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ABSTRACT

CLASSIFICATION OF SPOKEN DISCOURSE IN TEACHING THE CONSTRUCTION OF

MATHEMATICAL PROOF

Heidi Reich

The purpose of this study is to analyze the patterns of classroom discourse
when high school students move from performing prescribed algorithms in order to
solve problems for which the process and solution are well-defined to spoken proof,
in which ideas are discussed and arguments are formulated and formalized.

The study uses a modified version of discourse analysis developed by Arno
Bellack and refined for usage in a mathematics classroom by James T. Fey. The
analysis framework is supplemented by codes borrowed from Maria Blanton,
Despina Stylianou, and M. Manuela David (2009), which is in turn a modified
version of a coding system developed by Kruger (1993) and Goos, Galbraith and
Renshaw (2002).

Twelve mathematics lessons involving two mathematics teachers were
recorded, transcribed and coded. Eight of the lessons were classified as “proof-
related” and four were designated “non-proof-related.” A lesson designated “proof-
related” contained more than half activity that was actively concerned with the
construction of proof; whereas a lesson in which no proofs were formulated was

designated “non-proof.” Using the codes described above and a variety of



qualitative and quantitative measures, the transcripts were examined for
constructivist behavior on the part of the teachers and modes of participation on the
students’ part.

The findings suggest a relationship between a teacher’s beliefs in constructivist
principles and the way in which that teacher instructs proof vs. non-proof. More
specifically, a teacher who views her/himself as informed by constructivist
pedagogical principles may not evince a sharp distinction between her/his teaching
of proof vs. non-proof; but a teacher who does not attempt to incorporate
constructivist principles on a daily basis may exhibit more constructivist tendencies

when teaching proof.
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Chapter 1. Introduction

Section 1: Need for the study

“There is no royal road to geometry.” Euclid

“Mathematically proficient students understand and use stated assumptions, definitions, and
previously established results in constructing arguments. They make conjectures and build a
logical progression of statements to explore the truth of their conjectures...Mathematically
proficient students are also able to compare the effectiveness of two plausible arguments,
distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an
argument—explain what it is....”
From “Common Core State Standards Initiative,
Standards for Mathematical Practice.”
<http://www.corestandards.org/Math/Practice/>,
retrieved on July 24, 2014.

In contrast to the traditional transmission model of mathematical education that
emphasizes transfer of procedures and algorithms from teacher to student, current trends
in mathematics education call for students to be able to construct understanding by means
of sense-making activities. This perspective, known usually as constructivism, has been
embraced by the National Council of Teachers of Mathematics since 1980, but the release of
the Common Core Standards marks the most recent initiative in agreement with this
pedagogical orientation.

Central to the idea of sense-making and construction of understanding in the
classroom is the concept of proof, considered by some to be “the soul of mathematics”: “If
problem solving is the ‘heart of mathematics,’ then proof is its soul” (Schoenfeld 2009).
There is an indubitable relationship between problem solving and proof. Problem solving
has been defined as “work[ing] problems of significant difficulty and complexity”
(Schoenfeld 1992). Selden and Selden (2013) see proof as a subset of problem solving in

that it has a “problem-centered part” and a “formal-rhetorical part” (Ibid.). As Lucast



(2003) states: “[P]roving encompasses problem solving...but proving requires more than
just arriving at a solution” (49).

Much research has been conducted on the importance of teaching mathematical proof
to high school students (Zaslavsky, Nickerson, et al. 2012; Hanna and Barbeau 2008;
Schoenfeld 1994). The motivation for doing so is at least twofold: to develop analytical and
problem-solving skills by way of logical deduction; and to introduce students to the
methods and procedures by which mathematics is done.! The literature on proof covers
many aspects: why even teachers who believe mathematical proof is important frequently
don’t teach proof to their students (Frasier 2014), why and how high school students
should be taught to prove in mathematics classes (Hirsch and Lappan 1989), what
constitutes proof in a high school classroom (Quinn 2012; deGroot 2001; Hersh 1993,
Fawcett 1995/1938), what specific obstacles are encountered by students of proof (Herbst
and Brach 2006), common misconceptions held by students and teachers on the nature of
proof (Healy and Hoyles 2000, Knuth 2002), and others. What have not been investigated,
a deficit this study seeks to correct, are the semantic mechanics of classroom discourse
when students study proof; moreover, what discursive stance a teacher may take in order
to encourage students to construct their own proofs.

Fortunately, in support of that investigation, there has been a relatively recent
proliferation of articles focused on mathematical discourse and, particularly, on discourse
in mathematics classrooms. Ryve (2011) cites the fact that there were a total of 24 such

articles between 1968 and 1999; whereas in 2000-2009 there were 84 articles that could

1 Hemmi and Lofwall (2009), upon interviewing ten mathematicians on the functions of proof, found no fewer

than six purposes: “conviction, explanation, communication, intellectual challenge, aesthetic and transfer”
(204).



be characterized as studies in mathematical discourse. (His study included articles from

five journals in total, two of which were the Journal for Research in Mathematics Education

and Educational Studies in Mathematics, seen by many as the two most influential journals

in the field.) Although the primary focus of his study was to suggest ways in which
researchers can and should be more precise in their situation of epistemological principles,
it serves to highlight a striking increase in interest in discourse study in mathematics
education. Ryve’s study also categorizes the types of discourse analysis that have been
done, providing options for how one might proceed on such an avenue of inquiry. A more
detailed provision of recent discourse analyses in mathematics classrooms will be provided
in this study’s literature review.

This study attempts to combine these two “trends” in research in mathematics
education by coding, tabulating and analyzing spoken exchanges between students and
teacher in order to examine the semantic mechanics of classroom-based procedures when
teaching high school students how to construct proof. In particular, this study compares
such spoken exchanges in a classroom concerned with the construction of proof with those
in a classroom in which proof is not being taught.

Since teaching proof is a process whose difficulty has been well-documented
(D'Ambrosio, et al. 2010; Epp 2003; Sowder and Harel 1998; Balacheff 1991; Sfard 2000), it
is hoped that this study will be of use to those teaching geometric proof at the secondary
school level, it is hoped that these findings will be of help to those attempting to adopt
constructivist teaching methods in their classrooms, and it is hoped that this study will
serve as evidence for the continued inclusion of proof in the teaching of high school

geometry.



Section 2: Purpose of the study
The purpose of this study is to analyze the patterns of classroom discourse when high
school students move from performing prescribed algorithms in order to solve problems
for which the process and solution are well-defined to spoken proof, in which ideas are
discussed and arguments are formulated and formalized. The study will address the
following research questions:
1. What semantic features can be shown by coding and analyzing student and teacher
utterances when learning to construct proof?
2. What semantic features can be shown by coding and analyzing student and teacher
utterances when proof is not being taught?
3. Are there discernible, quantitative differences in the quality or proportions of

teacher/student discourse in the teaching of proof?

Section 3: Overview of the study

The study analyzed audiotapes and transcripts of classroom activity in geometry
classes in two high schools in the tri-state area. Both are ninth grade classes in private
schools with small classes (12-18 students) and one teacher. Although one school is
attended by girls and the other is coeducational, the students are demographically similar.

Both teachers were in their second or third year of teaching. Both teachers had
apprenticed as student teachers with the researcher in geometry classes. In the
researcher’s professional opinion, both teachers were sufficiently proficient at their craft so

that lack of experience was not a factor in the study’s findings. In fact, the proximity of



their training at Teachers College ensured that both had been exposed to the principles of
constructivism and were accustomed to incorporating those into their classroom practice.

Data were collected in three stages. The teacher at one school taught proof in the
spring and the other in the fall, so both timing and location necessitated two stages of data
collection. Two-three weeks of data from each classroom yielded recordings of twenty-
four mathematics lessons of which nineteen were chosen for transcription and twelve were
chosen for analysis. Some lessons were designated proof-oriented, whereas others were
classified as non-proof-oriented, in order to differentiate proof-based instruction from non-
proof-based instruction. A lesson designated “proof-related” contained more than half
activity that was actively concerned with the construction of proof; whereas a lesson in
which no proofs were formulated was designated “non-proof.” (It is noted here and
elsewhere that only lessons in which at least half of the activity was directly devoted to
constructing proof of geometric relationships were classified as “proof-based”; generally
speaking, a proof may follow utilize the “statements and reasons” two-column structure
although this is not required. What is required to merit the designation “proof” is the
establishment of facts to be accepted as “given,” a statement or relationship to be proven
and the development of the proof using principles of deductive reasoning.) However, it
was found that there were not two examples from Teacher B’s classroom that could be
considered adequately devoid of proof activity, so two of that teacher’s algebra 2 lessons
were recorded at a later date.

The study utilized linguistic analysis to code audiotaped classroom exchanges
between students and teachers. It made additions to the discourse analysis framework

developed first by Bellack, et al. (1966) and modified by Fey (1966) to apply to the



mathematics classroom. As expected, Bellack and Fey’s coding system did not provide
subcategories that were sufficiently specific to classify the nature of teachers’ and students’
utterances in a mathematics classroom in which the primary occupation is the
development of proof, as opposed to a classroom in which the inculcation of mathematical
procedures is the primary focus. These were found elsewhere. Therefore, in addition to
the work of Bellack and Fey, this study leaned heavily on Offenholley (2007), Weinberg
(2010), Generazzo (2011) and Blanton, Stylianou and David (2009) for both framework
and methodology, including the development of the coding scheme. The precise codes and
their adaptation for this study will be discussed in the methodology section of this paper

and also in appendices.



Chapter II: Literature Review

Section 1: Constructivist pedagogy

1.1: History of support for constructivist pedagogy

In 1980, the National Council of Teachers of Mathematics (NCTM) recommended
that “problem solving be the focus of school mathematics” (NCTM 1980). In 1989, NCTM
released the 1989 NCTM Standards which stated ““the study of mathematics should
emphasize reasoning so that students can believe that mathematics makes sense” (NCTM
1989, p. 29). Following that, NCTM’s 2000 Principles and Standards identified five process
standards: Problem Solving, Reasoning and Proof, Communication, Connections and
Representation (NCTM 2000).

With the publication of Professional Standards for Teaching Mathematics in 1991,

NCTM staked its claim that a constructivist approach is an effective, arguably best, way to
teach American students all types of mathematics on all levels. Moreover, it is generally
held in the mathematics education community that students’ engagement in “sense-
making” activities will enable them to integrate mathematics with science, engineering and
technology on the secondary and collegiate levels; and further down the road, to perform
well in STEM professions.

In “Learning to think mathematically” (Grouws/Schoenfeld 1992), Alan Schoenfeld
expands upon NCTM'’s goals, identifying problem solving as “the theme of the 1980’s” (2).
He clarifies the goal of teaching students to “solve problems,” a vague and broad objective,
as to engender students’ facility in the language of mathematics, to be able to apply skills in
a variety of contexts (this is known as the ability to transfer knowledge; Willingham 2012,

Hemmi and Lofwall 2009, Fawcett 1938, and many others), to have the ability to recognize



patterns and to be able to formulate conjectures (Reshaping School Mathematics, National
Research Council, 1990a, quoted in Grouws/Schoenfeld 1992, 4). There is emphasis on the
interpretation of data, flexible and analytic thinking, and providing access to STEM
professions to all people (especially “wWomen and minorities”, 7-8). The way to ensure that
these goals are met, according to NCTM and Schoenfeld, is to regard mathematics as a
“sense-making” activity, to engage students in dynamic and open-ended activities, and to
resist the pull to represent mathematics as “a body of facts and procedures dealing with
quantities, magnitudes, and forms, and relationships among them...[in which] knowing
mathematics is seen as having ‘mastered’ these facts and procedures” (3).

It may be daunting, twenty years later, to realize that these goals have not been met,
and that these are precisely the same goals of current mathematics reform movements.
They bear more than passing resemblance to the goals of the Common Core Standards
Initiative, an education reform slated to take full effect in 2014, a portion of whose

objectives are as follows:

“1. Make sense of problems and persevere in solving them.

Mathematically proficient students start by explaining to themselves the meaning of a
problem and looking for entry points to its solution. They analyze givens, constraints,
relationships, and goals. They make conjectures about the form and meaning of the solution
and plan a solution pathway rather than simply jumping into a solution attempt. They
consider analogous problems, and try special cases and simpler forms of the original
problem in order to gain insight into its solution. They monitor and evaluate their progress
and change course if necessary. ...Mathematically proficient students check their answers to
problems using a different method, and they continually ask themselves, “Does this make
sense?” They can understand the approaches of others to solving complex problems and
identify correspondences between different approaches.

“2.Reason abstractly and quantitatively.

Mathematically proficient students ...bring two complementary abilities to bear on problems
involving quantitative relationships: the ability to decontextualize—to abstract a given
situation and represent it symbolically and manipulate the representing symbols as if they
have a life of their own, without necessarily attending to their referents—and the ability to
contextualize, to pause as needed during the manipulation process in order to probe into the
referents for the symbols involved....

“3. Construct viable arguments and critique the reasoning of others.



Mathematically proficient students understand and use stated assumptions, definitions, and
previously established results in constructing arguments. They make conjectures and build a
logical progression of statements to explore the truth of their conjectures. ...They justify
their conclusions, communicate them to others, and respond to the arguments of others.
...Mathematically proficient students are also able to compare the effectiveness of two
plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—
if there is a flaw in an argument—explain what it is....Students at all grades can listen or read
the arguments of others, decide whether they make sense, and ask useful questions to clarify
or improve the arguments.”
From “Common Core Standards Initiative, Standards for
Mathematical Practice.”
<http://www.corestandards.org/the-
standards/mathematics/introduction/standards-for-
mathematical-practice/>, retrieved on December 5,
2011.

Although the goal has not been met, much research has been done in the past
twenty or so years to explore how a mathematics teacher may induce her/his students to
think independently and mathematically, i.e., to regard problems as dynamic, viable
representations of the world and how to approach these problems analytically and
intelligently. Schoenfeld (1992) and NCTM led the charge; many researchers picked up the

mantle.

1.2: The inquiry-based classroom

There is ample research to suggest that creating an atmosphere of dialogue or
polyphony, even argument, is conducive to bringing students to comfort with development
of their ideas in a community, sometimes critical, of fellows (Yackel and Cobb 1996; Martin,
McCrone et al. 2005; Wood 1999; Cobb, Boufi et al. 1997; Elbers 2003; McClain 2002;
Bowers, Cobb, McClain 1999; Peressini, et al. 2004; Pape, Bell and Yetkin 2003; Durand-
Guerrier, et al. 2012; Cobb, Stephan et al. 2001; Hershkowitz and Schwarz 1999; Zaslavsky
2005). In these models, the instructor takes the role of facilitator (the “guide on the side”)

instead of transmitter and sole arbiter of knowledge (the “sage on the stage”).



Schoenfeld cites the classroom of Harold Fawcett, an educator who modeled his
classroom on the ideas of John Dewey. Fawcett believed that “a course in geometric proof
can help students learn to reason clearly about a wide variety of situations” (Schoenfeld
“Divorce,” 1991, 333); in other words, that such learning would transfer to other situations.
In Fawcett’s classroom, even basic geometric definitions were decided upon as a group in a
sense-making process (Ibid., 334-5). Fawcett relied heavily on the provision of
counterexamples (which presumed that students understood the power of the
counterexample) in order to point out the inadequacy of early versions of definitions,
which modeled the meaning of “truth” in mathematics. All activities required the class to
act as “jury” for the claims made by students; this was “an active and reflective jury” (335).
Also of note in Fawcett’s work is the observation that, if students are to integrate their
mathematical analytical training into their everyday lives, a phenomenon known as
transfer, they must be taught to do so explicitly (Fawcett 1938).

Leone Burton, whose research centers upon interviews with mathematicians in
universities in the United Kingdom, cites the prevalence of collaboration in the field of
mathematics: “Nowadays it is important to work with others...” (Burton 127); “(t)he
participant who claimed only to do individual work was extremely rare - three males and
one female out of seventy. What the participants described to me was a cultural practice
now widely prevalent in their communities...” (Ibid.), although many also acknowledged
the need to publish on one’s own.

The proclivity toward collaboration is regarded as a shift in the mathematics
community. “Many of the mathematicians who contributed to this picture themselves

pointed to a substantial cultural shift in mathematics from a discipline dominated by
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individualism to one where team work is highly valued...However, a gap has appeared
between a (mistaken) public image of how mathematics is done and the current practices
of many, possibly most, of those in the mathematics community” Ibid., 131).

The interviewees provide grounds upon which collaboration is essential, all of
which transfer well to a classroom community:

“* talking is a good way to get a problem done,

“* it shares the work,

“* you benefit from the experience of others,

“* it increases the quantity and quality of ideas,

“* you have someone off whom to bounce ideas,

“* it enhances the range of skills,

“* you get into areas that you might not have thought of going into,
“*you learn a lot from more senior colleagues,

“* under the pressure of writing up, you mustn't let others down,
“* there is someone to take over when you reach a dead end,

“* you share 'the euphoria' with someone,

“* you feel less isolated,

“* you can benefit from a novice/expert combination” (128).

Burton finally connects the practice of mathematicians with what could take place in
the classroom, citing the prevalence of a “competitive style” in many classrooms (132)
which is a “long way from what these research mathematicians are doing” (Ibid.) She
states:

“An individualistic teaching/learning model locates responsibility within the
learner and supports a teaching style which is content-based and
fragmented. A collaborative model emphasises the group functioning in
exploring and negotiating meaning assuming that such meaning is negotiable
and non-homogeneous...The world of knowing described by my participants,
a world of uncertainties and explorations, and the feelings of excitement,
frustration and satisfaction, associated with these journeys, but, above all, a
world of connections, relationships and linkages, is a natural outcome of this
model and equally available to learners of any sophistication. It compares
very unfavourably with the reception learning on which a transmission
model is predicated where mathematics is presented to learners in
disconnected fragments; if there is any hope of connections being made, that
is more often than not left to the individual to achieve. Not only does this fail
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to support learners in constructing any Big, or even smaller, Picture but it

also deprives them of the very pleasure of which these research

mathematicians speak - the pleasure of making a connection” (Ibid., 138-9).

She concludes with the conjecture that, since many teachers have not worked as
professional mathematicians, their lecture style comes from their own classroom
experiences, as there is nothing in their experience to convince them that anything else is
possible; but she urges teachers to depart from the individually-oriented transmission
model.

Marta Civil breaks mathematics down into three types that may or may not be
reconciled: “Everyday Mathematics, Mathematicians' Mathematics, and School
Mathematics” (Civil 2002). Although she acknowledges that, in many classrooms, we have
seen a departure from the traditional Initiation-Response-Feedback, or IRF (or Initiation-
Response-Evaluation, IRE) model (Skidmore and Murakami 2012, 201; Pimm 27; Shepherd
7; Schoenfeld 2002, 134), she notes that, even in reform-based classrooms, it is still likely
that the teacher (or textbook) will be seen as the final arbiter of what is “true.” In addition,
students’ perceptions of what is supposed to constitute a mathematics lesson or classroom
are seriously challenged by standards-based instruction; students must be given a period
during which they can be “won over” to the inquiry-based model.

She notes that “the following are some distinguishing characteristics of a classroom
environment in which children do mathematics as mathematicians:

“* The students and the teacher engage in mathematical discussions.

“* Communication and negotiation of meanings are prominent features of the

mathematical activity.

“* The students collaborate in small groups on challenging mathematical

tasks and are encouraged to develop and share their own strategies.

“* The students are responsible for decisions concerning validity and
justification.
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“* The teacher encourages the students to be persistent in the mathematical
task.” (Ibid., 42-3).

She does point out, however, that there are significant differences between
mathematicians and schoolchildren: primarily, children are forced to do mathematics, and
they generally do not choose the problems on which they work. Consequently, in
addressing the project goal of seeing whether ten year-olds could engage in mathematical
argumentation, the researchers encountered problems of limited patience in listening to
peers’ arguments; lack of interest when the discussion flowed from familiar contextualized
situations to abstract ones; and a preoccupation with being judged correct: “(W)e also had
to work on developing an atmosphere in which being wrong was seen as something
valuable to all of us in our route towards learning” (59). Over time, however, a measure of
success was achieved (55-6), indicating that it is possible to engage students of relatively
young age in “mathematician’s mathematics.” This finding is shared by several other
researchers: that particularly if we don’t insist on “formality” in proof, it is valuable to
engage in reasoning and informal proof in elementary and middle school (Campbell and
Robles 1997, Carpenter et al. 1998, Cobb et al. 1991, Kamii 1994, all cited in Sowder and
Harel 1998; deGroot 2001; Schoenfeld 1992). If students are encouraged to experiment
and articulate mathematical arguments from an early age, it is less likely that they will
conceive of mathematics as solely a set of procedures to be accepted without question and
memorized (Schoenfeld 1992, 26-7).

Herbst cites NCTM'’s Principles and Standards in support of teaching proof at all
levels of mathematics instruction: “Reasoning and proof are not special activities reserved

for special times or special topics in the curriculum but should be a natural, ongoing part of
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classroom discussions, no matter what topic is being studied” (NCTM 2000, p . 342; quoted

in Herbst 2002).

1.3: Convincing teachers to adopt a reform-based classroom practice

“Research has...documented the possibility of establishing alternative, more dialogic
patterns of spoken interaction in the classroom, which provide greater opportunities for
students to make their thinking explicit, and thus to reach a deeper level of understanding
of the subject matter” (Skidmore and Murakami 2012) although admittedly it may be
difficult for teachers to shed the “Initiation-Response-Feedback sequence” cited in the last
section. Nathan and Knuth (2003) observe that “(f)or teachers attempting to enact
discourse-based practices,... the challenge is particularly daunting given that mathematics
teacher education and professional development programs typically have not adequately
prepared them to enact successfully the lofty expectations set forth in reform documents
(Ross 1998)” (203-4). This section provides some suggestions to teachers who wish to
incorporate the constructivist model.

