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Abstract

Holography, Locality and Symmetries of The Universe

Xiao Xiao

It is an interesting question that, with a well tested duality between the quantum

gravity in anti de Sitter space and a quantum field theory in one lower dimension, whether

quantum gravity in a cosmological background has a well defined dual description. In large

N limit, this duality could be a correspondence between an approximately local gravity

theory describing cosmology and a quantum field theory. In dS/CFT, the quantum field

theory is a Euclidean CFT living at the conformal boundary of de Sitter space, in large

N limit, we should expect the local observables in de Sitter cosmology be recovered from

the CFT. We explicitly develop this construction for scalar fields and derive the operator

map at lowest order of 1
N

expansion.

Having addressed the fundamental question of how local fields in de Sitter cosmology

arise via holography, we focus on the theory of cosmological perturbations that is de-

scribed in terms of local field theory. The curvature perturbations during inflation, which

originated from quantum fluctuations of inflaton and which induced the CMB inhomo-

geneity we see today, as well as the large scale structure, can be described as Goldstone

boson fields which nonlinearly realize a subset of general coordinate transformations as

residual symmetries. This fact puts strong constraints on the behavior of the cosmological

correlation functions, and a series of consistency relations constraining the soft limits of

these correlation functions can be derived as Ward identities.
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Introduction

To understand the cosmic microwave background (CMB) as well as the rich large scale

structure (LSS) in our universe, it is necessary to go beyond the background geometry and

look into the fluctuations of various fields, which inevitably introduces the methodology of

quantum field theory (QFT) into the study of cosmology. When the quantum field theory

on an expanding background is formulated, the tasks of computing the fluctuations of

CMB photons as well as the density of dark matter become standard applications of

Feynman integral techniques, and meaningful information about CMB as well as LSS can

be extracted from the correlation functions of field theories.

The universe we observe has a flat, expanding geometry. Thus we can slice the universe

with flat slices and regard the cosmological perturbations as degrees of freedom living on

these slices and study their correlation functions on these slices. A certain formulation

of quantum field theory which is dubbed the “in-in formalism” is applied. We will come

to this kind of formulation later in this thesis. As an example, the CMB perturbation

is observed on the last scattering surface which lies at 14 billion years ago in the history

of our universe, and correlation functions are computed with assumptions regarding the

initial state of the universe as well as the dynamics of its evolution. As another example,

through the large scale structure survey we look at the cosmological correlation functions

on the slice that we are living now. Information regarding the distribution of galaxies and

dark matter is inferred from the observation and statistics of galaxies, and theoretical
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INTRODUCTION

predictions are given by coupling fluid dynamics with gravity or other modified gravity

models. Theoretically this procedure can be carried out for any cosmological background.

For the background we are living in now — a flat FRW universe dominated by a small

cosmological constant — observables such as the power spectrum and bi-spectrum are

computed from theories and compared to the results from various observations.

Among all kinds of cosmologies, de Sitter space is especially interesting: It has the

maximum number of isometries a spacetime can have and thus has various interesting

coordinate patches. In flat slicing it appears to be a flat universe which is exponentially

expanding, which makes it a good approximation to the inflation phase of our universe

as well as its current dark energy-dominated stage. In the static patch it has a observer-

dependent horizon, and thus has temperature and finite entropy, which bring interesting

puzzles regarding the nature of quantum gravity in de Sitter space. One especially in-

teresting property of de Sitter space is that it has future and past conformal boundaries.

This inspires the idea of formulating a holographic duality between quantum gravity in de

Sitter space and a quantum field theory, the so called dS/CFT duality. The quantum field

theory dual to gravity in de Sitter space lives on a special slice — the future/past confor-

mal boundary. The cosmological correlation functions of scalar and tensor perturbations,

when extrapolated to the boundary, become the correlation functions of the scalar part

and the tensor part of the stress tensor of the quantum field theory. The isometries of de

Sitter space naturally introduce the whole set of conformal symmetries to the degrees of

freedom on the boundary and the dual quantum field theory is a conformal field theory

(CFT). Ths correspondence between quantum gravity in de Sitter space and a Euclidean

CFT was originally proposed by Strominger [1] and the realization of this idea on high

spin fields was discovered in [2]. Since de Sitter space in flat patch is linked to anti-de

Sitter space via a simple analytic continuation, the holography in this particular patch

strongly resembles the AdS/CFT correspondence and the operator dictionary is formu-

2



INTRODUCTION

lated. There is a subtlety regarding the operator dictionary when the microcausality of

the correlation functions is considered. We will come to this issue later in this thesis and

address it. The holographic description of de Sitter space in static patch is relatively less

understood.

Surprisingly, conformal symmetries are shown to be important not only for quan-

tum field theories in de Sitter space, but also for cosmological perturbations in a generic

FRW universe. From the point of view of a field theory, the conformal symmetries are

non-linearly realized by the Goldstone bosons — the scalar field for curvature perturba-

tions and the graviton field for tensor perturbations. Rather than originating from the

isometries of the background spacetime, the conformal symmetries come from a subset

of general coordinate transformations which remain after gauge fixing. These conformal

symmetries put strong constraints on the soft limits of cosmological correlation functions,

in the form of consistency relations which can be understood as the Ward identities associ-

ated with these symmetries. The existence of non-linearly realized conformal symmetries

does not rely on any assumption regarding the specific dynamics except for general co-

variance. Thus, consistency relations can be found for both CMB correlation functions

and LSS correlation functions. The existence of consistency relations for the LSS corre-

lation functions in especially interesting since these observables are highly non-linear at

small scales and thus difficult to compute. However, consistency relations for LSS make

non-trivial constraints on these observables and thus provide a probe into the highly non-

linear regime. The first such consistency relations was discovered in Maldacena’s work

[3], from a simple argument which was later formalized into the so-called “background

wave argument”, which is still a very efficient and intuitive procedure for deriving consis-

tency relations. Maldacena’s consistency relation is derived from a rescaling of the spatial

coordinates, which corresponds to the scale transformation in the conformal group. In

work [4] and [5] the consistency relations corresponding to the full conformal group were

3



INTRODUCTION

discovered along with an infinite set of consistency relations corresponding to infinitely

many “residual transformations”. This infinite set of consistency relations are organized

into a power series in the soft momentum. It was later shown that this can be resummed

into a master relation originating from gauge invariance [6],[7]. The first consistency re-

lation for large scale structure was discussed in [8] and [9]. The Galilean transformation,

which was later clarified to be the time-dependent translation of coordinates, was shown

to lead to interesting consistency relations constraining the correlation functions of the

dark matter over-density. It was soon discovered by [10] and [11] that there is an infinite

set of such relations in LSS.

The structure of this thesis is as follows: in Chapter One we briefly discuss the ba-

sics of conformal field theory, the AdS/CFT correspondence, and quantum field theory

in a cosmological background. In Chapter Two, we discuss the operator dictionary of

the dS/CFT correspondence, and address a subtlety regarding the construction of local

operators in de Sitter space from the CFT. This chapter is based on papers [13], [14]. In

Chapter Three, we introduce the conformal symmetries in the theoretical description of

large scale structure and derive an infinite set of consistency relations constraining the

soft limits of correlation functions. Further we look into Lagrangian space and derive the

Newtonian consistency relation therein. The chapter is based on work [11], [12]. Following

Chapter Three is the Conclusion for the thesis and the Appendices.

4



Chapter 1

Quantum Field Theory in AdS, and

in Our Universe

The purpose of this chapter is to outline the necessary background for introducing the

thesis projects in the following chapters. The concept of conformal field theory and the

geometry of anti de Sitter space are introduced. Then we introduce field theory on and

AdS background and the operator dictionary of the AdS/CFT correspondence. We live in

a universe with a positive cosmological constant, which is approximately described by de

Sitter geometry. It is then an interesting question whether a holographic correspondence

can be realized in such a background. We introduce the geometries of de Sitter space

and a generic FRW universe. Then we describe the idea of a dS/CFT correspondence,

which is one of the generalizations of AdS/CFT to de Sitter space. Then observables in

an expanding universe as well as cosmological perturbation theory are introduced.
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CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

1.1 Local quantum field theory in AdS and AdS/CFT

duality

1.1.1 A bit of conformal field theory

Of all the quantum field theories, conformal field theories form an interesting subset;

they play a central role in the physics of phase transitions as the fixed points of the

renormalization group flow. The worldsheet field theories of strings are also conformal

field theories, to ensure the consistency of the string theories.

To see what conformal field theory is, we need to know about the conformal group.

The conformal group in D-dimensional Minkowski spacetime is composed of all Lorentz

transformations supplemented by the following scale and special conformal transforma-

tions (SCT):

xµ → x′µ = λxµ

xµ → x′µ =
xµ + x2bµ

1 + 2b · x+ b2x2

(1.1)

It is also possible to defined a conformal field theory as a theory which is invariant

under Lorentz transformations, dilation and inversion:

x′µ =
xµ

x2
(1.2)

The reason is that the special conformal transformations can be reproduced by a trans-

6



CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

lation sandwiched by two times of inversions:

xµ → xµ

x2

xµ → xµ − bµ

xµ → xµ

x2

(1.3)

The conformal group has a set of generators forming the conformal algebra. In terms

of differential operators on spacetime fields, the generators are:

Pµ = −i∂µ

D = −ixµ∂µ

Lµν = i (xµ∂ν − xν∂µ)

Kµ = −i
(
2xµx

ν∂ν − x2∂µ
)

(1.4)

These generators form the conformal algebra, which is defined by the following commu-

tation relations:

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[kµ, Pν ] = 2i (ηµνD − Lµν)

[Kρ, Lµν ] = i (ηρµKν − ηρνKµ)

[Pρ, Lµν ] = i (ηρµPν − ηρνPµ)

[Lµν , Lρσ] = i (ηνρLµσ + ηµσLνρ − ηµρLνσ − ηνσLµρ)

(1.5)

This algebra, when written in terms of a set of linear combinations of the generators,

7



CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

takes a much simpler form and can be connected to a more familiar algebra. Define:

Jµν ≡ Lµν

JD+1,µ ≡
1

2
(Pµ −Kµ)

JD+1,0 ≡ D

J0,µ ≡
1

2
(Pµ +Kµ)

(1.6)

Then the conformal algebra (1.5) takes the form:

[JMN , JPQ] = i (ηMQJNP + ηNPJMQ − ηMPJNQ − ηNQJMP ) (1.7)

which is the algebra for SO (D + 1, 1). This means that the conformal group in D dimen-

sions is isomorphic to SO (D + 1, 1)

A conformal field theory (CFT) is a field theory invariant under the conformal group.

Roughly speaking, it is a system in which the physics is independent of the spacetime scale

or energy scale, i.e. invariant when all the coordinates are rescaled by the same amount1.

There is a subset of dynamical variables in a CFT characterized by their scaling dimensions

in addition to their Lorentz transformation properties, called quasi-primary operators.

These operators are of special interests since their scaling dimensions reflect important

knowledge about the dynamics of the CFT. For instance, under a scale transformation, a

quasi-primary operator O in the CFT with scaling dimension ∆ transforms like:

O (x)→ λ∆O (x′) = λ∆O (λx) (1.8)

1The intuitive statement here is not completely rigorous. Whether scale invariance necessarily leads to
conformal invariance is itself a deep and interesting question. People are trying to establish the statement
rigorously in various dimensions. Given certain reasonable constraints on viable field theories (unitarity,
Lorentz invariance, etc.), no widely-accepted counterexample is known.

8



CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

In general, under a conformal transformation, it transforms like:

O (x)→ det

(
∂x′

∂x

)∆
d

O (x′) (1.9)

We will constrain our discussion to quasi-primary operators when we study operators in

a CFT.

The form of the two-point and three-point correlation functions of quasi-primary op-

erators in a CFT is completely fixed by conformal invariance. The two-point function

between operators with scaling dimension ∆ is:

〈O (x1)O (x2)〉 =
c12

x2∆
12

(1.10)

where

x2
12 ≡ (x1 − x2)2 (1.11)

Notice that it is only when the two operators in the two-point function have the same

scaling dimension that the two-point function is not vanishing; otherwise, the operators

are not correlated at this level.

The three-point function between operators with dimensions ∆1, ∆2 and ∆3 is:

〈O1 (x1)O2 (x2)O3 (x3)〉 =
C123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(1.12)

It is always possible to normalize any quasi-primary operator O so that the coefficient of

the two-point function is one (or any certain value). After this is done, one is no longer

free to choose the coefficients of the three-point functions. Thus, these coefficients are

intrinsic characteristics of the CFT, in addition to the scaling dimensions. The coefficient

Cabc is called an “OPE coefficient”, since it is the coefficient for the dimension ∆c operator

9



CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

in the operator product expansion between operators with dimensions ∆a and ∆b:

O∆a (x→ 0)O∆b
(0) ∼

∑
c

CabcO∆c (0) (1.13)

This collection of numbers, the scaling dimensions of all the operators and the OPE co-

efficients, form the whole set of data defining a CFT: a conformal field theory is uniquely

specified when the scaling dimensions of its operators and the OPE coefficients are deter-

mined. No more information is needed.

Coming to four-point functions, we see when there are four spacetime points consid-

ered, the correlation functions are no longer uniquely fixed by conformal symmetries. The

reason is the existence of invariant cross ratios. One can verify that the cross ratios

x12x34

x13x24

≡ |x1 − x2||x3 − x4|
|x1 − x3||x2 − x4|

,
x12x34

x23x14

≡ |x1 − x2||x3 − x4|
|x2 − x3||x1 − x4|

(1.14)

are invariant under conformal transformations, which means that any functions of these

two ratios should be invariant and can be freely multiplied on a function with the right

dimensions while keeping the transformation properties under the conformal group. The

generic form of the four-point functions in a CFT is

G4 (x1, x2, x3, x4) = F

(
x12x34

x13x24

,
x12x34

x23x14

) 4∏
i<j

x
∆
3
−∆i−∆j

ij (1.15)

where ∆ ≡∑4
i=1 ∆i

1.1.2 Anti-de Sitter space

Anti-de Sitter space is a solution of Einstein’s equations with negative cosmological con-

stant. The solution has the maximal number of isometries and has been studied exten-

10



CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

sively. There are several choices of coordinate patches to describe the metric of Anti de

Sitter space. For instance, in the Poincaré patch the spacetime metric is

ds2
AdS =

dz2 + dx2
D

z2
(1.16)

where dx2
D is the spacetime line element of D-dimensional Minkowski space, and z runs

from 0 to ∞. The boundary of AdS space, in the Poincaré patch, is located at z = 0 and

z =∞ is the Poincaré horizon.

In the Poincaré patch it is easy to write down the isometries of anti-de Sitter space

AdSD+1. The most obvious ones are the translations and (pseudo)rotations inD-dimensions:

xµ → xµ + aµ , xµ → Λµ
νx

ν (1.17)

which correspond to all the Lorentz transformations on the boundary z = 0.

Another obvious isometry to see is the rescaling of all the coordinates:

z → λz , xµ → λxµ (1.18)

which induces a rescaling of coordinates on the boundary.

Less transparent are the isometries that induce the special conformal transformations

on the boundary:

xµ → xµ − bµ (x2 + z2)

1− 2b · x+ b2 (x2 + z2)

z → z

1− 2b · x+ b2 (x2 + z2)

(1.19)

Here we see that the AdS isometries are in one-one correspondence with the conformal

transformations that acts on the boundary degrees of freedom.

11



CHAPTER 1. QUANTUM FIELD THEORY IN ADS, AND IN OUR UNIVERSE

z=0

z=¥

Figure 1.1: AdS2 and Poincaré patch

In global coordinates the metric is instead:

ds2
AdS =

1

cos2 ρ

(
−dτ 2 + dρ2 + sin2 ρdΩ2

D−1

)
(1.20)

with ρ ranging from 0 to π
2

There is another parametrization for the global patch:

ds2 = −
(
r2 + 1

)
dt2 +

1

r2 + 1
dr2 + r2dΩ2 (1.21)

We see that at large r the volume of the space grows along with the surface area:

V olume ∼ 4π ×
∫ R r2dr√

1 + r2
∝ R2, R→∞ (1.22)

If we work in the coordinate system (1.21) and put a massive test particle near r = 0,

we see that the geodesic motion of this particle look like a harmonic oscillator. This is

12
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W

Ρ

Τ

AdSD+1

Figure 1.2: Global AdS
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because we have a gravitational potential which grows with r:

Vgravity ∝
√−g00 ∼

√
1 + r2 (1.23)

Thus giving a kick to the particle will result in a motion around the center of the coordinate

r = 0 and the particle will never reach the boundary of the space because of the infinite

gravitational potential at r = 0.

1.1.3 Field theory on AdS and AdS/CFT

The conjecture of AdS/CFT correspondence is that supergravity or string theory in anti-

de Sitter space is dual to a conformal field theory living on the boundary of the space.

The original paper of Maldacena [15] gave a brane construction which consists of N D3

branes. The Type-IIB string theory in the near horizon geometry is shown to have a

duality with N = 4 super Yang-Mills theory, which is the world volume theory of the D3

branes. The near horizon geometry of the D3 branes is AdS5 × S5, which establishes a

correspondence between a certain type of string theory and a certain superconformal field

theory.

We will not delve into the brane construction of the correspondence, rather we focus

on the operator dictionary relating the AdS (bulk) degrees of freedom and the boundary

CFT degrees of freedom. In the low energy theory of the bulk string theory there are

various degrees of freedom, including the moduli, gauge fields and graviton. For simplicity,

let’s look at a scalar field theory defined on the Poincaré patch of AdSD+1, with a mass

term the only potential term.

S =

∫
dD+1x

√−g
{
−1

2
(∇φ)2 − 1

2
m2φ2

}
(1.24)

14
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The equation of motion for the scalar field on the AdS background is

∂α∂
αφ+ zD−1∂z

(
z1−D∂zφ

)
− m2

z2
φ = 0 (1.25)

In order to establish the operator dictionary, we focus on the behavior of the solutions to

this equation near the boundary of AdS.

Suppose we have a simple solution that is trivial on xµ directions and has the form

φ ∼ zδβ (1.26)

near the boundary z = 0, where β is the boundary condition we fix.

The equation of motion implies that the possible values δ can take are:

δ± =
D

2
±
√(

D

2

)2

+m2 (1.27)

The two values correspond to two different boundary conditions that we can impose when

we solve the classical equation as well as when we define the functional integral of the

theory in AdS.

We can see that if we take the positive value of δ then β can be interpreted as an

operator in a D-dimensional CFT. Suppose we rescale all the coordinates:

z → λz, xµ → λxµ (1.28)

As a scalar field φ should be invariant:

φ (z, x) = zδβ (x)→ φ (λz, λx) = λδzδβ (λx) (1.29)

15
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Thus we see that under the scale transformation induced by the AdS isometry, β trans-

forms as

β (x)→ β (λx) = λ−δβ (x) (1.30)

which is exactly the behavior for a quasi-primary field with scaling dimension δ.

The alternative boundary condition with δ− = D− δ+ = D
2
−
√(

D
2

)2
+m2 < 0 seems

to define a β field with negative scaling dimension. However in this case we treat β as a

source field coupled to the CFT operator and it is not itself in the specturm of the theory.

AdS/CFT duality claims that the partition function of quantum gravity in AdSD+1,

with the boundary condition φ(z → 0, x)→ zδ−β (x), is equal to the partition function of

a conformal field theory deformed by a coupling between β and a dimension-δ+ operator:

ZAdS (β) =
〈
eβO
〉
CFT

(1.31)

The CFT correlation functions can be obtained by computing the AdS partition func-

tion of gravity in terms of boundary condition β and then taking the derivatives:

〈O (x1)O (x2) . . .O (xn)〉 =
δn

δβ (x1) . . . δβ (xn)
ZAdS (β) (1.32)

Since corresponding to a strongly-coupled conformal field theory on the boundary is a

weakly coupled supergravity which can be solved in semi-classical approximation, the

partition function ZAdS (β) is thus often computable for strongly-coupled CFT. This gives

us a powerful way of handling such systems: in order to study a strongly coupled CFT

— in which lots of quantities seem impossible to compute — we go to AdS space in one

higher dimension and solve a weakly coupled supergravity, which is doable.
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1.2 Local quantum field theory in de Sitter space and

generic FRW universe

1.2.1 Geometry of de Sitter space and FRW universe

Observations show that our universe has a flat, expanding geometry with a positive cos-

mological constant. Such a geometry in general can be described by an FRW anzatz,

which is a 3-dimensional flat spatial slice with a certain scale factor

ds2
FRW = −dt2 + a2 (t) dxxx2 (1.33)

The scale factor a (t) satisfies the Friedmann equations

H2 =
8πG

3
ρ

Ḣ +H2 = −4πG

3
(ρ+ 3p)

(1.34)

where the Hubble parameter H (t) ≡ ȧ
a
. How the scale factor evolves depends on the

matter and energy content of the universe. For instance, in a matter dominated universe,

p = 0 and a (t) ∝ t
2
3 ; in a radiation dominated universe ρ = 3p and a (t) ∝ t

1
2 .

De Sitter space corresponds to a certain evolution of the scale factor, with

a (t) = eHt (1.35)

This is the solution for (1.34) with ρ = −p, which is a universe dominated by a cosmo-

logical constant. The Hubble parameter is a constant H (t) = H in de Sitter space.
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Η=const.

Figure 1.3: de Sitter space and the flat patch

Defining conformal time η ≡ e−Ht we have

ds2
dS =

H2

η2

(
−dη2 + dxxx2

)
(1.36)

We see that there is a singularity of the metric at η = 0. The Penrose diagram of de

Sitter space is shown in Fig. 1.3. It looks like a square with each point in the diagram

corresponding to a two-sphere. The infinite future which corresponds to t→∞ is pulled

back to the top of the square η = 0 via defining the conformal time. The metric (1.36)

covers either the upper left wedge or the lower right wedge of de Sitter space and describes

flat spatial slices that evolve in time. This is the flat patch of de Sitter space, and η = 0

is called the conformal boundary of de Sitter.

Equation (1.36) describes either an expanding universe with η ranging from −∞ to 0,

or a shinking universe with η ranging from 0 to ∞. The global coordinates cover both:

ds2 =
1

H2 cos2 τ

(
−dτ 2 + dΩ2

d−1

)
(1.37)

18
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where τ is the global time with range [−π
2
, π

2
].

These coordinates show that global de Sitter space is a closed universe with an ex-

panding phase following a contracting phase. In these coordinates the universe looks

very different from what we see in the flat patch, while both share the same degree of

symmetry.

There is a simple analytic continuation relating the flat patch of de Sitter space and the

Poincaré patch of anti-de Sitter space. Take a de Sitter geometry with Hubble parameter

H and an anti-de Sitter space with AdS radius RAdS. Taking z → iη, xD → it and

RAdS → H, we have

ds2
AdSD+1

=
R2
AdS

z2

(
dz2 + dx2

D

)
→ ds2

dSD+1
=
H2

η2

(
−dη2 + dxxx2

D

)
(1.38)

In this analytic continuation, the spatial boundary z = 0 of AdS space become the timelike

boundary η = 0 of de Sitter space. Functional integrals that are defined respectively by

certain boundary conditions are also related to each other via the analytic continuation.

Thus the dS/CFT correspondence as the analytic continuation of AdS/CFT correspon-

dence seems to be a natural candidate for a holographic description of quantum gravity

in de Sitter space. However, since in the analytic continuation, spacelike separated points

become timelike separated, issues regarding microcausality become subtle and require

further thinking. We will see that such issues appear when we try to construct local bulk

fields in de Sitter space from the dS/CFT operator dictionary. The construction formula

is not the analytic continuation from the version in anti-de Sitter space.

1.2.2 dS/CFT correspondence

Quantum gravity in de Sitter space is conjectured to be dual to a conformal field theory

living at the timelike boundary I+. The CFT has no time evolution since the space in
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which it is defined is Euclidean, thus there is not directly a notion of unitarity. In the

future wedge of the flat patch of de Sitter, the asymptotic boundary I+ is a flat Euclidean

space. The wave equation as well as the solutions can be obtained directly by analytically

continuing from the corresponding parts in AdS. For a scalar field with mass m in de

Sitter space, what we have in the CFT are two operators with dimensions

δ± =
D

2
±
√(

D

2

)2

−m2 (1.39)

We see that for a heavy scalar with

m2 >

(
D

2

)2

(1.40)

we have imaginary scaling dimensions. In co-moving time coordinates, the imaginary

parts are in the exponential:

e±i
√
m2−(D2 )

2
t (1.41)

and they have the right form for the evolution of the positive energy and negative energy

components of a local field in de Sitter space. This suggests that unlike the case in anti

de Sitter space, for a local field with both positive and negative energy components in de

Sitter space the corresponding degrees of freedom in the CFT also have two components

with complementary scaling dimensions. We will see this explicitly in Chapter Two.
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1.3 Observables and perturbation theory for the early

universe

1.3.1 Observables in the universe and Schwinger-Keldysh for-

malism

The observables in the cosmic microwave background radiation and the large scale struc-

ture survey are the statistical correlation functions, which have their origin in the quantum

fluctuations during inflation. These statistical correlation functions characterize expec-

tation values of the dynamical variables and their products under certain probability

measures, that are determined by quantum processes during inflation and the subsequent

evolutions.

Computing such expectation values is different from computing the off-shell time-

ordered correlation functions encountered in quantum field theories in Minkowski space-

time, which we use to compute the scattering amplitudes. Those correlation functions are

the matrix elements of operators between in and out vacua, instead of the expectation

values of operators in certain quantum states, therefore the path-integration procedure

for such correlation functions cannot be directly applied to computing the cosmological

correlation functions.

Here we briefly introduce the Schwinger-Keldysh formalism for computing expectation

values of observables. The formalism is also often called the “in-in formalism” since the

path integral has a folded integration path which starts from the in-vacuum and goes back

to the in-vacuum at the end.

Here we are interested in values of observables in a general spacetime, especially an

expanding universe. These observables can be chosen to sit on the same spatial slice if they

are all space-like separated from each other, or we are free to leave them at different times.
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Let us start with the simple case where we have already aligned all the observables on

the same spatial slice at time t, and underlying these observables we have a fundamental

variable φ which we integrate over when performing path integration. Then at time t

the expectation value of these observables is given by a probability measure which is

determined by the wave function:

〈O (xxx1,xxx2, · · ·xxxn; t)〉 =

∫
Dφ (t) Ψ∗ (φ, t)O (xxx1,xxx2, · · ·xxxn; t) Ψ (φ, t) (1.42)

The Hamiltonian of the field theory can be split into the free part and the interaction

part,

H = H0 +Hint (1.43)

In the interaction picture, the expectation value is taken on the the initial wave function

evolving with the free Hamiltonian H0, while we insert the exponential of the interaction

Hamiltonian into the expectation value:

〈O (xxx1,xxx2, · · ·xxxn; t)〉

=

∫
Dφ (t) Ψ∗0 (φ, t) e

iT̃
∫ t
t0
Hint(t

′)dt′O (xxx1,xxx2, · · ·xxxn; t) e
−iT

∫ t
t0
Hint(t

′)dt′
Ψ0 (φ, t)

(1.44)

Therefore the expectation value of the observables evaluated at time t is exactly the

expectation value of the observables evolved back to the initial time and evaluated under

the initial probability distribution:

〈O (xxx1,xxx2, · · ·xxxn; t)〉 =

∫
Dφ (t) e

iT̃
∫ t
t0
Hint(t

′)dt′O (xxx1,xxx2, · · ·xxxn; t) e
−iT

∫ t
t0
Hint(t

′)dt′P0 (φ, t)

(1.45)

In actual calculations, the initial time t0 is often taken to be −∞ and we usually want the

wave function Ψ0 (φ) to be the Bunch-Davies vacuum, which is the ground state of the
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free Hamiltonian in a approximate de Sitter background. We can achieve this by giving

a small imaginary part to the Hamiltonian. This selects the vacuum state from a general

initial wave function:

e−iT
∫ t
−∞Hint(t

′)dt′ → e−iT
∫ t
−∞(1+iε) Hint(t

′)dt′ (1.46)

The expectation value thus specifies a closed time contour which goes from −∞ (1 + iε)

to the time t of the operator insertions, and then goes back to −∞ (1− iε). Notice that in

evaluating Green’s functions for scattering amplitudes, it is not the initial wave function

but the asymptotic boundary conditions in time that are fixed, thus the time integration

contour which selects the vacuum state goes from −∞ (1 + iε) straight to ∞ (1 + iε).

1.3.2 Cosmological perturbation theories for primordial fluctu-

ations and large scale structure

Here we briefly introduce the theories for fluctuations during inflation as well as the

subsequent evolution which is responsible for the large scale structure we see today. We

discuss briefly the physical quantities and the observables we compute, based on our

introduction of the FRW universe and the in-in formalism in the previous sections.

1.3.2.1 Primordial fluctuations

Primordial fluctuations are the quantum fluctuations of gravity coupled to the inflaton

during inflation. The simplest model describing this system is general relativity minimally

coupled to a single scalar field which interacts with itself via a potential term:

S =

∫
d4x
√−g

(
M2

pR−
1

2
(∇φ)2 − V (φ)

)
(1.47)
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Theories with non-minimal couplings and derivative couplings are extensive in the litera-

ture, but this type of models is a good starting point. Also, some of the models that have

the best fits with the observed data lie within this type.

There are three dynamical degrees of freedom in the system: two from the metric

fluctuations and one from the inflaton. The slow-roll inflation paradigm requires that

the inflaton potential V (φ) has a near-flat region which is able to support the exponen-

tial growth of the scale factor for enough e-folds. Thus the background solution of the

spacetime looks like

φ = φ0 (t)

ds2 = −dt2 + a (t)2 dxxx2

(1.48)

The solution should be homogeneous in the spatial coordinates because the universe we

see now is homogeneous and isotropic. Upon the background solution, the dynamical

degrees of freedom manifest themselves as fluctuations on the background. There are

three independent fluctuations, one for the scalar part and two for the tensor part. The

scalar fluctuation can be chosen by a gauge choice as either the scalar part of the metric or

as the inflaton fluctuation. We take the ζ-gauge in which the scalar fluctuation is treated

as a component of the metric fluctuations.

The primordial fluctuations are treated in the ADM formalism, which splits the metric

into dynamical degrees of freedom and auxilliary fields:

ds2 = −N2dt2 + hij
(
dxi +N idt

) (
dxj +N jdt

)
(1.49)

The dynamical fluctuations are encoded in hij. The lapse N and shifts Ni are auxiliary

fields which can be integrated out by solving the Hamiltonian constraints.
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In ζ-gauge the perturbations look like:

φ = φ (t)

hij = a2 (t) e2ζ (eγ)ij

γii = 0

∂iγ
i
j = 0

(1.50)

where the ζ field encodes the scalar fluctuations and the transverse traceless tensor γij is

the graviton fluctuation.

The Lagrangian for the scalar perturbation ζ has the quadratic part

Sζ = M2
p

∫
dtd3x

φ̇2

H(t)2
a (t)

(
a2ζ̇2 − (∂iζ)2

)
(1.51)

Using the conformal time dη ≡ e−Htdt, the massless scalar field in de Sitter space has the

quadratic lagrangian

Sζ =

∫
d4x

M2
p

H2η2

(
(∂ηζ)2 − (∂iζ)2) (1.52)

which gives the two-point functions for ζ

〈ζkkkζ−kkk〉 = (2π)3 H2

2M2
pkkk

3

(
1 + kkk2η2

)
(1.53)

At late time η → 0, only the contribution from the first term remains.

The higher correlation functions can be computed with the interaction Hamiltonian.

If in Hint there is a three-point interaction, then there is a non-trivial three-point function:

〈ζ3 (t)〉 = −i
∫ t

−∞(1+iε)

dt′〈
[
ζ3 (t) , Hint

]
〉 (1.54)

Similar calculations apply to arbitrary higher point functions.
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1.3.2.2 Large scale structure as dark matter fluid

After the inflation phase, the universe went through the stages of radiation domination

and matter domination, during which matter lumps formed under gravity. The system of

dark matter lumps is described by a nearly perfect fluid coupled to gravity, with varying

fluid velocity and density. In comoving coordinates the background configuration for the

dark matter fluid is just a homogeneous fluid which moves with the expanding background:

ρ (xxx, t) = ρ(t) , vi = 0 (1.55)

The primordial fluctuations during inflation serve as the seeds for structure formation.

Gravity amplifies the primordial inhomogeneity. The density fluctuations grow and exit

the linear regime. To describe the density fluctuation, we introduce the overdensity δ,

δ ≡ ρ

ρ
− 1 (1.56)

The fluid velocity field itself can be treated as a fluctuation since the background value

is zero everywhere. From the conservation of the stress-energy tensor we can derive the

equations satisfied by the overdensity and the fluid velocity:

∂ηδ + ∂i
(
(1 + δ) vi

)
= 0

∂ηv
i +Hvi + vj∂jv

i = −∂iΦ
(1.57)

where η is the conformal time coordinate in which the metric of the FRW universe takes

the form

ds2 = a2 (η)
(
−dη2 + dxxx2

)
(1.58)
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and H is the Hubble parameter defined with respect to conformal time

H ≡ ∂ηa

a
(1.59)

This set of equations is supplemented by Poisson’s equation from one of the constraints

in Einstein’s equations

∂2
i Φ = 4πGρa2δ (1.60)

In the regime that δ and vi are small, we can group the terms in the equations into linear

and non-linear parts:

∂ηδ + ∂iv
i = −∂i

(
δvi
)

∂ηv
i +Hvi + ∂iΦ = −vj∂jvi

(1.61)

The dark matter fluid has no curl; i.e. the dark matter velociity field is a pure gradient

with only one independent component. Thus we can defined a scalar quantity θ for the

divergence of the velocity field

θ ≡ ∂iv
i (1.62)

Then considering Poisson’s equation and taking the divergence of the second equation of

(1.61), the linear part of the set of equations become:

δ̇ + ∂2θ = 0

θ̇ +Hθ + 4πGρa2δ = 0

(1.63)

It is of the general form:

Θ̇ +M ·Θ = 0 (1.64)
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where

Θ ≡ (δ, θ) (1.65)

The equations can be solved in perturbation theory by first solving the linear part, ob-

taining the linear propagator for the doublet Θ, and then adding in the non-linear terms

as vertices. The correlation functions can be computed with diagrammatics. For instance,

suppose we have a three-point vertex Vk,p,qin the theory and we have solved the linear

theory so in the linear level we have

Θk (η) = G (η, η0) Θk (η0) +

∫
dη′G (η, η′)Vk,p,q (η′)G (η′, η0)G (η′, η0) Θp (η0) Θq (η0)

(1.66)

Then the correction to the power spectrum for Θ is computed by connecting the three-

point diagrams with the power spectrum at initial time t0

All other diagrams can be computed in a similar fashion. Described above is the

standard perturbation theory (SPT) which treats both δ and θ as perturbations. However

when the dark matter lumps form, δ can eqsily exceed order ∼ 1, and in sufficiently short

scales it is far larger than one. Thus we need ways to improve the SPT and develop a

more powerful theory which is more systematic and can be applied to short scales where

non-linearity becomes much more significant. Renormalized perturbation theory (RPT)

and the effective field theory of large scale structure are two directions that are being

developed.
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Chapter 2

Bulk Microcausality from Boundary

2.1 Holographic Representation of Local Operators

in de Sitter Space

In this chapter we discuss how the local operators that satisfy microcausality arise in the

dual conformal field theory in AdS and dS space. At first sight, it seems impossible to

get local observables in a D + 1-dimensional curved spacetime from a local field theory

in D-dimensions since there are simply not enough degrees of freedom to achieve this,

and indeed the dual theory of the boundary CFT is a string theory, which is not a local

field theory in the strict sense. However in the large-N limit, it is possible to construct

approximately local operators in the bulk that satisfy microcausality with 1
N

corrections.

The large number of degrees of freedom makes up for the number of degrees of freedom,

in a rough sense. Below we see explicitly how this works in AdS as well as in dS, and how

the dS case differs from the AdS case in an essential way.
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2.1.1 Introduction

Gauge/gravity duality[15], which equates a theory of quantum gravity to a quantum

field theory in one lower dimension, has provided a deeper understanding of both non–

perturbative string theories and conformal field theories, and also finds applications in

different areas such as nuclear physics and condensed matter physics.

