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Abstract

We investigate a model of one-to-one matching with transferable utility when some of the

characteristics of the players are unobservable to the analyst. We allow for a wide class of

distributions of unobserved heterogeneity, subject only to a separability assumption that

generalizes Choo and Siow (2006). We first show that the stable matching maximizes a social

gain function that trades o↵ exploiting complementarities in observable characteristic sand

matching on unobserved characteristics. We use this result to derive simple closed-form

formulæ that identify the joint surplus in every possible match and the equilibrium utilities

of all participants, given any known distribution of unobserved heterogeneity. If transfers

are observed, then the pre-transfer utilities of both partners are also identified. We discuss

computational issues and provide an algorithm that is extremely e�cient in important

instances. Finally, we present two estimators of the joint surplus and we revisit Choo and

Siow’s empirical application to illustrate the potential of our more general approach.

Keywords: matching, marriage, assignment, hedonic prices.

JEL codes: C78, D61, C13.



Introduction

Since the seminal contribution of Becker (1973), many economists have modeled the mar-

riage market as a matching problem in which each potential match generates a marital

surplus. Assuming utility is transferable, the distributions of tastes and of desirable charac-

teristics determine equilibrium shadow prices, which in turn explain how partners share the

marital surplus in any realized match. This insight is not specific to the marriage market: it

characterizes the “assignment game” of Shapley and Shubik (1972), i.e. models of matching

with transferable utilities. These models have also been applied to competitive equilibrium

in good markets with hedonic pricing (Chiappori, McCann and Nesheim, 2010), to trade

(e.g. Costinot-Vogel 2014) and to the labour market (Terviö, 2008 and Gabaix and Landier,

2008.) Our results can be used in all of these contexts; but for concreteness, we often refer

to partners as “men” and “women” in the exposition of the main results.

While Becker presented the general theory, he focused on the special case in which the

types of the partners are one-dimensional and are complementary in producing surplus. As is

well-known, the socially optimal matches then exhibit positive assortative matching : higher

types pair up with higher types. Moreover, the resulting configuration is stable, it is in the

core of the corresponding matching game, and it can be e�ciently implemented by a simple

sorting procedure. This sorting result is both simple and powerful; but its implications

are also at variance with the data, in which matches are observed between partners with

quite di↵erent characteristics. To account for a wider variety of matching patterns, one

solution consists in allowing the matching surplus to incorporate latent characteristics—

heterogeneity that is unobserved by the analyst. Choo and Siow (2006) have shown how it

can be done in a way that yields a highly tractable model in large populations, provided

that the unobserved heterogeneities enter the marital surplus quasi-additively and that they

are distributed as standard type I extreme value terms. They used their model to evaluate

the e↵ect of the legalization of abortion on gains to marriage; and Siow and Choo (2006)

applied it to Canadian data to measure the impact of demographic changes. It has also

been used to study increasing returns in marriage markets (Botticini and Siow, 2008), to
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compare the preference for marriage versus cohabitation (Mourifié and Siow, 2014) and, in

a heteroskedastic version, to estimate the changes in the returns to education on the US

marriage market (Chiappori, Salanié and Weiss, 2015.)

We revisit here the theory of matching with transferable utilities in the light of Choo

and Siow’s insights. Three assumptions underlie their contribution: latent variables do

not mutually interact in producing matching surplus, they are distributed as iid type I

extreme values, and populations are large. We maintain the first assumption, which we

call “separability”, and the last one which is innocuous in many applications. Choo and

Siow’s distributional assumption, on the other hand, is very special; it generates a multi-

nomial logit model that has unappealing restrictions on cross-elasticities. We first show

that this distributional assumption can be completely dispensed with. We prove that the

optimal matching in our generalized setting maximizes the sum of a term that describes

matching on the observables and a generalized entropic term that describes matching on

the unobservables. While the first term tends to match partners with complementary ob-

served characteristics, the second one pulls towards randomly assigning partners to each

other. The social gain from any matching pattern trades o↵ between these two terms. In

particular, when unobserved heterogeneity is distributed as in Choo and Siow (2006), the

generalized entropy is simply the usual entropy measure.

The maximization of this social surplus function has very straightforward consequences

in terms of identification, both when equilibrium transfers are observed and when they

are not. In fact, joint surplus and expected utilities can be obtained from derivatives of

the terms that constitute generalized entropy; and that in turn is a function of observed

matching probabilities. Moreover, if equilibrium transfers are observed, then we also identify

the pre-transfer utilities on both sides of the market. In independent work, Decker et al.

(2012) proved the uniqueness of the equilibrium and analyzed its properties in the Choo

and Siow multinomial logit framework. We show that most of their comparative statics

results in fact hold beyond the logit framework, and can be used as a testable prediction of

all separable models. We also show how to derive testable predictions that are specific to a
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given specification.

Our first conclusion thus is that the most important structural implications of the Choo-

Siow model hold under much more plausible assumptions on the unobserved heterogeneity.

Our second contribution is to delineate an empirical approach to parametric estimation in

this class of models. Our nonparametric identification results rely on the strong assumption

that the distribution of the unobservables is known, while in practice the analyst will want to

estimate its parameters; at the same time our results imply that the matching surplus cannot

be simultaneously estimated with the distribution of the unobservable because there would

be more parameters than cells in the data matrix. This suggests using a smaller number

of parameters for the match surpluses. Maximum likelihood estimation is thus a natural

recourse, which we investigate below. In practice, since evaluating the likelihood requires

solving for the optimal matching, computational considerations loom large in matching

models. We provide an e�cient algorithm that maximizes the social surplus and computes

the optimal matching, as well as the expected utilities in equilibrium. To do this, we

adapt the Iterative Projection Fitting Procedure (known to some economists as RAS) to

the structure of this problem, and we show that it is very stable and e�cient. We discuss

an alternative to the maximum likelihood, a simple moment matching estimator based on

minimizing a generalized entropy among the matching distributions which fit a number of

moments. This second estimator also provides a very simple semi-parametric specification

test.

Our third contribution is to revisit the original Choo and Siow 2006 study of the e↵ect

of the legalization of abortion on marriage outcomes in the US, making use of the new

possibilities allowed by our extended framework. We estimate three di↵erent specifications;

for each of them, we evaluate the impact of Roe vs Wade on expected gains from marriage;

and we also test the performance of each estimated model out of sample. We find that

Choo and Siow’s “problematic finding” of more negative e↵ects for men than for women is

sensitive to the specification. One of our test models gives much more reasonable e↵ects;

it also behaves better out of sample. While these findings are of course specific to this
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particular application, they illustrate that our approach is both practical and fruitful.

There are other approaches to estimating matching models with unobserved hetero-

geneity; see the handbook chapter by Graham (2011, 2013). For markets with transferable

utility, Fox (2010) has proposed pooling data across many similar markets and relying on

a “rank-order property”: this assumes that given the characteristics of the populations of

men and women, a given matching is more likely than another when it produces a higher

expected surplus. Fox (2011) and Bajari and Fox (2013) applied this approach to the car

industry and to spectrum auctions. More recently, Fox and Yang (2012) focus on identi-

fying the complementarity between unobservable characteristics. A recent contribution by

Menzel (2014) investigates large markets with non-transferable utility, and Aggarwal 2014

estimates matching in the US medical resident program.

Section 1 sets up the model and the notation. We prove our main results in Section 2,

and we specialize them to leading examples in Section 3. Our results open the way to new

and richer specifications; Section 4 explains how to estimate them using maximum likelihood

estimation, and how to use various restrictions to identify the underlying parameter. We

also show there that a moment-based estimator is an excellent low-cost alternative in a

restricted but useful model. Section 6 applies several instances of separable models to

Choo and Siow’s data. Finally, we present in Section 5 our IPFP algorithm, which greatly

accelerates computations in important cases.

Our arguments use tools from convex analysis as well as optimal transportation. We

have tried to keep the exposition intuitive in the body of the paper; all proofs can be found

in Appendix A, to which we direct interested readers.

1 The Assignment Problem with Unobserved Heterogeneity

We study in this paper a bipartite, one-to-one matching market with transferable utility.

We maintain throughout some of the basic assumptions of Choo and Siow (2006): utility

transfers between partners are unconstrained, matching is frictionless, and there is no asym-
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metric information among potential partners. We call the partners “men” and “women”,

but our results are clearly not restricted to the marriage market.

Men are denoted by i 2 I and women by j 2 J . A matching µ̃ = (µ̃
ij

) is a matrix such

that µ̃
ij

= 1 if man i and woman j are matched, 0 otherwise. A matching is feasible if for

every i and j,
X

k2J

µ̃
ik

 1 and
X

k2I

µ̃
kj

 1,

with equality for individuals who are married. Single individuals are “matched with 0”:

µ̃
i0 = 1 or µ̃0j = 1. For completeness, we should add the requirement that µ̃

ij

is either 0

or 1. However it is known (see e.g. Shapley and Shubik, 1972) that this integrality constraint

is not binding, and we will omit it.

A hypothetical match between man i and woman j allows them to share a total utility

�̃
ij

; the division of this total utility1 between them is done through utility transfers whose

value is determined in equilibrium. Singles get utilities �̃
i0, �̃0j . Following Gale and Shapley

(1962) for matching with non-transferable utility, we focus on the set of stable matchings.

A feasible matching is stable if there exists a division of the surplus in each realized match

that makes it impossible for any man k and woman l to both achieve strictly higher utility

by pairing up together, and for any agent to achieve higher utility by being single. More

formally, let ũ
i

denote the utility man i gets in his current match; denote ṽ
j

the utility of

woman j. Then by definition ũ
i

+ ṽ
j

= �̃
ij

if they are matched, that is if µ̃
ij

> 0; and

ũ
i

= �̃
i0 (resp. ṽ

j

= �̃0j) if i (resp. j) is single. Stability requires that for every man k and

woman l, ũ
k

� �̃
k0 and ṽ

l

� �̃0l, and ũ
k

+ ṽ
l

� �̃
kl

for any potential match (k, l).

Finally, a competitive equilibrium is defined as a set of prices ũ
i

and ṽ
j

and a feasible

matching µ̃ such that

µ̃
ij

> 0 implies j 2 arg max
j2J[{0}

⇣
�̃
ij

� ṽ
j

⌘
and i 2 arg max

i2I[{0}

⇣
�̃
ij

� ũ
i

⌘
. (1.1)

1Like most of the matching literature, we assume throughout that partners interact e�ciently; del Boca

and Flinn (2014) find empirical support for this assumption.
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Shapley and Shubik showed that the set of stable matchings coincides with the set of

competitive equilibria (and with the core of the assignment game); and that moreover, any

stable matching achieves the maximum of the total surplus

X

i2I

X

j2J

⌫̃
ij

�̃
ij

+
X

i2I

⌫̃
i0�̃i0 +

X

j2J

⌫̃0j�̃0j

over all feasible matchings ⌫̃. The set of stable matchings is generically a singleton; on the

other hand, the set of prices ũ
i

and ṽ
j

(or, equivalently, the division of the surplus into

ũ
i

and ṽ
j

) that support it is a product of intervals. This discrete setting was extended by

Gretsky, Ostroy and Zame (1992) to a continuum of agents.

1.1 Observable characteristics

Any empirical application of this framework must start by acknowledging that the analyst

only observes some of the payo↵-relevant characteristics that determine the surplus matrix

˜

�. Following Choo and Siow, we assume that she can only observe which group each in-

dividual belongs to. Each man i 2 I belongs to one group x
i

2 X ; and, similarly, each

woman j 2 J belongs to one group y
j

2 Y. There is a finite number of groups; they are

defined by the intersection of the characteristics which are observed by all men and women,

and also by the analyst. On the other hand, men and women of a given group di↵er along

some dimensions that they all observe, but which do not figure in the analyst’s dataset.

Like Choo and Siow, we assume that there is an (uncountably) infinite number of men

in any group x, and of women in any group y. We denote n
x

the mass of men in group x,

and m
y

the mass of women in group y, and as the problem is homogenous, we can assume

that the total mass of individuals is equal to one. More formally, we assume:

Assumption 1 (Large Market). There is an infinite total number of individuals on the

market. Letting n
x

be the mass of men of group x, and m
y

the mass of women of group y,

the total mass of individuals is normalized to one, that is
P

x

n
x

+
P

y

m
y

= 1.

One way to understand intuitively this assumption is to consider a sequence of large

economies of total population of size S growing to infinity, that is S =
P

x2X

N
x

+
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P
y2Y

M
y

! +1, while the proportion of each group remains constant, that is, the ra-

tios n
x

= (N
x

/S) and m
y

= (M
y

/S) remain constant.

If the total number of individuals were finite, the distribution of the unobserved het-

erogeneity of, say, women of a given observable group would be an empirical distribution

a↵ected by sample uncertainty – we shall return to this in the conclusion. Another benefit

of Assumption 1 is that it mitigates concerns about agents misrepresenting their character-

istics. There is almost always a profitable deviation in finite populations; but as shown by

Gretsky, Ostroy and Zame (1999), the benefit from such manipulations goes to zero as the

population is replicated. In the large markets limit, the Walrasian prices ũ
i

and ṽ
j

become

generically unique. We will therefore write “the equilibrium” in what follows.

The analyst can only compute quantities that depend on the observed groups of the

partners in a match. Hence she cannot observe µ̃, and she must focus instead on the matrix

of matches across groups µ = (µ
xy

), where µ
xy

=
P

i,j

11 (x
i

= x, y
j

= y) µ̃
ij

.

