
A Family of Latent Variable Convex Relaxations for IBM
Model 2

Andrei Arsene Simion

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015



c©2015

Andrei Arsene Simion

All Rights Reserved



ABSTRACT

A Family of Latent Variable Convex Relaxations for IBM
Model 2

Andrei Arsene Simion

The IBM translation models of (Brown et al., 1993) [8] were the first Statistical Machine Translation

(SMT) systems; their primary use in the current SMT pipeline is to seed more sophisticated models

which need alignment tableaus to start their optimization procedure. Although there are several IBM

Models, only IBM Model 1 can be formulated as a convex optimization problem. Other IBM Models

have non-concave objective functions with multiple local optima, and solving to optimality the non-

convex problems that arise on account of these complex objectives is typically a computationally

intractable task. This thesis focuses on the formulation and analysis of several new convex alignment

models in SMT.

We now give a high level summary of this thesis.

In Chapter 1 we first give a general review of SMT and present some examples. In the second

half of Chapter 1 we give a very specific outline of the contributions of this thesis. In Chapter 2 we

focus on the relevant definitions which are ubiquitous in the paper and provide a literature review.

The alignment and SMT summary on the IBM Models that we present is developed further in

several sources, for example, in [8; 24; 28; 43].

Chapter 3 of this work details research found in [33] and [34]. Specifically, we describe the first

convex relaxation of IBMModel 2, design an algorithm for its optimization, and conduct experiments

showing that the model’s performance is on par with that of the non-convex IBMModel 2. Moreover,

we also derive a specific decoding rule for the new convex model and highlight some applications

which given the new model favorable F-Measure performance.

In Chapter 4 we focus on work presented in [35] and [36]. In [35] we introduced a generalization

of the previous results [33]. These new results not only subsume the previous work but also provide

some new favorable alternatives. Specifically, the main of this chapter looks at a new relaxation



of IBM Model 2 based on the geometric mean. This new relaxation can be optimized via an EM

algorithm that does not require the tuning of a learning rate. As before, the new relaxation performs

on par with IBM Model 2 even though it is not the tightest relaxation in terms of objective value

(in this section we also also show that the model in [33] is actually the tightest relaxation for IBM

Model 2). Furthermore, the mechanism we introduce allows one to create a plethora of relaxations

which could be studied and optimized by the EG algorithm detailed in [33]. Lastly, we also look at

an application of the technique to IBM Model 1 [36]. As was shown in [41], IBM Model 1 is not a

strictly convex optimization problem and because of this there is some alignment variance within

its optimal solution set. We present a variant of IBM Model 1 that is strictly convex without the

need to append an l2 loss. The benefit of this last model is that there is no penalty cost to choose or

learning rate to carefully set: the particular reparameterization we study allows for an EM algorithm

that is as easy to implement as the original EM algorithm of IBM Model 1. On some level, this work

on IBM Model 1 is an attempt to formalize (via another path) some of the heuristic improvements

studied in the notable work of (Moore, 2004) [27] over ten years ago.

The final technical Chapter 5 of this thesis outlines an attempt [37] to find a convex alternative

to the hidden Markov model (HMM), typically knows as IBM Model 2.5 [43]. Unlike IBM Model

2 which assumes the latent alignments variables are independent, the HMM allows alignments to

depend on each other via “jump" parameters. The HMM can be optimized by an EM algorithm and

is a very powerful, but unfortunately it still needs to be seeded carefully as the model is not convex.

To attack this problem, we detail a powerful new variant of IBM Model 2 which combines some

of the structure of HMM and then derive a relaxation of this surrogate. Although the new convex

model does not beat the HMM, experiments shows that it performs well against other baselines: it

still substantially improves (over 30%) upon IBM Model 2’s performance, does better in practice

than the popular new FastAlign [16] IBM Model 2, and is close in performance to the HMM.



Table of Contents

List of Figures iv

1 Introduction 1

1.1 NLP and Statistical Machine Translation . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Introduction to Statistical Machine Translation (SMT) . . . . . . . . . . . . . 1

1.1.2 Problem Specifics in SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Alignment Models in SMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Convex Alignment Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 The IBM Alignment Models 9

2.1 Convexity and Statistical Machine Translation . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Convexity and Convex Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 The IBM Model 1, IBM Model 2, and HMM Optimization Problems . . . . . . . . . 11

2.3.1 Noisy-Channel Approach to SMT . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 IBM Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 IBM Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.5 The HMM Alignment Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Extracting the Viterbi Alignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Alignment Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 A Literature Survey of Alignment Models . . . . . . . . . . . . . . . . . . . . . . . . 22

i



3 A Convex Alternative to IBM Model 2 27

3.1 A Convex Relaxation of IBM Model 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 The I2CR-1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 The I2CR-2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Convex Optimization via Exponentiated-Gradient Descent . . . . . . . . . . . . . . . 31

3.3 A Stochastic Exponentiated-Gradient Algorithm for Optimization . . . . . . . . . . . 35

3.4 I2CR-2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 The Viterbi Alignment for I2CR-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.6.1 Initialization and Timing Experiments . . . . . . . . . . . . . . . . . . . . . . 45

3.6.2 Viterbi Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 A Family of Latent Variable Convex Relaxations for IBM Model 2 50

4.1 A Class of Concave Functions based on the Generalized Weighted Mean . . . . . . . 50

4.2 A Family of Convex IBM Model 2 Alternatives . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 The I2CR-3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 The I2CR-4 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3 An EM Algorithm for I2CR-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Decoding with I2CR-3 and I2CR-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.5.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6 A Strictly Concave IBM Model 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6.1 Parameter Estimation via EM . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.6.2 Choosing β and α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.7 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ii



5 A Convex Alternative for the HMM Alignment Model 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Distortion and Transition parameter structure . . . . . . . . . . . . . . . . . . . . . . 72

5.2.1 Distortion Parameters for IBM2 . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2.2 Transition Parameters for HMM . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Combining IBM Model 2 and the HMM . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Parameter estimation for IBM2-HMM . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 A Convex HMM Alternative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.6 An EM algorithm for The Convex HMM Alternative . . . . . . . . . . . . . . . . . . 77

5.7 Decoding methods for the IBM2-HMM problem . . . . . . . . . . . . . . . . . . . . . 78

5.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.8.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.9 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Conclusion 84

Bibliography 85

iii



List of Figures

1.1 An example alignment between two sentences. The mathematics behind this align-

ment varies from model to model with some examples given in Chapter 2. . . . . . . 4

1.2 An alignment and phrase extraction table for two sentences. Consistent alignments

are circled in boxes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 The IBM Model 2 Optimization Problem. . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Pseudocode for T iterations of the EM Algorithm for the IBM Model 2 problem. . . 18

2.3 The IBM Model 1 Optimization Problem. . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 The HMM Optimization Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The I2CR-1 (IBM 2 Convex Relaxation) Problem, version 1. . . . . . . . . . . . . . . 28

3.2 The I2CR-2 (IBM 2 Convex Relaxation) Problem. The problem is identical to the

I2CR-1 problem, but it also includes a term in the objective function that is identical

to the IBM Model 1 objective. We define log′(z) = log(z + λ) where λ is a small

positive constant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 The stochastic exponentiated-gradient algorithm for optimization of I2CR-2. . . . . . 38

4.1 The I2CR (IBM 2 Convex Relaxation) Problem. For any function h that is concave,

the resulting optimization problem is a convex problem. I2CR-1 results from using

h(x1, x2) = f−∞(x1, x2) = min{x1, x2} in the above while I2CR-3 arises from using

h(x1, x2) = f0(x1, x2) = xβ1x
1−β
2 with β ∈ [0, 1]. . . . . . . . . . . . . . . . . . . . . . 56

4.2 Pseudocode for T iterations of the EM Algorithm for the I2CR-4 problem. . . . . . . 61

4.3 The IBM Model 1 strictly concave optimization problem. . . . . . . . . . . . . . . . . 65

iv



4.4 Pseudocode for T iterations of the EM Algorithm for the strictly convex IBM Model

1 problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.1 The IBM2-HMM Optimization Problem. We use equation (5.1) within the likelihood

definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2 The IBM2-HMM convex relaxation optimization problem. Note that the distortions

d(i|j, l, ,m) and transitions d(i′|i, l) are constants held fixed and parameterized by

cross-validated parameters λ and θ as in Section 5.2. . . . . . . . . . . . . . . . . . . 78

5.3 Pseudocode for the EM algorithm of the IBM2-HMM’s convex relaxation. As the

distortion and transition parameters are constants, the algorithm is very similar to

that of IBM Model 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

v



Acknowledgments

I first want to express my deepest gratitude to my adviser Michael Collins. I stumbled upon

Mike’s research in Optimization and NLP after passing the first leg of graduate study in the IEOR

department and I am so glad that he made room for me in his popular research group. I thank Mike

so much for pushing me and helping me constantly, especially at the beginning when I was trying

hard to get that first publication and make the transition from good student to nascent researcher.

Secondly, I want to thank my advisor in the IEOR department, Cliff Stein. Although Mike was

the main influence to my research development these last few years, Cliff was always insightful at

meetings and offered much support and encouragement. My unorthodox path towards research in

NLP was also supported by Cliff, so I was very fortunate.

It goes without saying that I would not be where I am now where it not for my parents and their

guidance and encouragement. A consummate math aficionado, my father Iftimie Simion provided

me the opportunity to see the beauty in math and helped me in everything that he could. My

mother Felicia Simion has always been there for me and I could never have completed this work

without her. Additionally, I also wanted to thank Neli, Dan, Radu and Anca: your encouragement

was more than I could have hoped for.

I would like to thank all the staff and faculty members of the IEOR department. In particular,

I want to thank Krupa for helping me book rooms during my busy job search and Jaya for finance

and reimbursement related work. I also wanted to thank Vineet for advising me during my second

year. I should also thank some of the department’s Professors for teaching me some of the best

courses on Optimization: Garud, Dan, and Ciamac Moallemi .

I met and learned a lot from my office mates at Columbia. I wanted to thank Shyam, JB,

Peter, Carlos, Karl, Sasha, Yin-Wen and Avner especially as they’ve all influenced my life both

professionally and socially in the best of ways. Outside of Columbia, I am all gratitude for the help

and support of Kamaldeep, Dimitry, Raj, Ken, Stephen, David, Yuriy and Tommy.

vi



Lastly, of course, I would like to thank my girlfriend Isamar. I met Isa when I started here at

Columbia and I cannot tell her how lucky I was to have had her next to me everyday through this

journey: Real and Fun and almost always (because of you!) Real-Fun!

vii



To my mother Felicia Coralia Simion and my father Iftimie Arsenel Simion

viii



CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 NLP and Statistical Machine Translation

1.1.1 Introduction to Statistical Machine Translation (SMT)

The primary objective of Statistical Machine Translation (SMT) is to automate the translation

of one natural language to another. Chiefly, SMT aims to translate the written form of language.

Modern applications of SMT can also be used in conjunction with speech recognition and text-

to-speech synthesis to translate spoken language on the fly (one popular application is Apple’s

Siri system1). Combining aspects of Optimization, Machine Learning, and Statistics, SMT is an

important part of Natural Language Processing (NLP) research. As quality translation has grown

in importance, in the last ten years SMT research has become very popular.

There are many applications of SMT and the field has both a social and commercial impact. For

example, translation is very important in the European Union (E.U.) since it is a highly multilingual

community and so documents and proceedings need to be translated. Translators are also used

extensively in the United Nations (U.N.) and the Canadian Parliament. Machine translation can

be used between any pair of languages, but it is a challenging and robust problem which has both

general methods and pair specific ones. For example, for some language pairs such as English to

Arabic and Chinese to English, the massive word reordering, lack of training data, and/or general

differences in language structure require methods that are necessarily pair dependent. On the other

1https://www.apple.com/ios/siri/

1



CHAPTER 1. INTRODUCTION

hand, Latin languages are similar and more global techniques can be used. There are many generic

SMT technologies: Google Translate2 supports 90 different languages which it can automatically

translate between on the fly. Automated SMT systems such as Google Translate are crucial to the

dissemination of knowledge as they provide multilingual access to the vast amount of information

available on the internet and other cross-language information sources.

1.1.2 Problem Specifics in SMT

At a high level, the fundamental aim of SMT is to take a fragment in one written language and

translate it into another written language. A fragment can be anything from a single transcribed

utterance to a book, document, newspaper or web page. We translate at the sentence level, viewing

an input sentence as a sequence of words f and transforming it via the use of statistical models

into a sequence of words in the output language e that represents an accurate translation of the

original sentence. For most cases, there is no unique solution, but we aim to produce a sentence

that is fluent and grammatically correct in the output language that has the same meaning as the

original sentence. We build probabilistic models and choose a translation ê that maximizes p(e|f),

the probability of output sentence e given input sentence f .

Although interest in building automated SMT systems was present since the Second World War

[9], arguably the most influential work was carried out by a team of researchers at IBM (Brown et

al., 1993) [8]. The IBM team were the first to formulate a source-channel model where it is assumed

for modeling purposes that f is the result of passing e through the noisy channel defined by p(f |e),

and we wish to recover the original sentence e from the observed sentence f . Using Bayes’ rule, we

can rewrite our goal as the finding of

ê = arg max
e∈E

p(e|f) = arg max
e∈E

p(e)p(f |e) ,

where E is the set of all English sentences. In the above, we denote by p(e) the language model and

by p(f |e) the translation model. In the development of SMT systems, sometimes researchers focus

on one of p(e) or p(f |e) as these problems are usually very different to model. We note that the

above process is known as decoding and occurs after the model parameters are estimated. Because

of the complexity of some SMT systems, not only is training sometimes difficult, but decoding as

2http://translate.google.com

2



CHAPTER 1. INTRODUCTION

well. A detailed survey of some SMT systems and the specifics involved can be found in several

sources such as Koehn (2010) [24] and Collins (2015) [12].

Generally speaking, the training of SMT models is very much like the training of any other

Machine Learning application. Specifically, we train the translation model on data and using this

data we estimate parameters via an optimization routine. For SMT, the data is usually corpora of

parallel text, i.e. sentences that have same meaning in each language, which are obtained from a

number of sources of manually translated documents. In choosing the specific corpus, we have a

number of options. For example, in much of this work we use Canadian parliamentary proceedings

because of its multilingual nature, but similar options such as corpa from the European Union or

United Nations abound. Moreover, news articles that have been translated into other languages can

be used. Bilingual data can also be gathered from web pages and fed to SMT systems. As is common

in most Machine Learning problems, the more training data available for a given language pair, the

better the quality of translation will be. State of the art SMT system design not only involves the

use of clever modeling and cutting edge code optimization, but also a coverage of a wide variety

of domains is essential so that a very robust model may be evaluated. Finally, in the construction

of p(e) above, a large amount of monolingual data in the output language is needed to train the

language model. Although modeling p(f |e) well is important, a state of the art language model is

just as necessary for the the translation system to produce correct sentences in the output language.

1.1.3 Alignment Models in SMT

The usual approach to building a statistical machine translation system is to first build a model

of alignment between the input and output languages. We use this to determine translational cor-

respondences between the words and phrases of a sentence in one language with the words and

phrases of a sentence in another language. For almost all the models we consider in this thesis, we

can view alignment as a hidden variable and model training as a way to estimate parameters using

this alignment. After training is complete and the parameter are estimated, we then use the models

to output the best set of alignment links for each sentence in the training corpus. Since alignment

is best understood visually at first, we present a possible alignment between the two sentences

e = The proposal will not now be implemented

3



CHAPTER 1. INTRODUCTION

and

f = Les propositions ne seront pas mises en application maintenant

in Fig. 1.1. We will detail the mathematics behind this picture in Chapter 2.

Figure 1.1: An example alignment between two sentences. The mathematics behind this alignment

varies from model to model with some examples given in Chapter 2.

The proposal will not now be implemented

Les propositions ne seront pas mises en application maintenant

Alignment models are currently used by almost all translation systems. The they are used by

phrase-based systems for extracting phrase pairs from training data and building tables of possible

translations of a phrase, which are then used for generation and scoring of hypotheses. As an example

[24], we show a possible alignment and phrase extraction table in Fig. 1.2 between the two sentences

e = Mary did not slap the green witch

and

s = Maria no daba una befetada a la bruja verde .

In Fig. 1.2, the blackened squares refer to alignments and the boxes refer to consistent phrases ex-

tracted from the alignments (for more background material, see [24]); among the extracted phrases,

some of these include: (Maria, Mary), (no, did not), (slap, daba una bofetada), (a la, the), (bruja,

witch), (verde, green), (Maria no, Mary did not) and (Maria no daba una bofetada a la bruja verde,

Mary did not slap the green witch).

Syntax-based and hierarchical phrase-based systems also initialize their translation models from

word-aligned parallel text. Intuitively, more accurate alignments between the parallel text should

lead to better phrase and syntax based initialization and this should ultimately lead to better

translation systems being built. Therefore, the development and training of alignment models is

very important to the quality of translation. This thesis focuses on the development of new con-

vex alignment models for machine translation, and develops algorithms used for training them. In

4



CHAPTER 1. INTRODUCTION

Figure 1.2: An alignment and phrase extraction table for two sentences. Consistent alignments are

circled in boxes.

particular, most alignment models used in the literature currently are non convex and cannot be

solved to optimality, so heuristics are heavily used. Doing away with initialization heuristics is our

main goal in introducing convexity into the alignment family of models. Indirectly, convexity adds

theoretical justification by allowing for guaranteed model optimization.

1.2 Convex Alignment Models

The IBM models were the first generation of SMT systems. More recently, they play a central role

in deriving the alignments used within many modern SMT approaches, for example phrase-based

translation models [24] and syntax-based translation systems (e.g., [11; 14]). As we saw, since the

original IBM paper, there has been a large amount of research exploring the original IBM models

and modern variants (e.g., [27; 25; 41; 31; 43]).

Nevertheless, excluding IBM Model 1, the IBM translation models, and practically all variants

proposed in the literature, have relied on the optimization of likelihood functions or similar functions

that are non-concave. Unfortunately, non-concave objective functions have multiple local optima,

and finding a global optimum of a non-concave function is typically a computationally intractable

5



CHAPTER 1. INTRODUCTION

problem. To optimize the IBM Models, typically, an EM algorithm is used, which often runs in a

reasonable amount of time, but with no guarantees of finding a global optima (or for that matter,

even a near-optimal solution).

The focus of this work is on unsupervised learning of alignment models using convex optimiza-

tion. Framing the unsupervised learning of alignment models as a convex optimization problem,

with guaranteed convergence to a global optimum, has several clear advantages. First, the method

is easier to analyze, as the objective function is being truly maximized. Second, there is no need for

initialization heuristics with the approach, given that the method will always converge to a global

optimum. Lastly, it may be easier to extend the approach to more complex models: it is possible that

problems with local optima are a severe impediment to the development of more complex models.

Finally, we expect that our convexity-based approach may facilitate the further development of more

convex models. There has been a rich interplay between convex and non-convex methods in machine

learning: as one example consider the literature on classification problems, with early work on the

perceptron (linear/convex), then work on neural networks with back-propagation (non-linear/non-

convex), then the introduction of support vector machines (non-linear/convex), and finally recent

work on deep belief networks (non-linear/non-convex). In view of these developments, the lack of

convex methods in translation alignment models has been noticeable, and we hope that our work

will open up new directions and lead to further progress in this area.

The first part of this thesis focuses on the work in (Simion et al, 2013) and (Simion et al., 2014)

[33; 34]: we detail the first convex relaxation of IBM Model 2 and describe an algorithm for its

optimization. In particular:

• We introduce a convex relaxation of IBM Model 2. At a very high level, the relaxation is

derived by replacing the product t(fj |ei) × d(i|j) with a relaxation that is commonly used

in the linear programming literature (e.g., see [5; 6; 1]). (Here t(f |e) are the translation

parameters of the model, and d(i|j) are the distortion parameters; the product is non-linear,

effectively introducing non-convexity into the problem.)

• We describe an optimization algorithm for the relaxed objective, based on a combination of

stochastic subgradient methods with the exponentiated-gradient (EG) algorithm [23; 3].

• We describe experiments with the method on standard alignment datasets, showing that the

6



CHAPTER 1. INTRODUCTION

EG algorithm converges in only a few passes over the data, and that our method achieves

accuracies that are very similar to those of IBM Model 2.

This second technical part of this work is based on (Simion et al., 2015) and (Simion et al.,

2015a) [35; 36] and generalizes the above. For this part of the thesis we:

• We introduce a convexification method that may be applicable to a wide range of probabilistic

models in NLP and machine learning. In particular, since the likelihood we are optimizing and

the metric we are testing against are often not the same (e.g. for alignment tasks we want

to maximize F-Measure, but F-Measure is not directly in the likelihood function), different

relaxations should potentially be considered for different tasks. The crux of our approach relies

on approximating the product function
∏n
i=1 xi with a concave function and as a supplement

we present some theoretical analysis characterizing concave functions h that approximate this

function.

• As a specific application, we introduce a generalized family of convex relaxations for IBM

Model 2.3 As before, the relaxation is derived by replacing the product t(fj |ei)× d(i|j) with

h(t(fj |ei), d(i|j)) where h(x1, x2) is a concave upper envelope for x1x2. We show how our

results encompass the work of (Simion et al., 2013) [33] as a special case. Moreover, the proofs

and arguments used to show that the new problem is convex are a generalization of the method

used in [33].