Despite the progress in the area of holographic duality, some basic questions regarding

bulk locality remain to be clarified. Recently attention has been focused on sub–AdS lo-

cality [16][17]—locality of physics within the AdS radius, which might help understanding

the recent puzzles regarding black holes [18]. It is well–known that in order to be dual to

weakly–coupled gravity in the form of a local field theory in AdS, a conformal field theory

must have a large number of degrees of freedom as well as being strongly coupled. The

operator dictionary of AdS/CFT [19][20][21] can be understood as a series of claims about

locality in the near–boundary region of AdS. There are two kinds of operator dictionaries

in AdS/CFT. One of them is the GKPW dictionary[19][20] which identifies the boundary

condition for a non–normalizable mode in AdS space as the coupling of a deformation

to the boundary CFT, and the boundary correlation functions are obtained by differen-

tiating this coupling to the partition function of bulk gravity. On the other hand, the

BDHM dictionary [21] identifies the boundary condition for a normalizable mode as an

operator in the un–deformed CFT, and then CFT correlation functions are recovered by

extrapolating the bulk quantum gravity correlation functions to the boundary. In both

cases, there is a one–one correspondence between a local operator in the bulk and a local

operator on the boundary.

While the dictionary is well–defined in the limit that the bulk operator approaches the

boundary, the story for an operator probing deeper inside the space is less transparent—

such an operator corresponds to non–local operators on the boundary and the property of
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microcausality is not manifest. There are several approaches towards understanding this

“sub–AdS locality” issue including the conformal bootstrap [16] and the use of Mellin

representation of CFT correlation functions [17]. Constraints on operator dimensions

and the behavior of Mellin amplitudes are conjectured. In [16], the authors count the

constraints arising from the OPE, conformal invariance and the bootstrap conditions for

large−N conformal field theories in d = 2 and d = 4, and match the number of solutions to

the constraints to the counting of quartic bulk local interactions. In [17], CFT correlation

functions are formulated as scattering amplitudes in AdS space, with the help of a Mellin

transform. It is demonstrated that to have local interactions in the AdS bulk, the Mellin

amplitudes of the CFT should grow no faster than a power of the Mellin space coordinate

δ, in the limit that δ is large. In this chapter, we focus on another approach which

starts from microcausality and explicitly construct local operators from CFT data. The

particular construction we are describing was developed in anti–de Sitter space by several

authors [28][29][31], and recently further developed to describe the interior of eternal black

holes in AdS space[32], in order to explore the “firewall” problem[18]. In this thesis, we

parallelly develop the construction to local operators in de Sitter space, at the level of(
1
N

)0
(two-point functions), in the context of the de Sitter/CFT correspondence [1].

It is still not completely clear whether quantum gravity in de Sitter space can be de-

scribed holographically. There are several proposals for such a correspondence, including

dS/CFT[1], dS/dS[33] and static patch solipsism[34]. Among these dS/CFT seems to be

the simplest extension of AdS/CFT to de Sitter space in the sense that quantities like

CFT correlation functions and bulk wavefunctions can be related to AdS case via analytic

continuation, and the bulk de Sitter isometries match nicely to the conformal symmetry

of the Euclidean theory at the future or past conformal boundary. Recently a realization

of dS/CFT in the context of higher spin gravity was proposed[2]; namely the Vasiliev

theory[35] in de Sitter space is conjectured to be dual to the critical or the free Euclidean
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Sp(N) model with anti–commuting scalars. Despite a nice analogy to AdS/CFT as well as

a certain proposed realization, the idea of dS/CFT suffers from several problems [36][37]:

The CFT correlators are not observables for any observer in de Sitter space, but rather

are “meta–observables”1; gravity is not decoupled; the dual field theory is non–unitary;

and it is hard to see how bulk unitarity arises. Also the de Sitter nature of future infinity

may be spoiled by bubble nucleation, and a boundary CFT may not exist at all.

In this thesis we will not get into any of these subtleties and will just assume the

existence of the dS/CFT correspondence and try to construct local bulk observables from

the boundary CFT data. We work in both the flat patch and the global patch of de

Sitter space. In contrast to what happens in the case of AdS/CFT, at the level of two–

point functions, a local operator in de Sitter space is shown to be constructed from

two sets of single–trace operators in the boundary CFT, with dimensions ∆ and d − ∆

respectively. The observation that an operator in de Sitter is dual to two operators in

CFT is not itself new, having already been pointed out by the original dS/CFT paper [1]

by looking at the bulk correlation function in the limit that the bulk operators approach

the boundary. In the paper by Harlow and Stanford[22], the GKPW (differentiating)

and BDHM (extrapolating) dictionaries in de Sitter space are shown to be inequivalent—

while the “differentiating” dictionary gives correlators with a single scaling dimension, the

“extrapolating” dictionary gives correlators with two different near–boundary behaviors.

To the knowledge of the author, the construction of de Sitter local operators is new, and

helps clarify the understanding of how the bulk observables of de Sitter space emerge from

a lower dimensional space, as well as clarifying the difference between dS/CFT and the

analytic continuation of AdS/CFT. We also generalize the construction to gauge fields

1Actually we are meta–observers for the nearly de Sitter geometry during inflation [27], and the CMB
correlation functions are “meta–observables” for the observers in an inflating universe. CMB is observable
to us because after inflation the universe exits the near–de Sitter phase and the CMB photons fall into
causal contact with us.

32



CHAPTER 2. BULK MICROCAUSALITY FROM BOUNDARY

with integer spin s. It is shown that the construction for a spin−s gauge field in de Sitter

space can be identified with a construction of scalar fields with m2 <
(
d
2

)2
and a bulk

operator that matches with a spin−s boundary current is explicitly constructed.

2.1.2 Construction of a Local Scalar Field in Anti–de Sitter

Space

In this section I describe how a bulk scalar field in an empty anti–de Sitter space emerges

from a conformal field theory. I briefly review the construction in AdS space following[28][29][31].

I work in the Poincaré patch, which has a direct analytic continuation to the flat slicing

of de Sitter space.

There are two approaches leading to the same result. One is based on solving a

space–like Cauchy problem and uses Green’s function to express the local field, while the

other starts from summing the normalizable modes in the bulk. In the Green’s function

approach, one first solves for the Green’s function in AdS space

(
�′ −m2

)
G(z, x|z′, x′) =

1√−g δ
d(x− x′)δ(z − z′) (2.1)

Then from Green’s theorem we have a bulk field expressed as

Φ(z, x) =

∫
z′→0

ddx′
√
−g′ (G(z, x; z′, x′)∂z′Φ(z′, x′)− Φ(z′, x′)∂z′G(z, x; z′, x′)) (2.2)

where for Φ(z, x) we just choose a single fall–off behavior near the boundary, as z → 0

Φ(z, x) ∼ z∆O(x) (2.3)

which corresponds to a normalizable solution to the bulk equation.
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Pushing z′ to the boundary and using the Green’s function, finally we get

Φ(z, x) =

∫
ddx′K (z, x|x′)O(x′) (2.4)

with K(z, x|x′) being a function which behaves like zd−∆ when z approaches zero. We call

it the “smearing function”, for it smears over the operators in a certain region in CFT,

defining a non–local operator in CFT as a local operator in the bulk. In the Poincaré

patch it is

K(z, x|x′) = cd,∆

(
z2 + (x− x′)2

z

)∆−d

Θ (z − |x− x′|) (2.5)

The domain of integration on the boundary is finite and within the intersection between

the boundary and the bulk lightcone originated from the bulk operator, as shown in

figure (2.1). Though it looks like an unconventional Cauchy problem—the “initial data”

are spacelike separated from the bulk point, the result is causal: the commutator between

two bulk operators constructed in this way vanishes when they are spacelike separated,

to order N0 in the large–N expansion. When considering interactions, the commutator

turns on in three–point functions, which is order N−1, but this can be cured by including

multi–trace operators in the smearing prescription [29]. Schematically we have:

Φ(z, x) =

∫
ddx′K(z, x|x′)O(x′) +

∑
i

∫
ddx′K∆i

(z, x|x′)O∆i
(x′) (2.6)

with multi–trace operators O∆i
such as O2. The commutator at order N−1 is then can-

celled by the contributions from the multi–trace operators. With a concrete demonstration

at order N−1 [29], the procedure is conjectured to work order–by–order in the large–N

expansion, and by adding multi–trace operators one can construct local operators in AdS

to any order of 1
N

. The construction is believed to break down away from the large–N
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Figure 2.1: Construction of A Local Observable in Anti–de Sitter space

limit, where the bulk gravity fluctuates and the notion of microcausality as well as the

notion of the background spacetime itself break down; one would not expect to define

local observables in a full–fledged gravity theory [30]

The second approach—summing over modes—is more transparent for seeing why the

result is causal. One starts by solving the free field equation in AdS and ends up with

two independent solutions corresponding to each wave number. In the simple example of

AdS2 these modes are

Φω(z) ∼ C1

√
zJ∆− 1

2
(zω) + C2

√
zY∆− 1

2
(ωz) (2.7)

where Jν and Yν are Bessel functions. Only the part proportional to Jν is normalizable,

so we just keep this branch of the solutions and sum over it.

Summing over the normalizable modes, including both positive frequencies and nega-

tive frequencies, we get

Φ(z, t) =

∫ ∞
0

dω
(
aωe

−iωt + a†ωe
iωt
)√

zJ∆− 1
2
(ωz) (2.8)
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which will recover the same result obtained by the Green’s function approach.

Here we can easily see why the result should be causal: although we just choose one

of the fall–off behaviors in the z–direction, we are keeping both positive frequencies and

negative frequencies in the time direction. This is crucial for ensuring microcausality,

just as in flat spacetime. Thus we can express a local operator in AdSd+1 space in

terms of the CFTd operators inside its spatial lightcone, and these bulk operators satisfy

microcausality.

We see that a local operator inside AdS space emerges as a non–local operator on

the boundary. From the boundary point of view, the AdS coordinates t and z are just

parameters defining the non–local operator in the CFT. The duality between bulk and

boundary physics ensures that this particular non–local operator in CFT satisfies a free

field equation in a higher dimension as well as being local in the sense of a higher dimen-

sional microcausality. We should emphasize that the map between boundary and bulk

here depends on the state of the boundary CFT [32] which maps to a certain bulk back-

ground geometry. The smearing function—and thus the construction—is made referring

to a certain background. In this case it is empty AdS space, which is dual to the vacuum

of a zero–temperature CFT. In a more general background, for instance, with a black hole

sitting in the bulk, the construction would be different.

2.1.3 Analytic Continuation and Operator Dictionaries

We will see that though de Sitter space and anti–de Sitter space are related to each other

via analytic continuation, the analytic continuation of the AdS smearing prescription

above to de Sitter space does not give causal correlation functions. As a starting point

one can analytically continue the AdS Poincaré patch to de Sitter flat slicing via

z → η , t→ t , xi → ixi , RAdS = iRdS (2.9)
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and get

ds2 =
−dη2 + dx2

η2
(2.10)

with t treated as one of the spatial coordinates in de Sitter space 2 .

Thus if one does the analytic continuation to the prescription introduced in the section

above, a field operator in de Sitter space is then expressed as an integral defined on the

past or future boundary. The domain of integration for smearing is in the past/future

light cone of the bulk point, and it is now a standard Cauchy problem to express the bulk

point in terms of boundary operators as evolving the initial conditions using the retarded

Green’s function in de Sitter space.

However this cannot be what we aim for. First, it violates microcausality: after

the analytic continuation, the spatial lightcone in AdS becomes time–like, and the bulk

operator now commutes with the operators inside its own time–like lightcone and fails to

commute with the ones outside, which is not the right behavior for being causal. One

can see the reason why this happens—in AdS smearing procedure, to construct a local

operator, we just need to sum over the set of normalizable modes. Continuing to de Sitter

space the z-direction becomes the time direction and keeping only one set of modes in

this direction turns into keeping either positive or negative frequency modes, which spoils

microcausality. In AdS we do not have this problem because we go from the bulk to

the boundary in a spatial direction, and we can still keep both positive frequency and

negative frequency modes in the time direction while sticking to just normalizable modes

in the z-direction.

Second, from the smearing prescription above one recovers the correct AdS bulk cor-

relation functions, but as has been pointed out by several authors [22][26][1], the analytic

continuation of AdS correlators would not give the correlation function in any de Sit-

2Here we just set RdS to one.
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ter invariant vacuum. In paper [22] the authors used the language of the holographic

renormalization group [25] to clarify this point. They claim that in de Sitter space the

“GKPW dictionary” and the “BDHM dictionary” are not equivalent, though the vacuum

wavefunctions in AdS and dS are related by analytic continuation. The reason why this

happens is the definitions of correlation functions in dS and AdS are not related to each

other by analytic continuation. In the language of the holographic RG, one can define

the correlation functions in AdS in the following way [22]: split the bulk path integral

with a plane at z = l and the path integrals in the UV side and IR side give UV and IR

wavefunctions separately, and then one can insert operators on the plane and thus obtain

a bulk correlation function

〈φ̃(x1, l) . . . φ̃(xn, l)〉AdS =

∫
z=l

Dφ̃ΨIR[φ̃]φ̃(x1, l) . . . φ̃(xn, l)ΨUV [φ̃, φ0] (2.11)

where φ0 is the boundary condition for the path integral in ΨUV . One recovers the

boundary correlation function by taking the limit l → 0, and it agrees with the result

one gets by differentiating with the boundary condition φ0 [22]. The ΨIR is shown to be

related to the Hartle–Hawking vacuum in de Sitter space ΨHH via analytic continuation

[22]; however if we analytically continue the definition of the correlation function to de

Sitter space one gets something peculiar: taking the future wedge of flat slicing, the ΨUV

is now a wavefunction in the later stage of the universe and we call it ΨL, and ΨIR is

defined in an earlier period and we call it ΨE. Then the analytically continued correlation

function is defined as

〈φ̃(x1, η) . . . φ̃(xn, η)〉dS =

∫
η

Dφ̃ΨE[φ̃]φ̃(x1, η) . . . φ̃(xn, η)ΨL[φ̃, φ0] (2.12)

This is different from how one computes correlation functions in de Sitter space, or in a
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more generic FRW cosmology. With this definition, in order to compute the correlation

functions at a certain time η it is not enough to know the earlier stage evolution of the

wavefunction, but one needs as well the later stage. This is not what one would do in

cosmology, since to compute the correlation functions of temperature fluctuations in the

cosmic microwave background we don’t have to know the wavefunction of the universe

during the subsequent structure formation. Also, fixing a certain boundary condition at

future infinity is manifestly acausal [24]. The radiation fails to pass through future infinity

and will be reflected back into the past. This acausal behavior will manifest itself as the

breakdown of microcausality: operators on a single spatial slice will fail to commute. The

way to define the correlation function in de Sitter and in more generic cosmology should

just involve the Hartle–Hawking wavefunction and its complex conjugate, and corresponds

to an in–in path integral:

〈Ψ|φ̃(x1, η) . . . φ̃(xn, η)|Ψ〉dS,FRW =

∫
η

Dφ̃Ψ∗E[φ̃]φ̃(x1, η) . . . φ̃(xn, η)ΨE[φ̃] (2.13)

where η is a certain spatial slice such as the last scattering surface of CMB photons in

our universe, on which we compute correlation functions and compare with data, and

ΨE refers to both “a wavefunction at early time” and “a wavefunction of the universe

in the Euclidean (Hartle–Hawking) vacuum”. Here one no longer specifies the boundary

condition at the future boundary. This is a natural definition of expectation values under

the Born rule, and it is clearly different from the analytic continuation from AdS. Also

this definition obeys microcausality—the spacelike separated operators commute inside

the correlation functions and timelike separated ones do not commute. The simplest one

of this type of correlation function is the Wightman function for a free scalar field in de
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Sitter space3. Thus a construction of a de Sitter bulk operator that computes de Sitter

cosmology should reproduce the Wightman function, and it should also contain both

positive and negative frequency modes in de Sitter space in order to ensure causality.

2.1.4 de Sitter Construction

In this subsection, we construct the local scalar operators in de Sitter space explicitly

from operators in an Euclidean CFT. We perform the construction in both the flat patch

and the global patch. We also explore the issues associated with building up local gauge

fields in de Sitter space, and try to rewrite the construction in terms of an embedding

formalism which is explicitly dS(AdS) covariant.

2.1.4.1 Flat Slicing

Now we look at how a local scalar operator with mass m2 >
(
d
2

)2
in de Sitter space is

constructed from a CFT located at the boundary. In the AdS construction the boundary

is timelike, and the extra direction emerges from the boundary as a spatial direction. In

de Sitter space, the boundaries are located at future and past conformal infinity, which are

spacelike boundaries, so what emerges from the CFT is the bulk time. From the boundary

point of view the bulk time η appears as a parameter in the definition of non–local CFT

operators. As we will see, a local bulk operator that is far from the boundary will be

highly non–local from the CFT point of view.

In this subsection we work in the flat patch of de Sitter space, which covers only half

of the global geometry. One can either choose the past wedge to work on, or the future

wedge, and the boundary CFT will live on I− or I+ respectively. Here for the moment

we choose the past wedge. The construction in the global patch of de Sitter space is left

3Wightman function is the expectation value of the product of two field operators for the same field
inserted at different points, in the vacuum state of the field theory.
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to the next subsection.

We have seen that a construction prescription for local operators in de Sitter space

should involve modes with both positive and negative frequencies, corresponding to “nor-

malizable” and “non-normalizable” behaviors in AdS. Here we define

∆ =
d

2
+ i

√
m2 −

(
d

2

)2

(2.14)

and near the boundary a positive/negative frequency mode has behavior

Φ+ (η → 0) ∼ η∆O+

Φ− (η → 0) ∼ ηd−∆O−
(2.15)

where O± are single–trace operators in the boundary CFT, with scaling dimensions ∆

and d−∆ respectively.

For the case of interest here, since m2 −
(
d
2

)2
is positive, near the boundary both Φ+

and Φ− are damped by the same factor η
d
2 and oscillate with frequency

√
m2 −

(
d
2

)2
.

If m2 <
(
d
2

)2
then the two modes fall at different rates near the boundary and do not

oscillate.

According to the reasoning in the section above, a causal operator should have both

components, schematically:

Φ(η → 0) ∼ Aη∆O+ +Bηd−∆O− (2.16)

With a certain linear combination, one can reproduce the Wightman function in the

Euclidean vacuum.

To construct the bulk operator, we evolve the initial data at I− with the retarded
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Green’s function, which is

Gret|η′→0 ≈ c∆,d(−σ − iε)∆−d + c∗∆,d(−σ − iε)−∆ − c.c. (2.17)

in the limit that η′ → 0. Here

σ =
η2 + η′2 − (x− x′)2

2ηη′
(2.18)

is a de Sitter invariant distance and

c∆,d =
Γ(2∆− d)Γ(d−∆)

2∆−d(4π)
d+1

2 Γ(∆− d−1
2

)
(2.19)

The bulk operator is constructed by evolving an operator near the boundary:

Φ(η,x) = lim
η′→0

∫
|x′|<η

ddx′
(

1

η′

)d−1

(Gret(η,x; η′,x′)∂η′Φ(η′,x′)− Φ(η′,x′)∂η′Gret(η,x; η′,x′))

(2.20)

where

Φ(η′,x′) ∼ A (η′)
∆O+(x′) +B (η′)

d−∆O− (x′) (2.21)

By keeping both sets of operators, we are keeping both the positive and negative frequency

parts of the solution 4.

Evaluating the integrand, we have the local operator in de Sitter space expressed as

Φ(η,x) =A∆,d

∫
|x′|<η

ddx′
(
η2 − x′2

η

)∆−d

O+(x + x′)+

B∆,d

∫
|x′|<η

ddx′
(
η2 − x2

η

)−∆

O−(x + x′)

(2.22)

4Before we take the limit η′ → 0, there should be four kinds of components present: σ∆−dO± and
σ−∆O±, but in the limit η′ → 0 only σ∆−dO+ and σ−∆O− survive because the other contributions
oscillate quickly and go to zero as η′ approaches zero. The details are presented in Appendix B.
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Figure 2.2: Construction in the Flat Patch of De Sitter Space

where A∆,d and B∆,d are certain coefficients. Here for a moment we keep them free,

since in principle we can rescale the boundary operators and change the coefficients of

the two–point functions, as a marginal deformation to the boundary CFT. This freedom

of rescaling the operators, as well as the freedom of choosing a certain linear combination

of two modes with different fall–off behaviors, enables us to keep A∆,d and B∆,d free for

a moment. We will finally fix them by demanding that the correlation function of Φ

recover the Wightman function in the Euclidean vacuum. This means that the choice of

the coefficients is state–dependent: for other de Sitter invariant vacua such as “α–vacua”,

we should have different prescriptions in order to recover the Wightman functions.

Having a prescription, we would like to calculate the bulk two–point function and

compare it with the two–point bulk Wightman function in the limit that one of the bulk

points approaches the boundary. The Euclidean vacuum Wightman function in de Sitter

space is [26]

W (x, x′) =
Γ(∆)Γ(d−∆)

(4π)
d+1

2 Γ(d+1
2

)
F

(
∆, d−∆,

d+ 1

2
,
1 + σ

2

)
(2.23)

where F (α, β, γ, x) is the hypergeometric function 2F1, and σ is the de Sitter invariant
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distance defined beforehand.

When one of the bulk points x′ approaches the boundary η′ → 0, the fourth argument

of the hypergeometric function grows large and is dominated by σ

1 + σ

2
∼ σ

2
∼ η2 − (x− x′)2

4ηη′
(2.24)

For convenience we can set x′ to zero. In this limit we have

W (η,x; η′ ∼ 0,x′ = 0)→ Γ(∆)Γ(d− 2∆)

(4π)
d+1

2 Γ(d+1
2
−∆)

(
− 4ηη′

η2 − x2

)∆

+

Γ(2∆− d)Γ(d−∆)

(4π)
d+1

2 Γ(∆− d−1
2

)

(
− 4ηη′

η2 − x2

)d−∆
(2.25)

As expected, the Wightman function has two components with dimensions ∆ and d−∆.

Next we want to reproduce it from the smearing formula (2.22).

Here we would like to normalize the boundary two–point functions so that we have

W (η → 0,x; η′ → 0,x′ = 0)→ (ηη′)∆D+ (x) + (ηη′)
d−∆

D− (x) (2.26)

where D± are the boundary CFT correlation functions which we take to be

D+(x) =
22∆Γ(∆)Γ(d− 2∆)

(4π)
d+1

2 Γ(d+1
2
−∆)

(
1

x2

)∆

(2.27)

D−(x) =
22(d−∆)Γ(2∆− d)Γ(d−∆)

(4π)
d+1

2 Γ(∆− d−1
2

)

(
1

x2

)d−∆

(2.28)

Taking the smearing formula (2.22) and computing the correlation function between the

bulk operator and an operator near the boundary, we have
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〈Φ(η,x)Φ(η′ → 0, 0)〉 = A∆,d

∫
|x′|<η

ddx′
(
η2 − x′2

η

)∆−d

η′∆〈O+(x + x′)O+(0)〉

+B∆,d

∫
|x′|<η

ddx′
(
η2 − x′2

η

)−∆

η′d−∆〈O−(x + x′)O−(0)〉
(2.29)

With the boundary correlator of the operators O±:

〈O+(x)O+(0)〉 = D+(x) , 〈O−(x)O−(0)〉 = D−(x) , 〈O+(x)O−(0)〉 = 0 (2.30)

we obtain

〈Φ(η,x)Φ(η′ → 0, 0)〉 = A∆,d
22∆Γ(∆)Γ(d− 2∆)

(4π)
d+1

2 Γ(d+1
2
−∆)

∫
|x′|<η

ddx′
(
η2 − x′2

η

)∆−d

η′∆
1

(x + x′)2∆

+B∆,d
22(d−∆)Γ(2∆− d)Γ(d−∆)

(4π)
d+1

2 Γ(∆− d−1
2

)

∫
|x′|<η

ddx′
(
η2 − x′2

η

)−∆

η′d−∆ 1

(x + x′)2(d−∆)

(2.31)

After evaluating the integrals we end up with the result

〈Φ(η,x)Φ(η′ → 0, 0)〉 =

A∆,d
π
d
2 Γ(∆− d+ 1)

Γ(∆− d
2

+ 1)

22∆Γ(∆)Γ(d− 2∆)

(4π)
d+1

2 Γ(d+1
2
−∆)

(−1)∆

(
ηη′

η2 − x2

)∆

+

B∆,d
π
d
2 Γ(1−∆)

Γ(d
2
−∆ + 1)

22(d−∆)Γ(2∆− d)Γ(d−∆)

(4π)
d+1

2 Γ(∆− d−1
2

)
(−1)d−∆

(
ηη′

η2 − x2

)d−∆

(2.32)

We see that the coefficients
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A∆,d =
Γ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

B∆,d = Ad−∆,d =
Γ(d

2
−∆ + 1)

π
d
2 Γ(1−∆)

give the two–point Wightman function in the Euclidean vacuum, in the limit that one of

the bulk points approaches the boundary. It is not hard to show that the prescription

also gives Wightman function away from this limit. Notice that each of the two terms

in the smearing prescription can actually be obtained by analytically continuing from

AdS space. Thus the Wightman function breaks into two pieces. One is for a scalar

with ∆+ = ∆ = d
2

+ i
√
m2
dS −

(
d
2

)2
and the other for a scalar with ∆− = d − ∆+. The

two–point functions for the ∆+ and ∆− components are in the form:

G∆(x, x′) =

(
2

1 + σ

)∆

F

(
∆,∆− d− 1

2
, 2∆− d+ 1,

2

1 + σ

)
(2.33)

with ∆ = ∆±.

Summing the two pieces using the property of hypergeometric function introduced

in Appendix A, with the coefficients obtained in this section, we recover the Wightman

function in de Sitter space with both points deep in the bulk.

Now we can write the expression for a local operator in de Sitter space explicitly, with

coefficients set by the Euclidean vacuum state:

Φ(η,x) =
Γ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

∫
|x′|<η

ddx′
(
η2 − x′2

η

)∆−d

O+(x + x′)+

Γ(d
2
−∆ + 1)

π
d
2 Γ(1−∆)

∫
|x′|<η

ddx′
(
η2 − x2

η

)−∆

O−(x + x′)

(2.34)
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This is our main result in this section: to construct local operators in de Sitter space that

probe and create particles in the Euclidean vacuum state, we start from the Wightman

function in the bulk Euclidean vacuum W (x, x′), and construct the retarded propagator

by taking the expectation value of the commutator Gret ≡ W (x, x′) − W (x′, x) which

has support only inside the bulk time–like lightcone. This retarded propagator gives

the smearing functions for CFT operators with coefficients A∆,d and B∆,d, and using

the constructed smearing function we can recover the Wightman function we started

with. What we get is a representation of local bulk operator in terms of boundary CFT

operators, in a certain vacuum state. The bulk operator is constructed with CFT data

inside the past lightcone of the bulk point, as shown in figure (2.2).

Here one can also see that, as opposed to the AdS case, to check microcausality one is

no longer supposed to just compute the correlation function between a bulk operator and

a single boundary operator. Considering for example O+, the result one gets in this way is

the same as the one continued from AdS, and thus acausal. The reason why we shouldn’t

do this is clear: unlike the case for AdS, O+ or O− alone no longer match smoothly onto

any local bulk operator that approaches the boundary.

The construction above in terms of CFT operators at the past boundary I− is not

directly relevant to cosmology. In cosmology it is the flat FRW slicing of de Sitter space

defined on the future wedge which is relevant. It describes the expansion phase of the

universe. In the future wedge the bulk operators are constructed with CFT operators on

I+, which seems unappealing because the “retarded propagator” is now propagating the

boundary operators back in time. However in terms of the physical observables everything

is causal: by rerunning the calculation we obtain the Wightman function in the future

wedge, and the operators satisfy microcausality. From the point of view of the evolution

of wavefunctions, it is more appealing to phrase the construction in the future wedge:

to compute correlation functions at a late time η → 0 one starts with the vacuum state
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defined on some spatial slice at earlier time η → −∞, evolves forward in time, and then

computes the expectation value. In the above construction we chose I− simply because

it is more appealing from the perspective of the retarded propagator. One can rerun

everything we formulated above in the future wedge and get a local operator in the future

wedge in terms of operators at I+.

One may also question about the operator content: in a CFT, it seems we don’t

necessarily have enough operator content for the construction. Take the example of a

scalar. It is totally possible that the theory only contains a dynamical scalar current

O+ with dimension ∆ but not one with dimension d − ∆. However if we couple the

operator O+ to the Lagrangian via a coupling term βO+, then the coupling β naturally

has dimension d − ∆. This means that when doing the path integral for the CFT, we

are not only integrating over the constituents that forming O+, but also the source 5.

This is legitimate as one can always treat the coupling as a multiplier and integrate over

it. Furthermore, this is consistent with the fact that when computing expectation values

in de Sitter space, we have to integrate over sources also. An example is computing

correlation functions at future infinity with the wavefunction of the universe Ψ[gij]. To

obtain this wavefunction we do a path integral in de Sitter space using the Hartle–Hawking

prescription, which is equivalent to coupling gij as a source to the boundary stress tensor

and integrating over the CFT field contents. When we want to compute correlation

functions on the boundary, according to Born’s rule, we also have to integrate over gij,

which is the degrees of freedom that corresponds to a certain classical configuration of

gravitational field. A CFT enlarged to include operators corresponding to sources then

becomes a “doubled CFT” as discussed in [22][23]. In the next subsection, we can see that

the second set of operators O− also has a natural interpretation as “shadow operators”

in the CFT.

5I thank Frederik Denef for pointing this out.
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Further, one may wonder if by writing down Φ → Aη∆O+ + Bηd−∆O− near the

boundary, we are imposing boundary conditions similar to what we do in anti–de Sitter

space. From the perspective of path integration, we have seen that what produces the

Wightman function in de Sitter space is an in–in type path integral which does not fix any

boundary condition at the future or past boundary. Rather it specifies a particular vacuum

state in which we calculate the expectation values. Indeed we are not fixing the boundary

condition even we write down a schematic form of the operator near the boundary. The

reason is that we are not fixing the coefficients: Φ can be any linear combination of the

two components. What fixes a particular linear combination is the vacuum we choose:

here we chose a particular A and B to recover the Wightman function in the Euclidean

vacuum. Therefore there is no contradiction with the fact that the correlation functions

are computed by an in–in path integral.

One further comment about the case of m2 ≤
(
d
2

)2
here. Our construction is done

for the case m2 >
(
d
2

)2
and we have seen the positive and negative frequency modes join

nicely into the Wightman function in the Euclidean vacuum. For m2 <
(
d
2

)2
, apart from

some specific values, one can continue our result trivially and obtain Wightman function

for the light scalar. This corresponds to summing over bulk modes with near boundary

behavior η∆ and ηd−∆ with ∆ = d
2

+
√(

d
2

)2 −m2. However in this case the modes have no

oscillatory behavior—they just fall at different rates, thus the interpretation of positive–

negative frequencies is not a good one despite the fact that we can construct the local

bulk operator in the same way. For some specific values of m2, the construction fails, as

we will see in section 2.1.4.3. The reason is that when 2∆−d is an integer which happens

when we have a light scalar with m2 = −(s−2)(s+d−2) ≤
(
d
2

)2
, with s a positive integer

which turns out to be the spin of a gauge field, the Wightman function no longer split into

two parts corresponding to complementary dimensions and there is a logarithmic term.

Our construction formula has explicit singularities at such mass parameters.
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2.1.4.2 Global Slicing

The construction in the global patch is similar to the flat patch, but with new elements

from having two boundaries. Now we can define conformal field theory operators sepa-

rately at I+ and I−; for any local operator in the bulk, the CFT operators at I+ and I−

can be regarded as two different bases, which should be related to each other via a Bo-

goliubov transformation [26]. In order to see the relation, one may construct a local field

with CFT operators in I− and push it to I+, or vice versa, thus getting the expression

of an operator on I+ in terms of operators on I−. As a starting point, we first formulate

the global patch smearing function.

In the global patch we work in conformal time, with the metric

ds2 =
1

cos2 τ

(
−dτ 2 + dΩ2

d

)
. (2.35)

Here the topology of the spacetime is R×Sd with the conformal time τ running from −π
2

to π
2
.

In these coordinates, the de Sitter invariant distance is expressed as

σ(x, x′) =
cos(Ω− Ω′)− sin τ sin τ ′

cos τ cos τ ′
. (2.36)

As x′ goes to the future boundary I+, τ ′ goes to π
2
, and the regularized distance from

a bulk point to the boundary point is

σ(x, x′) cos τ ′ ∼ cos(Ω− Ω′)− sin τ

cos τ
(2.37)

Therefore the smearing functions that evolve future boundary operators back into the
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bulk will be proportional to

KI
+

+ (τ,Ω|Ω′) ∼
(

cos(Ω− Ω′)− sin τ

cos τ

)∆−d

KI
+

− (τ,Ω|Ω′) ∼
(

cos(Ω− Ω′)− sin τ

cos τ

)−∆

with the support to be the region on the boundary inside the bulk lightcone. A simple

example is dS1+1, for which the support for the smearing function is

|ρ− ρ′| < π

2
− τ (2.38)

on I+, where ρ ∈ [−π, π] is the spatial coordinate of dS1+1.

For the smearing functions evolving operators from the past boundary I−, we have

KI
−

+ (τ,Ω|Ω′) ∼
(

cos(Ω− Ω′) + sin τ

cos τ

)∆−d

KI
−

− (τ,Ω|Ω′) ∼
(

cos(Ω− Ω′) + sin τ

cos τ

)−∆

and the support for the case of dS1+1, is

|ρ− ρ′| < τ +
π

2
(2.39)

The supports for the I+ and I− smearing functions are each defined within a single

lightcone originating from the bulk point and extending to both past and future, as shown

in figure (2.3). The smearing prescription for a dimension ∆ operator which reduces to
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Figure 2.3: Local Operator In the Global 1+1 dimensional de Sitter space

the flat de Sitter space smearing function is

Φ(τ,Ω) =
2∆−dΓ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

∫
dΩ′

(
cos(Ω− Ω′)∓ sin τ

cos τ

)∆−d

O+(Ω′)

+
2−∆Γ(d

2
−∆ + 1)

π
d
2 Γ(1−∆)

∫
dΩ′

(
cos(Ω− Ω′)∓ sin τ

cos τ

)−∆

O−(Ω′)

(2.40)

respectively for I± smearing, with the integration inside the bulk lightcone region. This

will reproduce the Wightman function in the Euclidean vacuum, expressed in global co-

ordinates.

One can construct a bulk operator from I− and push it to I+, in which limit

Φ(τ → π

2
,Ω)→ (cos τ)d−∆ 2∆−dΓ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

∫
dΩ′ (cos(Ω− Ω′) + 1)

∆−dO+(Ω′)

+ (cos τ)∆ 2−∆Γ(d
2
−∆ + 1)

π
d
2 Γ(1−∆)

∫
dΩ′ (cos(Ω− Ω′) + 1)

−∆O−(Ω′)

(2.41)
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This has precisely the form we would expect as the boundary limit of a local bulk operator,

but now with the “−” component expressed by O+ on I− and vice versa:

O+(Ω, I+) =
2−∆Γ(d

2
−∆ + 1)

π
d
2 Γ(1−∆)

∫
dΩ′ (cos(Ω− Ω′) + 1)

−∆O−(Ω′, I−)

O−(Ω, I+) =
2∆−dΓ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

∫
dΩ′ (cos(Ω− Ω′) + 1)

∆−dO+(Ω′, I−)

(2.42)

Here the integration is over the whole past boundary—the past lightcone covers the whole

d–sphere. The equations above can be regarded as a Bogoliubov transformation in coor-

dinate space, as well as an operator dictionary relating two copies of CFT on I±

The form of this boundary–boundary map can be better formulated by expressing

operators not at angular position Ω, but its antipodal point Ω̃ instead, since cos(Ω̃−Ω′) =

− cos(Ω− Ω′) we have

O+(Ω̃, I+) = α∆,d

∫
dΩ′〈O+(Ω)O+(Ω′)〉O−(Ω′, I−)

O−(Ω̃, I+) = β∆,d

∫
dΩ′〈O−(Ω)O−(Ω′)〉O+(Ω′, I−)

(2.43)

with α and β being some coefficients that depend on d and ∆, where in global coordinates

the CFT two–point function with dimension ∆ is proportional to

(
1

sin2(Ω−Ω′
2 )

)∆

The operator relations above between the CFT’s at I± are the dictionary relating two

equivalent holographic descriptions of the same bulk. With the state–operator map one

can regard them as the transformations relating different bases for a quantum state. Here

the collection of operators at either copy of the CFT are a complete description for de

Sitter space in its Euclidean vacuum state. The total Hilbert space for the two CFTs on

both boundaries forms a redundant description, with the constraints above necessary to

relate half of the space to the other half.