The feasibility constraints are µ 2 M (n,m), where M (n,m) (or M in the absence of

ambiguity) is the set of |X | ⇥ |Y| non-negative numbers (µ
xy

) that satisfy the (|X | + |Y|)

constraints that the number of married individuals in each group cannot be greater than

the number of individuals in that group:

M (n,m) =

8
<

:µ � 0 : 8x 2 X ,
X

y2Y

µ
xy

 n
x

; 8y 2 Y,
X

x2X

µ
xy

 m
y

9
=

; (1.2)

Each element of M is called a “feasible matching”. For notational convenience, we shall

denote µ
x0 = n

x

�
P

y2Y

µ
xy

the corresponding number of single men of group x and

µ0y = m
y

�
P

x2X

µ
xy

the number of single women of group y. We also define the sets of

marital choices that are available to male and female agents, including singlehood:

X0 = X [ {0} , Y0 = Y [ {0} .
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1.2 Matching Surpluses

Choo and Siow (2006) assumed that the utility surplus of a man i of group x (that is, such

that x
i

= x) who marries a woman of group y can be written as

↵
xy

+ ⌧ + "
iy

, (1.3)

where ↵
xy

is the systematic part of the surplus; ⌧ represents the utility transfer (possibly

negative) that the man gets from his partner in equilibrium; and "
iy

is a standard type I

extreme value random term. If such a man remains single, he gets utility "
i0; that is to

say, the systematic utilities of singles ↵
x0 are normalized to zero. Similarly, the utility of a

woman j of group y
j

= y who marries a man of group x can be written as

�
xy

� ⌧ + ⌘
xj

, (1.4)

where ⌧ is the utility transfer she leaves to her partner. Again, we normalize �0y = 0.

As shown in Chiappori, Salanié and Weiss (2015), the key assumption here is that the

joint surplus created when a man i of group x marries a woman j of group y does not allow

for interactions between their unobserved characteristics, conditional on (x, y). This leads

us to assume:

Assumption 2 (Separability). There exists a vector � such that the joint surplus from a

match between a man i in group x and a woman j in group j is

�̃
ij

= �
xy

+ "
iy

+ ⌘
xj

.

This assumption is reminiscent of the “pure characteristics” model of Berry and Pakes

(2007). In Choo and Siow’s formulation, the vector � is simply

�
xy

= ↵
xy

+ �
xy

,

which they call the total systematic net gains to marriage; and note that by construction,

�
x0 and �0y are zero. It is easy to see that Assumption 2 is equivalent to specifying that if

two men i and i0 belong to the same group x, and their respective partners j and j0 belong
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to the same group y, then the total surplus generated by these two matches is unchanged if

we shu✏e partners: �̃
ij

+ �̃
i

0
j

0 = �̃
ij

0 + �̃
i

0
j

. Note that in this form it is clear that we need

not adopt Choo and Siow’s original interpretation of " as a vector of preference shocks of

the husband and ⌘ as a vector of preference shocks of the wife. To take an extreme example,

we could equally have men who are indi↵erent over partners and are only interested in the

transfer they receive, so that their ex post utility is ⌧ ; and women who also care about some

attractiveness characteristic of men, in a way that may depend on the woman’s group. The

net utility of women of group y would be ("
iy

� ⌧); the resulting joint surplus would satisfy

Assumption 2 and all of our results would apply2. In other words, there is no need to

assume that the term "
iy

j

is “generated” by man i, nor that the term ⌘
jx

i

was “generated”

by woman j; it may perfectly be the opposite.

While separability is a restrictive assumption, it allows for “matching on unobservables”:

when the analyst observes a woman of group y matched with a man of group x, it may

be because this woman has unobserved characteristics that make her attractive to men of

group x, and/or because this man has a strong unobserved preference for women of group

y. What separability does rule out, however, is sorting on unobserved characteristics on

both sides of the market, i.e. some unobserved preference of this man for some unobserved

characteristics of that woman.

The basic problem we address in this paper is how we can identify � (an array of

|X | ⇥ |Y| unknown numbers) given the observation of µ (an array of the same size.) In

order to study the relation between these two objects, we need to make assumptions on the

distribution of the unobserved heterogeneity terms.

1.3 Unobserved Heterogeneity

In order to move beyond the multinomial logit setting of Choo and Siow, we allow for very

general distributions of unobserved heterogeneity:

2It is easy to see that in such a model, a man i who is married in equilibrium is matched with a woman

in the group that values his attractiveness most, and he receives a transfer ⌧
i

= max
y2Y "

iy

.

9



Assumption 3 (Distribution of Unobserved Variation in Surplus). The unobserved het-

erogeneity in tastes is such that:

a) For any man i such that x
i

= x, the |Y0|-dimensional random vector "
i

= ("
iy

)
y

is

drawn from a distribution P
x

;

b) For any woman j such that y
j

= y, the |X0|-dimensional random vector ⌘
j

= (⌘
xj

)
x

is drawn from a distribution Q
y

.

To summarize, a man i in this economy is characterized by his full type (x
i

, "
i

), where

x
i

2 X and "
i

2 IRY0 ; the distribution of "
i

conditional on x
i

= x is P
x

. Similarly, a woman

j is characterized by her full type
�
y
j

,⌘
j

�
where y

j

2 Y and ⌘
j

2 IRX0 , and the distribution

of ⌘
j

conditional on y
j

= y is Q
y

.

Assumption 3 constitutes a substantial generalization of Choo and Siow. It extends the

logit framework in several important ways: it allows for di↵erent families of distributions,

with any form of heteroskedasticity, and with any pattern of correlation across partner

groups. The need to go beyond the logit framework has long been recognized in Industrial

Organization and in consumer demand theory. This has led to a huge literature on Random

Utility Models, initiated by McFadden’s seminal work on Generalized Extreme Value theory

(McFadden, 1978, see also Anderson et al., 1992 for an exposition and applications.) The

present assumption is more general, as it does not require that the distribution of the terms

"
i

and ⌘
j

belong to the GEV class.

2 Social Surplus, Utilities, and Identification

We derive most of our results by considering the “optimal” matching, which maximizes the

total joint surplus. This is known since Shapley and Shubik (1972) to be identical to the

equilibrium matching. As Choo and Siow remind us (p. 177): “A well-known property of

transferable utility models of the marriage market is that they maximize the sum of marital

output in the society”. This is true when marital output is defined as it is evaluated by the
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participants: the market equilibrium in fact maximizes
P

i,j

µ̃
ij

�̃
ij

over the set of feasible

matchings µ̃. But in order to find the expression of the value function that µ maximizes,

we need to account for terms that reflect the value of matching on unobservables.

2.1 Separability and Discrete Choice

We first argue that separability (Assumption 2) reduces the choice of partner to a one-sided

discrete choice problem. To see this, note that by standard results in the literature (Shapley

and Shubik, 1972), the equilibrium utilities solve the system of functional equations

ũ
i

= max
j

⇣
�̃
ij

� ṽ
j

⌘
and ṽ

j

= max
i

⇣
�̃
ij

� ũ
i

⌘
,

where the maximization includes the option of singlehood.

Focus on the first one. It states that the utility man i gets in equilibrium trades o↵ the

surplus his match with woman j creates and the share of the joint surplus he has to give

her, which is given by her own equilibrium utility. Now use Assumption 2: for a man i in

group x, �̃
ij

= �
xy

j

+"
iy

j

+⌘
xj

, so that ũ
i

= max
j

⇣
�̃
ij

� ṽ
j

⌘
= max

y

max
j:y

j

=y

⇣
�̃
ij

� ṽ
j

⌘

can be rewritten as ũ
i

= max
y

�
�
xy

+ "
iy

�min
j:y

j

=y

�
ṽ
j

� ⌘
xj

��
. Denoting

V
xy

= min
j:y

j

=y

�
ṽ
j

� ⌘
xj

�

and U
xy

= �
xy

� V
xy

, it follows that:

Proposition 1. (Splitting the Surplus)

Under Assumptions 2 and 3, there exist two vectors U and V such that �
xy

= U
xy

+ V
xy

and in equilibrium:

(i) Man i in group x achieves utility

ũ
i

= max
y2Y0

(U
xy

+ "
iy

)

and he matches with some woman whose group y achieves the maximum;

(ii) Woman j in group y achieves utility

ṽ
j

= max
x2X0

�
V
xy

+ ⌘
xj

�
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and she matches with some man whose group x achieves the maximum.

This result, which will arise as a consequence of Theorem 1 below, also appears in Chi-

appori, Salanié and Weiss (2015), with a di↵erent proof. It reduces the two-sided matching

problem to a series of one-sided discrete choice problems that are only linked through the

adding-up formula U
xy

+V
xy

= �
xy

. Men of a given group x match with women of di↵erent

groups, since each man i has idiosyncratic "
i

shocks. But as a consequence of the separa-

bility assumption, if a man of group x matches with a woman of group y, then he would be

equally well-o↵ with any other woman of this group3.

The vectors U and V depend on all of the primitives of the model (the vector �, the

distributions of the utility shocks " and ⌘, and the number of groups n and m.) They are

only a useful construct, and they should not be interpreted as utilities.

2.2 Identification of discrete choice problems

To recover the array �, we start by showing how the utilities U can be recovered from the

choice probabilities µ
y|x

= µ
xy

/n
x

. To do this, we introduce a general methodology based on

“generalized entropy,” a name which arises from reasons which will soon become clear. In the

following, for any A = (A
xy

) we denote A
x· = (A

x1, . . . , A
x|Y|

) and A·y = (A1y, . . . , A
|X |y

).

Consider a randomly chosen man in group x, and a vectorU = (U
x0 = 0, U

x1, . . . , U
x,|Y|

).

His expected utility (conditional to belonging to this group) is

G
x

(U
x·) = E

P

x

max
y2Y0

(U
xy

+ "
y

), (2.1)

where we set U
x0 = 0 and the expectation is taken over the random vector ("0, . . . , "

|Y|

) ⇠

P
x

. First note that for any two numbers a, b and random variables (", ⌘), the derivative of

Emax(a+", b+⌘) with respect to a is simply the probability that a+" is larger than b+⌘.

Applying the obvious multidimensional generalization to the function G
x

, we get

@G
x

@U
xy

(U
x·) = Pr(U

xy

+ "
iy

� U
xz

+ "
iz

for all z 2 Y0).

3Provided of course that she in turn ends up matched with a man of group x.
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But the right-hand side is simply the probability that a man of group x partners with a

woman of group y; and therefore, for x 2 X and y 2 Y0

@G
x

@U
xy

(U
x·) =

µ
xy

n
x

= µ
y|x

. (2.2)

As the expectation of the maximum of linear functions of the (U
xy

), G
x

is a convex function

of U
x·. Now consider the function

G⇤

x

(µ·|x) = max
Ũ

x·=(Ũ
x1,...,Ũ

x|Y|)

0

@
X

y2Y

µ
y|x

Ũ
xy

�G
x

( ˜U
x.

)

1

A (2.3)

whenever
P

y2Y

µ
y|x

 1, and G⇤

x

(µ·|x) = +1 otherwise. Hence, the domain of G⇤

x

is the

set of µ
·|x

which is the vector of choice probabilities of alternatives in Y. Mathematically

speaking, G⇤

x

is the Legendre-Fenchel transform, or convex conjugate of G
x

. Like G
x

and

for the same reasons, it is a convex function. By the envelope theorem, at the optimum in

the definition of G⇤

x

we have
@G⇤

x

@µ
y|x

(µ·|x) = U
xy

. (2.4)

As a consequence, for any y 2 Y, U
xy

is identified from µ·|x, the observed matching patterns

of men of group x. Going back to (2.3), convex duality implies that if µ·|x and U
x· are

related by (2.2), then

G
x

(U
x·) =

X

y2Y

µ
y|x

U
xy

�G⇤

x

(µ·|x). (2.5)

By the first order condition (2.2), the optimal U is such that µ
y|x

= @G
x

(U
x.

) /@U
xy

:

U
x·

leads to the choice probabilities µ
·|x

. Hence, letting Y ⇤

i

be the optimal choice of marital

option y by a man of group x, one has

G
x

(U
x·) = E

�
U
xY

⇤
i

+ "
iY

⇤
i

�
=
X

y2Y

µ
y|x

U
xy

+E
�
"
iY

⇤
i

�
,

and, comparing (2.2) with (2.5),

�G⇤

x

⇣
µ·|x

⌘
= E

�
"
iY

⇤
i

�
. (2.6)

This allows us to provide a useful characterization of G⇤

x

⇣
µ
·|x

⌘
and U and to show that

they can be evaluated by solving an optimal matching problem:

13



Proposition 2. (General identification of the systematic surpluses) Let M
⇣
µ
·|x

,P
x

⌘

the set of probability distributions ⇡ of the random joint vector (Y , "), where Y ⇠ µ
·|x

is a

random element of Y0, and " ⇠ P
x

is a random vector of IRY0. For e 2 IRY0 and y 2 Y0,

let  h denote the projection

 h (y, e) := e
y

.