Wood, Cobb and Yackel (1991) found that teachers can be brought a realization of
the efficacy of constructivist teaching methods by observing their effects on student
learning or on their own teaching experience in the classroom. Their research indicates
that, not only were second-grade students fully capable of working in pairs and explaining
their mathematical processes in whole-class discussion, but that the teacher, previously a
practitioner of transmission-based learning, “discovered that [her students’] thinking was
far more sophisticated than she had previously assumed.... Listening to their ideas

provided opportunities to learn about her student's understanding of mathematics that
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were not available in her previous pedagogical practice. The unanticipated responses of the
children, which were novel to the teacher, acted to stimulate her listening carefully to
children and realizing that they have their own ways of knowing. This, in turn, facilitated
the development of genuine conversations in which children talked about their
mathematics....In describing the change that took place, she commented, ‘My teaching is
pleasantly different. Rather than being the person with all the answers, the children have
been given the opportunity to count on themselves and each other’” (601).

Evidence also suggests that teachers who engage in dialogue about their classroom
practice are prone to question their methods and to incorporate successful techniques,
which may well include constructivist approaches (Penlington 2008; Vygotsky, Bakhtin,
Cazden quoted in Penlington, 1307).

Finally, it is important to address teachers’ fears about “relinquishing control” in a
standards-based classroom. If teachers attempting to maintain a standards-based
classroom are aware that their input is still valued and frequently necessary, their concerns
about what they may perceive as giving up their authority may be alleviated and they (and

their students) can reap the benefits of discussion-based learning.

1.4: Techniques to strengthen reform-based classroom practice

Teachers who believe they are engaging in constructivist behavior have benefited
from videotape and close analysis of their classroom practice to see ways in which they are
leading the students, despite their sincere intention to allow students to conduct full
discovery on their own (Nathan and Knuth 2003; Arsac, Balacheff and Mante 1992). Nathan

and Knuth conducted a two-year study involving a teacher eager to scrutinize her own
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classroom practice including review of videotape and quantitative analysis of classroom
interaction. After the first year of discussion about and reflection upon her practice with
the researchers, “[the teacher] set out to make the discourse more accessible and more
productive for her students, and, in accord with the mathematical reforms, to use the
power of these content-centered verbal exchanges to enhance students' understandings.
[The teacher’s] strategy to remove herself from these interactions so that more student-to-
student exchanges would occur seems to have been successful” (197).

Yackel, Rasmussen and King (2000) found that it was necessary to reconstruct
social norms in a mathematics classroom in order to encourage the type of student activity
they deemed desirable. “[T]he students and the instructor acted in accordance with the
normative understandings that students were expected to explain their reasoning and that
they were expected to try and make sense of other students' thinking. These two social
norms, which were constituted early in the semester, contributed significantly to the
climate of the classroom as one in which sense-making and meaning-making
prevailed...Moreover, when the classroom norm is that of making sense of other student's
reasoning, class discussions often form the basis for students to further their own
mathematical development” (280-1). In other words, although it frequently contradicts the
norms to which many students (and many teachers) are accustomed, it is possible, and
perhaps desirable, for teachers to establish their classrooms as places in which students
learn to express, critique, and make arguments. In the classroom studied by Yackel, et al.,
“... students frequently explained their reasoning without prompting, offered alternative

explanations, and attempted to make sense of other students' reasoning and explanations,

16



despite the fact that their prior experiences were with traditional approaches to
mathematics instruction” (275-6).

Stylianou and Blanton (2011) cite the usage of “transactive prompts” (143) on the
part of the instructor, instead of giving students specific information, to help the students
come to the elements of proof on their own. “Clarifications,...explanations,...criticisms...and
elaborations” are typical instructor tools to “support students in developing the skill for
argumentation in mathematics” (Ibid.). Similarly, “revoicing” and “confirming” students’
ideas provide support and guidance in students’ development into mathematical thinkers
(144). They conclude that students may be led toward deductive arguments and proof if
the teacher engages in appropriate discursive behavior. “Analysis of classroom discourse
strongly indicates that certain teacher actions, including the types of questions that the
teacher asked, supported students’ development of proof over time” (Ibid., 143). Wood,
Cobb and Yackel (1993) state that “it is understood that the manner in which the teacher
acts to direct and control the dynamics of the discourse strongly influences the
opportunities for students to be active participants...” and suggest that when
“teachers...avoided being directive and instead encouraged the children to engage in the
demands of the task by providing prompts and suggestions in their dialogue...the children
[were able] to solve the tasks on their own. It would appear, then, that in classroom
interactions where the teacher acts to facilitate children's thinking about mathematical
problems and where genuine attempts to communicate exist, students have opportunities
to engage in dialogue in which they can express their mathematical thinking” (59).

Dawkins and van Dormolen recommend the usage of metaphors to make

mathematical concepts more accessible to students; this also permits students to put
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mathematics in a familiar context (Dawkins 2012, van Dormolen 1991). However, as Civil
points out, there may be a difficult transition between familiar contexts and abstraction for
which teachers must prepare (Civil 2002).

Hirsch and Lappan recommend the usage of manipulatives to embed imagery in
order to build a pattern that may be recognized (Hirsch and Lappan 1989). Again,
however, this may complicate the transition from specific to general, which is necessary for
proof unless all cases are exhaustively tested.

Arzarello, et al. suggest the usage of construction and dynamic software to provide
“observational” representations of geometric ideas. They point to the gradual
disappearance of construction from Western classrooms despite its prominence in
mathematical history, beginning with the ancient Greeks. They cite as an explanation the
19t century proliferation of disdain for “observational ‘intuitive’ hidden hypotheses”
(Arzarello, et al. 2012, 101) in geometry. However, they make the claim that these
activities may create a dialectic between geometric objects and proof, or as they express it,
“geometrical construction can serve as a key to accessing the meaning of proof” (102) if the
teacher is mindful in directing instruction. In sum, they theorize “artifacts have historically
been fruitful in generating the idea of proof and consequently can provide strong didactical
support for teaching proofs, specifically, if the teacher acts as a semiotic mediator” (108).

It is also instructive to note that several researchers have noted that teachers
should, on occasion, provide specific guidance above their roles as mediators. Zaslavsky et
al. (2012) and Lobato, Clarke and Ellis (2005) do not see “telling” as contradictory to the
constructivist method although “telling” students has been linked to the transmission

pedagogical model. Rather, they advocate “telling actions...when the goal is to develop
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concepts as opposed to procedure” (Lobato, Clarke and Ellis 2005, 104). They maintain
that it is a misconception of constructivism that teachers may never tell students anything;
rather, they point out that it is not a question of whether teachers should ever convey
information, but of when to do so.

To assist in this determination, the authors state that “it can be helpful to state facts,
share ideas, or identify conflicts, and then examine the sense that students make of them. In
addition, introducing new information at critical junctures could help reduce the number of
problem features that students must attend to, thus allowing for exploration in new areas”
(Ibid., 106). Finally, they clarify that “(s)tudents cannot be expected to reinvent entire
bodies of mathematics, regardless of how well each concept is problematized by well-
chosen tasks (Clarke 1994; Romagnano 1994). Teachers are expected to enculturate
students into the mathematics community, sharing conventional norms associated with
mathematical discourse, representation, and forms of argument (Becker & Varela 1995;
Cobb & Yackel 1996; Driver 1995). If teachers are to facilitate this enculturation, then
making the ideas and conventions of the community available to students is essential. From
this perspective, some information must be introduced by the teacher. In short, a
telling/not-telling dilemma has emerged. Telling is instructionally important, but has been
downplayed due to both perceived inconsistencies with constructivism and historical
attempts to develop pedagogical implications of constructivism” (Ibid.). As Sfard cautions,
“Rules of language games can only be learned by actually playing the game with
experienced players. The profound constructivist principles underlying the current reform
movement are only too often misinterpreted as a call to teachers to refrain from any kind of

intervention” (Sfard 2000, 185).
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Nathan and Knuth (2003) conclude that, although the teacher in their study was
able to remove herself effectively, clearing the way for students to discover knowledge,
“[the teacher] needed to encourage students to treat other's ideas as objects of discussion
in and of themselves -- an analytic scaffolding role -- and critically evaluate the veracity of
the ideas presented. When the teacher elected to move away from her analytic role, the
team observed that there was nothing added to the classroom culture to fill this gap in the
discourse when there were major oversights, or when conflicting views among students
arose (200).

As constructivist pedagogues Wood, Cobb and Yackel (1991) have observed,
“Teachers must develop the sensitivity to know when to intervene to make appropriate
suggestions and when to allow children time to resolve conflicts themselves. This requires
listening to the students' explanations and developing an understanding of the underlying
conceptual operations that underscore children's thinking” (610). Nathan and Knuth
(2003) describe the role of the teacher in a constructivist classroom as follows: “Rather
than primarily explaining and demonstrating, the teacher is asked to craft instruction in a
nontraditional way, at times leading from behind, at times stepping in as a mathematical
authority, and at other times carefully guiding the discussion and activities and seeding
ideas” (176).

Elbers (2003), in his presentation of Streefland and Gertsen’s deliberate
enculturation of a community of inquiry, observes the teachers’ activities as having three
main purposes: to encourage students to come up with new approaches to an existing
problem; to make “global and general” suggestions to students when vocabulary or

recognition of a new procedure was required; and as observers of what new solutions
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merited the class’s attention. Although students initially looked to their teachers for
affirmation, they developed as independent learners and came to look to their teachers for
guidance, not final approval. As Confrey (1990) points out, “Ultimately, the student must

decide on the adequacy of his/her construction.”

1.5: Summary

In sum, it is generally accepted in the mathematics education community that
wholly traditional, transmissive modes of instruction (teacher as “sage on the stage”) are
simply not sufficient nor effective in fostering students’ independent intellectual growth.
This applies even more emphatically to the realm of proof, which requires independent
thought and the willingness to follow lines of reasoning that may not prove fruitful. Some
researchers (Wood 1999, Zaslavsky 2005) have written about the explicit necessity of
making the classroom a forum for argumentation in which periods of uncertainty are to be
celebrated, not avoided. As Zaslavsky, Wood and others have found, a successful teacher of
proof should create an environment in which students are free to explore and, perhaps
counterintuitively, make mistakes. It is natural and desirable for a teacher to encourage
periods of uncertainty (Zaslavsky 2005), argumentation (Wood 1999), and (it is to be
hoped) whole-class-negotiated resolution (Wood, Cobb, Yackel 1993; Cobb, Boufi et al.
1997). As Burton points out, professional research mathematicians experience
uncertainty; “although knowing when you know is extremely important, you may have to
live with uncertainty” (Burton 134). Although students initially expect the study of
secondary mathematics to consist of a system of algorithms by which they arrive

inexorably at “the answer” (“Normally, there's a set way of doing it and you have to do it
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that way. You can't work out your own way so that you can remember it (Carly, year 11)”
(Boaler 1997, p. 23)), students can be brought to appreciate the opportunity to investigate
and discover the inner workings of a mathematical situation. Mathematics taught with a
constructivist approach encourages students to develop, in Schoenfeld’s words, “a way to
figure out how things work” (Stylianou/Schoenfeld, Foreword, xiv); in which “even in
failure, you may come to a better understanding of the phenomenon you're trying to make
sense of [sic]” (Ibid.).

It is equally important for the constructivist teacher to develop an awareness of
when it is appropriate and necessary to give her/his “professional opinion” or to convey
information to the class. As many have noted, students are not likely to reach high levels of
mathematical sophistication on their own. A teacher’s role as “guide” must include
analytical scaffolding and sufficient information to inspire discussion and discovery.
Gonzalez and Herbst (2013) recommend teachers attempt to spur student exploration and
discussion as follows:

“Some teaching actions that may prompt students’
construction of arguments in a class include selecting
meaningful tasks, bringing attention to a student’s ideas,
establishing connections between students’ solutions and
mathematical conventions, requesting students to pay
attention to the ideas of others, asking questions about
students’ conceptual understandings, relating conceptual
understandings ~ with  procedures, and  identifying
inconsistencies in students’ justifications (Ball & Bass, 2000,
2003; Strom, Kemeny, Lehrer, & Forman, 2001; Zack & Graves,
2001). Thus, specific teaching actions may lead students to
develop arguments” (273).

As mentioned above, one of the Common Core’s explicit directives and a long-

standing goal of NCTM is to have students question each other’s ideas and to become
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comfortable with defense of their own ideas and those of others, to develop the ability to
decide for themselves what is useful and true and what is not (from “Common Core
Standards Initiative, Standards for Mathematical Practice”). Students’ guided initiation into
the language of mathematics is an integral part of the process of students learning how to
express themselves mathematically - although, as the next section shows, this road is

typically fraught with difficulty.
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Section 2: Teachers’, students’ and mathematicians’ conceptions of proof

2.1: The connection between the inquiry-based classroom and proof

“It is desirable for students to bridge the gap between conviction and proof.” (Miyakawa
and Herbst 2007)

[t is reasonable to suppose that “sense-making” explorations that take place in the
standards-based classroom will engender analytic and problem-solving skills to enable
students to engage in mathematical argumentation, which should lead to the creation of
proof, identified as the soul of mathematics: “If problem solving is the ‘heart of
mathematics,” then proofis its soul” (Schoenfeld, Series Editor’s Foreword in Stylianou,
Blanton and Knuth 2009).

Zaslavsky et al. (2012) view teaching proof as a natural extension of teaching
problem solving. As they point out, even in the professional mathematics community it is
desirable to provide multiple proofs; proof is not merely a way of establishing validity of
“facts” (217). (If it were, “there would be no need to prove things in multiple ways” (Ibid.).)
The mathematics community uses proof as a method of generating new techniques,
exploring deeper significance and of providing “a network of connections” (Ibid.); the
authors suggest secondary school teachers and students do the same.

As Knuth points out, several mathematical pedagogues have bemoaned the relative
absence of proof from secondary school mathematics (Knuth 2002; Wu 1996, Ross 1998
and Schoenfeld 1994 are cited). As stated in the previous section, Schoenfeld in particular
finds that proof can and should be embedded in the study of mathematics at ALL levels, not
just in high school. Hirsch and Lappan also advocate that “informal explorations of grades

7 and 8...be thought of as building up a rich set of specific instances from which powerful
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mathematical generalizations and techniques can be abstracted” (Hirsch and Lappan 1989,
614) so that high school may be spent doing mathematics of greater abstraction, and
therefore sophistication. Wu (1996) claims that the absence of proof in our teaching of
mathematics is “a glaring defect in the present-day mathematics education in high school,
namely, the fact that outside geometry there are essentially no proofs....[presenting] a
totally falsified view of mathematics itself” (228). Hanna’s (2000) opinion is equally
strong: “[S]tudents cannot be said to have learned mathematics, or even about
mathematics, unless they have learned what proofis” (24).

Herbst and Brach (2006) cite numerous studies in which it is found that “(c)hildren
of ages even younger than [14-15] can engage in pursuing deductively the consequences of
certain assumptions that they themselves make; students can vary those assumptions,
refute arguments, and make conceptual connections (Ball & Bass 2000, 2003; Lampert,
1990; Overton, Ward, Black, Noveck, & O’Brien, 1987; Reid 2002; all cited in Herbst and
Brach 2006). They can engage in proving and call their work proving, even if some of the
additional values that separate mathematical discourse from the norms of mathematical
writing of contemporary mathematicians may not be present in how they represent their
arguments (Duval, 1992; Hanna, 1995)” (Ibid., 114-5). Wood, Cobb and Yackel (1991)
found that students of mathematics in a second-grade classroom, guided by their teacher,
were capable of working in pairs and articulating their findings in whole-class discussion.

Herbst and Brach also provide the suggestion that teachers “engage in some
negotiation of how the didactical contract applies [to get students to engage in proving].
Something that could be object [sic] of such negotiation is how a teacher should ask a

specific question so as to feel entitled to indeed get the students to work to produce the
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answer (vs. prompt them to recall a previously studied answer). Another object of
negotiation could be what specific affordances for the production of an answer a teacher
should provide, so as to stand a chance of observing students’ engagement in proving in the
context of their work answering the question,” both of which are constructivist techniques
(Herbst and Brach 2006, 79).

Although there has been much research on constructivism, as evidenced by the last
section, there has been a dearth on the mechanics of proof in the classroom. For example,
an explicit definition of classroom “proof,” the difference between “argumentation” and
formal proof, and the particular conceptions students hold about mathematical proof did
not receive as much attention as other difficulties in mathematical education (Hoyles and
Kuchemann 2002, 195). However, recent studies are addressing this deficiency. The
remainder of this section has findings from studies specifically related to the mechanics of
proof in the classroom, including teachers’ and students’ roles and conceptions compared

with those of the mathematics community.

2.2: Teachers’ roles in and conceptions of proof

In contrast to many in the mathematics education community who see an enormous
need for the teaching of proof at the secondary school level and prior, many teachers do
not. Cabassut et al. (2012) cite numerous studies in which teachers do not see the need for
proof AT ALL; some saw the appropriate locus of proof solely in Euclidean geometry in
secondary school. (A notable exception is found in Mingus and Grassl’s study (Mingus and
Grassl 1999, cited in Cabassut et al. 2012, 178), where it is found that 69% of pre-service

teachers of secondary school “advocate...the introduction of proof before 10t grade
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geometry classes” (Ibid.).) In their discussion of the majority of these studies, Cabassut et
al. posit that teachers are not themselves comfortable with teaching proofin a
constructivist setting because they lack facility with mathematical content and so are
anxious about free-form exploration that might reveal their weakness.

Knuth (2002) showed through interviews with 16 in-service high school
mathematics teachers that a number of them believed, although a proof of a mathematical
proposition had been established, that it was possible that a counterexample might be
discovered that would falsify the proposition, showing a flawed understanding of the
general nature of mathematical proof. Another six, however, were mathematically savvy
enough to point out that a change in the axiomatic system within which the proof had been
written would enable the possibility that the proof was now rendered invalid. In that same
study, over 93% of teachers’ ratings given to arguments that were proofs were correct;
however, every teacher rated at least one non-proof as a proof. A preponderance of the
teachers in the group avowed the importance of proof in secondary school and in
mathematics as a whole.

Schoenfeld (1980) suggests that teachers act as guides or “coaches” in problem
solving courses, since “it’s the process of problem solving that counts” but adds that asking
students to think instead of “reciting” subject matter is a “critically important” task. Itis
worth noting that his entire course in problem solving was taught to motivated,
mathematically-minded undergraduates at a top university; Schoenfeld may not be aware
of the disparity in mathematical background among schoolteachers, nor is he likely to
admit that the motivation (not to mention preparation) of younger students generally does

not match that of mathematics majors in college, complicating the whole process even
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more. Schwarz and Kaiser (2009) recognize the demand placed upon teachers by requiring
them to teach proof in a student-centered model: “[They] point out that teaching different
types of proof places high demands on teachers and future teachers. They add that teachers
should have university-level content knowledge of mathematics, including the abilities to
identify different proof structures, to execute proofs on different levels, to know specific
alternative mathematical proofs, and to recognise and establish connections between
different topic areas” (cited in Dreyfus et al. 2012, 202).

Zaslavsky et al. (2012) and others (Hanna and Jahnke 1996) have also identified the
utility of a teacher’s guidance since it is not likely that students will “rediscover
sophisticated mathematical methods or even the accepted modes of argumentation”
(Hanna and Jahnke 1996, 887).)” However, they too acknowledge that “(s)uch practices
place strong demands on teachers in terms of the required mathematical knowledge and
degree of confidence as well as the challenging and time-consuming task of instructional
design. Just as it is unrealistic to expect students to see a need for proof without purposeful
and focused actions by the teacher, it is unrealistic to expect teachers to be able to attend to
this element of teaching without appropriate preparation and support” (Zaslavsky et al.

2012, 226).

2.3: Students’ (and some teachers’) bias toward empirical evidence in lieu of deductive

proof

Within the subject of proof, much has been written on students’ conceptions of
proof, teachers’ conceptions of proof, and how these differ. As every mathematician knows

but few students believe, insufficient empirical examples do not constitute proof: “A
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million, a billion, a trillion positive examples aren’t enough. Something is only true for sure
when you can prove it’s true” (Schoenfeld, foreword, xiv) which mathematically speaking
means that a proposition must be shown to be true for the general case over any particular
instance.

It is well documented that “in mathematics education...most school students do not
find the deductive process straightforward and tend to use inductive reasoning to validate
conjectures in mathematics rather than to prove them deductively” (Hoyles and
Kuchemann 2002 (193); Bell 1976, Van Dormolen 1977, Balacheff 1988 are cited). In other
words, most students will attempt to “prove” the truth of a mathematical idea using
examples instead of by deduction from laws and existing theorems. In fact, research
shows that even students who recognize the validity of a deductive proof state that they
would like to see more analysis of applied examples to “strengthen their confidence”
(Fischbein and Kedem 1982, quoted in Zaslavsky et al. 2012, 220).

One explanation for this may be found in Vamvakoussi, who notes that the necessity
of deduction is an understandably difficult concept for students who are also studying
science. Scientific method dictates that phenomena are observed, a hypothesis is
formulated, and more data are collected to support the hypothesis (Vamvakoussi, in
Vosniadou, et al. 2007). In certain instances, it is even the case that data that do not
support the hypothesis may be discarded. This illustrates the most outstanding difference
is the treatment of empirical facts in science and mathematics, which Tsamir and Tirosh,
among others, have noted, is epistemologically different (Tsamir and Tirosh, in Vosniadou,
et al. 2007). In science, the data are the proof, whereas in mathematics, patterns suggest a

hypothesis, but they may not be used to prove truth unless it can be shown that the
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patterns can be applied generally. In mathematics as a rule, empirical data may not be used
in this pursuit as they are specific, not general. In mathematics, as well, data that do not
support a hypothesis may not be disregarded (although, as the next section indicates, they
may serve the useful purpose of illuminating a need to modify the hypothesis).