An interesting way of looking at these operator relations is provided by techniques
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developed for calculating conformal blocks, in which the relations in Eq. (2.42) are ac-

tually the definition of shadow operators6 [38]. For a given primary operator O(x) with

dimension ∆ in a CFT, its shadow operator Õ(x) is a non–local operator with dimension

d−∆. To get the part involving a certain primary operator O(x) in the conformal block

decomposition of a CFT four–point function 〈ϕ1(x1)ϕ2(x2)ϕ3(x3)ϕ4(x4)〉, one can insert

a projection operator with dimension zero which is defined by both O and its shadow Õ

[38][39]. Then ∫
ddx〈ϕ1(x1)ϕ2(x2)O(x)〉〈Õ(x)ϕ3(x3)ϕ4(x4)〉 (2.44)

gives the conformal block for exchanging the O operator after projecting out the shadow

blocks. In a CFT, one can always construct the shadow for a local primary operator. The

shadow operators are non–local operators in the CFT, but they transform like local pri-

mary operators under conformal transformations. An explicit relation between a primary

operator and its shadow is given in [40]:

Õ(x) =

∫
ddy

1

(x− y)2(d−∆)
O(y) ∝

∫
ddyDd−∆(x− y)O(y) (2.45)

here Dd−∆(x− y) is the two–point function of a primary operator with dimension d−∆.

One can immediately notice that this is a generalization of Eq. (2.43), and Eq. (2.43)

gives a physical interpretation of shadow operators in the special case of Euclidean CFTs

on spheres. The shadow for an operator O+ defined at one of the boundaries of dS, is a

local operator O− in the CFT defined at the other boundary, with an antipodal map on

the sphere. Thus instead of phrasing the construction of de Sitter local operators in terms

of two sets of CFT local operators defined at the same boundary, we can also phrase it

as a construction with a single copy of operators defined at both boundaries—we use the

operator O defined on one of the boundaries and use its shadow Õ defined on the other.

6I thank Daliang Li for pointing this out.
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This also ensures that we are always able to come up with the operators required for the

construction: we are always able to construct the shadow operator Õ from an operator O.

Even in the flat slicing, with only a single boundary, the shadow operator for an operator

O+ in the same CFT fits in the properties we need for the corresponding O−. Thus in

the flat patch, the construction can be made by a local operator O+ and its non–local

shadow O− =
∫
D−O+. Schematically we have

Φ(η,x) =Ad,∆

∫
d3x′K+ (η,x = 0|x′)O+(x + x′)+

Bd,∆

∫
d3x′d3yK− (η,x = 0|x′)D− (x + x′ − y)O+(y)

(2.46)

The second part is from the shadow operator. After integrating over x′ inside the

lightcone, we have a contribution proportional to

∫
ddy

(
η2 − y2

η

)∆−d

O+(x + y) (2.47)

The integrand is the same as the contribution from the operator O+, which is the first

term in (2.22), but the support for the integration is non–compact. The non–compact

support is from the definition of the shadow operator, which is the price for expressing

a de Sitter local operator with a single CFT operator. In this representation, a bulk

operator which is close to the boundary maps to a highly non–local operator: a mixture

of a local boundary operator and its shadow.

2.1.4.3 Comments on Gauge Fields in de Sitter Space

In the discussion above the attention was on scalar operators in de Sitter space. Here we

make some comments on the construction for local fields with integer spins. We focus on

gauge fields propagating in de Sitter space. In [2] Vasiliev theory [35] in de Sitter space was
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proposed as a higher spin realization of dS/CFT correspondence, with the dual conformal

field theory being an Sp(N) model with anti–commuting scalars. In this theory there

are infinitely many higher spin conserved currents that are bilinear operators constructed

from the scalar multiplet:

Oi1...is = Ωabχ
a∂(i1 . . . ∂is)χ

b (2.48)

where Ωab is symplectic tensor.

In [41][42] the holographic constructions for a massless vector field and a graviton field

in anti–de Sitter space were established and were generalized to gauge field ΦM1...Ms with

generic integer spin in [14]. With the choice of holographic gauge,

Φz...z = Φµ1z...z = · · · = Φµ1µ2...µs−1z = 0, (2.49)

in the Poincaré patch it was shown that for a generic gauge field with spin s > 1,

Φµ1...µs =
Γ
(
s+ d

2
− 1
)

π
d
2 Γ (s− 1)

1

zs

∫
t′2+|y′|2<z2

dt′dd−1y′
(
z2 − t′2 − |y′|2

z

)s−2

Oµ1...µs(t+ t′,x + iy′)

(2.50)

where the µi are d–dimensional indices. The operator Oµ1...µs is a symmetric traceless

conserved current on the AdS boundary. In d−dimensional CFT such an operator has

dimension ∆ = s + d − 2. Thus the twist ∆ − d is always s − 2, as indicated by the

smearing function above.

It is shown in [14] that it is very convenient to convert Φµ1...µs to a scalar muitiplet

with vierbeins in AdS

e µ
a = zδ µ

a (2.51)
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Let us define

Ya1...as ≡ e µ1
a1

. . . e µs
as Φµ1...µs = zsΦa1...as (2.52)

Here Φa1...as is written in the sense of components; Φ itself is still defined as a tensor under

diffeomorphism.

One can show that Ya1...as obeys a free scalar equation in AdS with mass parameter

and scaling dimension

m2R2
AdS = (s− 2)(s+ d− 2)

∆ = s+ d− 2

(2.53)

and therefore near the boundary

Y → z∆O (2.54)

The near boundary behavior of the gauge field is given by:

Φµ1...µs =
1

zs
Yµ1...µs → z∆−sOµ1...µs = zd−2Oµ1...µs (2.55)

Therefore we are able to relate a spin−s bulk gauge field propagating in AdSd+1 with a

scalar with mass parameter above the Breitenlohner–Freedman bound.

Now we look at the case of gauge fields in de Sitter space. The Poincaré patch of AdS

can be analytically continued to the flat patch of dS with double analytic continuation:

R2
AdS → −R2

dS

z → η

xiAdS → ixids

(2.56)

57



CHAPTER 2. BULK MICROCAUSALITY FROM BOUNDARY

With the analytic continuation the mass parameter in de Sitter space turns into

m2R2
dS = −(s− 2)(s+ d− 2) (2.57)

The map between the scaling dimension and the mass parameter in de Sitter space is

∆ =
d

2
+

√
d2

4
−m2R2

dS (2.58)

and thus gives real dimensions

∆ = s+ d− 2 (2.59)

We see that for scalars the scaling dimensions can in general be imaginary, but that for

conserved currents, the dimensions are still real integers.

Therefore for a spin−s > 1 gauge field in de Sitter space, the construction is equivalent

to the construction for a massless scalar (s = 2) or tachyons (s > 2). For spin−1, the mass

of the scalar is m2 = d − 1 which is positive, but in general for a d−dimensional space7,

d−1 < d2

4
and thus does not satisfy m2 >

(
d
2

)2
. Therefore we see that a local observable for

a gauge field in de Sitter space behaves quite differently from the heavy scalar operators we

have constructed. These gauge field operators have real dimensions and when approaching

the boundaries, components with (ση′)∆ and (ση′)d−∆ fall at different rates, and have no

oscillatory behaviors.

One can see this difference explicitly when directly extending the construction for the

scalar field to gauge fields. One might naively expect that for gauge fields the construction

involves two sets of single−trace operators with dimensions ∆ and d − ∆ and gives the

7With the exception of d = 2, which satuates the bound, which suggests that maybe the bulk Chern-
Simons field has something special in this story.
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construction equation:

Φi1...is =
Γ
(
s+ d

2
− 1
)

π
d
2 Γ (s− 1)

1

ηs

∫
x′2<η2

ddx′
(
η2 − x′2

η

)s−2

O(+)
i1...is

(x + x′)

+
Γ(3− s− d

2
)

π
d
2 Γ(3− s− d)

1

ηs

∫
x′2<η2

ddx′
(
η2 − x′2

η

)2−s−d

O(−)
i1...is

(x + x′)

which is obtained by simply substituting the dimension ∆ = s + d − 2 into the scalar

expression and identifying Yi1...is = ηsΦi1...isas a bulk scalar.

One would then notice that this proposed solution has problems: The first term has

a diverging denominator when s = 1 and the second term has a diverging denominator

when d + s is an integer larger than two. Therefore, for all the cases of interest, s and d

taking values on positive integers, the construction equation above is not well–defined.

The root of the problem is the starting point of the construction for these fields.

They are constructed by demanding ηsΦi1...is as scalars recover the Wightman function

for the Euclidean vacuum, Eq (2.23). Here in general the ηsΦi1...is are scalars with mass

parameters that go below
(
d
2

)2
. Also, for the case of interest s and d are integers and so the

Wightman function is ill–defined for s > 1 due to the factor involving Γ(1−∆ = 3−s−d),

and for spin s = 1 it doesn’t exhibit the nice property of spliting into two parts with fall–

off behaviors η∆ and ηd−∆ because the hypergeometric function behaves in a different way

when its arguments are integers.

Interestingly enough, these operators are exactly the ones relevant for the proposal of

duality between the Sp(N) model in 3 dimensions and dS4 [2]. There we have currents

Ji1...is = Ωabχ
a∂(i1 . . . ∂is)χ

b with dimension s + 1, which corresponds to mass parameter

m2 = (2 − s)(s + 1). Due to these values for the mass parameter, for these fields the

approach fails and we no longer have a nice picture of a bulk operator being constructed

from a pair of CFT operators, and recovering bulk Wightman functions in a de Sitter
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invariant vacuum.

Despite the remarks above, we can still get a bulk operator that is dual to a boundary

current, in the following sense. Given a boundary spin−s current there is an operator

in the bulk that matches it smoothly when approaching the boundary. To get such an

operator, one can just keep the first part of the expression which approaches the boundary

higher spin current:

Φ
(+)
i1...is

=
Γ
(
s+ d

2
− 1
)

π
d
2 Γ (s− 1)

1

ηs

∫
x′2<η2

ddx′
(
η2 − x′2

η

)s−2

O(+)
i1...is

(x + x′) (2.60)

Here we still have the singularity from the coefficient for a vector field s = 1. A more

careful treatment following [42][14] gives the expression

A
(+)
i =

1

V (Sd−1)

1

η

∫
|x′|=η

dd−1x′J (+)
i (x + x′) (2.61)

where Ai is the bulk vector field and Ji is a boundary conserved current.

Here the integration is over the intersection of the bulk lightcone and the boundary

which is a sphere, and V
(
Sd−1

)
= 2π

d
2

Γ( d2)
is the surface area of a (d − 1)–sphere. This is

just the analytically continued version of the construction in anti–de Sitter space. Here

we are actually imposing Dirichlet type boundary condition at I± by demanding that

Φµ1...µs → η∆−sOµ1...µs . As has been discussed in [24], such Dirichlet boundary conditions

are acausal—they force the radiation that hits the future boundary to reflect back into the

past. As was discussed in the section 2.1.3, the boundary conditions kill the bulk positive

or negative mode, and thus spoil microcausality. The correlation functions computed with

such operators are the ones we can obtain by analytically continuing the AdS correlation

functions, and thus do not correspond to any de Sitter invariant vacuum. They are not

the operators for computing the correlation functions if one would like to look at the
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cosmology in de Sitter space.

Looking back at gauge fields in AdS space, one notices that the situation is much

simpler: the mass parameter for the scalar which corresponds to a spin−s gauge field is

always within the Breitenlohner–Freedman bound m2 > −d2

4
. The constructions can be

carried out in a standard way [14].

2.1.4.4 Implementation in the Embedding Formalism

We can ask if it is possible to recast the constructions above in the language of the

embedding formalism, which was developed in [43][44][45], and recently generalized for

superconformal field theories in [46][47]. In this language, the conformal group in d

dimensions, which is SO(d, 2), is realized as the Lorentz group in a d + 2 dimensional

Minkowski space with two time directions. The transformations on the d+ 2 coordinates

are linear, and the conformally invariant quantities in d dimensions can be built as Lorentz

invariant quantities in d + 2 dimensional embedding space, which shows the conformal

invariance manifestly.

The set–up of the embedding formalism starts with a (d+ 2)-dimensional Minkowski

space with two time–like directions:

ds2 = ηIJdX
IdXJ = −dX+dX− + ηµνdX

µdXν (2.62)

where the indices I, J run over d+2 coordinates and µ, ν run over d coordinates including

one of the timelike directions.

The anti–de Sitter space and de Sitter space are realized as the hypersurfaces defined
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by:

XAdS ·XAdS = −R2
AdS

XdS ·XdS = R2
dS

(2.63)

At large X both the hypersurfaces for de Sitter and for anti–de Sitter space approach the

(d+ 2)–dimensional embedding space lightcone, which is

X ·X = 0 (2.64)

We can define a d–dimensional Minkowski space by turning the (d+ 2)–dimensional em-

bedding space lightcone into a projective space, denoting the points on the embedding

space lightcone as P I . We then demand that P I satisfy:

P · P = 0

P I ∼ λP I

(2.65)

Here we identify the points on the embedding space lightcone that are on the same ray

from the origin, thus forming a d dimensional space.

One can parametrize the embedding space in the following ways. To recover the d–

dimensional Minkowski space, we define coordinates on the projective lightcone as

P I =
(
1, y2, yµ

)
(2.66)

where yµ are d–dimensional coordinates, and y2 here denotes yµyµ. The distance between

two points on the projective lightcone is then −2P1 · P2 = (y1 − y2)2. We see that it

recovers the distance between two points in the Minkowski spacetime.
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For AdSd+1 one can define:

XI
AdS =

1

z

(
1, z2 + x2, xµ

)
(2.67)

We then have the distance between two points in AdS space as

− 2XAdS,1 ·XAdS,2 =
z2

1 + z2
2 + (x1 − x2)2

z1z2

(2.68)

which is proportional to the distance σ we used throughout the section.

Also the regularized distance between a boundary and a bulk point is

− 2P ·X =
z2 + (x− y)2

z
(2.69)

Now we see that in anti–de Sitter space, with the embedding coordinates, we can write

down the smearing function in a very simple and manifestly AdS–invariant way:

Φ(X) = A∆,d

∫
∂AdS

dP (−2P ·X)∆−d Θ (−P ·X)O(P ) (2.70)

Here we integrate over the boundary points denoted by P to get a bulk operator sitting

at point X in the embedding coordinates. The domain of integration is over the region

with P ·X < 0, where the boundary points are spacelike separated from the bulk point

in the z direction.

In the construction of causal three–point functions in AdS [29], there is an AdS–

invariant cross–ratio which is particularly interesting:

χ (z, x;x1;x2) =
(z2 + (x− x1)2) (z2 + (x− x2)2)

z2 (x2 − x1)2 (2.71)
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This cross–ratio is an AdS–invariant quantity built from a single bulk point and two

boundary points. It turns out that in AdS space the towers of multi–trace operators to

be added into the smearing prescription for recovering bulk microcausality at the level of

N−1 are organized by powers of this cross–ratio [29]. In the embedding formalism, this

cross–ratio is simple:

χ (z, x;x1;x2) = 4
(P1 ·X) (P2 ·X)

P1 · P2

(2.72)

where X denotes the bulk point and Pi the boundary points.

We can also describe the smearing prescription in de Sitter space with the embedding

formalism, starting from embedding de Sitter space into the higher dimensional Minkowski

space:

XI
dS =

1

η

(
1,−η2 + x2, xi

)
(2.73)

We then have the distance between two points in de Sitter space:

− 2X1 ·X2 =
−η2

1 − η2
2 + (x1 − x2)2

η1η2

(2.74)

and the regularized distance between a bulk point and a boundary point is:

− 2P ·X =
−η2 + (x− y)2

η
(2.75)

Therefore for a scalar with m2 >
(
d
2

)2
we have the smearing prescription in the em-

bedding space:

Φ(X) = A∆,d

∫
∂dS

dP (2P ·X)∆−d Θ (P ·X)O+(P ) +B∆,d

∫
∂dS

dP (2P ·X)−∆ Θ (P ·X)O−(P )

(2.76)
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The dS–invariant cross–ratio

χ (η,x; x1; x2) = 4
(P1 ·X) (P2 ·X)

P1 · P2

=
(−η2 + (x− x1)2) (−η2 + (x− x2)2)

η2(x2 − x1)2
(2.77)

could be useful when one considers microcausality for three–point functions in de Sitter

space.

It could be interesting to perform the construction for gauge fields in the embedding

space, which could potentially make the AdS invariance manifest in the construction.

In [42][14] the construction is done in AdS space by imposing the holographic gauge.

The construction is not done in a manifestly AdS covariant way, therefore one has to

check the AdS covariance of the constructions afterwards. The embedding formalism

could be helpful in that direction. Here we didn’t derive the construction starting from

the embedding formalism, but rather just wrote down the final results in the embedding

space. It also could be interesting if we can solve the Cauchy problem or sum over the

modes starting with the embedding formalism and derive the equations above.

2.2 Holographic Representation of Higher Spin Gauge

Fields

In this section we switch to the topic of how to build a local field operator with integer

spin in anti de Sitter space. All the discussions are about theories in AdS space with a

general number of dimensions.
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2.2.1 Introduction

It is well-known through the AdS/CFT correspondence [15] that a strongly-coupled con-

formal field theory with a large number of degrees of freedom in d dimensions is dual to

a semiclassical gravity theory in d + 1 dimensions which is a local field theory. In [19]

and [20], explicit operator dictionaries were constructed that relate near-boundary bulk

fields to operators in the boundary CFT. To probe deeper into anti-de Sitter space, one

has to identify the local operators deep in AdS with non-local operators in the boundary

CFT. For scalar field this is done scalar field at leading order in large-N expansion in

[21][56][57], and further refined in [28]. The construction is carried out to order 1
N

with

interactions in [29].

In [41] and [42], local operators with integer spins, especially gauge fields with zero

mass such as a bulk photon field and a graviton field were constructed. The construc-

tion was shown to be AdS covariant, with two-point functions between bulk gauge fields

and boundary currents having bulk and boundary light-cone singularities. Causality was

shown to be respected by gauge-invariant operators such as the electro-magnetic field

strength and the Weyl tensor.

In this section, we extend this construction to higher spin gauge fields with s > 2.

Higher spin gauge field have recently attracted attention since a certain consistent higher

spin gauge theory with interactions in AdS space [35] is conjectured [58] to be dual to

a free SO(N) vector model. Furthermore, the analytic continuation of this duality was

proposed as a realization of the idea of dS/CFT in [1], [2].

To construct gauge fields with higher spin, we work in holographic gauge, in which

the calculation is simplified. We show that as in the cases for massless spin-1 and spin-2

fields, one can construct local spin-s field in AdS bulk as a non-local operator smeared

over certain region on the boundary; for s > 1 the smearing function has support inside
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the bulk lightcone while for s = 1 the support is on the intersection between the bulk

lightcone and the boundary (i.e. over a boundary ball and a spherical region respectively).

Applying AdS isometries on the bulk operators generically brings the field out of the

holographic gauge, but it is shown that one can always do a gauge transformation to

bring the field back to holographic gauge, thus establishing the AdS covariance of the

construction. Two-point functions of higher-spin fields and currents are calculated and

shown to possess the singularity structure compatible with microcausality.

2.2.2 Holographic Representation of Scalar, Vector and Tensor

Fields

In this subsection we briefly review the construction of local spin-0 and massless spin-1

and spin-2 fields in AdSd+1/CFTd. We work in the Poincaré patch with metric (taking

the AdS radius RAdS to be 1)

ds2 =
1

z2

(
−dt2 + dz2 + dx2

)
(2.78)

A bulk scalar with dimension ∆ = d
2

+
√
m2 +

(
d
2

)2 ≡ ν + d
2

can be constructed by

summing over all normalizable modes in the bulk [28]:

Φ (t, z,x) =

∫
|ω|>|k|

dωdd−1kaωke
−iωteik·xz

d
2Jν

(
z
√
ω2 − k2

)
(2.79)

with the mode related to a boundary local operator by

aωk =
2νΓ(ν + 1)

(2π)d
(
ω2 − k2

) ν
2

∫
dtdd−1xeiωte−ik·xO(x) (2.80)
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Putting aωk into the mode sum one obtains the representation of a local scalar field in the

AdS bulk as an integral on the boundary with compact support, by making the boundary

coordinates complex.

Φ(t, z,x) =
Γ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

∫
t′2+y′2<z2

dt′dd−1y′
(
z2 − t′2 − y′2

z

)∆−d

O(t+ t′,x + iy′)

(2.81)

For ∆ > d − 1 the integral is well-defined, but it diverges for a field with ∆ = d − 1,

which is a tachyon with mass m2 = 1− d. The construction in this case is carried out in

[42], where it turns out that the integration domain is the sphere Sd−1 on which the bulk

lightcone intersects with the boundary:

Φ(t, z,x) =
1

V ol(Sd−1)

∫
t′2+y′2=z2

dt′dd−1y′O(t+ t′,x + iy′) (2.82)

Here V ol(Sd−1) = 2π
d
2

Γ( d
2

)
is the surface area of a (d− 1)-sphere.

The construction for scalars is very useful for the construction for gauge fields; the case

for gauge fields (in holographic gauge) can always be reduced to scalars with a certain

mass and then directly constructed with the help of the results above for scalars.

Let’s start with a massless spin-one field. In this case, the source-free bulk Maxwell

equation

∇MF
M
N = 0 (2.83)

can be solved in holographic gauge

Az = 0 (2.84)

One can further impose that

∂µA
µ = 0 (2.85)

which can be thought of as the conservation of the boundary current ∂µA
µ ∼ ∂µj

µ = 0.
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Here the Greek index µ runs from 0 to d−1 of the boundary coordinates, while the capital

letters M and N run from 0 to d, including the radial or holographic coordinate z. The

bulk equation for Aµ becomes

∂ν∂
νAµ + zd−3∂z

(
z3−d∂zAµ

)
= 0 (2.86)

If we define

Φµ ≡ zAµ (2.87)

the equation for Aµ can be written as the free wave equation for a multiplet of scalars

with mass squared m2 = 1− d

∂α∂
αΦµ + zd−1∂z

(
z1−d∂zΦµ

)
+
d− 1

z2
Φµ = 0 (2.88)

Thus the gauge field Aµ can be constructed via the construction of scalars Φµ:

Aµ(t, z,x) =
1

z
Φµ(t, z,x) =

1

V ol(Sd−1)

1

z

∫
t′2+y′2=z2

dt′dd−1y′jµ(t+ t′,x + iy′) (2.89)

The construction for the graviton is similar. Working in holographic gauge

hzz = hzµ = 0 (2.90)

one solves the bulk equation for linearized graviton propagation in AdS space

∇Q∇QhMN − 2∇Q∇Mh
Q
N +∇M∇Nh

Q
Q − 2dhMN = 0 (2.91)
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One can further impose the conditions

hαα = 0 , ∂µh
µν = 0 (2.92)

because of the conservation of the boundary currents

∂µT
µν = 0 (2.93)

∂µ (xνT
µν) = T νν = 0 (2.94)

The µν component of the bulk equation then gives

∂α∂
αhµν + ∂2

zhµν +
5− d
z

∂zhµν −
2(d− 2)

z2
hµν = 0 (2.95)

Defining a multiplet of scalars

Φµν ≡ z2hµν (2.96)

we have the equation for Φµν as an equation for massless scalars

∂α∂
αΦµν + zd−1∂z

(
z1−d∂zΦµν

)
= 0 (2.97)

Therefore the bulk graviton can be represented as

hµν(t, z,x) =
Γ(∆− d

2
+ 1)

π
d
2 Γ(∆− d+ 1)

1

z2

∫
t′2+y′2<z2

dt′dd−1y′
(
z2 − t′2 − y′2

z

)∆−d

Tµν(t+t
′,x+iy′)

(2.98)
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2.2.3 Holographic Representation of Massless Spin-s field

In this section we carry out the construction for a general integer-spin gauge field in

AdSd+1 in terms of smeared local operators in the field theory.

As is well known, a massless gauge field in AdS is represented by a totally symmetric

rank-s tensor ΦM1...Ms satisfying double-tracelessness conditions,

ΦMN
MNM5...Ms

= 0 (2.99)

The linearized equation for a spin-s gauge field on AdSd+1 is [62], [63], [35]

∇N∇NΦM1...Ms−s∇N∇M1ΦN
M2...Ms

+
1

2
s(s−1)∇M1∇M2ΦN

N...Ms
−2(s−1)(s+d−2)ΦM1...Ms = 0

(2.100)

This equation is invariant under the gauge transformation

ΦM1...Ms → ΦM1...Ms +∇M1ΛM2...Ms

ΛN
NM3...Ms

= 0

(2.101)

We would like to work in holographic gauge, in which the z-components of the gauge

field all vanish, so we shall generalize the holographic gauge from a vector and a rank-two

tensor to a rank-s tensor

Φz...z = Φµ1z...z = · · · = Φµ1...µs−1z = 0 (2.102)

One can always make this gauge choice because given a general field Φ
(0)
M1...Ms

, one can
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perform a gauge transformation Φ→ Φ +∇Λ so that

Φ(0)
z...z +∇zΛz...z = 0 (2.103)

Φ(0)
µ1z...z

+∇zΛµ1z...z = 0 (2.104)

. . . (2.105)

Φ(0)
µ1...µs−1z

+∇zΛµ1...µs−1 = 0 (2.106)

The number of gauge parameters is just right to satisfy the set of equations and fix the

holographic gauge for generic spin- s gauge field.

The bulk gauge field is dual to a totally symmetric, traceless, conserved rank-s tensor

on the boundary:

Oννµ3...µs
= 0

∂νOνµ2...µs
= 0

(2.107)

In holographic gauge, only three types of components of the bulk equation are non-trivial,

they are

zzµ3 . . . µs:

s(s− 1)

2
∂2
zΦ

α
αµ3...µs

+

(
s(s− 1)(2s− 3)

2
− s
)

1

z
∂zΦ

α
αµ3...µs

+(
2− s(s− 1) +

s!

2(s− 4)!

)
1

z2
Φα

αµ3...µs
= 0

(2.108)

zµ2 . . . µs:

(2− s(s− 1))
1

z
∂αΦα

µ2...µs
−s∂z∂αΦα

µ2...µs
+
s(s− 1)

2

(
∂z∂µ1Φα

αµ2...µs
+
s− 1

z
∂µ1Φα

αµ2...µs

)
= 0

(2.109)
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µ1 . . . µs:

z2
(
∂2
z + ∂α∂

α
)

Φµ1...µs + (2s+ 1− d)z∂zΦµ1...µs + 2(s− 1)(2− d)Φµ1...µs − s∂µ1∂αΦα
µ2...µs

+

(2.110)

1

2
s(s− 1)

(
∂µ1∂µ2Φα

αµ3...µs
− gµ1µ2z∂zΦ

α
αµ3...µs

− (s− 2)gµ1µ2Φα
αµ3...µs

−
s∑
i=3

gµ1µiΦ
α
αµ2...µi−1µi+1...µs

)
(2.111)

= 0 (2.112)

the components with more than two z’s vanish trivially.

Since the boundary currents are conserved and traceless, we can consistently set

Φα
αµ3...µs

= 0 (2.113)

∂αΦα
µ2...µs

= 0 (2.114)

and we have the µ1 . . . µs component of the equation as

(
∂2
z + ∂α∂

α
)

Φµ1...µs +
2s+ 1− d

z
∂zΦµ1...µs +

2(s− 1)(2− d)

z2
Φµ1...µs = 0 (2.115)

To turn the problem of constructing a spin-s gauge field into constructing scalars, we

define8

Yµ1...µs = zsΦµ1...µs (2.116)

8Just as in the spin-1 and spin-2 cases, this amounts to expressing the higher spin fields in the vielbein
basis. Ya1...as = eµ1

a1 . . . e
µs
asYµ1...µs

with eµi
ai = z

RAdS
δµi
ai .
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as a multiplet of scalars. The equation for Yµ1...µs is

∂α∂
αYµ1...µs + zd−1∂z

(
z1−d∂zYµ1...µs

)
− (s− 2)(s+ d− 2)

z2
Yµ1...µs = 0 (2.117)

which is just free scalar equations with mass parameter

m2 = (s− 2)(s+ d− 2) (2.118)

corresponding to scaling dimension

∆ = s+ d− 2 (2.119)

The near-boundary behavior of Yµ1...µs is

Yµ1...µs ∼ z∆Oµ1...µs (2.120)

So one can directly construct the bulk spin-s field:

Φµ1...µs =
Γ
(
s+ d

2
− 1
)

π
d
2 Γ (s− 1)

1

zs

∫
t′2+|y′|2<z2

dt′dd−1y′
(
z2 − t′2 − |y′|2

z

)s−2

Oµ1...µs(t+ t′,x+ iy′)

(2.121)

for a field with integer spin s > 1. We see the field behaves like z∆−s = zd−2 near the

boundary. Also, it gives rise to the expected scaling dimension for the conserved boundary

currents.

2.2.4 AdS Covariance

In this section we check the covariance of the construction. We apply the anti-de Sitter

group transformations to the local operator constructed in last section, and see if it is
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covariant up to gauge transformations.

The covariance under dilation is pretty straightforward, since both sides of (2.121)

have the same scaling dimension and thus rescale in the same way when a dilation is

applied. The special conformal transformations are less trivial. The bulk AdS isometries

that correspond to special conformal transformations are

xµ → xµ + 2b · xxµ − bµ
(
x2 + z2

)
(2.122)

z → z + 2b · xz (2.123)

Also, for a higher spin field we have

ΦM1...Ms → Φ′M1...Ms
=
∂xN1

∂xM1
. . .

∂xNs

∂xMs
ΦN1...Ns (2.124)

which gives the transformation laws for components:

δΦzz...z = δΦzz...µs = · · · = δΦzzµ3...µs = 0 (2.125)

δΦzµ2...µs = 2zbαΦαµ2...µs (2.126)

δΦµ1...µs = 2bα
s∑
j=1

xµjΦαµ1...µj−1µj+1...µs − 2xα
s∑
j=1

bµjΦαµ1...µj−1µj+1...µs − 2s (b · x) Φµ1...µs

(2.127)

The transformations bring the gauge field out of holographic gauge, which requires a com-

pensating gauge transformation to recover the holographic gauge. Such a gauge transfor-
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mation takes the form

δΦzµ2...µs =
1

z2s−2
∂zεµ2...µs (2.128)

δΦµ1...µs =
1

z2s−2

s∑
j=1

∂µjεµ1...µj−1µj+1...µs (2.129)

with the gauge parameters

εµ2...µs = −Γ(s+ d
2
− 1)

22−sπ
d
2 2Γ(s)

∫
ddx′Θ(σz′)(σzz′)s−12bαOαµ2...µs (2.130)

Here we have defined the AdS invariant length

σ =
z2 + z′2 + (x− x′)2

2zz′
(2.131)

and in the gauge parameters above, σz′ and σzz′ should be understood as in the limit

z′ → 0. Then we have

δΦzµ2...µs = −2zbαΦαµ2...µs (2.132)

and

δΦµ1...µs = − Γ(s+ d
2
− 1)

22−sπ
d
2 Γ(s− 1)

1

z2s−2

∫
ddxΘ(σz′)(σzz′)s−2

s∑
j=1

(x−x′)µj2bαOαµ1...µj−1µj+1...µs

(2.133)

We see the Φzµ2...µs components are brought back to zero and holographic gauge restored,

while the Φµ1...µs components get an extra piece from the gauge transformation which
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combines with the AdS transformation and gives

zsδΦµ1...µs =
Γ(s+ d

2
− 1)

π
d
2 Γ(s− 1)

∫
ddxΘ(σz′)(2σz′)s−2

s∑
j=1

(
2x′µjb

αOα...µs − 2xαbµjOα...µs
)

− 2s (b · x) zsΦµ1...µs

(2.134)

This can be further simplified if we consider current conservation, which gives

∫
ddx′Θ(σz′)(σzz′)s−1∂αΦαµ2...µs = 0 (2.135)

Integrating by parts we get

∫
ddxΘ(σz′) (σz′)

s−2
(x− x′)αOα...µs = 0 (2.136)

This suggests that we can replace the x′ with x in (2.134) above:

zsδΦµ1...µs =
Γ(s+ d

2
− 1)

π
d
2 Γ(s− 1)

∫
ddxΘ(σz′)(2σz′)s−2

s∑
j=1

(
2xµjb

αOα...µs − 2xαbµjOα...µs
)

− 2s (b · x) zsΦµ1...µs

= zs
s∑
j=1

(
2xµjb

αΦα...µs − 2xαbµjΦα...µs

)
− 2szs (b · x) Φµ1...µs

(2.137)

which matches with the transformation of the boundary current under special conformal

transformations when one combines with the transformation of the integration measure:

δOµ1...µs =
s∑
j=1

(
2xµjb

αOα...µs − 2xαbµjOα...µs
)
− 2(d+ s− 2)(b · x)Oµ1...µs (2.138)
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Chapter 3

Consistency Relations As Ward

Identities

In the previous chapter we saw how the degrees of freedom in a CFT, which are organized

by conformal symmetries, give rise to degrees of freedom in AdS and dS space which are

organized by the isometries of the spacetime. The transition kernels for the constructions

act like transformation matrices between different representations — they map represen-

tations of the conformal group to representations of the AdS and dS group. Knowing

how a local field theory arises in a curved spacetime, in this chapter we further explore

the implications of symmetries for local field theories in a cosmology, especially the field

theories describing the primordial fluctuations and the large scale structure. We will see

that, very similar to the soft pion theorems in strong interaction dynamics, soft mode

relations can be derived for cosmology from non-linearly realized conformal symmetries.

These consistency relations put special constraints on correlation functions and serve as

smoking guns for violations of fundamental principles.
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3.1 Symmetries and Ward Identities for Large Scale

Structure

3.1.1 Introduction

In this chapter the main topic we will be concerned with is the implications of non-

linearly realized symmetries in cosmology. The physics of nonlinearly realized symmtries

and Goldstone bosons has a long history. Before the discovery of QCD, people could

already do calculations involving pions, for instance the emission and absorption of soft

pions. The guiding principle for such calculations is an approximate SU(2)×SU(2) chiral

symmetry—which is postulated to be the origin of pions and whose soft breaking gives the

pion masses. The chiral symmetry dictates the existence of current algebra, with which

the amplitude involving arbitrary number of pions can be calculated. Chiral symmetry

has another kind of prediction, as shown by the generation of physicists in the 60’s, that

relates the amplitudes with soft pions to those that without pions. One example is Adler’s

rule for nucleon amplitudes with a single soft pion.

Pions are pseudo-scalars that carry isospin. They can be generated by the axial

current1

〈0|JµA|π−〉 ∼ pµ
Fπ√

2
e−ip·x (3.1)

Taking the divergence we see that this equation gives:

〈0|∂µJµA|π−〉 ∼ m2
πFπe

−ip·x (3.2)

Thus with suitable normalization, the operator ∂µJ
µ
A is a good pion field operator.

Now we look at the scattering between nucleons and a pion. Adler’s rule relates a

1Here the current JA is defined as JA1 + iJA2 so that it creates π−, here the number denotes SU(2)
isospin number
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process involving a single soft pion with the process without the soft pion, as depicted in

the graph:

→

which expressed in matrix elements would be

〈π(q), f |i〉q→0 ∼Mfi (3.3)

where we use i and f to denote the initial and final states of the nuleons.

The argument that leads to the relation is as follows:

Look at the amplitude involving one pion. From the reduction formula, it is propor-

tional to the matrix element

〈f, π(q)|i〉 ∼ 〈f |∂µJµA|i〉 = qµ〈f |JµA|i〉 (3.4)

This might lead one to think that in the soft pion limit, q → 0, the matrix element

vanishes. However this is only true if the matrix element 〈f |JµA|i〉 is regular in this limit.

But indeed it has a pole which cancels the qµ factor.

The origin of the pole is from the graphs in which the pion (axial current, or soft

momentum) is attached to an external nucleon line, as shown in the figure. Between

the pion insertion and the blob of hard interactions there is then a section carrying a
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propagator

1

(p+ q)2 +m2
∼ 1

2p · q (3.5)

where p and m are the momentum and the mass of the corresponding external nucleon.

The zero (which is named “Adler’s zero”) in the denominator cancels with the prefactor

and gives a finite result that has nothing to do with the soft pion. Therefore in order to

calculate the amplitude with a soft pion, we can just calculate all the diagrams without

any pions, and then attach a pion to the external legs.

