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ABSTRACT 

Antibody Loop Modeling Methods and Applications 

Colleen Murrett 

 

This thesis describes improvements to our protein loop structure prediction algorithm and use of 

this algorithm to inform a computational investigation of anti-HIV antibodies. First, in Section I, we 

outline improvements to the Protein Local Optimization Program (“Plop”) that allow us to reliably 

restore long loops containing secondary structure elements, and predict nativelike conformations for 

loops whose surroundings deviate from the native crystal structure context. Shifting to focus 

exclusively on antibody hypervariable loop prediction, we also benchmark our results in the 

community-wide Second Antibody Modeling Assessment. Plop can now be reliably deployed as a 

tool for understanding important biological systems. In Section II, we start from a system of interest 

– broadly neutralizing antibodies against HIV-1 – with the long-term goal of computationally 

identifying more potent VRC01-class anti-HIV antibodies. We show proof of concept results for 

predicting relative binding affinity upon mutation using free energy perturbation (FEP) simulations 

for the VRC01 antibody binding to glycoprotein gp120. Using the protocols developed in Section I, 

we provide case studies for using Plop to understand key FEP results and guide future experiments. 
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I. Loop Prediction Methods Development 

 

Chapter 1 : Introduction  
 

At its simplest level, a protein is described by its primary structure: the specific amino acids, in order, 

that make up the protein chain, strung together like beads. A protein’s role in the cell, though, is 

determined largely by how this chain of residues organizes in space – its secondary structure, the 

chain of beads crumpled into a ball. Its ability to interact with other molecules and perform various 

biological tasks relies on a particular arrangement of residues, and atoms within those residues. 

Therefore, a detailed, atomistic understanding of a protein’s structure can elucidate how it goes 

about its job in the cell – or why it fails to complete its tasks. 

 

Protein structures are determined primarily using x-ray crystallography, with nuclear magnetic 

resonance (NMR) spectroscopy catching up as an alternative approach. These experimental methods 

have produced reams of valuable atomic-level structural data – over 100,000 structures and counting 

deposited in the Protein Data Bank (PDB).  

 

However, both x-ray crystallography and NMR are complicated, time- and reagent-consuming 

methods. Even for systems that readily crystallize or fall under NMR’s size limitations, experimental 

structure determination is not a practical option for, as an example, characterizing tens or hundreds 

of similar systems to determine the structural effect of a few residue mutations. Further, some 
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systems, such as trans-membrane proteins, are quite challenging to crystallize and structurally 

characterize through standard methods. 

 

Purely computational methods for protein structure determination have long been proposed as a 

way of supporting crystallography and closing the gap between the number of sequenced proteins 

and the comparatively much smaller set of protein structures. Further, computational approaches 

can be used to guide rational development and design of novel proteins that have not yet been 

synthesized, much less crystallized. Ideally, a computational structure prediction tool takes a protein 

sequence and returns spatial coordinates for each atom more quickly and cheaply than experimental 

methods, while retaining the same level of accuracy – that is, returning the same structure.  

 

Computational options have been proposed along the spectrum from all-atom molecular dynamics 

(MD) simulations, which take considerable computational resources to slowly fold a protein into the 

presumed native conformation, to informatics-based approaches that quickly match bits of the 

protein’s sequence to a database of known sequence-structure sets.  

 

Homology modeling falls near the latter end of this spectrum. This technique uses sequence 

homologs of known structure, typically found in the PDB, to construct a new structural model 

under the assumption that these similar sequences will fold in similar conformations. For many 

proteins, considering the number and diversity of available structures, this is a well-founded 

assumption. Protein secondary structure largely consists of regular motifs, such as alpha helices and 

beta strands, which are identifiable from sequence data and amenable to this sort of pattern 

matching. Further, building a model – even for a large protein – from homologs is a computationally 

trivial task, achievable in a matter of minutes. 



 3 

 

However, not all protein regions are as easily identifiable as an alpha helix – and in many proteins, 

the diverse, unsearchable regions are the most critical to the protein’s unique function (or 

malfunction). Relying on homology modeling in such instances is unhelpful at best. Typically, the 

regions with low sequence homology and thus uncertain structure are loops. Protein loops, 

sometimes defined as regions with an absence of secondary structure elements, are nonetheless 

critical to the protein’s overall conformation and often essential to the protein’s activity – for 

example, whether it forms the necessary shape to bind with a drug molecule.  And not only are 

loops less likely to share sequence identity with known structures – they are also prone to forming 

different conformations from similar sequences. This flexibility and structural diversity further limits 

homology modeling’s utility in loop regions. 

 

An independent method for loop structure prediction is therefore an important supplement to 

homology modeling. Because loops are relatively small and localized – by definition, they are 

constrained by the core of the protein – it is feasible to shift up the spectrum and deploy more 

computationally involved tools to model these regions.   

 

The Protein Local Optimization Program (PLOP) is one such tool. Broadly, it builds up possible 

loops ab initio and ranks them according to energy, calculated via an physics-based all-atom force 

field. This ensures that a diverse set up loop conformations are sampled, whether or not they are 

linked to this sequence in the PDB, and implicit solvation (along with clustering possible loops) 

keeps the computational requirements manageable.  
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The following chapters will focus on PLOP’s methodology and testing. In Chapter 2, the section 

continues with a review of PLOP, originally published in Current Opinion in Structural Biology, placing it 

into context within the broader goals of protein structure prediction and outlining recent 

improvements. 

 

Next, Chapter 3 details PLOP’s hierarchical sampling protocols, including methods for accurately 

predicting loops containing secondary structure elements, as published in Journal of Computational and 

Theoretical Chemistry.  These results show that PLOP can consistently predict long and complex loops 

in the crystal structure context – i.e., where the loop is deleted and rebuilt without any changes to 

the surrounding protein residues’ positioning or conformation. We then begin to evaluate PLOP’s 

performance in more complicated environments that approach the challenges of refining loops in 

true homology models. 