Cabassut et al. (2012) corroborate this conception of the polemic of mathematics vs.
science. “One reason [for students’ preference for empirical “proof”] is the difference
between [mathematical] statements and statements made in science courses. Conner and
Kittleson (2009) point out that students encounter similar problem situations in
mathematics and science, but the ways in which results are established differ between
these disciplines. In mathematics, a proof is required to establish a result; in science,
results depend on a preponderance of evidence (not accepted as valid in mathematics)”
(183).

)«

Chazan also cites numerous sources of evidence of students’ “preference for
empirical arguments over deductive arguments” (Chazan 1993, 359; Balacheff 1988,
Martin and Harel 1989, Porteous 1991, and Williams 1979 are cited). For example,
Williams found that 68% of a student sample was willing to accept a set of empirical
examples in lieu of deductive proof (quoted in Chazan, 361). In addition, Martin and Harel
found more than 50% of prospective elementary school teachers were willing to accept
empirical examples as proof.

As recently as 2009, Gabriel Stylianides and Andreas Stylianides noted limitations
on research on how to assist students in learning proof, although difficulties with proof

have been well documented. They reiterate findings on students’ visceral preference of

empirical evidence, adding the alarming observation that, in one study, 80% of elementary
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school teachers also accepted empirical evidence in lieu of mathematical proof (Goetting
1995, quoted in Styliandes and Stylianides 2009).

Knuth (2002) found high school mathematics teachers less likely to accept empirical
evidence as proof, but the tendency was not absent. As stated in the last section, this group
was relatively proficient at recognizing a valid proof, although generally less so at
recognizing an invalid one.

Dreyfus et al. (2012) present several possibilities between empirical “proof” and
fully formal proof; these include algorithmic, visual, generic and operative types (203).
Although these are admittedly “preformal” (Blum and Kirsch 1991, cited in Dreyfus et al.
2012) and teachers as a rule do not deem them acceptable final products, they may be
useful heuristic waystations on the journey from empirical evidence to formal proof.

Hirsch and Lappan, as noted in the previous section, explicitly advocate the usage of
manipulatives, particularly among younger students, in order to encourage pattern
recognition. They hypothesize that this type of “experiential learning” will set the stage for
proof in high school. They fall short, however, in providing techniques to facilitate the
transition from pattern recognition (which is a collection of empirical data) to proof; they
seem to believe that intellectual maturation and the acquisition of symbolic proficiency will
lead organically (magically?) to the creation of proof (Hirsch and Lappan 1989).

Hoyles and Kuchemann cite findings that students are perfectly capable of framing a
logical argument, as long as one is not too insistent upon formality (Anderson, Chinn,
Chang, Waggoner and Yi 1997, cited in Hoyles and Kuchemann 2002). Hoyles and
Kuchemann themselves found that students were more likely to frame arguments

deductively after having had a year of development in that area, although they were loath
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to attribute the change solely to classroom effects. Their clear implication is that an extra
year of development may be another reason for the students’ intellectual development,
echoing the assumption made by Hirsch and Lappan (see above).

There may be good reason to establish and maintain a connection between the
observation of examples and the writing of “formal” proof. Dreyfus, Nardi and Leikin
(2012) find that it is important to validate visually-observed patterns when teaching
students to move from empirical evidence to deductive proof. Furthermore, they find that
the transition between these phases is not always as distinct as students perceive. This
relationship between the (sometimes blurry) phases of proof has been named “cognitive
unity” (Garuti, et al.,, quoted in Miyakawa and Herbst 2007, 112; Boero et al. 1996, quoted
in Arzarello et al. 2012, 118). “The notion of ‘cognitive unity’ has been proposed to gauge
the relationship between conjecturing and proving theorems in classroom activity (Garuti
et al.,, 1998). The notion that there exists ‘cognitive unity’ characterizes the case in which
there is continuity between the two processes of conjecturing and proving. This continuity
is visible, for example, in the use of the same arguments during conjecturing process and
proving process. We use ‘cognitive unity’ to examine the relationship between convincing
and proving in terms of the geometric objects students might be asked to work with and

how they might be asked to work with them” (Garuti et al. 1996, 112).

2.4: Students’ justification schemes and students’ beliefs about proof

Some studies show that students do not see a need for proof, particularly for
propositions they regard as self-evident (D’Ambrosio et al. 2010, Arsac 2007). Herbst and

Brach (2006) mention Bourdieu’s work with habitus, “the collection of dispositions that
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constitute participants’ ‘feel for a game’ or practical rationality in a particular social
practice..lived as inclinations or tendencies that a participant feels compelled to follow as
he or she partakes of a practice” (Bourdieu 1984, quoted in Herbst and Brach), implying
that students participate in the writing of proof because they have to, not because they
want to; when diagrams are provided, students are apt to argue “proof is unnecessary
(because figures show what is true)” (Herbst and Brach 2006, 98) or that “proof problems
usually require proving a property that is obvious” (Ibid., 99). “Often students do not see
why a fact has to be proved when it is either obvious to them or seems to them to have
been sufficiently justified by actual measurements” (Hanna and Jahnke 1993, 434).

When they undertake proving as an activity, students misstep frequently and
somewhat predictably. A.W. Bell (Bell 1976) is one of the first researchers to have
attempted to catalog students’ justification schemes. Bell’s work identifies three stages in
which the first is abstraction (patterns are recognized), the third is proof (proofs may be
informal, but are “acceptably complete”; or are empirical, but test all possible cases; 23)
and the second, transitional, which is “less easy to define” (Ibid.). He finds that
approximately 50% of the student subjects (160 grammar school girls aged 11-18) was in
stage 2; 10% of the sample was in stage 3. He also identifies three main functions of proof:
verification or justification, illumination, and “systemization,” whereby the “deductive
chains of reasoning [are made] explicit” (Bell 1976, cited in Coe and Ruthven 1994, 42).

Sowder and Harel (1998) also find that high-achieving secondary school students
and university students, even mathematics majors, are likely to attempt incomplete
empirical justification. They also enumerate additional “justification schemes” employed

by students to justify mathematical claims. They note three types of student proof:
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“externally based proof schemes, empirical proof schemes, and analytic proof schemes”
(670-1). The first rely upon textbook citations or the work of an “authority,” are
preoccupied with form or format, or are purely symbolic; the second rely solely upon
examples without regard to generality; and the third are the type that most people in the
mathematics community regard as the “best” type of proof. Of this last type there are two
subgroups: the transformational proof scheme, which begins the transition to the general;
and the axiomatic proof scheme, which proceeds deductively from known “facts,” or
statements which are accepted as known (as in Euclidean geometry) (671-4). The authors
also recognize the ability of even primary school students to grasp the concept of proof and
reiterate the suggestion that students be exposed to the rudiments of proof and analytical
thinking as early as primary school.

Several studies have analyzed proof schemes of undergraduates (Selden and Selden
1995, Moore 1994, Housman and Porter 2003, Coe and Ruthven 1994). These findings
reiterate that even university students who have chosen to take advanced mathematics
courses experience difficulty in proof. Moore identifies three areas of difficulty: “concept
understanding, mathematical language and notation, and getting started on a proof”
(Moore 1994, 249). Later he identifies seven specific obstacles: “DI. The students did not
know the definitions, that is, they were unable to state the definitions. D2. The students
had little intuitive understanding of the concepts. D3. The students' concept images were
inadequate for doing the proofs. D4. The students were unable, or unwilling, to generate
and use their own examples. D5. The students did not know how to use definitions to

obtain the overall structure of proofs. D6. The students were unable to understand and use
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mathematical language and notation. D7. The students did not know how to begin proofs”
(Moore, 251-2).

A significant weakness of many students is that they are, as a rule, unfamiliar with
the precepts of basic logical argumentation (Durand-Guerrier et al. 2012, Moore 1994, Epp
1999, 2003). Moore (1994) identifies the hypothesis-conclusion nature of a mathematical
proposition as a problematic area for students. Epp has also identified the usage of logical
quantifiers, in particular their negation, as difficult for students (Epp 1999, 2003). “The
ability to rephrase statements in alternate, equivalent ways, to recognize that other
attractive-looking reformulations are not equivalent, and to have a feeling for truth and
falsity of universal and existential statements are crucial mathematical problem-solving
tools. Yet numerous studies show that students do not acquire these abilities
spontaneously” (Epp 1999, 2). One example of this is the naive belief that the negation of
“it is always true that...” is “it is never true that...” instead of “there exists at least one case
in which (the proposition) is not true.” Epp suggests that students be introduced to the
“language of quantification...[e]ven in the earliest grades” (Ibid., 4) in order to head off
these sorts of misconceptions. Hersh’s (1993) claim that “what is really done in day-to-day
mathematics has little to do with formal logic” (392) notwithstanding, it is vital that
students in secondary school progress in their understanding of logical argumentation if
they are to learn how to write mathematical proofs.

Knuth and Elliott (1998) cite Balacheff’s four stages of proof: “naive empiricism,
crucial experiment, generic example, and thought experiment” (714), in which the fourth

level contains the movement from practical proof to intellectual proof. They observe that
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instructors should recognize and give credit to work produced in earlier stages, even
though it does not pass the test of “mathematical rigor.”

Coe and Ruthven also reference Balacheff’s four types of “proof approach,”
describing them as follows:

“* naive empiricism in which the truth of a result is asserted after verifying several cases;
“* the crucial experiment in which a proposition is verified on a particular case
recognised to be typical but non-trivial;

“* the generic example in which the reasons for the truth of an assertion are made explicit
in a prototypical case; and

“* the thought experiment in which the operations and foundational relations of the proof
are indicated in some other way than by the result of their use” (Balacheff 1988, quoted in
Coe and Ruthven 1994).

These are also perceived as representing “steps in the learning process” (Ibid.). The
movement from “pragmatic” to “conceptual” proof is held as a primary goal, although Coe
and Ruthven found, as have many others, that proving mathematically did not come
naturally to high-performing sixth-form college students (16-18 years of age), who
generally gravitated toward empirical evidence in place of general proof. Coe and Ruthven
appear to blame the “epistemic schemas of school mathematics” that had routinized
mathematics to the extent that students did not engage in theoretical reflection despite the

“rhetoric of reform” (52).

2.5: The usage of counterexamples, or disproof
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Just as students are frequently willing to accept a few examples as proof of truth,
they are usually unlikely to accept one counterexample as compelling evidence of
mathematical falsehood and must be brought to understand the power of the mathematical
counterexample. As Cabassutetal. (2002) putit: “To an educated mathematician, it seems
nearly unimaginable that the phrase ‘for all objects x with a certain property the statement
A is true’ should present any difficulty of understanding to a learner. Many practical
experiences and some recent empirical studies show, however, that it does exactly that. Lee
and Smith, in a recent study (2008, 2009) of college students, found that some of their
participants held the notion that ‘true rules could always allow exceptions’ or that ‘true
means mostly true’ or that there might be an ‘unknown exception to the rule’ (Lee and
Smith 2009, pp. 2-24; quoted in Cabassut et al. 2002). This is consistent with the
experiences of students frequently not understanding that one counterexample suffices for
rejection of a theorem. Galbraith (1981) found, for example, that one third of his 13- to 15-
year-old students did not understand the role of counterexamples in refuting general
statements (see also Harel and Sowder 1998)” (Cabassut et al. 2002, 184). Again, this may
be attributed to students’ experience with scientific method in which exceptions do not
disprove the hypothesis.

Stylianides and Stylianides (2009) cite their usage of “pivotal counterexamples” in
order to introduce students to a state of “cognitive conflict” (Zaslavsky 2005, Zaslavsky et
al. 2012). Zaslavsky et al. (2012) believe as well that providing an atmosphere of conflict
can motivate students’ desire to prove, provided the instructor contributes “appropriate
didactical engineering” (224). Students learn not to dismiss contradictory evidence as

anomalous while becoming accustomed to the power of the mathematical counterexample.
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Epp recommends introduction be first made to disproof, rather than proof, with the usage
of counterexamples, perhaps because it is simpler to disprove with an existential statement
than to show universal truth; and to do so a few years in advance of geometry, when most
students study proof explicitly (Epp 1999, 5).

Epp provides an analysis of the lack of student understanding of the
counterexample in logical terms: in order to prove falsehood by means of counterexample,
“one must be aware (consciously or unconsciously) that the negation of ‘if p then q’ is ‘p
and not q’ (Epp 2003, 887). She acknowledges that although “[m]any mathematicians take
the reasoning described in these examples for granted,...[she] observed that very few
[students] have an intuitive understanding of...[logical] reasoning principles” (Ibid., 888).
An illustration is the twin statements by Tabach et al. (2009; quoted in Dreyfus et al. 2012,
200) that “... a universal statement necessitates a general proof and a single counter-
example is sufficient to refute the statement. By contrast, an existential statement can be
proven by a single supportive example, and a general proof is necessary to refute it,”
statements which are perfectly transparent to mathematicians but which would almost
certainly befuddle most secondary school students.

Epp also cites confusion resulting from the difference in usage of words when in the
mathematical register (as opposed to in common speech), a phenomenon that will be
discussed in greater depth in the next section.

Finally, students have demonstrated a lack of understanding of the validity of
deductive proof by responding to a proof they have acknowledged as correct with the belief
that there may still exist a counterexample to prove its falsehood (Zaslavsky et al. 2012,

220).

38



Proof by contradiction is another situation in which students frequently
misunderstand what seems obvious to their teachers. Leron (1985) dissects a familiar
such proof, that of the infinitude of primes, pointing out that most students (even
mathematics undergraduates) experience “frustration and bewilderment” (321) when they
see the proof for the first time, although the proof is lauded by mathematicians as simple
and elegant. Of course, it is unrealistic to expect students to grasp the idea of a proof by

contradiction when they are not conversant in the usage of the counterexample.

2.6: Mathematicians’ conceptions of proof

“Within the community of mathematicians, the truth of a mathematical
assertion follows through valid deductive reasoning from established results;
proof is a deductive ‘...demonstration that compels agreement by all who
understand the concepts involved.” (Hersh 2008, p. 100)” (Zaslavsky et al.
2012, 216).

“Research mathematicians often ignore the aspect of application and confine

themselves to the purely deductive notion of proof. The explicit and implicit

assumptions behind their mathematical work are taken as given. They are

dictated in part by the division of labour between mathematics and the other

sciences, and in part they result from a consensus, established by force of

habit, among the experts in the field” (Hanna and Jahnke 1993, 432).

We have seen some ways in which students do not begin proof with the same
assumptions as mathematicians. In order to put students on the right path, Cabassut et al.

m

suggest that Arsac, et al.’s “explicit ‘rules’ be made clear to secondary school mathematics
students when introducing proof: “a mathematical assertion is either true or false; a
counter-example is sufficient for rejection of an assertion; in mathematics people agree on

clearly formulated definitions and properties as warrant of the debate; in mathematics one

cannot decide that an assertion is true merely because a majority of persons agree with it;
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in mathematics numerous examples confirming an assertion are not sufficient to prove it;
in mathematics an observation on a drawing is not sufficient to prove a geometrical
assertion” (Arsac et al. 1992, quoted in Cabassut et al. 2012, p. 183). Cabassut, et al. also
state: “The issues of the potential certainty of mathematical proof and of the conditionality
of the theorems have to be made frequent themes in mathematics education, beginning at
the secondary level. Teachers should discuss them with students in various situations if
they expect the students to get an adequate understanding of mathematical proof. In
particular, they should make students aware of the necessary process of assessing the
reliability of a theory” (184).

In addition, Cabassut et al. (2012) make claims about the validity of proof that echo
the claims made by Civil about the newly-social mathematics community:

“Working mathematicians also stress the social process of checking the
validity of a proof. As Manin put it: “A proof only becomes a proof after the
social act of ‘accepting it as a proof’. This is true for mathematics as it is for
physics, linguistics, and biology” (Manin 1977 , p. 48). By studying the
comments of working mathematicians Hanna came to the conclusion that the
public process of accepting a proof not only involves a check of deductive
validity, but is also determined by factors like ‘fit to the existing knowledge’,
‘significance of the theorem’, the ‘reputation of the author’ and ‘existence of a
convincing argument’ (Hanna 1983, p. 70; see also Neubrand 1989). Bell
(1976) also stressed the essentially public character of proof.

“All in all, formal definitions of proof cover the meaning of the notion only
incompletely, whereas mathematicians are convinced that, in practice, they
know precisely what a proof is. This situation is difficult to handle in the
teaching of mathematics at schools, since there exist no easy explanations of
what proof and proving are that teachers could provide to their pupils. Proof
is not a ‘stand-alone concept’, as Balacheff nicely puts it (2009, p. 118), and is
aligned to the concept of a ‘theory’ (see also Jahnke 2009b, p. 30)” (Cabassut
etal. 2012).
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They also point out, contrary to what we might wish about the inalienable nature of
proof, “no explicit general definition of a proof is shared by the entire mathematical
community.”

Nevertheless, as we can verify from statements from the beginning of this section,
there is agreement as to the general necessities inherent in proof among mathematicians.
Hersh (1993) characterizes mathematical proof as “convincing argument, as judged by
qualified judges” (389), acknowledging with the device of the Ideal Mathematician (Davis
and Hersh 1981, 39-40, quoted in Hersh 1993) that this definition is incomplete. He also
allows that certain “non-trivial mathematics” defy formal proof, at least at the present time,
citing Halmos’s complaints about Haken and Appel’s proof of the Four-Color Theorem. He
concludes that “all real-life proofs are to some degree informal” (391). While Hersh’s
observations are more philosophical than practical, he brings up points that are part of a

much larger discussion, one whose scope is beyond that of the present study.

2.7: Summary

In sum, much has been written about the teaching of proof in high school,
elementary school, and college. Some have addressed such concerns as what constitutes
proof in a high school mathematics classroom, as opposed to among professional
mathematicians; others have discussed what sort of environment is appropriate for this
pursuit. Most of the literature has focused on how proof should be taught and on the
difficulties inherent in the teaching of proof. There has not been very much attention paid
to the semantic mechanics of what takes place, nor to possible benefits of teaching proof

regardless of whether students emerge having mastered the practice.
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Section 3: Discourse analysis: Qualifying and quantifying the language of the
classroom

The prior section of the literature review addressed common approaches and
challenges in teaching proof to high school students. This section will examine what is said
in the proof classroom along with a discussion of various approaches to and tools for the

analysis of classroom discourse.

3.1: Discourse analysis

It has become common for researchers to consider what is said in a classroom in
linguistic terms as well as through a pedagogical lens. The benefits of one or both types of
discourse analysis (as it is known) are beginning to pervade the realm of mathematics
education.

James Paul Gee, a pioneer in the field of discourse analysis, offered An Introduction

to Discourse Analysis in 1999 (third edition, 2011) and How to do Discourse Analysis: A

Toolkit (2011) to those wishing to engage in discourse analysis for research purposes.
Since Gee’s approach is grounded in linguistics and is geared toward linguists,
anthropologists and those studying communication, it is too syntactically and
syntagmatically precise to be of use in most studies of mathematics education. For
example, a dissertation prepared for a Ph.D. in linguistics written by Shepherd (2010) uses
sophisticated coding incorporating length of pauses and intonation to examine how,
despite relatively recent shifts in power from teacher to students in the course of
classroom activity, teachers still wield considerable power as measured by students’

hesitation and rising intonation. While this study sheds considerable light on the power
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dynamics in a third-grade classroom, it does not examine the purposes of utterances and
their effects.

Although it is cumbersome logistically and linguistically, Gee’s work is notable as it
(and other such work) provoked an onslaught of discourse analyses in fields other than
linguistics. As noted in the Introduction, there has been a proliferation of discourse
analyses in the field of education to various ends.

Atkins (2001) presents a discourse analysis of an EFL classroom in which moves are
classified according to Sinclair and Coulthard’s Initiation-Response-Follow-up model
(1975, revised 1992). In this model, the largest unit of discourse is a lesson and the
smallest is an act. Acts are combined to form five classes of moves, which include framing,
focusing, opening, answering and follow-up categories. Sinclair and Coulthard’s model is
intended to describe “micro-interactions” (Rogers, et al. 2005) in classrooms and, like
Gee’s, is appropriate chiefly for linguistically-based studies such as Atkins’s.

Subsequent to Sinclair and Coulthard’s work, Cazden (1988/2001) developed a
model of classroom discourse analysis that includes a distinction between “answering” and
“understanding” questions, which is a step in a useful direction for the current study.
However, as Cazden’s framework was developed as an amalgam of applied linguistics,
anthropology and sociology, and not a means of mapping instruction in a mathematics
classroom, it too is of limited use to the current study. Its focus contains references to
appropriateness and competence, relevance, intention, knowledge and value that are
ideally negotiated by the students and teacher acting as a community. While these are

valuable observations, the current study is less concerned with analysis of the classroom as
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a social object and more concerned with the mechanics of mathematics instruction. For
this reason, a framework developed specifically for that purpose was adopted.

For an overview of recent discourse analysis work in the field of mathematics
education, see Ryve (2011), who notes that there were a total of 24 such articles between
1968 and 1999; whereas in 2000-2009 there were 84 articles that could be characterized
as studies in mathematical discourse. (The study includes articles from five journals in

total, two of which were the Journal for Research in Mathematics Education and

Educational Studies in Mathematics, seen by many as the two most influential journals in

the field; he does not mention dissertations written during that period.) Although the
primary focus of his study was to suggest ways in which researchers can and should be
more precise in their situation of epistemological principles, it serves to highlight a striking
increase in interest in discourse study in mathematics education.