• We detail an optimization algorithm for a particularly simple relaxation of IBM Model 2. Un-

like the previous work in [33] which relied on a exponentiated subgradient (EG) optimization

method and required the tuning of a learning rate, this relaxation can be approached in a

much simpler fashion and can be optimized by an EM algorithm that is very similar to the

one used for IBM Models 1 and 2. We show that our method achieves a performance very

similar to that of IBM Model 2 seeded with IBM 1.

• Lastly, we highlight an application of our new method by showing how it can be applied to

make IBM Model 1 both strictly convex and more powerful. Even though IBM Model 1 is

3We note that there are negative results which show that certain latent variable problems will have convex

relaxations having the uniform solution as optimal [21]. However, for IBM Model 2, the data breaks such symmetries,

so any relaxation will be nontrivial.

7



CHAPTER 1. INTRODUCTION

convex, there is some variance in the AER and F-Measure performance of optimal solutions

[41]. We show how to make the IBM Model 1 have 1 unique solution and moreover, using

some of the characteristics elements in IBM Model 2, we improve its performance to the level

presented in [27] but using a more structured argument.

The third part of this thesis details a HMM relaxation that significantly improves upon the

previous work dealing with IBM Model 2’s relaxation. This last work is based on (Simion et al.,

2015b) [37] and has the following contributions:

• Because finding a relaxation of the HMM proved to be particularly difficult, we combine the

HMM and IBMModel 2 structure and we develop a new non-convex model whose performance

is close to that of the HMM.

• For the new IBM2-HMM mixture model, we propose a convex relaxation. For both the original

model and the new convex formulation, we also derive an EM algorithm that can be used for

its optimization.

• We present experiments showing that the new convex model performs significantly better than

IBM Model 2 and any of the older convex models developed. Although the new model lags

the HMM in performance, it does beat IBM Model 3 and the popular FastAlign IBM Model

2 variant of (Dyer et al, 2013) [16].

The main goal of the new translation models we introduce is to generate quality alignments

while at the same time optimizing the log-likelihoods of the models that result. Because our models

are convex, gradient based methods are guaranteed to reach a global solution. Although alignment

is at the start of the translation pipeline, it is our hope that ultimately more and more complicated

non convex models will be replaced by simpler and just as powerful convex models that moreover

also have provable gaurantees.

8



CHAPTER 2. THE IBM ALIGNMENT MODELS

Chapter 2

The IBM Alignment Models

2.1 Convexity and Statistical Machine Translation

(Brown et al., 1993) [8] introduced the original IBM Models and described optimization methods

for these models based on the EM algorithm. While the original purpose of these IBM models

was to produce automated full translation, they are now mainly used to derive alignments which

are then used by modern Statistical Machine Translation (SMT) systems such as phrase-based

models. Since the original IBM models were introduced, many variants have been studied in the

literature. (Vogel et al., 1996) [43] introduced a model, sometimes referred to as IBM 2.5, which

uses a parameterization that is similar to the standard hidden Markov model (HMM) and allows

the value of each alignment variable to be conditioned on a previous alignment variable. (Liang et

al., 2006) [25] describe a method that explicitly incorporates agreement preferences during training.

(Och and Ney, 2003) [28] give a systematic comparison of several alignment models in the literature.

(Moore, 2004) [27] gives a detailed study of IBM Model 1, showing various steps that can be used

to improve its performance. (Ganchev et al., 2010) [19] describes a method based on posterior

regularization that incorporates additional constraints within the EM algorithm for estimation of

IBM models. All of these approaches are unsupervised, in that they do not require labeled alignment

data; however several authors have considered supervised models (e.g., see [38; 40; 2]). All of he

unsupervised variants described above (except [27]) make use of non-concave objective functions

during training, with the usual problems with multiple local maxima.

9



CHAPTER 2. THE IBM ALIGNMENT MODELS

2.2 Convexity and Convex Optimization

For easy reference we list here the key definitions of convexity and convex optimization. Many of

these definitions are standard and are found in several sources such as [7]. In what follows, we denote

dom h by the domain of h.

Definition 1. A set S is convex if and only if all x, y ∈ S and all θ ∈ [0, 1], we have θx+(1−θ)y ∈ S.

Definition 2. A function h : Rn → R is convex if and only if dom h is convex and and for all

x, y ∈ dom h and all θ ∈ [0, 1], Jensen’s inequality holds:

h(θx+ (1− θ)y) ≤ θh(x) + (1− θ)h(y) .

Definition 3. A function h : Rn → R is strictly convex if and only if dom h is convex and and for

all x 6= y ∈ dom h and all θ ∈ (0, 1), Jensen’s inequality holds:

h(θx+ (1− θ)y) < θh(x) + (1− θ)h(y) .

Definition 4. A function h : Rn → R is concave if and only if dom h is convex and and for all

x, y ∈ dom h and all θ ∈ [0, 1], Jensen’s inequality holds:

h(θx+ (1− θ)y) ≥ θh(x) + (1− θ)h(y) .

Definition 5. A function h : Rn → R is strictly concave if and only if dom h is convex and and

for all x 6= y ∈ dom h and all θ ∈ (0, 1), Jensen’s inequality holds:

h(θx+ (1− θ)y) > θh(x) + (1− θ)h(y) .

Given the above definitions, we define convex optimization problems that are easy to solve and

have a given structure (by “easy" here we mean that these problems have algorithms which are off

the shelf and have probable guarantees). We have the following:

Definition 6. A minimization optimization problem

minimize
x

h0(x)

subject to hi(x) ≤ 0, i = 1, . . . ,m.

aTj (x) = bj , j = 1, . . . , l.

is said to be convex if hi are convex ∀i.

10



CHAPTER 2. THE IBM ALIGNMENT MODELS

Definition 7. A maximization optimization problem

maximize
x

h0(x)

subject to hi(x) ≥ 0, i = 1, . . . ,m.

aTj (x) = bj , j = 1, . . . , l.

is said to be convex if hi are concave ∀i.

We note that the main issue with the above is that the equality constraints have to be linear

(for our running example in this thesis, IBM Model 2, all equality constraints are linear). Under

the above setup, it can be shown that the feasible set (the set of points that satisfy the constraints)

is convex and that any local optimum for the problem is a global optimum. If h0 is strictly convex

then any local optimum is actually then the unique global optimum.

2.3 The IBM Model 1, IBM Model 2, and HMM Optimization

Problems

In this part we give a brief review of IBM Models 1 and 2, the alignment HMM model, and the

optimization problems arising from these models. In Chapters 3-5 of this thesis we will derive

convex relaxations or IBM Model 2 and the HMM, so it is important to lay the foundation here.

The standard approach for optimization within these models is the EM algorithm [15].

Throughout this section, and the remainder of this work, we assume that our set of training

examples is (e(k), f (k)) for k = 1, . . . , n, where e(k) is the k’th English sentence and f (k) is the k’th

French sentence. Following standard convention, we assume the task is to translate from French (the

“source” language) into English (the “target” language). We use E to denote the English vocabulary

(set of possible English words), and F to denote the French vocabulary. The k’th English sentence

is a sequence of words e(k)
1 , . . . , e

(k)
lk

where lk is the length of the k’th English sentence, and each

e
(k)
i ∈ E; similarly the k’th French sentence is a sequence f (k)

1 , . . . , f
(k)
mk where each f (k)

j ∈ F . We

define e(k)
0 for k = 1, . . . , n to be a special NULL word (note that E contains the NULL word). We

define L = maxnk=1 lk and M = maxnk=1mk. Lastly, throughout this work, for any natural number

N , we use [N ] to denote {1, . . . , N} and [N ]0 to denote {0, . . . , N}.

11



CHAPTER 2. THE IBM ALIGNMENT MODELS

For each English word e ∈ E, we will assume that D(e) is a dictionary specifying the set of

possible French words that can be translations of e. The set D(e) is a subset of F . In practice, D(e)

can be derived in various ways, the most standard one being to simply define D(e) to include all

French words f such that e and f are seen in a translation pair (we adopt this convention in our

model formulations).

2.3.1 Noisy-Channel Approach to SMT

We review here the noisy-channel approach to SMT, basing our discussion on (Collins, 2015) [12]

and (Koehn, 2008) [24].

The noisy-channel approach to SMT was developed over twenty years ago and is a way to model

translation while at the same time utilizing as much information as possible. For a translation task,

we want to translate a source French sentence f into a target English sentence e. To do this, we

need to find ê = arg maxe∈E p(e|f) , where we take the maximum over the entire set of English

sentences E. However, we notice that by Bayes’ rule we also have that p(e|f) = p(f |e)p(e)
p(f) and hence

the problem we need to solve is equivalent to

ê = arg max
e∈E

p(f |e)p(e) .

The above formulation is used in SMT for two reasons.

• First, it allows us to model and use p(e) to introduce grammaticality and fluency into the

choice of which English sentence to choose.

• Second, we still are left with modeling the purely translational component p(f |e), which can

be approached in the same fashion as the direct modeling of p(e|f).

Thus, the noisy channel approach in some sense breaks up the problem of finding the best

sentence ê into two parts and we can use different techniques and models to decide on ê. In this

work, we focus on models that address p(f |e), the translation component. In this thesis we will

introduce IBM Model 1, 2, and the alignment HMM model. Each of these different models will

have a different structure for their associated terms p(f |e). For each of these models, we will study

how we can estimate the parameters of each of these model given a structure on p(f |e) and bitext

training data (e(k), f (k)) k = 1, . . . , N .

12



CHAPTER 2. THE IBM ALIGNMENT MODELS

The word-based translation models we explore in this thesis are still very useful for a number of

reasons, including:

• The IBM models make use of the key alignment idea found in translation. Acting as a latent

variable for these models, the alignment idea is still used in modern SMT systems to generate

phrase tables, which are the basic blocks on translating one piece of language into another

(see Chapter 1 for an example).

• The parameters of the IBM models are estimated using the Expectation Maximization (EM)

algorithm. For latent variable models, the EM algorithm is pervasive for parameter optimiza-

tion, and the IBM Models serve as a natural application.

2.3.2 Alignments

For any French sentence f = (f1, . . . , fm) paired with an English sentence e = (e1, . . . , el), we now

turn to the construction and development of the conditional probability p(f |e). For the models

we study, writing out p(f |e) is too complicated directly, and we need an intermediate (or latent)

alignment variable. For each word fj we associate a corresponding alignment variable aj in {0, . . . , l}

that tells which word ei ∈ e in is “aligned” or generates fj . In particular, it will turn out that the

eaj is the word which generates fj .

Given the introduction of alignment, we then have that p(f, a|e) will be defined and (by sum-

ming) we can now write

p(f |e) =
∑

a=(a1,...,am)

p(f, a|e) .

Lastly, we mention that although the number of alignment variables is exponential, there are several

tricks that will allow us to compute p(f |e) efficiently, and it is this last simplification will be a key

element in bringing out the new results of this thesis.

We now describe the alignment variables in detail using some concrete examples for motivation.

We recall that each alignment variable aj specifies that the French word fj is aligned to the English

word eaj . Since in some languages certain source words do not generate other target words, we

define e0 to be a special NULL word so that aj = 0 specifies that word fj is generated from the

NULL word.

13



CHAPTER 2. THE IBM ALIGNMENT MODELS

Consider a pair of translations (e, f) with

e = And the program has been implemented

and

f = Le programme a ete mis en application .

For this example the length of f ,m, is equal to 7 and the length of e, l, equal to 6. In this example we

thus have alignment variables a1, a2, . . . a7 that take values in {0, . . . , 6}. As mentioned previously,

we have an exponential number of possible alignments, but one very plausible alignment would be

(a1, a2, . . . , a7) = (2, 3, 4, 5, 0, 0, 6) .

Using the definitions of an alignment, the above setup would specifying the following:

Le→ the

Programme→ program

a→ has

ete→ been

mis→ NULL

en→ NULL

application→ implemented

In the above example, we note that each French word is aligned to exactly one English word, but

there are cases of English words (such as “And”) that are not aligned to any French words. Given

this, we see that the alignment is neither bijective nor symmetric, and several French words can

be aligned to the same source word (for example, we have “mis” and “en” aligned to NULL). The

asymmetric nature of the alignments is one of the key features of the IBM models: each English

word can be aligned to any number (zero or more) French words (we will return to this point later

but note here that certain models such as IBM 3 implement the concept of “fertility" whose main

goal is to discourage having a particular English word being aligned to too many French words). As

an even more extreme example alignment, we could have

(a1, a2, . . . , a7) = (1, 0, 0, 1, 1, 0, 0) ,

14



CHAPTER 2. THE IBM ALIGNMENT MODELS

specifying the following alignment:

Le→ And

Programme→ NULL

a→ NULL

ete→ And

mis→ And

en→ NULL

application→ NULL

The above is clearly a poor alignment for this example and a good model would discourage this

alignment from having a very high probability. In the subsequent sections, we will specify how each

of IBM Model 1, IBM Model 2 and the alignment HMM model the terms p(f, a|e). In some sense,

the main difference in performance between these models can be traced to exactly how they define

p(f, a|e).

2.3.3 IBM Model 2

Given the alignment setup above, the IBM Model 2 optimization problem is given in Figure 2.1. The

parameters in this problem are t(f |e) and d(i|j). The t(f |e) parameters are translation parameters

specifying the probability of English word e being translated as French word f . The distortion

parameters d(i|j) specify the probability of the j’th French word in a sentence being aligned to the

i’th English word (or, put another way, that alignment variable aj = i). We use a variant of IBM

Model 2 where the distortion variables are shared across all sentence lengths (similar variants have

been used in [25] and [24]). Using the parameters of IBM2, we then have that

p(f1 . . . fm, a1 . . . am|e1 . . . el) =

m∏
j=1

t(fj |eaj )d(aj |j) . (2.6)

Moreover, the objective function is then the log-likelihood of the training data (see Eq. 2.5):

1

n

n∑
k=1

mk∑
j=1

log p(f
(k)
j |e

(k)) , (2.7)

15



CHAPTER 2. THE IBM ALIGNMENT MODELS

Input: Define E, F , L,M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (2.1)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2.2)

∀i ∈ [L]0, j ∈ [M ], d(i|j) ≥ 0 (2.3)

∀j ∈ [M ],
∑
i∈[L]0

d(i|j) = 1 (2.4)

Objective: Maximize
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )d(i|j) (2.5)

with respect to the t(f |e) and d(i|j) parameters.

Figure 2.1: The IBM Model 2 Optimization Problem.

16



CHAPTER 2. THE IBM ALIGNMENT MODELS

where

p(f
(k)
j |e

(k)) =

lk∑
i=0

t(f
(k)
j |e

(k)
i )d(i|j) .

Some explanation of the preceding formula is required. For IBM Model 2 (in fact, for any of the

IBM Models), the main objective is to maximize the log-likelihood of the data given by

1

n

n∑
k=1

log p(f (k)|e(k)) , (2.8)

To simplify the above formula, we need to know the underlying latent variables a which is not

observed from the data. Given an alignment, the generative rule for IBM Model 2 is given by Eq.

2.6, and we note that for an (e, f) pair we have exponentially many choices for a = (a1, . . . , am)

since each aj ∈ [l]0. What this implies is that actually the log-likelihood of IBM Model 2 is given

by

1

n

n∑
k=1

log
∑
a(k)

p(f (k), a(k)|e(k)) , (2.9)

where the sum inside the logarithm is exponential in magnitude. However, we also note algebra

implies that

∑
a(k)

p(f (k), a(k)|e(k)) =

mk∏
j=1

lk∑
i=0

t(f
(k)
j |e

(k)
i )d(i|j) . (2.10)

The above simplification allows us to rewrite the objective of IBM Model 2 (and, as we will see

later, several other models) in polynomial time as in Figure 2.1.

Crucially, while the constraints in the IBMModel 2 optimization problem are linear, the objective

function in Eq. 2.5 is non-concave. Therefore, optimization methods for IBM Model 2, in particular

the EM algorithm, are typically only guaranteed to reach a local maximum of the objective function.

The standard EM algorithm for IBM Model 2 is detailed below. We note that the algorithm is

guaranteed to find a local optima without the use of a learning rate.

2.3.4 IBM Model 1

Figure 2.3 shows the optimization problem for IBM Model 1. In IBM Model 1 the distortion param-

eters d(i|j) are all fixed to be the uniform distribution (i.e., 1/(L+ 1)). The objective function for

17



CHAPTER 2. THE IBM ALIGNMENT MODELS

1: Input: Define E, F , L,M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E. An integer T specifying the number

of passes over the data.

2: Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A parameter d(i|j) for each i,∈ [L]0, j ∈ [M ].

3: Initialization:

• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1/|D(e)|.

• ∀i ∈ [L]0, j ∈ [M ], set d(i|j) = 1/(L+ 1).

4: EM Algorithm:

5: for all t = 1 . . . T do

6: ∀e ∈ E, f ∈ D(e), count(f, e) = 0

7: ∀e ∈ E, count(e) = 0

8: ∀i ∈ [L]0, j ∈ [M ], count(i, j) = 0

9: ∀j ∈ [M ], count(j) = 0

10: EM Algorithm: Expectation

11: for all k = 1 . . . n do

12: for all j = 1 . . .mk do

13: δ[i] = 0 ∀i ∈ [lk]0

14: ∆ = 0

15: for all i = 0 . . . lk do

16: δ[i] = t(f
(k)
j |e

(k)
i )d(i|j)

17: ∆ += δ[i]

18: for all i = 0 . . . lk do

19: δ[i] =
δ[i]
∆

20: count(f
(k)
j , e

(k)
i ) += δ[i]

21: count(e
(k)
i ) += δ[i]

22: count(i, j) += δ[i]

23: count(j) += δ[i]

24: EM Algorithm: Maximization

25: for all e ∈ E do

26: for all f ∈ D(e) do

27: t(f |e) =
count(e,f)
count(e)

28: for all ∀i ∈ [L]0, j ∈ [M ], do

29: d(i|j) =
count(i,j)
count(j)

30: Output: t, d parameters.

Figure 2.2: Pseudocode for T iterations of the EM Algorithm for the IBM Model 2 problem.

IBM Model 1 can be shown to be concave, so the EM algorithm will converge to a global maximum.

However IBM Model 1 is much weaker than Model 2, and typically gives far worse performance. A

common heuristic is to initialize the t(f |e) parameters in EM optimization of IBM Model 2 using

18



CHAPTER 2. THE IBM ALIGNMENT MODELS

Input: Define E, F , L,M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (2.11)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2.12)

Objective: Maximize
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
(2.13)

with respect to the t(f |e) parameters.

Figure 2.3: The IBM Model 1 Optimization Problem.

the output from IBM Model 1. The intuition behind this heuristic is that the IBM Model 1 values

for t(f |e) will be a reasonable starting point, and the EM algorithm will climb to a “good” local

optimum. We are not aware of any guarantees for this initialization heuristic, however.

2.3.5 The HMM Alignment Model

Before discussion the specifics of the alignment HMM model, we should review the general HMM

model structure so that we better understand the alignment variant we study. At a high level, the

HMM is a latent variable model that has the latent variable “jump” in between latent states and

generate signals. In training, one only has access to the signals (x1, . . . , xm) and is interested in

estimating model parameters. Once again, p(x1, . . . , xm) is not readily gotten but once we know the

latent states (y1, . . . , ym) that generate (x1, . . . , xm) we have that

p(x1, . . . , xm, y1, . . . , ym) =
m∏
j=1

p(xj |yj)p(yj |yj−1) ,

where we set y0 as some special constant. We note that the standard HMM has two type of pa-

rameters, namely emission and transition probabilities. The emission probabilities model how we

jump from one latent step to the other, while the transition probabilities model how we generate

the signal xj given the latent state yj .

19



CHAPTER 2. THE IBM ALIGNMENT MODELS

For the HMM alignment model, the distortion parameters act as the transition parameters

d(aj |aj−1, l). These transition parameters specify the probability of the next alignment variable for

the jth target word is aj , given that the previous target word was aligned to a source word whose

position was aj−1 in a source sentence with length of l. For the emission probabilities, we have the

standard lexical probabilities t(fj |eaj ) and we note that the alignment HMM variant has eaj as the

latent generating state (a standard model would have just aj). Figure 2.4 summarizes the HMM

alignment model. We note that unlike IBM Models 1 and 2, we cannot simplify the exponential sum

within the likelihood of the HMM. The ramifications of this inability to simplify the log-likelihood

is important in EM training for this model: the HMM makes use of a special EM implementation

knows as the Baum-Welch algorithm [30]. Once again, the HMM optimization can be shown to be

non-convex. Since the HMM shares the same lexical t parameters as IBM 1 and 2, one can optimize

the HMM likelihood by training IBM1, giving the t parameters to IBM2 and then optimizing IBM2

until convergence, and finally giving the IBM2 t parameters to the HMM and running EM training on

the HMM. Although, as with IBM Model 2, the preceding initialization heuristics have no provable

guarantee on performance, they serve as a good way to optimize a non-convex model such as the

HMM and get a sensible local solution.

2.4 Extracting the Viterbi Alignments

Once we have optimized the parameters for one of the models above, we are chiefly concerned with

extracting the most likely alignments. For a particular sentence pair (e, f) with lengths of l and m

respectively this boils down to finding the vector â = (â1, . . . , âm) such that

â = arg max
a

p(f, a|e) .