 

The challenges presented by loops in non-native environments come to the forefront in Chapter 4, 

where I introduce a new scoring term that penalizes residue pairs joined by highly unusual dihedrals. 

This drastically improves our predictive capabilities for loops in homology models. Here, I also 

begin to focus on antibody systems. 

 

Chapter 5 reports the results from a completely blinded community-wide antibody structure 

prediction challenge, the Second Antibody Modeling Assessment (AMA-II).  Originally published in 

Proteins: Structure, Function, and Bioinformatics, this collaborative effort with researchers at Schrodinger, 

Inc. tests our loop prediction methodology against the state of the art, compares loop predictions in 

the crystal structure context to loop predictions in homology models, and underscores the utility of 

ab initio prediction for modeling the most variable antibody loops. 
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Ultimately, the algorithmic improvements discussed in this section bring PLOP to prime time. 

Instead of selecting test cases to develop generalized protocols, we can identify biologically 

interesting proteins and use the now-developed protocols to build reliable homology models and 

analyze systems in meaningful ways. This will be demonstrated in Section II. 

 



Chapter 2 : Computational Methods for High Resolution Prediction 
and Refinement of Protein Structures 
 

In this chapter, we review progress towards reliable ab initio protein loop prediction and refinement 

to sub-Ångström accuracyi. Methodological improvements to our loop prediction protocol are 

discussed in two main areas: implicit solvation and conformational sampling.  

 

2.1 Introduction 
 

Prediction of protein structure to atomic resolution has been a long-standing goal of computational 

biophysics.  For a protein with a very different sequence from that of any protein with known 

structure, this task is daunting and requires a large component of ab initio simulation. However, in 

the vast majority of cases, there is significant homology between the target sequence and one or 

more sequences where experimental structures are available, and highly successful homology 

modeling approaches, based on employing one or more known structures as templates, are used 

routinely.  The Critical Assessment of protein Structure Prediction (CASP) competitions 1-2, which 

have been held biannually since 1994, are primarily focused on homology modeling, and document 

the very substantial progress that has been made, even on cases with low but detectable sequence 

identity. 

 

While homology models have been very useful in a wide range of applications3-12, in many cases 

these models do not yet predict atomic details at high resolution.  This limits their utility in a number 

                                                
i Reproduced with permission from Current Opinion in Structural Biology 2013 23 (2), 177–184. Copyright 2013 Elsevier 
Ltd.  



 7 

of important applications, such as structure based drug design or QM/MM computation of enzyme 

mechanisms.  A key weakness in typical homology modeling methods is their reliance on 

knowledge-based scoring functions 13 and lack of rigorous treatment of the physical chemistry of 

protein and solvent interactions.  Generally, if a target and template have extremely high sequence 

identity, one may obtain a high-resolution model based on the target. However, even for these best-

scenario cases, differing residues can cause local regions of the model to contain nontrivial structural 

deviations, which can have an important impact on molecular recognition or chemical reactivity. 

 

In this review, we focus on the question of what is necessary and sufficient to convert standard 

homology models into reliable high-resolution structures, a process that we refer to as structural 

refinement.  Conceptually, the simplest approach to refinement is to run an all-atom molecular 

dynamics simulation using explicit solvent models 14.  Unfortunately, the timescale to rearrange all of 

the atoms in the protein from the homology model starting point to the native structure is quite long 

compared to the length of molecular dynamics trajectories accessible with current technology 

(typically ~1 microsecond, ~1 millisecond with a great expenditure of computational resources)15. 

 

The alternative to molecular dynamics is conformational search algorithms16-20.  These methods do 

not attempt to reproduce the exact dynamical trajectory of the system, but rather search the phase 

space of possible structures by making relatively large displacements of torsion angles, followed by 

minimization.  The necessary complement to this sort of sampling is implicit, or continuum, 

treatment of aqueous solvation. If an explicit representation of solvent is employed, conformational 

search methods will require extensive, and expensive, rearrangement of water molecules to 

accompany every proposed conformational change, thus negating the primary advantage of the 
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algorithm – the ability to make large moves that sample phase space efficiently, as opposed to the 

very small displacements that are possible in molecular dynamics.   

 

The challenge for conformational search methods is thus twofold: (1) developing an implicit solvent 

model capable of the requisite level of accuracy, and (2) designing sampling algorithms that will 

converge the phase space search for the diverse range of protein structures. 

 

Below, we will focus on the development of conformational search and continuum solvent models 

over the past 5 years, and the progress that has been made in the ability to refine protein structures.   

 

2.2 Side Chain and Loop Prediction: Optimization and Testing of Models and 
Algorithms for Protein Structural Refinement 
 

There are two widely used continuum solvent models that offer the promise of providing sufficient 

accuracy to carry out protein structural refinement: the Poisson-Boltzmann (PB) 21-23 and 

Generalized Born (GB) equations 24-26.  In our laboratory, we have focused on the use of the GB 

equation, extensively parameterized to reproduce experimental crystallographic protein structure 

data.  Our approach is to repredict individual side chains, and then increasingly long loop regions, in 

the context of the native protein environment. We use the OPLS protein force field 27-29 for the 

molecular mechanics component of the model. The solvent model has been significantly modified in 

order to achieve robust agreement with the experimental data 30. 

 

Table 2.1 presents results for charged and polar single side chain prediction using two versions (one 

recent, one of older vintage) of our continuum solvation model. Single side chain prediction 
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involves few degrees of freedom, and thus can be performed via exhaustive conformational 

sampling by standard algorithms 31-32. Only side chains from high-resolution crystal structures, with 

significant electron density displayed for all atoms of the side chain, are used in the test set.  A root 

mean square deviation (RMSD) from the experimental coordinates of less than 1.5Å is considered 

successful.  The success probabilities shown represent a very substantial improvement over the use 

of standard GB models such as that described in refs. 25, 33-35.  