Adler’s rule, as an example of a soft pion theorem in strong interaction dynamics,

resulted from the underlying chiral symmetry. In terms of spacetime correlators, we can

see it is very similar to a Ward identity:

〈π(x)N (x1) · · · N (xn)〉 = 〈∂JA(x)N (x1) · · · N (xn)〉 ∼
n∑
a=1

δ4(x− xa)〈N (x1) · · · N (xn)〉

(3.6)

We will see that nonlinearly realized symmetries have important consequences in the

study of cosmological perturbations, and equations similar to Eq. (3.6) can be derived.

These constrain the correlation functions of cosmological perturbations.

In section (1.3.2.2) we briefly introduced the relevant physical observables in the study

of large scale structure. The velocity field ~v is of special interest to us since it is related

to the overdensity field δ at the linear level, and transforms nonlinearly under some of the

diffeomorphism transformations:

∆~v = ∆lin.~v + ∆nl.~v , (3.7)

where ∆lin.~v depends linearly on the fluctuating variable ~v, while ∆nl.~v does not depend

on the fluctuating field, or any fluctuating field. An example is a time-dependent spatial
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translation:

~x→ ~x+ ~n(η) , (3.8)

where ~n depends on (conformal) time η but not space. Under such a transformation, in

addition to the usual linear transformation ∆lin.~v = −~n · ~∇~v, the velocity experiences a

nonlinear shift:

∆nl.~v = ~n′ , (3.9)

where ′ denotes a time derivative. It was pointed out recently by Kehagias & Riotto and

Peloso & Pietroni [77, 78] (KRPP) that just such a time-dependent spatial translation is

in fact a symmetry of the familiar system of equations for a pressureless fluid coupled to

gravity in the Newtonian limit: the continuity, Euler and Poisson equations. As pointed

out by the same authors, the consequence of such a nonlinearly realized symmetry is not

the simple invariance of a general correlation function, but rather a relation between an

(N+1)-point function and an N -point function:

lim
~q→0

〈~v(~q)O~k1
O~k2

...O~kN 〉
c′

Pv(q)
∼ 〈O~k1

O~k2
...O~kN 〉

c′ , (3.10)

where Pv is the velocity power spectrum, the superscript c′ denotes a connected correlation

function with the overall delta function removed, and O denotes some observable, which

could be different for each ~k.

These consistency relations, which relates a squeezed (N+1)-point function to an N-

point function, are well known in the context of single field inflation. The first example
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was pointed out by Maldacena [3] (see also [79]):

lim
~q→0

〈ζ~qζ~k1
...ζ~kN 〉

c′

Pζ(q)
= −

(
3(N − 1) +

N∑
a=1

~ka ·
∂

∂~ka

)
〈ζ~k1

...ζ~kN 〉
c′ , (3.11)

where ζ is the curvature perturbation. It arises from a spatial dilation symmetry, which is

non-linearly realized on ζ. Recently, more non-linearly realized symmetries have been dis-

covered, including the special conformal symmetry [4, 80] and in fact a whole infinite tower

of symmetries [5] (H2K hereafter). Recent work has emphasized the non-perturbative na-

ture of these consistency relations as Ward/Slavnov-Taylor identities [5–8, 81–83]. They

can be viewed as the cosmological analog of the classic soft-pion theorems introduced

above. In the examples above, ζ and the velocity play the role of the pion – both shift

nonlinearly under the respective symmetries.

The consistency relations are symmetry statements that are valid beyond the per-

turbative regime. This is especially interesting for the study of large scale structures

since at short scales dark matter forms lumps and galaxies form. Perturbation theory

breaks down, while the short wavelength modes in the consistency relations can be highly

nonlinear.

In this chapter, we take a close look at the symmetries of the large scale structure,

and derive the corresponding consistency relations. The origin of these symmetries is

shown to be residual gauge transformations, and we discuss the relations between differ-

ent symmetries which are established via the adiabatic mode conditions. Starting with

the symmetries, we derive an infinite tower of consistency relations constraining the corre-

lation functions involving scalar modes and tensor modes. The robustness and limitations

of the consistency relations in LSS are extensively discussed. We examine the underlying

assumptions behind the consistency relations by looking into models of galaxy dynamics.

A Lagrangian describing large scale structure dynamics is introduced.
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Further, we extend our discussion to Lagrangian space, and try to look at the symme-

tries and consistency relations therein. The consistency relation for time-dependent trans-

lation is derived in Lagrangian space, where it takes a very simple form. The equivalence

between the Eulerian space consistency relation and the Lagrangian space consistency

relation is proved to all orders of perturbation theory.

A few words are in order on our notation and terminology. We use the symbol π to

represent the Nambu-Goldstone boson of a non-linearly realized symmetry (the pion), in

accordance with standard practice. For our LSS application, π is the velocity potential.

The same symbol is also used to denote the numerical value 3.14.... Which is meant

should be obvious from the context. Essentially, the numerical π always precedes the

Newtonian constant G in the combination 4πG. In cases where both could potentially

appear, we use M2
P ≡ 1/(8πG) to avoid confusion. Also, we use the term nonlinear to

refer to quantities that are not linear in the LSS observables (fields such as density or

velocity). Sometimes, this has the usual meaning that such quantities go like the fields

raised to higher powers: quadratic and so on. But, sometimes, this means the quantities

of interest do not depend on the field variables at all, such as the nonlinear part of certain

symmetry transformations e.g. Eq. (3.9). We rely on the context to differentiate between

the two.

3.1.2 Consistency Relation from Time-dependent Translation –

a Newtonian Symmetry

In this subsection, we focus on the Newtonian symmetry uncovered by KRPP. Subsection

3.1.3 is a review of the symmetry and its implied consistency relation. In section (3.1.3.1)

we discuss the robustness and limitations of the consistency relation, and go over what

assumptions can or cannot be relaxed, especially concerning the nonlinear, astrophysically
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messy, galaxy observables. We discuss what kind of galaxy dynamics, and what sort of

galaxy selection, could lead to violations of the consistency relation. As a by-product of

our investigation, we describe a simple Lagrangian for LSS in 3.1.3.2.

3.1.3 Time-dependent Translation Symmetry and the Background

Wave Argument – a Review

We begin with a review of the Newtonian symmetry discovered by KRPP. We go over

the background wave derivation of the consistency relation in some detail, emphasizing

the underlying assumptions, and making the derivation easily generalizable to the gen-

eral relativistic case. Two fundamental concepts are: (1) the existence of a non-linearly

realized symmetry (one that shifts at least some of the LSS observables by an amount

that is independent of the observables), and (2) an adiabatic mode condition, which is an

additional condition that dictates the time-dependence of the symmetry.

Time-dependent Translation Symmetry. The set of Newtonian equations of motion

for LSS is: 2

δ′ + ∂i[(1 + δ)vi] = 0

vi′ + vj∂jv
i +Hvi = −∂iΦ

∇2Φ = 4πGρ̄a2δ

(3.12)

where δ is the mass overdensity, ′ ≡ ∂/∂η denotes the derivative with respect to conformal

time η, ∂i denotes the derivative with respect to the comoving coordinate xi, vi is the

peculiar velocity dxi/dη, Φ is the gravitational potential, G is Newton’s constant, ρ̄ is

the mean mass density at the time of interest, a is the scale factor, and H ≡ a′/a is the

2Throughout this chapter, we will be cavalier about the placement of indices for objects with Latin
indices, e.g. vi, xi are the same as vi, xi.
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comoving Hubble parameter. The first equation expresses continuity or mass conservation.

The second equation is the Euler equation or momentum conservation for a pressureless

fluid. The third equation is the Poisson equation. Let us start with this basic set. We

will later consider generalizations to include pressure, relativistic corrections, and even

complex galaxy formation processes.

KRPP pointed out that this system of equations admits the following symmetry:

η → η̃ = η

xi → x̃i = xi + ni

vi → ṽi = vi + ni

Φ→ Φ̃ = Φ− (Hni′ + ni′′)xi,

δ → δ̃ = δ

(3.13)

where ni is a function of time but not space. It can be shown that under this set of

transformations, Eq. (3.12) takes on exactly the same form, with all the variables replaced

by ones with a ˜ on top. To see that this is true, it is important to keep in mind that:

∂

∂η̃
= −ni′ ∂

∂xi
+

∂

∂η
, (3.14)

where on the left, x̃i is held fixed, and on the right, ∂/∂xi is at a fixed η, and ∂/∂η is at a

fixed xi. On the other hand ∂/∂x̃i = ∂/∂xi. The symmetry transformation described by

Eq. (3.13) is a time-dependent spatial translation. (Henceforth, we will occasionally refer

to this somewhat sloppily as simply translation.) Under this translation, the velocity

gets shifted in the expected manner. The gravitational potential needs to be shifted

correspondingly to preserve the form of the Euler equation. The density δ, on the other

hand, does not change at all, in the sense that δ̃(x̃) = δ(x).
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Eq. (3.13) is a symmetry regardless of the time-dependence of ni. For the purpose of

deriving the consistency relations, however, we need to impose an additional condition.

Suppose we start with vi = 0 in Eq. (3.13); we would like the velocity generated by the

transformation, i.e. ṽi = ni′, to be the long wavelength limit of an actual physical mode

that satisfies the equations of motion. We say long wavelength because ni′ has no spatial

dependence and so is strictly speaking a q = 0 mode (q being the wavenumber/momentum

in Fourier space). What we want to impose is this: if we take a physical velocity mode

at a finite q, and make its q smaller and smaller, we would like ni′ to match its time-

dependence. Following the terminology used in general relativity, we refer to this as the

adiabatic mode condition [84]. This condition ensures that the symmetry transformation

generates a velocity mode that evolves in a physical way. It is easy to see that at long

wavelength, where the equations can be linearized, Eq. (3.12) can be combined into a

single equation:

∂iv
i′ +H∂ivi = 4πGρ̄a2∂i

∫
dη vi , (3.15)

or written in a more familiar form:

δ′′ +Hδ′ = 4πGρ̄a2δ with δ′ = −∂ivi . (3.16)

The linear evolution of the overdensity field δ is encoded in a time dependent linear growth

factor D (η):

δ (η,x) = D (η) δ0 (x) (3.17)

where δ0 (x) is the initial condition of overdensity evolution. This means that the linear
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growth factor obeys the equation

D′′ (η) +HD′ (η) = 4πGρa2 (η)D (η) (3.18)

One might be tempted to say a velocity going like ni′ satisfies Eq. (3.15) trivially for

an ni′ of arbitrary time-dependence, since ni′ has no spatial dependence. What we want,

however, is for ni′ to have the same time-dependence as that of a velocity mode at a low,

but finite momentum. In other words, we impose the adiabatic mode condition:

ni′′ +Hni′ = 4πGρ̄a2ni (3.19)

i.e. ni(η) has the same time-dependence as the linear growth factor D(η), assuming

growing mode initial conditions. Effectively, we demand that our symmetry-generated

velocity-shift (or more precisely, the nonlinear part thereof) satisfy Eq. (3.15) with the

spatial gradient removed.

The Background Wave Argument. Next, we give the background wave derivation of

the consistency relation. More sophisticated and rigorous derivations exist [5–7, 81, 83],

but the background wave argument has the virtue of being fairly intuitive. Our goal here

is to go over the underlying assumptions, and formulate the argument in such a way to

ease later generalizations. The form of our expressions follow closely those in H2K [5].

Before we carry out the argument, it is convenient (especially for later discussions) to

introduce the velocity potential π, assuming potential flow on large scales,3 in which case,

3 Assuming potential flow is not strictly necessary, as the argument can be made using the velocity vi

itself in place of ∂iπ. The reason we make this assumption is that the velocity enters into our derivation
mainly as a large scale or low momentum mode. Assuming the growing mode initial condition, the large
scale velocity does take the form of a potential flow. Indeed, vorticity remains zero until orbit crossing.
We do not assume potential flow on small scales.
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the symmetry transformation of Eq. (3.13) tells us:

π → π̃ = π + ni′xi with vi = ∂iπ . (3.20)

The velocity potential π has the hallmark of a pion or Nambu-Goldstone boson: it experi-

ences a nonlinear shift under the symmetry transformation.4 Note that π also implicitly

has a linear shift:

π̃(x̃) = π(x) + ni′xi ∼ π(x̃)− ni∂iπ + ni′xi (3.21)

where we have Taylor expanded π(x) to first order in x̃i − xi, assuming a small ni. Here,

linear and nonlinear refer to whether or not the transformation is linear in π (or any

other LSS fields). The total shift in π, i.e. π̃(x̃)−π(x̃), thus has both linear and nonlinear

pieces:

∆lin.π = −ni∂iπ , ∆nl.π = ni′xi . (3.22)

Similarly, the overdensity changes by the amount δ̃(x̃)− δ(x̃):

∆lin.δ = −ni∂iδ , ∆nl.δ = 0 , (3.23)

i.e. δ experiences no nonlinear shift.

Consider an N -point function involving a product of N LSS observables. Let us denote

each as O, labeled by momentum, so that the N -point function is 〈O~k1
O~k2

...O~kN 〉. Here,

the O’s at different momenta need not be the same observable. For instance, one can

be δ, the other can be the gravitational potential, et cetera. They need not even be

4Note that Φ also experiences a nonlinear shift (Eq. 3.13), and thus can also be used as the pion in
this derivation. The two give the same result, see section 3.1.4.3.
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evaluated at the same time. We are interested in this N -point function in the presence

of some long wavelength (soft) π. Let us imagine splitting all fluctuations into hard and

soft modes, with ~k1, ..., ~kN falling into the hard category. The N -point function obtained

by integrating over the hard modes, but leaving the soft modes of π unintegrated, can be

Taylor expanded as:

〈O~k1
...O~kN 〉πsoft

≈ 〈O~k1
...O~kN 〉0 +

∫
d3~p

(2π)3

δ〈O~k1
...O~kN 〉πsoft

δπ∗~p

∣∣∣
0
π∗~p , (3.24)

where we have taken the functional derivative with respect to, and summed over the

Fourier modes of, π with soft momenta ~p. Multiplying both sides by π~q (where ~q is also

soft) and ensemble averaging over the soft modes, one finds

〈π~qO~k1
...O~kN 〉

Pπ(q)
=
δ〈O~k1

...O~kN 〉πsoft

δπ∗~q

∣∣∣
0
. (3.25)

We have used the definition of the power spectrum: 〈π~qπ∗~p〉 = (2π)3δD(~q − ~p)Pπ(q), with

δD being the Dirac delta function. We can on the other hand compute the derivative on

the right hand side this way:

∫
d3~p

(2π)3

δ〈O~k1
...O~kN 〉πsoft

δπ∗~p

∣∣∣
0
∆nl.π

∗
~p = ∆lin.〈O~k1

...O~kN 〉 . (3.26)

This statement says that the change to the N -point function induced by the symmetry

transformation (the right hand side) is equivalent to the change to the N -point function

by adding a long-wavelength background π induced by the same symmetry (the left hand

side). We will unpack it a bit more in section 3.1.3.1. A careful reader might note that

there is no reason why one should include on the right hand side only the linear part of

the transformation of the N -point function. That is true: by including only the linear

transformation, we are effectively dealing with the connected N -point function. For a
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proof, see H2K. 5 Combining Eqs. (3.25) and (3.26), and adding the superscript c for

connected N-point function, we have:

∫
d3q

(2π)3

〈π~qO~k1
...O~kN 〉

c

Pπ(q)
∆nl.π

∗
~q = ∆lin.〈O~k1

...O~kN 〉
c . (3.27)

It is important to note that the connected correlation functions on both sides contain

delta functions. This way of writing the consistency relation follows the Ward identity

treatment of H2K, and is applicable to any symmetries with π as the Nambu-Goldstone

boson. The background wave argument has the advantage of being intuitive, but is a

bit heuristic. Readers interested in subtleties can consult e.g. H2K. Our final result here

matches theirs.

Let us apply Eq. (3.27) to the translation symmetry. To be specific, let us take our

observable O to be the mass overdensity δ. We use the following convention for the Fourier

transform of some function f :

f(~q) =

∫
d3xf(~x)ei~q·~x , f(~x) =

∫
d3q

(2π)3
f(~q)e−i~q·~x . (3.28)

Eqs. (3.22) and (3.23) thus imply:

∆nl.π
∗
~q = i nj ′

∂

∂qj
[(2π)3δD(~q)] , ∆lin.δ~k = injkjδ~k . (3.29)

5The restriction to the connected N -point function will not be so relevant for the Newtonian (KRPP)
consistency relation or the general relativistic dilation consistency relation, i.e. they take the same form
whether the consistency relation is phrased in terms of connected or general correlation functions. The
restriction is relevant for those consistency relations that involve more than one derivative on the right
hand side. For them, it is important to keep in mind that the N momenta on the right hand side sum
to zero (see [83]); deriving general consistency relations from connected ones necessarily introduce extra
terms.
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Substituting this into Eq. (3.27), we find

lim
~q→0

nj ′(η)
∂

∂qj

[〈π~qδ~k1
...δ~kN 〉

c

Pπ(q)

]
= −

N∑
a=1

nj(ηa)k
j
a 〈δ~k1

...δ~kN 〉
c , (3.30)

where η is the time implicitly assumed for π~q, and ηa is the time for δ~ka . Note that kja

refers to the j-component of the vector ~ka. Since nj(η) has the time-dependence of the

linear growth factor D(η) (from the adiabatic mode condition), but can otherwise point

in an arbitrary direction, we conclude:

lim
~q→0

∂

∂qj

[〈π~qδ~k1
...δ~kN 〉

c

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D′(η)
kja 〈δ~k1

...δ~kN 〉
c . (3.31)

We have yet to remove the delta functions from both sides. To do so, we use the following,

pure shift, symmetry:

π → π̃ = π + const. , (3.32)

This symmetry does not involve transforming space-time at all, and so none of the ob-

servables receive a linear shift. The argument leading to Eq. (3.27) thus tells us

lim
~q→0

〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)
= 0 . (3.33)

We use the superscript c′ to denote the connected correlation function with the overall

delta function removed:

〈O~k1
...O~kN 〉

c = (2π)3δD(~k1 + ...+ ~kN)〈O~k1
...O~kN 〉

c′ (3.34)
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Combining Eqs. (3.31) and (3.33), we have the Newtonian translation consistency relation:

lim
~q→0

∂

∂qj

[
〈π~qδ~k1

...δ~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D′(η)
kja 〈δ~k1

...δ~kN 〉
c′ , (3.35)

where η is the time for the soft mode π~q, and each ηa is the time for the corresponding

hard mode δ~ka . This turns out to be a common feature for all consistency relations as we

will see: Eqs. (3.33) and (3.31) are two consistency relations that differ by one derivative

with respect to q. The former allows us to remove the delta function from the latter in a

straightforward way – the result is Eq. (3.35). The form adopted by KRPP is to integrate

Eq.(3.35) over q, and using Eq. (3.33), to obtain:

lim
~q→0

[
〈π~qδ~k1

...δ~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D′(η)
~q · ~ka 〈δ~k1

...δ~kN 〉
c′ . (3.36)

The soft mode π~q, by the linearized continuity equation, is related to δ~q by6

δ~q(η) = q2 D(η)

D′(η)
π~q(η) . (3.37)

One can therefore rewrite Eq. (3.36) as7

lim
~q→0

[
〈δ~qδ~k1

...δ~kN 〉
c′

Pδ(q)

]
= −

N∑
a=1

D(ηa)

D(η)

~q · ~ka
q2
〈δ~k1

...δ~kN 〉
c′ . (3.38)

In the context of this Newtonian derivation, we would like to think of the form expressed

in Eq. (3.35) and Eq. (3.33) as more fundamental, since it is π that experiences a nonlinear

6In the context of a consistency relation which is purported to be non-perturbative, one might wonder
if using the linear relation between δ and π (for the soft mode only) is justified. It can be shown that
including nonlinear corrections to this relation leads to terms subdominant in the squeezed limit of the
correlation function. See [91].

7 The use of the equation of motion within the connected correlation function does not lead to contact
terms. See e.g. H2K and [83] on the role of contact terms in Ward identity arguments.
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shift in the symmetry transformation, acting as the pion, and since the expression in Eq.

(3.38) contains two non-relativistic consistency relations, one trivial and one nontrivial. It

is also worth stressing that Eq. (3.35) does not constrain ∂2/∂q2 of [〈π~qδ~k1
...δ~kN 〉

c′/Pπ(q)]

in the soft limit, i.e. Eq. (3.36) can in principle contain O(q2) corrections, and Eq. (3.38)

can contain O(q0) corrections.

Let us close this derivation by observing that the only assumption made about the

hard modes is how they transform under the symmetry (in particular, the linear part of

their transformation; see Eqs. (3.23, 3.29). Thus, suppose we have some observable O

whose linear transformation under the spatial translation is:

∆lin.O~k = injgjO~k . (3.39)

For instance, if O is the galaxy overdensity, we expect gj = kj, but gj could take other

forms for other observables. Exactly the same derivation then gives the Newtonian trans-

lation consistency relation in a more general form:

lim
~q→0

∂

∂qj

[
〈π~qO~k1

...O~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D′(η)
gja 〈O~k1

...O~kN 〉
c′ , (3.40)

where we have allowed the possibility that the N hard modes correspond to different

observables, thus potentially a different gja for each a = 1, ..., N . Corollaries – analogs of

Eqs. (3.36, 3.38) – follow in the same way:

lim
~q→0

[
〈π~qO~k1

...O~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D′(η)
~q · ~ga 〈O~k1

...O~kN 〉
c′ , (3.41)
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and

lim
~q→0

[
〈δ~qO~k1

...O~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D(η)

~q · ~ga
q2
〈O~k1

...O~kN 〉
c′ , (3.42)

where it should be understood that Eq. (3.41) and Eq. (3.42) contain O(q2) and O(q0)

corrections respectively. Phrased as such, the consistency relation is fairly robust. The

detailed dynamics of the hard modes has no relevance; it matters not whether the corre-

sponding observables are astrophysically messy or highly nonlinear. All we need to know

is how they transform under a spatial translation. To understand this robustness better,

it is helpful to study concrete examples, which is the subject of the next section.

3.1.3.1 Robustness and Limitations of the Consistency Relation(s)

To understand better the robustness of the consistency relation, it is instructive to ask the

question: when does it fail? As we will see, the consistency relation stands on three legs:

the existence of the time-dependent translation symmetry, the single-field initial condition,

and the adiabatic mode condition. All three are necessary in order for the consistency

relation to hold. Here, we focus on the KRPP consistency relation as a specific example,

but the points we raise are general, pertaining to other consistency relations sec. ( 3.1.4)

as well.

1. Initial condition: the single-field assumption. A crucial step in the derivation

is Eq. (3.26): that linear transformations of a collection of hard modes, represented by

O~k, can be considered equivalent to placing the same hard modes in the presence of a

soft mode – the pion π~q. That this single soft mode is sufficient to account for all the

transformations of the hard modes is an assumption about initial conditions. In the

context of inflation, the assumption is often phrased as that of a single field or a single

clock. In our Newtonian LSS context, in addition to keeping only the growing modes,
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essentially the assumption is that of Gaussian initial conditions.8 More precisely, one

demands that the initial condition does not contain a coupling between soft and hard

modes beyond that captured by Eq. (3.26). We will follow the inflation terminology and

call this the single-field assumption.

2. Adiabatic mode condition. Another crucial ingredient in the derivation is the adia-

batic mode condition, that the symmetry transformation have the correct time-dependence

so that the nonlinear shift ∆nl.π may be the long wavelength limit of an actual physical

mode. We stress that this is an additional requirement with non-trivial implications on

top of demanding a symmetry. To spell them out, it is useful to have a concrete example.

Since the consistency relation is purported to be robust, in the sense that the hard modes

can be highly nonlinear and even astrophysically complex, let us write down a system of

equations that allow for these complexities:

δ′(a) + ~∇ · [(1 + δ(a))~v(a)] = R(a) , ~v(a)
′ + ~v(a) · ~∇~v(a) +H~v(a) = −~∇Φ + ~F(a) . (3.43)

Here a labels the species: for instance, it can be dark matter, populations of galaxies,

baryons and so on. R(a) represents a source term for the density evolution. For dark

matter, we expect R(a) = 0 (barring significant annihilation or decay). For galaxies, R(a)

quantifies the effect of galaxy formation and mergers. All particles are subjected to the

same gravitational force plus a species-dependent force ~F(a). The gravitational potential

Φ is sourced by the total mass fluctuation:

∇2Φ = 4πGa2ρ̄δT , (3.44)

where δT represents the effective total mass density fluctuation from all particles.

8Note that in the inflationary context, Gaussianity is also assumed – for the wave-function in the far
past.
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A natural generalization of the (time-dependent) translational symmetry from the

previous section would be:

η → η̃ = η

xi → x̃i = xi + ni

v(a)
i → ṽ(a)

i = v(a)
i + ni

Φ→ Φ̃ = Φ− (Hni′ + ni′′)xi

δ(a) → δ̃(a) = δ(a)

δT → δ̃T = δT

R(a) → R̃(a) = R(a)

F(a)
i → F̃(a)

i = F(a)
i

(3.45)

This means that R(a) and ~F(a) remain invariant under this symmetry. For instance, they

are invariant if R and ~F depend only on δ, on the spatial gradient of ~v, or on the second

gradients of Φ. R and ~F could even have explicit dependence on time η. If R or ~F depends

on ~v with no gradients, unless the dependence is of the form ~v(a)−~v(b) (so that the shifts in

the velocities of the two different species (a) and (b) cancel out), the invariance is violated.

Specializing to the case of galaxies, what this means is that the number density evolution

and dynamics of the galaxies do not care about the absolute size of the velocity, but only

about the velocity difference (either between neighbors, or between species). The only

context in which the absolute size of velocity plays a role is through Hubble friction – this

is the origin of the H dependent term in the nonlinear shift of Φ. In other words, Hubble

friction aside, galaxy formation and dynamics is frame invariant, which seems a fairly

safe assumption. For instance, dynamical friction, which no doubt exerts an influence on

galaxies, should depend on velocity difference.
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Thus, let us assume Eq. (3.45) is a symmetry of our system – note that this is a

symmetry regardless of the time-dependence of ni. As emphasized earlier, this is not

enough to guarantee the validity of the consistency relation. To derive the consistency

relation, ni must have the correct time-dependence: ni′ (the nonlinear shift in vi) must

match the time-dependence of a physical long-wavelength velocity perturbation.9 This

has to hold for all species, meaning the same ni′ matches the long-wavelength velocity

perturbation of each and everyone of the species. In other words, all species should

move with the same velocity on large scales. This leads to two subtleties, which are best

illustrated by assuming an explicit form for ~F . Consider:

~F(a) = −cs2
(a)
~∇ ln(1 + δ(a))− β(a,b)(~v(a) − ~v(b))− α(a)

~∇ϕ

∇2ϕ = 8πG
∑
a

α(a)a
2ρ̄aδa .

(3.46)

The first term on the right of the expression for ~F represents some sort of pressure –

cs is the sound speed – this would be relevant if the subscript (a) represents baryons at

finite temperature. The second term represents some sort of friction that depends on the

velocity difference between two species, with a coefficient β. The third term represents an

additional fifth force, mediated by the scalar ϕ, with a coupling α. The scalar ϕ obeys a

Poisson-like equation. In scalar-tensor theories, the tensor part of the theory mediates a

universal gravitational force (described by the gravitational potential Φ), but the scalar

need not be universally coupled: hence we allow the coupling α(a) to depend on the species

(see e.g. [85, 86]). The form for the additional force ~F proposed in Eq. (3.46) is fairly

generic: counting derivatives, we can see that the pressure term goes like ∂δ, whereas the

other two terms go like ∂−1δ(due to the equations of motion). In terms of the symmetry

9 This typically means ni should satisfy Eq. (3.19), i.e. ni must evolve like the linear growth factor
D. This holds if all particles, on large scales, evolve like dark matter and if gravity is the only long-range
force. See further discussion below.
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transformation, one can see that

ϕ→ ϕ̃ = ϕ (3.47)

is compatible with Eq. (3.45). Thus, we have a system (Eq. 3.43) that respects the

translational symmetry spelled out in Eq. (3.45), even if many different kinds of forces

are present, including non-gravitational or modified gravitational ones such as in Eq.

(3.46). We wish to see how, despite the presence of the (time-dependent) translational

symmetry, there can still be a breakdown of the consistency relation, due to obstructions

in satisfying the adiabatic mode condition – that the velocity perturbations of all species

should be equal on large scales.

2a. Soft dynamics constraint. In the long wavelength limit, one can ignore the

pressure term compared to the other two terms in the expression for ~F(a). Let us first

focus on the fifth-force term. This term is at the same level in derivatives as the normal

gravitational force −~∇Φ, and thus both have to be taken into account on large scales.

The problem with a long-range fifth-force is the non-universal coupling: if there is a

different coupling α(a) for each kind of particles, the different species will move with

different velocities even on large scales. This means no single ni′ can possibly generate

long-wavelength velocity perturbations for all species. In other words, unless the soft

(large-scale) dynamics obeys the equivalence principle, the consistency relation would be

violated, as emphasized by [92, 100]. We stress that, in our example, the violation of the

equivalence principle occurs without the violation of the translation symmetry described

by Eq. (3.45). The fact that the consistency relation is not obeyed is entirely because

of the failure to satisfy the adiabatic mode condition when the equivalence principle is

violated. The friction term (the second term on the right of Eq. 3.46), on the other hand,

is compatible with the adiabatic mode condition – it simply vanishes if the velocities of
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different species are equal, and is therefore consistent with the large scale requirement

that all species flow with the same velocity. To sum up, the soft dynamics constraint is:

for the consistency relation to be valid, the dynamics on large scales must be consistent

with all species moving with the same velocity.

2b. Squeezing constraint. Let us next turn to the pressure term (the first term on the

right of Eq. (3.46)). Since different species have different sound speeds, this also leads to

differences in velocity flows. This is relatively harmless though, since the pressure term

becomes subdominant on large scales. Thus, there is no problem with the adiabatic mode

condition, which is really a condition on motions in the soft limit q → 0. The presence of

pressure does lead to a practical limitation on the application of the consistency relation,

however. The consistency relation is a statement about an (N + 1)-point function in the

squeezed limit q � k1, ..., kN . There is the practical question of how small q has to be. An

important requirement is that q must be sufficiently small that the velocity perturbations

of different species have the same time-dependence as that generated by a single ni′. In

the present context, it means q < H/cs, i.e. the length scale must be above the Jeans

scale.10We refer to this as the squeezing constraint: the soft leg of the consistency relation

must be sufficiently soft that any difference in force on the different species becomes

negligible. This is worth emphasizing, because clearly dark matter and baryons are subject

to different forces: while that does not by itself lead to the breakdown of the consistency

relations, one has to be careful to make sure that the squeezed correlation function is

sufficiently squeezed.

3. Galaxy-biasing. It is also instructive to approach the subject of consistency relation

violation from the viewpoint of galaxy-biasing. What kind of galaxy-biasing would lead to

the violation of consistency relation? We can only address this question in the perturbative

regime, but it nonetheless provides some useful insights. Suppose the galaxy overdensity
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δ(a) (of type a) and matter density δ are related by:

δ(a)~k = b(a)

(
δ~k +

∫
d3k′

(2π)3

d3k′′

(2π)3
(2π)3δD(~k − ~k′ − ~k′′)W(a)(~k

′, ~k′′)
[
δ~k′δ~k′′ − 〈δ~k′δ~k′′〉

])
,(3.48)

where b(a) is a linear bias factor (independent of momentum) and W(a) is a kernel that

describes a general quadratic bias. To the lowest order in perturbation theory, it can be

shown that the bispectrum between three types of galaxies a, b and c, at momenta ~q,~k1, ~k2

and times η, η1, η2 respectively, is

B(abc)(~q, η;~k1, η1;~k2, η2) =

2b(a)b(b)b(c)Pδ(k1, η, η1)Pδ(k2, η, η2)
[(5

7
+

1

2
k̂1 · k̂2

(
k1

k2

+
k2

k1

)
+

2

7
(k̂1 · k̂2)2

)
+W(a)(−~k1,−~k2)

]
+ 2b(a)b(b)b(c)Pδ(q, η, η1)Pδ(k2, η1, η2)

[(5

7
+

1

2
q̂ · k̂2

(
q

k2

+
k2

q

)
+

2

7
(q̂ · k̂2)2

)
+W(b)(−~q,−~k2)

]
+ 2b(a)b(b)b(c)Pδ(q, η, η2)Pδ(k1, η1, η2)

[(5

7
+

1

2
q̂ · k̂1

(
q

k1

+
k1

q

)
+

2

7
(q̂ · k̂1)2

)
+W(c)(−~q,−~k1)

]
(3.49)

where Pδ is the linear mass power spectrum – its two time-arguments signify the fact that
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the two δ’s involved can be at different times. We are interested in the ~q → 0 limit:

lim
~q→0

b(a)

B(abc)(~q, η;~k1, η1;~k2, η2)

P(aa)(q, η, η)

= E +
D(η1)

D(η)

[
~q · ~k2

q2
+ 2W(b)(−~q,−~k2) +O(q0)

]
P(bc)(k2, η1, η2)

+
D(η2)

D(η)

[
~q · ~k1

q2
+ 2W(c)(−~q,−~k1) +O(q0)

]
P(bc)(k1, η1, η2)

= E−
[
D(η1)

D(η)

(
~q · ~k1

q2
− 2W(b)(−~q,~k1)

)
+
D(η2)

D(η)

(
~q · ~k2

q2
− 2W(c)(−~q,~k2)

)
+O(q0)

]

P(bc)(k1, η1, η2)

(3.50)

where

E ≡ 2
D(η)2

D(η1)D(η2)

b2
(a)

b(b)b(c)

P(bc)(k1, η1, η2)P(bc)(k2, η1, η2)

P(aa)(q, η, η)

[
O(q2) +W(a)(−~k1,−~k2)

]
.

(3.51)

We have used

P(aa)(q, η, η) = (D(η)/D(η1))b2
(a)Pδ(q, η, η1)

P(bc)(k1, η1, η2) = b(b)b(c)Pδ(k1, η1, η2)

(3.52)

and so on (appropriate only perturbatively). Comparing this expression with the consis-

tency relation expressed in Eq. (3.42) (identifying ~ga with ~ka), we see that the two agree

if E, W(b) and W(c) can be ignored, and b(a) = 1. A number of comments are in order.

10Since the Jeans scale changes with time in general, the formal requirement is therefore that the
soft-mode be longer than the Jeans scale at all times: q < (H/cs)rec. where the maximum size of the
sound horizon may be conservatively estimated to be the size at recombination. In practice, since most
of the present day non-Gaussianity is generated at late times, it is typically sufficient to require that the
contribution from early times be subdominant. Using second order perturbation theory, we estimate that
q < H/csrec.(D(ηobs.)/D(ηrec.)) is a sufficient parametric condition for Eq. 3.35 to be valid (at least away
from the equal time limit).
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First, let us focus on the case with no galaxy biasing, so that Eq. (3.50) simply

constitutes a perturbative check of the consistency relation for the mass overdensity i.e.

Eq. (3.38). We see that the term E can be ignored compared to the terms that are kept

only if the soft power spectrum is not too blue: assuming P(aa)(q) ∼ qn for small q, the

validity of the consistency relation requires n < 3. Note that P(aa) is the mass spectrum

in the absence of galaxy biasing. This is a limitation on the consistency relation that is

not often emphasized. In practice though, the realistic power spectrum has no problem

satisfying this requirement.

Let us next consider the effects of galaxy biasing. The second point we would like

to raise is that the soft mode must be kept unbiased. There are two reasons for this,

one trivial, the other less so. The trivial reason is that, if the soft mode is biased, the

left hand side of the consistency relation then has to be corrected by a factor of b(a),

the linear bias factor for the soft mode. This is not a big problem: one can obtain an

estimate of the linear bias and correct the consistency relation when comparing against

observations of the galaxy bispectrum. The more non-trivial problem is the presence of

the quadratic bias kernel W(a) in E. Consider for instance a local biasing model of the

form: δ(a) = b(a)δ + b(a),2δ
2/2 in real space, where b(a) and b(a),2 are constants, typically

referred to as the linear and quadratic bias factors. In this case W(a) = b(a),2/(2b(a)) has no

momentum dependence, and so E contains a contribution that goes like q−n for P(aa) ∼ qn.

This means one needs n < 1 for E to be negligible compared to the terms we keep in the

consistency relation. On the largest scales, n approaches 1, though observations suggest

it is slightly less than 1. On smaller scales (but still keeping q � k1, ..., kN), the relevant

n is on the safe side. Nonetheless, this perturbative check suggests that one should be

careful in using the a biased observable for the soft-mode.