For IBM Model 1 the above becomes

â = arg max
a

m∏
j=1

t(fj |eaj )

and this last computation can be simplified so that âj = arg maxli=0 t(fj |ei) and each compo-

nent can be recovered independent of its neighbor. Similarly, for IBM Model 2 we have âj =

arg maxli=0 t(fj |ei)d(i|j). For the HMM, this last computation is more involved and requires the use

of dynamic programming as detailed in [43]. Typically the alignment quality of a model is gotten by

20



CHAPTER 2. THE IBM ALIGNMENT MODELS

Input: Define E, F , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A parameter d(i|i, lk) for each i ∈ [lk]0, i′ ∈ [lk]0.

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (2.14)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (2.15)

∀i, i′ ∈ [lk]0, d(i′|i, lk) ≥ 0 (2.16)

∀i ∈ [lk]0,
∑

i′∈[lk]0

d(i′|i, lk) = 1 (2.17)

Objective: Maximize

1

n

n∑
k=1

∑
a

(k)
1 ...a

(k)
mk

log

mk∏
j=1

t(f
(k)
j |e

(k)

akj
)d(a

(k)
j |a

(k)
j−1, lk)

with respect to the t(f |e) parameters d(i′|i, l).

Figure 2.4: The HMM Optimization Problem

comparing the model’s alignments to a hand derived set of alignments by computing a score over

the two results such as F-Measure. We discuss this further in the experiments sections inside the

main chapters of this work.

2.4.1 Alignment Evaluation

Once we obtain the final highest probability alignments, we can evaluate the quality of these align-

ments against a manually (human) generated set of alignment. Model alignments and human gen-

erated alignments can be put into formatted text files and the similarity of these alignments can be

used to assign a score signifying of the model’s quality. There are a number of useful measures for

alignment quality, including Alignment Error Rate (AER) and F-Measure [28]. Typically, for the

hand aligned test data, the annotated alignments between source and target words in the corpus

are marked as either “sure” (S) or “possible” (P ) alignments, as described in [28]. If A is the set of

21



CHAPTER 2. THE IBM ALIGNMENT MODELS

alignments produced by an algorithm, S is the set of sure alignments as annotated in test data, and

P is the set of possible alignments, then the key alignment quality quantities are defined as

Recall =
|A ∩ S|
|S|

,

Precision =
|A ∩ S|
|A|

,

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

,

F-Measure =
1

.5
Recall + .5

Precision
.

Using the above, we note that for AER lower is better while for F-Measure higher is better. More-

over, once we get the alignment quality, evaluating the final translation result (typically using the

BLEU metric [24]) is also of value as the alignments and the downstream translations are related

(alignments are used to seed the more complicated translation models). In our experiments, we will

see several concrete examples of the above.

2.5 A Literature Survey of Alignment Models

In this section we review the literature on alignment models. Being only 20 years old, the field of

Statistical Machine Translation (SMT) is new, but very rich. Alignment is a very active part of

modern day Natural Language Processing (NLP) research.

The paper of (Brown et al., 1993) [8] gave rise to the field of SMT. In this work, the authors

introduced word-based translation via a string of increasingly more complex (and powerful) models.

Specifically, this work introduced IBM Models 1 to 5 and also studied their parameter optimization,

which is accomplished via the EM algorithm [15]. For IBM Models 1 and 2, the EM algorithm

has a closed form in the sense that both the E and M steps are tractable. Moreover, since IBM

Model 1 is a convex optimization problem, the EM algorithm applied to IBM1 is guaranteed to

converge to an optimal solution. For IBM Model 2, EM training has no formal guarantees other

than that it will converge to a local solution. Recall that main variable types in IBM Model 2 are

lexical parameters (t(f |e)) which model the probability that a word generates another word, and

distortion parameters (d(i|j)) which model the positional dependency between a source word (in

position i) and a target word (in position j). Besides having the lexical and distortion terms, the

22



CHAPTER 2. THE IBM ALIGNMENT MODELS

other IBM Models each in turn add more structure. For example, IBM Model 3 adds in a“fertility

term" which limits the number of target words that a source word may generate. Although these

models perform better then Models 1 and 2 [28], their structure is far more complicated, and

because of this the EM implementation for these models is inexact. Specifically, the E and M steps

for Model 3 onwards are based on heuristic search and are quite intractable problems on their own.

Nevertheless, experimental research has shown that the IBM Models do improve in performance as

one goes up in the ladder. Moreover, to address this complexity and ensure proper initialization,

one typically runs IBM Model 1, then seeds Model 2 with 1, then seed Model 3 with 2, and so on.

Although this method of optimization is a heuristic, it has been shown to perform well [28].

The most natural addition to the original IBM Models was the work of (Vogel et al., 1996) [43].

In this last work, word-based translation was achieved by fitting a hidden Markov Model (HMM)

[30] to parallel bitext data. Known colloquially as IBM Model 2.5, the alignment HMM model was

(and still is) a very powerful addition to the IBM family of models for several reasons. For one, the

alignment HMM Model, like IBM Models 1 and 2, has an exact EM algorithm which requires no

heuristics in the E and M steps. Moreover, the alignment HMMModel performs very well: it typically

archives performance on par with the much more complicated (and standard) IBM Model 4 [28;

24]. Although the HMM alignment Model is still a non-convex optimization, the model has influenced

the field greatly and new variants of it have been proposed [25; 45].

The above IBM Models serve as the core word-based translation methods. As the field evolved,

researchers found that it was not words but phrases which should serve as the fundamental building

blocks for translation [24]. Nowadays, the IBM Models are no longer used to translate, but their

alignment (translation) tables are used to generate phrases and these phrases are used to seed more

complicated models which then perform the translation task. Additionally, there was found to be a

(arguably complex) relationship between alignment and translation quality, so alignment has been

a topic of much research. We now review several other works which have been important to the

development of the field and this thesis.

One of the seminal papers on the IBM alignment models was (Och and Ney, 2003) [28]. In this

work, the authors evaluate the performance of the IBM Models by introducing metrics such as F-

Measure and alignment error rate (AER) and evaluating the performance of the models on several

different datasets and training regimes. Specifically, the authors of this last work compare the less

23



CHAPTER 2. THE IBM ALIGNMENT MODELS

complicated IBM Model 1 to running IBM Model 2 after it was seeded by IBM Model 1 and find

that in this simple scenario (and in others such as running Model 3 seeded with Model 2) alignment

performance improves. Additionally, the experiments developed here have served as a baseline for

the setup used in several different sources: like in this work, most new models are non-convex and

do benefit from being seeded by less complicated models. (as a caveat, however, we note that there

are cases where this is not the scenario [16], but typically we do not have any proofs on why this

is the case). The empirical results of this work showed that although there is some improvement to

translation quality as the alignment models get more and more complicated, the actual performance

experiences diminishing returns. As a result of this, the standard method of evaluating a new model

nowadays is to compare with IBM Model 4 seeded with its preceding models (Models 5 and 6 are

largely ignored). Finally, as a consequence of this work, the authors also developed a standardized

implementation of the IBM Models called GIZA++ [24]. Even today, GIZA++ is arguably the most

popular alignment generator.

Aside from the above work, another important evaluation work was that of (Fraser and Marcu,

2007) [18]. In this paper, the authors try to not only look at model performance, but also on which

metric to use. In particular, since the SMT pipeline is so long and we are mainly interested in BLEU

score, it is important to choose between AER and F-Measure (typically, a model that does well on

AER also does well on F-Measure; however, achieving the best performance on one metric does not

usually yield the bet performance on another). From the experiments, it seems that F-Measure is

the better of the two to use. Moreover, the balance between Recall and Precision within F-Measure

is something that is language dependent.

Spurred on by the above experimental exercises, other papers on the IBM Models and alignment

appeared frequently in the last decade. Among the papers on IBM Model 1, the paper by (Moore,

2004) [27] stands out. In they work, the author discusses some very small changes to IBM Model 1

which can be used to dramatically improve its performance. Among these changes, the paper argues

that one should (1) trim the dictionary counts in the lexical parameters (this effectively reduces

the number of variables t(f |e)) (2) use an initialization heuristic and (3) modify IBM Model 1’s

EM algorithm by using smoothing. From these changes, several interesting observations can be

drawn. To start, dictionary filtering might be a very powerful heuristic: even though a word e is

seen with a word f in some bitext sentence, filtering out f from the possible translations of e would

24



CHAPTER 2. THE IBM ALIGNMENT MODELS

allow the lexical probabilities t(f |e) to focus on what is important and performance would increase

dramatically. Indeed, much of (Moore, 2004) focuses on fixing the “garbage collection problem"

which has rare words tending to act as garbage collectors and align to too many other words.

Moreover, from the fact that we have a significant AER decrease by using an initialization heuristic,

we infer that IBM Model 1 does tend to over train quite severely, and using smoothing within the

EM algorithm fixes the overtraining quite a bit. Although very interesting, the work also has its

issues as the author introduces several hyper parameters and increases a fairly simple model to

a more complicated level without any formal guarantees. Of course, because of the sheer size of

modern NLP problems, empirical evaluation may just as well suffice.

Other work on IBM Model 1 also found very interesting ideas via simple observation. In par-

ticular, the work of (Toutanova et al., 2011) [41] explored IBM Model 1 and found that it was not

strictly convex. For the IBM Models, the optimal parameters are used to decode and AER (which

measures alignment quality) is not within the log-likelihood of the data, so having many optimal so-

lutions with a high variance among the alignment quality results would not be good. By formulating

the optimal solution set as a (feasibility, or existence) linear program, the authors show that IBM

Model 1 has quite a bit of variance within its optimal solution set. This was a stark realization, as

it shows that even with convex models one needs to be careful when optimizing: getting the optimal

solution may not be enough.

Another seminal work on the IBM Models was developed in (Liang et al., 2006) [25]. When

training the IBM Models and getting the optimal alignment, one trains both source to target and

target to source models and then intersects alignments. This intersection step is, again, heuristic

and one either gets the intersection or the union or performs a combination of these two steps [24].

What the authors of this work did was force agreement during training, not after. The results of

the paper were quite strong. Although models do benefit greatly by intersecting alignments, having

the two models agree during training improves the AER and F-Measure of the alignment task by

over 30%. Applying their method to both the HMM and IBM Model 2, the authors showed that

EM training for their implementation is rather simple, and moreover, they also developed a new

method of decoding via posterior decoding.

Bayesian methods have also found their way into alignment research. In particular, (Riley and

Gildea, 2012) [31] showed how to improve the IBM Models by using Variational Bayes. The idea of

25



CHAPTER 2. THE IBM ALIGNMENT MODELS

this paper is to limit the ”garbage collection" affect by instilling a prior on the IBM Models which

limits this type of behavior. In the paper, the EM algorithm for IBM Models 1 and 2 is modified

to accept a prior, new experiments are conducted, and using the same data as (Och and Ney, 2003)

the authors make considerable gains. As the authors discuss, this work can be viewed as a more

theoretical justification of the methods discussed in (Moore, 2004) [27]. Finally, we mention that

[31] is not the only work to use a Bayesian prior in conjunction with the IBM Models. Indeed, work

done by (Vaswani et al., 2012) [42] also went in this direction, but in this case the focus was on

applying a smooth approximation of the l0 (sparsity) norm.

Since the EM algorithm is so pervasive in NLP literature, some new research has focused on

introducing new regularization techniques within the alignment literature. In particular, the work

of (Graca et al., 2010) [20; 19] introduces posterior regularization and the authors modify IBM 1

and the HMM by inserting fertility and symmetry constraints that improve both of these models

substantially. The chief goal of these constraints is to correct EM overtraining and also instill new

features into the tractable IBM Models so that a proper EM algorithm (one that does not have

heuristics such as local search within the E and M steps), can be applied.

Recently, a new alignment system developed at Carnegie Mellon University and called cdec

[17] has become very popular. A central component of this pipeline is the alignment model, which

is a modified IBM Model 2 variant called FastAlign that introduces some new ideas and makes

use of Variational Bayes [31]. Specifically, aside from using Bayesian methods, the new model also

forces the distortion parameters to favor words on the diagonal in the sense that if we tokenize

the source and target sentences and place word positions into two vectors we make the distortions

for that pair favor alignments on the first bisector. Additionally, using this parametrization and a

set of elementary rules about geometric series, this approach allows one to develop a very fast EM

algorithm that runs orders faster than the standard GIZA++ IBM Model 4 method which runs the

traditional IBM Models in sequence. Using this new model, the authors also achieve some favorably

comparisons against IBM Model 4 in terms of AER and translation (BLEU [29]) quality.

There has been a lot of work on the IBM Models and their role in the translation pipeline. SMT

research is an area filled with active research and application that combines multiple techniques

from varied disciplines.

26



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Chapter 3

A Convex Alternative to IBM Model 2

3.1 A Convex Relaxation of IBM Model 2

We now introduce a convex optimization problem, the I2CR (IBM 2 Convex Relaxation) problem.

As its name suggests, this optimization problem is closely related to IBM Model 2, but is convex.

Because of this it will be relatively easy to derive an optimization algorithm that is guaranteed

to converge to a global optimum. Our experiments show that the relaxation gives very similar

performance to the original IBM 2 optimization problem, as described in the previous chapter.

We first describe an optimization problem, I2CR-1, that illustrates the basic idea behind the

convex relaxation. We then describe a refined relaxation, I2CR-2, that introduces a couple of mod-

ifications, and which performs well in experiments.

3.1.1 The I2CR-1 Problem

The I2CR-1 problem is shown in Figure 3.1. A first key idea is to introduce a new variable q(i, j, k)

for each k ∈ [n], i ∈ [lk]0, j ∈ [mk]: that is, a new variable for each triple (i, j, k) specifying a

sentence pair, and a specific English and French position in that sentence. Each q variable must

satisfy the constraints in Eqs. 3.5-3.7, repeated here for convenience:

∀i, j, k, q(i, j, k) ≥ 0 ,

∀i, j, k, q(i, j, k) ≤ d(i|j) ,

∀i, j, k, q(i, j, k) ≤ t(f (k)
j |e

(k)
i ) .

27



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Input: Define E, F , L,M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].

• A parameter q(i, j, k) for each k ∈ [n], i ∈ [lk]0, j ∈ [mk].

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (3.1)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (3.2)

∀i ∈ [L]0, j ∈ [M ], d(i|j) ≥ 0 (3.3)

∀j ∈ [M ],
∑
i∈[L]0

d(i|j) = 1 (3.4)

∀i, j, k, q(i, j, k) ≥ 0 (3.5)

∀i, j, k, q(i, j, k) ≤ d(i|j) (3.6)

∀i, j, k, q(i, j, k) ≤ t(f (k)
j |e

(k)
i ) (3.7)

Objective: Maximize
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

q(i, j, k) (3.8)

with respect to the q(i, j, k), t(f |e) and d(i|j) parameters.

Figure 3.1: The I2CR-1 (IBM 2 Convex Relaxation) Problem, version 1.

The objective function is
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

q(i, j, k)

which is similar to the objective function in Figure 2.1, but where t(f (k)
j |e

(k)
i ) × d(i|j) has been

replaced by q(i, j, k). The intuition behind the new problem is as follows. If, instead of the constraints

in Eqs. 3.5-3.7, we had the constraint

q(i, j, k) = t(f
(k)
j |e

(k)
i )× d(i|j) , (3.9)

28



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

then the I2CR-1 problem would clearly be identical to the IBM Model 2 optimization problem. We

have used a standard relaxation of the non-linear constraint x = y× z where x, y, z are all variables

in the range [0, 1], namely

x ≤ y ,

x ≤ z ,

x ≥ y + z − 1 .

These inequalities are a relaxation in the sense that any (x, y, z) triple that satisfies x = y × z also

satisfies these constraints. Applying this relaxation to Eq. 3.9 gives

q(i, j, k) ≤ t(f
(k)
j |e

(k)
i ) ,

q(i, j, k) ≤ d(i|j) ,

q(i, j, k) ≥ t(f
(k)
j |e

(k)
i ) + d(i|j)− 1 . (3.10)

The final observation to note is that the constraint in Eq. 3.10 can be omitted in the I2CR-1

problem. This is because the task is to maximize the objective with respect to the q variables and

the objective is strictly increasing as the q values increase—thus lower bounds on their values are

redundant in the I2CR-1 problem.

It is easily verified that the constraints in the I2CR-1 problem are linear, and that the objective

function is convex. In Section 3.3 of this paper we describe an optimization method for the problem.

Note that because the objective function is being maximized, and the objective increases mono-

tonically as the q values increase, at the global optimum1 we have

q(i, j, k) = min{t(f (k)
j |e

(k)
i ), d(i|j)} ,

where min{x, y} returns the minimum of the two values x and y. Thus, we could actually eliminate

the q variables and write an optimization problem that is identical to the IBM Model 2 optimization

problem, but with the objective function

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)} .

1More precisely, at any global optimum: the objective function may not be strictly convex, in which case there

will be multiple global optima.

29



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Input: Same as in I2CR-1 (Figure 3.1). Parameters: Same as in I2CR-1 (Figure 3.1).

Constraints: Same as in I2CR-1 (Figure 3.1).

Objective: Maximize

1

2n

n∑
k=1

mk∑
j=1

log′
lk∑
i=0

q(i, j, k) (3.11)

+
1

2n

n∑
k=1

mk∑
j=1

log′
lk∑
i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
(3.12)

with respect to the q(i, j, k), t(f |e) and d(i|j) parameters.

Figure 3.2: The I2CR-2 (IBM 2 Convex Relaxation) Problem. The problem is identical to the I2CR-

1 problem, but it also includes a term in the objective function that is identical to the IBM Model

1 objective. We define log′(z) = log(z + λ) where λ is a small positive constant.

It will turn out that both views of the I2CR-1 problem—with and without the q variables—are

helpful, so we have included both in our discussion.

3.1.2 The I2CR-2 Problem

Figure 3.2 shows the refined optimization problem, which we call I2CR-2. The problem incorporates

two modifications. First, we modify the objective function to be

1

2n

n∑
k=1

mk∑
j=1

log′
lk∑
i=0

q(i, j, k)

+
1

2n

n∑
k=1

mk∑
j=1

log′
lk∑
i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
.

Thus the objective function includes a second term that is identical to the objective function for

IBM Model 1 (see Figure 2.3). In preliminary experiments with the I2CR-1 optimization problem,

we found that the I2CR-1 objective was not sufficiently dependent on the interaction between the

t and d parameters and its performance was very close to that of IBM Model 1; intuitively, if the

d parameters achieve the min on many training examples, the values for the t variables become

unimportant. The addition of the IBM Model 1 objective fixed this problem by introducing a term

that depends on the t values alone and ensured that this variable is given the necessary importance

30



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

often.

Second, we replace log by log′, where log′(z) = log(z + λ), and λ is a small positive constant

(in our experiments we used λ = 0.001). Under this definition the derivatives of log′ are upper-

bounded by 1/λ, in contrast to log, where the derivatives can diverge to infinity. The optimization

methods we use are gradient-based methods (or more precisely, subgradient-based methods), and

we have found them to be considerably more stable when the values for gradients do not diverge to

infinity. Moreover, in order to have the optimization methods we describe in Section 3.2 apply on a

theoretical and practical level, we will need to have bounded subgradients, and this modification of

the log yields precisely this. Finally, we note that the modified objective remains convex.

3.2 Convex Optimization via Exponentiated-Gradient Descent

In this section we discuss Exponentiated-Gradient (EG) Decent, an algorithm which we will adapt

for optimizing our new convex IBMModel 2 variant. EG algorithms are gradient-based methods that

maintain simplex constraints; see for example: [23; 3; 13]. The discussion we present here is adapted

from (Kakade, 2011) [22]. The key feature of EG-based algorithms will be that the projection step

is given to us and will not require solving another intermediate problem. Specifically, because all of

our variables are on a probability simplex, the algorithm readily applies.

EG based optimization is introduced most readily by looking at the online optimization setting

[23]. In this case, we have a sequence of times t = 1, . . . , T and receive convex functions ct for each

time t. At each t, choose actions wt and the end goal is to minimize the regret

RT (EG) =
T∑
t=1

ct(wt)− inf
w∈D

T∑
t=1

ct(w) .

In what follows we assume that w∗ is an optimal solution to infw∈D
∑T

t=1 ct(w). To start, assume

the decision space D is a d-dimensional simplex, i.e.

D = {w|wi ≥ 0 and ||w||1 = 1} .

The Exponentiated-Gradient Descent algorithm is defined as follows: at time t = 1, choose w1 as

the center point of this scaled simplex, namely w1,i = 1
d , and then use the update:

wt+1,i =
wt,i exp(−γ[∇ct(wt)]i)

Zt
,

31



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

where

Zt =
d∑
j=1

wt,j exp(−γ[∇ct(wt)]j) .

Here [∇ct(wt)]i denotes the ith component of the gradient vector. The division by Zt serves as a

form of normalization, so that we have wt+t ∈ D, i.e. ||wt+1||1 = 1.

The main result we base our analysis on for I2CR-1 and 2’s optimization is below, and we include

the proof given in [22] for completeness. For this proof, we set ∇t = ∇ct to simplify notation.

