their existing security products in
order to find the next security product to deploy.

5 Related Work

Research on defense in depth often focuses on broad frameworks and the need
for defense in depth without providing a specific methodology suitable for exper-
imental measurement and evaluation of defense in depth. General themes such
as the need for security products to be at least independent or multiplicative in
strength and the need for measurement are repeated in many works [14] [15] [16]
[17]. An argument for careful independence assumptions and goals of purpose-
fully choosing security products that are better at detecting different classes of
attacks in order to achieve higher coverage than independent security products
in presented in [17]. The authors in [14] suggest measuring the attacker’s cost to
bypass each security product or group of security products. This approach could
scale well with regards to sophisticated attackers were real attack data is scarce
or outdated making direct measurement of detection rates difficult although
methods of measuring such cost are still nebulous. A method for combining the
detection rates of security products from all layers is presented in [15] similar to
our methodology, but the authors assume each security products independent
whereas, we directly measure the overlap between security products without as-
sumptions of independence. While work on directly measuring defense in depth
is rare, [18] presents a method for using attack graphs to measure firewalls com-
bined with host vulnerability information to detect holes in a defense in depth
deployment.

Drive-by downloads, the attack vector we use in the SPICE prototype system
to demonstrate our methodology, is a well studied area. A number of approaches
to protecting against drive-by downloads have been presented [7] [19] [20]. We
use the same ground truth definition as one recent work [7] as well as its baseline
comparison with VirusTotal, which we use. In future work, when we test against



more sophisticated attacker data, all of these novel research approaches can be
integrated into the SPICE framework as additional layers to test. Studies of using
multiple antivirus security products as defense in depth have been conducted
such as [21] [22] all showing benefit from combining multiple antivirus engines.
These studies are limited to only one layer of defense in depth where with SPICE
we expand beyond just antivirus to analyze security products across different
layers. Human spam message click through has been studied before such as in
[12]. We use similar mechanics with the addition of being able to link the results
to other pieces of the same attack that generated the email clicked on.

Some of the most closely related work to SPICE is conducted by commercial
security product testers. For example, NSS Labs [23] conducts extensive tests of
security products ranging from home user anti-malware solutions to the newest
corporate all-inclusive network security appliances. SPICE expands on these
existing approaches. By linking the data across layers of an attack vector, we
can reason about how products which operate at different layers i.e. network and
host detectors complement each other. We have one set of attacks that we test
all layers against at once.

The Anti-Malware Testing Standards Organization (AMTSO) [24] creates
and maintains best practices for testing security products. While acknowledging
the impossibility of a perfect test and evaluation, AMTSO provides guidelines
and suggestions for achieving the most accurate results. We implement as much
of their advice as possible including one of the most important: real time testing.
In the future, we hope to implement some of their additional best practices such
as the important false positive measure and running tests on bare metal machines
rather than the virtual test environment we use.

Recent extensive efforts to make data more available to the research commu-
nity such as Symantec’s Worldwide Intelligence Network Environment (WINE)
[25] and others are crucial to the repeatability of experiments and gaining of
new insights into attacks. The ability to access large numbers of samples and
meta data will hopefully fuel the next generation of detection algorithms. Un-
fortunately, such archival data sets do not lend themselves to evaluating current
security products. As we see in the results, security products are much better at
detecting known threats, but these threats often slip by undetected the first time
seen. The data set, which we are releasing to researchers as well while suffering
from the same issue of outdated samples as WINE, has one important advantage.
We keep track of which samples belong to the same attack chain. Hopefully this
additional metadata will help other researchers or be useful in conjunction with
larger data sets such as WINE.

6 Future Work

In future work, we are actively adding additional attack vectors starting with
web application attacks as discussed in Section 2.3. Also, we wish to measure
how security products change over time for all attack vectors. In particular we
want to see if security products that are correlated in this data set stay correlated



in the first or if such correlations occur by chance or for limited time periods.
We want to add software updates as a layer of security by performing studies
on vulnerability life times, time to patch, and zero-day attack prevalent. With
these parameters an organization could combine their patching practices with
their available security products to form a set of security controls that better
represents their defense in depth posture. We wish to add cost information such
as false positive rates and price to security products so that sets can display total
cost in addition to total detection rate. We also would like to use SPICE to test
and compare how novel full class prevention security products such as BLADE [7]
or virtualization layers might perform. If these security products perform up to
their full potential of shutting down whole attack vectors, they may justify their
high cost of user training/deployment effort. SPICE could help show how this
solutions might succeed compared to multiple commercial solutions that even
together suffer many weaknesses.

7 Conclusion

We presented SPICE, a novel method and framework, to measure how secure an
organization is by testing real security products with real attacks. By designing
additional experiments measuring all known attack vectors and security prod-
ucts an organization uses, we can measure how secure that organization really
is. To compute this for a single organization is perhaps prohibitively expensive
considering the costs associated with procuring the appropriate attacks to rep-
resent sophisticated adversaries and testing infrastructure needed to adequately
test advanced security products. Fortunately, the cost can be amortized by a
security services provider across a number of organizations that could benefit
from the same knowledge of how their existing products complement each other
and what new products could fill specific weaknesses they may have. Being able
to cost effectively compare security products is crucial. Current tests give no
good indication of whether a security product detects the same attacks already
detected by existing products especially ones from different layers. SPICE di-
rectly measures the underlying assumption of defense in depth that security
products complement each other in detecting different attacks. We provide a
feasible empirical measurement of an organization’s security while at the same
time providing the information of which security products would most enhance
that organization’s security posture.
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