Then �G⇤

x

(µ
·|x

) is the value of the optimal matching problem between the distribution µ
·|x

of Y and the distribution P
x

of ", when the surplus is given by  h. That is,

�G⇤

x

(µ
·|x

) = max
⇡2M(µ·|x,Px

)
E

⇡

⇣
 h (Y, ")

⌘
. (2.7)

if
P

y2Y0
µ
y|x

= 1, while G⇤

x

(µ·|x) = +1 otherwise. Moreover,

U
xy

=
@G⇤

@µ
y|x

(µ
·|x

)

is the Lagrange multiplier associated with the constraint
R
⇡
y

(")d" = µ
y|x

at the optimum.

The intuition behind Proposition 2 is simply that each observed choice probability µ
y|x

must be matched to the values of idiosyncratic preference shocks "
i

⇠ P
x

for which y is the

most preferred choice. The U
·|x

are the shadow prices that support this matching.

2.3 Social surplus and its individual breakdown

We first give an intuitive derivation of our main result, Theorem 1 below. We define H
y

similarly as G
x

: a randomly chosen woman of group y expects to get utility

H
y

(V·y) = E
Q

y

✓
max
x2X

(V
xy

+ ⌘
x

, ⌘0)

◆
,

and the social surplus W is simply the sum of the expected utilities of all groups of men

and women:

W =
X

x2X

n
x

G
x

(U
x·) +

X

y2Y

m
y

H
y

(V·y).

But by identity (2.5), we get

G
x

(U
x·) =

X

y2Y

µ
y|x

U
xy

�G⇤

x

⇣
µ·|x

⌘
and H

y

(V·y) =
X

x2X

µ
x|y

V
xy

�H⇤

y

(µ·|y).
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Sum over the total number of men and women, use U + V = � and define

E(µ) :=
X

x2X

n
x

G⇤

x

(µ·|x) +
X

y2Y

m
y

H⇤

y

(µ·|y); (2.8)

we get an expression for the value of the total surplus:

W =
X

x2X

n
x

G
x

(U
x·)| {z }

u

x

+
X

y2Y

m
y

H
y

(V·y)| {z }
v

y

=
X

x2X

y2Y

µ
xy

�
xy

� E(µ).

The first equality explains how the total surplus W is broken down at the individual level:

the average expected equilibrium utility of men in group x is u
x

= G
x

(U
x·), and similarly

for women. The second equality shows how the total surplus is broken down at the level of

the couples. We turn this into a formal statement, which is proved in Appendix A:

Theorem 1. (Social and Individual Surpluses) Under Assumptions 1, 2 and 3,

(i) the optimal matching µ maximizes the social gain over all feasible matchings µ 2 M,

that is

W (�,n,m) = max
µ2M(n,m)

0

BB@
X

x2X

y2Y

µ
xy

�
xy

� E(µ)

1

CCA . (2.9)

Equivalently, W is given by its dual expression

W (�,n,m) = min
U ,V

0

@
X

x2X

n
x

G
x

(U
x.

) +
X

y2Y

m
y

H
y

(V
.y

)

1

A (2.10)

s.t. U
xy

+ V
xy

= �
xy

.

The function W (�,n,m) is convex in � and concave in (n,m).

(ii) A man i of group x who marries a woman of group y⇤ obtains utility

U
xy

⇤ + "
iy

⇤ = max
y2Y0

(U
xy

+ "
iy

)

where U
x0 = 0, and U solves (2.10).

(iii) The average expected utility of the men of group x is

u
x

= G
x

(U
x·) =

@W
@n

x

(�,n,m).
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.

(iv) Parts (ii) and (iii) transpose to the other side of the market with the obvious changes.

The right-hand side of equation (2.9) gives the value of the social surplus when the

matching patterns are µ. The first term
P

xy

µ
xy

�
xy

reflects “group preferences”: if groups

x and y generate more surplus when matched, then in the absence of unobserved hetero-

geneity they should be matched with higher probability. On the other hand, the second

and the third terms reflect the e↵ect of the dispersion of individual a�nities, conditional

on observed characteristics: those men i in a group x that have more a�nity to women of

group y should be matched to this group with a higher probability. In the one-dimensional

Beckerian example, a higher x or y could reflect higher education. If the marital surplus is

complementary in the educations of the two partners, � is supermodular and the first term

is maximized when matching partners with similar education levels (as far as feasibility

constraints allow.) But because of the dispersion of marital surplus that comes from the "

and ⌘ terms, it will be optimal to have some marriages between dissimilar partners.

To interpret the formula, start with the case when unobserved heterogeneity is dwarfed

by variation due to observable characteristics: �̃
ij

' �
xy

if x
i

= x and y
j

= y. Then we

know that the observed matching µ must maximize
P

x,y

µ
xy

�
xy

. If on the other hand data

is so poor that unobserved heterogeneity dominates (� ' 0), then the analyst should observe

something that, to her, looks like completely random matching. Information theory tells us

that entropy is a natural measure of statistical disorder; and as we will see in Example 1, in

the simple case analyzed by Choo and Siow the function E is just the usual notion of entropy.

For this reason, we call it the generalized entropy of the matching. In the intermediate case

in which some of the variation in marital surplus is driven by group characteristics (through

the �
xy

) and some is carried by the unobserved heterogeneity terms "
iy

and ⌘
xj

, the market

equilibrium trades o↵ matching on group characteristics against matching on unobserved

characteristics, as measured by the generalized entropy terms in E(µ).
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2.4 Identification of Matching Surplus

Theorem 1 has two mathematically equivalent readings that have quite di↵erent practical

purposes. One may use it to obtain the expression of µ as a function of �: this is an

equilibrium characterization. Conversely, one may use it to obtain the expression of � as a

function of µ: this identifies the joint surplus from the data. Our next result, Theorem 2,

illustrates the mathematical duality between these two points of view.

First note that the constraints associated to µ 2 M in (2.9) do not bind in the many

datasets in which there are no empty cells: then µ
xy

> 0 for x 2 X and y 2 Y, and
P

x2X

µ
xy

< n
x

,
P

y2Y

µ
xy

< m
y

. In other words, µ then belongs to the interior of M. It

is easy to see that this must hold under the following assumption:

Assumption 4 (Full support). The distributions P
x

and Q
y

all have full support and are

absolutely continuous with respect to the Lebesgue measure.

Assumption 4 of course holds for the Choo and Siow model. It can be relaxed in the

obvious way: all that matters is that the supports of the distributions are wide enough

relative to the magnitude of the variations in the matching surplus. Since the functions G⇤

x

and H⇤

y

are convex, they are di↵erentiable almost everywhere—and under Assumption 4

they actually are di↵erentiable everywhere. This is not essential to our approach; in fact,

our Example 2 in section 3 violates Assumption 4. But it allows us to obtain striking

formulæ, as stated in the following theorem:

Theorem 2. Under Assumptions 1, 2, 3 and 4,

(i) µ·|x and U
·|x

are related by the equivalent set of relations

µ
y|x

=
@G

x

@U
xy

(U
x·) for y 2 Y, or equivalently (2.11)

U
xy

=
@G⇤

x

@µ
y|x

⇣
µ·|x

⌘
for y 2 Y. (2.12)

(ii) As a result, the matching surplus � is identified by

�
xy

=
@G⇤

x

@µ
y|x

⇣
µ·|x

⌘
+

@H⇤

y

@µ
x|y

⇣
µ·|y

⌘
, (2.13)
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that is

�
xy

=
@E
@µ

xy

(µ). (2.14)

The dual nature of Theorem 2 is clear. The equalities (2.11) allow to express µ as

a function of U and V (“equilibrium characterization” point of view); they invert into

relations (2.12) which express U and V (and thus �) as a function of µ (“identification”

point of view.)

The previous result does not assume that transfers are observed. When they are, the

systematic parts of pre-transfer utilities (↵,�) are also identified:

Corollary 1. Under Assumptions 1, 2, 3 and 4, denote (↵,�) the systematic parts of

pre-transfer utilities and ⌧ the transfers as in Section 1. Then ↵
xy

and �
xy

are identified

by

↵
xy

=
@G⇤

x

@µ
y|x

⇣
µ
·|x

⌘
� ⌧

xy

and �
xy

=
@H⇤

y

@µ
x|y

⇣
µ·|y

⌘
+ ⌧

xy

.

Therefore if transfers ⌧
xy

are observed, both pre-transfer utilities ↵
xy

and �
xy

are also

identified.

This is unlikely to occur in family economics, where the econometrician typically does

not observe transfers between partners. It is a much more reasonable asumption in other

settings where matching theory has been successfully applied, as the CEO compensation

literature, for instance, where the compensation amount is often available.

Combining Proposition 2 with Theorem 2, all of the quantities in Theorem 1 can be

computed by solving simple linear programming problems. This makes identification and

estimation feasible in practice.
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2.5 Comparative statics and testable predictions

Recall from Theorem 1 that the partial derivative of the social surplus W(�,n,m) with

respect to n
x

is u
x

. It follows immediately that

@u
x

@n
x

0
=

@u
x

0

@n
x

;

therefore the “unexpected symmetry” result proven by Decker et al. (2012, Theorem 2) for

the multinomial logit Choo and Siow model in fact holds for all separable models. We show

in Appendix C that in fact most of the comparative statics results of Decker et al extend

to the present framework, and can be used as testable predictions for the separable model.

Another remarkable feature of our results is that all of the functions involved are convex

(or concave.) Since utilities are derivatives of these functions, their own Jacobian ma-

trices must not only be symmetric but also satisfy positive- or negative-semi definiteness

constraints. In particular, this implies the intuitive fact that,

@u
x

@n
x

=
@2W
@n2

x

 0.

This property against holds for all separable models. On the other hand, each separable

model has its own specific predictions. As an illustration, hold � and m fixed in the Choo

and Siow model, and let the group sizes of men n vary. It is easy to see from (3.4) below

that for all (x, y) and all z 6= x, y,

2
@ logµ

xy

@ log n
z

=
@ logµ

x0

@ log n
z

+
@ logµ0y

@ log n
z

.

This identity is in principle testable by pooling data across similar markets with di↵erent

group sizes for men. Other specifications would of course yield di↵erent predictions.

3 Examples

3.1 Models of heterogeneity

While Proposition 2 and Theorem 1 provide a general way of computing surplus and utilities,

they can be derived in closed form in important special cases. In all formulæ below, the
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proportions and numbers of single men in feasible matchings are computed as

µ0|x = 1�
X

y2Y

µ
y|x

and µ
x0 = n

x

�
X

y2Y

µ
xy

, (3.1)

and similarly for women. In this section we will maintain Assumptions 1, 2.

Our first example is the classical multinomial logit model of Choo and Siow, which is

obtained as a particular case of the results in Section 2 when the P
x

and Q
y

distributions

are iid standard type I extreme value:4

Example 1 (Choo and Siow). Assume that P
x

and Q
y

are the distributions of centered

i.i.d. standard type I extreme value random variables. Then

G
x

(U
x·) = log

0

@1 +
X

y2Y

exp(U
xy

)

1

A and G⇤

x

(µ
·|x

) = µ0|x log(µ0|x)+
X

y2Y

µ
y|x

logµ
y|x

. (3.2)

where the term µ0|x is a function of µ
·|x

defined in (3.1). Expected utilities are u
x

=

� logµ0|x and v
y

= � logµ0|y. The generalized entropy is

E(µ) =
X

x2X

y2Y0

µ
xy

logµ
y|x

+
X

y2Y

x2X0

µ
xy

log µ
x|y

, (3.3)

which is a standard entropy5. Surplus and matching patterns are linked by

�
xy

= 2 log µ
xy

� logµ
x0 � logµ0y, (3.4)

which is Choo and Siow’s (2006) identification result. See Appendix B.1 for details.

The multinomial logit Choo and Siow model is the simplest example which fits into Mc-

Fadden’s Generalized Extreme Value (GEV) framework. This includes most specifications

used in classical discrete choice models. A very simple instance is the heteroskedastic model

4From now on we deviate from Choo and Siow by centering all type I extreme values distributions we

use; the only e↵ect of this normalization is that it eliminates the Euler constant � = 0.577 . . . from expected

utilities.
5The connection between the logit model and the classical entropy function is well known; see e.g.

Anderson et al. (1988).
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considered by Chiappori, Salanié and Weiss (2015); it allows the scale parameters of the

type I extreme value distributions to vary across genders or groups. Then P
x

has a scale

parameter �
x

and Q
y

has a scale parameter ⌧
y

; the expected utilities are u
x

= ��
x

logµ0|x

and v
y

= �⌧
y

logµ0|y, and the general identification formula gives

�
xy

= (�
x

+ ⌧
y

) logµ
xy

� �
x

logµ
x0 � ⌧

y

log µ0y. (3.5)

An extension of this model is the well-known nested logit model, which we study as

Example 3 in Appendix B.

While the GEV framework is convenient, it is common in the applied literature to allow

for random variation in preferences over observed characteristics of products. The modern

approach to empirical industrial organization, for instance, allows di↵erent buyers to have

idiosyncratic preferences over observed characteristics of products6. Closer to our frame-

work, hedonic models also build on idiosyncratic preferences for observed characteristics,

on both sides of a match7. Our setup allows for such specifications; we elaborate on the

mixed logit model in Example 4 in Appendix B.