Henceforth, let us assume the soft-mode is unbiased but the hard modes are biased, in
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which case E is safely negligible in the squeezed limit as long as n < 3. The third point

we wish to raise is that the validity of the consistency relation requires the hard modes be

biased in a way that is not too infrared-divergent: W(b)(−~q,~k1) and W(c)(−~q,~k2) cannot

contain terms that go like k1/q or k2/q i.e.

W(b)(−~q,~k),W(c)(−~q,~k) < 1/q (3.53)

in the q → 0 limit. As mentioned above, the local biasing model typically assumed in LSS

studies implies that the kernels W(b) and W(c) are momentum independent, and is thus

consistent with the consistency relation. It is worth emphasizing that the word local in

local biasing is a bit misleading: it merely states that the galaxy density at a given point

in real space is related to the mass density at the same point. In reality, galaxies form out

of the collapse of larger regions, influenced by the tidal field of the environment: there

are therefore good reasons to believe that galaxy biasing is at some level non-local, i.e.

the galaxy density at a given point is affected by the mass density at other points. This

non-locality is not non-locality in the field theory sense, in that there is nothing non-local

in the dynamics, and the so-called non-local galaxy bias arises completely out of local

processes. A violation of the consistency relation requires more than a non-local galaxy

bias though. It requires the non-local biasing kernel to be infrared divergent. This does

not appear to be easily obtained, even if tidal effects are taken into account [95]. One

way it arises is in a model in which galaxies are born with a velocity bias, as pointed out

by [96]. The quadratic kernel W(c) (or W(b)), for some galaxy population with a velocity

bias of b∗v at birth (i.e. the galaxy velocity equals b∗v times the dark matter velocity when

the galaxy forms) is

W(c)(~q,~k) ∼ 2b−1
(c)(b

∗
v − 1)

(
D∗
D

)3/2

q̂ · k̂
(
q

k
+
k

q

)
, (3.54)
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where D∗ is the linear growth factor at the time of birth, and D is growth factor at the

time of interest. We display only the term that has a dipolar dependence on the angle

between ~q and ~k, and have taken the late time limit. This has precisely the kind of

infrared divergence in the q � k limit which would invalidate the consistency relation. It

is interesting that this is also an example where we should have expected a violation of

the consistency relation based on earlier arguments – the existence of a scale-independent

velocity bias b∗v means dark matter and galaxies do not flow in the same way, even on large

scales. This violates the adiabatic mode condition, and so it is not a surprise that the

consistency relation fails. Realistically, velocity bias is present at some level of course, but

is expected to approach unity on sufficiently large scales, unless of course the equivalence

principle is violated [92]. As a general statement, we can say that a non-local galaxy bias

that is more infrared-divergent than Eq. (3.53) is what one needs to violate the consistency

relation. It is interesting to ask whether there are other ways to physically generate such

a galaxy bias besides through equivalence principle violations. This naturally brings us

to the issue of selection.

It is worth emphasizing that the galaxy bias is also partly a selection bias: one chooses

to study galaxies of a certain luminosity, color, morphology or some other property of

interest. The question is then: can one choose the galaxy sample in such a way as to

violate Eq. (3.53)? What if one chooses galaxies based on their motions, for instance,

selecting galaxies that have systematically large velocities? It would seem that by hand

we have introduced a velocity bias, and thus a violation of the consistency relation. This

is actually not a violation in the technical sense. Choosing galaxies based on their motions

can be thought of as weighing the galaxies by velocities, i.e. δg → δg(1 + π). From the

point of view of violating the consistency relation, it is most relevant to consider weighing

by the large scale velocity. In that case, it is not surprising one finds additional terms

that diverge in the squeezed limit of the correlation function – this is because we have
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included in the correlation function additional soft modes that carry with them additional

powers 1/q.

4. Robustness. Let us close this section by reiterating how robust the consistency

relation is. As long as the underlying assumptions – the existence of the time-dependent

translation symmetry, single field initial condition and adiabatic mode condition – are

satisfied, the consistency relation is robust. The hard or high momentum modes can

be those of any LSS observable (or even mixtures of observables), referred to as O~k in

Eq. (3.42). No assumption is made about the size of O~k: it matters not at all how

nonlinear or non-perturbative these high momentum observables are. Indeed, we do not

even need to know their detailed dynamics: all we need to know is how they transform

under the symmetry in Eq. (3.39).11 Their evolution can be a lot more complicated than

that of dark matter (e.g. Eq. 3.43). In other words, O~k can be astrophysically messy

observables, such as those associated with galaxies. The presence of pressure effects,

multiple components, multiple-streaming,12 star formation, supernova explosions, etc.

does not lead to violations of the consistency relations, as long as the adiabatic mode

condition – i.e. the soft dynamics constraint and the squeezing constraint – is satisfied.

This is why the LSS consistency relations are interesting: they provide a reliable window

into the non-perturbative, astrophysically complex regime.

3.1.3.2 A Simple Fluid Lagrangian for LSS

The time-dependent translation symmetry laid out above was justified at the level of

the equations of motion. It would be useful to see the same at the level of the action.

In this section, we provide the action that describes the dark (i.e. pressureless) matter

11If the observable turns out to transform differently from Eq. (3.39), one can go back to the more
fundamental Eq. (3.27) to figure out the correct consistency relation.

12 The soft-mode, by the assumption of growing mode initial condition, is potential flow, but the hard
modes need not be, and can even involve multiple streams. See footnote 3.
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dynamics under gravity. We should stress that, for our discussion of the consistency

relation, the action is not strictly necessary; the equations of motion are as good a guide

to the symmetry. Moreover, the action we will write down concerns only dark matter;

it does not cover realistic observables such as galaxies, while the consistency relation

applies regardless of the complex astrophysics that might be present in such observables.

Nonetheless, the dark matter action is useful for conceptual understanding. We provide

it here for completeness, and connect it with a more well known fluid action in Appendix

B.1. For simplicity, we assume potential flow; an extension to allow for vorticity should be

straightforward, along the lines of [97]. Readers not interested in the action perspective

can skip to sec. 3.1.4 – the rest of the chapter does not depend on this section.

Let us motivate the construction of the action by reducing the standard pressureless

LSS equations (3.12) into a single equation for the velocity potential π. The Euler equation

can be integrated once to give:

Φ = −1

a

[
(aπ)′ +

1

2
a(∇π)2

]
, (3.55)

where (∇π)2 stands for ∂iπ∂iπ and a stands for the scale factor.13 The Poisson equation

then gives us:

δ = −2M2
P

ρ̄a3
∇2

[
(aπ)′ +

1

2
a(∇π)2

]
. (3.56)

The continuity equation can thus be turned into a single equation for π:

−2M2
P∇2

[
(aπ)′ +

1

2
a(∇π)2

]′
+ ρ̄a3∇2π − 2M2

P∇i

(
∇iπ∇2

[
(aπ)′ +

1

2
a(∇π)2

])
= 0 .(3.57)

13We use ∇i and ∂i interchangeably, preferring the former where there is the danger of confusing ∂
with the space-time derivative.

107



CHAPTER 3. CONSISTENCY RELATIONS AS WARD IDENTITIES

This is a complicated looking equation, but it is not too difficult to guess the form of the

associated action:

S = −
∫
d4x

[
1

2
ρ̄a4(∇π)2 +M2

P

(
∇
[
(aπ)′ +

1

2
a(∇π)2

])2
]
. (3.58)

The overall normalization (and sign) is arbitrary from the point of view of reproducing the

desired equation of motion, but is chosen to conform to a more general action discussed

in Appendix B.1. It is straightforward to check that this action is invariant under the

time-dependent translation symmetry discussed earlier, namely:

η → η̃ = η , xi → x̃i = xi + ni , π → π̃ = π + ni′xi . (3.59)

The dynamics of the velocity potential π is completely fixed by this action. From this

point of view, the π equation of motion has the interpretation of the continuity equation,

if δ is defined by Eq. (3.56) and if the gravitational potential Φ is defined by Eq. (3.55) so

as to reproduce the Poisson equation. With this understanding, the action takes a fairly

simple form:

S =

∫
d4x

ρ̄a4

2

(
Φδ − ~v2

)
, (3.60)

i.e. the Lagrangian is the difference between what resembles potential energy and kinetic

energy, though with an unexpected overall sign, which can be understood from the larger

context of a fluid with pressure (see Appendix B.1).
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3.1.4 Consistency Relations from Diffeomorphisms – General

Relativistic Symmetries

The time-dependent translation symmetry noted by KRPP Eq. (3.13) appears to be

a global symmetry of the Newtonian LSS equations. (Or, more generally, the time-

dependent translation as described by Eq. (3.45) is a symmetry of the equations of

motion for dark matter and galaxies.) Our goal in this section is to place it in a larger

context: the claim is that this symmetry is actually part of a diffeomorphism in the

context of general relativity. This perspective is useful for two reasons: first, it helps us

make contact with the earlier work on consistency relations in inflation, which are based on

diffeomorphism invariance; second, diffeomorphism invariance allows us to systematically

write down further consistency relations. The earlier work generally uses the ζ-gauge,

alternatively referred to as the unitary or comoving gauge. On the other hand, in LSS

studies, the Newtonian gauge is the more natural one to use. Here, we take advantage

of the fact that the full list of consistency relations are already known in the unitary

or ζ-gauge [5], and transform each known symmetry in ζ-gauge into a symmetry in the

Newtonian gauge. This way, we will obtain an infinite tower of consistency relations in the

Newtonian gauge. We emphasize that we could equally well proceed by directly working

in the Newtonian gauge, and obtain the same results (see [10] on the dilation and special

conformal consistency relations obtained this way). One might wonder why writing down

consistency relations in the Newtonian gauge is useful if we already know what they are

in the unitary gauge. It has to do with the taking of the Newtonian limit, a subject we

will discuss later in this section.

In the interest of generality, we allow the presence of multiple components of which

pressureless matter/dust is one. We assume adiabatic initial conditions in the sense that

all components fluctuate in the same way in the long wavelength limit: in particular their
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velocity potentials coincide in this limit. We give in sec. 3.1.4.1 the general prescription

for transforming symmetries known in the unitary gauge to symmetries in Newtonian

gauge. In sec. 3.1.4.2 we focus on the dilation and the special conformal symmetries,

which are the symmetries that generate only scalar modes, and we show how the KRPP

Newtonian consistency relation arises as the sub-Hubble limit of the latter. We comment

on the robustness and limitations of the consistency relations in sec. 3.1.4.3, adding a

relativistic twist to some of the comments made earlier. We also discuss the taking of the

Newtonian/sub-Hubble limit. We close with sec. 3.1.4.4 on further consistency relations

that form an infinite tower – they generally involve the tensor modes. We comment on

why there is no useful sub-Hubble limit in these cases.

3.1.4.1 Symmetry Transformations from Diffeomorphisms

Here we are interested in symmetry transformations coming from residual gauge/coordinate

transformations (i.e. diffeomorphisms)

x′µ = xµ + ξµ , (3.61)

that are allowed even after we have applied the usual gauge-fixing. In the context of

inflation, a common gauge is the unitary or ζ−gauge:

ds2 = ...+ a2e2ζ(eγ)ijdx
idxj , δφ = 0, (3.62)

where we have omitted the time-time and time-space components of the metric which are

obtainable from the given space-space parts by solving the Hamiltonian and momentum

constraints. Here, ζ represents the scalar perturbation and the transverse traceless γij

represents the tensor perturbation. Vector perturbations are ignored because they are
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not generated by single field models (a brief discussion of vector modes can be found in

Appendix B.4). The equal time surface is chosen so that the matter field, which we have

called φ, has no spatial fluctuation. For our application, there can in general be multiple

components, in which case δφ is chosen to vanish for one of them. To be concrete, let

us choose this to be the dark matter fluid, i.e. we model it as a fluid described by a

Lagrangian of the form P (X), where P is some function of X ≡ −(∂φ)2. The velocity

potential π is related to φ by δφ = φ − φ̄ = −φ̄′π, where φ̄ is the background, and φ̄′ is

its conformal time derivative (see Appendix B.1).14

The full list of residual diffeomorphisms that respect the unitary gauge is worked

out in H2K. Since the unitary gauge is a complete gauge-fixing for diffeomorphisms that

vanish at spatial infinity, the residual diffeomorphisms must be those that do not vanish

at infinity. They take the form:

ξ0 = 0 , ξi = ξiunit. ∼ xn . (3.63)

No time-diffeomorphism is allowed since that would violate the δφ = 0 (or π = 0) unitary

gauge condition, and the allowed spatial diffeomorphism, (which we refer to as ξiunit.) goes

like xn, where n = 1, 2, .... We will give explicit expressions for ξiunit. later. They satisfy:15

scalar + tensor symmetries : ∇2ξiunit. +
1

3
∂i(∂kξ

k
unit.) = 0 . (3.64)

This set of symmetries contains subsets that only generate (nonlinearly) scalar modes,

14By describing the dark matter using a single fluid field φ, we are ignoring orbit-crossing and also
vorticity. As is clear in the Newtonian discussion, neither one of these assumptions is strictly necessary.
We make them only to simplify the general relativistic discussion.

15This holds only to the lowest order in tensor modes. See H2K, and discussion in footnote 30.
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and subsets that only generate tensor modes:

scalar symmetries : ∂iξ
j
unit. + ∂jξ

i
unit. −

2

3
δij∂kξ

k
unit. = 0

tensor symmetries : ∂iξ
i
unit. = 0 , ∇2ξiunit. = 0 . (3.65)

The spatial diffeomorphism ξiunit. can be considered to be time-independent.16

In LSS studies, it is more common to employ the Newtonian gauge instead:

ds2 = a2
[
−(1 + 2Φ)dη2 + 2Sidx

idη + ((1− 2Ψ)δij + γij)dx
idxj

]
, (3.66)

where we no longer impose π = 0; Φ and Ψ are the scalar modes, the transverse traceless

γij denotes the tensor modes as before, and the divergence-free Si represents the vector

modes (which is set to zero here). Here, we work perturbatively in the metric perturba-

tions, since the Newtonian-gauge metric perturbations are expected to be small even in

the highly nonlinear regime where the density fluctuation δ is large, and including higher

order metric perturbations corrects the consistency relations by negligible amounts. 17

Under a small diffeomorphism ξµ, the nonlinear transformations of the metric fluctuations

16Adiabatic mode conditions in the unitary gauge actually make ξiunit. time-dependent in general. As
shown in H2K, its time-independent part alone is sufficient to deduce the consistency relations. We will
implement the adiabatic mode conditions separately in the Newtonian gauge computation.

17See footnote 30 for a more detailed discussion of this point.
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are:18

∆nl.Φ = −ξ0′ −Hξ0

∆nl.Ψ = Hξ0 +
1

3
∂kξ

k

∆nl.g0i = a2(∂iξ
0 − ∂0ξ

i)

∆nl.gij −
1

3
δij∆nl.gkk = −a2

(
∂iξ

j + ∂jξ
i − 2

3
δij∂kξ

k

)
(3.67)

Given each symmetry in the unitary gauge, it is straightforward to deduce the cor-

responding symmetry in the Newtonian gauge. Let us break it down into a number of

steps. First, we begin with the metric in Newtonian gauge, where π = π0 6= 0. We assume

Ψ = Φ, in the absence of anisotropic stress.19 To convert to the unitary gauge, we apply a

time-diffeomorphism ξ0 = −π0 to make the scalar field φ spatially homogeneous. Second,

we apply the known unitary-gauge symmetry transformation ξi = ξiunit.. Third, we wish

to return to Newtonian gauge. The first and second steps in general make Ψ 6= Φ. To

restore equality, we apply an additional time-diffeomorphism ξ0 = π0 +ξ0
add.. We also need

to ensure g0i = 0 (no vector modes20), and thus an additional spatial diffeomorphism ξiadd.

may be necessary. It is shown in Appendix B.2 that the requisite additional time- and

space-diffeomorphisms are:

ξ0
add. = − 1

3c
D′∂iξ

i
unit. , ξiadd. =

1

c
D∇2ξiunit. . (3.68)

18The net (linear + nonlinear) transformation of the metric is given by ∆gµν = −ξα∂αgµν −gαµ∂νξα−
gαν∂µξ

α.
19This is an adiabatic mode condition in the Newtonian gauge. See discussions in Appendix B.2.
20 The absence of vector modes is assumed in two places. Assuming ∇2ξiunit. + ∂i(∂ · ξ)/3 = 0 means

there is no vector mode in the spatial part of the metric. In addition, our choice of ξµadd. ensures there is
no vector mode in the space-time part of the metric either.
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Here, D is the linear growth factor satisfying the following equation:

D′′ + 2HD′ − c = 0 , (3.69)

where c is a constant (independent of time and space). In other words, the following

diffeomorphism is a symmetry of Newtonian gauge:

ξ0 = ξ0
add. , ξi = ξiunit. + ξiadd. , (3.70)

where ξiunit. is the residual (time-independent) diffeomorphism allowed by the unitary

gauge Eqs. (3.64) and (3.65). Furthermore, it can be shown that this diffeomorphism sat-

isfies the adiabatic mode conditions, i.e. the perturbations that are nonlinearly generated

match the time-dependence of very soft (growing) physical modes. This is why the linear

growth factor D appears in the diffeomorphism. The derivation is given in Appendix B.2.

(The attentive reader might wonder why the linear growth factor D – a quantity that

shows up in the Newtonian discussion of sub-Hubble perturbations – appears also in a

general relativistic discussion, and how Eq. (3.69) is related to the more familiar growth

equation (Eq. 3.19). This is discussed in Appendix B.3). An important underlying as-

sumption is that all fluid components move with the same velocity in the soft limit. Under

this assumption, it is shown in Appendix B.3 that the velocity, or velocity potential π,

evolves as:

lim
~q→0

π~q ∝ D′ . (3.71)

In the context of a general relativistic discussion, this statement (strictly speaking) holds

in the super-Hubble limit q � H. What is interesting is that for the π~q of pressureless

matter, this statement holds also for sub-Hubble (but linear) scales . It is this fact that
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makes an interesting Newtonian consistency relation possible.21

For the purpose of deducing the consistency relations, we also need to know how

other LSS observables transform under a diffeomorphism. From the way a scalar should

transform, one can see the velocity potential π ≡ −δφ/φ̄′ should transform by

∆π = ∆lin.π + ∆nl.π

∆lin.π = −ξ0 (φ̄′π)′

φ̄′

−ξi∂iπ

∆nl.π = ξ0

(3.72)

We will mostly need only the nonlinear part of the π transformation. As emphasized

above, the assumption of potential flow is not strictly necessary. The nonlinear transfor-

mation of the velocity can also be deduced by transforming the 4−velocity Uµ:22

∆nl.v
i = ξi ′ (3.73)

Another LSS observable of interest is the mass density fluctuation δ. Its transformation

is:

∆δ = ∆nl.δ + ∆lin.δ

∆nl.δ = −ξ0 ρ̄
′

ρ̄

∆lin.δ = −ξµ∂µδ − ξ0

ρ̄′

ρ̄
δ

(3.74)

21The fact that the soft π is proportional to D′ is nicely consistent with ξ0 ∝ D′, since ∆nl.π = ξ0 (see
Eq. 3.72).

22One can use Uµ = (1 − Φ, vi)/a, valid to the lowest order in velocity and perturbations, with the
understanding that vi = dxi/dη. In this chapter, by relativistic effects, we are generally interested in
effects on super-Hubble scales as opposed to effects associated with high peculiar velocities.
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One could set −ρ̄′/ρ̄ = 3H for ρ̄ that redshifts like pressureless matter, but we will keep

the discussion general. The generalization to the galaxy density fluctuation δg (or the

fluctuation of any component) is immediate:

∆δg = ∆nl.δg + ∆lin.δg , ∆nl.δg = −ξ0
ρ̄′g
ρ̄g

, ∆lin.δg = −ξµ∂µδg − ξ0
ρ̄′g
ρ̄g
δg , (3.75)

where ρ̄g is the mean galaxy number density. In both cases, the linear part of the trans-

formations would resemble more what one expects for a scalar if we consider δρ = ρ̄δ

instead of δ:

∆nl.δρ = −ξ0ρ̄′ , ∆lin.δρ = −ξµ∂µδρ . (3.76)

3.1.4.2 Scalar Consistency Relations

Let us first derive the consistency relations that involve only scalar modes, i.e. where

only scalar modes are nonlinearly generated. Recall from sec. 3.1.4.1 that the scalar

symmetries take the form:

ξ0 = ξ0
add. , ξi = ξiunit. + ξiadd. , (3.77)

with ξiunit. and ξµadd. satisfying:

∂iξ
j
unit. + ∂jξ

i
unit. −

2

3
δij∂kξ

k
unit. = 0 , (3.78)

ξ0
add. = − 1

3c
D′∂iξ

i
unit. , ξiadd. =

1

c
D∇2ξiunit. , (3.79)

where D is the linear growth factor obeying D′′+ 2HD′− c = 0, with c being a constant.

As discussed before, since the unitary gauge is a complete gauge-fixing for diffeomor-
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phisms that vanish at spatial infinity, the residual diffeomorphism of interests must be one

where ξiunit. does not vanish at infinity. Following H2K, we can express ξiunit. as a power

series:

ξiunit. =
∞∑
n=0

1

(n+ 1)!
Mi`0...`nx

`0 ...x`n , (3.80)

where each Mi`0...`n represents a constant coefficient, symmetric in its last n + 1 indices.

As pointed out by [4, 80], the only scalar symmetries are those associated with n = 0:

ξiunit. ∼ x (dilation) and n = 1: ξiunit. ∼ x2 (special conformal transformation).

The Dilation Consistency Relation Dilation is described by ξiunit. = λxi where λ is

a constant. Plugging this into Eq. (3.79) tells us that ξ0
add. = −(λ/c)D′ and ξiadd. = 0. In

other words, the net residual diffeomorphism in Newtonian gauge is

ξ0 = ε , ξi = λxi with ε ≡ −λ
c
D′ , (3.81)

where λ is a constant. This symmetry involves a spatial dilation plus an accompanying

time translation, with the two related by a differential equation: ε′ + 2Hε + λ = 0. We

will refer to the resulting consistency relation simply as the dilation consistency relation,

even though the symmetry involves more than spatial dilation. To deduce the associated

consistency relation, we employ Eq. (3.27). Two pieces of information are needed to use it.

One is the nonlinear shift of π in Fourier space, obtained by taking the Fourier transform

of Eq. (3.72):

∆nl.π
∗
~q = (2π)3δD(~q) ε . (3.82)
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The other piece of information we need is the linear transformation of the high momen-

tum observable(s). Here, let us use the density fluctuation δ~k as the observable at high

momentum. By a Fourier transform of Eq. (3.74), we find

∆lin.δ~k =

[
−ε
(
ρ̄′

ρ̄
+ ∂η

)
+ λ(3 + ~k · ∂~k)

]
δ~k . (3.83)

Plugging these two pieces into the master equation (3.27), we see that

lim
~q→0

〈π~qδ~k1
...δ~kN 〉

c

Pπ(q)
ε(η)

=
N∑
a=1

[
−ε(ηa)

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
+ λ

(
3 + ~ka · ∂~ka

)]
〈δ~k1

...δ~kN 〉
c ,

(3.84)

where the time-dependence should be understood as follows: the soft ~q mode is evaluated

at time η, while the hard mode ~ka is evaluated at time ηa, meaning that each hard mode

can be at a different time. This is why the ε on the left is at time η – it is associated

with the nonlinear shift in π and therefore the soft mode – and the ε’s on the right are

evaluated at the respective ηa, since each is associated with the linear transformation of

the corresponding hard mode.

The connected N - and (N + 1)-point functions on both sides contain the momentum

conserving delta function. Its removal requires some care since the derivatives with respect

to momentum on the right hand side act on the delta function:

N∑
a=1

~ka · ∂~kaδD(~k1 + ...+ ~kN) = −3δD(~k1 + ...+ ~kN). (3.85)

This can be established by rewriting the delta function as (2π)−3
∫
d3x ei(

~k1+...+~kN )·~x, and

integrating by parts. Thus, removing the delta function on both sides, with 〈...〉c′ repre-
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senting the connected correlation function without δD, we have23

lim
~q→0

〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)
ε(η)

=

(
3λ(N − 1) +

N∑
a=1

[
−ε(ηa)

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
+ λ~ka · ∂~ka

])
〈δ~k1

...δ~kN 〉
c′ ,

(3.86)

with the understanding that ε and (the constant) λ are related by Eq. (3.81), and where

the N -point function depends on the time associated with each of the N modes. Using

the relation, we can rewrite the dilation consistency relation as

lim
~q→0

〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)

=−
(

3c

D′(η)
(N − 1) +

N∑
a=1

[
D′(ηa)

D′(η)

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
+

c

D′(η)
~ka · ∂~ka

])
〈δ~k1

...δ~kN 〉
c′

(3.87)

with the understanding that c = D′′ + 2HD′ is a constant. It is trivial to generalize the

consistency relation by changing the hard modes from δ for the mass density to δg for

the galaxy density: simply change the mean mass density ρ̄ on the right hand side to

the mean galaxy number density ρ̄g . This consistency relation can be further rewritten

in different forms. We will postpone this discussion until after we discuss the special

conformal consistency relation.

The Special Conformal Consistency Relation – Containing the Newtonian

Translation Consistency Relation Next, we consider the special conformal trans-

formation: ξiunit. = 2~b · ~xxi − bi~x · ~x, where ~b is a constant vector. Plugging this into Eq.

(3.79), we see that the requisite accompanying diffeomorphism is: ξ0
add. = −(2/c)D′~b · ~x

23 Note that 〈δ~k1 ...δ~kN 〉
c′ should be understood to be a function of only N − 1 momenta. For instance,

we can think of ~kN = −~k1 − ~k2... − ~kN . Thus the derivative ∂~kN , keeping ~k1, ...,~kN−1 fixed, vanishes.
This point is particularly important for the higher consistency relations. See [83].
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and ξiadd. = −(2/c)Dbi. Putting everything together, we see that the symmetry is:

ξ0 = ni′ xi , ξi = ni + 2~b · ~x xi − bi ~x · ~x with ni ≡ −2

c
Dbi (3.88)

where ~b is a constant vector. We refer to the implied consistency relation as the special

conformal consistency relation, even though the full symmetry transformation involves

a time diffeomorphism and a spatial translation in addition to the special conformal

transformation – these transformations are related via ni′′ + 2Hni′ + 2bi = 0. As we will

see, the Newtonian translation consistency relation is contained in here.

Once again, we employ the master equation (Eq. 3.27), for which we need the nonlinear

transformation of the velocity potential π and the linear transformation of the hard modes

– as in the case of dilation, we choose the observable to be the density fluctuation δ for

the hard modes. Under the current symmetry transformation, we have:

∆nl.π
∗
~q = i~n′ · ∂~q[(2π)3 δD(~q)] , (3.89)

∆lin.δ~k = i

[
~n′ · ∂~k

(
ρ̄′

ρ̄
+ ∂η

)
+ ~n · ~k − (6~b · ∂~k + 2bjki∂kj∂ki −~b · ~k∇2

k)

]
δ~k . (3.90)

Substituting the above into Eq. (3.27), we see that the left hand side (LHS) is

LHS = lim
~q→0

(−i~n′(η)) · ∂~q
[
(2π)3δD(~q + ~k1 + ...+ ~kN)

] 〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)

−i(2π)3δD(~q + ~k1 + ...+ ~kN)~n′(η) · ∂~q
[
〈π~qδ~k1

...δ~kN 〉
c′

Pπ(q)

]
. (3.91)
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The right hand side (RHS) is

RHS

=
N∑
a=1

i

[
~n′(ηa) · ∂~ka

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
+ ~n(ηa) · ~ka − (6~b · ∂~ka + 2bikja∂kja∂kia −~b · ~ka∇

2
ka)

]
〈δ~k1

...δ~kN 〉
c .

(3.92)

The connected N -point function 〈δ~k1
...δ~kN 〉

c contains an overall momentum conserving

delta function. The momentum derivative acts non-trivially on it. To simplify, it is useful

to know that:

N∑
a=1

(
2bjkia∂kja∂kia −~b · ~ka∇

2
ka

)
δD(~ktot.) = −6~b · ∂~ktot.

δD(~ktot.) , (3.93)

where ~ktot ≡ ~k1 + ... + ~kN . This which can be proved by rewriting the delta function as

the spatial integral of a plane wave. The term
∑

a 6~b · ∂~kaδD(~ktot.) can be rewritten as

6N~b · ∂~ktot.
δD(~ktot.); indeed, any ∂kiaδD(~ktot.) can be written as ∂kitot.

δD(~ktot.). Then there

are terms that involve one momentum derivative on the delta function and one momentum

derivative on the N -point function:

N∑
a=1

2bikja ∂kja〈δ~k1
...δ~kN 〉

c′ ∂kiaδD(~ktot.)

+2bi∂kjaδD(~ktot.)
(
kja∂kia〈δ~k1

...δ~kN 〉
c′ − kia∂kja〈δ~k1

...δ~kN 〉
c′
)

=
[
2~b · ∂~ktot.

δD(~ktot.)
] N∑
a=1

~ka · ∂~ka〈δ~k1
...δ~kN 〉

c′ ,

(3.94)

where we have used rotational invariance of the N -point function to remove the last two
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terms on the first line. With this understanding, Eq. (3.92) can be expressed as

RHS = −i
[
∂kitot.

(2π)3δD(~ktot.)
][

6bi(N − 1) +
N∑
a=1

(
−ni′(ηa)

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
+ 2bi~ka · ∂~ka

)]
× 〈δ~k1

...δ~kN 〉
c′ − i(2π)3δD(~ktot.)

N∑
a=1

[
−
(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
~n′(ηa) · ∂~ka − ~n(ηa) · ~ka

+ (6~b · ∂~ka + 2bikja∂kja∂kia −~b · ~ka∇
2
ka)
]
〈δ~k1

...δ~kN 〉
c′ ,

(3.95)

The first term of the above can be equated with the first line of Eq. (3.91), since what

multiplies the derivative of the delta function on both sides replicates the dilation con-

sistency relation Eq. (3.86). Note that ni and bi are related by Eq. (3.88). Using this,

eliminating the dilation consistency relation from both sides,24 and removing the delta

function, we obtain the special conformal consistency relation:

lim
~q→0

∂qi

[
〈π~qδ~k1

...δ~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

[( ρ̄′
ρ̄

∣∣∣
ηa

+ ∂ηa

)
D′(ηa)

D′(η)
∂kia +

D(ηa)

D′(η)
kia

+
c

D′(η)

(
3∂kia + kja∂kja∂kia −

1

2
kia∇2

ka

)]
〈δ~k1

...δ~kN 〉
c′ ,

(3.96)

with the understanding that c = D′′+ 2HD′ is a constant (Eq. B.50). Just as in the case

of the dilation consistency relation, this consistency relation can be easily generalized to

the hard modes being the galaxy overdensity – changing δ to δg, and changing ρ̄ to ρ̄g.

Examining the terms on the right hand side, we see that in the sub-Hubble limit, i.e. k �

H, the term that dominates on the right hand side is −∑a(D(ηa)/D
′(η))kia〈δ~k1

...δ~kN 〉
c′ ,

reproducing the translation consistency relation (Eq. 3.35) derived from the Newtonian

24This is a general pattern: one can obtain the correct consistency relation for a given symmetry by
using the master equation (3.27), and simply ignoring the delta functions on both sides. At first sight,
this might appear dangerous as there are derivatives acting on the delta functions, but they invariably
multiply consistency relations from symmetries at the lower levels, and so can be removed.
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equations. We will have more to say about the non-relativistic limit in sec. 3.1.4.3.

At the level of the spatial diffeomorphisms, dilation and special conformal transfor-

mations exhaust the list of purely scalar symmetries, since it is only dilation and special

conformal transformations that respect the second expression of Eq. (3.78) and do not

generate vector or tensor modes. It is also worth noting that the special conformal trans-

formation consistency relation strictly speaking receives (small) corrections on the right

hand side, a point to which we will return.

3.1.4.3 Robustness and Limitations of the Consistency Relations - a Rela-

tivistic Perspective and the Newtonian Limit

It is useful to pause and reflect on the fully relativistic consistency relations derived so

far. Some of our discussions here mirror the earlier ones in the Newtonian context (sec.

3.1.3.1), but with a relativistic twist. We also discuss the issue of taking the Newtonian,

i.e. sub-Hubble, limit.

1. Newtonian limit. The special conformal consistency relation Eq. (3.96) is the

relativistic analog of the Newtonian translation consistency relation Eq. (3.35). The

former reduces to the latter in the sense that:

lim
~q→0

∂

∂qj

[
〈π~qδ~k1

...δ~kN 〉
c′

Pπ(q)

]
= −

N∑
a=1

D(ηa)

D′(η)
kaj 〈δ~k1

...δ~kN 〉
c′ ×

(
1 +O(H2/k2)

)
, (3.97)

where the H2/k2-suppressed terms can be ignored in the sub-Hubble limit. Note that the

unsuppressed (Newtonian) terms are of the order of k
H〈δ~k1

...δ~kN 〉
c′ . Similarly, we can think

of the dilation consistency relation Eq. (3.87) as the relativistic analog of Eq. (3.33). The
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dilation consistency relation takes the form:

lim
~q→0

〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)
= O

(
k

H〈δ~k1
...δ~kN 〉

c′
)
×O

(
H2/k

)
=O

(
q
k

H〈δ~k1
...δ~kN 〉

c′
)
×O(H/k)(H/q)

(3.98)

which can be compared against q× Eq. (3.97). We can see that the right hand side of the

above expression is O(H/k)O(H/q) times q× Eq. (3.97). In the sub-Hubble limit where

H is small compared to both q and k, it is therefore consistent to think of Eq. (3.98) as

vanishing – reducing to Eq. (3.33).25

2. Combining consistency relations. It is worth pointing out that, just as in the

Newtonian case where Eqs. (3.33) and (3.35) can be combined into a single equation

(3.36), the general relativistic dilation and special conformal consistency relations can be

combined into:

lim
~q→0

〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)

=−
( 3c

D′(η)
(N − 1) +

N∑
a=1

[D′(ηa)
D′(η)

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)(
1 + ~q · ∂~ka

)
+
D(ηa)

D′(η)
~q · ~ka

+
c

D′(η)

(
~ka · ∂~ka + 3~q · ∂~ka + qikja∂kja∂kia −

1

2
~q · ~ka∇2

ka

)])
〈δ~k1

...δ~kN 〉
c′ ,

(3.99)

where the constant c = D′′ + 2HD′.

3. Alternative pions. Recall that π, δ and Φ all shift nonlinearly under the symmetries

25Eq. (3.33) was derived using the shift symmetry π → π+ b, where b is a constant. The reader might
wonder how that argument breaks down in the relativistic context. The point is that a constant shift in
π has to be accompanied by a time-dependent shift in Φ (see e.g. Eq. 3.55). Such a time-dependent shift
is not a symmetry of the kinetic term for the metric once time-derivatives are taken into account, unless
the coordinates change too. It is interesting to note that π → π+ b/φ̄′ is a symmetry (see Appendix B.1)
because of the shift symmetry in φ; however, this symmetry does not correspond to the growing mode
vacuum and therefore does not lead to a consistency relation. See Appendix B.4 for a further discussion.
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of interest.26 One might wonder whether we could have derived the consistency relation

with δ or Φ playing the role of the pion instead. The answer is affirmative. Let us compare

these nonlinear shifts: ∆nl.π = ξ0, ∆nl.δ = −ξ0ρ̄′/ρ̄, and ∆nl.Φ = −ξ0′ − Hξ0. Recalling

that ξ0 ∝ D′, we see that ∆nl.δ = −ρ̄′/ρ̄ × ∆nl.π, and ∆nl.Φ = −(D′′ + HD′)/D′ ×

∆nl.π. One can thus run the same arguments as before, and arrive at essentially the same

consistency relation Eq. (3.99), with the right hand side unaltered, but the left hand side

replaced by

LHS → − ρ̄
′

ρ̄

∣∣∣
η
× lim

~q→0

〈δ~qδ~k1
...δ~kN 〉

c′

Pδ(q)
, (3.100)

or

LHS → −D
′′ +HD′
D′

∣∣∣
η
× lim

~q→0

〈Φ~qδ~k1
...δ~kN 〉

c′

PΦ(q)
. (3.101)

The consistency relations expressed using π, δ or Φ as the soft pion are all equivalent –

with one important caveat, which is related to the squeezing constraint.