Theorem 1. Assume that D is a simplex and assume that the gradient is bounded as follows:

||∇ct(wt)||∞ ≤ G∞

where ||u||∞ = maxi |ui| is the L∞. If γ = 1
G∞

√
log d
T , the regret of EG at time T is bounded as:

RT (EG) ≤ 2G∞
√
T log d

Proof. We start by noting that

RG(T ) =
1

T

T∑
t=1

(c(wt)− c(w∗)) ≤
1

T

T∑
t=1

∇t(wt − w∗) .

The key result is that we have

T∑
t=1

∇t(wt − w∗) ≤
KL(w∗||w1)

γ
+ γG2

∞T .

In the above, the KL terms is the Kullback − Leiber [7] divergence between two vectors which is

given by KL(u||v) =
∑

i ui log ui
vi
. First, exp(x) ≤ 1 + x+ x2, if x ≤ 1. Let us examine how the KL

divergence changes with respect to w∗. We have

KL(w∗||wt)−KL(w∗||wt+1) =
∑
i

w∗i log
wt+1,i

wt,i

=
∑
i

w∗i (−γ∇t,i − log(Z))

= −γw∗∇t − log(Z)

Now let us use the inequality exp(x) ≤ 1 + x+ x2 for x ≤ 1 to get an upper bound on log(Z).

We note that γ∇t,i ≤ 1 since γ ≤ 1
G∞

for large enough T . Now we have

32



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

logZ = log
∑
i

wt,i exp(−γ∇t,i)

≤ log
∑
i

wt,i(1− γ∇t,i + γ2∇2
t,i)

= log(1− γwt∇t + γ2
∑
i

wt,i∇2
t,i)

≤ log(1− γwt∇t + γG2
∞)

≤ −γwt∇t + γ2G2
∞

In the above, we use the known inequality log(1 + x) ≤ x. Combining the above bound on logZ

and the bound on the KL difference, we have:

KL(w∗||wt)−KL(w∗||wt+1) ≥ −γw∗∇t + γwt∇t − γ2G2
∞

and so

∇t(wt − w∗) ≤
1

γ
(KL(w∗||wt)−KL(w∗||wt+1)) + γG2

∞ .

Summing the above, we now have:

T∑
t=1

∇t(wt − w∗) ≤
1

γ
(KL(w∗||w1)−KL(w∗||wT+1)) + γG2

∞T .

For the uniform distribution we have KL(w∗||w1) ≤ log d and generally we also have 0 ≤ KL(u||v)

for any u, v ∈ D. Finally, this leads to

T∑
t=1

∇t(wt − w∗) ≤
1

γ
KL(w∗||w1) + γG2

∞T .

To get the needed bound, we now just substitute γ = 1
G∞

√
log d
T .

Although EG based algorithms minimize a regret where ct depends on time, the algorithm can

also be applied to the setting when we want to minimize a single function. In this case, we have

that

RT (EG) =
T∑
t=1

c(wt)− Tc(w∗) ,

33



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

and, given the above bound, we then have that

1

T

T∑
t=1

(c(wt)− c(w∗)) ≤
2G∞

√
log d√
T

.

By the convexity of c we have that

c(
1

T

T∑
t=1

wt) ≤
1

T

T∑
t=1

c(wt)

so:

c(
1

T

T∑
t=1

wt)− c(w∗) ≤
2G∞

√
log d√
T

.

Hence, as an optimization procedure, it is sufficient to run this algorithm O( 1
ε2

) steps to get an ε

near optimal solution given by ws = 1
s

∑s
t=1wt.

In summarizing the above, we note that when optimizing a function c in rounds we need not use

the averaged solution ws = 1
s

∑s
t=1wt, but could also use ŵs = arg maxst=1 c(wt). The last realization

implies that if we are truly optimizing at each round so that c(wt) > c(wt+1) we need not adopt

the more conservative averaged solution. For our experiment with I2CR-2, we tried both methods

but the averaged solution was not needed since we were making progress at each step. Moreover, to

generalize the above results a bit further, we note that if we have a function c(w1, . . . , wK) where

each wi ∈ Rdi is in a simplex, the same proof will still cary through except that the constant would

now depend on K. For our purposes, this will be the case with IBM Model 2’s relaxation, since we

can order the lexical and distortion variables appropriately ( for example, we have have wi = t(f |ei)

for ei ∈ E and f ∈ D(ei) and similarly for the d terms). As a caveat, the fact that our log-likelihood

is concave changes nothing except some signs, and having the log-likelihood depend on multiple

simplexes only affects our choice of learning rate. Finally, the above bounds, although theoretically

justified, are in practice overly pessimistic: the choice of learning rate for EG is a key, and for our

application we cross-validate our algorithm’s learning rate on a small dataset to make a sensible

choice.

34



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

3.3 A Stochastic Exponentiated-Gradient Algorithm for Optimiza-

tion

We now describe an algorithm for optimizing the I2CR-2 problem in Figure 3.3, and note that this

algorithm can be applied with slight modification to I2CR-1 as well. The algorithm is closely related

to stochastic gradient ascent, but with two modifications:

• First, as mentioned previously, because the t(f |e) and d(i|j) parameters have simplex con-

straints (see Figure 2.1), we use exponentiated gradient (EG) updates. The main benefit of

this algorithm as opposed to classical Gradient Descent is that the projection step is a recipe:

we do not have to solve an l2 problem.

• Second, the objective function in the I2CR-2 problem is convex, but is not differentiable (the

gradient may not exist at all points). For this reason we use subgradients in the place of gra-

dients. In spite of the non-differentiability of the objective function, subgradient methods still

have strong convergence guarantees when combined with EG updates (e.g., the convergence

proofs in [3] go through with minor modifications; see also [4]).

To derive the updates, recall that we are maximizing the following objective function:

h(t, d)

=
1

2|T |
∑
k∈T

mk∑
j=1

log′
lk∑
i=0

min
{
t(f

(k)
j |e

(k)
i ), d(i|j)

}

+
1

2|T |
∑
k∈T

mk∑
j=1

log′
lk∑
i=0

t(f
(k)
j |e

(k)
i )

(L+ 1)
. (3.13)

Here we use T to denote the set {1 . . . n}; we will see shortly why this notation is convenient. We

use t and d to refer to the full set of t and d parameters respectively; h(t, d) is the function to be

maximized. Recall that log′(z) = log(z + λ) where λ is a small positive parameter.

Given a concave function f(x) where x ∈ Rd, a subgradient of f(x) at x is any vector g(x) ∈ Rd

such that for any y ∈ Rd,

f(y) ≤ f(x) + g(x) · (y − x) ,

where u · v is the inner product between vectors u and v. Subgradients are similar to gradients for

differentiable concave functions, in that gradients satisfy the above property. Subgradients can be

used in the place of gradients in many optimization algorithms (see for example [4]).

35



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

The subgradients for the objective function made up of Eq. 3.13 take a simple form. First, define

R(j, k) = λ+

lk∑
i=0

t(f
(k)
j |e

(k)
i ) ,

Q(j, k) = λ+

lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)} ,

and

I(i, j, k) =

 1 if t(f (k)
j |e

(k)
i ) ≤ d(i|j)

0 otherwise .

Then the subgradients2 are

∇t(f |e) =
1

2|T |
∑
i,j,k:

f
(k)
j

=f

e
(k)
i =e

(
1

R(j, k)
+
I(i, j, k)

Q(j, k)

)

and

∇d(i|j) =
1

2|T |
∑

k:i≤lk,j≤mk

1− I(i, j, k)

Q(j, k)
.

Exponentiated-gradient updates then take the following form:

t(f |e)← t(f |e)× exp{γ ×∇t(f |e)}∑
f ′ t(f

′|e)× exp{γ ×∇t(f ′|e)}
(3.14)

and

d(i|j)← d(i|j)× exp{γ ×∇d(i|j)}∑
i′ d(i′|j)× exp{γ ×∇d(i′|j)}

, (3.15)

where γ > 0 is a constant step size in the algorithm. Again, note that the EG updates make use of

subgradients, but maintain the simplex constraints on the t and d variables.

The method just described is a batch gradient method, where the entire training set T = {1 . . . n}

is used to derive the subgradients before the updates in Eqs. 3.14 and 3.15 are made. Many results

in Machine Learning and NLP have shown that stochastic gradient methods, where a subset of the

training examples is used before each gradient-based update, can converge much more quickly than

batch gradient methods. In our notation, this simply involves replacing T by some subset T ′ of the

training examples in the above definitions, where |T ′| is typically much smaller than |T |.

2We set ∇t(f |e) and ∇d(i|j) as the subgradients for the objective function in Eq. 3.8 with respect to t(f |e) and

d(i|j) respectively.

36



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Figure 3.3 shows our final algorithm, a stochastic version of the exponentiated-gradient method.

The method takes S passes over the data. For each pass, it randomly partitions the training set into

mini-batches T1 . . . TK of size B, where B is an integer specifying the size of each mini-batch (in our

experiments we used B = 125 or B = 250). The algorithm then performs EG updates using each

mini-batch T1 . . . TK in turn. As can be seen in Table 3.3, our experiments show that the algorithm

makes very significant progress in the first pass over the data, and takes very few iterations to

converge to a good solution even though we initialized with uniform parameter values.

3.4 I2CR-2 Experiments

In this section we describe experiments using the I2CR-2 optimization problem combined with the

stochastic EG algorithm for parameter estimation. We first describe the data sets we use, and then

describe experiments with the method, comparing our approach to results from IBM Model 2. We

compare the various algorithms in terms of their accuracy in recovering alignments, using metrics

such as F-Measure and AER.

3.4.1 Data Sets

We use data from the bilingual word alignment workshop held at HLT-NAACL 2003 [26]. As a

first dataset, we use the Canadian Hansards bilingual corpus, with 247,878 English-French sentence

pairs as training data, 37 sentences of development data, and 447 sentences of test data (note that

we use a randomly chosen subset of the original training set of 1.1 million sentences, similar to

the setting used in [27]). The development and test data have been manually aligned at the word

level, annotating alignments between source and target words in the corpus as either “sure” (S) or

“possible” (P ) alignments, as described in [28].

As a second data set, we used the Romanian-English data from the HLT-NAACL 2003 workshop.

This consisted of a training set of 48,706 Romanian-English sentence-pairs, a development set of 17

sentence pairs, and a test set of 248 sentence pairs.

37



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

1: Input: Define E, F , L, M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3. An integer B

specifying the batch size. An integer S specifying the number of passes over the data. A step size γ > 0. A

parameter λ > 0 used in the definition of log′ .

2: Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A parameter d(i|j) for each i ∈ [L]0, j ∈ [M ].

3: Definitions:

R(j, k) = λ+

lk∑
i=0

t(f
(k)
j |e

(k)
i )

Q(j, k) = λ+

lk∑
i=0

min{t(f (k)
j |e

(k)
i ), d(i|j)}

4: Initialization:

• ∀e ∈ E, f ∈ D(e), t(f |e) = 1/|D(e)|

• ∀j ∈ [M ], i ∈ [L]0, d(i|j) = 1/(L+ 1)

5: Algorithm:

6: for all s = 1 to S do

7: Randomly partition [n] into subsets T1 . . . TK of size B where K = n/B.

8: for all b = 1 to K do

9: ∀e ∈ E, f ∈ D(e), α(e, f) = 0

10: ∀j ∈ [M ], i ∈ [L]0, β(i, j) = 0

11: for all k ∈ Tb do

12: for all j = 1 to mk do

13: for all i = 0 to lk do

14: α(e
(k)
i , f

(k)
j ) += 1/(2R(j, k))

15: if t(f
(k)
j |e

(k)
i ) ≤ d(i|j) then

16: α(e
(k)
i , f

(k)
j ) += 1/(2Q(j, k))

17: else

18: β(i, j) += 1/(2Q(j, k))

19: ∀e, f, t(f |e) = t(f |e) exp (γ × α(e, f)/B)

20: ∀i, j, d(i|j) = d(i|j) exp (γ × β(i, j)/B)

21: Renormalize t and d parameters to satisfy
∑
f t(f |e) = 1 and

∑
i d(i|j) = 1.

22: Output: t and d parameters.

Figure 3.3: The stochastic exponentiated-gradient algorithm for optimization of I2CR-2.

3.4.2 Methodology

For each of the models—IBM Model 1, IBM Model 2, and I2CR-2—we follow convention in applying

the following methodology: first, we estimate the t and d parameters using models in both source-

38



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

target and target-source directions; second, we find the most likely alignment for each development

or test data sentence in each direction; third, we take the intersection of the two alignments as the

final output from the model.

For the EG algorithm we use a batch size B = 125 and step size γ = 0.5 on the Hansards data,

and B = 250 and γ = 0.5 for the Romanian-English data.

We report the performance of the models in terms of Precision, Recall, AER, and F-Measure

as defined by [28]. If A is the set of alignments produced by an algorithm, S is the set of sure

alignments as annotated in test data, and P is the set of possible alignments, then these quantities

are defined as

Recall =
|A ∩ S|
|S|

,

Precision =
|A ∩ S|
|A|

,

AER = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

,

F-Measure =
1

.5
Recall + .5

Precision
.

Note that we report results in both AER and F-Measure; however there is evidence [18] that

F-Measure is better correlated with translation quality when the alignments are used in a full system.

In training IBM Model 1 we follow [27] in running EM for 15 iterations. In training IBM Model

2 we first train IBM Model 1 for 15 iterations to initialize the t parameters, then train IBM Model 2

for a further 10 iterations. For the EG algorithm, we use 10 iterations over the training data for the

Hansards data, and 15 iterations on the Romanian-English data (on the latter dataset results on the

trial data showed that the method took slightly longer to converge). We report F-measure and AER

results for each of the iterations under the IBM Model 2 and I2CR-2 models. See Table 3.1 for the

results on the Hansards data, and Table 3.2 for the results on the English-Romanian dataset. It can

be seen that both I2CR-2 and IBM Model 2 converge to a fairly stable result after 2-3 iterations. The

two models give very similar levels of performance, for example after 10 iterations on the Hansard

data IBM Model 2 gives 14.22 AER and 0.7516 F-Measure versus 14.60 AER and 0.7506 F-Measure

for I2CR-2.

On the right, Table 3.3 shows the values of the objective function at each iteration when using the

EG algorithm to optimize the I2CR-2 objective. The method makes a large amount of progress on

39



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Iteration IBM2 I2CR-2 IBM2 I2CR-2

AER AER F-Measure F-Measure

Test Set Statistics

1 0.1491 0.1556 0.7530 0.7369

2 0.1477 0.1489 0.7519 0.7456

3 0.1451 0.1476 0.7527 0.7467

4 0.1426 0.1488 0.7536 0.7449

5 0.1422 0.1495 0.7535 0.7472

6 0.1431 0.1476 0.7511 0.7478

7 0.1434 0.1506 0.7506 0.7456

8 0.1437 0.1495 0.7501 0.7470

9 0.1434 0.1494 0.7501 0.7468

10 0.1422 0.1460 0.7516 0.7506

Development Set Statistics

1 0.1871 0.1971 0.6823 0.6676

2 0.1896 0.1870 0.6758 0.6827

3 0.1964 0.1860 0.6648 0.6739

4 0.1912 0.1835 0.6713 0.6775

5 0.1884 0.1813 0.6740 0.6773

6 0.1836 0.1851 0.6767 0.6811

7 0.1831 0.1806 0.6749 0.6765

8 0.1842 0.1843 0.6739 0.6775

9 0.1864 0.1928 0.6694 0.6640

10 0.1845 0.1829 0.6703 0.6721

Table 3.1: Results on the Hansards data for IBM Model 2 and the I2CR-2 method.

40



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Iteration IBM2 I2CR-2 IBM2 I2CR-2

AER AER F-Measure F-Measure

Test Set Statistics

1 0.4041 0.5354 0.5959 0.4646

2 0.4010 0.4764 0.5990 0.5256

3 0.4020 0.4543 0.5980 0.5457

4 0.4012 0.4384 0.5988 0.5617

5 0.4003 0.4277 0.5997 0.5723

6 0.3990 0.4266 0.6010 0.5834

7 0.4000 0.4162 0.6000 0.5838

8 0.4023 0.4114 0.5977 0.5886

9 0.4022 0.4081 0.5978 0.5919

10 0.4027 0.4043 0.5973 0.5957

11 0.4031 0.4040 0.5969 0.5960

12 0.4042 0.4027 0.5958 0.5973

13 0.4043 0.4021 0.5957 0.5979

14 0.4062 0.4007 0.5938 0.5993

15 0.4057 0.4014 0.5943 0.5986

Development Set Statistics

1 0.4074 0.5841 0.5926 0.4159

2 0.3911 0.4938 0.6089 0.5062

3 0.3888 0.4673 0.6112 0.5327

4 0.3904 0.4596 0.6096 0.5404

5 0.3881 0.4463 0.6119 0.5537

6 0.3904 0.4306 0.6096 0.5694

7 0.3936 0.4175 0.6094 0.5826

8 0.3897 0.4060 0.6103 0.5940

9 0.3961 0.4014 0.6039 0.5986

10 0.3970 0.4072 0.6030 0.5928

11 0.4018 0.3956 0.5982 0.6044

12 0.4035 0.3931 0.5965 0.6069

13 0.4035 0.3862 0.5965 0.6138

14 0.4014 0.3908 0.5986 0.6092

15 0.4063 0.3858 0.5937 0.6142

Table 3.2: Results on the English-Romanian data for IBM Model 2 and the I2CR-2 method.

41



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Iteration EF Objective FE Objective

0 -99.6053 -79.5566

1 -32.4528 -27.4925

2 -31.1641 -26.2620

3 -30.6311 -25.7093

4 -30.3367 -25.3714

5 -30.1428 -25.1456

6 -30.0000 -24.9920

7 -29.8736 -24.8605

8 -29.8093 -24.7551

9 -29.7326 -24.6840

10 -29.6771 -24.6099

Table 3.3: Objective values for the EG algorithm optimization of I2CR-2 at each iteration. “EF

Objective” corresponds to training a model with t(f |e) parameters, “FE Objective” corresponds to

the reverse direction, with t(e|f) parameters. Iteration 0 corresponds to the objective value under

the initial, uniform parameter values.

the first iteration and then continues to improve. Finally, we note that the memory requirements for

I2CR-2 and IBM2 are about the same, but that the time for one iteration of I2CR-2 on the Hansards

data is approximately one hour, while the time for one iteration of IBM2 was approximately 10

minutes.

3.5 The Viterbi Alignment for I2CR-2

Alignment models have been compared using methods other than Viterbi comparisons; for example,

in the previous section we use IBM Model 2’s optimal rule given by (see below) Eq. 3.17 to compare

models while Liang et al. (2006) use posterior decoding. Here, we derive and use I2CR-2’s Viterbi

alignment. To get the Viterbi alignment of a sentence pair (e, f) using I2CR-2 we need to find

â = (â1, . . . , âm) which yields the highest probability p(f, â|e). Referring to the I2CR-2 objective,

this corresponds to finding â that maximizes

42



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

log
∏m
j=1 t(fj |eâj )

2
+

log
∏m
j=1 min {t(fj |eâj ), d(âj |j)}

2
.

Putting the above terms together and using the monotonicity of the logarithm, the above reduces

to finding the vector â which maximizes

m∏
j=1

t(fj |eaj ) min {t(fj |eaj ), d(aj |j)}.

As with IBM Models 1 and 2, we can find the optimal alignment vector â by splitting the maxi-

mization over the components of â and focusing on finding âj given by

âj = argmaxli=0(t(fj |ei) min {t(fj |ei), d(i|j)}) . (3.16)

In previous experiments we presented for I2CR-2, we compared I2CR-2 and IBM Model 2 using the

standard alignment formula derived in a similar fashion from IBM Model 2:

âj = argmaxli=0(t(fj |ei)d(i|j)) . (3.17)

Since the parameters t and d above are non-negative, Eq. 3.16 can be rewritten as

argmaxa(min {t2(fj |ea), t(fj |ea)d(a|j)}) .

From the above, we see that the candidate alignment a of for a position j reduces to the square

score produced by IBM Model 1 if the lexical probability is smaller than the distortion while it is

that of IBM Model 2 if the distortion term d(a|j) is smaller than the lexical probability.

3.6 Experiments

In this section we describe further experiments and applications using the I2CR-2 optimization

problem combined with the stochastic EG algorithm [33] for parameter estimation. The experiments

conducted here use a similar setup to those in (Simion et al., 2014) [33] as presented above.

43



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Training 210 15210 EG1
125210 EG1

1250210

Iteration Objective

0 -224.0919 -144.2978 -91.2418 -101.2250

1 -110.6285 -85.6757 -83.3255 -85.5847

2 -91.7091 -82.5312 -81.3845 -82.1499

3 -84.8166 -81.3380 -80.6120 -80.9610

4 -82.0957 -80.7305 -80.2319 -80.4041

5 -80.9103 -80.3798 -80.0173 -80-1009

6 -80.3620 -80.1585 -79.8830 -79.9196

7 -80.0858 -80.0080 -79.7911 -79.8048

8 -79.9294 -79.9015 -79.7247 -79.7284

9 -79.8319 -79.8240 -79.6764 -79.6751

10 -79.7670 -79.7659 -79.6403 -79.6354

Table 3.4: Objective results for the English → French IBM Model 2 seeded with either uniform

parameters, IBM Model 1 ran for 5 EM iterations, or I2CR-2 ran for 1 iteration with either B =

125 or 1250. Iteration 0 denotes the starting IBM 2 objective depending on the initialization.