Assume, more generally, that men of group x care for a vector of observed characteristics

of partners ⇣
x

(y), but the intensity of the preferences of each man i in the group depends on a

vector "
i

which is drawn from some given distribution. Then we could take P
x

to be the joint

distribution of (⇣
x

(y) · "
i

)
y

. We investigate a particular case of this specification in the next

example: the Random Scalar Coe�cient (RSC) model, where the dimension of ⇣
x

(y) and "
i

is one, which makes computations very easy. Assuming further that the distribution of "
i

is

uniform, we are led to what we call the Random Uniform Scalar Coe�cient Model (RUSC).

This last model has one additional advantage: it yields simple closed-form expressions, even

though it does not belong to the Generalized Extreme Value (GEV) class.

Example 2 (Random [Uniform] Scalar Coe�cient (RSC/RUSC) models). Assume that for

6See the literature surveyed in Ackerberg et al (2007) or Reiss and Wolak (2007).
7See Ekeland et al (2004) and Heckman et al (2010).
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each man i in group x,

"
iy

= "
i

⇣
x

(y),

where ⇣
x

(y) is a scalar index of the observable characteristics of women which is the same

for all men in the same group x, and the "
i

’s are iid random variables which are assumed

to be continuously distributed according to a c.d.f. F
"

(which could also depend on x.) We

call this model the Random Scalar Coe�cient (RSC) model; and we show in Appendix B.2

that the entropy is

E(µ) =
X

xy

µ
xy

�
⇣
x

(y)ē
x

(y) + ⇠
y

(x)f̄
y

(x)
�
, (3.6)

where ē
x

(y) is the expected value of " on the interval [a, b] defined by

F
"

(a) =
X

z|⇣

x

(z)<⇣

x

(y)

µ
z|x

and F
"

(b) =
X

z|⇣

x

(z)⇣

x

(y)

µ
z|x

,

and f̄
y

(x) is defined similarly.

Assuming further that the "
i

are uniformly distributed over [0, 1], we call this model the

Random Uniform Scalar Coe�cient (RUSC) model. In this case, simpler formulæ can be

given. For any x 2 X , let Sx be the square matrix with elements Sx

yy

0 = max (⇣
x

(y), ⇣
x

(y0))

for y, y0 2 Y0. Define T x by T x

yy

0 = Sx

y0 + Sx

0y0 � Sx

yy

0 � Sx

00, and let sigmax

y

= Sx

00 � Sx

y0.

Then G⇤

x

is quadratic with respect to µ
·|x

:

G⇤

x

(µ·|x) =
1

2
(µ0

·|xT
xµ·|x + 2�x.µ·|x � Sx

00). (3.7)

If we now assume that preferences have such a structure for every group x of men and for

every group y of women (so that ⌘
xj

= ⌘
j

⇠
y

(x)), then the generalized entropy is quadratic

in µ:

E (µ) =
1

2
(µ0Aµ+ 2B0µ+ c), (3.8)

where the expressions for A, B and c are given by (B.4)–(B.5) in Appendix B.2. As a

consequence, the optimal matching solves a simple quadratic problem. See Appendix B.2 for

details.
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The structure of heterogeneity in the RUSC/RSC models is related to that investigated

in Ekeland et al. (2004) and Heckman et al. (2010), with continuous observed characteris-

tics. In Ekeland et al. (2004) and Heckman et al. (2010), y is a continuous and scalar quality

parameter, and the heterogeneity terms is given by "
iy

= "
i

y. However, their identification

strategy di↵ers from ours. Ekeland et al. (2004) use an additively separable form of ↵(x, y)

and are thus able to identify the distribution of ", which is fixed in our setting. In contrast,

In contrast, the assumptions in Heckman et al. (2010) assume that the distribution of "
i

is

fixed, and identification is obtained from a quantile transformation approach, which does

not extend to the discrete case we presently investigate.

3.2 Discussion

The Choo-Siow multinomial logit model has the virtue of simplicity, but it relies on strong

assumptions. This calls for caution when basing conclusions on it; we already pointed out

some of its strong testable predictions in sectin 2.5. Expected utilities can also be a much

richer function of observed matching patterns than in Choo and Siow’s multinomial logit

model.

Take the identified surplus for instance, whose expression is given in Choo and Siow’s

model by (3.4), which rewrites as

�
xy

= log
µ2
xy⇣

n
x

�
P

y

0
2Y

µ
xy

0

⌘ �
m

y

�
P

x

0
2X

µ
x

0
y

� .

This shows that if we write � as a function of (µ,n,m), then �
xy

only depends on µ via

µ
xy

,
P

y

0
6=y

µ
xy

0 and
P

x

0
6=x

µ
x

0
y

. Therefore if y0 6= y00 6= y,

@�
xy

@µ
xy

0
=

@�
xy

@µ
xy

00
. (3.9)

To interpret this, start from a given matching µ which is rationalized by some surplus �,

and suppose that a single man of group xmarries a single woman of group y0 6= y. Then (3.9)

tells us that our estimator of the surplus �
xy

should change by exactly the same amount

as if that woman had belonged to any other group y00 6= y. Derivations in Appendix B.2
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show that in the RUSC model, the e↵ect of changes in observed matching patterns on the

estimated surplus @�/@µ allows for much richer e↵ects than (3.9).

4 Parametric Inference

First assume that all observations concern a single matching market. While the formula

in Theorem 1(i) gives a straightforward nonparametric estimator of the systematic surplus

function �, with multiple payo↵-relevant observed characteristics x and y it is bound to be

very unreliable. In addition, we do not know the distributions P
x

and Q
y

. Both of these

remarks point to the need for a parametric model in most applications. Such a model would

be described by a family of joint surplus functions ��

xy

and distributions P �

x

and Q�

y

for �

in some finite-dimensional parameter space ⇤.

A dataset consists of a sample of Ŝ =
P

x

N̂
x

+
P

y

M̂
y

individuals, where N̂
x

(resp.

M̂
y

) denotes the number of men of group x (resp. women of group y) in the sample, and

n̂
x

= N̂
x

/Ŝ and m̂
x

= M̂
x

/Ŝ their respective empirical frequencies. We assume that the

data was generated by the parametric model above, with true parameter vector �0.

Recall the expression of the social surplus:

W(��, n̂, m̂) = max
µ2M(n̂,m̂)

 
X

x,y

µ
xy

��

xy

� E� (µ)

!

Let µ� be the optimal matching. We will show in Section 5 how it can be computed,

in some cases very e�ciently. For now we focus on statistical inference on �. We propose

two methods: a very general Maximum Likelihood method, and a simpler moment-based

method that is only available for some important subclasses of models.

4.1 Maximum Likelihood estimation

In this section we will use Conditional Maximum Likelihood (CML) estimation, where we

condition on the observed margins n̂
x

and m̂
y

. For each man of group x, the probability

of being matched with a woman of type y is µ�

xy

/n̂
x

; and a similar expression holds for
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each woman of group y. Under Assumptions 1, 2 and 3, the choice of each individual is

stochastic in that it depends on his vector of unobserved heterogeneity, and these vectors

are independent across men and women. Hence the log-likelihood of the sample is the sum

of the individual log-likelihood elements:

logL (�) =
X

x2X

X

y2Y0

µ̂
xy

log
µ�

xy

n̂
x

+
X

y2Y

X

x2X0

µ̂
xy

log
µ�

xy

m̂
y

(4.1)

= 2
X

x2X

y2Y

µ̂
xy

log
µ�

xyp
n̂
x

m̂
y

+
X

x2X

µ̂
x0 log

µ�

x0

n̂
x

+
X

y2Y

µ̂0y log
µ�

0y

m̂
y

.

The Conditional Maximum Likelihood Estimator �̂
MLE

given by the maximization of

logL is consistent, asymptotically normal and asymptotically e�cient under the usual set

of assumptions.

As an illustration, the MLE procedure is described for the nested logit model in Exam-

ple 3 of Appendix B.3. Sometimes the expression of the likelihood µ� can be obtained in

closed form. This is the case in the Random Uniform Scalar Coe�cient model:

Example 2 continued. Assume that the data generating process is the RUSC model of

Example 2. We parameterize �, ⇣
x

and ⇠
y

by a parameter vector � 2 IRK , hence param-

eterizing S and T and thus A and B. If the optimal matching µ� is interior, then it is

given by µ� = (A�)�1
�
�

� �B�

�
and its log-likelihood can be deduced by (4.1).

Maximum likelihood estimation has the usual statistical advantages; and it allows for

joint parametric estimation of the surplus function and of the unobserved heterogeneity.

However, the log-likelihood may have several local extrema and be hard to maximize. In

such cases, an alternative, moment-based method may be more appealing.

4.2 Moment-based estimation: The Linear Model

We now introduce a method based on moments which is computationally very e�cient but

can only be used under two additional assumptions.
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We first make the restrictive assumption that the distribution of the unobservable het-

erogeneity is parameter-free—as it is in Choo and Siow 2006 for instance; or at least we

conduct the analysis for fixed values of its parameters. Then we take a linear parameteri-

zation of the � matrix:

��

xy

=
KX

k=1

�
k

�k

xy

(4.2)

where the parameter � 2 IRK and �1, . . . ,�K are K known linearly independent basis

surplus vectors. If the number of basis surplus vectors expands, this specification can be

seen as a sieve approximation that can converge to any surplus function. We do not pursue

this, and we assume that the true � takes the form (4.2) for finite K.

For any feasible matching µ, we define the associated comoments as the average values

of the basis surplus vectors:

Ck(µ) =
X

x2X

y2Y

µ
xy

�k

xy

.

In particular, the empirical comoments are associated with the observed matching µ̂.

The Moment Matching estimator of � we propose in this section simply matches the

comoments predicted by the model with the empirical comoments; that is, it solves the

system

Ck(µ̂) = Ck(µ�) for all k.

It is in fact more useful to define it as

�̂
MM

:= arg max
�2IRk

0

BB@
X

x2X

y2Y

µ̂
xy

��

xy

�W
⇣
�

�,n,m
⌘
1

CCA . (4.3)

Note that the objective function in this program is concave, as W is convex in � and �

�

is linear in �. We now show that these two definitions are equivalent:

Theorem 3. Under Assumptions 1, 2 and 3, assume the distributions of the unobserved

heterogeneity terms P
x

and Q
y

are known. Then:

(i) The Moment Matching estimator yields the equality of predicted comoments and

observed comoments: the equality Ck(µ̂) = Ck(µ�) holds for all k for � = �̂
MM

.
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(ii) The Moment Matching estimator �̂
MM

is also the vector of Lagrange multipliers of

the moment constraints in the program

Emin (µ̂) = min
µ2M

⇣
E (µ) : Ck(µ) = Ck(µ̂), 8k

⌘
. (4.4)

Both (4.3) and (4.4) are globally convex programs, and hence very easy to solve numer-

ically. The intuition for the result is simple: we know from (2.9) that if µ is optimal for �,

then
@W
@�

= µ.

Hence the first-order condition in (4.3) is simply (µ̂� µ�) · � = 0.

While the Moment Matching estimator is not asymptotically e�cient in general, it

coincides with the MLE in the Choo and Siow model (see Appendix B.1):

Example 1 continued. Fix the distributions of the unobservable heterogeneities to be

type I extreme value distributed as in the multinomial logit Choo-Siow setting, and assume

that surplus function �

� is linearly parameterized as in (4.2). Then the log-likelihood can

be written as

logL (�) =
X

(x,y)2X⇥Y

µ̂
xy

��

xy

�W
⇣
�

�, n̂, m̂
⌘
. (4.5)

Therefore in this setting the Conditional Maximum Likelihood estimator and the Moment

Matching estimator coincide: �̂
MM

= �̂
MLE

.

This equivalence is particular to the Choo and Siow multinomial logit setting. It does

not obtain in the RUSC model for instance; but the latter is interesting as one can obtain

an explicit expression of �̂
MM

in the “interior” case in which no cell is empty (µ
xy

> 0 for

all (x, y))—see Appendix B.2.

Finally, Part (ii) of Theorem 3 generates a very simple specification test. Compare the

actual value E (µ̂) of the generalized entropy associated to the empirical distribution to the

value Emin (µ̂) of the program (4.4). By definition, E (µ̂) � Emin (µ̂); moreover, these two
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values coincide if and only if the model is well-specified. We state this in the following

proposition:8

Proposition 3. (A Specification Test) Under Assumptions 1, 2 and 3, assume that the

distributions of the unobserved heterogeneity terms P
x

and Q
y

are known. Then E (µ̂) �

Emin (µ̂), with equality if and only if there is a value � of the parameter such that �
�

= �.

4.3 Parameterization, Testing, and Multimarket Data

Theorem 1 shows that, given a specification of the distribution of the unobserved hetero-

geneities P
x

and Q
y

, there is a one-to-one correspondence between µ amd �. Any matching

on a single market can be rationalized by exactly one model that satisfies assumptions 1,

2, and 3. The downside of this result is that it is impossible to test separability using only

data on one market, even assuming perfect knowledge of the distributions of unobserved

heterogeneity.

Of course, assuming the distribution of the unobserved heterogeneity terms is a strong

assumption, while on the other hand, we may be content with a parametric specification of

�. Typically, we will use much fewer than the |X |⇥|Y| degrees of freedom of a nonparanetric

�. Any unused degrees of freedom can be used for inference on the distributions P
x

and Q
y

,

appropriately parameterized, or in order to test the assumptions of the model. For example,

if X and Y are finite subsets of IRd, we could resort to a semiparametric specification in the

spirit of Ekeland et al. (2004): �
xy

= �1 (y) + y0�2 (x). This would restrict the number of

degrees of freedom in � to |Y|+ d⇥ |X |.