4. Squeezing constraint. The reader might want to consult sec. 3.1.3.1 for a parallel

discussion of the squeezing constraint in the Newtonian context. The consistency relation,

whether expressed in terms of π as in Eq. (3.99), or expressed in terms of δ or Φ as in

Eq. (3.100) or (3.101), is a statement about the ~q → 0 limit. In the relativistic context,

this means that, in addition to q � k1, ..., kN , the soft mode should strictly speaking be

super-Hubble, i.e. q < H. On the other hand, in LSS we are typically interested in sub-

Hubble modes, so the question arises: under what conditions does the consistency relation

remain valid when all modes, including the soft one, are sub-Hubble (while maintaining

the hierarchy q � k1, ..., kN)?

26We could also discuss the nonlinear shift of δn, which coincides with δ for pressureless matter. (See
Appendix B.3.)

125



CHAPTER 3. CONSISTENCY RELATIONS AS WARD IDENTITIES

We show in Appendix B.3 a special fact about the velocity potential π for pressure-

less matter: it has the same time dependence ∝ D′ (Eqs. B.49 and B.50) regardless of

whether the mode of interest is inside or outside the Hubble radius. (When it is outside

the Hubble radius, this statement is true throughout the entire history of the universe;

when it is inside the Hubble radius, this statement is strictly true only after radiation

domination.) The consistency relation written in terms of the matter π Eq. (3.99) can

therefore be safely taken inside the Hubble radius, even for the soft mode, since the same

diffeomorphism is capable of generating the correct π regardless of whether it is on super-

and sub-Hubble scales. In this limit, we recover the Newtonian consistency relation: the

term −∑a[D(ηa)/D
′(η)]~q · ~ka〈δ~k1

...δ~kN 〉
c′ dominates on the right hand side. 27 Similar

statements hold for Φ as the soft pion.

The same is not true for δ (here, we focus on the matter δ as the soft mode): from the

continuity equation (B.28), it is evident that the time dependence of δ (which is the same

as δn for pressureless matter) depends on whether the mode is inside or outside the Hubble

radius. The consistency relation written using δ as the soft mode takes the form of Eq.

(3.100) only for q < H. If the soft δ mode is within the horizon, the continuity equation

tells us that δ~q = q2(D/D′)π~q, and so the left hand side of the consistency relation should

read:

LHS→ lim
~q→0

q2 D(η)

D′(η)
×
〈δ~qδ~k1

...δ~kN 〉
c′

Pδ(q)
, (3.102)

27There is one subtlety though: for a mode that enters the Hubble radius during radiation domination,
the time evolution deviates from D′ during part of its history, and so strictly speaking the consistency
relation does not apply if the soft mode belongs to this category. An alternative way to put it is
this: when the mode is within the Hubble radius (or more precisely, within the sound horizon) during
radiation domination, neither the matter nor the radiation moves with a velocity that agrees with D′.
A diffeomorphism that obeys the adiabatic mode conditions (e.g. Eq. (3.81) for dilation, or Eq. (3.88)
for special conformal transformation) cannot generate the correct velocity for either component. Even
in this case, we expect the consistency relation to still be a good approximation in the late universe, to
the extent that most of the late-time non-Gaussianity is generated after radiation domination. We thank
Paolo Creminelli for discussions on this point.
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while, as discussed above, the right hand side reduces to−∑a[D(ηa)/D
′(η)]~q·~ka〈δ~k1

...δ~kN 〉
c′ .

This reproduces the Newtonian translation consistency relation written in terms of δ~q (Eq.

(3.38)). To conclude: the consistency relation expressed in terms of a soft δ~q takes a dif-

ferent form outside versus inside the Hubble radius; i.e. Eq. (3.100) versus Eq. (3.102).

The consistency relation expressed using the matter π or Φ as the soft pion maintains the

same form regardless.28

5. The existence of an interesting Newtonian limit. From the discussion above,

we see that the special conformal consistency relation has a non-trivial Newtonian limit

(i.e. the right hand side is non-vanishing), whereas the dilation one does not. What is the

underlying reason? From Eq. (3.79), we see that for a given unitary-gauge transformation

ξiunit., the corresponding residual diffeomorphism in Newtonian gauge is

ξ0 ∼ H−1∂iξ
i
unit. , ξi ∼ ξiunit. +H−2∇2ξiunit. . (3.103)

The associated consistency relation, making use of the relation δ~q ∼ q2π~q/H in the sub-

Hubble limit, can be written schematically as:

lim
~q→0

q2

H2

〈δ~qδ~k...〉c
′

Pδ(q)

[
∂iξ

i
unit.

]
q
∼
([
∂iξ

i
unit.

]
k

+ ki
[
ξiunit.

]
k

+ kiH−2
[
∇2ξiunit.

]
k

)
〈δ~k...〉c

′
.(3.104)

Here, [ ]k denotes the Fourier transform of the quantity of interest at momentum k, with

the delta function removed. For instance, for ξiunit. ∼ xn+1, we have [ξiunit.]k ∼ k−n−1,

[∂iξ
i
unit.]k ∼ k−n, [∂iξ

i
unit.]q ∼ q−n, and [∇2ξiunit.]k ∼ k−n+1. This gives

lim
~q→0

〈δ~qδ~k...〉c
′

Pδ(q)
∼
( q
k

)n(H2

q2
+
k2

q2

)
〈δ~k...〉c

′
. (3.105)

In the sub-Hubble (and squeezed) limit where H � q � k, this suggests we have the

28Using the baryon π as the soft pion is permissible too, as long as one stays above the Jeans scale.
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dimensionless ratio 〈δ~qδ~k...〉c
′
/(Pδ(q)〈δ~k...〉c

′
) ∼ (q/k)n(k/q)2. For n = 1, the special

conformal case, this reproduces correctly the Newtonian translation consistency relation.

For n = 0, the dilation case, this does not work. The reason is that the k2/q2 term in

Eq. (3.105), which is the dominant term in the sub-Hubble limit, originates from ∇2ξiunit.,

which vanishes for the dilation ξiunit. = λxi. Our näıve power-counting argument also

suggests there could be additional n > 1 consistency relations that are non-trivial in the

Newtonian limit. As we will see in the next section, the n > 1 consistency relations

generally involve tensors, which complicates taking the squeezed mode to within the

Hubble radius.

Let us close this section by emphasizing the robustness of the consistency relations.

As in the Newtonian derivation, the general relativistic derivation makes no assumptions

about the dynamics of the hard modes – all we need to know is how they transform under

diffeomorphisms. Thus, we expect the consistency relations to hold even for nonlinear,

or astrophysically messy, hard modes (though the right hand side of the consistency

relations might need to be modified depending on exactly how the modes of interest

transform; (see the comments after Eq. (3.87 ) and in footnote 30). Besides the existence

of symmetries, which according to the general relativistic perspective are nothing but

residual diffeomorphisms, the two key assumptions are the same as in the Newtonian

derivation: single field initial condition and adiabatic mode conditions, in particular that

all species move with the same velocity in the soft limit.

3.1.4.4 Consistency Relations Involving Tensor Modes

In this section, we move beyond dilation and special conformal transformation to dis-

cuss residual diffeomorphisms that generate tensor modes (with or without accompanying

scalar modes). We apply the same strategy as the one used for the pure scalar symmetries:
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use the full set of symmetries derived in the unitary gauge by H2K, and map each to a

symmetry in the Newtonian gauge by Eq. (3.70).

The unitary gauge residual diffeomorphisms can be written as (Eq. 3.80):

ξiunit. =
∞∑
n=0

1

(n+ 1)!
Mi`0...`nx

`0 ...x`n , (3.106)

where the constant coefficients M satisfy:

Mi```2···`n = −1

3
M`i``2···`n . (3.107)

This condition is derived by substituting the power series into Eq. (3.64): ∇2ξiunit. +

∂i(∂kξ
k
unit.)/3 = 0. Note that M by definition is symmetric in its last n+ 1 indices. Since

we are interested in M that generates tensor modes (in addition to possibly scalar modes),

we should impose an additional adiabatic transversality condition:

q̂i
[
Mij···(q̂) +Mji···(q̂)−

2

3
Mkk···(q̂)δij

]
= 0 . (3.108)

This condition can be understood as requiring that the tensor generated by our diffeomor-

phism be extensible to the ~q → 0 limit of a transverse physical tensor mode. Imagine an

M that is nearly constant but tapers off to zero at sufficiently large x. While a constant

M yields (derivatives of) a delta function peaked at ~q = 0 in Fourier space, a tapering M

yields a smoothed out version thereof. A tensor mode at a small but finite momentum

should be transverse to its own momentum. We demand that even as we take the ~q = 0

limit (allowing the tapering of M to occur at larger and larger distances), transversality

continues to hold, keeping the direction q̂ fixed. This is the content of Eq. (3.108). The

choice of q̂ is arbitrary; one could for instance choose it to point in the z direction. In

addition, if the diffeomorphism generates only tensor modes, further conditions on M
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come from Eq. (3.65): ∂iξ
i
unit. = 0 and ∇2ξiunit. = 0. This implies

M```1`2···`n = 0 and Mi```2···`n = 0 , (3.109)

i.e. that M is traceless over any pairs of indices, which also trivially satisfies Eq. (3.107).

As discussed in sec. 3.1.4.1, for each unitary gauge residual diffeomorphism, there is

a corresponding one in Newtonian gauge:

ξµ = ξµunit. + ξµadd. where ξ0
add. = − 1

3c
D′∂iξ

i
unit. , ξiadd. =

1

c
D∇2ξiunit. , (3.110)

with D being the linear growth factor and where c is a constant satisfying D′′+2HD′−c =

0. Thus, at level n, the Newtonian gauge diffeomorphism is:

ξ0 = − D′

3cn!
M```1...`nx

`1 ...x`n

ξi =
1

(n+ 1)!
Mi`0`1...`nx

`0 ...x`n +
D

c(n− 1)!
Mi```2...`nx

`2 ...x`n
. (3.111)

This expression holds for all n, with the exception of n = 0, in which case the last

term on the right for ξi is absent. One thing which is immediately clear is that for

purely tensor symmetries — diffeomorphisms that generate only tensor modes — we have

ξ0
add. = ξiadd. = 0, and so they are identical in the unitary gauge and the Newtonian

gauge, as expected. It is worth emphasizing that Eqs. (3.111) and (3.107) are general:

they apply to symmetries that generate only scalar modes, or only tensor modes, or both.

For symmetries that generate tensor modes, the adiabatic transversality expressed in Eq.

(3.108) is an additional requirement, and Eq. (3.109) applies if only tensor modes are

generated.

To derive the corresponding consistency relations, we need a master equation analo-
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gous to Eq. (3.27) but generalized to allow for the possibility of tensor modes:

∫
d3q

(2π)3

[
〈π~qO~k1

...O~kN 〉
c

Pπ(q)
∆nl.π

∗
~q +

∑
s

〈γs~qO~k1
...O~kN 〉

c

Pγ(q)
∆nl.γ

s
~q
∗

]

=∆lin.〈O~k1
...O~kN 〉

c .

(3.112)

Here, the label s denotes one of the two possible tensor polarization states; a given tensor

perturbation γij(~q) can be decomposed as γij(~q) =
∑

s ε
s
ij(q̂)γ

s
~q , where the symmetric

traceless polarization tensor εsij(q̂) obeys q̂iεsij(q̂) = 0 and εsij(q̂)ε
s′
ij(q̂)

∗ = 2δss
′
. The tensor

power spectrum is defined by 〈γs~qγs
′

~q′ 〉 = (2π)3δD(~q + ~q′)δss
′
Pγ(q).

∆nl.γij = −
(
∂iξ

j + ∂jξ
i − 2

3
δij∂kξ

k

)
. (3.113)

Eq. (3.112) can alternatively be written as:

∫
d3q

(2π)3

[〈π~qO~k1
...O~kN 〉

c

Pπ(q)
∆nl.π

∗
~q +

1

2

〈γij(~q)O~k1
...O~kN 〉

c

Pγ(q)
∆nl.γij(~q)

∗
]

=∆lin.〈O~k1
...O~kN 〉

c

(3.114)

using the fact that ∆nl.γ
s
~q
∗ = ∆nl.γij(~q)

∗εsij(q̂)/2. Let us step through a few low n examples

to get a feel for the kind of consistency relations that arise from these diffeomorphisms.

The discussion follows that of H2K, with suitable deformations to the Newtonian gauge.

For n = 0, Mi`0 can be written as the sum of a trace (dilation), an antisymmetric part

(which does not generate a nonlinear shift in the metric29) and a symmetric traceless part

(anisotropic rescaling, which generates tensor perturbations). Note that n = 0 is a special

case, in the sense that the last term of Eq. (3.111) does not exist (because ∇2ξiunit. = 0).

29Such a transformation would correspond to a time-independent rotation. See Appendix B.4 though
for the corresponding decaying mode, which although visible corresponds to a nonstandard choice of
initial conditions.
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Focusing on a symmetric traceless Mi`0 , there are five independent components. Imposing

the adiabatic transversality condition q̂iMi`0(q̂) = 0 reduces the number of independent

tensor modes to two. Thus, at the level of n = 0, we have one pure scalar and two

pure tensor symmetries. It is straightforward to infer the corresponding symmetries in

Newtonian gauge: Dilation gets deformed as discussed in sec. 3.1.4.2; and the purely

tensor symmetries take exactly the same form in the two gauges. The n = 0 anisotropic

rescaling tensor consistency relation reads:

lim
~q→0

〈γs~q δ~k1
...δ~kN 〉

c′

Pγ(q)
= −1

2
εsij(q̂)

∗
N∑
a=1

kia∂kja〈δ~k1
...δ~kN 〉

c′ , (3.115)

a relation that was first pointed out by Maldacena [3]. To derive this, we use ∆nl.γi`0(~q)∗ =

−2Mi`0(2π)3δD(~q), which gives ∆nl.γ
s
~q
∗ = −2(2π)3δD(~q) if we choose Mi`0 = εsi`0(q̂)∗. The

linear transformation of δ under the diffeomorphism ξi = Mi`0x
`0 is ∆lin.δ~k = Mi`0k

i∂k`0δ~k.

For n = 1, there are three purely scalar symmetries (the special conformation transfor-

mations) and four purely tensor ones. The special conformal transformations correspond

to

Mi`0`1 = 2(b`1δi`0 + b`0δi`1 − biδ`0`1) . (3.116)

This is manifestly symmetric between `0 and `1, and satisfies Eq. (3.107). We see that

plugging this into Eq. (3.111) reproduces Eq. (3.88), and thus the special conformal con-

sistency relation of Eq. 3.96 follows. Each of the four tensor symmetries come from an

Mi`0`1 that is symmetric between `0 and `1, fully traceless over any pair of indices, and

transverse in the sense of Eq. (3.108). The corresponding n = 1 tensor consistency relation

132



CHAPTER 3. CONSISTENCY RELATIONS AS WARD IDENTITIES

reads:

lim
~q→0

Mi`0`1

∂

∂q`1

[
〈γi`0(~q)δ~k1

...δ~kN 〉
c′

Pγ(q)

]
= −Mi`0`1

N∑
a=1

[
1

2
kia

∂2

∂k`0a ∂k
`1
a

]
〈δ~k1

...δ~kN 〉
c′ , (3.117)

where the dependence on Mi`0`1 can be removed by applying suitable projectors (see H2K).

For each n ≥ 2, there are four purely tensor symmetries and two mixed symmetries

where both π and γ transform nonlinearly. In general, any n ≥ 0 consistency relation

reads:

lim
~q→0

Mi`0`1...`n

∂n

∂q`1 ...∂q`n

[〈γi`0(~q)δ~k1
...δ~kN 〉

c′

Pγ(q)
+ δi`0

D′(η)

3c

〈π~qδ~k1
...δ~kN 〉

c′

Pπ(q)

]
=−Mi`0`1...`n

N∑
a=1

[
δi`0

∂n

∂k`1a ...∂k`na
− δi`0

δn0

N
+

kia
n+ 1

∂n+1

∂k`0a ...∂k`na

+ δi`0
D(ηa)

′

3c

(
ρ̄′

ρ̄

∣∣∣
ηa

+ ∂ηa

)
∂n

∂k`1a ...∂k`na

− n

c
δ`0`1 (D(ηa)−D(η)(1− δn1)) kia

∂n−1

∂k`2a ...∂k`na

]
〈δ~k1

...δ~kN 〉
c′ .

(3.118)

This is our most general result: each Newtonian gauge residual diffeomorphism described

by Eq. (3.111) gives rise to a consistency relation given by Eq. (3.118).30 The consistency

relations can also be written in a form in which the matrix M is projected out (see H2K).

The familiar dilation and special conformal consistency relations are contained here and

the M ’s in those cases take a form that projects out the tensor term on the left hand

side. Note that the soft modes are assumed to be at time η, while the hard modes are

30 With the exception of the dilation consistency relation (n = 0 with Mi`0 ∝ δi`0), these consistency
relations in general receive corrections on the right hand side which either involve replacing one of the
hard modes by a hard (scalar or tensor) metric perturbation, or involve higher powers of the metric
perturbations. These corrections arise because the associated diffeomorphisms generally need to be
corrected order by order in metric perturbations (H2K, [10]). What we focus on in this chapter are the
lowest order terms in the diffeomorphisms (i.e. metric-independent contributions). Even in the nonlinear
regime where density perturbations are large, the metric perturbations are in general small. Thus, the
corrections to the consistency relations are negligible in applications where the hard modes are density
(as opposed to metric) perturbations on sub-Hubble scales.
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at time ηa for each momentum ~ka. Purely tensor consistency relations follow from those

M ’s that are fully traceless. Hence we set the scalar contributions on the left hand side

to be zero (and zeroing out terms proportional to the Kronecker delta on the right hand

side as well). For n ≥ 2, there are choices of M (two for each n ≥ 2) that have a structure

that gives both non-vanishing tensor and scalar contributions on the left hand side. It is

worth pointing out that on the right hand side, the first set of terms (the second line) are

time-independent; they originate from the unitary gauge diffeomorphisms. 31 The second

set of terms (the third line) originate from ξ0
add., the additional time diffeomorphism that

is necessary to keep us in Newtonian gauge. Likewise, the last set of terms (the fourth

line) come from ξiadd., and we have used the pure tensor consistency relation at level (n−2)

to move the terms proportional to D(η) to the right hand side.

Let us study the taking of the Newtonian, i.e. sub-Hubble, limit. As explained in sec.

3.1.4.3, it is helpful to rewrite the consistency relations using δ~q ∼ q2π~q/H (the precise

relation is δ~q = q2π~qD/D
′ for the δ and π of pressureless matter in the sub-Hubble limit).

Recalling that c = D′′ + 2HD′ ∼ H2, we see that Eq. (3.118) näıvely has a sub-Hubble

limit of the schematic form:

lim
~q→0

{H2

q2

〈γ~qδ~k...〉c
′

Pγ(q)
+
〈δ~qδ~k1

...〉c′

Pδ(q)

}
∼
( q
k

)n(H2

q2
+ n

k2

q2

)
〈δ~k...〉c

′
, (3.119)

where we have equated ∂q ∼ 1/q and ∂k ∼ 1/k. Of the terms on the right hand side,

the term suppressed in the sub-Hubble limit by (H2/q2) arises from the second and third

lines of Eq. (3.118), and the unsuppressed term comes from the last line of Eq. (3.118).

It is also worth noting that the unsuppressed term is in general non-vanishing even if all

the hard modes are at the same time, as long as the soft mode is at a different time; the

n = 1 case (that gives rise to the KRPP consistency relation) is an exception rather than

31The term −δi`0δn0/N arises from the removal of delta functions. See H2K for discussion.
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the rule.

At first sight, this suggests that there is a non-trivial Newtonian limit for each n > 0,

with the n = 1 case (KRPP) being one example. This is not the case because of the

presence of tensor modes. In all n ≥ 2 cases where the diffeomorphism generates a soft

scalar, the same diffeomorphism generates a soft tensor as well. The tensor equation of

motion γ′′ij + 2Hγ′ij − ∇2γij = 0 (Eq. B.36) tells us that (1) ignoring the ∇2γij term,

then γij = const. is the growing mode solution (or more properly, the dominant mode

solution; the other mode decays); (2) allowing for a small ∇2, the growing mode tensor

solution gets corrected by a term proportional to D (see Appendix B.2); (3) when ∇2

is important, the tensor mode oscillates with an amplitude that decays as 1/a. Cases

(1) and (2) pertain to super-Hubble modes while case (3) has to do with sub-Hubble

ones. The purely tensor consistency relations follow from diffeomorphisms that are time-

independent and generate tensor modes of type (1). The mixed scalar-tensor consistency

relations follow from diffeomorphisms that generate tensor modes of type (2) (see footnote

4). In neither case are we allowed to take the soft tensor mode to within the Hubble radius.

This is in contrast with the purely scalar consistency relations (such as dilation and special

conformal transformation), where the time-dependence of the soft π~q remains the same

whether it is outside or inside the Hubble radius. One might be tempted to say: within

the Hubble radius, the tensor mode decays anyway, so why not just drop the tensor term

from the consistency relations? This is not allowed because the tensor mode enters in both

the numerator and denominator of 〈γ~q...〉c′/Pγ(q). In general this ratio is independent of

the amplitude of the tensor mode; the consistency relations express precisely this fact.
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3.2 Lagrangian space consistency relations

3.2.1 Introduction

Consistency relations are statements which relate the squeezed limit of an (N+1)-point

correlation function to an N-point function of cosmological perturbations; i.e., they take

the following schematic form in momentum space:

lim
k→0

〈πkOk1Ok2 ...OkN
〉c′

Pπ(k)
∼ 〈Ok1Ok2 ...OkN

〉c′ , (3.120)

where πk represents a squeezedmode (long wavelength) of what turns out to be a Gold-

stone boson or pion, Pπ(k) is the power spectrum of the pion (k represents the magnitude

of the vector k), and O represents observables at high momenta k1, ...,kN. The symbol

〈...〉c′ denotes the connected correlation function with the overall delta function removed.

Consistency relations can be understood as analogues of ‘soft-pion’ theorems in particle

physics, which arise generally when a symmetry is spontaneously broken/nonlinearly re-

alized. In the case of cosmology, the symmetries in question are diffeomorphisms (i.e.

coordinate transformations), and consistency relations arise from a particular set of resid-

ual symmetries of a given gauge where the transformation does not fall off at infinity. The

first example of a consistency relation was pointed out by Maldacena [3] in the context

of a computation of the three-point correlation function from inflation. The utility of

this as a test of single field/clock inflation was emphasized by Creminelli and Zaldarriaga

[79]. Recent work pointed out new symmetries and therefore further consistency relations

[4, 80], indeed an infinite tower of them [5], and explicated their non-perturbative nature

[6–8, 81–83].

These consistency relations are extremely robust: they remain valid when the high

momentum modes (O in Eq. 3.120) are deep in the nonlinear regime, and even when
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the observables are astrophysically complex (such as galaxy density). This point might

appear academic when applied to (small) perturbations in the early universe, such as are

revealed in the cosmic microwave background. When applied to large scale structure (LSS)

in the late universe, however, the robustness of the consistency relations becomes very

interesting. It thus came as welcome news when Kehagias/Riotto [8] and Peloso/Pietroni

[9] (KRPP) pointed out that non-trivial consistency relations exist even if all modes

(including the squeezed one) are within the Hubble radius, within the Newtonian regime

which is the realm of LSS (see also [9–11, 91, 92, 94, 100, 101]).

The KRPP consistency relation can be stated in the following form:

lim
k→0

〈vjk(η)Ok1(η1) ...OkN (ηN) 〉c′

Pv(k, η)
= ikj

N∑
a=1

D(ηa)

D′(η)

k · ka
k2
〈Ok1(η1) ....OkN (ηN) 〉c′ ,(3.121)

where vjk is the j-th component of the peculiar velocity in momentum space, and Pv is the

velocity power spectrum defined by 〈vik(η) vjk′
∗(η)〉 = (2π)3δD(k − k′)(kikj/k2)Pv(k, η).32

The observables can be thought of as mass or galaxy overdensity at different momenta and

times, and D and D′ represent the linear growth factor and its conformal time derivative.

The fluctuation variables will in general depend on time, although we will often suppress

the time dependence to simplify the notation: vjk (and its power spectrum) is at conformal

time η, Ok1 is at time η1, and so on. The times need not be equal. The symbol k2 denotes

k · k.

We wish to show that the KRPP consistency relation takes a particularly simple form

in Lagrangian space:

lim
p→0

〈vvvp(η)Op1(η1) ...OpN (ηN) 〉c′

Pv(p, η)
= 0 . (3.122)

32This form of the velocity power spectrum assumes no vorticity. This is acceptable since Pv(k) is used
only for small k, or large scales, where the growing mode initial condition ensures gradient flow.
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Unless otherwise stated, we use p to denote momentum in Lagrangian space and k to

denote momentum in Eulerian space. In other words:

Ok =

∫
d3xO(x)eik·x , Op =

∫
d3qO(x(q))eip·q , (3.123)

where x and q are the Eulerian space and Lagrangian space coordinates respectively.33

In both cases, we rely on context to distinguish between O in Fourier space and O in

configuration space.

Since the velocity vvv (whose j-th component is vj) is nothing other than the time

derivative of the displacement ∆∆∆ in Lagrangian space, we can also rewrite the Lagrangian

space consistency relation as:

lim
p→0

〈∆∆∆p(η)Op1(η1) ...OpN (ηN) 〉c′

P∆(p, η)
= 0 , (3.124)

where the power spectrum of displacement is defined by

〈∆i
p∆j

p′
∗〉 = (2π)3δD(p− p′)(pipj/p2)P∆(p) (3.125)

It is important to emphasize that the Eulerian space consistency relation (Eq. 3.121)

already yields a vanishing right hand side if η1 = η2... = ηN . The Lagrangian space

consistency relation (Eq. 3.122 or 3.124), on the other hand, has a vanishing right hand

side regardless of what the times η1, ..., ηN happen to be. The consistency relation can

also be viewed as a statement about how the squeezed correlation function (normalized

by the soft power spectrum) scales with the soft momentum: the Eulerian space consis-

tency relation states that such a squeezed correlation function goes like k0 (k is the soft

momentum); the Lagrangian space consistency relation states that there is no p0 term,

33The definitions given apply even in the presence of multiple streaming. See discussion in sec. 3.2.2.1.
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and at best there is a pε contribution with ε > 0.

The simplest way to derive Eq. (3.124) is to work out the implications of the KRPP

symmetry entirely within Lagrangian space. This is done in Sec. 3.2.2. We perform a

perturbative check of this Lagrangian space consistency relation using Lagrangian per-

turbation theory in Sec. 3.2.3.1. Because the Eulerian space and the Lagrangian space

relations look so different, as a further check, we show how one can be obtained from

the other in Sec. 3.2.3.2. Since observations are performed in Eulerian, not Lagrangian,

space, the fact that the consistency relation takes a particularly simple form in Lagrangian

space is mainly of theoretical interest. The simplicity of the Lagrangian space consistency

relation should not be interpreted as the lack of physical content, however – in the La-

grangian as well as in the Eulerian picture, the consistency relation can be viewed as a

test of the single-field initial condition and of the equivalence principle. Rather, the sim-

plicity suggests that an analytical understanding of nonlinear clustering might be most

promising in Lagrangian space. This will be discussed in Chapter Four.

3.2.2 The Lagrangian space consistency relation: derivation

After a brief review of notation, we derive our main result – the Lagrangian space con-

sistency relation – using the background wave argument phrased entirely in Lagrangian

space.

3.2.2.1 Notation

We use q to denote the Lagrangian space coordinate of a particle, which coincides with its

initial position, and x to denote the Eulerian space coordinate which is its position at a

later time. To be definite, in cases where multiple components are present, the Lagrangian

space coordinate q refers to that of the dark matter particle, which has only gravitational
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interactions.34 Both coordinates are defined in comoving space where the expansion of

the universe is scaled out. The (dark matter) displacement ∆∆∆ is the difference:

x (q, η) = q + ∆∆∆ (q, η) . (3.126)

The (dark matter) velocity is given by the conformal time derivative of ∆∆∆ at a fixed

Lagrangian coordinate:

vvv (q, η) =
∂∆∆∆

∂η

∣∣∣
q
. (3.127)

The (dark matter) overdensity δ can be obtained by mass conservation, assuming the

initial overdensity is negligible:

1 + δ(x, η) = |J(q, η)|−1 (3.128)

with J (q, η) being the Jacobian relating the volume elements in Eulerian and Lagrangian

space:

J(q, η) ≡ det

[
∂xi(q, η)

∂qj

]
. (3.129)

The Jacobian J as a function of q is well-defined even in the presence of multiple-streaming

– where a single x corresponds to multiple q’s – but Eq. (3.128) requires modification in

that case:

1 + δ (x, η) =
∑

x=q+∆∆∆(q,η)

|J (q, η) |−1 , (3.130)

where the sum is over all q’s that reach the same x.

Suppose we have some LSS observable O. This could represent many different quanti-

ties, such as mass overdensity or galaxy number overdensity.35 What we typically observe

34Our derivation of the Lagrangian space consistency relation would go through even if we chose the
Lagrangian coordinate to track other constituents of the universe.

35 Unless otherwise stated, whenever we discuss mass or galaxy density, we mean the mass or galaxy
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is O as a function of x (and possibly time, which we suppress). Given this function O(x),

one can define unambiguously a corresponding function of q: O(x(q)). In other words,

suppose we are interested in the value of O at a Lagrangian location q: we can define it

by working out the x that q maps to, and then evaluating O(x). This procedure is well

defined even if multiple q’s map to the same x, which is expected to happen for dark

matter in the nonlinear regime.

Some quantities defined in Lagrangian space, on the other hand, might not have

an unambiguous meaning in Eulerian space. For instance, the velocity vvv given in Eq.

(3.127) is defined for a dark matter particle labeled by the Lagrangian coordinate q. At

an Eulerian position x where multiple Lagrangian streams cross, additional inputs are

required to define a velocity; a reasonable definition is:

average vvv =

∑
x=q+∆∆∆ |J(q)|−1vvv(q)∑

x=q+∆∆∆ |J(q)|−1 , (3.131)

where the sum is over all q’s that map to the same x. This gives a mass weighted velocity.

It is interesting to contrast the Fourier transform in Lagrangian versus Eulerian space,

as described by Eq. (3.123). In particular, the Eulerian space Fourier transform can be

rewritten as (suppressing time dependence):

Ok =

∫
d3xO(x)eik·x =

∫
d3q J(q)O(x(q))eik·(q+∆∆∆) , (3.132)

where J comes without absolute value; this expression remains valid in the presence

of multiple streaming. Note how an Eulerian space Fourier transform of O(x) can be

interpreted as a Lagrangian space Fourier transform of J(q)O(x(q))eik·∆∆∆.

count per unit Eulerian space volume. Such a quantity can of course be expressed as a function of either
Eulerian space coordinate x or Lagrangian space coordinate q.
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3.2.2.2 Derivation from the displacement symmetry

We now deduce our main result, making use of a master formula derived in an earlier

paper [11]. At the heart of the consistency relation is the existence of a nonlinearly

realized symmetry, under which some field – the Goldstone boson or pion π – transforms

as π → π + ∆lin.π + ∆nl.π. Here, ∆lin.π is the part of the transformation that is linear in

π, and ∆nl.π is the part of the transformation that is independent of π (i.e., nonlinear in

π, though ‘sub-linear’ or ‘inhomogeneous’ would be a better description). The fact that

∆nl.π 6= 0 is the sign of a nonlinearly realized, or spontaneously broken, symmetry. At

the same time, there are other fields or observables O that could have their own linear

and/or nonlinear transformations. The master formula (in momentum space) reads [11]:

∫
d3p

(2π)3

〈πpOp1
· · · OpN 〉c

Pπ(p)
∆nl.π

∗
p = ∆lin.〈Op1

· · · OpN 〉c , (3.133)

where 〈...〉c refers to the connected correlation function without removing the overall delta

function (as opposed to 〈...〉c′ which has the delta function removed). Note how it is

the nonlinear transformation of π and the linear transformation of O that show up on

the left and the right respectively. Note also that the O’s need not even be the same

observable. Nor do π and the O’s need be at the same time: they can be at arbitrary,

potentially different, times. The derivation of this master formula made no assumption

about whether the quantities (or the Fourier transform thereof) are defined in Eulerian

or Lagrangian space. We are thus free to use it in either. This master relation can be

used to derive the large scale structure analog of Ward identities or soft-pion theorems in

particle physics.

As a warm-up, let us first apply this formula to a simple system that involves the dark

matter only. The dynamics is described by: (1) x = q + ∆∆∆ as in Eq. (3.126); (2) the dark

mater overdensity δ determined by the Jacobian as in Eq. (3.130); (3) the displacement
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∆∆∆ which evolves according to:

∂2∆∆∆

∂η2

∣∣∣
q

+
a′

a

∂∆∆∆

∂η

∣∣∣
q

= −∇∇∇xΦ , (3.134)

where a is the scale factor, a′ is its derivative with respect to conformal time η, Φ is the

gravitational potential and ∇∇∇x is the partial derivative with respect to x; lastly (4) the

Poisson equation:

∇2
xΦ = 4πGa2ρ̄δ , (3.135)

where G is Newton’s constant and ρ̄ is the mean mass density.

This system has the following symmetry:

q→ q , ∆∆∆→∆∆∆ + n(η) , Φ→ Φ−
(

n′′ +
a′

a
n′
)
· x , (3.136)

where n(η) is a function of time alone. We will refer to this as the displacement sym-

metry. Note how ∆∆∆ shifts by a nonlinear (or sub-linear) amount and can be thought of

as our Goldstone boson. The same is true for Φ. The interesting point is that the mass

overdensity δ does not transform at all under this symmetry. Nor are q or η transformed.

Applying the master formula, choosing the observable O = δ, we thus find:

lim
p→0

〈∆∆∆pδp1 ...δpN
〉c′

P∆(p)
= 0 . (3.137)

Here, we have used the fact that the nonlinear transformation of ∆∆∆ in Fourier space

is ∆nl.∆∆∆p = n(η)(2π)3δD(p), where δD(p) is the Dirac delta function, ∆nl. denotes the

sublinear change of quantities and ∆∆∆p denotes the displacement mode carrying momentum

p. We have also removed the overall momentum-conserving delta function. The power
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spectrum of displacement P∆ is as defined in sec. 3.2.1.

Two comments are in order before we proceed to generalize this derivation to more

realistic, astrophysically complex observables. First, while the Lagrangian coordinate q

does not transform under the symmetry of interest, the Eulerian coordinate x = q + ∆∆∆

does, because the displacement ∆∆∆ shifts. This implies that an observable like δ, when

expressed as a function of x, transforms as: δ → δ+ ∆lin.δ with ∆lin.δ = ∆∆∆ ·∇∇∇δ. Plugging

this into the master formula Eq. (3.133), we see that there is a non-vanishing right hand

side, unlike the situation in Lagrangian space where δ expressed as a function of q does

not shift at all. The is the fundamental reason why the KRPP consistency relation takes

a more complicated form in Eulerian space (Eq. 3.121) than in Lagrangian space (Eq.

3.137).

Second, the reader might wonder about the validity of our application of the master

formula: on the one hand, the master relation is phrased in terms of a scalar pion; on the

other, our application effectively uses the vector displacement ∆∆∆ as the pion. The short

answer is that the master formula is applicable to any field π that shifts nonlinearly under

the symmetry of interest; one can use it for each component of ∆∆∆ for instance. The long

answer is that since ∆∆∆ is used in the consistency relation only as a soft (long wavelength)

mode, one is justified in treating it as a gradient mode (assuming the growing mode

initial condition) with ∆∆∆ = ∇∇∇qπ and π playing the role of the displacement potential.

The master formula can then be applied with the displacement potential as the pion. The

resulting consistency relation can be shown to be equivalent to the one we have derived.36

Let us turn to the derivation of a stronger form of the Lagrangian space consistency

relation. So far, we have focused on a simple system of dark matter particles that interact

36 There are actually two different nonlinear realized symmetries associated with the displacement
potential. One is shifting it by a constant or a function of time (but not space). The other is shifting it
by a linear gradient, i.e., π → π + n · q where n is the same as that in Eq. (3.136). There are as a result
two consistency relations which can be succinctly combined into one, Eq. (3.137). See our earlier paper
[11] for further discussions.
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only gravitationally, as embodied in Eqs. (3.134) and (3.135). Let us consider the addition

of galaxies into the mix. They have their own number overdensity δg, displacement ∆∆∆g

and velocity vg = ∆∆∆′g. Their number density is not necessarily conserved by evolution,

since galaxies can form and merge:

δ′g + (1 + δg)∇∇∇x · vg = Rg , (3.138)

where ′ refers to conformal time derivative at a fixed Lagrangian coordinate and Rg is a

source term that incorporates the formation and merger rates. The equation of motion

for the galaxies is:

∆∆∆′′g +
a′

a
∆∆∆′g = −∇∇∇xΦ + Fg , (3.139)

where Fg encodes additional forces that might act on galaxies, such as gas pressure,

dynamical friction et cetera. The gravitational potential Φ is determined of course by the

Poisson equation (3.135) as before.