44



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

3.6.1 Initialization and Timing Experiments

We first report the summary statistics on the test set using a model trained only in the English-

French direction. In these experiments we seeded IBM Model 2’s parameters either with those of

IBM Model 1 run for 5, 10 or 15 EM iterations or I2CR-2 run for 1 iteration of EG with a batch

size of either B = 125 or 1250. For uniform comparison, all of our implementations were written in

C++ using STL/Boost containers.

There are several takeaways from our experiments, which are presented in Table 3.5. We first

note that with B = 1250 we get higher F-Measure and lower AER even though we use less training

time: 5 iterations of IBM Model 1 EM training takes about 3.3 minutes, which is about the time it

takes for 1 iteration of EG with a batch size of 125 (4.1 minutes); on the other hand, using B = 1250

takes EG 1.7 minutes and produces the best results across almost all iterations. Additionally, we note

that the initial solution given to IBM Model 2 by running I2CR-2 for 1 iteration with B = 1250

is fairly strong and allows for further progress: IBM2 EM training improves upon this solution

during the first few iterations. We also note that this behavior is global: no IBM 1 initialization

scheme produced subsequent solutions for IBM 2 with as low in AER or high in F-Measure. Finally,

comparing Table 3.4 which lists objective values with Table 3.5 which lists alignment statistics, we

see that although the objective progression is similar throughout, the alignment quality is different.

To complement the above, we also ran intersection experiments. Seeding IBM Model 2 by Model

1 and intersecting the alignments produced by the English-French and French-English models gave

both AER and F-Measure which were better than those that we obtained by any seeding of IBM

Model 2 with I2CR-2. However, there are still reasons why I2CR-2 would be useful in this context.

In particular, we note that I2CR-2 takes roughly half the time to progress to a better solution than

IBM Model 1 run for 5 EM iterations. Second, a possible remedy to the above loss in marginal

improvement when taking intersections would be to use a more refined method for obtaining the

joint alignment of the English-French and French-English models, such as “grow-diagonal” [28].

3.6.2 Viterbi Comparisons

For the decoding experiments, we used IBM Model 1 as a seed to Model 2. To train IBM Model 1,

we follow [27] and [28] in running EM for 5, 10 or 15 iterations. For the EG algorithm, we initialize

all parameters uniformly and use 10 iterations of EG with a batch size of 125. Given the lack of

45



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Training 210 15210 110210 115210 EG1
125210 EG1

1250210

Iteration AER

0 0.8713 0.3175 0.3177 0.3160 0.2329 0.2662

1 0.4491 0.2547 0.2507 0.2475 0.2351 0.2259

2 0.2938 0.2428 0.2399 0.2378 0.2321 0.2180

3 0.2593 0.2351 0.2338 0.2341 0.2309 0.2176

4 0.2464 0.2298 0.2305 0.2310 0.2283 0.2168

5 0.2383 0.2293 0.2299 0.2290 0.2268 0.2188

6 0.2350 0.2273 0.2285 0.2289 0.2274 0.2205

7 0.2320 0.2271 0.2265 0.2286 0.2274 0.2213

8 0.2393 0.2261 0.2251 0.2276 0.2278 0.2223

9 0.2293 0.2253 0.2246 0.2258 0.2284 0.2217

10 0.2288 0.2248 0.2249 0.2246 0.2275 0.2223

Iteration F-Measure

0 0.0427 0.5500 0.5468 0.5471 0.6072 0.5977

1 0.4088 0.5846 0.5876 0.5914 0.6005 0.6220

2 0.5480 0.5892 0.5916 0.5938 0.5981 0.6215

3 0.5750 0.5920 0.5938 0.5947 0.5960 0.6165

4 0.5814 0.5934 0.5839 0.5952 0.5955 0.6129

5 0.5860 0.5930 0.5933 0.5947 0.5945 0.6080

6 0.5873 0.5939 0.5936 0.5940 0.5924 0.6051

7 0.5884 0.5931 0.5955 0.5941 0.5913 0.6024

8 0.5899 0.5932 0.5961 0.5942 0.5906 0.6000

9 0.5899 0.5933 0.5961 0.5958 0.5906 0.5996

10 0.5897 0.5936 0.5954 0.5966 0.5910 0.5986

Table 3.5: Results on the Hansards data for English → French IBM Model 2 seeded using different

methods. The first four columns are for a model seeded with IBM Model 1 ran for 0, 5, 10 or 15 EM

iterations. The fifth and sixth columns show results when we seed with I2CR-2 ran for 1 iteration

either with B = 125 or 1250. Iteration 0 denotes the starting statistics.

46



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

Training 15210 110210 115210 EG10
125 EG10

125

Viterbi Rule t× d t× d t× d t× d t×min{t× d}

Iteration AER

0 0.2141 0.2159 0.2146 0.9273 0.9273

1 0.1609 0.1566 0.1513 0.1530 0.1551

2 0.1531 0.1507 0.1493 0.1479 0.1463

3 0.1477 0.1471 0.1470 0.1473 0.1465

4 0.1458 0.1444 0.1449 0.1510 0.1482

5 0.1455 0.1438 0.1435 0.1501 0.1482

6 0.1436 0.1444 0.1429 0.1495 0.1481

7 0.1436 0.1426 0.1435 0.1494 0.1468

8 0.1449 0.1427 0.1437 0.1508 0.1489

9 0.1454 0.1426 0.1430 0.1509 0.1481

10 0.1451 0.1430 0.1423 0.1530 0.1484

Iteration F-Measure

0 0.7043 0.7012 0.7021 0.0482 0.0482

1 0.7424 0.7477 0.7534 0.7395 0.7507

2 0.7468 0.7499 0.7514 0.7448 0.7583

3 0.7489 0.7514 0.7520 0.7455 0.7585

4 0.7501 0.7520 0.7516 0.7418 0.7560

5 0.7495 0.7513 0.7522 0.7444 0.7567

6 0.7501 0.7501 0.7517 0.7452 0.7574

7 0.7493 0.7517 0.7507 0.7452 0.7580

8 0.7480 0.7520 0.7504 0.7452 0.7563

9 0.7473 0.7511 0.7513 0.7450 0.7590

10 0.7474 0.7505 0.7520 0.7430 0.7568

Table 3.6: Intersected results on the English-French data for IBM Model 2 and I2CR-2 using either

IBM Model 1 trained to 5, 10, or 15 EM iterations to seed IBM2 and using either the IBM2 or

I2CR-2 Viterbi formula for I2CR-2.

47



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

development data for the alignment data sets, for both IBM Model 2 and the I2CR-2 method, we

report test set F-Measure and AER results for each of the 10 iterations, rather than picking the

results from a single iteration.

In Table 3.6 we report F-Measure and AER results for each of the iterations under IBM Model

2 and I2CR-2 models using either the Model 2 Viterbi rule of Eq. 3.17 or I2CR-2’s Viterbi rule in

Eq. ??. We note that unlike in the previous experiments presented in [33], we are directly testing

the quality of the alignments produced by I2CR-2 and IBM Model 2 since we are getting the Viterbi

alignment for each model (for completeness, we also have included in the fourth column the Viterbi

alignments we get by using the IBM Model 2 Viterbi formula with the I2CR-2 parameters as Simion

et al. (2013) had done previously). For these experiments we report intersection statistics. Under its

proper decoding formula, I2CR-2 model yields a higher F-Measure than any setting of IBM Model

2. Since AER and BLEU correlation is arguably known to be weak while F-Measure is at times

strongly related with BLEU [14], the above results favor the convex model.

We close this section by pointing out that the main difference between the IBM Model 2 Viterbi

rule of Eq. 3.17 and the I2CR-2 Viterbi rule in Eq. 3.16 is that the Eq. 3.16 yield fewer alignments

when doing intersection training. Even though there are fewer alignments produced, the quality in

terms of F-Measure is better.

3.7 Conclusions and Future Work

In this section we have introduced the first convex model for unsupervised learning of alignments in

statistical machine translation with performance comparable to the commonly-used IBM Model 2.

We believe that introducing convexity without sacrificing performance will open the door to further

improvements in this area. Moreover, we have also explored some of the further details of the I2CR2-

2 model and shown that it may potentially be used as a new initialization technique for IBM Model

2 or as a model in its own right, especially if the F-Measure is the target metric. With regard to the

current model, other possible topics of interest include performing efficient sensitivity analysis on

the I2CR-2 model, analyzing the balance between the IBM Model 1 and I2CR-1 [33] components

of the I2CR-2 objective, studying I2CR-2’s intersection training performance using methods such

as “grow diagonal" or “agreement" [25], and integrating it into the GIZA++ open source library so

48



CHAPTER 3. A CONVEX ALTERNATIVE TO IBM MODEL 2

we can see how much it affects the downstream system.

49



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Chapter 4

A Family of Latent Variable Convex

Relaxations for IBM Model 2

4.1 A Class of Concave Functions based on the Generalized Weighted

Mean

In the previous chapter, model I2CR-2 was studied and, at a high level, the key component in

its construction was to replace the non-concave function f(x) =
∏n
i=1 xi by the concave function

h(x) = minni=1 xi. This is only one possible convexification; we now explore a much larger set of

ways to convexify a product. While some of this work is found in the literature (e.g. [7; 10]), its

application in the context we are interested in (and the methods we developed in Section 5), is new.

For clarity, we present all the element that we need below.

Definition 8. Let (α1, . . . , αn) ∈ (0, 1)n be such that
∑n

i=1 αi = 1. For p 6= 0 denote fp : Rn++ → R+

given by

fp(x1, . . . , xn) =

(
n∑
i=1

αix
p
i

)1/p

(4.1)

as the generalized weighted mean function. For p = 0 denote f0 : Rn++ → R+ given by

f0(x1, . . . , xn) =
n∏
i=1

xαii (4.2)

as the generalized weighted geometric mean function.

50



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Although the above definition restricts the domain to Rn++, we extend the domain of fp to Rn

by setting fp(x) to −∞ for any x /∈ Rn++. With this definition, fp is defined everywhere and is a

concave function [7]. The results we need on the generalized weighted mean are detailed next along

with some new material that serves as supplement. Theorems 2-3 and Lemma 1 are implicit in

several sources in the literature ([7; 44; 10]).

Theorem 2. If p ≤ 1 then any fp within the class of functions in Definition 8 is concave.

Proof. Clearly fp is linear when p = 1 so in this case there is nothing to prove. We address the

concavity of fp for p < 1, p 6= 0 first. By the rules of differentiation, we have that

fp(x)

∂xi
= αi

(
fp(x)

xi

)1−p
.

Using the formula for the gradient above we now have that the Hessian matrix, Hp, of fp is relatively

easy to compute. Specifically, we have that ∂2fp(x)

∂x2
i

is equal to

α2
i (1− p)
fp(x)

(
fp(x)2

x2
i

)1−p
− αi(1− p)

xi

(
fp(x)

xi

)1−p

while (if i 6= j) ∂2fp(x)
∂xi∂xj

is

αiαj(1− p)
fp(x)

(
fp(x)2

xixj

)1−p
.

To conclude that fp is concave it suffices to show that the Hessian is negative definite so that ∀ z
we have zTHpz ≤ 0. Simplifying the expression that results when evaluating zTHpz we have that

it is equal to
1− p
fp(x)

( n∑
i=1

αizifp(x)1−p

x1−p
i

)2

−
n∑
i=1

αiz
2
i fp(x)2−p

x2−p
i

 .

To show that the above is negative, we first note that we can ignore the 1−p
fp(x) term since it is

positive. Concavity now following by applying the Cauchy-Schwatz inequality vTw ≤ ||v||2||w||2 to

the vectors v and w with vi = zi
√
αi(

fp(x)
xi

)1−p/2 and wi =
√
αifp(x)−p/2

x
−p/2
i

and noting that ||w||2 = 1.

We conclude the proof by considering the case p = 0. In this case, we note that the Hessian

matrix H0 is given by

∂2f0(x)

∂xi∂xj
=


αi(αi−1)f0(x)

x2
i

: if i = j

αiαjf0(x)
xixj

: if i 6= j

51



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Using the form of H0 above we then have

zTH0z = (
n∑
i=1

αizi
xi

)2 −
n∑
i=1

αiz
2
i

x2
i

≤ 0 ,

via the Cauchy-Schwartz inequality applied to the vectors w = (
√
α1, . . . ,

√
αn) and v = (

√
αiz1
x1

, . . . ,
√
αnzn
xn

).

Using Theorem 2 and extending fp to Rn, the generalized mean function thus gives us a family

of concave functions defined everywhere. Interestingly, we note that the extremes

lim
p→0

fp(x) =
n∏
i=1

xαii = f0(x)

and

lim
p→−∞

fp(x) = min{x1, . . . , xn} = f−∞(x) ,

are both concave and belong to this family.

Lemma 1. Let fp(x) be defined as in Definition 8. We have

lim
p→0

fp(x) =
n∏
i=1

xαii ,

and

lim
p→−∞

fp(x) = min{x1, . . . , xn} .

Proof. Letting p → 0 directly we reach an undetermined case of the type 1∞. Using standard

techniques, we have that the sought limit is the same as

exp
∑n
i=1 αi limp→0

x
p
i
−1

p .

For any y > 0 we know that limp→0
yp−1
p = ln(y) via L’Hospital’s rule. The result now follows using

the properties of the logarithm. For the second result, without loss of generality suppose that x1 is

the smallest of {xi}ni=1. We then have that for p < 0

x1 ≤ fp(x) ≤ α1/p
1 x1 .

Letting p→ −∞ and using the squeeze theorem, we get the result.

52



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Lemma 1 implies that fp(x) can be identified for any p ≤ 1 and all x as being concave. Moreover,

for x ∈ [0, 1]n, fp(x) provides a monotonic concave upper envelope for
∏n
i=1 xi.

Theorem 3. Let fp(x) be defined as in Definition 8. For x ∈ [0, 1]n the generalized weighted mean

function fp(x) provides a monotonic concave envelope for
∏n
i=1 xi. In particular, we have

n∏
i=1

xi ≤ fp(x) ≤ fq(x)

for any p ≤ q ≤ 1.

Proof. We note that the result we present can be derived as a consequence of the generalized-

weighted mean inequality. However, we present a more direct proof within the context of the domain

we are dealing with. We show that ∀ x ∈ (0, 1]n

n∏
i=1

xi ≤ fp(x) .

Consider p 6= 0. Using the chain rule, we have that the partial derivative ∂fp(x)
∂p is equal to

− 1

p2
fp(x)1−p(

n∑
i=1

αix
p
i log xi) .

From the fact that xi ∈ (0, 1] we have log xi < 0. Looking at the form of the partial derivative, it

follows that ∂fp(x)
∂p ≥ 0 for any p 6= 0. Finally, the case that f0(x) ≤ fp(x) for p > 0 and fp(x) ≤ f0(x)

for p < 0 follows by using Lemma 1 and the monotonicity for p 6= 0 established above.

We next show that f−∞(x) = minni=1 xi is a special function when used to bound
∏n
i=1 xi above

by a positive-valued concave envelope. Specifically, we have that minni=1 xi is the tightest such upper

bound, regardless of the class of functions we consider.

Theorem 4. Consider any concave function h : Rn++ → R+ such that

n∏
i=1

xi ≤ h(x)

for all x ∈ [0, 1]n. Then
n

min
i=1

xi ≤ h(x)

for all x ∈ [0, 1]n.

53



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Proof. The proof is by strong induction on n. Consider first the case n = 2. Note that for any point

of the type (x1, 1), (x1, 0), (1, x2), or (0, x2) the result follows easily, so without loss of generality

consider x = (x1, x2) ∈ (0, 1)2 with x1 ≤ x2 and suppose by way of contradiction that h(x1, x2) < x1

and note that we have

x1 ≤ x2h

(
x1

x2
, 1

)
and

0 ≤ (1− x2)h(0, 0)

by the positivity of h and the fact that h bounds the product of its arguments. Adding the above

and using Jensen’s inequality we then have

x1 ≤ x2h

(
x1

x2
, 1

)
+ (1− x2)h(0, 0) ≤ h(x1, x2) < x1 .

The above result yields a contradiction, and we now have that min{x1, x2} is the tightest positive-

valued upper bound on x1x2. Now, assume that the result holds for the case n = k and consider

some x ∈ [0, 1]n with n = k + 1. First note that if any component of x is zero the result is trivial.

Now suppose that 1 ≤ l ≤ n components of x are 1. Without loss of generality, we can assume

that these components are x1, . . . , xl and note that in this case x = (1, . . . , 1, xl+1, . . . , xn). Then,

h′(x′) = h(1, . . . , 1, xl+1, . . . , xn) is a concave function in Rn−l++ with x′ = (xl+1, . . . , xn) ∈ [0, 1]n−l.

Moreover, h′ is satisfies
∏n
i=l+1 xi ≤ h′(x′), so that by the induction hypothesis we have

n
min
i=1

xi =
n

min
i=l+1

xi ≤ h′(x′) = h(x) ,

as needed. Suppose now by way of contradiction that we have an x ∈ (0, 1)n with h(x) < minni=1 xi.

To simplify notation, suppose furthermore without loss of generality that x1 ≤ x2 ≤ . . . ≤ xn.

Under this setting let x′ = (x1
x2
, 1, . . . , 1) and x′′ = (0, 0, x3−x2

1−x2
, . . . , xn−x2

1−x2
) and note that x′ and

x′′ ∈ [0, 1]k+1, x1 ≤ x2h(x′), 0 ≤ (1 − x2)h(x′′), and x = x2x
′ + (1 − x2)x′′. Applying Jensen’s

inequality yields

x1 ≤ x2h(x′) + (1− x2)h(x′′)

≤ h(x)

< x1 ,

54



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

a contradiction.

Although several upper bounds for
∏n
i=1 xi with x ∈ [0, 1]n are detailed above, we note that

bounding
∏n
i=1 xi below by a nontrivial positive-valued concave function is not possible, if n ≥ 2.

Theorem 5. Let n ≥ 2 and h : Rn++ → R+ be a concave function such that

h(x) ≤
n∏
i=1

xi

for all x ∈ [0, 1]n. Then h(x) is identically equal to zero.

Proof. If x has a component which is zero then h(x) ≤ 0 and hence h(x) = 0 since h(x) ≥ 0.

Choosing θ ∈ (0, 1) and x ∈ (0, 1]n yields that

θh(x) + (1− θ)h(0) ≤ h(θx) ≤ θn
n∏
i=1

xi ,

and we note that the left hand side above is equal to θh(x). Dividing both sides by θ we next have

h(x) ≤ θn−1
n∏
i=1

xi .

Letting θ → 0 in the last equation we get h(x) ≤ 0. Since we also have h(x) ≥ 0, we now have

h(x) = 0 for any x ∈ [0, 1]n, as needed.

The main takeaway of the above is that positive valued concave envelopes for
∏n
i=1 xi are limited

to upper envelopes such as those provided by fp in Definition 8. Indeed, among all upper envelopes

we can choose, the min is the tightest.

4.2 A Family of Convex IBM Model 2 Alternatives

From our earlier discussion, the first relaxations of IBM Model 2 were called I2CR-1 and I2CR-

2. Since the methods presented here are a generalization of the previous results, we use I2CR to

denote the general optimization problem class that arises by using a special concave h instead

of x1x2 in IBM Model 2; see Figure 2. I2CR-3 and I2CR-4 are based on the particular concave

55



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Input: Define E, F , L,M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

A positive-valued concave function h : R2
++ → R+ such that

x1x2 ≤ h(x1, x2) ,

∀ (x1, x2) ∈ [0, 1]2.

Parameters: Same as IBM Model 2.

Constraints: Same as IBM Model 2.

Objective: Maximize
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

h(t(f
(k)
j |e

(k)
i ), d(i|j)) (4.3)

with respect to the t(f |e) and d(i|j) parameters.

Figure 4.1: The I2CR (IBM 2 Convex Relaxation) Problem. For any function h that is concave,

the resulting optimization problem is a convex problem. I2CR-1 results from using h(x1, x2) =

f−∞(x1, x2) = min{x1, x2} in the above while I2CR-3 arises from using h(x1, x2) = f0(x1, x2) =

xβ1x
1−β
2 with β ∈ [0, 1].

function f0(x1, x2) = xβ1x
1−β
2 (with β ∈ [0, 1]) from Definition 8.1 Although the focus is on the

special case I2CR-3, the convexity proof we present is general and will imply that I2CR is a family

of convex optimization problems. For a fixed h, any new relaxation of IBM Model 2 could then be

optimized using a mini-batch EG method as discussed in Chapter 3 [33]. Because of the convexity

of the problems that result, the optimization methods above are guaranteed to converge to a global

solution.

4.2.1 The I2CR-3 Problem

The I2CR-3 problem is a special case of I2CR shown in Figure 4.1 using h = f0. The key difference

between this model and IBM Model 2 is that in the objective of IBM Model 2 we have replaced

1Note that there is some similarity of the resulting objective function to methods that use deterministic annealing

for EM ([39]; [32]) In annealing approaches the objective would be (x1x2)
β where β is initially close to 0, and is

then progressively increased to a value of 1. This prior work does not make the connection to convex objectives when

β = 1/2, and unlike our approach varies β between 0 and 1 within their algorithm.