An alternative empirical strategy is to use multiple markets with restricted parametric

variation in the joint surplus � and the distributions of unobserved heterogeneity P
x

and

Q
y

. The variations in the groups sizes n and m across markets then generate variation

in optimal matchings that can be used to overidentify the model and generate testable

8The critical values of the test can be obtained by parametric bootstrap for instance. One could also run

the test for di↵erent specifications of the distributions of heterogeneities and invert it to obtain confidence

intervals for the parameters of P
x

and mathbfQ
y

.
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restrictions. Chiappori, Salanié and Weiss (2015) pursue a simple variant of this strategy.

5 Computation

Maximizing the conditional likelihood requires computing the optimal matching µ� for

a large number of values of �. But the optimal matching is a large object in realistic

applications; and obtaining it by maximizing W in (2.9) is not a very practical option. We

develop here an algorithm based on the Iterative Projection Fitting Procedure (IPFP) that

often provides a much more e�cient solution.

Take the multinomial logit Choo-Siow model of Example 1 for instance. Fix a value of

� and drop it from the notation: let the joint surplus function be �, with optimal matching

µ. Formula (3.4) can be rewritten as

µ
xy

= exp

✓
�
xy

2

◆
p
µ
x0µ0y. (5.1)

As noted by Decker et al. (2012), we could just plug this into the feasibility constraints
P

y

µ
xy

+ µ
x0 = n̂

x

and
P

x

µ
xy

+ µ0y = m̂
y

and solve for the numbers of singles µ
x0 and

µ0y. Unfortunately, this results in a system of |X| + |Y | quadratic equations in as many

unknowns that is quite unwieldy as soon as we consider more than a few groups.

To find a feasible solution of (3.4), an alternative approach is to start from an infeasible

solution and to project it on the set of feasible matchings M(n̂, m̂). The di�culty is to

do this and still satisfy (5.1); we now show how it can be done using IPFP. As its name

indicates, the Iterative Projection Fitting Procedure was designed to find projections on

intersecting sets of constraints, by projecting iteratively on each constraint9.

Assume that there exists a convex function E that extends the generalized entropy E in

the following manner: E (µ̄) is defined for all non-negative µ̄ =
�
µ = (µ

xy

)
x,y

, (µ
x0)x, (µ0y)y

�
;

and it coincides with E(µ) whenever
X

y

µ
xy

+ µ
x0 = n

x

and
X

x

µ
xy

+ µ0y = m
y

for all x, y. (5.2)

9It is used for instance to impute missing values in data (and known for this purpose as the RAS method.)
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Problem (2.9) can be rewritten as the maximization of
P

x2X ,y2Y

µ
xy

�
xy

� E (µ̄) over the

set of vectors µ̄ � 0 that satisfy the constraints in (5.2). Denoting u
x

and v
y

the Lagrange

multipliers of the constraints, and introducing the Lagrangian

L(µ̄,u,v) =
X

x2X

u
x

0

@n
x

�
X

y2Y0

µ
xy

1

A+
X

y2Y

v
y

0

@m
y

�
X

x2X0

µ
xy

1

A+
X

(x,y)2X⇥Y

µ
xy

�
xy

�E (µ̄) ,

(5.3)

the value of the matching problem is

min
u,v

max
µ̄�0

L(µ̄,u,v) (5.4)

and its first order conditions are

@E

@µ
xy

= �
xy

� u
x

� v
y

;
@E

@µ
x0

= �u
x

;
@E

@µ0y
= �v

y

.

However, instead of solving the full problem (5.4), we solve it iteratively. Start with

any initial choice of
�
µ̄(0)u(0),v(0)

�
and set k = 0. After completing step 2k with values

(µ̄(2k),u(2k),v(2k)), at step (2k + 1) we keep v = v(2k) and we solve the minmax problem

over u and µ̄:

min
u

max
µ̄�0

L(µ̄,u,v(2k)). (5.5)

Using the first order conditions, this is equivalent to solving

@E

@µ
xy

(µ̄) = �
xy

� u
x

� v(2k)
y

;
@E

@µ
x0
(µ̄) = �u

x

;
@E

@µ0y
(µ̄) = �v(2k)

y

(5.6)

along with
P

y2Y0
µ
xy

= n
x

. Call u(2k+1) and µ̄(2k+1) the solutions to this problem..

At step (2k+ 2), we keep u = u(2k+1) and we solve the minmax problem over v and µ̄:

min
v

max
µ̄�0

L(µ̄,u(2k+1),v); (5.7)

which amounts to solving

@E

@µ
xy

(µ̄) = �
xy

� u(2k+1)
x

� v
y

;
@E

@µ
x0
(µ̄) = �u2k+1

x

;
@E(µ)

@µ0y
= �v

y

(5.8)

along with
P

x2X0
µ
xy

= m
y

. Call v(2k+2) and µ̄(2k+2) the solutions.
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If µ̄(2k+2) is close enough to µ̄(2k), then we take µ̄ = µ̄2k+2 to be the optimal matching

and we stop; otherwise we add one to k and we move to step (2k + 3).

Note that the algorithm can be interpreted as a Walrasian tâtonnement process where

the prices of the observed characteristics x and the y are moved iteratively in order to adjust

supply to demand on each side of the market. We prove in Appendix A that:

Theorem 4. The algorithm converges to the solution µ̄ of (2.9) and to the corresponding

expected utilities.

Note that there are many possible ways of extending E (which is defined only on M) to

the entire space of µ̄ � 0. In practice, good judgement should be exercised, as the choice

of an extension E that makes it easy to solve (5.6) and (5.8) is crucial for the performance

of the algorithm.

To illustrate, take the multinomial logit Choo and Siow model from Example 1. Here

we extend E(µ) to

E (µ̄) =
X

x2X

X

x2Y0

µ
xy

logµ
xy

+
X

x2X0

X

x2Y

µ
xy

logµ
xy

,

and we have @E/@µ
xy

= 2 + 2 log µ
xy

, @E/@µ
x0 = 1 + logµ

x0, and @E/@µ0y = 1 + logµ0y.

Therefore solving (5.6) at step (2k+1) boils down to the simple task of finding the root

µ
x0 of the univariate quadratic equation

µ
x0 +

q
µ
x0µ

(2k)
0y exp

✓
�
xy

2

◆
= n

x

. (5.9)

We illustrate the algorithm for the nested logit model in Example 3 in Appendix B.3. We

tested the performance of our proposed algorithm on an instance of Choo and Siow problem;

we report the results in Appendix E. Our IPFP algorithm is extremely fast compared to

standard optimization or equation-solving methods.
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6 Empirical Application

Choo and Siow 2006 illustrated the potential of separable matching models by taking the

specification of Example 1 to US Census data before and after the 1973 Roe vs Wade

Supreme Court ruling that barred state restrictions on abortion before the third semester

of pregnancy. As some states (which CS call the “non-reform states”) had already relaxed

restrictions on abortion, the ruling had fewer e↵ects there than in the “reform states”.

This naturally suggests a di↵erence-of -di↵erence approach in which the expected utilities

of groups of women and men on the marriage markets of reform and non-reform states are

estimated before and after the ruling. To do this, Choo and Siow pooled data from the

1970 Census and the marriage records of 1971 and 1972 to describe the marriage markets

before the 1973 ruling, and the 1980 Census and the marriage records of 1981 and 1982.

Our aim in this section is to compare three di↵erent approaches to this data10:

1. using the same specification as CS (nonparametric Choo and Siow, or “CS NP” in

the figures)

2. using a parametric specification of their model (parametric Choo and Siow, “CS P”)

3. and finally, using the RUSC specification of Example 2 (“RUSC”.)

We concentrate throughout on men and women aged 16 to 40 (this covers more than 90% of

marriages in this period.) In each case, we estimate four models of the marriage market—

two for the 1970s data (in reform and in non-reform states) and two for the 1980s. In cases 2

and 3, we use model selection criteria to choose a specification. Then we take the di↵-of-di↵

to estimate the e↵ect of Roe vs Wade on the expected utilities from marriage of men and

women of di↵erent ages. Finally, we estimate two models on marriage data from 1981 alone,

and we use the estimated model to predict marriages in 1982, when the numbers of available

10We are very grateful to Eugene Choo and Aloysius Siow for giving us access to their data and code.

We corrected a small mistake in the construction of the data—CS did not update the ages of the subjects

between Census year+1 and Census year+2. This does not a↵ect their conclusions.
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men and women for each age have changed. This last exercise allows us to evaluate the

comparative statics of the models, as well as their performance out-of-sample.

6.1 Implementing the Specifications

6.1.1 Nonparametric Choo and Siow

Expected utilities in Example 1 are simply minus the logarithms of the marriage rates and

are therefore extimated straightforwardly. We also estimated the joint surplus matrix �

from marriages in 1981; and we used these estimates to project marriages in 1982, given

the numbers of available men and women at each age in 198211.

6.1.2 Parametric Choo and Siow

We also estimated parameterized versions of the Choo and Siow models, writing

�
xy

= X
xy

�

where the X are polynomials of the ages of the two partners. For each value �, we computed

the optimal matching using the IPFP algorithm of section 5; and we maximized the resulting

log-likelihood function. To choose the polynomial terms to be included in the covariates X,

we turned to standard model selection techniques. Selecting models by the Akaike or the

Bayesian information criteria only works for unweighted maximum likelihood estimation.

Since the surveys we use have fairly large variation in sampling weights, we needed to resort

to a more general version of AIC: the Takeuchi Information Criterion. TIC applies even

if the models may all be misspecified and for other estimation methods than MLE. Let ✓̄
k

be the pseudo-value for model k, and I
k

and J
k

be the usual matrices. Then AIC would

minimize

�2 logL
k

+ 2p
k

;

11This required imputing numbers for the youngest men and women in 1982, since by then the availables

of 1980 are aged at least 18; we used the same numbers that we observed in 1980, and we assigned to them

the same marriage rates as in 1981.
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we should instead minimize

�2 logL
k

+ 2Tr(I
k

J�1
k

).

With variable sampling weights, these two criteria give quite di↵erent results. We applied

TIC to select from a set of regressors in ages of men and women of the form Ak

m

Al

w

. The

selected models allow for terms of total degrees up to k + l = 5. Table 1 shows the main

characteristics of the selected models. The “maximum logL” column of the table shows the

value of the log-likelihood for the nonparametric specification of Example 1. The parametric

models achieve a very good fit on the whole12.

Wave Reform Zero cells maximum logL Parametric CS RUSC

Parameters logL Parameters logL

1970 N 1.9% -1.04 14 -1.05 21 -1.07

1970 Y 1.8% -1.00 14 -1.02 21 -1.03

1980 N 0.4% -0.84 14 -0.85 21 -0.86

1980 Y 0.2% -0.72 19 -0.73 21 -0.82

1981 N 3.4% -0.48 13 -0.49 21 -0.49

1981 Y 2.6% -0.45 13 -0.46 21 -0.48

Table 1: Comparing the Models

6.1.3 RUSC

Finally, we turn to the RUSC specification of Example 2. One of the distinguishing features

of this specification is that the error terms have compact support. As such and unlike

the Choo and Siow models, it allows for zero matching probabilities. This is easily seen

by referring to the formula for the entropy in Example 2: if the solution µ has all of its

components positive, then it is given by the first-order condition

µ = A�1(��B); (6.1)

12In the Choo and Siow model, it follows from the example on page 27 that the entropy-based specification

test of Proposition 3 is just a likelihood-ratio test, and we did not implement it.
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and if a component of the right-hand side of this equality is negative, this is impossible.

Suppose for instance that (� � B) has at least one negative component; then since all

elements of A and µ are non-negative, the corresponding first-order condition cannot hold.

Note also that this is by no means a non-generic case: it holds on open sets of parameter

values.

Allowing for zero matching probabilities is both an asset and a complication. It is

an asset because much economic data in fact contains zero-probability cells. In the Choo

and Siow data, several of the subsamples we use have some zero cells13, as shown in the

third column of Table 1. But finite-support errors, which make zero probabilities possible,

also beget numerical di�culties. To start with, the log-likelihood element for cell (x, y) is

µ̂
xy

logµ
xy

(�); parameter values that predict µ
xy

(�) = 0 when µ̂
xy

> 0 will give (minus)

infinite log-likelihood. Moreover, the finite support generates min and max operators in the

definitions of A and B (see Appendix B.2.) For instance,

A
xy,xy

0(�) = min(⇣
x

(y;�), ⇣
x

(y0;�))

if the ⇣’s are positive. At any parameter values where two values of ⇣
x

coincide, the resulting

µ will be a non-di↵erentiable function of �; and the log-likelihood function will have a kink.

There are many such kinks, and this creates serious di�culties with the usual gradient-based

maximization algorithms. It is relatively easy to compute derivatives analytically where they

exist, but this only gives misleading information to the algorithm. We experimented with

algorithms that do not rely on derivatives; but they were very slow and got stuck at clearly

non-optimal points. Not having good initial parameter values for the ⇣
x

(y;�) and ⇠
y

(x;�)

only compounded the problem.