 

  OPLS2005 OPLS2005 

Residue # of cases VSGB2.0 VSGB1.0 

Arg 144 84.0% 82.6% 

Asn 252 91.7% 88.5% 

Asp 293 94.9% 92.5% 

Cys 92 100.0% 100.0% 

Gln 159 83.2% 77.6% 

Glu 151 86.2% 84.9% 

His 83 95.2% 91.6% 

Lys 121 90.1% 88.4% 

Thr 316 94.3% 92.6% 

Tyr 404 99.1% 98.6% 

Ser 221 88.0% 86.1% 

All 2236 91.6% 89.6% 

 
Table 2.1 Prediction results for polar and charged protein residue side chains.   

The tabulated percentages reflect the fraction of side chains where the predicted side chain geometry 
was within 1.5 Å root-mean-square deviation of the experimentally observed geometry.   
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Many modifications of the “standard” GB model (e.g., from ref. 25, 33) were required to achieve these 

results; however, one major alteration stands out as crucial: we allow for effective polarization of 

protein groups by charged residues, via increasing the value of the internal dielectric constant in this 

type of interaction.  This “variable dielectric model” 30, 36 eliminates the well-known problem of 

dramatic overprediction of salt bridge formation by GB and other continuum based models.  

Overall, it leads not only to a large improvement in the accuracy of side chain prediction, but a 

substantial reduction in energy errors when an incorrect side chain conformation is predicted.  If the 

correct conformation is very close in energy to the incorrect one, the impact on overall structural 

prediction is going to be much less important.  

 

We next take the model derived from optimizing results for side chain prediction and perform loop 

predictions for a data set of short to medium length loops (6-12 residues in length) in the native 

protein environment. Further optimization of the model is carried out, and again, one crucial 

modification emerges: the standard surface area model for hydrophobicity performs poorly in the 

congested protein environment.   

 

We therefore replace this model with a hydrophobic scoring function derived from protein-ligand 

docking calculations, which has been optimized to reproduce binding affinities of ligands in protein 

receptors 9, 30, 37.  This hydrophobic model better estimates the benefit of placing hydrophobic 

protein side chains in the hydrophobic core of the protein, as opposed to allowing water molecules 

to occupy such highly unfavorable regions.   

 

Finally, the resulting model is tested, without any further adjustment, in its ability to predict long 

loops (14-20 residues in length) in the native protein environment. We have described our 
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hierarchical loop prediction algorithm in detail in prior publications 37-39. These energy model 

improvements, along with improvements in sampling to better explore loop candidates and phase 

space described in ref. 40, have made it possible, in the context of native proteins, to reliably predict 

loops up to 18 residues. In all loop predictions, the final conformation reported is of the lowest 

energy loop. 

 

Table 2.2 presents results for these tests, which encompass a test set of 115 loops in total.  Up to 18 

residues, the RMSDs of the predictions to experiment are sub-Angstrom for the most recent version 

of the continuum model (VSBG 2.0). This is a remarkable advance over previous results in the 

literature, (including our own results with VSBGB 1.0, which was not as well optimized), and nears 

the limit imposed by experimental uncertainty. Results of this quality are likely sufficient for use in 

structure based drug design and other applications. The problem now becomes predicting loops to 

this level of accuracy in more complicated homology model environments. 

 

    OPLS2005/VSGB2.0 OPLS2005/VSGB1.0 

Loop 

Length 

Number 

of Cases 

Median 

Backbone 

RMSD 

(Å) 

Average 

Backbone 

RMSD 

(Å) 

Average 

Side Chain 

RMSD (Å) 

%  of 

Cases with 

RMSD < 

2Å 

Median 

Backbone 

RMSD 

(Å) 

Average 

Backbone 

RMSD 

(Å) 

Average 

Side Chain 

RMSD (Å) 

% of 

Cases with 

RMSD < 

2Å 

14 36 0.38 0.51 1.67 100.0 0.67 1.19 2.51 91.7 

15 30 0.54 0.63 1.85 100.0 0.75 1.55 3.07 73.3 

16 14 0.43 0.70 1.85 100.0 0.80 1.43 3.20 78.6 

17 9 0.57 0.62 1.84 100.0 1.92 2.30 4.25 66.7 

18 16 0.60 0.80 1.78 100.0 3.45 4.18 5.59 37.5 

19 7 1.60 1.41 3.46 100.0 1.31 2.65 3.87 57.1 

20 3 1.68 1.59 2.88 100.0 1.12 1.43 2.71 66.7 

All 115 0.52 0.69 1.91 100.0 1.04 1.89 3.37 73.0 
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Table 2.2 Prediction results for 14 to 20 residue length loops.   

The backbone RMSD’s of the predictions are computed by first superimposing the predicted 
protein structure and the experimentally observed protein structure while excluding the predicted 
loop.  The backbone RMSD values include only the C and N atoms tracing the protein backbone.  
The tabulated side chain RMSD values were computed including all heavy atoms of the side chains. 

 

2.3 Prediction of Larger and More Complex Protein Regions 
 

Having established the validity of the energy model in the above tests, we next explore prediction 

capabilities for larger and more complex protein regions.  In these cases, as in homology model 

systems, the sampling challenges are increased in various dimensions, and the number of alternative 

structures that must be rejected in favor of the correct structure in many cases becomes 

exponentially larger.   