The displacement symmetry of Eq. (3.136) can be extended to include also:

∆∆∆g →∆∆∆g + n(η) , (3.140)

which also implies vg → vg + n′. The galaxy overdensity δg, like its dark matter coun-

terpart, does not transform under this symmetry. Eqs. (3.136) and (3.140) represent the

displacement symmetry of the combined dark-matter-galaxies system, as long as Rg and

Fg depend only on (dark matter/galaxy) densities and gradients of (dark matter/galaxy)

velocities – recall that neither shifts under our symmetry. What happens if Rg and/or

Fg depends on velocities as opposed to gradients of velocities? In that case, shifting ve-

locities by a spatially constant amount would affect the galaxy formation and dynamics
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– this is a violation of the equivalence principle which states that local physical processes

(such as galaxy formation, mergers and motion) should not be dependent on the absolute

state of motion. Note that a dependence on the dark-matter-galaxy velocity difference

v − vg, on the other hand, is consistent with the equivalence principle, and the velocity

difference is indeed unchanged under our symmetry. Thus, as long as the equivalence

principle is respected, whether Rg and Fg depend on densities, gradients of velocities or

velocity differences, the displacement symmetry holds. Furthermore, the same statement

is expected to be valid in a system with many different species, such as baryons, galaxies

or even dark matter of different kinds. The argument that leads to Eq. (3.137) can be

rerun to give the more general Lagrangian space consistency relation:

lim
p→0

〈∆∆∆p(η)Op1(η1) ...OpN (ηN) 〉c′

P∆(p, η)
= 0 , (3.141)

where O is any observable that has no linear shift under the displacement symmetry –

this includes for instance the densities, displacements and velocities of the galaxies and of

dark matter.37 Note that the O’s need not be the same observables. We have restored the

explicit time-dependence of each fluctuation variable to emphasize the fact that the times

need not be equal. Note also that we have chosen the dark matter displacement to be

the pion. We could have chosen the galaxy displacement instead. Assuming that gravity

is the dominant interaction on large scales and that adiabatic initial conditions hold, the

two displacements are expected to coincide in any case in the soft limit. Furthermore, we

could have chosen the velocity instead of the displacement as the soft-pion, in which case

Eq. (3.122) follows.

37 The reader might wonder: given that the Lagrangian coordinate q does not get transformed at all
under the displacement symmetry, is there any observable that has a linear shift? The answer is yes. For
instance, the combination O = vδ transforms to (v + n′)δ giving a shift that is linear in the fluctuation
variable δ.
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3.2.3 The Lagrangian space consistency relation: checks

The above derivation of the Lagrangian space consistency relation is a bit terse, and the

form the relation takes is surprisingly simple. It is thus worth performing some non-trivial

checks of the relation. We will first do this using second order Lagrangian perturbation

theory (sec. 3.2.3.1). Then, in sec. 3.2.3.2, we demonstrate how the Eulerian space

consistency relation can be derived from its counterpart in Lagrangian space.

3.2.3.1 Perturbative check

Let us perform an explicit check of Eq. (3.141) using second-order Lagrangian space per-

turbation theory. For simplicity, we will focus on the case where the only species present

is dark matter and the observable O = δ. We will confine the discussion to the squeezed

three-point function; extension to a general (N+1)-point function is straightforward. Ex-

panding Eq. (3.128) to second order, we have

δ(x(q, η), η) = −∇q ·∆∆∆ +
1

2
(∇q ·∆∆∆)2 +

1

2
∇qi∆∆∆

j∇qj∆∆∆
i . (3.142)

Expanding out δp = δ
(1)
p + δ

(2)
p + · · · , ∆∆∆p = ∆∆∆

(1)
p + ∆∆∆

(2)
p + · · · , and plugging into Eqs.

(3.134) and (3.135), we have [102]:

∆j
p

(1)(η) =
−i pj

p2
δ(1)
p (η) ,

∆j
p

(2)(η) =
1

2

D2(η)

D(η)2

i pj

p2

∫
d3pAd

3pB
(2π)3

δD(pA + pB − p)

(
1− (pA · pB)2

p2
Ap2

B

)
δ(1)
pA

(η)δ(1)
pB

(η) ,

δ(2)
p (η) =

1

2

∫
d3pAd

3pB
(2π)3

δD(pA + pB − p)

(
1− D2(η)

D(η)2
+

(pA · pB)2

p2
Ap2

B

[
1 +

D2(η)

D(η)2

])
δ(1)
pA

(η)δ(1)
pB

(η) ,

(3.143)
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where D is the linear growth factor determining the time-dependence of the first order

displacement (and density), and D2 is the second order growth factor determining that

of the second order displacement. They satisfy the equations:

D′′ +
a′

a
D′ − 4πGa2ρ̄D = 0 ,

D′′2 +
a′

a
D′2 − 4πGa2ρ̄D2 = −4πGa2ρ̄D2 . (3.144)

For instance, in a flat universe with Ωm = 1, D2 = −3D2/7. Using these expressions, we

can work out the lowest order contributions to the relevant squeezed bispectrum:

〈∆j
p(η)δp1(η1)δp2(η2)〉

=〈∆j
p

(2)(η)δ(1)
p1

(η1)δ(1)
p2

(η2)〉+ 〈∆j
p

(1)(η)δ(2)
p1

(η1)δ(1)
p2

(η2)〉+ 〈∆j
p

(1)(η)δ(1)
p1

(η1)δ(2)
p2

(η2)〉

=O(pj) +O(pjP∆(p)) ,

(3.145)

where we spell out the dependence on the soft momentum p: the O(pj) piece comes from

the first term on the right in the first line, and the O(pjP∆(p)) piece comes from the other

two terms. We have used the fact that 1−[(pA ·pB)2/p2
Ap2

B] = O(p2) for pA+pB = p. The

O(pjP∆(p)) piece is obviously compatible with the Lagrangian space consistency relation;

i.e., it gives 〈∆j
pδp1δp2〉c

′
/P∆(p) = 0 in the p→ 0 limit. The O(pj) piece does the same,

provided the power spectrum P∆(p) is not too blue. Parametrizing the power spectrum

P∆(p) ∝ pn−2 in the low momentum limit, the consistency relation holds as long as n < 3.

Exactly the same condition is needed for the Eulerian space consistency relation (see e.g.

[11]).38

38The Eulerian space consistency relation is often given in a form where δ is used as the soft mode.
One might be tempted to do the same for the Lagrangian space consistency relation. However, one can
check using perturbation theory that such a consistency relation would have required n < 1, a condition

considerably stronger than expected. This is related to the fact that δ
(2)
p does not vanish in the p → 0
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3.2.3.2 Recovering the Eulerian space consistency relation from Lagrangian

space

The consistency relation takes such a different form in Lagrangian versus Eulerian space

that it is worth considering how one can be derived from the other. Let us compute the

following:

E ≡ EL + ER

EL ≡ lim
k→0

〈vjk(η) δk1(η1) δk2(η2) 〉c′

Pv(k, η)
, ER ≡ −ikj

2∑
a=1

D(ηa)

D′(η)

k · ka
k2
〈δk1(η1) δk2(η2) 〉c′ .

(3.146)

The Eulerian space consistency condition is the statement that E = 0. We will content

ourselves with deriving this – a special case of the more general Eulerian space consistency

relation (3.121) – from the Lagrangian space consistency relation.

To relate E to quantities in Lagrangian space, we will slightly abuse our notation. So

far, we have been using k for the Eulerian space momentum and p for the Lagrangian

space momentum. For instance, δk1 is defined as

δk1 =

∫
d3x δ(x) eik1·x . (3.147)

Let us rewrite this as

δk1=p1 =

∫
d3q J(q) δ(x(q)) eip1·(q+∆∆∆(q))

=

∫
d3q J(q) δ(x(q)) eip1·q + ipm1

∫
d3q J(q) δ(x(q)) ∆m(q) eip1·q

− 1

2
pm1 pn1

∫
d3q J(q) δ(x(q)) ∆m(q)∆n(q) eip1·q + ... ,

(3.148)

limit, unlike ∆j
p

(2).
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where J(q) is defined by Eq. (3.129) (with no absolute value). Defining

δ̃(q) ≡ J(q)δ(x(q)) , (3.149)

we see that the first term on the right of Eq. (3.148) is δ̃p1 , i.e. the Fourier transform of

δ̃ in Lagrangian space. The other terms on the right can likewise be thought of as the

Fourier transform of some quantity in Lagrangian space. This is why we introduce p1 as

the momentum label for these Fourier components. On the other hand, upon summation,

they give the quantity on the left δk1=p1 which is the Fourier transform of density in

Eulerian space – this is why we use k1 as its momentum label; it just happens to take on

the numerical value p1 which conveniently gives us the appropriate momentum label for

quantities on the right. It is worth emphasizing that our definitions are general, in that

they are valid even in the presence of multiple-streaming (see Sec. 3.2.2.1).

The expansion in terms of ∆ in Eq. (3.148) is purely formal. In the nonlinear regime,

there is no sense in which ∆ is small. The expansion provides a convenient way to relate

the Fourier transform in Eulerian space to the Fourier transform in Lagrangian space. We

will argue E = 0 holds to arbitrary order in a power series expansion.

For the soft mode, we have

vjk=p = vjp + ... , (3.150)

This is where our abuse of notation is the most egregious: on the left is the velocity

Fourier transformed in Eulerian space; on the right is the velocity Fourier transformed in

Lagrangian space. They agree only to lowest order in perturbations. For the soft-mode,

ignoring the higher order corrections is permissible: the higher order corrections will give

higher powers of the soft momentum p compared to what is kept in the consistency
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relation, provided that the soft power spectrum Pv(p) or P∆(p) is not too blue (see sec.

3.2.3.1). Similarly, it can be shown that in the soft limit, there is no need to distinguish

between Pv in Lagrangian versus Eulerian space.39

Let us substitute Eq. (3.148) for the hard modes, and Eq. (3.150) for the soft mode,

into the expression for E in Eq. (3.146). Consider first what contributes to EL:

〈vjk=pδk1=p1δk2=p2〉 =〈vjpδ̃p1 δ̃p2〉

+

[
ipm1

∫
d3pA
(2π)3

〈vjp∆m
pA

(η1)δ̃p1−pA δ̃p2〉+ 1↔ 2

]

−
[

pm1 pn2

∫
d3pA
(2π)3

d3pB
(2π)3

〈vjpδ̃p1−pA∆m
pA

(η1)δ̃p2−pB∆n
pB

(η2)〉

+
[1

2
pm1 pn1

∫
d3pA
(2π)3

d3pB
(2π)3

〈vjpδ̃p1−pA−pB∆m
pA

(η1)∆n
pB

(η1)δ̃p2〉+ (1↔ 2)
]]

+O(∆3) + ...

(3.151)

where we have largely suppressed the time-dependence to minimize clutter (η for the soft

mode, and η1 and η2 respectively for the hard modes), except for variables with internal

momenta. We emphasize that the expansion in ∆ is purely formal, and comes entirely

from expanding eip1·∆∆∆ or eip2·∆∆∆. The first term on the right can be set to zero by virtue of

the Lagrangian space consistency condition (keeping in mind that this term is divided by

Pv(p) as part of the quantity EL). We will be assuming the Lagrangian space consistency

relation in its general form (Eq. 3.122):

lim
p→0

〈vvvp(η)Op1(η1) ...OpN (ηN) 〉c′

Pv(p, η)
= 0 , (3.152)

39 It is also worth emphasizing that the notion of a well-defined velocity in Eulerian space is valid
only when multiple-streaming is ignored. This is acceptable for the soft-mode. We do not assume single-
streaming for the hard modes.
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where the observables at hard momenta need not be the same observable. Finally, note

that while we are interested in the connected part of the correlator on the left hand side

of Eq. (3.151), the correlators on the right hand side are the full correlators, minus the

contributions where some proper subset of the original hard and soft momenta sum to

zero. In particular, the correlators on the right hand side of Eq. (3.151) contain both

connected and disconnected pieces.

The second term on the right of Eq. (3.151), formally O(∆), equals

ipm1

∫
d3pA
(2π)3

[
〈vjp∆m

pA
(η1)〉〈δ̃p1−pA δ̃p2〉

+ 〈vjpδ̃p1−pA〉〈∆m
pA

(η1)δ̃p2〉+ 〈vjpδ̃p2〉〈∆m
pA

(η1)δ̃p1−pA〉

+ 〈vjp∆m
pA

(η1)δ̃p1−pA δ̃p2〉c
]

+ (1↔ 2) ,

(3.153)

where the connected trispectrum term 〈vjp...〉c (anticipating division by Pv(p)) can be set

to zero using the Lagrangian space consistency relation. The terms involving 〈vjpδ̃p1−pA〉,

〈vjpδ̃p2〉 and the like have one more power of the soft momentum p (and are thus subdom-

inant) compared to terms involving 〈vjp∆m
pA
〉, which give:

(2π)3δD(p1 + p2 + p)Pv(p, η) ipj
D(η1)

D′(η)

p1 · p
p2
〈δ̃p1+p(η1)δ̃p2(η2)〉c′ + (1↔ 2) . (3.154)

The third term on the right of Eq. (3.151), formally O(∆2), can be treated in a similar

way: some can be ignored by assuming the Lagrangian space consistency relation, some

are subdominant in the soft-limit (i.e., they vanish upon division by Pv(p) and sending
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p→ 0), and the dominant terms are those that involve 〈vjp∆〉 which give:

−(2π)3δD(p1 + p2 + p)Pv(p, η)

∫
d3pA
(2π)3

[
pjpm2

D(η1)

D′(η)

p1 · p
p2
〈δ̃p1+p(η1)δ̃p2−pA(η2)∆m

pA
(η2)〉c′ +

pjpm1
D(η1)

D′(η)

p1 · p
p2
〈δ̃p1+p−pA(η1)δ̃p2(η2)∆m

pA
(η1)〉c′ +

(1↔ 2)

]
.

(3.155)

Thus, combining Eqs. (3.154) and (3.155), EL of Eq. (3.146) can be rewritten as:

EL ≡ lim
p→0

〈vjk=p(η) δk1=p1(η1) δk2=p2(η2) 〉c′

Pv(p, η)

= ipj
D(η1)

D′(η)

p1 · p
p2
〈δ̃p1(η1)δ̃p2(η2)〉c′ −∫

d3pA
(2π)3

[
pjpm2

D(η1)

D′(η)

p1 · p
p2
〈δ̃p1(η1)δ̃p2−pA(η2)∆m

pA
(η2)〉c′

+ pjpm1
D(η1)

D′(η)

p1 · p
p2
〈δ̃p1−pA(η1)δ̃p2(η2)∆m

pA
(η1)〉c′

]
+ (1↔ 2) + ... .

(3.156)

Next, let us rewrite ER using the same strategy:

ER ≡− ipj
2∑

a=1

D(ηa)

D′(η)

p · pa
p2
〈δk1=p1(η1) δk2=p2(η2) 〉c′

=− ipjD(η1)

D′(η)

p · p1

p2
〈δ̃p1(η1) δ̃p2(η2) 〉c′

+

∫
d3pA
(2π)3

[
pjpm2

D(η1)

D′(η)

p1 · p
p2
〈δ̃p1(η1)δ̃p2−pA(η2)∆m

pA
(η2)〉c′

+ pjpm1
D(η1)

D′(η)

p1 · p
p2
〈δ̃p1−pA(η1)δ̃p2(η2)∆m

pA
(η1)〉c′

]
+ (1↔ 2) + ... .

(3.157)

Thus, we see that E ≡ EL + ER = 0, at least to the two lowest non-trivial orders in
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∆. The cancelation works like this: expanding eip1·∆∆∆ and eip2·∆∆∆ as a formal power series

in ∆, a given order for EL is canceled by one lower order for ER. It can be shown that

this pattern continues to arbitrarily high orders. The proof is given in the Appendix.

This completes our derivation of the Eulerian space consistency relation, embodied in the

statement E = 0 (Eq. 3.146), from the Lagrangian space consistency relation (Eq. 3.152).
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Conclusions

In this thesis we discussed extensively how holography and locality are related in the

quantum field theory description of cosmology, and the implications of symmetries, espe-

cially conformal symmetries. There is a one-to-one map between the conformal group and

the isometry group of dS and AdS, which makes it possible to establish the AdS/CFT

and dS/CFT dualities. In the large-N limit, this duality between bulk and boundary

local observables holds. The AdS and dS isometries are linearly realized by the fields

defined on the space, but in the actual cosmology, the background solution breaks the

de Sitter group. For instance the inflationary geometry is only approximately de Sitter,

with the deviation from de Sitter space controlled by the slow-roll parameter. Even in

these cases conformal symmetries play unexpected while important roles. As residual

gauge transformations they are non-linearly realized by the cosmological fluctuations and

thus constraints on the soft limits of the correlation functions as Ward identities can be

derived. Below we make a brief overview and discussions of the chapters.

In Chapter 2 we made progress in the construction of de Sitter bulk operators in terms

of non–local boundary operators. For heavy scalars with m2 >
(
d
2

)2
the construction

recovers the bulk Wightman function in the Euclidean vacuum state. The construction is
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state–dependent: for different vacuum states in de Sitter space, we have different de Sitter

and CFT correlation functions, and thus different construction prescriptions relating bulk

observables and boundary operators.

We have performed the construction at the level of two point function, which is at

order N0 in the large–N expansion. To go beyond this one would like to think about

three–point functions with each of the bulk operators corresponding to two boundary

operators. There can be more subtleties than in AdS case. For instance, the three–point

function of scalars in de Sitter space, with one scalar deep inside de Sitter and two others

close to the boundary, is schematically

〈Φ(η1,x1)Φ(η2 ∼ 0,x2)Φ(η3 ∼ 0,x3)〉 ∼

(η2η3)∆

∫
d3x′1K+(η1,x1|x′1)〈O+(x′1)O+(x2)O+(x3)〉+

η∆
2 η

d−∆
3

∫
d3x′1K−(η1,x

′
1|x′1)〈O+(x′1)O+(x2)O−(x3)〉+ . . .

which involves all the boundary three–point functions that are constructed from O±. As

in the AdS case, one would expect that the bulk lightcone singularities will show up

in each of these terms, thus breaking microcausality. The hope is to include towers of

multi–trace operators into the construction and recover microcausality.

One can also consider bulk operators in de Sitter space in other coordinates, apart

from the flat and the global patch. The static patch would be a very interesting case.

Once we go into the static patch, we have no asymptotic boundaries anymore—they are

behind the horizon, so one can ask in that case what data should be used to construct

the local operators. Possibly the approaches people take for the problem of constructing

local observables behind the horizon of an eternal black hole in AdS could shed some light

on it. There, although the interior is separated from the boundary by a horizon, still the

construction from the boundary is shown to be possible with extra degrees of freedom
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involved—either from the CFT’s thermofield double [55] or from a fine–grained sector

in the CFT [32]. In de Sitter space, it is not clear if a similar construction will work.

There are proposals for static patch holography such as dS/dS[33][48] and static patch

solipsism[34], in which the dual theory to the static patch lives on the central slice of dS

slicing and the central worldline1 respectively. It would be interesting to explore whether

and how the discussion of operator dictionaries and bulk locality can be extended to these

proposals. A related question is how to understand local fields when bubble nucleation

is considered. We have already mentioned the possible subtleties which may potentially

falsify the existence of a dS/CFT correspondence. One of them is the metastability

of de Sitter space. As eternal inflation populates the landscape, what appears in the

asymptotic future may be a fractal of FRW universes in nucleated bubbles, instead of

a flat Euclidean space on which we can define a Euclidean CFT. Since our construction

is state–dependent, it refers to a certain background spacetime. Thus the nucleation of

bubbles could potentially modify the construction prescription dramatically. However

from the point of view of a FRW universe as a semi–classical background, the notion of

microcausality should be well–defined. A proposal for a holographic description of an

FRW universe in the Coleman–de Luccia bubble is described in [49], aiming to giving a

holographic description to eternal inflation. Thus one may think about how to formulate

local bulk physics in terms of the dual data in such a proposal.

All the constructions that we presented in Chapter Two are about empty de Sitter

space in certain vacuum states. One can also think about black holes in de Sitter space.

The construction of local operators behind the event horizon of an eternal black hole in

anti de Sitter space has been performed by several authors, such as in [55], where the

construction is established for the BTZ black hole in AdS2+1 as a special case, and a local

1The de Sitter slicing of de Sitter static patch refers to the coordinate system that covers the static
patch of dSd+1 with slices of dSd, the central slice is the slice that passes through the center of the static
patch. The central worldline is the worldline with respect to which one defines the static patch at hand.
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operator inside a black hole is shown to involve operators in both a conformal field theory

and its thermo–field double. In [32] the construction is generalized to an eternal black

hole in AdS of generic dimensions. The construction data one uses are from a single copy

of CFT, established with the help of “mirror operators”. It would be interesting to think

about black holes in de Sitter space, how the structure of a CFT with its thermo–field

double is realized in a de Sitter black hole, and how observables behind the black hole

horizon can be constructed.

In Chapter three we discussed the existence of residual gauge transformations in the

theory of large scale structure, and their implications for the LSS correlation functions,

especially correlation functions involving overdensities. Here is a summary of the main

results in this chapter:

Consistency relations connect the soft limit ofN+1-point correlation functions withN -

point functions; they are the analogs of soft-pion theorems for cosmology. The physics of

soft pions is governed by chiral symmetry, and similarly consistency relations are derived as

Ward identities for a set of spacetime coordinate transformations. These transformations

are diffeomorphisms that are not nailed by the gauge conditions. In ζ-gauge, schematically

the consistency relations take the form:

lim
~q→0

∂nq

[
〈ζ~qO~k1

...O~kN 〉
c′

Pζ(q)
+ Θ(n− 1)

〈γ~qO~k1
...O~kN 〉

c′

Pγ(q)

]
∼ ∂nk 〈O~k1

...O~kN 〉
c′ , (4.1)

where ζ and γ are the (soft) curvature and tensor perturbations, Pζ and Pγ are their

respective power spectra, and O represents some observables of interest at hard momenta

~k1, ...~kN . Higher n corresponds to high powers of x in the corresponding symmetry trans-

formation and higher powers of soft momentum in the consistency relation.

The fact that consistency relations arise from symmetries makes them robust against

some of the complex dynamics due to gravitational lumping, which makes these relations
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interesting in the study of large scale structure. We work in the sub-Hubble scale in

Newtonian gauge and find a tower of symmetries and corresponding consistency relations,

schematically these relations are:

lim
~q→0

∂nq

[
H−1
〈π~qO~k1

...O~kN 〉
c′

Pπ(q)
+ Θ(n− 1)

〈γ~qO~k1
...O~kN 〉

c′

Pγ(q)

]

∼
[
∂nk + nH−2∂n−2

k

]
〈O~k1

...O~kN 〉
c′ ,

(4.2)

where π~q is the soft velocity potential. The precise form is given in Eq. (3.118).

These consistency relations are not based on assumptions on specific dynamics of the

hard modes, but they are not completely free of assumptions. There are three underlying

assumptions backing the consistency relations: the existence of nonlinearly realized sym-

metries, the single field initial condition, and the adiabatic mode condition. The adiabatic

mode condition states that a zero-momentum mode generated by a symmetry transfor-

mation is physical only when it satisfies the equations of the system at a small but finite

momentum. This means that in a universe with multiple particle species, all the particles

must move with the same velocity on large scales, implying that the equivalence principle

is obeyed in the large scale, while in the short scale different matter contents can move

differently. Only in this way can the large scale motion of the matter fluid be reproduced

by a single soft mode which obeys the equations of motion.

Another subtlety is that in consistency relations the soft momentum q is taken to zero

and thus should be super-Hubble in the strict sense. We are interested in the sub-Hubble

dynamics and would like to take both hard and soft modes within the Hubble scale:

H < q � −→k a. This is not always possible since it is not always true that the soft mode

has the same time dependence in and out of the Hubble scale. If the soft mode is the

velocity potential π it is true that sub-Hubble and super-Hubble modes have the same

time dependence and thus the consistency relations involving soft π can be pushed inside
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the Hubble scale. For soft overdensity mode δ and soft tensor γ this is not in general true.

Though the LSS correlation functions involve hard modes that can be well inside

the nonlinear scale and the physics at short scale can be highly non-perturbative and

astrophysically complex, to derive the symmetries and consistency relations, the only

thing we need to know is how the observables transform. Though independent of the

short scale physics of galaxy formation and mergers, the consistency relations do require

that in the large scale all objects fall in the same way. Thus a violation of consistency

relations, if observed, may lead to the violation of equivalence principle in the large scale.

Further we showed that the consistency relation takes a particularly simple form in

Lagrangian space: the squeezed correlation function with a soft displacement field vanishes

(Eqs. 3.124):

lim
p→0

〈∆∆∆p(η)Op1(η1) ...OpN (ηN) 〉c′

P∆(p, η)
= 0 , (4.3)

where ∆ is the displacement field in Lagrangian space, and O can be different observables

such as mass or galaxy density; the quantities can be at different times, and p,p1,p2, ...

label the momenta with p being the soft one.2 The derivation given in 3.2.2.2 is fully

non-perturbative and is valid even in the presence of multiple-streaming. It follows the

derivation in an earlier paper [11], which relates an (N + 1)−point function to the linear

transformation of an N−point function, for a general nonlinearly-realized symmetry (Eq.

3.133). The reason why the right-hand side of the consistency relation vanishes and we

have a particularly simple form is that the symmetry shifts the displacement field without

transforming the Lagrangian coordinate q (Eq. 3.136):

q→ q , ∆∆∆→∆∆∆ + n(η) , Φ→ Φ−
(

n′′ +
a′

a
n′
)
· x , (4.4)

2See also Eq. 3.122 with velocity vvv as the soft mode.
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where ∆∆∆ is the displacement, n is some function of time, Φ is the gravitational potential, a

is the scale factor and x is the Eulerian coordinate.3 Thus, observables O such as the mass

density or the galaxy density4 , when expressed as functions of the Lagrangian coordinate

q, do not receive linear transformations, and so the right-hand side of the master formula

vanishes. 5 This contrasts with what happens when these observables are thought of as

functions of the Eulerian coordinate x. They then receive linear transformations because

under the symmetry transformation, the Eulerian coordinate shifts:

x→ x + n(η) . (4.5)

Though the consistency relation we study can be written in a very simple, even trivial

form in Lagrangian space, it does not mean that it is free of physical content . The

consistency relation can be violated if certain physical conditions are not met, such as

if the initial condition were not of the single-field/clock type. Rather, the simplicity

suggests an analytic understanding of nonlinear clustering is perhaps more promising in

Lagrangian space. This view has a long history, starting from Zeldovich [103]. What is

interesting is that the consistency relation, by virtue of its being a symmetry statement,

is non-perturbative, and thus goes beyond perturbation treatments such as the Zeldovich

approximation.

In reality, observations are performed in Eulerian space, not Lagrangian space. At the

nonlinear level, the relation between the two descriptions is complex. Our derivation of

the consistency relation in Eulerian space from its counterpart in Lagrangian space re-

quires a formal series expansion in the displacement ∆. In relating the two descriptions,

3If there are multiple species present such as dark matter and galaxies, the same transformation applies
to the displacement of all species. See Eq. (3.140).

4See footnote 35 in Chapter 3.
5Note that even quantities such as ∆ or Φ have no linear shift (a shift that is linear in fluctuation

variables). More complicated observables could have a linear shift; see footnote 37 in Chapter 3.
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the expansion in ∆ is done in an uneven manner: only phase factors such as eip1·∆∆∆ are

expanded even though other variables, such as the density δ, also depend on the displace-

ment. This is not unexpected in relations that are supposed to be non-perturbative –

partial resummation of perturbations is often a useful technique. It would be interesting

if this particular example we concern can lead to a more general resummation scheme.

A natural question is whether there are relativistic generalizations of statements like

Eq. (4.3) – consistency relations with a vanishing right hand side. The Lagrangian coordi-

nate (attached to dark matter particles) is essentially the freely-falling coordinate. Indeed

[106] showed that using the freely-falling coordinate, the dilation consistency relation [3]

can be rewritten in a similarly simple form (see also [107]). Their derivation is pertur-

bative. It should be possible to extend their proof using the non-perturbative arguments

presented here. More generally, it would be interesting to see if further general relativistic

consistency relations, such as those found by [5], can also be recast in this fashion. The

hope is to find the infinite tower of symmetries and consistency relations in Lagrangian

space and further to see if it is possible to resum these relations into a Ward-Takahashi

identity for gauge symmetries.
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Appendix for holographic

representation of operators

A.1 Integration

Here we evaluate the integral

f(α, β) =

∫
|x′|<η

ddx′
(
η2 − x′2

η

)α
1

(x + x′)2β
(A.1)

For convenience we make the choice x1 = |x| ≡ R, x2 = · · · = xd = 0, thus we have

f(α, β) = V ol(Sd−2)

∫ η

0

drrd−1

(
η2 − r2

η

)α ∫ π

0

sind−2 θdθ

(R2 + 2Rr cos θ + r2)β
(A.2)

where

V ol(Sd−2) =
2π

d−1
2

Γ(d−1
2

)
(A.3)

Using the formulae:
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∫ π

0

sin2µ−1 θ

(1 + 2a cos θ + a2)ν
dθ =

Γ(µ)Γ(1
2
)

Γ(µ+ 1
2
)
F

(
ν, ν − µ+

1

2
, µ+

1

2
, a2

)
∫ 1

0

(1− x)µ−1xγ−1F (α, β, γ, ax)dx =
Γ(µ)Γ(γ)

Γ(µ+ γ)
F (α, β, γ + µ, a)

we then have

f (α, β) =
π
d
2 Γ(α + 1)

Γ(α + d
2

+ 1)

ηα+d

|x|2βF
(
β, β − d

2
+ 1, α +

d

2
+ 1,

η2

x2

)
(A.4)

Also to get the near–boundary two–point Wightman function we need the following prop-

erty of the hypergeometric function:

F (α, β, β, z) = (1− z)−α (A.5)

A.2 Smearing Function from Green’s Function

In de Sitter space, an operator near the past boundary can be expressed by operators in

the CFT:

Φ(η → 0,x) ∼ η∆O+ + ηd−∆O− (A.6)

Then if we want to probe deeper into de Sitter space, we need something like

Φ(η,x) =

∫
K+(η,x|x′)O+(x′) +

∫
K−(η,x|x′)O−(x′) (A.7)

Here it is important that we have both components, which means that the correct con-

struction of a local operator in de Sitter space is not an analytic continuation from anti

de Sitter space; otherwise, we would spoil microcausality.
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Here the bulk operator is linked to the boundary CFT operators by a retarded Green’s

function defined as

Gret(x, x
′) ≡ GE(x, x′)−GE(x′, x) (A.8)

with GE being the Wightman function in Euclidean vacuum.

Here we just need the asymptotic form of Gret in the limit η′ → 0:

Gret|η′→0 ∼ c∆,d(−σ − iε)∆−d + c∗∆,d(−σ − iε)−∆ − c.c (A.9)

The bulk operator is evaluated by:

Φ(η,x) =

∫
|x′|<η

ddx′
(

1

η′

)d−1

(Gret(η,x; η′,x′)∂η′Φ(η′,x′)− Φ(η′,x′)∂η′Gret(η,x; η′,x′))

(A.10)

Taking a partial derivative on the retarded Green’s function and working in the small η′

limit, we have

∂η′Gret ∼
1

η′
(
c(∆− d)(−σ − iε)∆−d − c∗∆(−σ − iε)−∆ + c∗∆(−σ + iε)−∆ − c(∆− d)(−σ + iε)∆−d)

(A.11)

Therefore for Φ+ ∼ η∆O+ we have

(
1

η′

)d−1

[Φ+(η′,x′)∂η′Gret(η,x|η′,x′)−Gret(η,x|η′,x′)∂η′Φ+(η′,x′)]

= (η′)
∆−d [

cd
(
(−σ + iε)∆−d − (−σ − iε)∆−d)+ 2c∗∆

(
(−σ + iε)−∆ − (−σ − iε)−∆

)]
O+

Here the factor (η′)∆−d cancels with the factor of η′ with the inverse power from σ∆−d

and gives a well-defined limit when η′ → 0, but it doesn’t cancel with the factor in σ−∆,

leading to a fast oscillation when η′ → 0 so the term proportional to σ−∆ vanishes.

176



APPENDIX A. APPENDIX FOR HOLOGRAPHIC REPRESENTATION OF
OPERATORS

For Φ− ∼ ηd−∆O− we have

(
1

η′

)d−1

[Φ−(η′,x′)∂η′Gret(η,x|η′,x′)−Gret(η,x|η′,x′)∂η′Φ−(η′,x′)]

= η′−∆
[
2c(∆− d)

(
(−σ − iε)∆−d − (−σ + iε)∆−d)+ c∗d

(
(−σ + iε)−∆ − (−σ − iε)−∆

)]
O−

Similarly we only have the contribution from the terms proportional to σ−∆

To evaluate the integration kernel, we notice that outside the bulk lightcone σ ∝

η2− (x−x′)2 < 0 so the ε prescription can be dropped and the integral gives a vanishing

result. When we analytically continue the result into the bulk lightcone, the ε prescription

will give a phase shift proportional to Im (∆− d) and Im (−∆) respectively. For instance,

in

(−σ + iε)∆−d (A.12)

the cut starts from σ = iε. To analytically continue we go under the branch point and

thus get a phase e
−iπ

(
i

√
m2− d2

4

)
and therefore

(−σ + iε)∆−d − (−σ − iε)∆−d = −2ieiπ(∆−d) sin (πi (∆− d))σ∆−d (A.13)

In this way for O+ we have a smearing function proportional to (ση′)δ−d and for O− we

have a smearing function proportional to (ση′)−∆
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A.3 A Property of Hypergeometric Function

In finding the asymptotic form of the scalar two–point Wightman function, we find the

relation below very useful:

F (α, β, γ; z) =
Γ(γ)Γ(β − α)

Γ(γ − α)Γ(β)
(−z)−αF

(
α, α− γ + 1, α− β + 1;

1

z

)
+

Γ(γ)Γ(γ − α− β)

Γ(α)Γ(γ − β)
(−z)−βF

(
β, β − γ + 1, β − α + 1;

1

z

)

We see here that when z →∞ the function nicely splits into two parts with behaviors z−α

and z−β. They give two components with different scaling dimensions in the Wightman

function.

This relation is true when neither α − β nor γ − α − β is an integer, and is thus

applicable to the case when a de Sitter scalar has mass parameter

m2 >

(
d

2

)2

(A.14)

as well as to light particles with non–integer dimensions. However, for gauge fields the

dimensions are integers determined by the spin and spatial dimension, so this property is

not applicable.

A.4 Higher Spin Fields in AdS and dS

Here we briefly review some results about general integer spin gauge field in AdSd+1,

following [14].