We resorted to a hybrid strategy to obtain good estimates of the parameters. We used

separate parameter vectors �
⇣

,�
⇠

and �� for the ⇣, ⇠ and � components of the RUSC

model. For fixed parameter values (�
⇣

,�
⇠

), we optimized the log-likelihood14 over ��,

13Trade is another area where matching methods have become popular in recent years (see Costinot–Vogel

2014); and trade data also has typically many zero cells.
14Since the parameter values sometimes predicted zero probabilities for cell where marriages were actually
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starting from the parameters that best fit (6.1) and using a derivative-free algorithm. To

find the optimal µ for any �, we used the Gurobi quadratic optimizer15.

Getting a set of estimates using this process is too slow to replicate the kind of extensive

model selection we used for the parametric CS model. We settled on a quadratic specifica-

tion of the ⇣
x

(y) and ⇠
y

(x) in the ages of both partners, with polynomials of total degree

three of less for �
xy

. The estimated models have a total of 21 parameters.

To compute expected utilities u
x

and v
y

in the RUSC model, we used the di↵erential

equality

u
x

=
@W
@n

x

(�,n,m)

of Theorem 1(ii) and we combined it with (3.8).

6.2 Di↵-of-di↵ Estimates

Figure 1 computes the impact of Roe vs Wade on expected utilities for men and women aged

16 to 40, along with 95% confidence bars for the CS models16. CS did not report standard

errors for their estimates; correct standard errors must take into account the sampling errors

and weights, and the complex correlation structure of sampling errors as they go through

logarithmic transforms and double di↵erences. Even with such large samples (the sampling

rates vary from 1/2 to 1/50), many of the di↵-of-di↵ estimates in the first row of Figure 1 are

quite imprecise. In particular, the e↵ect of Roe vs Wade on women’s expected utilities from

marriage is small and insignificant at most ages. On the other hand, the fall in expected

utilities of young men is large and is highly significant at their peak marriage ages. As

noted by Choo and Siow (page 193), this is a “problematic” result; changes in abortion

laws should have a larger impact on women than on men.

As one would expect, the di↵-of-di↵ estimates from the parametric specification of the

observed, we replaced the logarithm function by a C2 extension for x < �, so that it only took finite values.

Then we gradually took � to 0.
15See Gurobi (2015).
16Given the non-di↵erentiable log-likelihood function for the RUSC model, we did not attempt to compute

standard errors.
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Figure 1: E↵ect of Roe vs Wade on Expected Utilities from Marriage
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CS model are very similar, but they are both smoother and more precisely estimated—see

the second row of Figure 1.

Interestingly, the e↵ect of Roe vs Wade estimated from the RUSC model (third row)

has a pattern that is much closer to what intuition suggests: the liberalization of abortion

had a more negative e↵ect on the utility from marriage of young women than on that of

young men. The left-hand panel (for men) is very similar to those on the first two rows, but

the right-hand panel shows a much larger negative e↵ect for young women than for young

men17.

6.3 Predicting Marriages in 1982

For each of our three models, the simplest way of predicting marriages in 1982 is to simply

project the marriage rates at each age simulated from the 1981 estimates on the observed

margins, that is the men and women who are not married at the beginning of 1981. We

call this the naive predictor, as it assumes away any change in marriage behavior between

1981 and 1982.

Remember that in each model the optimal matching µ is a function of both the joint

surplus � and the margins n and m. Changes in the margins act both by simply scaling

up or down the supply of available partners, and by changing the allocation of the surplus

and therefore the equilibrium marriage patterns. The näıve predictor neglects the second,

“price” e↵ect. Our model predictor allows for it, by simulating the marriage rates for the

margins observed in 1982.

We implemented these two predictors for each model and in both categories of states; and

we focus here on the predicted numbers of marriages at each age for both genders. Figure 2

plots the prediction errors (predicted minus observed) for the numbers of marriages in 1982.

In each panel, the di↵erence between the dashed curve and the solid curve corresponds

to the “price e↵ects” induced by the change in margins betwen 1981 and 1982. These price

17Unlike the CS models, we need to normalize the scale of utilities in the RUSC model. We did it so that

the range of di↵-of-di↵ e↵ects is similar; but this is arbitrary.
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e↵ects are much smaller in non-reform states than in reform states. A look at the data

explains why: while the total number of available individuals did not change much in non-

reform states, it decreased markedly in non-reform states; and this decrease was mostly

due to women. With fewer women, the expected utilities of men fall; and the price e↵ect

increases the number of predicted marriages for women and reduces it for men. This is

exactly what the second and fourth column show consistently. The changes in margins in

non-reform states turn out to be too small for the price e↵ects to show.

The second row of Figure 2 shows that the parametric Choo and Siow models behave

very badly out of sample: they underpredict marriages by about 5% at the peak ages of

20-25. The RUSC model performs much better in this respect, even if their performance at

the youngest ages (18-20) is not very good.

Concluding Remarks

As mentioned earlier, several other approaches to estimating matching models with hetero-

geneity exist. One could directly specify the equilibrium utilities of each man and woman,

as Hitsch, Hortacsu and Ariely (2010) did in a non-transferable utility model. Under sep-

arability, this would amount to choosing distributions P
x

and Q
y

and a parametrization �

of U and V , and fitting the multinomial choice model where for instance men maximize

U
xy

(�)+"
iy

over their marital options y 2 Y0. The downside is that unlike the joint surplus,

the utilities U and V are not primitive objects; and they cannot even be interpreted as

utilities, and it is hard to argue for a particular specification.

It is worthwhile noting that Fox and Yang (2012) take an approach that is somewhat dual

to ours: while we use separability to restrict the distribution of unobserved heterogeneity

so that we can focus on the surplus over observables, they restrict the latter in order to

recover the distribution of complementarities across unobservables. To do this, they rely on

pooling data across many markets; given the high dimensionality of unobservable shocks,

their method, while very ingenious, has yet to be tested on real data.
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We have left several interesting theoretical issues for future research. One such issue

is the behavior of the finite population approximation of the model. We have worked

in an idealized model with an infinite number of agents within each observable group;

however, when there is a finite number of agents in each group, the surplus function �̃
ij

=

� (x
i

, y
j

) + "
iy

+ ⌘
xj

becomes stochastic. It is easy to see from the proof in Appendix A

that Theorem 1 still holds with G
x

and H
y

replaced by

Ĝ
x

(U
x·) =

1

n
x

X

i:x
i

=x

max
y2Y0

{U
xy

+ "
iy

} and Ĥ
y

(V·y) =
1

m
y

X

j:y
j

=y

max
x2X0

�
V
xy

+ ⌘
xj

 

The law of large numbers implies the pointwise convergences Ĝ
x

(U
x·) ! G

x

(U
x·) and

Ĥ
y

(V·y) ! H
y

(V·y) as the number of individuals gets large. It is natural to expect that

the solutions µ̂ and ( ˆU , ˆV ) of the finitely sampled primal and dual problems converge to

their large population analogs18. This goes beyond the scope of the present paper and is

left as a conjecture. Likewise, we leave the exploration of the rate of convergence for future

research.

To conclude, let us emphasize the wide applicability of the methods introduced in the

present paper, and the potential for extensions. On the methodological front, one chal-

lenge is to extend the logit setting of Choo and Siow to the case where the observable

characteristics of the partners may be continuous. This issue is addressed by Dupuy and

Galichon (2014) using the theory of extreme value processes; they also propose a test of the

number of relevant dimensions for the matching problem. While the framework we used

here is bipartite, one-to-one matching, our results open the way to possible extensions to

other matching problems. For instance, it may be insightful in the study of trading on net-

works, when transfers are allowed (thus providing an empirical counterpart to Hatfield and

Kominers, 2012, and Hatfield et al., 2013). Also, while the present paper operates under

the maintained assumption that utility is fully transferable without frictions, this assump-

tion can be relaxed; Galichon, Kominers, and Weber (2014) study models with imperfectly

18What is needed is to show that the gradient of the sum of the Legendre transforms of the Ĝ
x

and the

Ĥ
y

maps converges to its population analog.
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transferable utility and separable logit heterogeneity, while Hsieh (2012) looks at models

with nontransferable utility and a similar form of heterogeneity.
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More Stable than You Think,” mimeo.

[12] Chiappori, P.-A., R. McCann, and L. Nesheim (2010): “Hedonic Price Equilibria, Sta-

ble Matching, and Optimal Transport: Equivalence, Topology, and Uniqueness,” Eco-

nomic Theory, 42, 317–354.

[13] Chiappori, P.-A., S. Ore�ce, and C. Quintana-Domeque (2012): “.Fatter Attraction:

Anthropometric and Socioeconomic Characteristics in the Marriage Market,” Journal of

Political Economy 120, 659–695.
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Appendix

A Proofs

A.1 Proof of Proposition 2

Replace the expression of G
x

(2.1) in the formula for G⇤

x

(2.3) to obtain

G⇤

x

(µ·|x) = �min
Ũ

x·
{E

P

x

max
y2Y

⇣
Ũ
xy

+ "
iy

, "
i0

⌘
�
X

y2Y

µ
y|x

Ũ
xy

}

= �min
Ū

x·
{
X

y2Y0

µ
y|x

Ū
xy

+E
P

x

max
y2Y0

�
"
iy

� Ū
xy

�
}

where Ū
xy

= �Ũ
xy

and Ū
x0 = 0 in the second line. The first term in the minimand is the

expectation of ¯U
x· under the distribution µ

Y |x=x

; therefore this can be rewritten as

G⇤

x

(µ·|x) = � min
Ū

xy

+W̄

x

("
i·)�"

iy

{E
µ

Y |x=x

Ū
xY

+E
P

x

W̄
x

("
i

)}

where the minimum is taken over all pairs of functions ( ¯U
x·, W̄x

("
i

)) that satisfy the in-

equality. We recognize the value of the dual of a matching problem in which the margins

are µ
Y |x=x

and P
x

and the surplus is "
iy

. By the equivalence of the primal and the dual,

this yields Expression (2.7).

A.2 Proof of Theorem 1

In the proof we denote ñ (x, ") the distribution of (x, ") where the distribution of x is n,

and the distribution of " conditional on x is P
x

; formally, for S ✓ X ⇥ IRY0 , we get

ñ (S) =
X

x

n
x

Z

IRY0

1 {(x, ") 2 S} dP
x

(") .

(i) By the dual formulation of the matching problem (see Gretsky, Ostroy and Zame,

1992), the market equilibrium assigns utilities ũ (x, ") to man i such that x
i

= x and "
i

= "

and ṽ (y, ⌘) to woman j such that y
j

= y and ⌘
j

= ⌘ so as to solve

W = min

✓Z
ũ (x, ") dñ (x, ") +

Z
ṽ (y, ⌘) dm̃ (y, ⌘)

◆
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where the minimum is taken under the set of constraints ũ (x, ") + ṽ (y, ⌘) � �
xy

+ "
y

+ ⌘
x

,

ũ (x, ") � "0, and ṽ (y, ⌘) � ⌘0. For x 2 X and y 2 Y, introduce

U
xy

= inf
"

{ũ (x, ")� "
y

} and V
xy

= inf
⌘

{ṽ (y, ⌘)� ⌘
x

} ,

so that ũ (x, ") = max
y2Y

{U
xy

+ "
y

, "0} and ṽ (y, ⌘) = max
x2X

�
V
xy

+ ⌘
x

, ⌘0j
 
. Then W
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R
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xy
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y
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R
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x2X

{V
xy
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x

, ⌘0} dm̃ (y, ⌘) over U and

V subject to constraints U
xy

+ V
xy

� �
xy

. Assign non-negative multipliers µ
xy

to these

constraints. By convex duality, we can rewrite

W = max
µ

xy
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xy
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, "0} dñ (x, ") =
P

x

n
x

E
P

x

[max
y2Y

U
xy

+ "
y
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x

G
x

(U
x·),

where E
P

x

denotes the expectation over the population of men in group x, and where we

have used Assumption 1. Adding the similar expression for women, we get that W is the

maximum over µ � 0 of
P

x2X ,y2Y

µ
xy

�
xy

�A (µ)�B (µ), whereA (µ) = max(U
xy

){
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xy
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xy
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x·)}, and B has a similar expression involving H and m instead of G and n.

Now consider the term with first subscript x inA(µ). They sum up to n
x

(
P

y2Y

µ
y|x

U
xy

�

G
x

(U
x·)), which is n

x

times the Legendre transform of G evaluated at µ·|x. We can there-

fore rewrite A(µ) and B(µ) in terms of the Legendre-Fenchel transforms:

A (µ) =
X

x2X

n
x

G⇤

x

⇣
µ·|x

⌘
and B (µ) =

X

y2Y

m
y

H⇤

y

⇣
µ·|y

⌘
.

Expression (2.9) follows. Convexity of W w.r.t. � is a an immediate consequence of

the latter expression, while concavity of W w.r.t. (n,m) is immediately deduced from

Expression (2.10). Points (ii), (iii) and (iv) are then deduced immediately.

48



A.3 Proof of Theorem 2

If Assumption 4 holds for P
x

, then the function G
x

is increasing in each of its arguments;

since its derivatives are the probabilities µ
y|x

at the optimum, they must be positive. More-

over, G⇤

x

(µ·|x) would be infinite if
P

y

µ
y|x

were to equal one; and that is not compatible

with optimality. We can therefore neglect the feasibility constraints (2.9). By the first

order conditions in the program defining A in the proof of Theorem 1 above, one gets

U
xy

=
⇣
@G⇤

x

/@µ
y|x

⌘
(µ

·|x

) which is (2.12). The envelope theorem in the same program

gives us (2.11), which proves (i). Similarly, one gets V
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⇣
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y

/@µ
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⌘
(µ

·|y

) which, by

summation and using the fact that �
xy

= U
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+ V
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, yields (2.13), proving (ii).