 

We use the same energy model and sampling algorithms as are discussed above, with one important 

addition.  We have noticed that many incorrect loop predictions display a pattern of backbone 

torsion angle pairs that is never observed in the Protein Data Bank (PDB).  Structures containing 

such angle combinations cannot be correct. We have constructed a table linking regions of torsion 

angle space to their observed frequency in protein crystal structures, and from it built an empirical 

scoring function that penalizes loops built with torsion angle pairs found in the extremely sparsely 

populated regions. These penalties are helpful towards both sampling and scoring, by eliminating 

candidate loops with unacceptably high strain energy. In the work reported below, this new addition 

to the scoring function was used to improve results in a selected subset of challenging cases, such as 

those where side chains surrounding a loop-helix-loop or loop-hairpin-loop are allowed to vary. 
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2.4 Prediction of Loop-Helix-Loop and Loop-Hairpin-Loop regions 
 

Many long loops contain embedded regions of secondary structure: small α-helices, 310 helices, or 

β-hairpins.  Where there are embedded helices, a modification of our usual algorithm is employed.  

We use sequence-based secondary structure prediction methods 40-42 to locate possible helices, and 

then run simulations in which these potential helices are seeded into the simulation. The seeding is 

achieved by using a separate, helical-dihedral library during loop buildup over the residues sequence-

based secondary structure prediction assigns as helical 39. The final energy is compared between the 

simulations with and without the seeded helices, and the lowest energy result is selected. For hairpin-

containing loops, no special sampling is required.  

 

For both loop-helix-loop and loop-hairpin-loops, the CPU time required for a single PLOP run is 

on the order of an hour on a 1 GHz AMD Opteron 265 processor. The time for a prediction is 

directly a function of the loop size, rather than the secondary-structure size; the rate-limiting step is 

the minimization of all atoms in each candidate loop. A full loop prediction requires multiple runs of 

PLOP, up to 400, however up to 40 can be run in parallel at once, as described in Zhu, et al.36 

 

Table 2.3 summarizes the results obtained for a test set of 33 high-resolution loop-helix-loops, while 

Table 2.4 does similarly for a test set of 40 high-resolution loop-hairpin-loops, both distributed as 

explained therein.  Consistent sub-Angstrom RMSDs are obtained in all cases of prediction in the 

native environment for these more challenging and diverse structures, demonstrating the reliability 

of both the energy model and sampling algorithm.  
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Helix Length 
Number of 

Cases 
Without Helix Seeding With Helix Seeding Permitted 

 RMSD (Å) ∆E (kcal/mol) RMSD (Å) ∆E (kcal/mol) 

 Median Mean Median Mean Median Mean Median Mean 

4 12 0.53 1.29 3.89 12.39 0.50 0.62 -1.89 -6.96 

5 7 0.91 1.09 -7.94 -6.19 0.47 0.99 -7.94 -7.14 

6 4 1.00 0.95 2.06 11.11 0.65 0.74 -5.80 -5.78 

7 5 0.55 1.94 0.51 5.19 0.93 0.81 -2.04 -2.76 

8 5 0.81 0.98 4.33 6.66 0.44 0.48 -0.86 -2.48 

 
Table 2.3 Results of 33 loop-helix-loop predictions performed with or without helix seeding 
permitted.  

For the predictions where helix seeding was permitted, we selected the lowest energy loop predicted 
across all simulations. The source of a possible helix may have come from sequence based 
secondary-structure prediction or from observations of helices formed in non-seeded predictions. 
The lowest energy loop may also have come from a non-seeded if no lower energy loops were found 
after seeding. With helix seeding included in our sampling methodology, sub-Ångstrom mean and 
median RMSDs are found for all helix lengths considered. 
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Hairpin Length 
Number of 

Cases 
Dipeptide Dihedral Library 

 RMSD (Å) ∆E (kcal/mol) 

 Median Mean Median Mean 

6 11 0.41 1.07 -5.61 -5.05 

7 2 1.13 1.13 -21.38 -21.38 

8 15 0.63 0.89 -6.87 -7.53 

9 7 0.51 0.89 -5.00 -5.74 

10 2 0.42 0.42 -7.32 -7.32 

11 1 0.53 0.53 -10.55 -10.55 

12 1 0.30 0.30 -3.06 -3.06 

13 1 0.44 0.44 -0.04 -0.04 

 

Table 2.4 Results of 40 loop-hairpin-loop predictions.  

The ∆E value compares the energy of the lowest energy loop against the crystal structure loop 
coordinates, minimized using our energy function. The RMSD reported is of the lowest energy loop 
prediction.  

 

Figure 2.1a illustrates an example loop-helix-loop prediction. The prediction target here is a 16-

residue loop containing a 6-residue helix. The prediction performed in the absence of external 

knowledge of the helix results in a 1.47 Å RMSD but a ∆E of 50.45 kcal/mol indicative of a large 

sampling error. By exploiting information provided by PSIPRED40, a popular secondary-structure 

based prediction program, we are able to seed a helix and improve the sampling to reach a 0.31 Å 

RMSD and a ∆E of -1.37 kcal/mol. 
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Figure 2.1b illustrates our success in predicting loop-hairpin-loops without any special sampling. 

Here a 16 residue loop-hairpin-loop from PDB: 2ZWA containing an 11-residue hairpin is predicted 

with a 0.53 Å RMSD. 

 

 

Figure 2.1 Example loop-helix-loop, loop-hairpin-loop, and perturbed native predictions.  

a. The target loop-helix-loop is a 16-residue protein segment from PDB 2RJ2. The native structure is 
shown in blue. The prediction performed without helical seeding is shown in green and yields a 1.47 
Å RMSD and a ∆E of 50.45 kcal/mol. Helical seeding performed using information obtained from 
PSIPRED[41], a popular sequence-based secondary structure prediction program, is shown in red. 
The seeded helix prediction results in a superior 0.31 Å RMSD prediction with a native-like ∆E of -
1.37 kcal/mol. b. The target loop-hairpin-loop is a 16-residue loop containing an 11-residue hairpin 
from PDB 2ZWA. The native structure is shown in blue while the prediction is in green. The 
hairpin is predicted with a 0.53 Å RMSD and ∆E of -10.55 kcal/mol. c. The target is a 16-residue 
loop from PDB 1L5W containing a 5-residue helix. The native structure is shown in blue while the 
perturbed native is shown in green. The perturbed native loop-helix-loop has an RMSD of 3.00 Å. 
The residues within 7.5Å of this perturbed loop conformation were minimized with the loop held 
fixed. This placed the surrounding environment in a non-native minimum. However, for simplicity, 
these surrounding residues are not illustrated here. The resultant loop-helix-loop repredicted from 
this perturbed environment is shown in red and has a 0.54 Å RMSD a ∆E of -15.03 kcal/mol. 
 