For a sophisticated analysis of discourse between Swedish engineering students, see
Ryve (2006), in which utterances are transcribed and interactive flowcharts incorporated
in order to answer research questions “Are the students communicating with each other?
Are the students discussing mathematics, and if that is the case, how should the quality of
the mathematical content be examined?” (193). This particular framework is geared
toward analyzing activity in groups (not whole-class discussion) and is far too precise a
tool to accomplish the goals of the current study; however, it serves as an instructive
example of the heights to which discourse analysis can ascend within certain parameters.

Ryve’s sample size is even smaller than that of the current study: a total of four 45-
minute discussions (four different groups, each consisting of three students) were

videotaped, tape recorded and transcribed.
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3.2: A. Bellack and |. Fey

The current study makes additions to a discourse analysis framework developed
first by Bellack, et al. (1966) and modified by Fey (1966) to apply to the mathematics
classroom. Although Bellack and Fey lack the linguistic rigor that is a hallmark of Gee’s
(and others’) work, their work predates Gee’s work by over thirty years and are still among
the most useful tools for analyzing discourse in certain contexts, of which the current study
is one example.

Bellack, et al. proposed a system of coding classroom interactions, dubbed “moves,”
that classified utterances as having one of four purposes: structuring, soliciting, responding
and reacting. These are reminiscent of Sinclair and Coulthard’s “framing, focusing, opening,
answering and follow-up,” but are condensed and tailored to activities in a high school

», «

classroom. Bellack’s “structuring” encompasses both “framing” and “focusing”; “soliciting”
could be the same as “opening”; “responding” is certainly akin to “answering”; and
“reacting” is most certainly related to “follow-up.” The difference lies in the relative
specificity of Fey and Bellack’s terms. Bellack and Fey’s “solicitation” can be a question or a
request for action, but certainly indicates one or the other; whereas Sinclair and
Coulthard’s “opening” is descriptive of (an instructor’s) intention of the direction in which
s/he wishes to lead the lesson but not sufficiently descriptive of the purpose of the
utterance. Conversely, Sinclair and Coulthard’s “answering” is too specific; Bellack and
Fey’s “response” may be a statement or an action. “Reacting” can be widely interpreted as a

teacher’s or student’s evaluation of another’s statement, or as a teacher’s prompt for a

student to continue pursuing a current thought, or as a student adding onto another
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student’s train of investigation. “Follow-up” seems to indicate a reaction to a thought or
activity that has reached a conclusion.

Since it was judged that Bellack and Fey are well-suited to the mechanics of a high
school classroom, this study chose to employ Bellack and Fey’s categories of classification.

Fey modified Bellack’s system for usage in a mathematics classroom. He adds codes
for mathematical content and purpose. His coding extends to analysis of not just number of
moves, but length of each move, finding, for example, that an average teacher move was 2.6
lines long, whereas an average student move was 1.5 lines long (38). He finds that, on
average, teachers were responsible for 60.2% of moves and 72.9% of lines; whereas
students were responsible for 39.8% of moves and 27.1% of lines (40). Table 1, shown
below, shows the percentages of classroom discourse devoted to each type of move by both

students and teachers:

Table 1. Fey (1966), % of moves and lines devoted to each type of pedagogical
move and ratio of lines per move

TABLE VI

% of moves and lines devoted to

cac || ty IN' ()' ')('(I.lu”ui“.ll move .l“(l
ratio of lines per move

Y of Moves of Lines Lines Move

- ) 12.2

Structuring
Soliciting 32.1 333

Responding 31.7 21.5

Reacting 31.0 33.0

N = N W

Fey, 43.
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Table 2 shows distribution of each type of move with respect to source (student or

teacher):

Table 2. Fey (1966), distribution of move types according to move

TABLE VII
Distribution of move types according to source
% of % of T of v of

Moves by Lines by Moves by Lines by

Teacher T'eacher Student Student
Structuring 80.3 86.0 19.7 14.0
Soliciting 92.6 934 7.4 6.6
'(t'\pumllm'_ 44 99 05.6 90.1
Reacting 829 88.2 17.1 11.8

Ibid., 44.

In Fey’s suggestions for areas of future study, he asks, “Do variations in the
mathematical topic under discussion produce variations in the pattern of mathematical
activity or logical process?” (75). This study addresses this question. His sixth question for
further research, “Can the behavioral concepts identified in the descriptive study of
teachers be used to construct models of teaching behavior, the effectiveness of which can
then be compared experimentally?” (76), does not appear to have been addressed by
anyone and so remains a robust area for further study.

As noted previously, Bellack and Fey’s coding system did not provide subcategories
that were appropriate for the current study to classify the nature of teacher and student
utterances in a mathematics classroom in which the primary occupation is the
development of proof, as opposed to a classroom in which the inculcation of mathematical
procedures is the primary focus. In particular, the subcategories “analytic, factual,
evaluative, justifying” used by Bellack and Fey’s subcategories of “developing, recall,

illustration, application and procedural” (Fey 57) were rejected as they require too much
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assumption on the part of the coder. In addition, those subcategories are oriented toward a
reaction the instructor was trying to provoke from one particular student. The current
study is more oriented toward instructors attempting to provoke a discussion between
several students.

However, the primary four “moves” characterized by Bellack, et al. and also Fey,
structuring, soliciting, responding and reacting, are useful and have been retained in this

study. Descriptive subcategories were found elsewhere; please see section 3.4 below.

3.3: K. Offenholley and S. Weinberg

As noted previously, this study leans heavily on Offenholley (2007) and Weinberg
(2010) for both framework and methodology, particularly in the development of the coding
scheme. Offenholley examines the discourse dynamics of online instruction to investigate
which types of “moves” encourage student participation. Her study reclassifies the
“reacting” move as “evaluative” and disregards “structuring” moves entirely. She also
renames certain types of “responding” moves as “explaining,” since in Bellack’s scheme
responses were required to be contiguous to a solicitation for explanation, a specification
that does not apply as neatly to an online milieu. She renames “reacting” moves as
“evaluating” in certain contexts. Her only subcategories under SOL, EXPL and EVAL are
MATH or NO MATH; she deemed only these necessary to characterize all exchanges.

Offenholley finds, using only Fey and Bellack’s four moves with minor modification,
that “the ratio of teacher to student discourse is far lower in online classes than in face-to-
face classes” although there is wide variation between instructors. She shows that, if

instructors are cognizant of amount and nature of their postings, students will interact
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more than they do in face-to-face interactions, and more than they will in online
interactions in which instructors are not mindful of their contributions. Overall, her
findings show teacher participation ranging from 0% to 44.3%, much less than that found
in Fey and Bellack’s observations of classrooms (in terms of number of moves, 61.7% and
60.3%, respectively; in terms of word count, these numbers go up to 71% and 75%,
respectively) and of that cited in a 1999 TIMSS report of a study of 8t grade mathematics
classes (about 89% of speech was by the instructor) (Offenholley 31-32).

Weinberg also modifies Fey’s coding scheme in several ways, the most notable of
which is replacing Bellack’s categories of “analytic, factual, evaluative, justifying” and Fey’s
categories of “mathematical activity,” which include “developing, recall, illustration,
application and procedural” (Fey 57) with seven subcategories including “knowledge,
comprehension, application, creative thinking, analysis and evaluation.” Weinberg’s
subcategories were taken from Brahier (2005) and are useful in describing and
categorizing teachers’ solicitations made to specific students. This is appropriate as types
of questioning are Weinberg’s primary focus.

He ranks these seven subcategories as increasing in levels of cognitive demand. In
conjunction with other tools, Weinberg’s study uses Fey and Bellack’s “moves” and
Brahier’s subcategories to analyze teachers’ solicitations of students and examines to what
extent teachers’ epistemological beliefs are in line with their discursive activities in the
classroom. However, Brahier’s subcodes were not adopted for use in the current study as
they, too, seem to require the coder or reader to make assumptions on the part of the
speaker that may not have been true. In addition, as previously noted, Brahier’s

subcategories are designed to qualify an instructor’s provocation of a specific student’s
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response. The current study is more concerned with whether a type of instructor utterance

provokes student discussion of any kind.

3.4: S. Generazzo and M. Blanton, et al.

Generazzo (2011) provides a dissertation presented in the field of mathematics
education that is of great interest to the current study. It investigates learning as part of a
social process as well as a result of individual constructions, an approach known as the
emergent perspective. She pays particular attention to the question “How does the
classroom environment shape students’ abilities to reason and prove in an inquiry-based,
undergraduate geometry classroom?” (5). The subquestion most related to the goal of the
current study is her first: “What is the nature of participants’ interactions as they engage in
proof and reasoning?” (6). She uses a framework developed by Blanton, et al. (2009) which
is used to categorize and analyze whole-class activity (Generazzo 2011, 26) with
differentiation of codes for student and teacher utterances.

The framework developed by Blanton, et al. (2009) presents a more objective view
than Brahier’s (adopted by Weinberg) of both teachers’ and students’ utterances. In
addition to objectivity, Blanton’s framework codes both teacher and student utterances,
which Brahier’s and Bellack’s do not. Blanton, et al. apply their coding scheme to an
undergraduate classroom of mathematics majors in which proving is the mathematical
objective.

In this coding scheme, teachers have four primary modes of utterance: directive,
didactive, facilitative and transactive. Of these, the first two are considered to engender a

lower level of cognitive demand from students whereas the second set are intended to
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evoke students’ participation, discussion and (presumably) understanding. Students have
seven modes of speaking, including proposal of a new idea, proposal of a new plan,
contribution to an existing idea, posing a transactive question, offering a transactive
response, supplying general confirmation, and no code. The first five are seen to evidence
access to Vygotsky'’s zone of proximal development; “no code” does not, and “general
confirmation” is considered a gray area. The methodology section of this study details the
application of these codes to data in the current study.

Blanton, et al.’s study “assumes that every teacher utterance affects how students
learn” (306) and presents its framework to facilitate inquiry into teachers’ modes of
communication. Itis premised on the acquisition of mathematical knowledge as a social
activity and also presumes many of the tenets of constructivism to be desirable in a
classroom on the college level, but by natural extension also in levels that precede college
study. It focuses on the modes of interaction used by teachers to encourage student
discussion and the ways in which students contribute to class and group discussion. As
such, it is of great use to the current study.

Blanton, et al.’s coding system is based on the work of Kruger (1993) and Goos,
Galbraith and Renshaw (2002). Kruger is responsible for the “transactive questioning” and
“transactive response” codes, which were developed to describe dyadic dilemma resolution
between young people and other young people, or with adults. Goos, et al. apply coding to
“senior secondary school mathematics classrooms.” As noted, they code “transactive

»n «

statements,” “transactive questions” and passive responses. The sample size is
conspicuously small: only three transcripts were coded. The first round of coding parsed

the classroom activity into stages including reading, understanding, analysis, exploration,
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planning, implementation and verification. The second round bears more resemblance to
the current study in that it coded “conversational turns of all speakers,” called Moves.
These conversational moves were, in turn, coded twice, to identify their “contribution to
the collaborative structure of the interaction.” Goos, et al.’s attention to Kruger’s
observations on the importance of transactive activity is further articulated in coding all
utterances in collaborative transactions as “self-disclosure,” “feedback request,” or “other-
monitoring.”

The current study adopts Blanton, et al.’s modification to Kruger and Goos, et al. in
that codes were needed to describe not just peer-peer interactions but also those between
teachers and students although the focus on conversational “moves” is retained as centrally
important.

Generazzo also employs Toulmin’s framework to describe student’s modes of
argumentation. Toulmin’s framework, which specifically details the structure and validity
of proof, is useful when examining and evaluating those constructs. The current study is
concerned more with the pedagogical, conversationally-based methods applied by teachers
to encourage proof, discussion and argumentation among students and with students’
contributions to whole-class discussion; it is less concerned with the validity or content of
proof activities.

Results of tabulated teacher utterances and student utterances are presented below.
In contrast to Fey and Bellack, who distinguish between moves and lines, the current study
considers only moves with no regard for length of utterance (although, in the current study,

overall teacher and student word count, and teacher/student word ratio, will be provided).
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Table 3. Blanton, et al. (2009), frequency of forms of instructional scaffolding

(teachers)

Table 17.1 Frequency of forms of instructional scaffolding
(teachers)

Type of teacher utterance Frequency  Percentage
Transactive prompt 37 40
Facilitative utterance 43 47
Directive utterance 7 8
Didactive utterance 5 5

Total 92 100

Blanton, et al. 298.

Table 4. Blanton, et al. (2009), frequency of forms of instructional
scaffolding (students)

Table 17.2 Frequency of forms of instructional scaffolding (students)

Type of student utterance Evidence of Frequency  Percentog
ZPD access
Proposal of a new idea Yes 3 B
Proposal of a new plan Yes 6
Contribution to an existing idea Yes 29 40
Transactive response Yes 7 10
Transactive questions Yes 6 8
General confirmations Not necessarily 9 13
No code No 12 17
Total 72 100
Total utterances indicating ZPD access 51 70
Ibid., 302.

Since Blanton, et al. developed their coding scheme of conversational moves for
usage in a classroom in which proof is the objective, it was natural for this study to adopt it.
Furthermore, as noted above, codes are assigned to both teachers’ and students’

utterances, which was necessary for this study. Finally, this coding system is most

53



concerned with instructors’ ability to provoke discussion and students’ ability to engage in
discussion with or without teacher moderation. However, it was necessary to modify their
scheme slightly for facility of data presentation; these modifications are discussed in the

methodology section of this study.

3.5. Summary

In sum, the current study uses discourse analysis techniques that have gained
popularity in recent years. It has modified Bellack and Fey’s coding scheme, a well-
recognized scheme for describing activity in a mathematics or non-mathematics classroom.
In addition, it extends Fey and Bellack’s scheme with subcategories taken from Blanton, et
al. that use coding of conversational moves to describe a mathematics classroom in which
proof is the main focus of activity and in which the instructor’s intention is to provoke

discussion among students.
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Chapter IlII: Methodology

Section 1: Overview

The study analyzed audiotapes and transcripts of classroom activity in geometry
classes in two high schools in the tri-state area. Both are ninth grade classes in private
schools with small classes (12-18 students) and one teacher. Although one school is
attended solely by girls and the other is coeducational, gender notwithstanding, the
students are demographically similar. Teacher A’s class was composed of eleven young
women. Seven were Caucasian, two were Latina, one was African-American, and one was
of mixed (unknown European/Asian) ethnicity. Five were of high socioeconomic status,
four of medium, and two of low. Although demographic data were not available from
teacher B’s school, based on the researcher’s observation, it is reasonable to suppose that
the students in Teacher B’s classes enjoyed similar heterogeneity, although a significant
difference is that Teacher B’s classes were mixed-gender (approximately half boys and half
girls).

Both teachers were in their second or third year of teaching. Both teachers had
apprenticed as student teachers with the researcher in geometry classes. In the
researcher’s best professional judgment, both teachers were sufficiently proficient at their
craft so that lack of experience was not a factor in the study’s findings. In fact, the
proximity of their training at Teachers College ensured that both had been exposed to the
principles of constructivism and were accustomed to incorporating those into their
classroom practice. In addition, the researcher recommended both for their first teaching

jobs and so it is true that the researcher considers both to be excellent teachers. These
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teachers were chosen because they were both teaching in private schools with similar
populations and were teaching similar courses in geometry with an emphasis on proof. In
addition, the researcher’s relationship with the teachers facilitated their willingness to
participate in the research project.

Data were collected in three stages. The teacher at one school taught proof in the
spring and the other in the fall, so both timing and location necessitated two initial stages
of data collection. Two-three weeks of data from each classroom yielded recordings of
twenty-four mathematics lessons of which nineteen were chosen for transcription and
twelve were chosen for analysis. Of these, eight (four from each teacher) were considered
“proof-based,” that is, to concern primarily the teaching of proof; and the other four (two
from each teacher) were supposed to be composed of non-proof activity. However, upon
consideration, there were no examples from Teacher B’s classroom that could be
considered adequately devoid of proof activity, so two of that teacher’s algebra 2 lessons
were recorded at a later date.?

[t should be noted here that only lessons in which at least half of the activity was
directly devoted to constructing proof of geometric relationships were classified as “proof-
based”; generally speaking, a proof may utilize the “statements and reasons” two-column
structure although this is not required. What is required to merit the designation “proof” is
the establishment of facts to be accepted as “given,” a statement or relationship to be

proven and the development of the proof using principles of deductive reasoning. The

2 In the final analysis, the fact that a second set of data for Teacher B were from a completely
different class, one that did not include any emphasis on proof, served to strengthen the hypothesis
that Teacher B’s instruction did not vary regardless of variables such as content, students, nor year
of study.
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reader is encouraged to peruse the Results section of this study in which the specific
material covered in each lesson is described in more detail.

Finally, it should also be noted that the researcher chose not to code classroom
“housekeeping” activity, nor was groupwork coded. In general, only proper whole-class

instruction was coded.

Section 2: On the Development of the Survey

Both teachers were given a brief survey to provide information on their approach on
teaching proof vs. non-proof and general epistemological orientation (constructivist vs.
objectivist). The survey is as follows:

1) When you are teaching your classes, please assign a number 1-5 (5 is
most) to how highly you prioritize the following:

a) students communicate directly with each other at all times (not just
during groupwork)

b) students use correct mathematical terminology in discussion

c) students explore and absorb the skill or concept you are trying to
convey

d) you provide time for students to interact and discuss the situation you
have presented (separate from whole class instruction)

e) students provide their own goals

f) students ask questions to clarify procedures, concepts or your
pedagogical intentions

If you can, please rank the above in order of their relative importance to

you.

2) When you think about your teaching and lesson planning, are there
differences to how you approach teaching proof lessons, as opposed to non-
proof lessons (e.g., midpoint formula, straight algebra)?

The survey was developed in accordance with researchers cited in the literature

review. In particular, the work of Bowers and Nickerson (2001), Civil (2002), Schoenfeld
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(1992), Skidmore and Murakami (2012), Yackel, Rasmussen and King (2000) and others
was seen as instrumental in identifying aspects of instruction that could be seen as
important by teachers interested in developing a constructivist atmosphere. Specifically,
items a) and e) are seen as most important in a student-centered, constructivist model,
which emphasizes exploration and discussion among students; whereas b is more
indicative of a teacher-centered, objectivist model in which the teacher is seen as the most
knowledgeable person in the room and the arbiter of what is “mathematically correct.” The
remaining goals are important in both modes of instruction and were provided to draw
attention away from the choices intended to expose each teacher’s underlying ideological
orientation.

The second question is intended to expose whether each teacher regards the teaching
of proof as fundamentally different to establish whether Teachers A and B intended for
their instruction to differ in order to establish whether difference (if found) was deliberate

or not.

Section 3: On the Size of the Data Set
Some studies analyze more data than the current study, and some analyze less. This
study double-codes twelve lessons of varying lengths with four codes and twelve subcodes.
Offenholley’s study (2007) codes thirteen online lessons. Although double coding is
employed, the coding system is less sophisticated than that of the current study (three
codes, two subcodes).
As noted in the Literature Review, Ryve’s (2006) sample size is smaller than that of

the current study: a total of four 45-minute discussions (four different groups, each
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consisting of three students) were videotaped, tape recorded and transcribed. Goos,
Galbraith and Renshaw (2002) code only three transcripts; these were double-coded with a

level of sophistication similar to that in the current study.

Section 4: On the Development of Tables and Graphs

After the transcripts were transcribed, edited (for student names and other
identifying information) and coded, the code tallies were entered into Excel spreadsheets.
Two types of data were used. The first, word-related, are in the forms of word ratios and
word clouds. The second, utterance-related data, take the form of bar graphs of coded
material, analysis of common question-response-reaction patterns, and comparison of
proportions of different types of teacher and student utterances. Utterance-related data do
not take into account the length of specific utterances, only their code values or (in the case

of string lengths) the identity of the speaker.

4.1: Word-related figures and tables

Teacher-student word ratios were calculated using Microsoft Word and string
lengths tallied by hand. These results were tabulated and can be found in the Results
section of the study. Teacher-student word ratios, therefore, consist of a tally of words
spoken by each group; since different lessons differed in length, word ratios are calculated
as proportions of all words spoken.

The reader will also note the inclusion of “word clouds” for each lesson. Word clouds
are a type of weighted list that delivers information about a lesson transcript quickly. The

largest word in the cloud is the word that was spoken most often; accordingly, the smallest
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was spoken the least. Word clouds are not intended to convey detailed information, e.g.,
exactly how many times each word was spoken; nor is the placement of any particular
word in the cloud significant. Rather, they are a means of conveying quickly and easily the
words that received the most focus in the lesson, thereby giving an imprecise although
effective impression of the nature of the lesson. Word clouds are provided both for all
speech in the lesson and for that of the teacher only.? The word clouds were created using

a free online program at <http://www.wordle.net/>. The font is League Gothic.

4.2: Utterance-related figures and tables

The first of these is string length. Any series of utterances in which a teacher’s
statement is followed by two or more uninterrupted student responses is called a “string.”
“TSS” signifies two uninterrupted student utterances, “TSSS” three, and “4 S’s,” “5 S’s” and
so forth signify the appropriate number of uninterrupted student utterances following a
teacher’s initial utterance. These string data are presented in the Results section of the
study. There is also an appendix with all string data tabulated on one page.

The second of the utterance-related data is bar graphs. The bar graphs, presented
for all proof and non-proof lessons for each teacher and for individual lessons, show the
proportion of teacher and student utterances for both types of coding.