Massless gauge fields in AdS are represented by totally symmetric rank–s tensors
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ΦM1...Ms satisfying double–tracelessness conditions;

ΦMN
MNM5...Ms

= 0 (A.15)

The linear equation for a spin–s gauge field on AdS is [35]

∇N∇NΦM1...Ms−s∇N∇M1ΦN
M2i...Ms

+
1

2
s(s−1)∇M1∇M2ΦN

N...Ms
−2(s−1)(s+d−2)ΦM1...M3 = 0

(A.16)

This equation is invariant under the gauge transformation

ΦM1...Ms → ΦM1...Ms +∇M1ΛM2...Ms , ΛN
NM3...Ms

= 0 (A.17)

We can choose the holographic gauge in which all the z–components of the gauge field

vanish [14]

Φz...z = Φµ1z...z = · · · = Φµ1...µs−1z = 0 (A.18)

The bulk gauge field is dual to a totally symmetric, traceless, conserved rank–s tensor

on the boundary:

Oννµ3...µs
= 0 , ∂νOνµ3...µs

= 0 (A.19)

Therefore, to be consistent we have to set

Φν
νµ3...µs

= 0 , ∂νΦ
ν
µ3...µs

= 0 (A.20)

thus we get:

(
∂2
z + ∂α∂

α
)

Φµ1...µs +
2s+ 1− d

z
∂zΦµ1...µs +

2(s− 1)(2− d)

z2
Φµ1...µs = 0 (A.21)
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We define

Yµ1...µs = zsΦµ1...µs (A.22)

as a multiplet of scalars. The equation for Yµ1...µs is

∂α∂
αYµ1...µs + zd−1∂z

(
z1−d∂zYµ1...µs

)
− (s− 2)(s+ d− 2)

z2
Yµ1...µs = 0 (A.23)

which is just the free scalar equation with mass parameter

m2 = (s− 2)(s+ d− 2) (A.24)

corresponding to scaling dimension

∆ = s+ d− 2 (A.25)

The near–boundary behavior of Yµ1...µs is

Yµ1...µs ∼ z∆Oµ1...µs (A.26)

So one can directly construct the bulk spin–s field:

Φµ1...µs =
Γ
(
s+ d

2
− 1
)

π
d
2 Γ (s− 1)

1

zs

∫
t′2+|y′|2<z2

dt′dd−1y′
(
z2 − t′2 − |y′|2

z

)s−2

Oµ1...µs(t+ t′,x+ iy′)

(A.27)

for fields with integer spin s > 1

We see that the field behaves like z∆−s = zd−2 near the boundary.

The reason why Yµ1...µs turns out to be a scalar is that it is actually the components
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of the gauge field in a vierbein basis. In AdS we have that

e µ
a = zδ µ

a (A.28)

and

e µ1
a1

. . . e µs
as Φµ1...µs ≡ Ya1...as (A.29)

are scalars because they don’t actually carry any spacetime indices—they are defined with

respect to a certain vierbein basis at each point in the spacetime. It is a bit of abuse of

the notation not to distinguish Ya1...as and Yµ1...µs , but at the end of the day we multiply

the inverse vierbeins and recover Φµ1...µs and it does not matter whether we make the

vierbeins explicit.

In de Sitter space, the free field equation for Yi1...is is obtained by direct analytic

continuation:

Ÿi1...is +
1− d
η

Ẏi1...is +

(
(2− s)(s+ d− 2)

η2
− ∂2

j

)
Yi1...is = 0 (A.30)

which matches with the generic form of scalar equations in dS:

(
�−m2

)
φ = 0→ φ̈+

1− d
η

φ̇+

(
m2

η2
− ∂2

j

)
φ = 0 (A.31)

Thus Yi1...is is a free scalar muitiplet in de Sitter space with mass m2 = (2− s)(s+ d− 2),

with the “dot” meaning a derivative with respect to conformal time η.
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Appendix B

Appendix on Consistency Relations

B.1 A Lagrangian for Fluid with Pressure

In this Appendix, we connect the LSS Lagrangian discussed in Sec. 3.1.3.2 with a more

commonly used fluid Lagrangian. We will continue to work within the zero vorticity

regime. For generalizations to include a non-vanishing vorticity, see [97]. Let us consider

the following action:

S =

∫
d4x
√−g

[
1

2
M2

PR + P(X) + ...

]
, (B.1)

where the first term is the Einstein-Hilbert action, and P(X) is the fluid action, where

P is some function of X ≡
√
−gµν∂µφ∂νφ with φ describing the single degree of freedom

of an irrotational fluid.1 The ... stands for other possible matter or energy content in the

universe, i.e. the background expansion need not be determined solely by the P(X) fluid

in question. This is a completely relativistic action, and has been used by many authors

[87, 88]. Our goal here is to take the non-relativistic limit, and connect the result with

1 The vanishing of vorticity can be expressed covariantly as εµνρσuν∂ρuσ = 0.
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the action in sec. 3.1.3.2 (Eq. 3.58).

We assume a metric of the form:

ds2 = a2
[
−(1 + 2Φ)dη2 + (1− 2Ψ)d~x2

]
. (B.2)

The fluid energy-momentum Tµν can be obtained from the fluid action by
√−gTµν =

−2δSfluid/δg
µν :

Tµν = 2P,X∂µφ∂νφ+ gµνP (B.3)

which is the energy-momentum of a perfect fluid, with the 4-velocity Uµ, energy density

ρ and pressure P given by:

Uµ =
−∂µφ√
X

, ρ = 2XP,X − P , P = P . (B.4)

A fluid with an equation of state P = wρ can be modeled by a P(X) of the form:

P(X) ∝ X
1+w
2w . (B.5)

We are interested in the case of a small w. Let us split φ into a background φ̄(η) and a

perturbation:

φ = φ̄+ δφ , π ≡ −δφ/φ̄′ , (B.6)

where we have defined π in terms of the field fluctuation δφ. This definition is consistent

with the interpretation of π as the velocity potential, as can be seen by working out Uµ

in terms of φ and equating Uµ = a−1(1, ~v); i.e. vi = ∇iπ to the lowest order in the
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perturbation. The background φ̄ obeys:

∂η(a
4ρ̄/φ̄′) = 0 , (B.7)

which implies φ̄′ ∝ a1−3w, using the fact that ρ̄ ∝ a−3(1+w). We denote by X̄ the value of X

evaluated at φ = φ̄. Using the fact that P = wρ, we find that 1+δ = (1+[δX/X̄])(1+w)/2w,

which implies

2w

1 + w
ln(1 + δ) = ln

(
1 +

δX

X̄

)
(B.8)

Assuming both w and δX/X̄ are small, but without assuming δ is small, we can approx-

imate this by

2w ln(1 + δ) ∼ δX

X̄
. (B.9)

Let us write out δX/X̄ explicitly in terms of the metric and φ fluctuations:

δX

X̄
= −2

[
Φ +

1

a
(aπ)′ +

1

2
(∇π)2

]
, (B.10)

Here we have approximated φ̄′ ∝ a (for small w), assumed Φ ∼ v2 . π′ ∼ Hπ � 1, and

ignored higher order terms. (we regard Φ2, Φ′ and wΦ as both higher order). Eqs. (B.9)

and (B.10) combine to give:

−w ln(1 + δ) = Φ +
1

a
(aπ)′ +

1

2
(∇π)2 , (B.11)

Applying the spatial gradient on this equation reproduces the Euler equation in the pres-

ence of pressure (Eq. 3.46), upon identifying w with c2
s, the sound speed squared.
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We are interested in rewriting the action in Eq. (B.1) in terms of the fluctuations. In

other words, we are not so much interested in the background as in the dynamics of the

fluctuations. Thus, we ignore the background term in
√−g[M2

PR/2 + P(X)]. We also

remove (tadpole) terms that are linear in fluctuations – they only serve to multiply the

background equation of motion. Thus, we have (in the sub-Hubble, non-relativistic limit):

S = SEH + Sfluid

SEH =

∫
d4x a2M2

P (∇iΨ∇iΨ− 2∇iΨ∇iΦ)

Sfluid =

∫
d4xwa4ρ̄

[
1 + w

2w

δX

X̄
+

(
δ − 1 + w

2w

δX

X̄

)]
, (B.12)

where SEH comes from the Einstein-Hilbert action, and Sfluid comes from the fluid part

of the action. For the latter, we have used the fact that P(X) = wρ = wρ̄(1 + δ), and

removed the background piece wρ̄. We add and subtract (1 + w)δX/(2wX̄) to facilitate

the removal of tadpole terms that arise from expanding out (1 + δ) = (1 + δX/X̄)1+w/2w.

We are to understand the last line as follows: the first (1 + w)δX/(2wX̄) term should be

understood to have the linear fluctuations removed, while the second (1 + w)δX/(2wX̄)

term has all terms in it.2 The fluid part of S is therefore

Sfluid =

∫
d4x a4ρ̄

[
−1

2
(∇π)2 + F

]
, (B.13)

where F is

F ≡ w

(
δ − 1

2w

δX

X̄

)
, (B.14)

2The determinant
√−g contains terms of order Φ and Φ2. Terms of order Φ multiplying the back-

ground are removed as tadpoles. Surviving terms can be seen to multiply at least one factor of w or of
v2 ∼ Φ (the latter with no compensating 1/w), and so are small compared to what we keep (which are
of order v2 or v2(v2/w)).
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with δ and δX understood to be expressible in terms of Φ and π using Eqs. (B.9) and

(B.10). We have already verified that the Euler equation with pressure holds (Eq. (B.11)).

From the point of view of the action Sfluid, this merely serves as a definition for δ. Let us

verify that we obtain the Poisson and continuity equations by varying the action. First,

we see that Ψ can be integrated out by setting Ψ = Φ. In other words, let us work with

the action:

S =

∫
d4x

{
−a2M2

P (∇Φ)2 + a4ρ̄

[
−1

2
(∇π)2 + F

]}
. (B.15)

The variation of F when we vary Φ, using Eqs. (B.9) and (B.10), is

∆F =
1

2

∆δX

X̄
δ = −δ∆Φ , (B.16)

giving us

∆S =

∫
d4x [2a2M2

P∇2Φ− a4ρ̄δ]∆Φ , (B.17)

and therefore the Poisson equation. This assumes that the only fluctuations sourcing Φ

are from the P(X) fluid. This can of course be relaxed. The π equation of motion, on

the other hand, follows from

∆F =
1

2

∆δX

X̄
δ = −

[
1

a
(a∆π)′ +∇iπ∇∆π

]
δ , (B.18)

which together with the variation ∆
(
−1

2
(∇π)2

)
gives us the continuity equation δ′ +

∇i[(1 + δ)∇iπ] = 0.

The action in Eq. (B.13) is a bit hard to use, because F involves a fairly nonlinear

function of the fields. There are two possible simplifications.
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We are interested in the w → 0 limit. Keeping δ finite, Eq. (B.11) tells us

Φ = −1

a

[
(aπ)′ +

1

2
a(∇π)2

]
(B.19)

which is just the pressureless Euler equation again. Sending F → 0, and substituting the

above into Eq. (B.15), we obtain:

S = −
∫
d4x

[
1

2
ρ̄a4(∇π)2 +M2

P

(
∇
[
(aπ)′ +

1

2
a(∇π)2

])2
]

(B.20)

reproducing Eq. (3.58) that we wrote down in Sec. 3.1.3.2. This justifies the normalization

and sign that was adopted there.

The other possible simplification is to expand out (1 + δ) = (1 + δX/X̄)1+w/2w to

second order in δX/X̄. We have resisted doing so earlier, because doing so effectively

assumes δX/X̄ is parametrically smaller than w (which is itself small). This is equivalent

to assuming small δ, something we might not want to impose. It is nonetheless instructive

to see what results:

S =

∫
d4x

{
−a2M2

P (∇Φ)2 +
1

2
a4ρ̄

[
−(∇π)2 + c−2

s

(
1

a
(aπ)′ + Φ +

1

2
(∇π)2

)2
]}

,(B.21)

where we have set w = c2
s. In the context of this action, we treat δ as defined by:

−c2
sδ = Φ +

1

a
(aπ)′ +

1

2
(∇π)2 . (B.22)

Notice how this differs from Eq. (B.11) in replacing ln (1 + δ) by δ on the left hand

side. The reason for this definition is so that the Φ equation of motion gives the Poisson

equation as usual. The π equation of motion can be seen to give the continuity equation.
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In other words, the full set of equations in this system are:

δ′ +∇i[(1 + δ)vi] = 0 , v′i + vj∇jvi +Hvi = −∇iΦ− c2
s∇iδ , ∇2Φ = 4πGρ̄a2δ .(B.23)

This is the set of equations one expects for a fluid with pressure, except the pressure

term in the Euler equation is slightly modified from the non-perturbative one displayed

in Eq. (3.46). Aside from this modification, this system of equations has the correct

nonlinear structure. In particular, on length scales above the Jeans scale i.e. k < kJ

where k2
J ≡ a2ρ̄/(2M2

P c
2
s), one can ignore the pressure term, and the system reduces

exactly to the standard pressureless LSS equations (Eq. 3.12). A useful feature of the

action in Eq. (B.21) is that it shows clearly that π has a kinetic term of the correct sign.

To summarize, the fluid action Eq. (B.15) gives the exact nonlinear equations for the

perturbations of a fluid with pressure in the Newtonian limit. It simplifies in the zero-

pressure limit to the action in Eq. (3.58), which gives the exact nonlinear equations for

a pressureless fluid. It can be approximated by the action in Eq. (B.21) which gives a

linearized pressure term for the Euler equation, but otherwise retains the full nonlinear

structure of the exact theory.

B.2 Derivation of the General Relativistic Adiabatic

Mode Conditions in Newtonian Gauge

In this Appendix, we derive the adiabatic mode conditions appropriate for the Newtonian

gauge, and derive the additional diffeomorphism laid out in Eq. (3.68).

For the purpose of deriving consistency relations, it is important that the modes gener-

ated nonlinearly by the symmetries be the low momentum limit of actual physical modes,

i.e. they must obey adiabatic mode conditions (see sec. 3.1.3.1). For the low momentum
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modes (and for them only), it is sufficient to consider the linearized Einstein equations,

and study the time-dependence they imply for the perturbations. The linearized Einstein

equations in Newtonian gauge are:

− 1

2
δG0

0 = −4πGδT 0
0 → ∇2Ψ− 3H(Ψ′ +HΦ) = 4πGa2

∑
(ρ− ρ̄) , (B.24)

1

2
δG0

i = 4πGδT 0
i → −∂i (Ψ′ +HΦ) +

1

4
∇2Si = 4πGa2

∑
(ρ̄+ P̄ )(vi + Si) (B.25)

1

6
δGk

k =
4π

3
GδT kk → Ψ′′+H(Φ′+2Ψ′)+(2H′+H2)Φ− 1

3
∇2(Ψ−Φ) = 4πGa2

∑
(P−P̄ )

(B.26)

δGi
j −

1

3
δijδG

k
k = 8πG

(
δT ij −

1

3
δijδT

k
k

)
→(

∂i∂j −
δij
3
∇2

)
(Ψ− Φ)− (∂0 + 2H)∂(iSj) + (∂2

0 + 2H∂0 −∇2)
γij
2

= 8πG

(
δT ij −

1

3
δijδT

k
k

)
.

(B.27)

We have allowed the possibility that there might be multiple fluid components present (for

instance dark matter, baryons, radiation, etc.), hence the summation on the right hand

side, though we suppress the label for each component. Also useful are the linearized

conservation equations, assuming each fluid is individually conserved. The continuity

equation for each fluid component is

δ′n + ∂ivi = 3Ψ′ , (B.28)
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where δn is related to the density fluctuation δ ≡ (ρ−ρ̄)/ρ̄ by (1+w)δn = δ, with w = P/ρ

being the equation of state parameter of the fluid component of interest. This definition

of δn is motivated by the fact that ρ̄ ∝ a−3(1+w), and so it is ρ̄[1/(1+w)] that redshifts like

a−3, i.e. one can think of n ≡ ρ[1/(1+w)] as the “number” density, and of δn as its fractional

(small) fluctuation (for instance, for w = 1/3, n would be the number density of photons).

In deriving Eq. (B.28), it is useful to know that H2 −H′ = 4πGa2
∑

(ρ̄ + P̄ ). Note also

that, in an analogous manner to Eq. (3.74):

∆nl.δn = 3Hξ0 . (B.29)

The relativistic Euler equation for each component is:

(vi + Si)
′ + (1− 3w)H(vi + Si) = −∂iΦ− w∂iδn , (B.30)

where we have assumed the fourth Einstein equation has a vanishing source.3 Decompos-

ing this last equation into scalar, vector and tensor parts, we have

(
∂i∂j −

δij
3
∇2

)
(Ψ− Φ) = 0 , (B.31)

(∂0 + 2H)∂(iSj) = 0 , (B.32)

(∂2
0 + 2H∂0 −∇2)γij = 0 . (B.33)

Following Weinberg [84], we demand that the (nonlinear part of the) symmetry-

generated perturbations (as described in Sec. 3.1.4.1), solve the Einstein equations in

a non-trivial way, that is, in a way that works even if we deform those perturbations

slightly away from the zero momentum q = 0 limit. (See Eq. 3.19 for the Newtonian

3This does not strictly hold if for instance the fluid is made out of a collection of relativistic particles,
but it is a reasonably good approximation in LSS. In essence, we assume Φ = Ψ, and (a2Si)

′ = 0.
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analog of this statement.) For scalar fluctuations, we therefore insist:

scalar adiabatic mode condition : Ψ = Φ , −(Ψ′ +HΦ) = 4πGa2
∑

(ρ̄+ P̄ )π ,(B.34)

which comes from removing the spatial gradients from Eq. (B.31) and the scalar part of

Eq. (B.25). Similarly, (if vector modes are present) the vector adiabatic mode conditions

are:

vector adiabatic mode condition : (∂0 + 2H)Si = 0 , (v⊥i + Si)
′ + (1− 3w)H(v⊥i + Si) = 0 ,(B.35)

which comes from Eq. (B.32) and the transverse component of Eq. (B.30) (v⊥i is the

transverse part of the velocity vi, i.e. the vorticity component). Note how the vector modes

have only a single solution, which decays. Since single field inflation cannot generate vector

modes, we will not consider them further here. The tensor adiabatic mode condition is

simply the tensor equation of motion (B.33):

tensor adiabatic mode condition : γ′′ij + 2Hγ′ij −∇2γij = 0 . (B.36)

Note that we do not wish to simply set the gradient to zero, because we are interested

in diffeomorphisms generating a γij that is the soft limit of a finite momentum physical

mode.

Applying the above conditions to the (nonlinear part of the) symmetry-generated

perturbations (Eqs. 3.67 and 3.72), we obtain:

ξ0′ + 2Hξ0 +
1

3
∂iξ

i = 0 , ∂iξ
i′ = 0 , γij = −

(
∂iξ

j + ∂jξ
i − 2

3
δij∂kξ

k

)
. (B.37)

The first equality enforces Φ = Ψ. The second equality enforces the second part of
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the scalar adiabatic mode condition, with the understanding that in the soft limit, all

fluid components share the same velocity perturbation π. The third equality equates the

tensor mode with the traceless part of the spatial metric generated by the diffeomorphism.

This holds only if a certain gauge condition is satisfied such that the scalar contribution

to the spatial metric resides entirely in its trace (see below). As far as the adiabatic

mode condition is concerned, the important point is that γij defined this way satisfies

the tensor equation of motion (B.36). These three expressions constitute the adiabatic

mode conditions on residual diffeomorphisms in Newtonian gauge. For a diffeomorphism

to respect the Newtonian gauge, it must satisfy

∂iξ
0 = ∂0ξ

i , ∇2ξi +
1

3
∂i(∂kξ

k) = 0 (B.38)

such that ∆nlg0i = 0 and the traceless part of ∆nlgij is transverse (see Eq. 3.67).

As discussed in Sec. 3.1.4.1, one way to organize the set of Newtonian-gauge diffeo-

morphisms that satisfy Eqs. (B.37) and (B.38) is to relate each such diffeomorphism to a

corresponding known residual diffeomorphism in the unitary gauge ξunit. (Eq. 3.70):

ξ0 = ξ0
add. , ξi = ξiunit. + ξiadd. , (B.39)

where the time-independent ξiunit. is supplemented by a time- and space- diffeomorphism

ξ0
add., ξ

i
add.. The time-independent unitary-gauge diffeomorphism ξiunit. satisfies Eq. (3.64).

Comparing this with Eq. (B.38), we see that ξiadd. itself must satisfy the same: ∇2ξiadd. +

∂i(∂kξ
k
add.)/3 = 0. For this reason, we might as well absorb any time-independent part

of ξiadd. into the definition of ξiunit.. From the second condition in Eq. (B.37), we see that

∂iξ
i
add must be independent of time. Suppose it is equal to some function f(x). One can

express ξiadd. as a gradient and a curl (plus possibly some function that depends only on
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time). The divergence of the gradient is what matches up with f(x), i.e. the gradient part

is time-independent, and so by definition, it should have been absorbed into ξunit. already.

Thus, we can set f(x) = 0 and we can assume ∂iξ
i
add. = 0 without loss of generality. The

first condition of Eq. (B.37) thus tells us

ξ0
add.
′ + 2Hξ0

add. +
1

3
∂iξ

i
unit. = 0 (B.40)

Recall from Eq. (3.72) that ∆nl.π = ξ0 = ξ0
add.. From Appendix B.3, we see that π in the

soft limit has the time dependence of D′, where D(η) is the linear growth factor satisfying:

D′′ + 2HD′ − c = 0 (B.41)

where c is a constant. Comparing this against Eq. (B.40) and keeping only the growing

solution, we see that

ξ0
add. = − 1

3c
D′∂iξ

i
unit. , (B.42)

confirming the time-diffeomorphism of Eq. (3.68). We can then solve for ξiadd. from the

first expression of Eq. (B.38) which tells us that ∂iξ
0
add. = ∂0ξ

i
add., i.e.

ξiadd. = − 1

3c
D∂i(∂kξ

k
unit.) =

1

c
D∇2ξiunit. , (B.43)

where the second equality follows from Eq. (3.64). This confirms the space-diffeomorphism

of Eq. (3.68). As a self-consistency check, one can see that Eq. (3.64) also implies that

∂iξ
i
add. = 0. Lastly, it can also be checked that the tensor mode created by this diffeo-

morphism (the third expression of Eq. B.37) obeys the tensor equation of motion. To see

this, it is useful to note that because ξiunit. satisfies ∇2ξiunit. + ∂i(∂kξ
k
unit.)/3 = 0, we also
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know that ∇2∂kξ
k
unit. = 0, ∇2∂iξ

j
unit. = −∂i∂j∂kξkunit./3, and ∇2∇2∂iξ

j
unit. = 0.4 It is worth

noting that for pure tensor symmetries, where ∂iξ
i
unit = 0, both ξ0

add. and ξiadd. vanish, and

so the pure tensor symmetries coincide in the Newtonian gauge and unitary gauge, as

they should.

B.3 Derivation of the General Relativistic Velocity

Equation

Our goal in this Appendix is to derive the following equation for the velocity potential

π:

(π′ + 2Hπ − C)′ − 3wH(π′ + 2Hπ − C) = w(g′ +Hg)− (1 + 3w)
[
(H2 −H′)π − 4πGa2

∑
(ρ̄+ P̄ )π

]
,(B.44)

where g ≡
∫
dη∇2π, and C, determined by initial conditions, is a constant in time but

not space . Here, π refers to the velocity potential of some particular fluid component

of interest with an equation of state parameter w – except in the very last term where∑
(ρ̄+ P̄ )π refers to a sum over all fluid components. We will use this equation to deduce

useful statements about the time-dependence of π in the soft limit.

The continuity equation (B.28) can be integrated once to obtain:

δn = 3(Ψ + C)− g , g ≡
∫
dη∇2π , (B.45)

where C denotes an integration constant that is independent of time, but in general

dependent on space. This can be substituted into (the scalar part of) the relativistic

4 In other words, the combined action of ξiunit. + ξiadd. generates a tensor mode of the form
γij = [1 + (D/c)∇2]γijunit. where γijunit. is the tensor mode generated by the time-independent uni-
tary diffeomorphism alone. That the constant tensor (growing) mode gets corrected at finite momentum
by a term proportional to momentum squared should not be surprising. The time dependence can also
be checked explicitly by solving the tensor equation of motion in the small but finite momentum limit.
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Euler equation (B.30) and integrated once to give

π′ +H(1− 3w)π = −(1 + 3w)Ψ− 3wC + wg . (B.46)

On the other hand, (the scalar part of) the δG0
i equation (B.25) can be integrated once

to obtain

−(Ψ′ +HΨ) = 4πGa2
∑

(ρ̄+ P̄ )π , (B.47)

where we have assumed Ψ = Φ. One can solve for Ψ from Eq. (B.46), substitute the

result into Eq. (B.47), and subtract from both sides (H2 −H′)π. This gives Eq. (B.44).

Note that in this derivation, we have not thrown away any gradient terms; i.e., we have

not made any super-Hubble approximation.

Equation (B.44) simplifies if π happens to be the same for all fluid components, in

which case what appears within the square brackets sums to zero, by virtue of H2−H′ =

4πGa2
∑

(ρ̄ + P̄ ). This happens, for instance, if we work on super-Hubble scales and

assume adiabatic initial conditions. One can check that this is a self-consistent solution

on super-Hubble scales, and assuming all fluid components move with the same π, the

entire right hand side of Eq. (B.44) vanishes, implying:

π′ + 2Hπ − C ∝ a3w . (B.48)

This suggests different fluid components (with different w’s) evolve differently, unless the

proportionality constant is in fact zero, i.e.

π′ + 2Hπ − C = 0 . (B.49)
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With this choice of the initial condition, it is thus consistent to have the same π for all

fluid components on super-Hubble scales. Interestingly, for pressureless matter (w = 0),

Eq. (B.49) holds even on sub-Hubble (but linear) scales, after radiation domination. This

can be seen by setting w = 0 in Eq. (B.44), and noting that during matter or cosmological

constant domination, the terms within the square brackets still sum to zero. This means

that for a mode (of pressureless matter) that enters the Hubble radius after radiation

domination, Eq. (B.49) holds for its entire history. For a mode that enters the Hubble

radius before matter domination, however, Eq. (B.49) does not hold in the intermediate

period when the mode is within the Hubble radius during the radiation dominated phase.5

As we see in sec. 3.1.4.2, the fact that Eq. (B.49) holds for pressureless matter both

inside and outside the Hubble radius (as long as the mode of interest crosses the Hubble

radius after radiation domination) enables us to have interesting consistency relations in

the Newtonian limit. It is also worth noting that since ∂iπ describes the dark matter

velocity on all (linear) scales, including sub-Hubble ones, where we know the velocity

scales with time as D′ (D being the linear growth factor), we expect

D′′ + 2HD′ − c = 0 , (B.50)

where c is some constant whose normalization is arbitrary – its normalization is tied to

the normalization of the growth factor D. That this relation holds for the Newtonian

growth factor in a matter dominated universe is easy to check: D ∝ a. That this is true

for more general cases is less familiar. Let us check this for a universe with a cosmological

constant.

For a flat universe with pressureless matter and a cosmological constant, the linear

5 It is worth pointing out that Eq. (B.49), when substituted into Eq. (B.46) gives Ψ = −(π′ +Hπ) –
this holds as long as the wg term can be ignored, which can be justified either for super-Hubble scales,
or for w = 0.

196



APPENDIX B. APPENDIX ON CONSISTENCY RELATIONS

growth factor can be written in closed form [99]:

D =
5Ω0

m

2

H(a)

H0

∫ a

0

dã

(ãH(ã)/H0)3
, (B.51)

where Ω0
m is the matter density today, H0 is the Hubble constant today, and the normal-

ization is chosen such that D equals the scale factor a in the early universe. Note that

H = a′/a2 whereas H = a′/a.

Let us rewrite what we want to show, Eq. (B.50), as follows:

H
d

da

(
a4H

dD

da

)
= c . (B.52)

First, note that

d

da

(
H

H0

)
= −3Ω0

m

2a4

H0

H
. (B.53)

We can therefore work out:

dD

da
= −3Ω0

m

2a4

H0

H

5Ω0
m

2

∫ a

0

dã

(ãH(ã)/H0)3
+

5Ω0
m

2

H2
0

a3H2
. (B.54)

Therefore,

d

da

(
a4H

dD

da

)
=

5Ω0
m

2

H2
0

H
, (B.55)

implying the desired result Eq. (B.52).
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B.4 Decaying Modes and Vector Symmetries

At several places in our discussion we have omitted the second solution to the scalar and

tensor equations of motion, which decays at late times. It is worth discussing the decaying

solution in a little more detail, both for completeness and because the reasons for ignoring

it are slightly subtle.

The decaying solution arises at the linearized level because both the scalar and tensor

equations of motion for the linearized modes (Eq. (3.16) or Eq. (B.50), and Eq. (B.36))

are second order. In particular, we note that Eq. (B.50) for the linear growth factor D(η)

can allow for a decaying piece D′ ∝ 1/a2 which is independent of c as well as the strictly

growing piece (which does depend on having c 6= 0, and which is what is usually meant

by the linear growth factor). The decaying piece corresponds to varying the lower limit

of the integral in Eq. (B.51), which is arbitrary. It is straightforward to check that this

solution gives the correct decaying solution δ ∝ H/a for Eq. (3.16) in the Newtonian

limit, using the helpful lemma

H′ −H2 = −4πGNa
2Σ(ρ̄+ P̄ ) = −4πGN ρ̄matter ∝

1

a2
(B.56)

in a ΛCDM universe. From Eq. (B.40), the most general diffeomorphism ξ0
add.andξ

i
unit. +

ξiadd. involving scalar and tensor modes allowed by the adiabatic mode conditions includes

the decaying piece

ξ0
add.,decay =

d(x)

a2

ξiadd.,decay =

∫ η ∂id(x)

a2

(B.57)

where d(x) is harmonic because of Eqs. (B.37) and (B.38). It is straightforward to check

that this satisfies the tensor equation B.36 in the super-Hubble limit as well.
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Note that the decaying mode is independent of the time-independent (growing mode)

unitary transformation, and so the diffeomorphism corresponding to a decaying mode is

a separate symmetry. We can Taylor expand as in Sec. 3.1.4.4 to write the most general

decaying symmetries as

ξ0
decay =

1

n!

1

a2
M```1···`nx

`1 · · ·x`n , ξidecay =
1

(n− 1)!

∫ η 1

a2
M i

```2···`nx
`2 · · ·x`n . (B.58)

for (n ≥ 1), where the M ’s are constant and obey the usual transversality and adiabatic

transversality conditions.

Can we derive consistency relations for the decaying modes using these symmetries,

using Eq. (3.27) or its generalization Eq. (3.112)? We argue that the answer is no, though

it is not enough to say that these simply decay away. Rather, keeping the decaying modes

would correspond to a nonstandard choice of the initial vacuum state in the far past: if the

decaying mode is not set to zero the energy associated with these modes (the scalar part

of the action scales like ρa4 ∼ a2(∇Φ)2 ∼ H2/a2) becomes divergent at early times. Had

we chosen to ignore this problem and work within the putative vacuum containing only

decaying modes, we could have, in which case the lack of the time-dependent piece would

make our consistency relations look slightly different from Eq. (3.118). Note that it is not

true that the consistency relations should vanish in this case because the modes decay

at late times: this is because the consistency relation is a ratio between the (N+1)-point

function and the power spectrum, both of which decay, but the ratio on the right hand

side does not.

For the sake of completeness, we discuss the case where the symmetries may involve

vector modes – unlike the scalars and tensors, these have only a decaying solution. The
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condition

∇2ξi +
1

3
∂i(∂jξ

j) = 0. (B.59)

on the spatial part of the diffeomorphism will still be obeyed, but the condition ∂0ξ
i = ∂iξ

0

will be violated and replaced by the weaker condition

∇2ξ0 = ∂0∂iξ
i = 0. (B.60)

where in the second equality we have made use of the second equation in Eq. (B.37).

Using the vector adiabatic mode conditions (Eq. (B.35)) we have

(∂iξ
0 − ∂0ξ

i)vec. =
ξ̄i

a2

(∂iξ
0)vec. ∝

1

a

(B.61)

where ξ̄i is transverse and time-independent. The second of these conditions is clearly

incompatible with the first condition in Eq. B.37:

ξ0′ + 2Hξ0 +
1

3
∂iξ

i = 0, (B.62)

unless (∂iξ
0)vec. vanishes, and so the vector part of the symmetry will be ξ̄i

∫
dη
a2 ⊂ ξi. We

can Taylor expand

ξ̄i =
∑ 1

(n+ 1)!
M̄ i

`0`1···`nx
`0 · · · x`n (B.63)

The M̄ ’s are completely traceless, and they obey the usual tensor transversality conditions

Eqs. (3.107), (3.108) as well, so these are vector-tensor symmetries. Note that they obey
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the tensor equation of motion Eq. (B.36) on superhorizon scales, though they correspond

to the decaying mode solution. For n ≥ 1 there will be four such symmetries at each

level. For n = 0, there are additional symmetries with M̄i`0 antisymmetric in the indices;

these correspond to time-dependent rotations.6 They will obey the further adiabatic

transversality condition

q̂i(M̄i`0(q̂)− M̄`0i) = 0 (B.64)

which will reduce the number of allowed polarizations from 3 to 2. Since a localized

rotation necessarily involves shearing, we need this condition to enforce transversality in

addition to the antisymmetric tensor structure.

To summarize, at n = 0 there are two purely vector symmetries, and for n ≥ 1 there

are four vector plus tensor symmetries. Since vector modes always decay, for our choice

of vacuum there are no consistency relations that involve vector modes.

B.5 Recovering the Eulerian space consistency rela-

tion from Lagrangian space – to arbitrary orders

in displacement

In Sec. 3.2.3.2, we argue that the Eulerian space consistency relation follows from its

Lagrangian space counterpart, at least to the two lowest non-trivial orders in a formal

expansion in displacement. In this Appendix, we show that this works to arbitrary orders.

6Note that for n ≥ 1, the tensor structure that is antisymmetric in the first two indices and symmetric
in the last n+ 1 will vanish identically.
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We begin by expanding Eq. (3.148) to all orders in ∆:

δk1=p1 =

∫
d3q J(q) δ(x(q)) eip1·(q+∆∆∆(q))

=
∞∑
n=0

in

n!
pi11 · · · pin1

∫
pj1 ,··· ,pjn

δ̃p1−pj1−···−pjn∆i1
pj1
· · ·∆in

pjn

(B.65)

where, as before, δ̃(q) = J(q)δ(x(q)). Collecting together the terms of order ∆n in the

three-point correlator 〈vjp(η)δp1(η1)δp2(η2)〉 in EL, we have

n∑
m=0

im

m!

in−m

(n−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2
∫
pj1 ,··· ,pjn

〈vjp(η)δ̃p1−pj1−···−pjm (η1)∆i1
pj1

(η1) · · ·∆im
pjm

(η1)

· δ̃p2−pjm+1
−···−pjn (η2)∆im+1

pjm+1
(η2) · · ·∆in

pjn
(η2)〉

(B.66)

where the correlator in the integral is the full correlator containing both connected and

disconnected pieces, but where no proper subset of the original momenta p,p1,p2 sums

to zero, since it is the connected correlator that appears in EL. The correlator can be

split into a sum over products of connected blocks. Anticipating division by Pv(p), we

see that the Lagrangian space consistency relation implies that all contributions where

the soft velocity vj(p) is part of a connected correlator with two or more other fields will

vanish. All the remaining terms contain factors such as

〈vj(p)δ̃p1−···〉 , 〈vj(p)δ̃p2−···〉 , 〈vj(p)∆pj(η1)〉 , 〈vj(p)∆pj(η2)〉 . (B.67)

The first two types of terms will be suppressed by an additional power of the soft mo-
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mentum, and are subdominant in the squeezed limit. The final set of terms are

n∑
m=0

im

m!

in−m

(n−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2
∫
pj1 ,··· ,pjn

[
m〈vjp(η)∆i1

pj1
(η1)〉〈δ̃p1−pj1−···−pjm (η1)

·∆i1
pj1

(η1) · · ·∆im
pjm

(η1)δ̃p2−pjm+1
−···−pjn (η2)∆im+1

pjm+1
(η2) · · ·∆in

pjn
(η2)〉

]

+ (1↔ 2)

(B.68)

and they give (relabelling m as m+ 1)

[
ipj

p · p1

p2

D(η1)

D′(η)

n−1∑
m=0

in−1

m!(n− 1−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2
∫
pj1 ,··· ,pjn

〈δ̃p1+p−pj1−···−pjm (η1)

·∆i1
pj1

(η1) · · ·∆im
pjm

(η1)δ̃p2−pjm+1
−···−pjn (η2)∆im+1

pjm+1
(η2) · · ·∆in

pjn
(η2)〉

]

+ (1↔ 2)

(B.69)

Comparing this to the order ∆n−1 terms in the expansion of ER,

[
− ipjp · p1

p2

D(η1)

D′(η)

n−1∑
m=0

in−1

m!(n− 1−m)!
pi11 · · · pim1 p

im+1

2 · · · pin2
∫
pj1 ,··· ,pjn

〈δ̃p1−pj1−···−pjm (η1)

·∆i1
pj1

(η1) · · ·∆im
pjm

(η1)δ̃p2−pjm+1
−···−pjn (η2)∆im+1

pjm+1
(η2) · · ·∆in

pjn
(η2)〉

]

+ (1↔ 2)

(B.70)

the terms cancel in the p → 0 limit to give EL + ER = 0 order by order in the formal

expansion in ∆, Q.E.D.
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