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[1] Monthly U.S. tornado numbers are here related to
observation-based monthly averaged atmospheric parameters.
Poisson regression is used to form an index which captures
the climatological spatial distribution and seasonal variation
of tornado occurrence, as well as year-to-year variability,
and provides a framework for extended range forecasts of
tornado activity. Computing the same index with predicted
atmospheric parameters from a comprehensive forecast
model gives some evidence of the predictability of monthly
tornado activity. Citation: Tippett, M. K., A. H. Sobel, and
S. J. Camargo (2012), Association of U.S. tornado occurrence
with monthly environmental parameters, Geophys. Res. Lett.,
39, L02801, doi:10.1029/2011GL050368.

1. Introduction

[2] There is a substantial body of work relating severe
thunderstorms and tornadoes to contemporaneous, or nearly
contemporaneous, observed environmental parameters [Brooks
et al., 1994; Rasmussen and Blanchard, 1998; Brooks et al.,
2003a]. Observations and short-term predictions of these
environmental parameters provide guidance for forecasters
who currently issue severe thunderstorm outlooks up to
one week in advance, tornado watches when environmen-
tal conditions favor the development of rotating thunder-
storms, and tornado warnings when tornadoes appear
imminent [Hamill and Church, 2000; Shafer et al., 2010].
A key goal in these studies is the identification of usable
associations between atmospheric parameters and tornado
activity. An analogous inquiry in the study of tropical
cyclones (TCs) is the question of how environmental
parameters are related to TC formation. Recognition that
large-scale environmental parameters influence TC activity
on monthly and seasonal time-scales has led to TC genesis
indices [Gray, 1979; Camargo et al., 2007; Tippett et al.,
2011] and seasonal TC forecasts based on the seasonal
prediction of environmental parameters, notably in the
Atlantic [Vecchi et al., 2010]. Our goal here is to apply the
same approach to tornadoes: identify environmental para-
meters associated with monthly tornado activity, combine
them in an index and, to the extent that the index is pre-

dictable, provide a basis for extended range forecasts of
monthly tornado activity.

2. Data and Methods

2.1. Tornado Data

[3] U.S. tornado data covering the period 1979–2010
are taken from the Storm Prediction Center Tornado, Hail
and Wind Database [Schaefer and Edwards, 1999]. There
are substantial inhomogeneities in the data. For instance,
the annual number of reported U.S. tornadoes increases
by 14 tornadoes per year during the period 1954–2003
[Verbout et al., 2006]. This trend is primarily due to changes
in the number of reported weak (F0) tornadoes and is likely
related to changes in reporting methods and the introduction
of Doppler radar in the 1990’s [Brooks and Doswell, 2001;
Verbout et al., 2006; Brooks and Dotzek, 2007]. An adjusted
(http://www.spc.noaa.gov/wcm/adj.html) annual number of
U.S. tornadoes can be computed using a trend line for the
period 1954–2007 and taking 2007 as a baseline. We com-
pute a gridded monthly tornado climatology by counting for
each calendar month the number of reported tornadoes in
each grid box of a 1° � 1° latitude-longitude grid. Similar to
Brooks et al. [2003b], there is no adjustment for trends in the
computation of the gridded monthly tornado climatology,
presumably leading to an underestimate of the climatologi-
cal number of tornadoes.

2.2. Analysis and Forecast Data

[4] Monthly averaged environmental parameters are taken
from the North American Regional Reanalysis (NARR)
[Mesinger et al., 2006]. NARR data are provided on a 32-km
Lambert conformal grid which we interpolate to a 1° � 1°
latitude-longitude grid. We primarily select environmen-
tal parameters recognized as being relevant to tornado
formation [Brooks et al., 1994; Rasmussen and Blanchard,
1998; Brooks et al., 2003a] and use monthly averages of
the following NARR variables: surface convective available
potential energy (CAPE), surface convective inhibition
(CIN), best (4-layer) lifted index (4LFTX), the difference in
temperature at the 700 hPa and 500 hPa levels divided by the
corresponding difference in geopotential height (lapse rate),
the average specific humidity between 1000 hPa and 900 hPa
(mixing ratio), 3000-0 m storm relative helicity (SRH), the
magnitude of the vector difference of the 500 hPa and
1000 hPa winds (vertical shear), precipitation, convective
precipitation and elevation. Lapse rate and vertical shear
are computed using monthly averages of the constituent
variables.
[5] Forecast data comes from reforecasts of the Climate