Finally, a sequence of SOL-RES-REA (generally, question, response and reaction)
was identified as common and informative. In a teacher-centered classroom, it is
commonplace for a teacher to initiate the sequence, for a student to respond, and for the

teacher to evaluate the student’s response. Any deviation in this pattern from teacher

3 This study’s word clouds were created at http://www.wordle.net/create in October and December 2014.
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(solicitation)-student (response)-teacher (reaction) was interpreted as relevant to

identifying instruction as teacher- or student-centered.

Section 5: Selection and Development of the Coding Scheme

As discussed in the introduction and literature review section, this study utilizes a
framework developed by Bellack, et al. (1966) and Fey (1966) to code pedagogical “moves”
in a classroom. The framework codes interactions as structuring, soliciting, responding

and/or reacting. No modification was made to these categories, although subcategories

(second level of coding) were affixed as described below.

5.1: First level of coding: purpose of utterance (applies to both teacher and students)

In general, Bellack and Fey’s codes, dubbed by this study “purpose of utterance,” can
be described as follows:

Structuring, abbreviated STR, defined as a move that sets the context for activity. It
generally initiates or redirects the discussion. It also includes a teacher demonstrating,
declaring or administering behavioral prompts. Some examples:

T-STR: “Now let’s talk about how to find the midpoint of a line segment.”

T-STR: “Here’s how you find the circumcenter of a circle.”

S-STR: “Wait! I have a totally different approach.”

Soliciting, abbreviated SOL, is a move that solicits a response. It is generally followed
by RES, a response. Some examples:

T-SOL: “What do you think are the coordinates of this segment’s midpoint?”
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T-SOL: “Can you explain why you did that?”

S-SOL: “How should I start this problem?”

Responding, abbreviated RES, is always a response to a SOL move. Some examples:
S-RES: “I think the circumcenter is at (3,2).”

T-RES: “Maybe you should use one of the givens first.”

Reacting, abbreviated REA, is a response to something that was said earlier or a
continuation of an ongoing process. Itis never a response to a SOL. Some examples:
S-REA: “I agree with . The circumcenter is at (3,2).”

T-REA: “Ithink your approach is a good starting point.”

5.2: Second level of coding: nature of utterance

As discussed in the literature review, Bellack uses “analytic, factual, evaluative,
justifying” as subcategories, but these were regarded by the current study as too
descriptive of utterances. Toulmin’s scheme, which details the structure and validity of
proof, was also rejected for being too content-oriented. Brahier’s subcodes were designed
to describe a teacher’s desired response from one particular student, which is not in line
with the goals of the current study.

Instead, the current study adopts codes developed by Blanton, et al. (2009), chosen
because they characterize an instructor’s intention to get a quick, factual response or to
engender discussion among students. They also classify student responses as requiring

higher- or lower-order thinking. In conjunction with tallying strings of student utterances,
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this subcoding system effectively describes what a teacher has done to engender discussion

and whether the discussion takes place.

5.2.1: Teacher codes

Using Blanton, et al.’s codes, one can subcategorize teacher “moves” by one of four
modes: facilitative, transactive, directive, or didactive, (abbreviated for this study as FA, TA,
DR and DD). Of these, the first two are considered to evoke students’ participation and
understanding (higher-order demands) whereas the second set engender a lower level of
cognitive demand from students. The first two (TA/FA) and last two (DR/DD) have been

condensed in the Results section in order to facilitate data presentation.

Transactive (TA) prompts are intended to provoke students’ own reasoning,
elaboration, justification and so forth. An example of a transactive prompt is: “Can I have
some more examples of that?”

Facilitative (FA) statements reinforce (sometimes, just revoice) a student’s idea or

structure discussion. Example: “So I'm hearing, we should start with a given statement.”

Directive (DR) statements provide immediate feedback or by providing information
directly. Example: “You find that by adding the x-coordinates and dividing by two.”
Questions are not discussion-provoking. A question that receives a one-word answer is
generally directive. An example is: “What is the midpoint of the line segment?”

Didactive (DD) statements reinforce the teacher’s position as authority figure by

presenting non-negotiative information “on the nature of mathematical knowledge
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(Blanton, et al. 2009). Example: “That’s the kind of thing you’ll need to know as a math

major.”

5.2.2: Student codes

Student “moves” are categorized by seven modes of speaking, which are as follows:
proposal of a new idea, proposal of a new plan, contribution to an existing idea, transactive
question, transactive response, general confirmation, and no code (PI, PP, CO, TQ, TR, GC or
NC). In accordance with Blanton’s research, the first five (PI, PP, CO, TQ, TR) are seen to
evidence access to Vygotsky’s zone of proximal development; “no code” does not, and
“general confirmation” is considered a gray area. As with teacher uttterances, the first five
(PL PP, CO, TQ, TR; higher-order utterances) have been condensed in the Results section, as
have the last two (GC, NC; lower-order utterances) in order to convey data more
meaningfully.

The following describes these categories in greater detail. As noted above, the first

five evidence higher-order activity, whereas the latter two evidence lower-order activity.

Proposal of a new idea (PI). Example: “We should try bringing the angle bisectors into

LN

the proof.” “How about using different triangles?”

Proposal of a new plan (PP). Example: “How about using SAS on these other triangles?”

Contribution to an existing idea (CO). Example: “Then use the vertical angles!”

Transactive question (TQ). is generally a request for clarification, explanation, and so

forth. Example: “Why did you use that segment?” (N.B.: Most student questions are

considered transactive questions although a few merited a “no code” designation.)
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Transactive response (TR) is generally a response to a request for clarification,

”

explanation, and so forth. Example: “I used it because it was shared by two triangles.

General confirmation (GC). Example: “I completely agree.”

No code (NC). Example: “The midpoint is (2, -3).”

In sum, each student or teacher “move” was coded with S or T (for source), a three-
letter code from Fey/Bellack (STR, SOL, RES or REA), and a two-letter code from Blanton, et

al.

Section 6: About the Coders and Intercoder Reliability

Two coders were chosen and they, along with the researcher, coded paper transcripts,
using the margins to record the codes. The coders were both college graduates. Neither
was a mathematics teacher. This was done to ensure that the bias for or against the
teaching of proof would not influence coding decisions.

The coders were given training for some hours using transcripts that were not being
used in the study. (The instructions to coders are appended to this study.) After training,
the researcher compared results and provided feedback to assist in the relative consistency
of coding. When the researcher judged that an appropriate period of training had passed
and adequate feedback had been provided, kappa values were calculated to show both that
the coders achieved a high enough measure of intercoder reliability and that the
researcher’s obvious bias did not render her coding incompatible with that of the objective

coders.
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Although neither coder was a mathematics teacher, both were aware of the study’s
hypothesis. Therefore, a third, control coder (C; see below) coded sections of the
transcripts already coded by all three coders (A, B, and R; see below) and kappa values
were again computed to show that all coding had been relatively bias-free.

Kappa values are a measure of intercoder reliability developed by Cohen (1960). Itis

notable as it takes into account not only the proportion of common responses but also the

P(A)-P(E)
1-P(E)

probability that two coders would agree purely by chance. The formulais k =
P(A) is the proportion of times the coders agree; P(E) is the proportion of times they would
have agreed by chance. Kappa values range from 0 to 1, with 1 representing perfect
consistency. In general, a kappa value of .65 or greater is regarded as an indication of very

good agreement among coders. A kappa value above .75 is regarded as an indication of

excellent intercoder agreement.

Table 5. Intercoder reliability kappas:

A and B A and C B and C A and R B and R CandR
Fey/Bellack | .814 .809 1 .739 .92 .92
moves
Blanton
student 1 .654 .814 .76 .810 .8
codes
Blanton
teacher .75 .824 .75 714 .75 1
codes

N.B.: A and B are coders. Cis a control coder who was unaware of the study’s hypothesis.
R is the researcher who also coded transcripts in addition to training all coders.
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Section 7: On the Application of the Coding Schemes to the Data

As noted above, no modification was made to Fey and Bellack’s basic structure of
moves. However, it was necessary to adopt subcodes in order to describe classroom
activity in sufficient detail. As noted previously, this study saw Blanton, et al.’s coding
scheme as the most appropriate since it was developed to describe activity in a classroom
whose primary activity was the development of proof and is focused on a teacher’s desire
to foster discussion and student contributions to discussion.

[t was previously noted that Blanton’s codes were developed for usage in an
undergraduate classroom; because of this, the current study saw the necessity to consider
carefully some of Blanton’s codes for application to a high school classroom. In particular,
questioning, the majority of which was seen by Blanton, et al. as “transactive,” was more
frequently encountered in the current study as directive. Since the current study also uses
Fey/Bellack’s system, it was possible to distinguish clearly between directive and
transactive questioning while preserving the occurrence of a question. Another difference
can be seen in Blanton’s tendency to classify structuring as “facilitative,” whereas the
current study tended to regard structuring in a high school classroom as directive. Again,
the simultaneous usage of both schemes enables a more detailed characterization of
structuring (as well as soliciting, responding and reacting) moves.

As noted previously, the appendix entitled “Instructions to coders” details the

instructions given when training both coders and the control coder.
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Chapter IV: Results of Study

Section 1: Overview
This study seeks to answer a number of questions.
1. What semantic features characterize student and teacher utterances when learning
to construct proof?
2. What semantic features characterize student and teacher utterances when proofis
not being taught?
3. Are there discernible, quantitative differences in the quality or proportions of

teacher/student discourse in the teaching of proof?

In addition, this study examines whether the ratio of teacher-student utterances
documented by Bellack, Fey, and Offenholley has changed. If so, can any change in this
ratio be attributed to the nature of the subject matter, i.e., does the teaching of proof
engender different types of student and teacher utterances, and does it affect the ratio of
those utterances?

The research indicates that, overall, there can be qualitative and quantitative
differences in both teacher and student utterances when proof is being taught, although
those differences may vary according to a teacher’s epistemological approach to her/his
craft. This section will examine each lesson taught by two instructors with different
epistemological approaches to instruction in an effort to determine under which conditions
changes in traditional teacher-student utterance ratios and nature of utterances are most

likely to occur. As stated in the Introduction, it is hoped that these findings will be of help
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to those attempting to adopt constructivist teaching methods in their classrooms; or
conversely, might give those teachers who are befuddled by how to teach proof another
approach.

This study acknowledges that students taking a large role in sense-making activities
in pursuit of what Bowers and Nickerson (2001) call a proposition-discussion model can be
an important feature of constructivist pedagogy. Their formulation cites three types of
classroom activity:

1. [Initiation-response-evaluation (IRE)
2. Elicit-response-elaborate (ERE)
3. Proposition-discussion (PD)

Franke, Kazemi and Battey (2007) cite the difficulty of departure from the common
IRE model (represented in the current coding system as T SOL-S RES-T REA). There are
multiple ways that teachers can engender discussion among their students, but it is not an

easy process as the following passage suggests:
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Although the kind of discourse we have just de-
scribed seems like such a necessary and productive
part of classroom practice, what teachers must do
to support such opportunities is complex and not
well characterized in the literature. The way teach-
ers support mathematical discourse matters. Even in
what may seem like the simplest form of classroom
discourse—large-group discussion to foster students’
participation in thinking through a problem—the
teacher must attend to many issues. The teacher must
attend to who is participating, how they are participat-
ing, the mathematical ideas being pursued, the stu-
dents’ linguistic and mathematical backgrounds, the
students’ current understandings, and the attitudes
and identities the students bring to the conversation
(Lampert, 2001). The teacher must give each student
the opportunity to participate in working through the
problem while simultaneously encouraging each stu-
dent to attend to the solution paths of others, in ways
that she can orchestrate opportunities for students to
build one another’s thinking. While attending to this,
the teacher must also actively take a role in making
certain that the class gets to the implicit and explicit
goals. She needs to make judgments about what to
avoid, navigate through solution paths that do not al-
ways work, respond to incorrect statements, and watch
out for those not participating, She must also find a
way to make explicit the underlying mathematical
similarities and differences in the solutions in a way
that makes sense to her students. All these actions and
decisions must of course fit within the given period of
time of a lesson, a unit, and a school year.

Teachers are expected to pose problems but not
provide answers (Lampert, 1990), stop or slow down
the discussion to provide access to more students (Rit-
tenhouse, 1998), model the academic discourse for
the students (Ball, 1993; Lampert, 1990; Rittenhouse,
1998), comment and elaborate on student ideas (Rit-
tenhouse, 1998), and question student reasoning so as
to foster certain habits of mind (Lampert, 1990; Lam-
pert, Rittenhouse, & Crumbaugh, 1996; Rittenhouse,
1998). Thus, as Ball (1993) pointed out, the teacheris
responsible for the students’ learning of mathemati-
cal content and, at the same time, for fostering a dis-
course environment that both supports students and
helps to create, among them, new identities that in-
clude a favorable disposition towards mathematics, It
is no wonder IRE remains prevalent.

Ibid., 231.

In order to present an analysis of each teacher’s movement from IRE to ERE to PD,
this study employs word-based comparisons between a teacher’s proof vs. non-proof
instruction. As noted in the methodology section, these include string lengths, defined as
student exchanges uninterrupted by a teacher; and word ratios, exposing the proportion of
a teacher’s words to all words spoken. Finally, word clouds are provided to give insight
into the content of each lesson.

The study also employs utterance-based analysis, including recurrences of T SOL-S
RES-T REA (equivalent to the common initiation-response-evaluation, or IRE, model cited

above) as opposed to SOL/RES/REA exchanges from other than teacher/student/teacher
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(including some rare instances in which solicitation, response and reaction are all from
students) and bar codes showing proportions of each type of coded response in all lessons

and in individual lessons.

Section 2: Analysis of Teacher A

Teacher A is the more traditionally-oriented of the two teachers in this study. She
answered questions about her priorities and approach to teaching proof vs. non-proof as
follows:

1) When you are teaching your classes, please assign a number 1-5 (5 is
most) to how highly you prioritize the following:

a) students communicate directly with each other at all times (not
just during groupwork) - 4

b) students use correct mathematical terminology in discussion - 5
c) students explore and absorb the skill or concept you are trying
to convey - 5

d) you provide time for students to interact and discuss the
situation you have presented (separate from whole class instruction)
-5

e) students provide their own goals - 3

f) students ask questions to clarify procedures, concepts or your
pedagogical intentions - 5

If you can, please rank the above in order of their relative
importance to you.

¢ f,d,bae

In other words, she ranks “students explore and absorb the skill or concept you are

»” «

trying to convey,” “students ask questions to clarify procedures, concepts or your

” «

pedagogical intentions,” “you provide time for students to interact and discuss the situation
you have presented (separate from whole class instruction),” and “students use correct

mathematical terminology in discussion” as most important, followed only then by

“students communicate directly with each other at all times (not just during group work)”

71



and “students provide their own goals.” (As stated in the Methdology section, the last two
items are indicative of subscription to constructivist ideology.) She believes that students
should have the opportunity to ask questions and to communicate with each other, but the
latter is relegated to specific sections of class time (“group work”). In general, she places

less emphasis placed on the students’ construction of their understanding, more emphasis

on an objectivist goal.

2) When you think about your teaching and lesson planning, are there
differences to how you approach teaching proof lessons, as opposed to
non-proof lessons (e.g., midpoint formula, straight algebra)?

Yes. Proofs require a different type of thought process than
straight algebra, as there is not a neat and tidy list of rules to follow.
This is why it is so difficult for many students; they crave that
checklist that they have become so accustomed to in their math
classes. I think in learning proofs it becomes even more important
for students to discuss their thought processes, with each other and
with me. They should also have the opportunity to really struggle
and figure things out for themselves, as I feel that is a requirement
for eventually mastering proofs.

She cites the importance of productive “struggle” when learning proof but does not
see it as an integral part of the acquisition of more algebraic skills. She sees her instruction

as affected by subject matter which is borne out in the analysis of her lessons.

2.1: Summary (all lessons):

The following results will show that, for Teacher A, the teaching of proof may be
considered a gateway to a more constructivist teaching approach. There is a marked
difference in the ratio of teacher-to-student words uttered, her own utterances, and the
number of uninterrupted student exchanges when she is teaching proof as opposed to

when she is inculcating more algebraic skills.
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Teacher/student word ratio:
The most striking distinction between the proof and non-proof lessons is the extreme

difference in teacher/student ratio of speech:

Table 6. Teacher A, teacher/student word ratio, all lessons.

Teacher A Students T/S word ratio % teacher speech
Lesson 1 - proof 1422 746 1.91 65.6%
Lesson 2 - proof 1220 656 1.86 65.0%
Lesson 3 - proof 3614 2324 1.56 60.9%
Lesson 4 - proof 1517 1752 87 46.4%
Lesson 1 - no proof 2776 545 5.09 83.6%
Lesson 2 - no proof 5677 1354 4.19 80.7%

In other words, when Teacher A is teaching proof, she talks less, and students

contribute more, than when she is engaged in transmitting largely arithmetic algorithms.

T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T:

The following table gives information about Teacher A’s proportion of the common
SOL/RES/REA sequence (an utterance-related measure). It shows that the proportion of
teacher-initiated questioning and evaluation is much greater when she is not teaching

proof (even given the relatively high proportion found in proof lesson A1):
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Table 7. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, all lessons:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Al 25.0% 5.0% 5
A2 20.0% 13.3% 1.5
A3 18.3% 11.9% 1.5
A4 18.2% 16.4% 1.1
Average 20.4% 11.75%
Weighted average | 19.7% 11.6% 1.7
Anpl 37.9% 5.8% 6.5
Anp2 34.6% 6.7% 5.2
Average 36.3% 6.3%
Weighted average | 35.6% 6.4% 5.6

Bar graphs from codes:

Another surprising feature of the lessons in which proof is taught versus those in
which it is not surfaces upon examination of the codes of the pedagogical moves. Although
the coding of student utterances appears relatively unchanged regardless of subject matter,
there are notable differences in the teacher’s utterances. In lessons in which proof is being
taught, there is a much less pronounced difference between the directive/didactive bars
and the transactive/facilitative. Generally, the teacher’s questioning is the most affected
area; in general, the solicitative portion of the transactive/facilitative bar dwarfs the
solicitative part of the directive/didactive bar in lessons in which proof is being taught.
(The exception, lesson #4, is the lesson in which both proof and numerical application is
being taught; the difference in the teacher’s usage of questioning is apparent. In fact, the
teacher/student word ratio is so low (under 1) that it is not surprising that, given how
much less the teacher speaks, she also asks fewer questions overall.)

By contrast, in the two lessons engaged in more algebraic activities, the instruction is

(predictably and demonstrably) more transmissive. The solicitative portions of the
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directive/didactive are much larger than those in the transactive/facilitative bars (the
reverse of the situation above).

In more common language, when the teacher is teaching proof, she tends to ask
questions intended to provoke discussion; when she is not teaching proof, she tends to ask
questions with factual, non-negotiable answers. This is clearly shown below in the bar
graphs of the coded material. There is also a marked difference in the students’ utterances.
When they are involved in proof-based activities, their own utterances are more thoughtful
(PP/PI/CO/TQ/TR) and less automatic (General confirmation/no code) than when they are

engaged in more algebraic classwork.

Figure 1. Teacher A, bar graph of teacher and student utterances, proof, all lessons
combined:
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Figure 2. Teacher A, bar graph of teacher and student utterances, non-proof, all lessons

combined:
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This study adopts the stance that an important feature of constructivist pedagogy is

for students to take a large role in sense-making activities. One way to measure the success

of this approach is to examine stretches of discussion between students with little or no

teacher mediation. In this pursuit, “strings” of student utterances were tallied and

tabulated. As stated in this study’s Methodology section, a string is any teacher utterance

followed by two or more uninterrupted student utterances. The table below shows the

aggregate of such strings from Teacher A’s four proof lessons and two non-proof lessons.

Table 8. Teacher A, student string lengths, all lessons combined:

Total number of strings,
teacher A, proof:

62

Average string length:

2.82

Total number of strings,
teacher A, non-proof:

Average string length:
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[t is plain from this table that student discussion strings were both more common and
of longer length when the students studied proof. In fact, in both non-proof lessons, there
were no strings of length longer than two. In sum, Teacher A fosters more uninterrupted

student-led inquiry and discussion when she teaches proof.

2.2: Individual lessons

Teacher A, lesson 1:

The teacher introduced the lesson by stating that the class would be using triangle
congruence in special quadrilaterals. She reviewed the methods by which quadrilaterals
could be proven “special” and then referred the class to a sheet with diagrams. The class
worked through two proofs involving a parallelogram and a trapezoid.

A word cloud of all words used in the lesson is here. Note the prominence of the word
“congruent,” which in this lesson and in subsequent lessons frequently signals proof

content:
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Figure 3. Teacher A, word cloud, teacher and students, lesson A1:
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This word cloud features teacher words only. Although the word “congruent” is

smaller relative to the other words, there are no major observable differences.

Figure 4. Teacher A, word cloud, teacher words only, lesson A1:
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In the lesson, the students were occupied with the study of special quadrilaterals, e.g.,
parallelograms, rhombuses and so forth. The teacher began by reviewing the types of
special quadrilaterals but the bulk of the lesson was taken up with proof that a particular

quadrilateral was a special quadrilateral.
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An excerpt from the lesson shows how the teacher, using both facilitative and
transactive prompts, elicited from the students the methods they needed in order to prove
what she wanted them to prove:

T: Should we remind ourselves of the ways of proving a
parallelogram? What are the ways? We said the definition of a
parallelogram, right, both pairs of opposite sides parallel.
(Agreement.) What else?

S: One pair of opposite sides both congruent and parallel.

T: What else?

S: Wait, say that again.

S: One set is congruent and parallel.

T: One pair both congruent and parallel...what else?

S: Opposite sides congruent.

T: Both pairs of opposite sides congruent...Both pairs of opposite
angles congruent...Diagonals bisect each other...