 

We then select one structure from each of the helix lengths in Table 2.3, a total of five structures, 

and one structure from each of the hairpin lengths in Table 2.4, a total of seven structures, and 

perform a more demanding test on each of them: prediction of the structure in an environment 

where the backbone is in the native conformation, but the surrounding side chains (up to 7.5 Å 

distant) are arranged around a non-native structure, selected from Loop-Helix-Loop or Loop-

Hairpin-Loop predictions with RMSDs greater than or equal to 3 Å from the native structure.  
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Figure 2.1c illustrates an example perturbed-native loop prediction. Reprediction of the native loop 

under such conditions is far more demanding, since the local environment no longer serves as a 

“guide” to the correct structure. Nevertheless, the results are of more or less the same quality as the 

original predictions in the native environment. For loop-helix-loop predictions performed in a 

perturbed native environment, the mean (RMSD, ∆E) was (0.65 Å, -9.52 kcal/mol). These are 

comparable to the predictions of these same loops in the native environment where the mean 

(RMSD, ∆E) was (0.47 Å, -1.49 kcal/mol). For loop-hairpin-results, the results are similar with 

predictions in the perturbed environment being restored to a mean (RMSD, ∆E) of (0.79 Å, -4.73 

kcal/mol) compared to (0.38 Å, -4.51 kcal/mol) in the native. These results are encouraging with 

regard to transferability of the algorithm to homology modeling. 

 

2.5 Prediction of the ECL2 loop in GPCRs 
 

G-Protein coupled receptors, or GPCRs, constitute one of the most important classes of 

pharmaceutical targets in the human genome 43-47.  Recent experimental breakthroughs have resulted 

in a substantial number of GPCR structures being available in the PDB.  However, this is still a 

small fraction of the total number of GPCRs in the genome, and high-resolution homology 

modeling of the additional structures, with particular emphasis on accurate prediction of the second 

extracellular loop (ECL2), would be extremely valuable in drug discovery efforts 44-45, 48.  

 

As a first step, we have predicted the structure of the ECL2 loop in a number of GPCRs in the PDB 

in the context of the native structure 49. For the four GPCRs included in recent publications, the 

ECL2 loop is extremely long (26-32 residues) and has a highly complex structure, in some cases with 
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an embedded helix or strand.  The result of these efforts is shown in Figure 2.2.  Considering the 

challenge presented by this loop, the fully ab initio predictions are very reasonable. We have also 

performed one prediction of the ECL2 of a homology model of β2AR, obtaining a similar quality 

result: a very encouraging step in overall methodologies 50.  

 

 

Figure 2.2 Visualization of predicted ECL2s vs. their native counterpart.  

 
a. The ECL2 of bRh. The blue loop is the native, the pink loop is the final ECL2 prediction while 
the rest of the protein is held fixed in its crystallographic position. The green loop is the final ECL2 
prediction while the nearby loops and side chains are in non-native positions. Note that for these 
loop predictions, a simulated membrane was included (see ref. 48). b. The ECL2 of β1AR. The blue 
loop is the native, the pink loop is the final ECL2 prediction while the rest of the protein is held 
fixed in its crystallographic position. The green loop is the final ECL2 prediction while the nearby 
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loops and side chains are in non-native positions. c. The ECL2 of β2AR. The blue loop is the native, 
the pink loop is the final ECL2 prediction while the rest of the protein is held fixed in its 
crystallographic position. The green loop is the final ECL2 prediction while the nearby loops and 
side chains are in non-native positions. d. Again, the ECL2 of β2AR. The blue loop is the native, the 
pink loop is the final ECL2 prediction in the context of a homology model of β2AR. 
 

 

In order for these calculations to succeed, we had to incorporate protein membrane interactions via 

new explicit membrane calculations. Briefly, molecular dynamic simulations were run with explicit 

membrane molecules surrounding the receptor. Similarity between the MD structure and the native 

target loop regions justified the use of loop predictions performed on the MD structure. During 

these loop predictions, up to three key torsional bonds of the rotating lipid heads were sampled 

together with all surrounding side chains within 7.5 Å of the loop. These calculations are explained 

in greater detail in Goldfeld et al. [50,51]. 
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2.6 Conclusion 
 

We have shown that the use of a continuum solvation model and a molecular mechanics force field, 

along with an efficient conformational sampling algorithm, is capable of yielding accurate and 

reliable predictions for relatively large protein regions (up to as many as 30 residues). The refinement 

of homology models differs from these problems in that the entire backbone of the protein will 

present some sort of deviation from the native coordinates - large in some cases, small in others, but 

overall representing delocalization of the structural errors, as opposed to the model problems we 

have studied where the error is localized to one well defined protein region.  Based on the results 

above, the primary difficulty at this point is to devise a sampling algorithm that can handle 

delocalized errors of this type.  There are many possibilities that build on the ability to efficiently 

refine quite large local regions, but extensive computational experiments will be required to identify 

effective methods, and to optimize the methodology for what will likely be a greatly expanded need 

for computational resources.  The continued rapid reduction in the cost/performance of computing 

provides the means to meet this aspect of the challenge, however, and we are optimistic that 

practical solutions, from other groups as well as our own, will begin to appear in the next several 

years. 
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Chapter 3 : Prediction of Long Loops with Embedded Secondary 
Structure using the Protein Local Optimization Program 
 
 

In this chapter, we detail improvements to the Protein Local Optimization Program (PLOP)ii. This 

work builds on previous development efforts for sampling increasingly long loops and extends 

PLOP’s capabilities to accurately model loops containing small secondary structure elements such as 

alpha helices or hairpins. The results presented here demonstrate PLOP’s effectiveness at restoring 

native loop conformations in the crystal structure context, a prerequisite for accurately loop 

prediction in a homology model or other non-native environment.  