Forecast System version 2 (CFSv2), the successor of the
CFS version 1 [Saha et al., 2006] with improved physics,
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increased resolution and overall improved skill [Yuan
et al., 2011]. The CFSv2 is a comprehensive earth model
with coupled atmosphere, ocean, and ice components. The
atmospheric component is the NCEP Global Forecast
System at T126L64 (�0.937°, 64 vertical levels) resolu-
tion. CFSv2 reforecasts are initialized using the Climate
Forecast System Reanalysis (CFSR), a coupled data
assimilation system [Saha et al., 2010]. Over the 29-year
reforecast period 1982–2010, single member ensemble
forecasts are started every 5 days (without accounting for
leap year days) at 0, 6, 12 and 18Z and integrated for
9 full months. Zero-lead forecasts are initialized in the
month prior to the month being predicted or in the first
pentad of the month being predicted. We average the
most recent 16 ensemble members. For instance, a zero-
lead forecast of the June monthly average consists of
ensemble members from May 21, May 26, May 31 and
June 5; the zero-lead June forecast started on June 5 is a
partial average.

2.3. Poisson Regression

[6] We relate the climatological monthly number of U.S.
tornadoes to climatological monthly averages of NARR
atmospheric parameters using a Poisson regression (PR), the
standard statistical method for modeling of count data.
A similar method was used to develop a TC genesis index
[Tippett et al., 2011]. Fitting climatological data avoids
many of the issues related to observational inhomogeneities.
For instance, tornado record trends are not spuriously asso-
ciated with climate trends. Moreover, fitting the PR with

climatological data means that the yearly varying data pro-
vide an independent test of the PR. The probability that a
Poisson distributed random variable N takes on the values
n = 0, 1, 2,… is

P N ¼ nð Þ ¼ e�mmn

n!
; ð1Þ

where m is the expected value of N. In this study N is the
number of observed tornadoes over some specified number
of years, and we use a log-linear model for m given by m =
exp(bTx) where x is a vector of environmental parameters
and b is a vector of regression coefficients. A constant term
(intercept) is included in the model by taking one of the
elements of x to be unity. An offset is added to account for the
area associated with each grid box and the number of years.
Thus the model for the expected value m (our “index”)
becomes

m ¼ exp bTxþ log Dx Dy Tcosfð Þ� �
; ð2Þ

where f is the latitude, Dx and Dy are the longitude and
latitude spacings in degrees, respectively, and T is the num-
ber of years; T = 32 when applying the PR to 1979–2010
tornado counts, and T = 1 for predicting annual counts. The
offset term makes the units of exp(bTx) be the number of
tornadoes per unit area per year, and thus the values of
regression coefficients b are independent of grid resolution
and climatology length. The regression coefficients b are
estimated from data by maximizing the log-likelihood of the
observed numbers of tornadoes given the environmental
parameters. A standard PR goodness of fit measure is the
deviance.
[7] We begin with the ten candidate environmental para-

meters listed in the description of the NARR data. We take
the logarithm of CAPE, SRH and shear, consistent with
previous work [e.g., Brooks et al., 2003a] and because doing
so reduces the deviance of single parameter PRs; the same is
done for precipitation and convective precipitation. To select
the parameters to include in the PR, we first perform a for-
ward selection procedure in which one variable is added at a
time to the PR, and the variable whose addition most reduces
the deviance is identified. The deviance is computed using
10-fold cross-validation in which the data is randomly sep-
arated in 10 subsets, 9 of which are used to estimate the
regression coefficients, and one is used to compute the
deviance. This procedure gives 10 estimates of the deviance

Figure 1. Deviance as a function of the number of environ-
mental parameters used in the Poisson regression. Error bars
indicate �1 standard deviation.