A.4 Proof of Corollary 1

The result follows from the fact that U
xy

= ↵
xy

+⌧
xy

and V
xy

= �
xy

�⌧
xy

; thus if U
xy

and V
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are identified and ⌧
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xy
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and �
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=

V
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.

A.5 Proof of Theorem 3

(i) The Moment Matching estimator �̂ solves (4.3). Hence, by its FOC �̂ satisfies
P

x,y

µ̂
xy
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(��̂,n,m); but by the Envelope Theorem, @W/@�
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(ii) Program (4.3) can be rewritten as
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A.6 Proof of Proposition 3

Since µ�̂ maximizes W when � = �̂,
P

x,y

µ̂
xy

��̂

xy

� E (µ̂) 
P

x,y

µ�̂

xy

��̂

xy
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, and,

since E is strictly convex in µ, equality holds if and only if µ�̂ = µ̂. But the equality
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P
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=
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xy

��̂

xy

holds by construction; hence E (µ̂) � E(µ�̂) with equality if

and only if µ�̂ = µ̂.

A.7 Proof of Theorem 4

The proof uses results in Bauschke and Borwein (1997), which builds on Csiszar (1975). The

map µ ! E(µ) is essentially smooth and essentially strictly convex; hence it is a “Legendre

function” in their terminology. Introduce the associated “Bregman divergence” D as

D (µ; ⌫) = E (µ)� E (⌫)� hrE (⌫) ,µ� ⌫i ,

and introduce the linear subspaces M (n) and M (m) by

M (n) = {µ � 0 : 8x 2 X ,
X

y2Y0

µ
xy
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} and M (m) = {µ � 0 : 8y 2 Y,
X

x2X0

µ
xy

= m
y

}

so that M(n,m) = M (n) \ M (m). It is easy to see that µ(k) results from iterative

projections with respect to D on the linear subspaces M(n) and on M(m):

µ(2k+1) = arg min
µ2M(n)

D
⇣
µ;µ(2k)

⌘
and µ(2k+2) = arg min

µ2M(m)
D
⇣
µ;µ(2k+1)

⌘
. (A.1)

By Theorem 8.4 of Bauschke and Borwein, the iterated projection algorithm converges19

to the projection µ of µ(0) on M(n,m), which is also the maximizer µ of (2.9).

B Explicit examples

The Generalized Extreme Values Framework

Consider a family of functions g
x

: IR|Y0| ! IR that (i) are positive homogeneous of degree

one; (ii) go to +1 whenever any of their arguments goes to +1; (iii) are such that their

partial derivatives (outside of 0) at any order k have sign (�1)k; (iv) are such that the

19In the notation of their Theorem 8.4, the hyperplanes (C
i

) are M(p) and M(q); and the Breg-

man/Legendre function f is our �.
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functions defined by F (w0, ..., wJ

) = exp (�g
x

(e�w0 , ..., e�w

J )) are multivariate cumulative

distribution functions, associated to a distribution which we denote P
x

. Then introducing

utility shocks "
x

⇠ P
x

, we have by a theorem of McFadden (1978):

G
x

(w) = E
P

x


max
y2Y0

{w
y

+ "
y

}
�
= log g

x

(ew) + � (B.1)

where � is the Euler constant � ' 0.577. Therefore, if
P

y2Y0
p
y

= 1, then G⇤

x

(p) =
P

y2Y0
p
y

wx

y

(p) �
�
log g

x

�
ew

x(p)
�
+ �

�
, where for x 2 X , the vector wx (p) is a solution

to the system of equations p
y

=
�
@ log g

x

/@wx

y

� �
ew

x

�
for y 2 Y0. Hence, the part of the

expression of E(µ) arising from the heterogeneity on the men side is

X

x2X

{n
x

log g
x

⇣
ew

x(µ
x·/nx

)
⌘
�

X

y2Y0

µ
xy

wx

y

(µ
x·

/n
x

)}+ C

where C = �
P

x2X

n
x

. The derivative of this expression with respect to µ
xy

(x, y � 1) is

�wx

y

(µ/n).

B.1 Ex. 1: The Choo-Siow model

Claims of Section 3.1. With centered standard type I extreme value iid distributions

G(��, 1), the expected utility is G
x

(U
x·) = log(1 +

P
y2Y

exp(U
xy

)), and the maximum in

the program that defines G⇤

x

(µ
·|x

) is achieved by U
xy

= log(µ
y|x

/µ0|x). This yields

G⇤

x

(µ
·|x

) =
X

y2Y

µ
y|x

log
µ
y|x

µ0|x
� log

0

@1 +
X

y2Y

µ
y|x

µ0|x

1

A = µ0|x log(µ0|x) +
X

y2Y

µ
y|x

logµ
y|x

which gives equation (3.3). Equation (3.4) obtains by straightforward di↵erentiation.

Claims of Section 4.2. We can rewrite L as

logL (�) =
X

x,y

µ̂
xy

log

�
µ�

xy

�2

µ�

x0µ
�

0y

+
X

x2X

n̂
x

log
µ�

x0

n̂
x

+
X

y2Y

m̂
y

log
µ�

0y

m̂
y

=
X

x,y

µ̂
xy

��

xy

�W (�) ,

which establishes (4.5). Now by the envelope theorem, @W/@� =
P

x,y

µ�

xy

@��

xy

/@� since

the entropy term does not depend on � in the multinomial logit Choo and Siow model; this

proves that �̂
MM

= �̂
MLE

.
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B.2 Ex. 2: The RUSC model

Claims of Section 3.1. From Proposition 2, G⇤

x

(µ·|x) = �max
⇡2M

x

E
⇡

[⇣
x

(Y )"], where

⇡ has margins F
"

and µ(Y |x = x). Since the function (", ⇣) �! "⇣ is supermodular, the

optimal matching must be positively assortative: larger "’s must be matched with y’s with

larger values of the index ⇣
x

(y). For each x, the values of ⇣
x

(y) are distinct and we let

⇣(1) < . . . < ⇣(|Y|+1) denote the ordered values of distinct values of ⇣
x

(y) for y 2 Y0; the

value ⇣(k) occurs with probability

Pr(⇣
x

(Y ) = ⇣(k)|x) =
X

⇣

x

(y)=⇣(k)

µ
y|x

. (B.2)

By positive assortative matching, there exists a sequence "(0) = inf " < "(1) < . . . < "(|Y|) <

"(|Y|+1) = sup " such that "matches with a y with ⇣
x

(y) = ⇣(k) if and only if " 2 ["(k�1), "(k)];

and since probability is conserved, the sequence is constructed recursively by

F
"

�
"(k)

�
� F

"

�
"(k�1)

�
=

X

⇣

x

(y)=⇣(k)

µ
y|x

, (B.3)

giving F
"

�
"(k)

�
=
P

⇣

x

(y)⇣(k)
µ
y|x

; and as a result, G⇤

x

(µ·|x) = �
P

1k|Y|+1 ⇣(k)ek, where

e
k

=
R
"(k)
"(k�1)

"f (") d" =
�
F ("(k))� F ("(k�1))

�
ē
k

, with ē
k

defined as the conditional mean

of " in interval
⇥
"(k�1), "(k)

⇤
; then �n

x

G⇤

x

(µ·|x) = n
x

P
1k|Y|+1 ⇣(k)

P
⇣

x

(y)=⇣(k)
µ
y|x

ē
k

=
P

y

µ
xy

ē
K(y), with K(y) the value of k such that ⇣

x

(y) = ⇣(k); in the main text we use the

notation ē
x

(y) = ē
K(y).

When " is distributed uniformly over [0, 1], (B.3) becomes "(k) =
P

⇣

x

(y)⇣(k)
µ
y|x

, and

E
⇥
"1(" 2 ["(k�1), "(k)])

⇤
=
�
"(k) � "(k�1)

�
("(k) + "(k�1))/2, we obtain

E
⇥
"1(" 2 ["(k�1), "(k)])

⇤
=

X

y|⇣

x

(y)=⇣(k)

µ
y|x

0

@
X

y

0
|⇣

x

(y0)<⇣

x

(y)

µ
y

0
|x

+
1

2

X

y

0
|⇣

x

(y0)=⇣

x

(y)

µ
y

0
|x

1

A .

Summing up over k = 1, . . . , |Y| + 1, we get G⇤

x

(µ·|x) = �1
2

P
y,y

0
2Y0

Sx

yy

0µ
y|x

µ
y

0
|x

,where

Sx

yy

0 = max(⇣
x

(y), ⇣
x

(y0)).
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Therefore, using µ0|x = 1�
P

y2Y

µ
y|x

, we obtain

G⇤

x

(µ·|x) = �1

2

0

@
X

y,y

0
2Y

�
Sx

yy

0 � Sx

y0 � Sx

0y0 + Sx

00

�
µ
y|x

µ
y

0
|x

+ 2
X

y2Y

(Sx

y0 � Sx

00)µy|x

+ Sx

00

1

A .

Now define a matrix T x and a vector �x by T x

yy

0 = Sx

y0+Sx

0y0�Sx

yy

0�Sx

00 and �x

y

= Sx

00�Sx

y0;

this gives G⇤

x

(µ·|x) =
1
2

⇣
µ0

·|xT
xµ·|x + 2�x.µ·|x � Sx

00

⌘
.

Introducing

A
xy,x

0
y

0 =
1

n
x

1
�
x = x0

 
T x

yy

0 +
1

m
y

1
�
y = y0

 
T y

xx

0 (B.4)

B
xy

= �x

y

+ �y

x

and c = �
X

x2X

n
x

Sx

00 �
X

y2Y

m
y

Sy

00 (B.5)

leads to E (µ) = (µ0Aµ+ 2B0µ+ c)/2, where µ is the vector of µ
xy

for x 2 X and y 2 Y.

Claims of Section 3.2. Note that µ is determined by

W = max
µ2M(n,m)

✓
� · µ� 1

2
(µ0Aµ+ 2B0µ+ c)

◆

where �.µ is the vector product
P

xy

µ
xy

�
xy

. Hence, if µ is interior, i.e. if there are no

empty cells, the solution is given by µ = A�1 (��B) and W = 1
2((��B)0A�1 (��B)�

c), where the invertibility of A follows from the fact that for each x, the values of ⇣
x

(y),

y 2 Y0 have been assumed to be distinct. One has @A�1/@n
x

= �A�1(@A/@n
x

)A�1 and

@A/@n
x

= �Mx/n2
x

, where

Mx

x

0
y,x

00
y

0 = 1
�
x = x0 = x00

 
T x

yy

0 (B.6)

hence, one gets u
x

= @W/@n
x

= (��B)0A�1MxA�1 (��B) /(2n2
x

) + Sx

00/2, thus

@2W
@n

x

@n
x

0
=

1

n2
x

n2
x

0
µ0Rxx

0
µ (B.7)

where

Rxx

0
= �n

x

1
�
x = x0

 
Mx +

Mx

0
A�1Mx +MxA�1Mx

0

2
. (B.8)

Now, (C.4) yields
@u

x

0

@�
xy

=
@2W

@n
x

0@�
xy

=
1

n2
x

0
Zx

0
xy

(B.9)

53



where

Zx

0
= A�1Mx

0
µ (B.10)

and it is recalled that the expression for Mx is given in (B.6). Finally (C.5) yields

@µ
xy

@�
x

0
y

0
= A�1

xy,x

0
y

0 . (B.11)

Claims of Section 4.2. Assume that the data generating process is the RUSC model

of Example 2, where we fix ⇣
x

and ⇠
y

, and where �

� is linearly parameterized as in (4.2).

Assume further that all µ’s are positive. Then

W (�) =
1

2

�
(� · ��B)0A�1 (� · ��B)� c

�

where � =
�
�k

xy

�
xy,k

is reshaped as a matrix. As a consequence, the Moment Matching

estimator is a simple a�ne function of the observed comoments:

�̂
MM

=
�
�0A�1�

�
�1 �

C(µ̂) + �0A�1B
�
.

B.3 Ex. 3: The nested logit model

For concreteness, we develop a very simple two-level nested logit model, but generalizations

are immediate.

Example 3 (A two-level nested logit model). Suppose for instance that men of a given

group x are concerned about the social group of their partner and her education, so that

y = (s, e). We can allow for correlated preferences by modeling this as a nested logit in

which educations are nested within social groups. Let P
x

have cdf

F (w) = exp

 
� exp(�w0)�

X

s

 
X

e

exp(�w
se

/�
s

)

!
�

s

!

This is a particular case of the Generalized Extreme Value (GEV) framework described in

Appendix B, with g defined there given by g(z) = z0+
P

s

⇣P
e

z
1/�

s

se

⌘
�

s

. The numbers 1/�
s

describe the correlation in the surplus generated with partners of di↵erent education levels

within social group s
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Identifying Utilities and Surplus. For simplicity, we center the type I extreme value

distributions. Consider a man of a group x (the x indices will be dropped for convenience,

so that for instance µ
s

denotes the number of matches with women in social group s). By

(B.1), the expected utility of this man is

G(U·) = log(1 +
X

s

(
X

e

eUse

/�

s)�s), (B.12)

hence, by (2.2), it follows that µ
se

/µ0 = (
P

e

eUse

/�

s)�s

�1eUse

/�

s , where µ0 is again defined

in (3.1). Thus log(µ
s

/µ0) = �
s

log(
P

e

exp(U
se

/�
s

)), and therefore U
se

= log(µ
s

/µ0) +

�
s

log(µ
se

/µ
s

). Now, by (2.5),

G⇤(µ
·

) =
X

µ
se

U
x,se

� log

 
1 +

X

s

 
X

e

eUse

/�

s

!
�

s

!