 

3.1 Introduction 
 

Continual advances in loop prediction have yielded accurate modeling from twelve-residue loops51 

up to loops as long as twenty residues30, 37. These methods have managed to achieve near-atomic 

accuracy performing loop prediction in the presence of the crystal structure environment – a 

necessary, but not sufficient condition for realistic homology modeling.  

 

Historically, loop prediction was first approached analytically by Go and Scheraga52 in 1970. 

Demonstrated was the ability to predict, by solving a set of equations, the conformation of peptide 

fragments containing up to six rotatable torsions. This analytical method was updated 21 years later 

by Palmer and Scheraga53. Here, the authors relax constraints on the original formulation by 

permitting each residue in the loop to adopt independent bond lengths or bond angles. However, 

the analytical method still remained limited to six torsion angles - three residues assuming the 

                                                
ii Reproduced with permission from Journal of Chemical Theory and Computation 2013 9 (2), 1846–1864. Copyright 2013 
American Chemical Society. 
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backbone ω  torsion remained fixed. To accommodate larger loops, Palmer and Scheraga extend the 

method by permitting additional torsions, beyond the six that can be analytically determined, so long 

as they are independently set prior to the calculations. Thus, their method requires that the algorithm 

be repeated numerous times over a conformational search of these additional independent torsions. 

Hence, for larger loops combinatorics must be considered. 

 

Moult and James in 1986 proposed one of the first combinatorial searches through a discrete set of 

torsions54. Here, the authors described the use of a systematic search through torsion angles 

obtained from a Ramachandran plot. For loops as small as five residues, their method yields about 

1010 conformations, already an intractable number. To cope with the combinatorial explosion the 

authors, employ the use of rules and filters to restrict and prune the number of conformations to a 

manageable subset before performing more expensive scoring. Loops are scored with using a simple 

pairwise electrostatic energy function and a surface area based hydrophobic term. 

 

Later methods vary in both the sampling rules and scoring function. Bruccoleri and Karplus in 1987 

released CONGEN, from which our algorithm draws some similarity19, 51. There the authors use the 

CHARMM energy function55 to score loops. In 1992, Bassolino-Kilmas and Bruccoleri advance 

CONGEN to permit directed loop buildup which takes into account information from partially 

built structures56. In 2003, DePristo et al.57 and de Bakker et al.58 use the AMBER forcefield59 and 

Generalized Born solvation model25, 33 for scoring loops. Loop buildup is performed using, among 

other modifications, a fine-grained torsion library that is residue-specific. Like CONGEN, our work 

draws similarities to this last method51. We note that this historical review is not exhaustive but is 

intended to highlight the origins of loop prediction as it relates to this work. 
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 In general, the use of combinational exploration of torsion space for loop buildup has within it two 

sub-problems, sampling problems where coping with the combinatorics of loop buildup requires the 

development of clever pruning strategies, and energy problems where the minimization, scoring and 

ranking of the resultant loops must be computationally affordable yet accurate enough to identify 

the best conformation among those produced.  

 

Throughout the literature, the functional definition of a loop has been a local segment of the protein 

that is free of secondary structure other than, perhaps, three-residue 310 helices, but lies between 

large, likely well-conserved, secondary structure elements37, 60. Indeed, initial homology models are 

often constructed on the assumption that secondary structure elements are conserved between the 

template and the target61. However, this loop definition has not always been strictly followed. 

Notable cases of loops containing secondary structure are the ECL2 loops of human β2-adrenergic 

receptor62 and turkey β1-adrenergic receptor63, both G-protein coupled receptors (GPCRs). These 

loops are actually loop-helix-loops (LHLs) containing an eight-residue α-helix. Spinach Rubisco is 

another example. The active site is composed of a highly conserved α/β barrel. Lying between each 

α/β pair are loops, of which loop 5 contains a five-residue α-helix and two residues that form part 

of βF, a β-strand external to the active site, and loop 8 which contains a four-residue α-helix64.  

 

Recent attempts have been made to model the GPCR LHLs and have been met with significant 

success reaching an accuracy as high as a 1.59 Å RMSD49, 65. As the method we provide here exists 

along a continuum of protein structure prediction methods, one that shares significant applicability 

to secondary structure-free loops, we retain the loose definition of the word ‘loops’, and here refer 

to loops as a region of the protein that may contain secondary structure but is flanked by even larger 
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secondary structure elements. Presented in greater detail below is a precise definition, which was 

strictly enforced, to select a set of test of cases. 

 

Throughout the literature, predictions performed on loops containing secondary structure are scant. 

Zhu, Xie and Honig presented a refinement protocol that addresses loop-helix-loops and loop-

hairpin-loops, referred to more generally as protein segments in the chapter, using a knowledge-

based potential66. What is explored is the refinement of these segments, rather than the prediction of 

the segments de novo. Consequently, the success of their refinement is dependent on the difficulty of 

the initial structure. For hairpins and loop-helix-loops, close to 70% of their refinements yield 

predictions with an RMSD of 2.0 Å or better.  In these cases, the secondary structure elements are 

kept fixed with their native torsions and moved as a rigid body. However, as our method discussed 

in this chapter is independent of the conformation of the input loop (although it is dependent on 

the conformation of the surrounding environment) results cannot be directly compared.  