56



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

terms of the type t(fj |ei)× d(i|j) by tβ(fj |ei)× d1−β(i|j), where β ∈ [0, 1]. We now state the main

result needed to show that the objective of I2CR-3 is concave:

Lemma 2. Let T be a subset of [n] and consider h : Rn++ → R+ given by

h(x1, . . . , xn) =
∏
i∈T

xαii ,

where αi ∈ (0, 1) ∀i ∈ T and
∑

i∈T αi = 1. Then h is concave.

Proof. Let g : R|T |++ → R+ be given by

g(x1, . . . , x|T |) =

|T |∏
i=1

xαii

and note that g is concave by Theorem 4.1. Next we note that h(x) = g(Ax + b) where b = 0

and A ∈ Rn×|T | is a suitably chosen matrix which projects down from dimension n to |T |. By the

composition rule of a concave function with a linear transformation, h is a concave function [7].

Using the above Lemma, we can prove that functions such as

h(x1, x2, x3) =
√
x1x2 +

√
x2x3

are concave since they are the sum of two concave functions. We use this observation in the following

theorem.

Theorem 6. The objective of I2CR-3 is concave.

Proof. Fix a specific training pair index k and target word position j within the objective of I2CR-3

given by Eq. 4.3. We first note that the log is an increasing concave function (we define log(x)

to be −∞ if x ≤ 0). Using Lemma 2 repeatedly the sum inside the logarithm in the objective of

I2CR-3 (Eq. 4.3) is a sum of concave functions, and is hence itself concave. It is a well known rule

that composing a concave increasing function (such as the logarithm) and a concave function yield

a concave function [7]. Hence, for a fixed k and j, the objective of I2CR-3 is concave. Since the

objective in Eq. 4.3 is a sum of concave functions, the result now follows.

Theorem 6 implies that I2CR-3 is a convex optimization problem since its objective is concave

and the constraints form a polytope. In fact, note that an analogous Lemma 2 would hold for any

57



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

concave function h. With this observation we now have a recipe that can be carried out for any

positive-valued concave function h thus yielding our main result: I2CR is a family of convex relax-

ations for IBM Model 2. In particular, this recipe is more general than the linearization technique in

Chapter 3 and can be carried out for any concave function h in Figure 4.1. By using h = f−∞ = min

and applying Theorem 2 we have the tightest such relaxation: I2CR-1 [33]. Interestingly, we will see

later that a tighter relaxation does not necessarily give better alignment quality. Specifically, if we

set αi = 1/n ∀i, we have that

f1/2(x) =

(
n∑
i=1

√
xi
n

)2

(4.4)

and the harmonic mean

f−1(x) = n

(
n∑
i=1

1/xi

)−1

(4.5)

are both concave and using analogous versions of Lemma 2 and Theorem 6 we then have a family

of relaxations for latent variable models involving the product of probabilities. Moreover, we note

that for x1, x2 ∈ (0, 1] :

x1x2 ≤ min {x1, x2} ≤
2x1x2

x1 + x2
≤
√
x1x2 , (4.6)

so that the usage of the min as in [33] is a better approximation of the product under our general

setup. Finally, we note that we could use other concave functions outside of the generalized means

to create relaxations. For example, we have that h(x1, x2) =
√

(1− e−x1)(1− e−x2) is concave [7]

on R2
+ and is not in the generalized means family. There are infinitely many nontrivial relaxations

to consider.

As a final comment, we remark that the new relaxation is not strictly convex for all datasets.

However, similar to IBM Model 2, our sense is that the symmetries in the data that would result in

non-strict convexity will be rare in real datasets — much more rare than the case of IBM Model 1,

for which it is well known that the objective is not strictly convex for real-world datasets [41]. We

leave further study of this to future work.2

2Noting that for (α1, α2) ∈ (0, 1)2 with α1 + α2 < 1 f0(x1, x2) = xα1
1 xα2

2 is strictly concave ([44]), there is an

easy remedy to guarantee strict convexity. In particular, using a degenerate f0 we get the same EM algorithm as in

Figure 3 (change (β, 1− β) to (α1, α2)), but now have a strictly convex relaxation. Besides this, we could also use an

l2 regularizer.

58



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

4.2.2 The I2CR-4 Problem

Our initial experiments with I2CR-3 lead to better performance than IBM Model 1, but did not

yield results as good as those of Model 2. In Chapter 3 we obtained better performance by appending

an IBM Model 1 objective to the original convex relaxation I2CR-1 that we derived, and we felt

that this might work for I2CR-3 as well. To this end we call our new model I2CR-4 and note that its

objective is the sum of one likelihood which places all its importance on the lexical terms (IBM 1)

and another (I2CR-3) that distributes weight on the lexical and distortion term via the geometric

weighted mean:

1

2n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

t(f
(k)
j |e

(k)
i )

+
1

2n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

tβ(f
(k)
j |e

(k)
i )d1−β(i|j) ,

This new model is still a convex optimization problem since its objective is concave (the sum of two

concave functions is concave).

4.3 An EM Algorithm for I2CR-4

We describe an EM algorithm for optimizing the I2CR-4 problem in Figure 4.2, and note that the

memory and time requirements are the same as those of IBM Model 2’s EM algorithm. We find

it appealing to introduce a relaxation based on the weighted geometric mean specifically because

a simple EM algorithm can be derived. In particular, we note that that the likelihood function we

study is of the form

L(t,d) =

∑n
k=1 log pIBM1(f (k)|e(k))pI2CR−3(f (k)|e(k))

n
,

where pIBM1 and pI2CR−3 are the likelihoods of IBM Model 1 and I2CR-3. Under these models, de-

note the alignment posteriors by qIBM1(a(k)|e(k), f (k)) and qI2CR−3(a(k)|e(k), f (k)) , as usual. Using

Jensen’s inequality we have the above likelihood is equal to the sum of

∑
a(k)

qIBM1(a(k)|e(k), f (k)) log
pIBM1(f (k), a(k)|e(k))

qIBM1(a(k)|e(k), f (k))

59



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

and ∑
a(k)

qI2CR−3(a(k)|e(k), f (k)) log
pI2CR−3(f (k), a(k)|e(k))

qI2CR−3(a(k)|e(k), f (k))
.

In an M-step iteration of EM, we fix the posteriors and maximize the p terms for the lexical and

distortion parameters. For IBM Model 1, the EM algorithm is known. For I2CR-3, the EM algorithm

follows the same essentially path as that of IBM Model 2 the only difference being that we insert

β or 1− β to modify the balance between counts (this latter fact follows from the known property

of the logarithm: log(tβd1−β) = β log(t) + (1 − β) log(d)). Since both these optimization problems

have the same multinomial flavor, the Lagrange multipliers act as normalizing constants and we

can just combine the gotten counts. The above discussion leads to the main upshot: for the I2CR-4

lexical parameter updates we collect counts arising from IBM Model 1 and I2CR-3 and renormalize

as needed. This last bit of logic is what we have summarized in Figure 4.2.

4.4 Decoding with I2CR-3 and I2CR-4

To obtain the highest probability alignment of a pair (e, f) using an IBM Model we need to find

the â = (â1, . . . , âm) which yields the highest probability p(f, â|e). There are various ways to use

the estimated parameters from the IBM Models in decoding. For one, we could find the optimal

alignment for I2CR-4 using IBM Model 2’s rule (this is the optimal rule for I2CR-3 as well). On

the other hand, using the same methods as presented in Chapter 3 we can find the optimal vector

â by splitting the maximization over the components of â and focusing on finding âj given by

âj = argmaxli=0{t1+β(fj |ei)d1−β(i|j)} .

Finally, as a check of the model’s validity, we also decode using IBM Model 1’s rule. Since the EM

updates for IBM Model 1 do not take position at all into account, any reasonable convex relaxation

of IBM Model 2 should always beat IBM Model 1 in lexical parameter quality.

4.5 Experiments

In this section we describe experiments using the I2CR-3 and I2CR-4 optimization problems com-

bined with the EM algorithm for these problems. For our experiments we only used β = 1
2 , but note

that β can be cross-validated for optimal performance.

60



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

1: Input: Define E, F , L, M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3. An integer T

specifying the number of passes over the data. A weighting parameter β ∈ [0, 1].

2: Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A parameter d(i|j) for each i,∈ [L]0, j ∈ [M ].

3: Initialization:

• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1/|D(e)|.

• ∀i ∈ [L]0, j ∈ [M ], set d(i|j) = 1/(L+ 1).

4: EM Algorithm:

5: for all t = 1 . . . T do

6: ∀e ∈ E, f ∈ D(e), count(f, e) = 0

7: ∀e ∈ E, count(e) = 0

8: ∀i ∈ [L]0, j ∈ [M ], count(i, j) = 0

9: ∀j ∈ [M ], count(j) = 0

10: EM Algorithm: Expectation

11: for all k = 1 . . . n do

12: for all j = 1 . . .mk do

13: δ1[i] = δ2[i] = 0 ∀i ∈ [lk]0

14: ∆1 = ∆2 = 0

15: for all i = 0 . . . lk do

16: δ1[i] = t(f
(k)
j |e

(k)
i )

17: δ2[i] = tβ(f
(k)
j |e

(k)
i )d1−β(i|j)

18: ∆1 += δ1[i]

19: ∆2 += δ2[i]

20: for all i = 0 . . . lk do

21: δ1[i] =
δ1[i]
∆1

22: δ2[i] =
δ2[i]
∆2

23: count(f
(k)
j , e

(k)
i ) += δ1[i] + βδ2[i]

24: count(e
(k)
i ) += δ1[i] + βδ2[i]

25: count(i, j) += (1− β)δ2[i]

26: count(j) += (1− β)δ2[i]

27: EM Algorithm: Maximization

28: for all e ∈ E do

29: for all f ∈ D(e) do

30: t(f |e) =
count(e,f)
count(e)

31: for all ∀i ∈ [L]0, j ∈ [M ], do

32: d(i|j) =
count(i,j)
count(j)

33: Output: t, d parameters.

Figure 4.2: Pseudocode for T iterations of the EM Algorithm for the I2CR-4 problem.

61



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

4.5.1 Data Sets

For our alignment experiments, we used a subset of the Canadian Hansards bilingual corpus with

247,878 English-French sentence pairs as training data, 37 sentences of development data, and 447

sentences of test data [26]. As a second corpus, we considered a training set of 48,706 Romanian-

English sentence-pairs, a development set of 17 sentence pairs, and a test set of 248 sentence pairs

[26]. For our SMT experiments, we choose a subset of the English-German Europarl bilingual corpus,

using 274,670 sentences for training, 1,806 for development, and 1,840 for test.

4.5.2 Methodology

For each of the models we follow convention in applying the following methodology: first, we estimate

the t and d parameters using models in both source-target and target-source directions; second, we

find the most likely alignment for each development or test data sentence in each direction; third,

we take the intersection of the two alignments as the final output from the model.

For our experiments, we report results in both AER (lower is better) and F-Measure (higher

is better) [28]. There is evidence [18] that F-Measure is better correlated with translation quality

when the alignments are used in a full system.

In training IBM Model 2 we first train IBM Model 1 for 5 iterations to initialize the t parameters,

then train IBM Model 2 for a further 15 iterations [28]. For the I2CR models, we use 15 iterations

over the training data and seed all parameters to uniform probabilities. Since the development data

we use is rather small, for all models considered we report F-Measure and AER results for each

of the 15 iterations, rather than picking the results from a single iteration. Table 4.1 contains our

results for the Hansards data. For the Romanian data, we obtained similar behavior, but we leave

out these results due to space limitations.

From our experiments, we see that both I2CR-4 and I2CR-3 converge to solutions which give

better alignment quality than those of IBM Model 1. Moreover, I2CR-3 is strictly speaking worse

than IBM Model 2 and its performance lies in-between that of IBM Model 1 and IBM Model 2.

On the other hand, extracting the alignments from I2CR-4 with its natural decoding rule (using

t×
√
t× d) produces better F-Measure scores than those of IBM Model 2. We feel that even though

our convex models are not superior in every way to IBM Model 2, their relatively easy structure and

similarity to IBM Model 2 offer some deep insights into what can be accomplished with a convex

62



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

relaxation. Lastly, we note that it is possible that the balance between the t and d parameters in

I2CR-3 should be more carefully chosen within the weighted geometric mean (recall that we used

β = 1/2) to produce the optimal results. Indeed, if we had set β = 1 in I2CR-3 we get IBM Model

1; on the other hand, setting β = 0 gives a model that ignores lexical parameters and has weak

performance.

So as to better understand the need for an IBM Model 1 objective within our convex relaxation,

we also compared I2CR-3 with I2CR-1 trained via the setup in [33]. Our analysis found that I2CR-

1 got AER and F-Measure scores that were very close to those of IBM Model 1 (using the same

setup as [33], I2CR-1 has AER and F-Measure numbers that hover around .19 and .71, respectively,

while IBM Model 1 has AER and F-Measure numbers close to .21 and .70, respectively). Since

I2CR-3 performs better than I2CR-1, what this says is that even though the min is a stronger

relaxation of the product of two probabilities than the square root (c.f. Theorem 2), the objective

(value) difference between a convex relaxation and the original problem it estimates is not the most

important feature when picking between various relaxations.

Lastly, we also conducted SMT experiments using the cdec system [17] on a subset of the Eu-

roparl English-German data using BLEU as our metric [29] along with the “grow-diagonal-final”

heuristic [28]. In computing BLEU, we ran cdec three times over the data and report the average

test BLEU score achieved. Using alignments generated by IBM Model 2 and I2CR-4 we respec-

tively obtained BLEU scores of 0.175202 and 0.1751417. With the default FastAlign system cdec

obtained 0.177983 BLEU.

4.6 A Strictly Concave IBM Model 1

As an application of the relaxation methods we discussed, we now detail a very simple method to

make IBM Model 1 strictly concave with a unique optimal solution without the need for appending

an l2 loss. This application addresses the problem discussed in (Toutanova et al., 2011) [41], where

it show that although IBM Model 1 is convex, it has multiple optima that, although each have the

same log-likelihood cost, differ in F-Measure and AER significantly. Moreover, our goal here is to

offer a more structured method to improve IBM Model 1 in a more structured manner than the

very successful but heuristic set of methods addressed in [27].

63



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Theorem 7. Consider IBM Model 1 and modify its objective to be

1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

hi,j,k(t(f
(k)
j |e

(k)
i )) (4.7)

where hi,j,k : R+ → R+ is strictly concave. With the new objective and the same constraints as IBM

Model 1, this new optimization problem is strictly concave.

Proof. To prove the result, we now show that the new likelihood function

L(t) =
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

hi,j,k(t(f
(k)
j |e

(k)
i )) ,

is strictly concave (concavity follows in the same way trivially). Suppose by way of contradiction that

there are feasible solutions (t) 6= (t′) and θ ∈ (0, 1) such that equality hold for Jensen’s inequality.

Since (t) 6= (t′) we must have that there must be some (k, j, i) such that t(f (k)
j |e

(k)
i ) 6= t′(f

(k)
j |e

(k)
i )

and so since hi,j,k is strictly concave we have that Jensen’s inequality is strict:

hi,j,k(θt(f
(k)
j |e

(k)
i ) + (1− θ)t′(f (k)

j |e
(k)
i ))

> θhi,j,k(t(f
(k)
j |e

(k)
i )) + (1− θ)hi,j,k(t′(f

(k)
j |e

(k)
i ))

Using Jensen’s inequality, the monotonicity of the log, and the above strict inequality we have

L(θt + (1− θ)t′)

=
n∑
k=1

mk∑
j=1

log

lk∑
i=0

hi,j,k(θt(f
(k)
j |e

(k)
i ) + (1− θ)t′(f (k)

j |e
(k)
i ))

>
n∑
k=1

mk∑
j=1

log

lk∑
i=0

θhi,j,k(t(f
(k)
j |e

(k)
i )) + (1− θ)hi,j,k(t′(f

(k)
j |e

(k)
i ))

≥ θ
n∑
k=1

mk∑
j=1

log

lk∑
i=0

hi,j,k(t(f
(k)
j |e

(k)
i ))

+ (1− θ)
n∑
k=1

mk∑
j=1

log

lk∑
i=0

hi,j,k(t
′(f

(k)
j |e

(k)
i ))

= θL(t) + (1− θ)L(t′)

64



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Input: Define E, F , L,M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

A set of strictly concave functions hi,j,k : R+ → R+.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (4.8)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (4.9)

Objective: Maximize
1

n

n∑
k=1

mk∑
j=1

log

lk∑
i=0

hi,j,k(t(f
(k)
j |e

(k)
i )) (4.10)

with respect to the t(f |e) parameters.

Figure 4.3: The IBM Model 1 strictly concave optimization problem.

In Theorem 7 it is crucial that each hi,j,k be strictly concave within
∑lk

i=0 hi,j,k(t(f
(k)
j |e

(k)
i )). For

example, we have that
√
x1 + x2 is concave but not strictly concave and the proof of Theorem 7

would break down. To see this, we can consider (x1, x2) 6= (x1, x3) and note that equality holds in

Jensen’s inequality. We should be clear: the main reason why Theorem 7 works is that we have hi,j,k

are strictly concave (on R+) and all the lexical probabilities that are arguments to L are present

within the log-likelihood.

4.6.1 Parameter Estimation via EM

In this section we detail a particular choice of hi,j,k that will enable us to derive an easy EM

algorithm. We first need the following:

Lemma 3. Consider h : R+ → R+ given by h(x) = xβ where β ∈ (0, 1). Then h is strictly concave.

65



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Proof. The proof of this lemma is elementary and follows since the second derivative given by

h
′′
(x) = β(β − 1)xβ−2 is strictly negative.

For our concrete experiments, we picked a model based on Lemma 1 and used h(x) = αxβ with

α, β ∈ (0, 1) so that

hi,j,k(t(f
(k)
j |e

(k)
i )) = α(f

(k)
j , e

(k)
i )tβ(f

(k)
j ,e

(k)
i )(f

(k)
j |e

(k)
i ) .

Using this setup, parameter estimation for the new model can be accomplished via a slight modifi-

cation of the EM algorithm for IBM Model 1. In particular, we have that the posterior probabilities

of this model factor just as those of the standard Model 1 and we have an M step that requires

optimizing ∑
a(k)

q(a(k)|e(k), f (k)) log p(f (k), a(k)|e(k))

where

q(a(k)|e(k), f (k)) ∝
mk∏
j=1

h
a

(k)
j ,j,k

(t(f
(k)
j |e

(k)

a
(k)
j

))

are constants gotten in the E step. This optimization step is very similar to the regular Model 1

M step since the β drops down using log tβ = β log t; the exact same count-based method can be

applied. The details of this algorithm are in Fig. 4.4.

4.6.2 Choosing β and α

The performance of our new model will rely heavily on the choice of α(e
(k)
i , f

(k)
j ), β(e

(k)
i , f

(k)
j ) ∈

(0, 1) we use. In particular, we could make β depend on the association between the words, or the

words’ positions, or both. One classical measure of word association is the dice coefficient [28] given

by

dice(e, f) =
2c(e, f)

c(e) + c(f)
.

In the above, the count terms c are the number of training sentences that have either a particular

word or a pair of of words (e, f). As with the other choices we explore, the dice coefficient is a fraction

between 0 and 1, with 0 and 1 implying less and more association, respectively. Additionally, we

make use of positional constants like those of the IBM Model 2 distortions given by

d(i|j, l,m) =


1

(l+1)Z(j,l,m) : i = 0

le−λ|
i
l
− j
m |

(l+1)Z(j,l,m) : i 6= 0

66



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

1: Input: Define E, F , L, M , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3. An integer T

specifying the number of passes over the data. A set of weighting parameter α(e, f), β(e, f) ∈ (0, 1) for each

e ∈ E, f ∈ D(e). A tuning parameter λ > 0.

2: Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

3: Initialization:

• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1/|D(e)|.

4: EM Algorithm:

5: for all t = 1 . . . T do

6: ∀e ∈ E, f ∈ D(e), count(f, e) = 0

7: ∀e ∈ E, count(e) = 0

8: EM Algorithm: Expectation

9: for all k = 1 . . . n do

10: for all j = 1 . . .mk do

11: δ1[i] = 0 ∀i ∈ [lk]0

12: ∆1 = 0

13: for all i = 0 . . . lk do

14: δ1[i] = α(f
(k)
j , e

(k)
i )t

β(f
(k)
j ,e

(k)
i )

(f
(k)
j |e

(k)
i )

15: ∆1 += δ1[i]

16: for all i = 0 . . . lk do

17: δ1[i] =
δ1[i]
∆1

18: count(f
(k)
j , e

(k)
i ) += β(f

(k)
j , e

(k)
i )δ1[i]

19: count(e
(k)
i ) += β(f

(k)
j , e

(k)
i )δ1[i]

20: EM Algorithm: Maximization

21: for all e ∈ E do

22: for all f ∈ D(e) do

23: t(f |e) =
count(e,f)
count(e)

24: Output: t parameters

Figure 4.4: Pseudocode for T iterations of the EM Algorithm for the strictly convex IBM Model 1

problem.

In the above, Z(j, l,m) is the partition function discussed in [16]. The previous measures all lead

to potential candidates for β(e, f), we have t(f |e) ∈ (0, 1), and we want to enlarge competing

values when decoding (we use αtβ instead of t when getting the highest probability alignment).