= µ0 logµ0 +
X

s

(1� �
s

)µ
s

logµ
s

+
X

s,e

�
s

µ
se

logµ
se

.

As in Example 1, the expected utility is u = � logµ0.

If the heterogeneity structure is the same for all men and all women (with possibly

di↵erent dispersion parameters � for men and ⌧ for women), then the expressions of E(µ)

and W(µ) can easily be obtained. Now if the nested logit applies for men of group x with

parameters (�x

s

0) and for women of group y with parameters (⌧y
s

), we can write U
x,s

0
e

0 =

log(µ
x,s

0/µ
x0) + �x

s

0 log(µ
x,s

0
e

0/µ
x,s

0) and V
se,y

= log(µ
s,y

/µ0y) + ⌧y
s

log(µ
se,y

/µ
s,y

). Adding

up gives the formula for the surplus from a match between a man of group x = (s, e) and

a woman of group y = (s0, e0)

�
xy

= log
µ
�

x

s

0+⌧

y

s

xy

µ
1��

x

s

0
x,s

0 µ1�⌧

y

s

s,y

µ
x0µ0y

. (B.13)

Note that we recover the results of Example 1 when all � parameters equal 1; also, if there

is only one possible social status, then we recover the heteroskedastic model.

Maximum Likelihood Estimation. In the Nested Logit model of Example 3, where

the group of men and women are respectively (s
x

, e
x

) and (s
y

, e
y

), one can take �s

x

e

x

s

y

and �
s

y

,e

y

s

x

as parameters. Assume that there are N
s

social categories and N
e

classes of

55



education. There are N2
s

⇥ N2
e

equations, so one can parameterize the surplus function

�

✓ by a parameter ✓ of dimension less than or equal to N2
s

⇥ N2
e

� 2N2
s

⇥ N
e

. Letting

� =
⇣
�s

x

e

x

s

y

,�
s

y

,e

y

s

x

, ✓
⌘
, µ� is the solution in M to the system of equations

�✓

xy

= log
µ
�

x

s

0+⌧
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s

xy
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0
x,s

0 µ1�⌧
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s

s,y

(n
x

�
P

y

µ
xy

)(m
y

�
P

x

µ
xy

)
, 8x 2 X , y 2 Y

and the log-likelihood can be deduced by (4.1).

Computing the Equilibrium. Consider the Nested Logit model of Example 3, and

assume for simplicity that there is only one social group, so the model boils down to a

heteroskedastic logit model with scale parameters �x and ⌧y. Recall the equilibrium formula

which comes from (3.5)

µ
xy

= µ
�

x

�

x

+⌧

y

x0 µ

⌧

y

�

x

+⌧

y

0y exp
�
xy

�
x

+ ⌧
y

At step 2k + 1, keep µ0y fixed, and look for µ
x0 such that

n
x

= µ
x0 +

X

y2Y

µ
�

x

�

x

+⌧

y

x0 µ

⌧

y

�

x

+⌧

y

0y exp
�
xy

�
x

+ ⌧
y

(B.14)

while at step 2k + 2, keep µ
x0 fixed and look for µ0y such that

m
y

= µ0y +
X

x2§

µ

⌧

y

�

x

+⌧

y

0y µ
�

x

�

x

+⌧

y

x0 exp
�
xy

�
x

+ ⌧
y

. (B.15)

Note that steps (B.14) and (B.15) only require inverting a continuous and increasing real

function of one variable, and are hence extremely cheap computationally. This idea can be

extended to the fully general nested logit at the cost of having to invert systems of equations

whose number of variables depends on the size of the nests.

B.4 The mixture of logits model

Our next example considers a more complex but richer specification, which approximates

the distribution of unobserved heterogeneities through a mixture of logits whose location,

scale and weights may depend on the observed group:
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Example 4 (A mixture of logits). Assume P
x

is a mixture of i.i.d. centered type I extreme

value distributions of scale parameters �x

k

with weights �x

k

, such that
P

K

k=1 �
x

k

= 1. Then

the ex-ante indirect utility of man of group x is the weighted sum of the corresponding ex-

ante indirect utilities computed in Example 1, that is G
x

(U
x.

) =
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k

�x

k

G
xk

(U
x.

), where
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k), hence
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A . (B.16)

Still from the results of Example 1, G⇤

xk

(µ) = �x

k

P
y2Y0

µ
y

logµ
y

. By standard results in

Convex Analysis (see e.g. Rockafellar 1970, section 20), the convex conjugate of a sum of

functions is the infimum-convolution of the conjugates of the functions in the sum. The

convex conjugate of U
x.

! �x

k

G
xk

(U
x.

) is f⇤

�
µk

.

�
= �x

k

G⇤
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⇣
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.
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⌘
; thus it follows that
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k

y
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Then U
xy

is given by U
xy

= �x

k

log(µk

y

/µk

0), where
�
µk

y

�
is the minimizer of (B.17).

C Comparative statics

The results of Theorem 1 can be used to show that the comparative statics results of Decker

et al. (2012) extend to our generalized framework. From the results of Section 2.3, recall

that W (�,n,m) is given by the dual expressions

W (�,n,m) = max
µ2M(n,m)

 
X

xy

µ
xy

�
xy

� E (µ)

!
, and (C.1)

W (�,n,m) = min
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xy

+V
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=�
xy

⇣X
n
x

G
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(U
xy

) +
X

m
y

H
y

(V
xy

)
⌘

(C.2)

As a result, note that by (C.1), W is a convex function of �, and by (C.2) it is a concave

function of (n,m). By the envelope theorem in (C.1) and in (C.2), we get respectively

@W
@�

xy

= µ
xy

,
@W
@n

x

= G
x

(U
xy

) = u
x

, and
@W
@m

y

= H
y

(V
xy

) = v
y

.
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A second di↵erentiation of @W/@n
x

with respect to n
x

0 yields

@u
x

@n
x

0
=

@2W
@n

x

@n
x

0
=

@u
x

0

@n
x

(C.3)

(and similarly @u
x

/@m
y

= @v
y

/@n
x

and @v
y

/@m
y

0 = @v
y

0/@m
y

), which is the “unexpected

symmetry” result proven by Decker et al. (2012), Theorem 2, for the multinomial logit Choo

and Siow model: the variation in the systematic part of the surplus of individual of group

x when the number of individuals of group x0 varies by one unit equals the variation in the

systematic part of the surplus of individual of group x0 when the number of individuals of

group x varies by one unit. Formula (C.3) shows that the result is valid quite generally

in the framework of the present paper. The fact that W is a concave function of (n,m)

implies that the matrix @u
x

/@n
x

0 is semidefinite negative; in particular, it implies that

@u
x

/@n
x

 0, which means that increasing the number of individuals of a given group

cannot increase the individual welfare of individuals of this group.

Similarly, the cross-derivative of W with respect to n
x

0 and �
xy

yields

@µ
xy

@n
x

0
=

@2W
@n

x

0@�
xy

=
@u

x

0
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xy

(C.4)

which is proven (again in the case of the multinomial logit Choo and Siow model) in Decker

et al. (2012), section 3. This means that the e↵ect of an increase in the matching surplus

between groups x and y on the surplus of individual of group x0 equals the e↵ect of the

number of individuals of group x0 on the number of matches between groups x and y. Let us

provide an interpretation for this result. Assume that groups x and y are men and women

with a PhD, and that x0 are men with a college degree. Suppose that @µ
xy

/@n
x

0 < 0, so

that an increase in the number of men with a college degree causes the number of matches

between men and women with a PhD to decrease. This suggests that men with a college

degree or with a PhD are substitutes for women with a PhD. Hence, if there is an increase

in the matching surplus between men and women with a PhD, men with a college degree

will become less of a substitute for men with a PhD, and therefore their share of surplus

will decrease, hence @u
x

0/@�
xy

< 0.
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Finally, di↵erentiating W twice with respect to �
xy

and �
x

0
y

0 yields

@µ
xy
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0
y

0
=

@2W
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xy

@�
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0
y

0
=

@µ
x

0
y

0
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xy

. (C.5)

The interpretation is the following: if increasing the matching surplus between groups x and

y has a positive e↵ect on marriages between groups x0 and y0, then increasing the matching

surplus between groups x0 and y0 has a positive e↵ect on marriages between groups x and y.

In that case marriages (x, y) and (x0, y0) are complements. We emphasize here that all the

comparative statics derived in this section hold in any model satisfying our assumptions.

D Geometric interpretation

Our approach to inference has a simple geometric interpretation. Consider the set of como-

ments associated to every feasible matching

F =

(
�
C1, ..., CK

�
: Ck =

X

xy

µ
xy

�k

xy

, µ 2 M (n̂, m̂)

)

This is a convex polyhedron, which we call the covariogram; and if the model is well-

specified the covariogram must contain the observed matching µ̂. For any value of the

parameter vector �, the optimal matching µ� generates a vector of comoments C� that

belongs to the covariogram; and it also has an entropy E� ⌘ E(µ�). We already know that

this model is just-identified from the comoments: the mapping � �! C� is invertible on the

covariogram. Denote �(C) its inverse. The corresponding optimal matching has entropy

E
r

(C) = E�(C). The level sets of E
r

(.) are the isoentropy curves in the covariogram;

they are represented on Figure 3. The figure assumes K = 2 dimensions; then � can be

represented in polar coordinates as � = r exp(it). For r = 0, the model is uninformative

and entropy is highest; the matching is random and generates comoments C0. At the

other extreme, the boundary @F of the covariogram corresponds to r = 1. Then there is

no unobserved heterogeneity and generically over t, the comoments generated by � must

belong to a finite set of vertices, so that � is only set-identified. As r decreases for a given t,
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Figure 3: The covariogram and related objects
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the corresponding comoments follow a trajectory indicated by the dashed line on Figure 3,

from the boundary @F to the point C0. At the same time, the entropy E� increases, and

the trajectory crosses contours of higher entropy (E 0
then E 00

on the figure.) The CML

Estimator �̂ could also be obtained by taking the normal to the isoentropy contour that

goes through the observed comoments Ĉk = Ck (µ̂), as shown on Figure 3. Indeed, the

estimator �̂
MM

of the parameter vector is given by the gradient of E
r

(.) at the point Ĉ,

that is @E
r

(Ĉ)/@Ck = �̂
MM

k

.

E Computational experiments

Equation (5.9) is a quadratic equation in only one unknown,
q
µ2k+1
x0 ; as such it can be

solved in closed form.The convergence is extremely fast. We tested it on a simulation in

which we let the number of categories |X | = |Y| increase from 100 to 1,000. For each of

these ten cases, we draw 50 samples, with the n
x

and m
y

drawn uniformly in {1, . . . , 100};

and for each (x, y) match we draw �
xy

from N (0, 1). To have a basis for comparison, we

also ran two nonlinear equation solvers on the system of (X|+ |Y) equations

a2
x

+ a
x

 
X

y

exp(�
xy

/2)b
y

!
= n

x

(E.1)

and

b2
y

+ b
y

 
X

x

exp(�
xy

/2)a
x

!
= m

y

, (E.2)

which characterizes the optimal matching with µ
xy

= exp(�
xy

/2)pµ
x0µ0y, µx0 = a2

x

, and

µ0y = b2
y

(see Decker et al. (2012)).

To solve system (E.1)–(E.2), we used both Minpack and Knitro. Minpack is probably

the most-used solver in scientific applications, and underlies many statistical and numerical

packages. Knitro20 is a constrained optimization software; but minimizing the function zero

under constraints that correspond to the equations one wants to solve has become popular

recently.

20See Byrd, Nocedal and Waltz (2006).
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For all three methods, we used C/C++ programs, run on a single processor of a Mac

desktop. We set the convergence criterion for the three methods as a relative estimated error

of 10�6. This is not as straightforward as one would like: both Knitro and Minpack rescale

the problem before solving it, while we did not attempt to do it for IPFP. Still, varying

the tolerance within reasonable bounds hardly changes the results, which we present in

Figure 4. Each panel gives the distribution of CPU times over 50 samples (20 for Knitro)

for the ten experiments, in the form of a Tukey box-and-whiskers graph21.

The performance of IPFP stands out clearly—note the di↵erent vertical scales. While

IPFP has more variability than Minpack and Knitro (perhaps because we did not rescale

the problem beforehand), even the slowest convergence times for each problem size are at

least three times smaller than the fastest sample under Minpack, and fifteen times smaller

than the fastest time with Knitro. This is all the more remarkable that we fed the code for

the Jacobian of the system of equations into Minpack, and for both the Jacobian and the

Hessian into Knitro.

21The box goes from the first to the third quartile; the horizontal bar is at the median; the lower (resp.

upper) whisker is at the first (resp. third) quartile minus (resp. plus) 1.5 times the interquartile range, and

the circles plot all points beyond that.
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Figure 4: Solving for the optimal matching
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