Figure 2. Colors indicate the (a) observed and (b) Poisson regression (PR)-fit number of tornadoes for the period
1979–2010.
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for each partition of the data. Here we use 10 partitions and
obtain 100 estimates of the deviance. The mean and standard
deviation of these 100 values of the deviance are shown in
Figure 1 as a function of the number of environmental
parameters used in the PR. There is a substantial decrease in
the deviance as the number of environmental parameters is
increased from 1 to 2, but further increases in the number of
environmental parameters do not result in significant (95%
level) decreases in deviance, in the sense that their one
standard deviation error bars overlap with those of the
2 parameter regression.
[8] The two environmental parameters chosen by the for-

ward selection are the logarithms of convective precipitation
(CP) and SRH. Convective precipitation is precipitation
associated with conditional instability. Galway [1979]
related yearly and seasonal precipitation with tornado activ-
ity. SRH, a measure of the potential for rotational updrafts
and is often used in tornado forecasting [Davies-Jones,
1993]. The PR based on NARR climatology data is (sup-
pressing the offset)

m ¼ exp �10:59þ 1:36 log CPð Þ þ 1:89 log SRHð Þð Þ: ð3Þ

The units of SRH and CP are m2/s2 and kg/m2/day, respec-
tively. The bootstrap-estimated standard errors of the regres-
sion parameters are 0.25 for the intercept term and 0.02 and

0.05 for the convective precipitation and SRH coefficients,
respectively. Using a 0.5° � 0.5° grid gives as intercept, CP
and SRH coefficients: �10.35, 1.36 and 1.8, respectively,
showing that the regression coefficients are relatively insen-
sitive to grid resolution and that the standard error estimates for
the coefficients are reasonable measures of uncertainty.
Excluding F0 tornadoes from the regression gives as intercept,
CP and SRH coefficients: �12.00, 1.34 and 2.0, respectively,
indicating similar sensitivities but fewer overall numbers.

3. Results

[9] The spatial distribution of the total number of reported
tornadoes 1979–2010 and the corresponding PR-fit values
are similar (Figure 2). The dominant feature is the so-called
“Tornado Alley” running north-south in the Central U.S.
Observations and PR-fit values show few tornadoes west of
the Rocky Mountains and over the Appalachian Mountains.
Relatively high tornado activity is observed in northeastern
Colorado and Florida but is not seen in the PR-fit values.
This difference may be due to non-supercell tornadoes being
common in both of these area [Brooks and Doswell, 2001]
while the PR focuses on quantities related to supercell
dynamics. Tornado activity along the coasts of the Atlantic
seaboard states are seen in both observations and PR-fit
values.
[10] The observed and PR-fit seasonal cycle of tornado

occurrence have similar phasing (Figure 3) with maximum
values occurring in May, followed closely by those of June.
There is no explicit accounting for seasonality in the PR; all
seasonality comes from the environmental parameters. PR-
fit values are too small during May and June (particularly in
the High Plains and Upper Midwest regions, not shown) and
too large in late summer and autumn (particularly in the
Missouri-Iowa-Nebraska-Kansas area, not shown). A mea-
sure of the seasonal cycle of the spatial distribution is found
by computing at each grid point the month with the maxi-
mum number of tornadoes (Figure 4). The PR-fit values
capture the observed general northwest progression [Brooks
et al., 2003b].
[11] Although the PR fits well the climatological tornado

data on which it was developed, there is no assurance that
the same relations are relevant to year-to-year tornado vari-
ability. However, when the PR developed with climatolog-
ical data is applied to yearly-varying monthly values (1979–
2010), the PR-estimated values correlate well with the

Figure 3. Observed (gray) and Poisson regression (PR)-fit
(black) number of tornadoes per month during the period
1979–2010.