 

Alternatively, Rohl et al., described de novo loop construction using the Rosetta algorithm16. Included 

in their test set are predictions of ten loops, referred to as structurally variable regions, of 13 to 34 

residues in length. These predictions were done in the crystal structure environment and do include 

loops containing secondary structure. Although some of the members of their test set include, for 

example, loop-helix-loops, only ten cases were done in the context of the native protein – too few to 

permit comparisons between our method without relying on anecdotal information. Instead, the 

authors concentrate on the more ambitious task of loop prediction in an unrefined homology 

model. Finally, we note in a previous study, our attempt to address the challenges of helix packing67. 

In Li et al., we explored placement of a helix in a loop-helix-loop but treated the helix as a rigid body. 

Although the method relies on prior knowledge of the presence of a helix, for large helices, this is 
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not unreasonable, as is stated above, because significant segments of secondary structure tend to be 

conserved across homologous structures. Indeed, the smallest helix considered in this study was 

eight-residues. 

 

To the best of our knowledge, no studies have been performed that systematically address the 

challenges of de novo prediction of loops containing secondary structure, particularly for cases when a 

priori knowledge about the presence of small secondary structure is noisy at best. As loop prediction 

matures to accurate prediction of larger and larger loops, it becomes awkward to exclude cases of 

secondary structure-embedded loops. In this work, we propose a method to predict long loops 

containing possibly multiple helices or a hairpin. Our initial test set is composed of loops containing 

between 8 and 17 residues. The secondary structure length explored ranges from 3 to 13 residues, 

although in principle, prediction of loops containing larger secondary structure segments remains 

tractable.  

 

For loop-helix-loops, we constructed a separate dihedral library taken from a non-redundant set of 

high-resolution Protein Data Bank68 structures containing α-helices. The user is required to specify 

which residues this helical dihedral library is to be applied to, termed the helical bounds. Results with 

exact helical bounds taken from the crystal structure were used as an initial validation. More relevant 

to actual structure prediction and refinement, we then concentrated on accurate loop prediction 

using helical bounds supplied by either sequence-based secondary structure prediction algorithms or 

previous loop predictions performed without the use of our helical dihedral library. That is, in many 

cases, nascent helices were predicted without supplying any expectation of a helix. This suggested a 

propensity for this loop to include a helix and allow us to repredict the loop using our helical 

dihedral library. Throughout all sampling methods explored, what remains crucial is that purely from 



 26 

our energy model, we are able to pick out the loop with the lowest, or near lowest RMSD relative to 

the native structure. Finally, for loops containing either helices or hairpins, we explored loop 

reprediction in a perturbed local environment, similar to an environment encountered in full 

homology models, although without deviations of the backbone from the native structure, and 

established success in restoring the native loop conformation. The results are generally satisfactory 

with loop-helix-loop predictions from imprecise helical bounds routinely reaching sub-Ångström 

RMSD and hairpin predictions reaching similar atomic accuracy.  

 

3.2 Materials and Methods 
 

Selection of Test Cases 

All PDB structures that were available as of August 30, 2010 were searched. A global criteria was 

used to select structures that satisfy the following properties: 

1. A sequence identity between any two proteins must be ≤ 50% 

2. Only crystal structures were selected 

3. The resolution of the crystal structure must be < 2.0Å 

4. Structures reporting only Cα coordinates were excluded 

5. A minimum Rwork of 0.25 was enforced. 

6. The pH of the crystal structure was restricted to lie between 6.0 and 8.0. 

7. The exclusion of proteins due to sequence identity was performed using the PISCES web 

server69 (http://dunbrack.fccc.edu/PISCES.php). Loops were selected using a local criterion 

that satisfies the following: 

8. The average temperature factor of atoms within the loop must be ≤ 35. 
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9. The real-space R-factor70 of any residues in a selected target loop must not be greater than 

0.200. 

10. All residues within the loop or interacting with any residues within the loop must be free of 

alternate conformations. 

11. To reduce effects due to loop-ligand interactions, the minimum distance between any loop 

atom and any atom as part of a neutral ligand must be > 4 Å. For charged ligands, this cutoff 

is increased to 6.5 Å. 

 

The real-space R-factor was found by reference to the Uppsala Electron Density Server71 

(http://eds.bmc.uu.se/eds/). The above criteria are similar to what was used to create test sets in 

our past publications36-37. 

Identification of Secondary Structure-Containing Loops 

In our most recent publications, loops were defined as being a segment of the protein absent of 

secondary structure37, 66. To identify loops containing secondary structure, an alternative definition 

was proposed. For loops containing secondary structure, the loop must be bounded by a span of 

secondary-structure larger than the greatest contiguous span of secondary structure within the loop. 

For example, if a loop contained, at most, a six-residue α-helix, then flanking the loop must be 

residues that are a part of a secondary structure element of at least seven residues in length. 

Furthermore, the first and last residue of a loop must also not display secondary structure. 

Assignment of secondary structure on a per residue basis was done using the DSSP program72. 

 

A loop was defined as a loop-helix-loop only if there were no other types of secondary structure 

present other than turns and helices (including 310 and αα-helices), i.e. any loop containing both β-
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bridges and helical residues was discarded from this study. A total of 35 loop-helix-loop regions 

were identified which were either 16 or 17 residues in length in all. This loop length was chosen to 

select cases that were considered sufficiently difficult to demonstrate the efficacy of our approach. 

In our previous publication, loops free of secondary-structure were successfully predicted up 17 

residues in length37. 

 

For loops containing β-hairpins, it became necessary to distinguish between a β-hairpin and a 

segment that is part of a larger β-sheet. To make such a distinction, the following criteria were used: 

1. The loop must contain the secondary structure pattern strand-turn-strand. 

2. However, the turn residues need not be immediately adjacent to a strand residue. 

3. The loop must be free of helices.  

4. The strand residues comprising part of the pattern in criterion 1 must be forming backbone 

hydrogen bonds only to other residues within the loop. 