S: But you could tell by just the diagonals bisecting each other?

T: Mm hmm. Well, looking at this diagram, do you have an idea
in your head about which one of those might be the best way?
(Pause.) Think aboutit. Think about which, which one might be the
best way. I don't see any diagonals there, do you?

S: No.

T: So might diagonals be the best route?

S: I also don't see any parallels. You don't know that they're
parallel. You don't know that it's true that they're parallel.

T: Yes, you do. How do you prove that lines are parallel?

S: Converse to alternate interior angles.

T: Converses to all of those things. Yes?

S: CPCTC. No, you can't...

T: I don't know! (Pause.)

There are four sections of the lesson during which student work together with little or
no assistance from their teacher. Periodically, the teacher would bring the class back

together to solidify approaches that students had found to be successful.
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Table 9. Teacher A, word counts, lesson Al:

Teacher word count: 1422

Student word count: 746

T/S word ratio: 1.91 (65.6%)

A bar graph for all types of coded utterances is here. Although the teacher’s reactions
were more directive than transactive, her solicitations were more transactive than
directive. The majority of student utterances are PP/PI/CO/TQ/TR, evidencing higher-
order activity.

Figure 5. Teacher A, bar graph of teacher and student utterances, lesson Al:
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Table 10. Teacher A, lesson A1, string lengths:

A1l strings:
TSS 5
4S’s 1
5S8's 1

The following table indicates a relatively high proportion of teacher-initiated

questioning, student response, and teacher evaluation.

Table 11. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson A1l:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Al 25.0% 5.0% 5

Teacher A, lesson 2:
This lesson consists of review for a test involving congruence and special
quadrilaterals. The teacher began with a quick verbal review of methods of proving

congruence and then led the class through two proofs. The lesson’s word cloud is here:
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Figure 6. Teacher A, word cloud, teacher and students, lesson A2:
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Here is the teacher-only word cloud. There are no major differences although the
word “ok” is bigger.

Figure 7. Teacher A, word cloud, teacher words only, lesson A2:
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As in the last lesson, excerpts show students able to take the lead and reason out their
own hypotheses. In the first, a student makes an observation that the teacher didn’t expect:

S: If you know that it's a quadrilateral, to prove that it's a
rectangle, do you need to prove three sides, or four sides? [ mean,
four angles?

T: Four angles.

82



S: All four angles? Cause there's this theorem that said that
three, says you only needed the three, because by extension the
fourth had to be a right angle?

T: I guess that's true, based on the fact that quadrilaterals have to
sum up to 360, right, and you've already got three of them, ummmm,
but I would err on the side of doing...I think three is fine, I guess.

In this excerpt, the students have done much of the work needed but are stuck. By

asking a facilitative question, the teacher spurs inquiry and discussion among students:

T: How are you thinking of doing it?

S: [ was going to say...so right now I have ST is congruent to UR,
and [ was planning on using hy-leg, but I can't figure out how to
prove that SE equals AR, because you're not given any information
about...

S: What I said, is that, um, SU is congruent to TR by the
properties of a parallelogram, and that SU is equal to SE plus EU and
that TR is equal to TA plus AR, and that therefore by subtraction SE
is congruent to...

T: But you don't know that EU and TA are congruent.

S: Yeah.

T: So hy-leg may not be the best way. Can you think of, um,
another property of a parallelogram that might help you?

S: Opposite angles are congruent. [ used that.

T: You know angle S is congruent to angle R, right, so what can
you use that to prove there?

S: Then you can use AAS.

T: Yes, as well.

Table 12. Teacher A, word counts, lesson A2:

Teacher word count: 1220

Student word count: 656

T/S word ratio: 1.86 (65.0%)

The bar graph shows the relative prevalence of both teacher and student solicitation

and response. The teacher’s questioning was more transactive than directive and students’
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questioning was similarly transactive. As in lesson one, the majority of student
contributions are higher-order and the word count shows a healthy ratio of 1.86 teacher to
student words spoken (65% of all speech is by the teacher).

Figure 8. Teacher A, bar graph of teacher and student utterances, lesson A2:
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Table 13. Teacher A, student string lengths, lesson A2:

A2 strings:
TSS 2
TSSS 4
9S’s 1
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The following table shows the relative proportion of teacher-initiated questioning,
student response and teacher evaluation is relatively low:

Table 14. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson A2:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
A2 20.0% 13.3% 1.5

Teacher A, lesson 3:

This lesson, which is concerned with perpendicular bisectors, begins with the
teacher eliciting a definition of a perpendicular bisector. The class proceeds to use
characteristics of a perpendicular bisector to prove conjectures involving congruent
triangles. The lesson’s word cloud, below, indicates a focus on perpendicularity but also on
congruence:

Figure 9. Teacher A, word cloud, teacher and students, lesson A3:
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Here is the teacher-only word cloud. The words “know” and “congruent” are a little

smaller relative to the other words, but there are no other major differences:
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Figure 10. Teacher A, word cloud, teacher words only, lesson A3:
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Students engage in discussion to determine the definition of a bisector. In order to
promote understanding the teacher engages in transactive questioning and the students
respond transactively, both to her and to each other. There is a string of seven
uninterrupted student utterances (ten if one disregards the teacher’s facilitative “Shh”).

The initial statement is a transactive solicitation:

: No. Canyou?
No you can't. No.
Yeah.
No. Isaid "No."
: Shh.
Yeah you can you --
No.
: -- can like kind of like -- [cross talk]
: No you can't because it goes on forever that means your middle will always
be changlng
S: Unless it's -- unless it has an end point that's specifically --
S: You can't measure forever.
S: Yeah, so I'm rocking. I'm right.
T: Let other people think about it.
S: Sorry. [cross talk]

L34
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Another string of six uninterrupted student utterances is found later in the
transcript (seven if one again disregards a facilitative teacher “Shh”) during which students
and teacher are occupied with the construction of a proof. The teacher’s initial utterance is
a transactive response:

T: Well we don't know it's a perpendicular bisector. We're
trying to prove it's a perpendicular bisector.

-- then doesn't it have to --
: We don't know that it has any right angles right now.

S: Okay.

S: How do you get past this point?

S: Iput PD is equivalent to PD.

S: Yeah, that's how far ['ve gotten to.

S: Me too.

S: Can you say if like the angles -- [cross talk]
T: Shh.

S:

T

Table 15. Teacher A, word counts, lesson A3:

Teacher word count: 3614

Student word count: 2324

T/S word ratio: 1.56 (60.9%)

The lesson’s bar graph indicates a majority of directive/didactive utterances by the
teacher, but there is also a large amount of transactive questioning overall. Again, the
students exhibit a majority of higher-order behavior, and the teacher/student word ratio of

1.56 continues to show high student involvement:
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Figure 11. Teacher A, bar graph of teacher and student utterances, lesson A3:
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Table 16. Teacher A, student string lengths, lesson A3:

A3 strings:
TSS 27
TSSS
4S’s
5S’s
6S’s
7S’s

=N NN

The following table shows the proportion of teacher-initiated questioning, student
response and teacher evaluation is relatively low:

Table 17. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson A3:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
A3 18.3% 11.9% 1.5
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Teacher A, lesson 4:

This lesson’s focus is the hinge theorem as it relates to the relationships between
sides and angles of triangles. There is a mixture of applying the hinge theorem in problems
with different sized triangles and proof.

This lesson’s word cloud indicates less of a focus on congruence, which is not
surprising since hinge theorem is about inequalities in triangles vis a vis lengths of sides
relative to measures of angles. The word “congruent” still appears, although it is smaller;
and smaller still in the teacher-only word cloud.

Figure 12. Teacher A, word cloud, teacher and students, lesson A4:
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Here is the teacher-only word cloud.

Figure 13. Teacher A, word cloud, teacher words only, lesson A4:
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A string of five student utterances is introduced by Teacher A’s issuance of a

transactive structuring move:
T: S., you have a book right there, so you could use the book.
S: OK.
S: Did you get this?
S: So that's a yes?...Because you know that that's a right angle.
S: Uh, I think you go like this...Oh, wait...Noooo!!!!
S: Ms. X?

T: Mm hmm.
S: For 14, could I prove that the smaller triangles are congruent and then use that DB is

congruent to...triangle?

The following bar graph and word counts show that the teacher/student word ratio
is at an absolute minimum (in this study) of .87, which is to say, the students talked more
than their teacher. Despite this, but more likely because of it, the teacher’s
directive/didactive index is high. In other words, the students may have already
assimilated their own methods of working and so elicited much less transactive prompting.

The students nevertheless engage in a lot of general confirmation/no code activity, the bulk
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of itin responses. Inspection of the transcript shows that this is because they are
frequently engaged in affirming each other’s work. Also, although the teacher engages in so
much more directive/didactive activity than in other proof lessons, the students
nevertheless engage in more PP/PI/CO/TQ/TP activity, the bulk of it in solicitations, than

general confirmation/no code (if only marginally so):

Table 18. Teacher A, word counts, lesson A4:

Teacher word count: 1517

Student word count: 1752

T/S word ratio: .87 (46.4%)

Figure 14. Teacher A, bar graph of teacher and student utterances, lesson A4:
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Table 19. Teacher A, student string lengths, lesson A4:

A4 strings:
TSS 4
TSSS 2
5S8's 2

The following table shows the proportion of teacher-initiated questioning, student

response and teacher evaluation is relatively low:

Table 20. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson A4:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
A4 18.2% 16.4% 1.1

Teacher A, lesson np1:
This lesson is completely absorbed in finding slopes of lines. As such, it spends no
time on proof. Itis all about calculating slopes on the coordinate plane.

Figure 15. Teacher A, word cloud, teacher and students, lesson Anp1:
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Figure 16. Teacher A, word cloud, teacher words only, lesson Anp1, practically
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Table 21. Teacher A, word counts, lesson Anp1:

Teacher word count: 2776

Student word count: 545

T/S word ratio: 5.09 (83.6%)

The teacher-to-student word ratio is very high: 5.09. In addition, the students
engage in much less PP/PI/CO/TQ/TR activity than GC/NC and the teacher’s

transactive/facilitative activity is absolutely dwarfed by her directive/didactive utterances:
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Figure 17. Teacher A, bar graph of teacher and student utterances, lesson Anp1:
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As noted, the word ratio favors teacher speech. The longest string of uninterrupted
student speech is 2.

Table 22. Teacher A, student string lengths, lesson Anp1:

Anp1 strings:
TSS 2

The following illustrates the relatively high proportion of teacher-initiated
questioning, student response, and teacher evaluation.

Table 23. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson Anp1:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Anp1l 37.9% 5.8% 6.5
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Teacher A, lesson np2:

This lesson is dedicated to finding lengths and midpoints of line segments. There is
some application of these formulae (two lines) to proving quadrilaterals on the coordinate
plane are special. However, the bulk of the lesson is on numerical calculation. The teacher-
to-student word ratio is 4.19 (80.7%), lower than in the previous lesson but still higher
than in all four proof lessons.

Table 24. Teacher A, word counts, lesson Anp2:

Teacher word count: 5677

Student word count: 1354

T/S word ratio: 4.19 (80.7%)

As in the previous non-proof lesson, the teacher’s directive/didactive activity far
exceeds her transactive/facilitative utterances, although the difference is less pronounced.
Surprisingly, however, students’ activity is evenly split between general confirmation/no
code and PP/PI/CO/TQ/TR, although notably their higher-order activity is equal parts
solicitations and responses. Their uncoded/general confirmation speech patterns indicate
no solicitations, only responses and reactions, a significant difference from the bar graphs

from lesson 4 (which had similar bar lengths but different distributions):
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Figure 18. Teacher A, bar graph of teacher and student utterances, lesson Anp2:
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Figure 19. Teacher A, word cloud, teacher and students, lesson Anp2
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Figure 20. Teacher A, word cloud, teacher words only, lesson Anp2, very similar to

one above:
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Table 25. Teacher A, student string lengths, lesson Anp2:

Anp?2 strings:
TSS 3

The following illustrates the relatively high proportion of teacher-initiated questioning,

student response, and teacher evaluation.

Table 26. Teacher A, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson Anp2

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Anp2 34.6% 6.7% 5.2
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Section 3: Analysis of Teacher B

Teacher B considers himself an adherent to constructivist principles. He actively tries
to create a constructivist atmosphere at all times regardless of the subject matter of the
lesson. Here are his responses to the survey about priorities and differences in his teaching
of proof vs. non-proof in which he clearly prioritizes the principles of constructivism above
objectivist principles:

1) When you are teaching your classes, please assign a number 1-5 (5 is
most) to how highly you prioritize the following:
a) students communicate directly with each other at all times (not just
during groupwork)
b) students use correct mathematical terminology in discussion
c) students explore and absorb the skill or concept you are trying to
convey
d) you provide time for students to interact and discuss the situation
you have presented (separate from whole class instruction)
e) students provide their own goals
f) students ask questions to clarify procedures, concepts or your
pedagogical intentions

If you can, please rank the above in order of their relative importance to
you.

Number 1: This is so tricky! I feel that what I prioritize is not what I
do. Ideally, I would order things like this: e, a, c (but with “you”
swapped with “they”), d (but with “you have presented” swapped
with “they have presented), f, then b. Still, I will put down what I
think I do: ¢, a, f, e, d, b. This is a great question. It helps me realize
how many things I need to work on. I feel like this question will help
others, too. I'm sharing this with my colleagues.

He sees students’ own goals as ultimately most important, followed by students
communicating directly with each other at all times; followed by students’ opportunity to
explore and absorb skills they convey to each other; then, time is provided for students to
interact and discuss situations that they have presented; next, students can ask questions,
and finally, the usage of correct mathematical terminology is relegated to last place.

(Recall, Teacher A’s ranking is almost completely opposite.)
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He then acknowledges that, in his actual practice, the acquisition of skills and
concepts takes first priority, but still places unmediated communication between students
ahead of all other objectives.

Although in reality he acknowledges that the priority of goals shifts, he still does not
see the need for scheduling specific time for students to interact as a top priority; nor does
he find the correct usage of mathematical notation and terminology to be relatively

important.

2) When you think about your teaching and lesson planning, are there
differences to how you approach teaching proof lessons, as opposed to
non-proof lessons (e.g., midpoint formula, straight algebra)?

Number 2: No.  want my students to try to justify everything they
are doing all of the time!

He does not consider the study of proof to be any different than any other study of
mathematics, unlike Teacher A. And, in fact, Teacher B’s desire to teach all of his lessons

the same regardless of subject is borne out in the following analysis of his practice.

3.1: Summary (all lessons):

As just noted, Teacher B’s proof/non-proof lessons do not bear the sharp distinction
found in Teacher A’s. Although, on the whole, Teacher A features lower teacher/student
word ratios, more pronounced differences between the general confirmation/no code and
PP/PI/CO/TQ/TR (these measure “low-order” and “high-order” student activity,

respectively) bars and higher average string length when she is teaching proof, she also
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(both from the data and her own statement) does not teach in as constructivist a manner

when she is not teaching proof.

Teacher/student word ratio:

In contrast with Teacher A, there is much less difference in teacher/student ratio of
speech. In fact, on average, the ratio of teacher to student speech is better when he is not
teaching proof (72.65% vs. 65.85%).

Table 27. Teacher B: teacher/student word ratio, all classes:

Teacher B Students T/S word ratio % teacher speech
Lesson 1 - proof 1497 383 3.91 79.6%
Lesson 2 - proof 1901 637 2.98 74.9%
Lesson 3 - proof 3381 983 3.44 77.5%
Lesson 4 - proof 1340 947 1.41 58.6%
Lesson 1 - no proof 1232 679 1.81 64.5%
Lesson 2 - no proof 5331 2607 2.04 67.2%

T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T:

The following table gives information about Teacher B’s proportion of the common
SOL/RES/REA sequence, an utterance-based measure. It shows that the proportion of
teacher-initiated questioning and evaluation does not differ much when he is not teaching

proof, even given the relatively high proportion found in proof lessons B1 and B4.
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Table 28. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, all lessons:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Bl 20.3% 5.1% 4.0
B2 21.3% 13.0% 1.6
B3 19.9% 7.2% 2.8
B4 32.5% 7.2% 4.5
Average 23.5% 8.1%
Weighted average 23.5% 9.0% 2.6
Bnp1l 15.7% 6.7% 2.3
Bnp2 23.9% 10.4% 2.3
Average 19.8% 8.6%
Weighted average | 22.7% 9.9% 2.29

It should be noted that, as with all other measures, Teacher B’s data indicate his

instruction to be more teacher-centered than Teacher A when she is teaching proof, but

remarkably less so when she is not teaching proof.

Bar graphs from codes:

Although he is generally more DD/DR than FA/TA (as is Teacher A), Teacher B’s

students are, on average, more engaged in higher-order activities and discussions than

lower-order.
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Figure 21. Teacher B, bar graph of teacher and student utterances, proof, all lessons
combined:
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Figure 22. Teacher B, bar graph of teacher and student utterances, non-proof, all lessons
combined:
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We will now try to situate what Teacher B is trying to accomplish in the context of
Bowers and Nickerson’s proposition-discussion model with an eye to the difficulties cited
by Franke, Kazemi and Battey (see “Strings of student discussion” at the beginning of this
chapter). Teacher B knows that incorporating the principles of constructivism is not as
simple as to pose a question and let the students take the reins; rather, he is aware of the
importance of revoicing, repacing the discussion, modeling correct terminology, and
questioning student reasoning. However, in light of the coding scheme, these teacher
functions will increase a teacher’s utterances and may not always be coded as
facilitative/transactive (since they may be telling students how to modify their discussion,
to slow down, and so forth). In sum, although Teacher B may use his utterances wisely in
order to foster student understanding and conversation, the measures that showed
Teacher A’s discursive patterns and strengths may not highlight the strengths of Teacher
B’s pedagogy.

The “strings of student discussion” table for Teacher B is presented below. The four
rows represent the aggregate of strings from his four proof lessons and two non-proof
lessons.

Table 29. Teacher B, student string lengths, all lessons combined:

Total number of strings,
teacher B, proof:

Average string length: 2.35

Total number of strings,
teacher B, non-proof:

Average string length: 2.73

43

106
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As noted above, a comparison with Teacher A’s string lengths does not yield any

striking information. Teacher A’s average string length for proof was 2.82 (longer than

either type of lesson for Teacher B) but 2 for non-proof (shorter than either type of lesson

for Teacher B).

Individual lessons

Teacher B, lesson 1:

This class wrote a proof together. They also discussed the transitive, symmetric and

reflexive properties of congruence and how they are used in proof.

Figure 23. Teacher B, word cloud, teacher and students, lesson B1:
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Figure 24. Teacher B, word cloud, teacher words only, lesson B1, not very different:
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Table 30. Teacher B, word counts, lesson B1:

Teacher word count: 1497

Student word count: 383

T/S word ratio: 3.91 (79.6%)

An example of a directive, although informative, speech is found in this lesson:

T: Yeah. Yeah. So we need congruency to basically be something
called an equivalence relation. We need it to basically be equal, right.
These things are basically equal. In fact, they kind of are equal, but it’s
convention not to write objects — even though they are the same object,
we don’t write it with an equals sign. If it's numbers, we use equals
signs; objects: congruent signs.

But they’re just saying, like, we can actually sort of manipulate
objects, right. Like these two pens are identical. They are congruent.
They’re still congruent, right. If this was congruent to this, and this was
congruent to a third, then the first one is congruent to the third. So
they’re just like trying to define, where you can say, “Congruence is -.”

Teacher B frequently tries to convey truths about mathematics, and the way

mathematics are done, to his students. Although he professes not to place the usage of

105



correct mathematical terminology above, for example, students communicating directly
with each other, he does take pains to present an accurate view of mathematics as
illustrated by the following passage:

T: It's just advanced mathematics is very, very picky about how
you define things because if they’re not picky, then later disaster
happens as you build on things. Like, if the equal sign wasn’t defined
this way, and we said, like, two is equal to four divided by two, but four
divided by two is not equal to two. That would be a problem in
mathematics.

In this lesson, his students spend more time on PP/PI/CO/TQ/TR activity than GC/NC,

although his instruction is more DD/DR than TA/FA.

Figure 25. Teacher B, bar graph of teacher and student utterances, lesson B1:
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Table 31. Teacher B, student string lengths, lesson B1:

B1 strings:
TSS 3
TSSS| 3

The following table indicates a relatively high proportion of teacher questioning, student
response, and teacher evaluation.

Table 32. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson B1:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Bl 20.3% 5.1% 4.0

Teacher B, lesson 2:

This class was also engaged in writing geometric proof. They derived the theorem
that, if two angles are congruent and supplementary, then they are right angles. They also
engaged in discussion about the definitions of complementary and supplementary angles.

There is a five-length string of student discussion that begins with a transactive
solicitation by the teacher that could be considered longer (eight) in light of the nature of
the teacher’s intervention, which is purely transactive. His last utterance, which is
directive, ends the discussion:

T: All right, student, _____. So what else do | know based on
my—shh. Student, what else do | know based on my picture?

S: That angle measure PQR is equal to measure—angle measure
SQR.

S: Noit's not.

S: Noit's not.

S:  Wait, PQR?
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The entire thing is equal to
Shh—is equal to the measure of what?

Same thing as SQR.

Look, look, look—

[ think I'm missing something.

PQR—

Oh, wait—sorry, sorry.

Here’s SQR. Itis equal to—SQR is in there—
Oh!

[Crosstalk laughter]

Table 33. Teacher B, word counts, lesson B2:

Teacher word count: 1901

Student word count: 637

T/S word ratio: 2.98 (74.9%)

Figure 26. Teacher B, word cloud, teacher and students, lesson B2:
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Figure 27. Teacher B, word cloud, teacher words only, lesson B2, very similar:
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As in the first lesson, the students engage in mostly high-order interaction although
the teacher is more directive/didactive than facilitative /transactive as shown in the
following bar graph.