The above then implies that we’ll have the word association measures inversely proportional to β,

and so we set β(e, f) = 1 − dice(e, f) or β(e, f) = 1 − d(i|j, l,m). In our experiments we picked

α(f
(k)
j , e

(k)
i ) = d(i|j, lk,mk) or 1. Lastly, we note that for the distortions d(i|j, l,m) we hold λ to a

constant of 16 and do not estimate this variable (if optimal performance is needed, λ = 16 can be

67



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

chosen by cross-validation on a small trial data set).

4.6.3 Experiments

For this section we use the same Canadian Hansards bilingual corpus with 247,878 English-French

sentence pairs as training data, 37 sentences of development data, and 447 sentences of test data

[26]. Below we report results in both AER (lower is better) and F-Measure (higher is better) [28]

for the English to French translation direction.

In the above, we note that when using

h(t(fj |ei)) = d(i|j, l,m)t(fj |ei)

with d constant we cannot use Theorem 7 since h is linear. Most likely, the strict concavity of

the model will hold because of the asymmetry introduced by the d term; however, there will be a

necessary dependence on the data set.

Table 4.2 contains our results for the Hansards data. Our experiments show that using

h(t(fj |ei)) = (t(fj |ei))1−d(i|j,l,m)

yields the best F-Measure performance and is not far off in AER from the “fake" IBM Model 2

(gotten by setting (α, β) = (d, 1)) whose results are in column 2. Moreover, we note that dice

does not lead to quality β exponents and that, unfortunately, combining methods as in column 5

((α, β) = (d, 1−d)) does not necessarily lead to addictive gains in AER and F-Measure performance.

4.7 Conclusions and Future Work

This section described the main work presented in [35]. This last research generalizes the work [33]

and introduces a class of convex relaxations for the unsupervised learning of alignments in statistical

machine translation with performance comparable to the commonly-used IBM Model 2. Extending

the convexity results of [33] allows us to better understand the old results and develop further

applications. With reference to IBM Model 2, future work would consider different relaxations

within the class we have introduced, and apply our method to other NLP tasks and problems

beyond alignment tasks.

68



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Lastly, as an application of the main presented in [35], we also showed how IBM Model 1 can

be made into a strictly convex optimization problem. In this final part, we take a moment to

also compare our work with the classical IBM 1 work of [27]. Summarizing [27], we note that this

work improves substancially upon the classical IBM Model 1 by introducing a set of heuristics,

among which are to (1) modify the lexical parameter dictionaries (2) introduce an initialization

heuristic (3) modify the standard IBM 1 EM algorithm by introducing smoothing (4) tune additional

parameters. However, we stress that the main concern of this work is not just heuristic-based

empirical improvement, but also structured learning. In particular, although using an regularizer l2

and the methods of [27] would yield a strictly concave version of IBM 1 as well (with improvements),

it is not at all obvious how to choose the learning rate or set the penalty on the lexical parameters.

The goal of our work was to offer a new, alternate form of regularization. Moreover, since we

are changing the original log-likelihood, our method can be thought of as way of bringing the l2

regularizer inside the log likelihood. Like [27], we also achieve appreciable gains but have just one

tuning parameter (when β = 1 − d we just have the centering λ parameter) and do not break the

probabilistic interpretation any more than appending a regularizer would (our method modifies the

log-likelihood but the simplex constrains remain).

For the strictly convex IBM 1 family we studied, we looked at a specific member within the class

that allows for an easy EM algorithm and we conducted experiments showing 30% improvement

over the standard IBM Model 1 algorithm. For further research, we note that picking the optimal

hi,j,k is an open question, so provably finding and justifying this model is one topic of interest.

69



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

Model IBM2 IBM2 I2CR-3 I2CR-3 I2CR-4 I2CR-4 I2CR-4

Decoding Rule t t× d t t× d t t× d t×
√
t× d

Iteration AER

0 0.2141 0.2141 0.9273 0.9273 0.9273 0.9273 0.9273

1 0.2128 0.1609 0.3697 0.3786 0.3669 0.3790 0.3569

2 0.2013 0.1531 0.2614 0.2235 0.2408 0.2090 0.2038

3 0.1983 0.1477 0.2333 0.1879 0.2209 0.1769 0.1754

4 0.1950 0.1458 0.2116 0.1783 0.2153 0.1668 0.1646

5 0.1941 0.1455 0.2088 0.1753 0.2067 0.1632 0.1592

6 0.1926 0.1436 0.2063 0.1739 0.2058 0.1600 0.1559

7 0.1912 0.1436 0.2048 0.1726 0.2046 0.1566 0.1551

8 0.1904 0.1449 0.2044 0.1730 0.2044 0.1549 0.1540

9 0.1907 0.1454 0.2041 0.1727 0.2047 0.1527 0.1534

10 0.1913 0.1451 0.2042 0.1721 0.2045 0.1524 0.1524

11 0.1911 0.1452 0.2042 0.1718 0.2039 0.1515 0.1520

12 0.1901 0.1454 0.2040 0.1722 0.2035 0.1513 0.1514

13 0.1899 0.1462 0.2041 0.1721 0.2032 0.1510 0.1511

14 0.1898 0.1471 0.2041 0.1724 0.2032 0.1509 0.1508

15 0.1900 0.1474 0.2041 0.1727 0.2031 0.1505 0.1505

Iteration F-Measure

0 0.7043 0.7043 0.0482 0.0482 0.0482 0.0482 0.0482

1 0.7049 0.7424 0.5610 0.5446 0.5664 0.5455 0.5712

2 0.7127 0.7468 0.6603 0.6910 0.6818 0.7059 0.7149

3 0.7116 0.7489 0.6838 0.7201 0.6977 0.7302 0.7385

4 0.7130 0.7501 0.7036 0.7255 0.7020 0.7369 0.7471

5 0.7124 0.7495 0.7060 0.7252 0.7102 0.7394 0.7515

6 0.7121 0.7501 0.7079 0.7257 0.7103 0.7411 0.7531

7 0.7132 0.7493 0.7084 0.7260 0.7111 0.7443 0.7531

8 0.7132 0.7480 0.7085 0.7252 0.7113 0.7457 0.7541

9 0.7127 0.7473 0.7084 0.7254 0.7115 0.7476 0.7547

10 0.7116 0.7474 0.7082 0.7261 0.7113 0.7482 0.7559

11 0.7113 0.7466 0.7080 0.7261 0.7117 0.7493 0.7563

12 0.7123 0.7463 0.7081 0.7256 0.7118 0.7496 0.7568

13 0.7119 0.7460 0.7081 0.7257 0.7121 0.7497 0.7571

14 0.7122 0.7451 0.7081 0.7253 0.7121 0.7497 0.7575

15 0.7122 0.7447 0.7081 0.7250 0.7122 0.7501 0.7577

Table 4.1: Intersected results on the English-French data for IBM Model 2, I2CR-3, and I2CR-4

trained for 15 EM using either the IBM1 (t), IBM2 (t× d), or I2CR-4 (t×
√
t× d) decoding.

70



CHAPTER 4. A FAMILY OF LATENT VARIABLE CONVEX RELAXATIONS FOR IBM
MODEL 2

(α, β) (1, 1) (d, 1) (1, 1− dice) (1, 1− d) (d, 1− d)

Iteration AER

0 0.8716 0.6750 0.6240 0.6597 0.5570

1 0.4426 0.2917 0.4533 0.2738 0.3695

2 0.3383 0.2323 0.4028 0.2318 0.3085

3 0.3241 0.2190 0.3845 0.2252 0.2881

4 0.3191 0.2141 0.3751 0.2228 0.2833

5 0.3175 0.2118 0.3590 0.2229 0.2812

6 0.3160 0.2093 0.3566 0.2231 0.2793

7 0.3203 0.2090 0.3555 0.2236 0.2783

8 0.3198 0.2075 0.3546 0.2276 0.2777

9 0.3198 0.2066 0.3535 0.2323 0.2769

10 0.3177 0.2065 0.3531 0.2352 0.2769

Iteration F-Measure

0 0.0427 0.1451 0.2916 0.1897 0.2561

1 0.4213 0.5129 0.4401 0.5453 0.4427

2 0.5263 0.5726 0.4851 0.5940 0.5014

3 0.5413 0.5852 0.5022 0.6047 0.5199

4 0.5480 0.5909 0.5111 0.6085 0.5255

5 0.5500 0.5939 0.5264 0.6101 0.5273

6 0.5505 0.5959 0.5282 0.6101 0.5286

7 0.5449 0.5965 0.5298 0.6096 0.5296

8 0.5456 0.5977 0.5307 0.6068 0.5300

9 0.5451 0.5985 0.5318 0.6040 0.5309

10 0.5468 0.5984 0.5322 0.6024 0.5311

Table 4.2: Results on the English-French data for various (α, β) settings. The standard IBM Model

1 is column 1 and corresponds to a setting of (1, 1). The not necessarily strictly concave model with

(d,1) setting gives the best AER, while the strictly concave model given by the (1, 1 − d) setting

has the highest F-Measure.

71



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

Chapter 5

A Convex Alternative for the HMM

Alignment Model

5.1 Introduction

In this section we outline the construction of a convex HMM alternative for word alignment. In

particular, the model we try to relax is the HMM word alignment model of (Vogel et al., 1996)

[43]. A standard model, the HMM model is implemented in GIZA++ and performs very well, much

better than IBM Model 2 [28]. Although the new convex model’s performance does not surpass that

of the HMM, it nevertheless archives strong empirical results. In particular, the new convex model

improves upon the former convex relaxations of IBM Model 2 by more than 30% and also performs

better than the improved IBM2 FastAlign model of (Dyer et al., 2013) [16].

5.2 Distortion and Transition parameter structure

The structure of IBM Model 2’s distortion parameters and the HMM’s transition parameters is

important and used in our model as well, so we detail this here. The main idea for using these

particular distortions is introduced in (Dyer et al., 2013) [16] where a new IBM Model 2 is proposed

and detailed. The distortions of our model are parametrized by forcing the model to concentrate

its alignments on the diagonal, while the HMM style transitions favor jumps to the next adjacent

source word.

72



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

5.2.1 Distortion Parameters for IBM2

Let λ > 0. For the IBM Model 2 distortions we set the NULL word probability as d(0|j, l,m) = p0,

where p0 = 1
l+1 and note that this will generally depend on the source sentence length within a

bitext training pair that we are considering. For i 6= 0 we set

d(i|j, l,m) =
(1− p0)e−λ|

i
l
− j
m
|

Zλ(j, l,m)
,

where Zλ(j, l,m) is a normalization constant as in [16].

5.2.2 Transition Parameters for HMM

Let θ > 0. For the HMM transitions we first set the NULL word generation to d(0|i, l) = p0, with

p0 = 1
l+1 . For source word position i, i′ 6= 0, we set

d(i′|i, l) =
(1− p0)e−θ|

i′−1
l
− i
l
|

Zθ(i, l,m)
,

where Zθ(i, l,m) is a suitable normalization constant. Lastly, if i = 0 so that we are jumping from

the NULL word onto a possibly different word we set d(i′|0, l) = p0.

5.3 Combining IBM Model 2 and the HMM

In formulating the new alignment model, our main goal is to mimic IBM Model 2’s structure while

at the same time allowing the current word position to know as much about the previous alignment

variable. Ultimately, the idea here is to formulate a model that has HMM alignment dependency

and still has log-likelihood that factors as that of IBM Model 2 so that we may relax product terms

using the geometric mean mechanism of Chapter 4. To this end, we combine IBM Model 2 and

the HMM by incorporating the generation of words using the structure of both models. Consider a

sentence pair (e, f) with |e| = l and |f | = m. Then, for target positions j and j + 1 we have target

words fj and fj+1 and we assign a joint probability involving the alignments aj and aj+1 as:

q(j, aj , aj+1, l,m) = (5.1)

t(fj |eaj )d(aj |j, l,m)t(fj+1|eaj+1
)d(aj+j |aj , l) . (5.2)

73



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

From the equation above, we use the IBM Model 2’s word generation method for position j and the

HMM generative structure for position j+1. The generative nature of the above procedure introduces

dependency between adjacent words two at a time. Since we want to mimic the HMM’s structure

as much as possible, we devise our likelihood function to mimic the HMM’s dependency between

alignments using q. The model we introduce, IBM2-HMM, is displayed in Fig 5.2. Essentially, we

move the target word position j from 1 to mk − 1 and generate sentences via two likelihoods, one

that starts at j = 1 and generates alignment two at a time while another starts at j = 2 and does

same. In what follows, we describe this representation in detail.

We have that the likelihood in Eq. 5.14 is actually the sum of two likelihoods which use equations

Eq. 5.1 and 5.2 repeatedly. To this end, we will discuss how our objective is actually

1

n

n∑
k=1

log
∑

a(k),b(k)

p(f (k), a(k), b(k)|e(k)) , (5.3)

where a(k) and b(k) both are alignment vectors whose components are independent and can take on

any values in [lk]0. To see how p(f, a, b|e) comes about, note that we could generate the sentence f

by generating pairs (1, 2), (3, 4), (5, 6) . . . using equations Eqs. 5.1 and 5.2 for each pair. If m is odd,

the above alignment generation method misses the last word fm and so we do not have the term

t(fm|eam)d(am|m, l,m) (5.4)

in our model. Due to the above lack of last-word generation, we need to specify a way by which

we also generate this pair, and we will resolve this issue below. Taking all this together, the upshot

of our discussion is that generating the pair (e, f) in this way gives us that the likelihood for an

alignment a would be:

p1(f, a|e) =
∏
j odd

q(j, aj , aj+1, l,m) . (5.5)

A similar argument to the above also allows us to skip the first target word position and generate

pairs (2, 3), (4, 5), . . . using Eqs. 5.1 and 5.2. For this generation scheme the probability for alignment

b is roughly:

74



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

p2(f, b|e) =
∏
j even

q(j, bj , bj+1, l,m) , (5.6)

In the above, we note that p2(f, b|e) misses generating the term

t(f1|ea1)d(a1|1, l,m) (5.7)

associated with f1.

To rectify the issues with generating sentences via either p1 or p2, we now note that using p1 and

p2 in a combined fashion generates all alignment and word pairs since one or the other of these models

generates the terms associated with f1 and fm. Specifically, using p(f, a, b|e) = p1(f, a|e)p2(f, b|e)

and factoring the log-likelihood as in IBM Model 1 and 2, we get the log-likelihood in Fig 5.2.

Finally, we note that our model’s log-likelihood could be viewed as the sum of the log-likelihoods

of a model which generates (e, f) using p1 and another model which generates sentences using p2.

These models share parameters but generate words using different recipes as discussed above.

5.4 Parameter estimation for IBM2-HMM

To optimize our new model, we can use an EM algorithm in the same fashion as (Dyer et al., 2013)

[16]. In particular, for the model in question the EM algorithm still applies but we have to use a

gradient-based algorithm within the maximization step because we need to optimize for θ and λ

and for these parameters deriving expected counts via a standard multinomial EM algorithm does

not apply. Alternatively, we could just have θ and λ be two tuning parameters so that we only need

to optimize for the multinomial lexical t parameters. In this work, we pursued the latter option

as it allows us to derive a cleaner multinomial EM algorithm for the t parameters. Using either

optimization method, we note that we are still only approximately solving the main optimization

problem since IBM2-HMM is, like the HMM and IBM Model 2, a non-convex optimization.

5.5 A Convex HMM Alternative

We now derive a convex relaxation for the new model we introduced. As a first step, notice that one

possible convexification path would follow via the methods developed in Chapter 4: we would be

75



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

Input: Define E, F , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

• A distortion centering parameter λ > 0.

• A transition centering parameter θ > 0.

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (5.8)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (5.9)

∀i ∈ [lk]0, j ∈ [mk], d(i|j, lk,mk) ≥ 0 (5.10)

∀j ∈ [mk],
∑
i∈[lk]0

d(i|j, lk,mk) = 1 (5.11)

∀i, i′ ∈ [lk]0, d(i′|i, lk) ≥ 0 (5.12)

∀i ∈ [lk]0,
∑

i′∈[lk]0

d(i′|i, lk) = 1 (5.13)

Objective: Maximize

1

n

n∑
k=1

mk−1∑
j=1

log

lk∑
i=0

lk∑
i′=0

q(j, i, i′, lk,mk) (5.14)

with respect to the parameters t(f |e), d(i′|i, l) d(i|j, l,m), and q(j, i, i′, lk,mk) set as

q(j, i, i′, lk,mk) = t(f
(k)
j |e

(k)
i )d(i|j, l,m)t(f

(k)
j+1|ei′)d(i′|i, l) (5.15)

Figure 5.1: The IBM2-HMM Optimization Problem. We use equation (5.1) within the likelihood

definition.

to let d(i|j, l,m) and d(i′|i, l) be multinomial probabilities and replace all the terms q(j, i′, i, l,m)

in (5.14) by (q(j, i′, i, l,m))
1
4 . Although this method is feasible, pilot experiments showed that the

gotten relaxation is not very competitive and performs worse than IBM Model 2. Further analysis

with these type of models explains why this is the case. Specifically, when relaxing product terms∏n
j=1 xj with (

∏n
j=1 xj)

1
n we have that the approximation becomes weaker and weaker as n gets

76



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

larger. In particular, we have that a two terms product is approximated well by a geometric mean

of two terms, but approximating three term products by a cube root is not a good idea, and the

problem only gets worse as we move to more terms. Indeed, as we raise each power of xj to a smaller

and smaller power (as n increases) we encourage variables to be nothing more than uniform and

the resulting relaxation loses its goal of being close to the original model objective.

To rectify the above degradation in our convex relaxation, we left in place the structure discussed

in Section 5.2 and made λ and θ two tuning parameters which we cross-validated for on a small held

out data set. This last modification effectively removed the distortion and transition parameters

from the model but we still maintained the structural property of these parameters: namely, we

maintained their favoring the diagonal and adjacent alignment. We thus replaced q(j, i′, i, l,m) by

p(j, i, i, l,m) ∝
√
t(f

(k)
j |e

(k)
i )t(f

(k)
j+1|ei′)

and set the proportionality constant to be d(i|j, l,m)d(i′|i, l). At the risk of not spelling this out

exactly, we note that we are using the Chapter 4 mechanism with h(x1, x2) =
√
x1x2y1y2 instead of

f(x1, x2) = x1x2y1y2 where x1, x2 would be the lexical t parameters and y1, y2 would be the fixed

distortion and transition terms. Using this setup we now have a convex objective which approximates

the product of two terms by their square root and has the other terms estimated via cross-validation

(both θ and λ are not parameters here - they are tuned). Although not as terse as the I2CR models

or Chapters 3 and 4, our relaxation can be viewed in the same light as other convex optimization

problems in Machine Learning (such as, for example, the SVM) that include parameters to be

cross-validated over.

5.6 An EM algorithm for The Convex HMM Alternative

The EM algorithm for the convex relaxation of our alternative is given in Fig 5.3. As the model’s

objective is the sum of the objectives of two models generated by a multinomial rule, we can get a

very succinct EM algorithm. Specifically, we once again have that the log-likelihood of our model

is the sum of two independent log-likelihoods and we can use Jensen’s inequality and the posterior

probabilities to easily derive the expected count updates for the lexical t terms. We can use this

since the 1
2 will drop down and the distortion and transition probabilities are constants. For more

details on this and a similar derivation, please refer to Chapter 4 and [35]. For this algorithm, we

77



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

Input: Define E, F , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3. Pick

λ, θ > 0 as in Section 5.2 via cross-validation.

Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

Constraints:

∀e ∈ E, f ∈ D(e), t(f |e) ≥ 0 (5.16)

∀e ∈ E,
∑

f∈D(e)

t(f |e) = 1 (5.17)

Objective: Maximize

1

n

n∑
k=1

mk−1∑
j=1

log

lk∑
i=0

lk∑
i′=0

p(j, i, i′, lk,mk) (5.18)

with respect to the parameters t(f |e) and p(j, i, i′, lk,mk) set as

p(j, i, i′, lk,mk) =

√
t(f

(k)
j |e

(k)
i )d(i|j, l,m)

√
t(f

(k)
j+1|ei′)d(i′|i, l)

Figure 5.2: The IBM2-HMM convex relaxation optimization problem. Note that the distortions

d(i|j, l, ,m) and transitions d(i′|i, l) are constants held fixed and parameterized by cross-validated

parameters λ and θ as in Section 5.2.

again note that the distortion and transition parameters are constants so that the only estimation

necessary is on the lexical t terms Moreover, unlike the original IBM2-HMM model which need not

have λ and θ constant (we can then use a more complicated EM algorithm), we need these terms

to be turning parameters for the objective we work with to be concave.

5.7 Decoding methods for the IBM2-HMM problem

When computing the optimal alignment we wanted to compare our model with the HMM as closely

as possible. Because of this, the most natural method of evaluating the quality of the parameters

would be to use the same rule as the HMM. Specifically, for a sentence pair (e, f) with |e| = l and

78



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

1: Input: Define E, F , (e(k), f (k), lk,mk) for k = 1 . . . n, D(e) for e ∈ E as in Section 2.3. Two

parameters λ, θ > 0 picked by cross-validation so that the distortions and transitions are constants

obeying the structure in Section 5.2. An integer T specifying the number of passes over the data.

2: Parameters:

• A parameter t(f |e) for each e ∈ E, f ∈ D(e).

3: Initialization:

• ∀e ∈ E, f ∈ D(e), set t(f |e) = 1
D(e) .