Figure 4. Colors indicate the calendar month with climatological maximum number of tornadoes according to (a) observa-
tions and (b) Poisson regression (PR)-fit values.
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observed monthly number of tornadoes (Table 1); the sea-
sonal cycle is removed and does not contribute to the
monthly correlations. We show both Pearson correlation and
rank correlation (Spearman’s rho). Pearson correlation
measures linear association while rank correlation is a non-
parametric association measure which is insensitive to out-
liers. The Pearson correlation (rank correlation) between the
observed annual number of tornadoes and that given by the
PR is 0.51 (0.28), and this value increases to 0.64 (0.48)
when observations are adjusted to account for changes in
observing system (Figure 5a). The rank correlation more
harshly penalizes the fact that the observed annual counts
have a trend while the PR values do not. The fact that the
annual PR values have no obvious trend is further evidence

for the observational trend being nonphysical. Notable also
is the PR value of 501 for April 2011, the most active U.S.
tornado month on record (Figure 5b).
[12] The demonstrated relation between monthly averaged

environmental parameters and monthly tornado numbers
provides a framework for extended-range forecasts of tor-
nado activity. One first predicts the environmental para-
meters in the PR and then uses the PR to predict the impact
of those parameters on tornado activity. The skill of the
resulting tornado activity forecasts clearly cannot exceed the
skill of the forecasts of the environmental parameters. Ver-
ification of CFSv2 reforecasts of CP and SRH with NARR
data shows U.S. annually averaged correlations of 0.27 and
0.48 respectively. We compute the PR index using CFSv2

Table 1. Pearson and Rank Correlation (Spearman’s Rho) Between Reported Number of Tornadoes and North American Regional
Reanalysis (NARR) Poisson Regression Estimates 1979–2010, and CFSv2 Forecast Poisson Regression Estimates 1982–2010a

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

NARR PR Pearson corr. 0.75 0.64 0.54 0.50 0.60 0.67 0.75 0.40 0.15 0.25 0.48 0.74
NARR PR Rank corr. 0.73 0.55 0.56 0.55 0.69 0.72 0.63 0.50 0.25 0.44 0.57 0.58
CFSv2 PR Pearson corr. 0.36 0.38 0.3 0.35 0.31 0.72 0.59 0.41 �0.25 0.18 0.41 0.37
CFSv2 PR Rank corr. 0.65 0.19 0.28 0.42 0.31 0.71 0.43 0.48 �0.17 0.33 0.40 0.06

aCorrelations significant at 95% level are in bold font.

Figure 5. Observed (gray), trend adjusted observations (dashed gray) and Poisson regression (black) (a) annual and (b)
April numbers of tornadoes during the period 1979–2010. The dashed black line in panel (a) is the 1954–2007 trend line
used in the adjustment. Panel (b) includes the April 2011 Poisson regression value.
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reforecast CP and SRH and correlate it with the reported
numbers of tornadoes by month (Table 1). The correlation of
reported tornado numbers with CFSv2 PR estimates is gen-
erally lower than with NARR PR estimates, likely due to the
overall low CP skill level. However, 6 of the 12 correlations
are significant at the 95% level (with some disagreement
between Pearson and rank correlation), and the June corre-
lation is particularly strong, though the CFSv2 predicted
values have low amplitudes compared to observations
(Figure 6).

4. Summary and Discussion

[13] Ultimately, we would like to understand why some
periods have more (or less) tornado activity than others. If
this question can only be answered using high-frequency
and high spatial resolution environmental information, the
prospects would appear bleak for both extended-range
forecasts and climate projections of tornado activity. Here
we have demonstrated that although tornado formation
directly depends on the immediate environment, monthly
U.S. tornado activity can be related to observed monthly
averaged environmental parameters and that Poisson
regression can be used to construct an index that captures
aspects of the climatological and year-to-year variability of
tornado activity. The value of spatially averaged environ-
mental data was previously demonstrated by Brooks et al.
[2003a] and applied to climate change projections [Trapp
et al., 2007]. The utility of monthly averaged environment
parameters in describing monthly tornado activity is new,
but is consistent with previous studies which have consid-
ered the modulation of tornado activity by monthly and
seasonal phenomena such as precipitation, ENSO and the
Intra-Americas Sea low-level jet [Galway, 1979; Cook and
Schaefer, 2008; Muñoz and Enfield, 2011].
[14] The predictability of such an index depends on the

predictability of its constituent parameters, here, storm

relative helicity and convective precipitation (CP). We find
in the extended-range context that the predictability of CP
appears to be the limiting factor, though the details of the
joint spatial distributions of skill and tornado activity are
likely important. Computing the index with parameters from
an operational seasonal forecast model shows statistically
significant skill in forecasting the tornado activity of the
following month for some months of the year.
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