Figure 28. Teacher B, bar graph of teacher and student utterances, lesson B2:
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Table 34. Teacher B, student string lengths, lesson B2:

B2 strings:
TSS 14
TSSS| 5
4S’s 1
5S8's 1

The following table indicates a relatively low proportion of teacher questioning,
student response, and teacher evaluation.

Table 35. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson B2:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
B2 21.3% 13.0% 1.6

Teacher B, lesson 3:

This class continued to examine the definitions and properties of complementary and
supplementary angle pairs. The class also considered the potentially transitive nature of
such relationships as adjacency and equality. In the last section, they attempt to prove (in
groups) that two angles that complement the same angle are congruent.

There are no long uninterrupted strings of student discussion although there are nine
strings of length two.

The following passage contains more examples of Teacher B conveying didactive
information about how mathematics is done:

T: So in mathematics, if something does occur one time, do we
say it’s true, false every time?
S: Ifit’s not true, it’s false.
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T: Right. So adjacency does not apply - there is no transitivity
with adjacency. So they don’t hold, right. It works very nicely for
equality. It equals __, right.

But just because A and B are - angle B and angle - angle B and
angle B are adjacent, angle B and angle C are adjacent, therefore angle
A and angle C are adjacent.

S: Thave a question.

T: Hold on. Hold on. I have a question for you. If angle A and
angle B are adjacent, and we have angle B an angle C are adjacent, can |
conclude that angle A and angle C are adjacent?

S: You would need a picture.

T: Twould need a picture. So can I conclude this? Based on
these statements, can I conclude that this is true? Remember in math
we said it’s true when?

S: When it’s all [inaudible].

T: Right. So if sometimes if this is false, what do we say?

S: It's false.

T: So sometimes false, therefore always false. We don’t like
coincidences. We like set things that we can always say are true. It's
what makes mathematics work. If we just worked with sometimes,
then we wouldn’t be dealing with that then. So do you want to draw a
picture of where it could be true?

S: Yeah.

Table 36. Teacher B, word counts, lesson B3:

Teacher word count: 3381

Student word count: 983

T/S word ratio: 3.44 (77.5%)

111



Figure 29. Teacher B, word cloud, teacher and students, lesson B3:
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Figure 30. Teacher B, word cloud, teacher words only, lesson B3 (very similar):
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As the bar graph shows, this is the one lesson in which Teacher B’s students are more

GC/NC than high-order. He also is more DD/DR than FA/TA.
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Figure 31. Teacher B, bar graph of teacher and student utterances, lesson B3:
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Table 37. Teacher B, student string lengths, lesson B3:

B3 strings:
TSS 9

The following table indicates a relatively low-to-moderate proportion of teacher
questioning, student response, and teacher evaluation.

Table 38. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson B3:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
B3 19.9% 7.2% 2.8
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Teacher B, lesson 4:

This lesson begins with the proof of the theorem that vertical angles pairs are

congruent using the idea of supplementary angles. There is a second proof done in groups.

Table 39. Teacher B, word counts, lesson B4:

Teacher word count: 1340

Student word count: 947

T/S word ratio: 1.41 (58.6%)

Figure 32. Teacher B, word cloud, teacher and students, lesson B4:
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Below, the word “measure” is relatively smaller than in the previous cloud, but aside from

that they are similar.
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Figure 33. Teacher B, word cloud, teacher words only, lesson B4:
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As the bar graph shows, the teacher is more transactive /facilitative than
directive/didactive. This is the only lesson in the study in which this is true. In addition,
the students are more higher-order than lower-order in their activity and the difference
between the bars is the most pronounced of all such differences in the study. The
percentage of the ratio of teacher/student utterances, 58.6%, is the lowest in all of Teacher

B’s lessons (proof or non-proof).
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Figure 34. Teacher B, bar graph of teacher and student utterances, lesson B4:
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Table 40. Teacher B, student string lengths, lesson B4:

student response, and teacher evaluation.

B4 strings:
TSS 6
4S's 1

The following table indicates a relatively high proportion of teacher questioning,

Table 41. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson B4:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
B4 32.5% 7.2% 4.5
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Teacher B, lesson np1:

This lesson, as is the next, is composed of students and teacher matching equivalent
factored and non-factored quadratic expressions. They do this numerically the first day
and algebraically the second day (Bnp2).

“Plugging in” numbers to see if two expressions are equivalent does not generally lend
itself to discussion, but, as per the excerpt below, Teacher B attempts to incorporate

constructivist principles into every lesson.

Table 42. Teacher B, word counts, lesson Bnp1:

Teacher word count: 1232

Student word count: 679

T/S word ratio: 1.81 (64.5%)

Figure 35. Teacher B, word cloud, teacher and students, lesson Bnp1:
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Figure 36. Teacher B, word cloud, teacher words only, lesson Bnp1 (“zero” and “like” are

smaller; the word “thinking” appears):
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There is a string of twelve uninterrupted student utterances ushered in by Teacher B
stating that he made an error (introducing uncertainty as per Zaslavsky 2005, Wood 1999,
Wood, Cobb, Yackel 1993; Cobb, Boufi et al. 1997; see literature review for more specifics).
His opening statement is a transactive solicitation. The student-only exchange ends with
Teacher B’s directive solicitation.

T: WhatifI told you I made an error in one of these?
You'd have to find the error.

%

Did I?

Oh, I seeit.

[ seeit.

Wait, hold up.

Yeah, I see it.

___,please. Thank you.

It's going to be a hundred.

Oh my God.

Hold the phone.

Oh, I seeit.

['m looking.

Oh, [ understand what you're doing.

Oh, I know. Okay, | see what you did there.
Raise your hand when you think you've found the answer.

SNV BLLLRDLLDL DS
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[ think I've found it. I don’t know.
[ can't find it.
[ thought I found it but I think it might be the right way to do

it.

All right. S’s thinking that actually I didn't make a mistake.
Oh, never mind.

Yeah, [ think you did it right.

[ think you did it right.

Never mind.

What if I'm telling you that I did make ...

But I feel like if you did ...

: I don’t think he made an error.

[Crosstalk]

NI

%)

Table 43. Teacher B, student string lengths, lesson Bnp1:

Bnp1
strings:

TSS 15

TSSS 2

4S’s 3

128s | 1

The bar graph indicates more higher-order student utterances than lower-order

although Teacher B is slightly more directive/didactive than facilitative /transactive.
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Figure 37. Teacher B, bar graph of teacher and student utterances, lesson Bnp1:
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The following table indicates a low-to-moderate proportion of teacher questioning, student
response, and teacher evaluation:

Table 44. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson Bnp1:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Bnpl 15.7% 6.7% 2.3

Teacher B, lesson np2:
This lesson is occupied with matching quadratic graphs for which the equations are
presented in both factored and non-factored form. This is done algebraically. Teacher B

“on

motivates this by saying, “”If I don’t have access to a graphing utility and I don’t feel like
drawing axes and plotting points, is there another way? Is there any other way to tell if

they’re equal?”

120



Although the practice of showing that a quadratic can be presented in factored or non-
factored form does not necessarily lend itself to the tenets of constructivism, Teacher B

actively adheres to those tenets.

Table 45. Teacher B, word counts, lesson Bnp2:

Teacher word count: 5331

Student word count: 2607

T/S word ratio: 2.04 (67.2%)

Figure 38. Teacher B, word cloud, teacher and students, lesson Bnp2:
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Figure 39. Teacher B, word cloud, teacher words only, lesson Bnp2 (in which the word

“right” is noticeably larger, but the word “negative” is noticeably smaller):
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There is a string of 10 uninterrupted student utterances that begins with Teacher B’s

facilitative reaction and ends with another facilitative reaction. In general, Teacher B'’s

“interruptions” are facilitative or transactive:

T:

Everyone here should be able to verify - even you - everyone

here should be able to verify S’s correctness or incorrectness.

S:
T:

S:

SNV LLL DD YN D

Negative...

What, S?

He’s right.

S proclaims!

And I have reason to believe why.

And thus... yeah.

But how is the second one -?
How is it right?

Yeah, the second one, it doesn’t -
Oh, wait - never mind. I'm sorry. It's multiplication.
Pass the baton.

Oh, okay.

Oh, that's a track thing.

No, wait. It’s not.

You started on top.

Put a negative mark -

Do whatever you want.

After the negative mark -
Maybe if | use a marker...
- and then, the negative one that’s in front of the first square

in parentheses, you put that in parentheses.

T:

Hold on. Are you clear on what S and S are saying?
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S: No.
S: No.
S: No.
T: Like, S, I know you were visualizing, I'm sure, these things as
you were saying them, but not everybody -
Did you understand this?
[ had no idea. Could you put it on a board perhaps?
When you say “a board,” do you mean the board or a board?
A board.
Oh, like, “a board.”
Yeah, so that we can follow what you’re saying.

In sum, Teacher B tries to ensure that students are listening to each other’s
explanations and that they are constructing their own knowledge although he is not
teaching proof, but rather a potentially algorithmic, automatic procedure.

Table 46. Teacher B, student string lengths, lesson Bnp2:

Bnp2 strings:
TSS 50
TSSS 24
4S’s 6
5S8's 3
8S’s 1
10S’s 1

The bar graph shows that, on the whole, the students are engaged in slightly more
higher-order activity than lower-order, although Teacher B is much more

directive/didactive than facilitative/transactive.
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Figure 40. Teacher B, bar graph of teacher and student utterances, lesson Bnp2:
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The following table indicates a low-to-moderate proportion of teacher questioning,
student response, and teacher evaluation.

Table 47. Teacher B, T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T, lesson Bnp2:

T SOL/S RES/T SOL/RES/REA Ratio of columns 2
REA other than T/S/T and 3
Bnp2 23.9% 10.4% 2.3
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Section 4: Statistical Comparison of Teachers A and B

The data appear to show that Teacher A, an educator who does not identify all of her
teaching as informed by constructivist ideology, teaches proof differently than the manner
in which she teaches non-proof. In particular, pronounced differences between her own
directive/didactive and transactive/facilitative utterances and the students’ general
confirmation/no code and PP/PI/CO/TQ/TR (these measure “low-order” and “high-order”
student activity, respectively); teacher-led questioning-student response-teacher
evaluation sequences; and her teacher/student word ratios can be shown to differ
significantly when she is teaching proof vs. not teaching proof.

By comparison, these same measures show that Teacher B’s teaching does not differ
significantly depending on subject matter (proof vs. non-proof). Teacher B identifies
himself as pedagogically informed by constructivist principles no matter what he is

teaching.

Table 48. Teacher A, differences in teacher and student codes:

A nonproof proof z-value p-value
teacher codes 0.240409207 0.380149813 -4.50 p<.0001
student codes 0.417293233 0.644859813 -6.12 p<.0001

These statistical analyses were performed using one-tailed z-tests. The p-values for

Teacher A indicates that the difference in her teaching is not likely to happen by chance.
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Table 49. Teacher B, differences in teacher and student codes:

B nonproof proof z-value p-value
teacher codes 0.372197309 0.41221374 -1.18 .1190000000
student codes 0.53346856 0.538709677 -0.14 0.444329995

Teacher B, on the contrary, shows a high probability of difference due to chance;

therefore, it can be concluded that his teaching is not significantly different according to

subject matter.

The z-scores show Teacher A’s teacher utterances are 4.5 and 6.12 standard

deviations apart respectively. Teacher B’s are 1.18 and .14. The first set are significantly

different; the second are not.

[t can also be shown that Teachers A and B show great difference in the way they

teach content other than proof, but no great statistical difference when teaching proof:

Table 50. Teachers A and B: Differences from each other in teaching of non-proof vs. proof

content, teacher codes:

p_A p_B z-value p-value
nonproof 0.240409207 0.372197309 -4.11 p<.0001
proof 0.380149813 0.41221374 -0.99 0.16108706
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Examination of the common SOL/RES/REA sequence yields the information that
Teacher A is more likely to feature the traditional teacher solicitation-student response-
teacher reaction (as opposed to SOL/RES/REA from other than teacher/student/teacher)

when she is not teaching proof; for Teacher B, this is not the case.

Table 51. Teachers A and B: Differences in the occurrence of T SOL/S RES/T REA vs.

SOL/RES/REA other than T/S/T:

p-value x? value
Teacher A p<.0001 36.0000
Teacher B 487 48

For these data, a chi-square test with a 2x2 matrix was utilized. As above, the p-values
show Teacher A exhibits great variation in the teaching of proof vs. non-proof whereas

Teacher B does not.

Table 52. Teachers A and B: Differences in word ratios:

Non-proof Proof z-value p-value
Teacher A 0.404870624 0.500467727 -3.87 p<.0001
Teacher B 0.525026624 0.440967283 3.37 0.999624159

As in the first two analyses, a one-tailed z-test was employed. As before, Teacher A exhibits

huge variation between the teaching of proof and not of proof, whereas Teacher B does not
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show a lot of variation. It is worth noting, however, that Teacher B actually talks less when

not teaching proof.
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Chapter V: Summary, Conclusions, Implications and Suggestions for Future Study

Section 1: Summary and conclusions

The purpose of this study is to analyze the patterns of classroom discourse when high
school students move from performing prescribed algorithms in order to solve problems
for which the process and solution are well-defined to spoken proof, in which ideas are
discussed and arguments are formulated and formalized.

The study uses a modified version of discourse analysis developed by Arno Bellack
and refined for usage in a mathematics classroom by James T. Fey. Bellack and Fey’s
framework categorizes utterances by students or teacher as having one of four purposes:
structuring, soliciting, responding, or reacting. Their analysis framework is supplemented
by codes borrowed from Maria Blanton, Despina Stylianou, and M. Manuela David (2009),
which is in turn a modified version of a coding system developed by Kruger (1993) and
Goos, Galbraith and Renshaw (2002). Blanton, et al.’s codes were adopted to describe the
nature of a teacher’s or student’s utterance. Their scheme characterizes a teacher’s
utterance as directive/didactive, or transactive/facilitative in nature. The latter teacher
codes are seen to seek student contribution to discussion whereas the former are designed
to evoke a factual (likely brief) response. The students’ utterances are characterized as
proposal of a new idea, proposal of a new plan, contribution to an existing idea, transactive
questioning, or transactive response; these are seen as evidencing higher-order thinking.
Student responses coded as “general confirmation” or “no code” denote factual responses

(they may be seen as analogous to the directive/didactive code cited above).
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Twelve mathematics lessons involving two mathematics teachers were recorded,
transcribed and coded. Eight of the lessons were classified as “proof-related” and four
were designated “non-proof-related.” A lesson designated “proof-related” contained more
than half activity that was actively concerned with the construction of proof; whereas a
lesson during which no proofs were formulated was designated “non-proof.” Using the
codes described above and a variety of qualitative and quantitative measures, the
transcripts were examined for constructivist behavior on the part of the teachers and
modes of participation on the students’ part.

The data in the previous section show that, on the whole, Teacher A (compared with
Teacher B) achieves lower teacher/student word ratios, a lower ratio of teacher-led
questioning-student response-teacher evaluation sequences, more pronounced differences
between the general confirmation/no code and PP/P1/CO/TQ/TR (these measure “low-
order” and “high-order” student activity, respectively) bars and higher average student
string length when she is teaching proof. However, the data also suggest that she does not
teach in as constructivist a manner when she is not teaching proof. By her own admission,
she regards the teaching of proof as fundamentally different from the teaching of non-
proof. Her belief’s effect on her practice is borne out by data and statistical analysis.

As noted, the data show that Teacher B’s proof/non-proof classes do not bear the
sharp distinction found in Teacher A’s. His intention - to provide constructivist instruction
at all times - may or may not be realized, but data-based statistical examination of his
instruction show that his approach is not determined by subject matter to the same degree

as Teacher A’s, and that, in the default case of non-proof, his instruction is statistically
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distinct from Teacher A’s, whereas their teaching in the proof case is statistically non-
distinct.

These findings suggest a relationship between a teacher’s beliefs in constructivist
principles and the way in which that teacher instructs proof vs. non-proof. More
specifically, a teacher who views her/himself as informed by constructivist pedagogical
principles may not evince a sharp distinction between her/his teaching of proof vs. non-
proof; whereas a teacher who does not attempt to incorporate constructivist principles on

a daily basis may exhibit more constructivist tendencies when teaching proof.

Section 2: Comparison of the results to other studies

Unfortunately, it is difficult to compare all of the results from the current study with
previous studies, but some areas lend themselves to comparison, specifically word ratios,
which may be compared to Bellack, Fey and Offenholley’s results; and the proportions of

Blanton’s codes of teacher and student utterances.

Word ratio:

Teacher A’s word ratio table (Table 6, reproduced below) bears comparison to the
findings of Bellack, Fey and Offenholley. These percentages cannot compete with
Offenholley’s range of 0% to 44.3%; but the percentages of teacher speech found during
proof lessons compare favorably to Fey and Bellack’s teacher word count percentages of
71% and 75%, respectively. The “no proof” class percentages of 83.6% and 80.7% clearly

show a greater percentage of teacher speech than those found in Fey and Bellack.
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Table 6. Teacher A, teacher/student word ratio, all lessons:

Teacher A Students T/S word ratio % teacher speech
Lesson 1 - proof 1422 746 1.91 65.6%
Lesson 2 - proof 1220 656 1.86 65.0%
Lesson 3 - proof 3614 2324 1.56 60.9%
Lesson 4 - proof 1517 1752 87 46.4%
Lesson 1 - no proof 2776 545 5.09 83.6%
Lesson 2 - no proof 5677 1354 4.19 80.7%

In contrast with Teacher A, Teacher B shows much less difference in teacher/student
ratio of speech. In fact, on average, the ratio of teacher to student speech is better when he

is not teaching proof (72.65% vs. 65.85%).

Table 27: Teacher B, teacher/student word ratio, all lessons:

Teacher B Students T/S word ratio % teacher speech
Lesson 1 - proof 1497 383 3.91 79.6%
Lesson 2 - proof 1901 637 2.98 74.9%
Lesson 3 - proof 3381 983 3.44 77.5%
Lesson 4 - proof 1340 947 1.41 58.6%
Lesson 1 - no proof 1232 679 1.81 64.5%
Lesson 2 - no proof 5331 2607 2.04 67.2%

[t was observed that Teacher B’s lessons contained some relatively long didactive

speeches but their removal did not show much effect.
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Table 53. Teacher B, teacher/student word ratio all lessons after DD/DR speeches

removed:
Teacher B Students T/S word ratio % teacher speech

Lesson 1 - proof 1076 383 2.81 73.7%
Lesson 2 - proof 1714 637 2.69 72.9%
Lesson 3 - proof 3105 983 3.16 76.0%
Lesson 4 - proof 1288 947 1.36 57.6%
Lesson 1 - no proof 1086 679 1.60 61.5%
Lesson 2 - no proof 5105 2607 1.96 66.2%

Now we will compare Teacher B’s results to those found by Bellack, Fey and
Offenholley. As above, Teacher B’s percentages cannot compete with Offenholley’s range of
0% to 44.3%; but are still comparable to Fey and Bellack’s teacher word count percentages
of 71% and 75%, respectively. The “no proof” lesson percentages of 61.5% and 66.2%
show slightly less teacher speech than what is found in the data of Fey and Bellack.

In sum, neither Teacher A nor Teacher B was able to achieve the level of student
participation found by Offenholley, although their ratios compare favorably (although not
markedly so) with those found by Bellack and Fey.

Also worth mentioning is the relative unimportance, in this study, of “string lengths,”
which proved crucial in Offenholley’s study. It may bear further investigation to see why

online instruction engenders uninterrupted student exchanges, whereas it appears that

classroom instruction does not to any great extent.
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Proportion of teacher and student utterances:

The percentages found in the current study do not stand up well in comparison with

those found by Blanton, et al.

Teacher utterances:

Table 3. Blanton, et al. (2009), frequency of forms of instructional scaffolding

(teachers)

Table 17.1 Frequency of forms of instructional scaffolding
(teachers)

Type of teacher utterance Frequency Percentage
Transactive prompt 37 40
Facilitative utterance 43 47
Directive utterance 7 8
Didactive utterance 5 5

Total 92 100

Blanton, et al. 298.

The percentage sum of TR/FA is 87% and the sum for DR/DD is 13%.

By comparison, in Teacher A’s teaching the breakdowns were as follows.

Table 54. Teacher A, percentage of TR/FA vs. DR/DD:

Proof Non-proof
Percentage of TR/FA 38.0% 24.0%
Percentage of DR/DD 62.0% 76.0%
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Teacher B did not fare much better.

Table 55. Teacher B, percentage of TR/FA vs. DR/DD:

Proof Non-proof
Percentage of TR/FA 41.2% 37.2%
Percentage of DR/DD 58.8% 62.8%

Student utterances:

The proportion of student utterances in the current study also fared poorly in

comparison with Blanton, et al.

Table 4. Blanton, et al. (2009), frequency of forms of instructional scaffolding

(students):

Table 17.2 Frequency of forms of instructional scaffolding (students)

Type of student utterance Evidence of Frequency  Percenta
ZPD access
Proposal of a new idea Yes 3 1
Proposal of a new plan Yes 6 8
Contribution to an existing idea Yes 29 40
Transactive response Yes 7 10
Transactive questions Yes 6 8
General confirmations Not necessarily 9 13
No code No o 17
Total 72 100
Total utterances indicating ZPD access 51 70

Ibid., 302.