4: EM Algorithm: Expectation

5: for all k = 1 . . . N do

6: for all j = 1 . . .mk do

7: δ = 0

8: ∆ = 0

9: for all i = 0 . . . lk do

10: for all i′ = 0 . . . lk do

11: δ[i, i′] = p(j, i′, i, lk,mk)

12: ∆+ = δ[i, i′]

13: for all i = 0 . . . lk do

14: for all i′ = 0 . . . lk do

15: δ[i, i′] = δ[i,i′]
∆

16: counts(f
(k)
j , e

(k)
i )+ = δ[i, i′]

17: counts(e
(k)
i )+ = δ[i, i′]

18: counts(f
(k)
j+1, e

(k)
i′ )+ = δ[i, i′]

19: counts(e
(k)
i′ )+ = δ[i, i′]

20: EM Algorithm: Maximization

21: for all e ∈ E do

22: for all f ∈ D(e) do

23: t(f |e) = counts(e,f)
counts(e)

24: Output: t parameters.

Figure 5.3: Pseudocode for the EM algorithm of the IBM2-HMM’s convex relaxation. As the dis-

tortion and transition parameters are constants, the algorithm is very similar to that of IBM Model

1.

79



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

|f | = m, in HMM decoding we aim to find (â1, . . . , âm) which maximizes

max
a1,...,am

m∏
j=1

t(fj |eaj )d(aj |aj−1, l).

As is standard, dynamic programming can now be used to find the Viterbi alignment. Although

there are a number of ways we could define the optimal alignment, we felt that the above would be

the best since it tests dependance between alignment variables and allows for easy comparison with

the GIZA++ HMM, which is our goal. Finding the optimal alignment under the HMM setting is

labelled “HMM" in Table 5.1.

We can also find the optimal alignment by taking the objective literally and computing

max
a1,...,am

p1(f, a|e)p2(f, a|e).

In this case, we are asking for the optimal alignment that yields the highest probability alignment

through generating technique p1 and p2. This method of decoding is a lot like the HMM style and

also relies on dynamic programming. In this case we have the recursion for QJoint given by

QJoint(1, i) = t(f1|ei)d2(i|1, l,m) ,

∀i ∈ [l]0, and

QJoint(j, i
′) = t2(fj |ei′)d(i′|j, l,m)MJoint(j − 1, i′) ,

where MJoint(j − 1, i′) is

MJoint(j − 1, i′) =
l

max
i=0
{d(i′|i, l)QJoint(j − 1, i)} ,

∀ 2 ≤ j ≤ m,∀ i′ ∈ [l]0. Although his is the natural decoding rule, the alignment results gotten

by decoding with this method proved to yield weaker results than decoding using standard HMM

rules. In some sense, the above empirical results imply that the IBM Model 2 distortion parameters

are not as strong (or informative) as the transition parameters of the HMM.

5.8 Experiments

In this section we describe experiments using the IBM2-HMM optimization problem combined with

the EM algorithm for parameter estimation. The experiments conducted here use a similar setup

to those in [33]. We first describe the data we use, and then describe the experiments we ran.

80



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

5.8.1 Data Sets

We use data from the bilingual word alignment workshop held at HLT-NAACL 2003 [26]. We use the

Canadian Hansards bilingual corpus, with 743,989 English-French sentence pairs as training data,

37 sentences of development data, and 447 sentences of test data (note that we use a randomly

chosen subset of the original training set of 1.1 million sentences, similar to the setting used in [27]).

The development and test data have been manually aligned at the word level, annotating alignments

between source and target words in the corpus as either “sure” (S) or “possible” (P ) alignments, as

described in [28]. As is standard, we lower-cased all words before giving the data to GIZA++ and

we ignored NULL word alignments in our computation of alignment quality scores.

5.8.2 Methodology

We test several models in our experiments, including experiments of our model, the GIZA++ IBM

Model 3 and HMM, as well as the FastAlign IBM Model 2 implementation of (Dyer et al., 2013)

[16]. For each of the models we estimate the t and d parameters using models in the English-French

source-target direction and present the gotten alignments. Although there are several methods for

combining alignments, we felt that the presented direct comparisons would offer the most clear

presentation of relative model performance. In training, we employ the standard practice of initial-

izing nonconvex alignment models with simpler nonconvex models. In particular, we initialize, the

GIZA++ HMM with IBM Model 2, IBM Model 2 with IBM Model 1, and IBM2-HMM with IBM

Model 2 preceded by Model 1, and IBM Model 3 with IBM Model 2.

We measure the performance of the models in terms of Precision, Recall, F-Measure, and AER

using only sure alignments in the definitions of the first three metrics and sure and possible align-

ments in the definition of AER, as in [33] and [14]. For our experiments, we report results in both

AER (lower is better) and F-Measure (higher is better).

Table 5.1 shows the alignment summary statistics for the 447 sentences present in the Hansard

test data. We present alignments quality scores using either the FastAlign IBM Model 2, the

GIZA++ HMM, and our model and its relaxation using either the “HMM” or “Joint” decoding.

First, we note that in deciding the decoding style for IBM2-HMM, the HMM method is better than

the Joint method. We expected this type of performance since HMM decoding introduces positional

dependance among the entire set of words in the sentence, which is shown to be a good modeling

81



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

assumption [43].

From the results in Table 5.1 we see that the HMM outperforms all other models, including

IBM2-HMM and its convex relaxation. On the other hand, IBM2-HMM is not far in AER perfor-

mance from the HMM and both it and its relaxation do better than FastAlign or IBM Model 3 (the

results for IBM Model 3 are not presented in Table 5.1; however, a run of 1525315 gave AER and

F-Measure numbers of 0.1768 and 0.6588, respectively).

Training 152H10 152H10 2HC10 2HC10 FA10 1525H10

Decoding HMM Joint HMM Joint IBM2 HMM

Iteration AER

1 0.1640 0.1587 0.2001 0.2327 0.5316 0.2715

2 0.1524 0.1546 0.1655 0.1891 0.2237 0.1521

3 0.1475 0.1527 0.1592 0.1794 0.1840 0.1320

4 0.1448 0.1519 0.1564 0.1764 0.1745 0.1231

5 0.1436 0.1516 0.1555 0.1746 0.1674 0.1161

6 0.1436 0.1512 0.1559 0.1749 0.1660 0.1130

7 0.1411 0.1505 0.1555 0.1745 0.1642 0.1116

8 0.1399 0.1500 0.1553 0.1743 0.1619 0.1112

9 0.1390 0.1496 0.1555 0.1741 0.1617 0.1123

10 0.1390 0.1500 0.1555 0.1739 0.1610 0.1121

Iteration F-Measure

1 0.6329 0.4831 0.5858 0.5605 0.2854 0.5709

2 0.6398 0.6391 0.6189 0.6003 0.5731 0.6701

3 0.6422 0.6390 0.6252 0.6106 0.6201 0.6903

4 0.6437 0.6394 0.6277 0.6125 0.6340 0.6967

5 0.6441 0.6389 0.6280 0.6138 0.6390 0.6972

6 0.6446 0.6388 0.6279 0.6140 0.6396 0.6986

7 0.6459 0.6395 0.6279 0.6141 0.6402 0.6989

8 0.6470 0.6397 0.6279 0.6144 0.6422 0.6981

9 0.6470 0.6397 0.6279 0.6144 0.6422 0.6964

10 0.6464 0.6400 0.6279 0.6144 0.6428 0.6961

Table 5.1: Alignment quality results for the IBM2-HMM (2H) Model, its convex relaxation, FastAl-

ign, and the HMM. For mode 2H we decode via dynamic programming using either HMM-style

decoding or “Joint” decoding. FA above refers to the improved FastAlign IBM Model 2 model that

makes use of a Digamma prior.

Finally, we also tested our model in the full SMT pipeline using the cdec system [17]. For our

82



CHAPTER 5. A CONVEX ALTERNATIVE FOR THE HMM ALIGNMENT MODEL

experiments, we compared our model’s alignments (gotten by training 152H5) against the alignments

gotten by the HMM (1525H5), IBM Model 4 (152535H545), and FastAlign. Unfortunately, we found

that all 4 systems led to roughly the same BLEU score of 40 on a Spanish to English training set of

size 250000 which was a subset of version 7 of the Europarl dataset [16]. For our development and

test sets, we used data each of size roughly 1800 and we preprocessed all data by considering only

sentences of size less than 80 and filtering out sentences which had a very large (or small) ratio of

target and source sentence lengths (this is standard for cdec). Although the SMT results did not

not produce significant gains, we feel that the experiments at least highlight that our model does

not degrade downstream even though the structure of our model is much more local and arguably

simpler than either that of the HMM or IBM Model 4.

5.9 Conclusions and Future Work

In this section we have presented some of the details of a new model which combines the structure

of IBM Model 2 the alignment HMM model. We’ve shown that this new model, which has a log-

likelihood that can be expressed as a product of terms like the log-likelihood of IBM Model 2,

performs about the same as the standard GIZA++ implementation of the HMM. Although the

GIZA++ HMM is a celebrated model, bridging the gap between it and convex models proves

difficult for a number of reasons, among which the inability to efficiently write out the HMM’s log-

likelihood. Indeed, although the literature has a plethora of applications for convex optimization,

the convex relaxation of the HMM has only been studied though semi-definite programming, and

such optimization problems would not be amenable to large datasets like the ones found in SMT

[21]. Using the new surrogate, we derived its convex relaxation and showed that the performance of

the new model is better than any pervious convex model we studied in Chapters 3 and 4. Moreover,

the new convex model performs better than FastAlign [16] and IBM Model 3. Thus, although we do

not beat our target goal of the HMM, we do advance the convex models we developed in Chapters

3 and 4 substantially.

83



CHAPTER 6. CONCLUSION

Chapter 6

Conclusion

In this work we’ve looked at several new convex alignments models whose performance is either

equal to or very close to some of the non-convex models present in the literature.

The first part of this work looked at the first convex relaxation of IBM Model 2 [8]. The main

outcome of our research was two fold as we outlined a model that performed very close to IBMModel

2 and specified an algorithm for its optimization. Several other experiments were conducted and

showed that the model can again better F-Measure than IBM Model 2 and, moreover, it could be

used as a seed for IBM Model 2; using I2CR-2 as a seed to IBM 2 takes the log-likelihood to another

region which might be more natural than the location where IBM Model 1’s lexical parameters are

located.

Having developed a relaxation for IBM2, the next step in our research was to find a convex

surrogate for the alignment HMM model of [43]. While doing this, however, we also discovered a

new way to think about relaxations pertaining to IBM Model 2 and we generalized the previous

research [33] to [35]. The methods presented in (Simion et al., 2015) [35] can be used to develop

multiple relaxation of IBM Model 2. Each of these new relaxations offers a new tradeoff between the

lexical t parameters and the distortion d parameters, and we could study each of these new models

via the EG algorithm we developed for I2CR-2. However, using a model based on the geometric

mean is very advantages because an easy EM algorithm can be developed. The new EM algorithm

is just as easy modification to the the EM algorithm for IBM Model 2 and its integration into

GIZA++ is seamless. Lastly, as an application of this material, we also looked at a new strictly

convex version of IBM Model 1.

84



CHAPTER 6. CONCLUSION

The final part of this thesis focuses on a new convex HMM surrogate. The method we use to

develop this new model was indirect. To this end, we first discussed a new powerful IBM 2 variant

which combined the structure of IBM 2 and the HMM and performs about as well as the HMM.

Next, using the methods we developed for IBM Model 2, we study a new convex version of the

model. Although the alignment performance of our model is not at the level of the HMM, the SMT

experiments are promising and, moreover, the new convex model does better than the popular (and

non convex) FastAlign IBM Model 2 variant [16].

Having developed some new convex alignment models, there are several directions where this

research might be further pushed. Firstly, we note that we have not provably discovered the best

IBM Model 2 relaxation. And, interestingly, it does not seem like the tightest relaxation is the

best, so finding this relaxation provably is an open question of interest. Moreover, improving the

new convex HMM surrogate to the level of the classical HMM model is an open question. Finally,

because the methods we develop are used essentially find a relaxation to a generative probabilistic

model, it might be the case that such research can be also applied to other models in other domains

such as parsing or word clustering. These questions are not answered yet, but we’ve made some

headway.

85



BIBLIOGRAPHY

Bibliography

[1] Noah A. Smith Andre F. T. Martins and Eric P. Xing. Turbo parsers: Dependency parsing by

approximate variational inference. In Proceedings of the EMNLP, 2010.

[2] John DeNero Aria Haghighi, John Blitzer and Dan Klein. Better word alignments with super-

vised itg models. In Proceedings of the ACL, 2009.

[3] A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient methods for

convex optimization. In Operations Research Letters, 2003.

[4] D. Bertsekas. Nonlinear optimization. Athena Press, 1999.

[5] D. Bertsimas. Optimization over integers. Dynamic Ideas, 2005.

[6] D. Bertsimas and J. Tsitsiklis. Introduction to linear programming. Athena Press, 1997.

[7] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge University Press, 2004.

[8] P. Brown, V. Della-Pietra, S. Della-Pietra, and R. L. Mercer. The mathematics of statistical

machine translation: Parameter estimation. In Computational Linguistics, 1993.

[9] J. Brunning. Alignment models and algorithms for statistical machine translation. In PhD

Thesis. Cambridge University Engineering Department and Jesus College, 2010.

[10] P. Bullen, D. Mitrinovic, and M. Vasic. Means and their inequalities. Springer, 1987.

[11] David Chiang. A hierarchical phrase-based model for statistical machine translation. In Pro-

ceedings of the ACL, 2005.

86



BIBLIOGRAPHY

[12] M. Collins. Statistical machine translation: Ibm models 1 and 2. In Lecture Notes on NLP,

2015.

[13] M. Collins, A. Globerson, T. Koo, X. Carreras, and P. Bartlett. Exponentiated gradient algo-

rithms for conditional random fields and max-margin markov networks. 2008.

[14] Abdessamad Echihabi Daniel Marcu, Wei Wang and Kevin Knight. Spmt: Statistical machine

translation with syntactified target language phrases. In Proceedings of the EMNLP, 2006.

[15] A. Dempster, N. Laird, and D.Rubin. Maximum likelihood from incomplete data via the em

algorithm. In Journal of The Royal Statistical Society, 1977.

[16] C. Dyer, V. Chahuneau, and N. Smith. A simple, fast, and effective reparameterization of ibm

model 2. In Proceedings of NAACL, 2013.

[17] C. Dyer, A. Lopez, J. Ganitkevitch, J. Weese, F. Ture, P. Blunsom, H. Setiawan, V. Eidelman,

and P. Resnik. cdec: A decoder, alignment, and learning framework for finite-state and context-

free translation models. In Proceedings of ACL, 2010.

[18] A. Fraser and D. Marcu. Measuring word alignment quality for statistical machine translation.

In Journal Computational Linguistics, 2007.

[19] K. Ganchev, J. V. Graca, J. Gillenwater, and B. Taskar. Posterior regularization for structured

latent variable models. In Journal of Machine Learning, 2010.

[20] J. V. Graca, K. Ganchev, and B. Taskar. Learning tractable word alignment models with

complex constraints. In Computational Linguistics, 2010.

[21] Y. Guo and D. Schuurmans. Convex relaxations of latent variable training. In Proceedings of

NIPS, 2007.

[22] S. Kakade. Exponentiated gradient descent. In Statistical Learning Theory: Lecture Notes,

2011.

[23] J. Kivinen and M. Warmuth. Exponentiated gradient versus gradient descent for linear pre-

dictors. In Information and Computation, 1997.

87



BIBLIOGRAPHY

[24] P. Koehn. In Statistical Machine Translation. Cambridge University Press, 2010.

[25] P. Liang, B. Taskar, and D. Klein. Alignment by agreement. In Proceedings of HLT-NAACL,

2006.

[26] R. Michalcea and T. Pederson. An evaluation exercise in word alignment. In HLT-NAACL

2003: Workshop in building and using Parallel Texts: Data Driven Machine Translation and

Beyond, 2003.

[27] R. Moore. Improving ibm word-alignment model 1. In Proceedings of the ACL, 2004.

[28] F. Och and H. Ney. A systematic comparison of various statistical alignment models. In Journal

of Computational Linguistics, 2003.

[29] K. Papineni, S. Roukos, T. Ward, and W. Zhu. "bleu: A method for automatic evaluation of

machine translation". In Proceedings of the ACL, 2002.

[30] Lawrence A Rabiner. A tutorial on hidden markov models and selected applications in speech

recognition. Proceedings of IEEE, 1989.

[31] D. Riley and D. Gildea. Impoving the ibm alignment models using variational bayes. In

Proceedings of ACL, 2012.

[32] K. Rose. Deterministic annealing for clustering, compression, classification, regression, and

related optimization problems. In Proceedings of the IEEE, 1998.

[33] A. Simion, M. Collins, and C. Stein. A convex alternative to ibm model 2. In Proceedings of

EMNLP, 2013.

[34] A. Simion, M. Collins, and C. Stein. Some experiments with a convex ibm model 2. In

Proceedings of EACL, 2014.

[35] A. Simion, M. Collins, and C. Stein. A family of latent variable convex relaxations for ibm

model 2. In Proceedings of AAAI, 2015.

[36] A. Simion, M. Collins, and C. Stein. On a strictly convex ibm model 1. In submitted, 2015.

88



BIBLIOGRAPHY

[37] A. Simion, M. Collins, and C. Stein. Towards a convex alignment hmm surrogate. In submitted,

2015.

[38] Dan Klein Simon Lacoste-Julien, Ben Taskar and Michael Jordan. Word alignment via

quadratic assignment. In Proceedings of the NAACL, 2006.

[39] N. Smith and J. Eisner. Annealing techniques for unsupervised statistical language learning.

In Proceedings of ACL, 2004.

[40] B. Taskar, S. Lacoste-Julien, and D. Klein. A discriminative matching approach to word

alignment. In Proceedings of EMNLP, 2005.

[41] K. Toutanova and M. Galley. Why initialization matters for ibm model 1: Multiple optima and

non-strict convexity. In Proceedings of ACL, 2011.

[42] A. Vaswani, L. Huang, and D. Chiang. Smaller alignment models for better translations:

Unsupervised word alignment with the l0-norm. In Proceedings of ACL, 2012.

[43] S. Vogel, H. Ney, and C. Tillman. Hmm-based word alignment in statistical translation. In

Proceedings of COLING, 1996.

[44] C. Zalinescu. Convex analysis in general vector spaces. World Scientific, 2002.

[45] S. Zhao and D. Gildea. A fast fertility hidden markov model for word alignment using mcmc.

In Proceedings of EMNLP, 2010.

89


	List of Figures
	1 Introduction
	1.1 NLP and Statistical Machine Translation
	1.1.1 Introduction to Statistical Machine Translation (SMT)
	1.1.2 Problem Specifics in SMT
	1.1.3 Alignment Models in SMT

	1.2 Convex Alignment Models

	2 The IBM Alignment Models
	2.1 Convexity and Statistical Machine Translation
	2.2 Convexity and Convex Optimization
	2.3 The IBM Model 1, IBM Model 2, and HMM Optimization Problems
	2.3.1 Noisy-Channel Approach to SMT
	2.3.2 Alignments
	2.3.3 IBM Model 2
	2.3.4 IBM Model 1
	2.3.5 The HMM Alignment Model

	2.4 Extracting the Viterbi Alignments
	2.4.1 Alignment Evaluation

	2.5 A Literature Survey of Alignment Models

	3 A Convex Alternative to IBM Model 2
	3.1 A Convex Relaxation of IBM Model 2
	3.1.1 The I2CR-1 Problem
	3.1.2 The I2CR-2 Problem

	3.2 Convex Optimization via Exponentiated-Gradient Descent
	3.3 A Stochastic Exponentiated-Gradient Algorithm for Optimization
	3.4 I2CR-2 Experiments
	3.4.1 Data Sets
	3.4.2 Methodology

	3.5 The Viterbi Alignment for I2CR-2
	3.6 Experiments
	3.6.1 Initialization and Timing Experiments
	3.6.2 Viterbi Comparisons

	3.7 Conclusions and Future Work

	4 A Family of Latent Variable Convex Relaxations for IBM Model 2
	4.1 A Class of Concave Functions based on the Generalized Weighted Mean
	4.2 A Family of Convex IBM Model 2 Alternatives
	4.2.1 The I2CR-3 Problem
	4.2.2 The I2CR-4 Problem

	4.3 An EM Algorithm for I2CR-4
	4.4 Decoding with I2CR-3 and I2CR-4
	4.5 Experiments
	4.5.1 Data Sets
	4.5.2 Methodology

	4.6 A Strictly Concave IBM Model 1
	4.6.1 Parameter Estimation via EM
	4.6.2 Choosing  and 
	4.6.3 Experiments

	4.7 Conclusions and Future Work

	5 A Convex Alternative for the HMM Alignment Model
	5.1 Introduction
	5.2 Distortion and Transition parameter structure
	5.2.1 Distortion Parameters for IBM2
	5.2.2 Transition Parameters for HMM

	5.3 Combining IBM Model 2 and the HMM
	5.4 Parameter estimation for IBM2-HMM
	5.5 A Convex HMM Alternative
	5.6 An EM algorithm for The Convex HMM Alternative
	5.7 Decoding methods for the IBM2-HMM problem
	5.8 Experiments
	5.8.1 Data Sets
	5.8.2 Methodology

	5.9 Conclusions and Future Work

	6 Conclusion
	Bibliography