Blanton, et al.’s sums for PI/PP/CO/TQ/TR are 70%; only 30% are GC or NC, as

compared to the following:
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Table 56. Teacher A, percentage of PI/PP/CO/TQ/TR vs. GC/NC:

Proof Non-proof
Percentage of 0 9
PI/PP/CO/TQ/TR 2% ikl
Percentage of GC/NC 58.8% 62.8%
8% 070

Table 57. Teacher B, percentage of PI/PP/CO/TQ/TR vs. GC/NC:

Proof Non-proof
Percentage of 0 9
PI/PP/CO/TQ/TR 2% il
Percentage of GC/NC 58.8% 62.8%

However, in light of the fact that Blanton, et al. were conducting research in a college
classroom dedicated to the study of proof (presumably for mathematics majors and other

self-directed mathematics students), perhaps the comparison is not as bad as it appears.

Section 3: Implications for teacher training and practice

[t is as critical as it has ever been to examine the ways in which teachers may be
brought to teach in a more student-centered way, at least occasionally. Several states have
adopted frameworks for evaluating teacher practice; many of these are informed by
constructivist principles. Many states, New York among them, have adopted Charlotte
Danielson’s framework for teaching which presupposes a student-centered ideology.
However, although many states have chosen a student-centered framework by which to
judge teachers, it is not generally in accord with the way in which teachers are currently

accustomed to teaching.
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This study has attempted to show that one of the variables that is not generally
considered when trying to introduce student-centeredness into classrooms is the content
of lessons or courses. It is hoped that this study has demonstrated that, for example, the
inclusion of proof in a geometry curriculum may afford even relatively traditionally-
oriented teachers the opportunity to use discussion-based learning techniques in their
classrooms. On the other hand, it is possible that it is not appropriate to teach all content in
a constructivist manner. Although Teacher B has shown that it is possible to teach proof
and content other than proof in the same relatively constructivist way, Teacher A’s decision
not to do so may indeed show sound professional judgment, particularly in light of
standardized assessments that tend to measure mastery of techniques, not understanding
of concepts.

In addition to considering content areas in which teachers may be able to introduce
inquiry-based techniques, some researchers have other specific suggestions of how to do
so on a more regular basis. Not surprisingly, Stylianou and Blanton (2011) suggest
teachers use “transactive prompts” instead of directive solicitations in order to encourage
student engagement. Various other studies (Hirsch and Lappan 1989, Arzarello et al. 2012,
Dawkins 2012, van Dormolen 1991, Zaslavsky 2005, Wood 1999 and others) suggest the
usage of manipulatives, dynamic software, metaphors and even the deliberate seeding of
uncertainty in order to stimulate student thinking and exploration.

As shown in the literature review of this study, it is not a small task to begin teaching
in a constructivist manner. As Civil (2002) points out, most students are not likely to
embrace an inquiry-based model without being “won over.” In general, it is not the way

they are used to learning mathematics and they will likely exhibit suspicion at a situation in
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which the teacher is no longer expected to arbitrate mathematical “truth.” Yackel,
Rasmussen and King (2000 cite the necessity of reconstructing social classroom norms in
order to enculturate this type of discussion and exploration. In other words, the
establishment of a classroom as a place in which students are expected to construct their
own understanding by working together under the guidance of a teacher is just that: a
process, which can be difficult and time-consuming.

As Nathan and Knuth (2003) observe, teachers should receive training in order to
begin teaching in accordance with these reforms. As they state, “the challenge is
particularly daunting given that mathematics teacher education and professional
development programs typically have not adequately prepared [teachers] to enact
successfully the lofty expectations set forth in reform documents (Ross 1998)” (203-4). As
Nathan and Knuth further observe, continued support is also helpful; it is not sufficient for
administrations to expose teachers to the concepts of constructivism and leave it at that
since at least one teacher who believed she was incorporating constructivist principles was
not doing so to the extent she believed herself to be. It required a quantitative use of data
and a video camera to show her the ways in which she was missing opportunities for
constructivist activity. (It should also be noted that the teacher in question was interested
in developing the inquiry basis of her instruction.)

Yet another important note is that embracing the principles of constructivism is not
equivalent to a teacher abdicating all responsibility, leaving the establishment of all goals
and activities to the students. As Zaslavsky et al. (2012), Lobato, Clarke and Ellis (2005),
Sfard (2000), Clarke (1994), Romagnano (1994) and others have indicated, the teacher

must be experienced enough to know when s/he should stand back, when s/he should
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intervene, and when take an action somewhere in the middle. As Lobato, Clarke and Ellis
eloquently summarize the findings of several researchers, “it can be helpful [for a teacher]
to state facts, share ideas, or identify conflicts, and then examine the sense that students
make of them. In addition, introducing new information at critical junctures could help
reduce the number of problem features that students must attend to, thus allowing for
exploration in new areas...[S]tudents cannot be expected to reinvent entire bodies of
mathematics, regardless of how well each concept is problematized by well-chosen tasks
(Clarke 1994; Romagnano 1994). Teachers are expected to enculturate students into the
mathematics community, sharing conventional norms associated with mathematical
discourse, representation, and forms of argument (Becker & Varela 1995; Cobb & Yackel
1996; Driver 1995). If teachers are to facilitate this enculturation, then making the ideas
and conventions of the community available to students is essential. From this perspective,
some information must be introduced by the teacher. In short, a telling/not-telling
dilemma has emerged. Telling is instructionally important, but has been downplayed due
to both perceived inconsistencies with constructivism and historical attempts to develop
pedagogical implications of constructivism” (Ibid.).

Finally, perhaps it would be productive to consider differences between the standards
to which public and private school students are accustomed. The private school students
observed in the current study did not seem to question the standards-based classroom, nor
did they appear to question the validity of their own argumentation. This may be due to
their having been placed in the hands of well-trained educators who knew how to
introduce student-centered activity, but it is also worth mentioning that the private school

students may have been more used to being given relatively free-rein in educational
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settings because of smaller class sizes and other variables. In addition, private school
students are not subject to the same battery of standardized assessments as public school
students. In other words, expecting teachers in public school settings to begin teaching
their classes in a constructivist manner may present an even bigger set of challenges than
one might expect.

However, as Wood, Cobb and Yackel (1991) observed, second graders can be brought
to learn in this manner, given an adequately-trained and properly-supported teacher. Itis
possible that, if school districts and teacher training programs are willing to consider the
challenges of teaching teachers how to consider incorporating constructivist principles into
their ideology and are also committed to training and supporting teachers properly, and if
state assessment bodies align test material more closely to the curricula and standards to
which teachers are bound, perhaps inquiry-based instruction can be accomplished more

broadly and meaningfully than it has been in the past.

Section 4: Suggestions for future study

There are a few ways in which this study was limited in scope and content. Most
obvious is the size of the data set, which was described in the methodology section of this
study as typical of studies in which discourse analysis is employed; but this does not mean
that this study and others wouldn’t benefit from the collection, coding and analysis of more
data.

In addition, this study does not examine the effects of gender of students (or teacher)

on the phenomenon at hand although one set of students was mixed gender and the other
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was female only. Despite this confounding variable, this study’s results are strong enough
to warrant future study; a different study could consider gender as a mitigating factor.

The way in which lessons were considered either inclusive of proof activity (more
than half) or not was satisfactory for the scope and depth of the current study, but it does
raise a question of the degree to which teachers are likely to modify their instruction based
on the title of the course. For example, a teacher teaching geometric proof vs. the midpoint
formula in the context of a geometry syllabus may not vary her daily instruction as much as
she would between a course called Geometric Proof vs. one called Advanced Algebra.
There are few courses in most high schools with such specific designations (as opposed to
colleges, in which an entire course on proof is common); but if such courses were given in
high schools, this question could foster future study.

Finally, there remain vast areas of inquiry regarding the relative efficacy of
constructivist vs. objectivist teaching methods. Do students who have learned by
developing their own ideas and by taking full part in a community of thinkers perform
better on standardized tests such as the NAEP, New York State Regents exams, or the SAT?
Will they perform better on the PARCC and SBAC tests being introduced this year and in
subsequent years?

[t is naive to assume that students will perform better on standardized tests without
objectivist training, the purpose of which is to bring students to mastery of most
standardized tests. Even so, there may still be other, long-lasting benefits to a discussion-
based model of instruction. For example, is there a measurable difference in students’ level
of comfort when engaged in mathematics while they are in high school, and if so, does this

effect persist in later years? Are students who learn mathematics in this way more likely to
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become mathematics majors in college? If research can show that a constructivist
approach is successful in convincing students that mathematics is not an impermeable
morass of formulae but rather a real set of tools with which to apprehend the physical and

intellectual world, then, as an approach, it has merit.
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Appendix A - Instructions for Coders

This study utilizes a framework developed by Bellack, et al. (1966) and Fey (1966) to
code pedagogical “moves” in a classroom. The first part of any code is the source of the
“move”; these are T (teacher) or S (student). Then the framework codes interactions as
structuring (STR), soliciting (SOL), responding (RES) or reacting (REA) (“Codes”). In
addition, this study subcategorizes teacher utterances as transactive, facilitative, directive
or didactive; and student utterances as a proposal of a new idea, proposal of a new plan,
contribution to an existing idea, transactive response, transactive question, general
confirmation, or with no code in accordance with Blanton, et al. (2009). For more

discussion of these subcategories, please see “subcategories” below.

Codes (purpose of utterance):

STR: defined as a move that sets the context for activity. It generally initiates or redirects
the discussion. It also includes a teacher demonstrating, declaring or administering
behavioral prompts. Some examples:

T-STR: “Now let’s talk about how to find the midpoint of a line segment.”

T-STR: “Here’s how you find the circumcenter of a circle.”

S-STR: “Wait! I have a totally different approach.”

SOL: is a move that solicits a response. It is generally followed by RES, a response. Some
examples:

T-SOL: “What do you think are the coordinates of this segment’s midpoint?”

T-SOL: “Can you explain why you did that?”

S-SOL: “How should I start this problem?”

RES: is always a response to a SOL move. Some examples:

S-RES: “I think the circumcenter is at (3,2).”

T-RES: “Maybe you should use one of the givens first.”
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REA: is a response to something that was said earlier or a continuation of an ongoing
process. Itis never aresponse to a SOL. Some examples:
S-REA: “I agree with . The circumcenter is at (3,2).”

T-REA: “I think your approach is a good starting point.”

Subcategories (nature of utterance):
For teachers:
Transactive (TA) statements are intended to provoke students’ own reasoning,
elaboration, justification and so forth. Example: “Can I have some more examples of that?”
Facilitative (FA) statements reinforce (sometimes, just revoice) a student’s idea or
structure discussion. Example: “So I'm hearing, we should start with a given statement.”

Directive (DR) statements provide immediate feedback or by providing information
directly. Questions are not discussion-provoking. A question with a one-word answer is
probably directive. Example: “You find that by adding the x-coordinates and dividing by
two.”

Didactive (DD) statements reinforce the teacher’s position as authority figure by
presenting non-negotiative information “on the nature of mathematical knowledge
(Blanton, et al. 2009). Example: “That’s the kind of thing you'’ll need to know as a math

major.”

For students:
Proposal of a new idea (PI). Example: “We should try bringing the angle bisectors into

LN

the proof.” “How about using different triangles?”
Proposal of a new plan (PP). Example: “How about using SAS on these other triangles?”
Contribution to an existing idea (CO). Example: “Then use the vertical angles!”
Transactive question (TQ). is generally a request for clarification, explanation, and so
forth. Example: “Why did you use that segment?”
Transactive response (TR) is generally a response to a request for clarification,
explanation, and so forth. Example: “I used it because it was shared by two triangles.”

General confirmation (GC). Example: “I completely agree.”

No code (NC). Example: “Two.”
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Example of double coding:

The following example encompasses everything (purpose and nature):

T: So a perpendicular bisector, now -- the bisector -- like the thing that is doing the bisecting
can be a line. It can be a ray. Or it can be a segment. That's the thing that's doing the
bisecting. But what is actually being bisected can only be what? What did we decide?

S: Segment.

T: Asegment. So a perpendicular bisector is a segment, ray or line or it can be a plane but we
aren't really focusing too much on planes. Okay? We're going to deal more in 2-D. The
segment, ray or line that is A -- perpendicular, so forms right angles and B -- bisects or forms
two congruent segments.

S: I just -- what does it mean that is A perpendicular? Oh, oh, sorry, the A. Okay. But that has
the definition like --

T: Yesbutl --

S: Okay.

T: -- clarified for it.
S: Yeah.

S: Yes.

is coded as follows:

T-STR-DR, T-SOL-DR
S-RES-NC
T-REA-DR, T-STR-DR
S-SOL-TQ
T-RES-DR
S-REA-GC
T-RES-DR
S-REA-GC
S-REA-GC
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Appendix B - Raw data spreadsheets

Single lessons by teacher:

Teacher A, proof:

Al Structuring Soliciting Responding Reacting
teacher codes Transactive/facilitative 33 0 14
Directive/didactive 5 24 5 26
sums 5 57 5 40
student codes PP/PI/CO/TQ/TR 0 12 19 21
General confirmation/no code 1 23 7
sums 0 13 32 28
A2 Structuring Soliciting Responding Reacting
teachercodes  Transactive/facilitative 1 17 2 4
Directive/didactive 7 9 15 14
sums 8 26 17 18
student codes  PP/PI/CO/TQ/TR 0 22 16 11
General confirmation/no code 0 13 4
sums 0 22 29 15
A3 Structuring Soliciting Responding Reacting
teacher codes Transactive/facilitative 2 82 6 30
Directive/didactive 24 37 48 45
sums 26 119 54 75
student codes PP/PI/CO/TQ/TR 2 63 66 49
General confirmation/no code 1 66 35
sums 2 64 132 84
A4 Structuring Soliciting Responding Reacting
teacher codes Transactive/facilitative 1 3 2 6
Directive/didactive 13 21 24 14
sums 14 24 26 20
student codes PP/PI/CO/TQ/TR 0 28 2 11
General confirmation/no code 7 15 14
sums 0 35 21 25
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Teacher A, non-proof:

Anpl Structuring Soliciting Responding Reacting
teacher codes Transactive/facilitative 0 8 1 1
Directive/didactive 15 45 18 31
sums 19 53 19 32
student codes PP/PI/CO/TQ/TR 0 13 5 1
General confirmation/no code 3 45 12
sums 0 16 54 13
Anp2 Structuring Soliciting Responding Reacting
teachercodes  Transactive/facilitative 1 45 0 38
Directive/didactive 25 75 25 51
sums 30 120 29 89
student codes  PP/PI/CO/TQ/TR 1 34 39 18
General confirmation/no code 0 72 15
sums 1 34 111 37
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Teacher B, proof:

160

Bl Structuring Soliciting Responding Reacting
teacher codes  Transactive/facilitative 1 8 1 9
Directive/didactive 20 15 3 17
sums 21 23 4 26
student codes  PP/PI/CO/TQ/TR 0 8 12 5
General confirmation/no code 17 2
sums 0 8 29 7
B2 Structuring Soliciting Responding Reacting
teacher codes Transactive/facilitative 1 35 24
Directive/didactive 17 26 12 22
sums 18 61 12 46
student codes  PP/PI/CO/TQ/TR 0 13 32 20
General confirmation/no code 1 35 15
sums 0 14 67 35
B3 Structuring Soliciting Responding Reacting
|teacher codes Transactive/facilitative 1 11 1 15
] Directive/didactive 5 32 7 16
| sums 6 43 8 35
: student codes PP/PI/CO/TQ/TR 0 13 9 4
] General confirmation/no code 0 2 41 5
| sums 0 15 50 9
B4 Structuring ‘Soliciting ‘Responding lReacting .
teacher codes Transactive/facilitative 1 27 1 22
Directive/didactive 8 18 7 6
sums 9 45 8 28
student codes  PP/PI/CO/TQ/TR 1 8 25 17
General confirmation/no code 20 5
sums 1 8 45 22



Teacher B, non-proof:

161

|Bnpl Structuring Soliciting Responding Reacting
|teacher codes Transactive/facilitative 3 18 1 5
| Directive/didactive 9 8 2 11
|sums 12 26 3 16
|studentcodes  PP/PI/CO/TQ/TR 0 4 25 13
| General confirmation/no code 0 0 14 21
| sums 0 4 39 34
Bnp2 Structuring Soliciting Responding Reacting
teacher codes Transactive/facilitative 5 46 6 82
Directive/didactive 30 128 21 71
sums 35 174 27 153
student codes PP/PI/CO/TQ/TR 0 49 76 96
General confirmation/no code 0 133 62
sums 0 49 209 158



Combined lessons by teacher:

Teacher A proof

teacher codes Transactive/facilitative
Directive/didactive

sums

student codes PP/PI/CO/TQ/TR
General confirmation/no code
sums

Structuring Soliciting

4 135 10
45 91 92
53 226 102

2 125 136

9 121

2 134 257

Responding Reacting

54
99
153
82

60
142

Teacher A non-proof

Structuring Soliciting

Responding Reacting

162

teacher codes Transactive/facilitative 1 53 1 39
Directive/didactive 48 120 47 82
sums 49 173 48 121
student codes PP/PI/CO/TQ/TR 1 47 44 19
General confirmation/no code 3 121 31’
sums 1 50 165 50
Teacher B proof Structuring Soliciting Responding Reacting
| teacher codes  Transactive/facilitative 4 81 3 74
| Directive/didactive 50 91 259 61
| sums 54 172 32 135
|student codes  PP/PI/CO/TQ/TR 1 42 78 46
| General confirmation/no code 3 113 27!
| sums 1 45 191 73
Teacher B non-proof Structuring Soliciting Responding Reacting
teacher codes  Transactive/facilitative 8 64 7 87
Directive/didactive 39 136 23 82
sums 47 200 30 169
student codes  PP/PI/CO/TQ/TR 0 53 101 109
General confirmation/no code 147 83'
sums 0 53 248 192



Appendix C - Tables of T/S word ratio

Teacher A Students T/S word ratio % teacher speech
Lesson 1 - proof 1422 746 1.91 65.6%
Lesson 2 - proof 1220 656 1.86 65.0%
Lesson 3 - proof 3614 2324 1.56 60.9%
Lesson 4 - proof 1517 1752 87 46.4%
Lesson 1 - no proof 2776 545 5.09 83.6%
Lesson 2 - no proof 5677 1354 4.19 80.7%
Teacher B Students T/S word ratio % teacher speech
Lesson 1 - proof 1497 383 3.91 79.6%
Lesson 2 - proof 1901 637 2.98 74.9%
Lesson 3 - proof 3381 983 3.44 77.5%
Lesson 4 - proof 1340 947 1.41 58.6%
Lesson 1 - no proof 1232 679 1.81 64.5%
Lesson 2 - no proof 5331 2607 2.04 67.2%

Table after DD/DR speeches removed

Teacher B Students T/S word ratio % teacher speech
Lesson 1 - proof 1076 383 2.81 73.7%
Lesson 2 - proof 1714 637 2.69 72.9%
Lesson 3 - proof 3105 983 3.16 76.0%
Lesson 4 - proof 1288 947 1.36 57.6%
Lesson 1 - no proof 1086 679 1.60 61.5%
Lesson 2 - no proof 5105 2607 1.96 66.2%
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Appendix D - Tables of T SOL/S RES/T REA vs. SOL/RES/REA other than T/S/T

T Percenta | SOL/RE | Percentage of Total # of Ratio of
SOL/S | ge of S/REA | total moves percent-
RES/T | total other ages
REA than
T/S/T
Al 45 25.0% 9 5.0% 180 5
A2 27 20.0% 18 13.3% 135 1.5
A3 102 18.3% 66 11.9% 556 1.5
A4 30 18.2% 27 16.4% 165 1.1
Total moves | 204 120 1036
Average 20.4% 11.75%
Weighted 19.7% 11.6% 1.7
average
Anpl 78 37.9% 12 5.8% 6.5
Anp2 156 34.6% 30 6.7% 5.2
Total moves | 234 42 657
Average 36.3% 6.3%
Weighted 35.6% 6.4% 5.6
average
T Percenta | SOL/RE | Percentage of Total # of Ratio of
SOL/S | ge of S/REA | total moves percent-
RES/T | total other ages
REA than
T/S/T
Bl 24 20.3% 6 5.1% 118 4
B2 54 21.3% 33 13.0% 253 1.6
B3 33 19.9% 12 7.2% 166 2.8
B4 54 32.5% 12 7.2% 166 4.5
Total moves | 165 63 703
Average 23.5% 8.1%
Weighted 23.5% 9.0% 2.6
average
Bnpl 21 15.7% 9 6.7% 134 2.3
Bnp2 192 23.9% 84 10.4% 805 2.3
Total moves | 213 93 939
Average 19.8% 8.6%
Weighted 22.7% 9.9% 2.29
average
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A1l strings:
TSS 5
4S’s 1
5S8's 1

A2 strings:
TSS 2
TSSS 4
9S’s 1

A3 strings:
TSS 27
TSSS 7
4S’s 2
5S8's 1
6S’s 2
7S's 1

A4 strings:
TSS 4
TSSS 2
58's 2

Appendix E - Tables of string length

Anp1 strings:

TSS 2

Anp?2 strings:

TSS 3

B1 strings:
TSS 3
TSSS | 3
B2 strings:
TSS 14
TSSS 5
4S’s 1
5S8's 1
B3 strings:
TSS 9
B4 strings:
TSS 6
4S’s 1

Total number of strings,

teacher A, proof: 62
Average string length: 2.82
Total number of strings, 5
teacher A, non-proof:

Average string length: 2
Total number of strings, 43
teacher B, proof:

Average string length: 2.35
Total number of strings, 106
teacher B, non-proof:

Average string length: 2.73

Bnp1 strings:

TSS 15
TSSS 2
4S’s 3
12 S’s 1
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Bnp2 strings:
TSS 50
TSSS 24
4S’s 6
5S8's 3
8S’s 1
10S’s 1