5. The hydrogen-bonding pattern must be anti-parallel. 

For hairpins, requiring loops be either 16 or 17 residues in length yielded too few test cases. Thus, a 

loop was accepted so long as it was not greater than 17 residues. A total of 41 cases satisfying the 

above hairpin criteria were identified. 

Single-Loop Prediction 

Single loop prediction is performed through individual runs of the Protein Local Optimization 

Program (PLOP). Briefly, PLOP operates through four stages: buildup, closure, clustering, and 

scoring. Full details can be found in Jacobson et al.51, however, the salient features will be presented 

here and the modifications of the PLOP protocol utilized in this work will be described. 
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Loop buildup is begun with a backbone dihedral angle library constructed from rotamers frequently 

observed in crystal structures. Initially, the library contained a set of dihedrals on a single amino acid 

basis51. As larger loops were explored, efficient exploration of conformational space dictated the use 

of a dipeptide dihedral library30, 37. In this approach, a library is constructed from each of the 400 (20 

x 20) possible dipeptide pairs and used in a sequence specific manner during buildup. For example, a 

loop containing an arginine–alanine dipeptide would explore sampling from a different rotamer 

library than an arginine–valine dipeptide. This implicitly treats the individual amino acid torsions as 

coupled.  

 

In helices, the backbone torsions are highly coupled to form the necessary hydrogen-bonding 

network. It was therefore natural to extend the use of a dipeptide dihedral library to exploit coupled 

backbone torsions across the four residues, or greater, of an α-helix. As such, for residues 

considered to be helical, a separate n-residue α-helical library was used for loop buildup, where n is 

four or larger. The aspects of this α-helical library are discussed in greater detail below. In β-hairpins, 

non-local torsional coupling is present and so to enforce torsional coupling during loop buildup 

would heavily constrain both the coupled, hydrogen-bonding residues, as well as the intervening 

turn residues. Although such an approach may still be fruitful, we found that for β-hairpins, our 

previous dipeptide torsional library was effective and so we did not explore further the use of an 

alternative β-hairpin library.  

 

Loop buildup is performed simultaneously from both ends of the loop up to the Cα atom on the 

closure residue. In our prior publications, the closure residue was simply picked as the midpoint of 

the loop36-37, 51. For the loop-helix-loops described in this work, the closure residue, shared by both 

halves of a loop, cannot be permitted to bisect a helix. As is described further below, the helical 
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library is based on the construction of entire helices, and not helical fragments. If the closure residue 

of the loop were a part of a helix, the helix would be split between both halves of the loop. Thus for 

this work, we were forced to alter the designation of the closure residue. The closure residue is 

initially set with the equation 

Ca,closure = Nterm,LHL + LengthLHL −1± LengthHelix( ) / 2  

where + is used when the C-terminus loop is the longer loop and – for when the N-terminus loop is 

longer or if both flanking loops are of equal length. Nterm,LHL  refers to the residue number of the N-

terminus of the loop-helix-loop. Should the closure lie adjacent to the helix, the closure residue is 

shifted one residue further away from the helix. This is to afford extra flexibility to the residues that 

precede loop closure.  

 

Clarifying by example, consider the LHL predicted in PDB 1BKR (Figure 1). Predicted was the 17-

residue loop-helix-loop from G75 – D91 containing a 4-residue alpha helix from P82 to I85. When 

predicting this loop without the helical library the closure residue is at the midpoint of the LHL, 

residue 83, highlighted in white in Figure 3.1. This residue intersects the helix and so cannot serve as 

the closure residue when employing the helical dihedral library from segments 82-85. Application of 

the above equation places the closure residue adjacent to the helix at residue D81, but for further 

flexibility, the closure residue is assigned to be residue L80 on the N-terminus loop, two residues 

away from the start of the helix. As in our previous work, the Cartesian positions of the two closure 

Cα atoms are averaged and the remaining atoms of the loop backbone are generated using standard 

geometry algorithms to close the loop.  
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Figure 3.1 Loop-helix-loop predicted in PDB 1BKR.  

The target loop-helix-loop residues are highlighted red from residues 75–32. The helix of interest, 
labeled α4, spans residues 82–85. . Loop prediction without the helical library would assign the 
closure residue to be residue 83, highlighted in white. The LHL method places the closure residue at 
position 80. This figure was generated using ESPript [28]. 
 

During loop buildup, nascent loops undergo preliminary screening through the use of a parameter 

termed the overlap factor (ofac). The ofac is defined as the ratio of the distance between two atom 

centers to the sum of their atomic radii. A lower ofac cutoff allows for a higher overlap between the 

van der Waals radii. If during loop buildup, a backbone atom is placed with a smaller ofac than 

permitted by the threshold, then that candidate loop is discarded. 

 

Three additional screens are used to reject unreasonable loops early in their construction: 

1. For the current residue(s) being predicted, there must exist at least one acceptable side-chain 

conformation, based on sampling a 30º side-chain rotamer library. 

2. The loop must not travel further than 6.32 Å away from every Cα atom in the protein. This is 

an empirically determined value and is meant to reject loops that fail to form contacts with 

the rest of the protein. 

3. The distance between the latest residue predicted and the closure residue must be less than a 

threshold beyond which closure is not considered possible. For example, a statistical analysis 

of a set of >500 proteins found that the maximum Cα - Cα distance that can be spanned by 

four residues is 13.97 Å.  
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Full details of these screening methods are given in Jacobson et al.51 

  

An additional screening method is also employed to enforce broad sampling of  conformational 

space. During loop buildup via single dihedrals, all pairs of states must obey the relationship 

∆ φ 2 +∆ψ 2 > Reff
2  ∆ϕ! + ∆ψ! > R!""! , where Reff  is the “effective resolution” of φ,ψ( )  space. The 

effective resolution is adaptively set during loop buildup. The total number of loop candidates is 

constrained to lie between a minimum of 512 loops up to a maximum of 106 loops. This constrains 

the number of loop candidates to a tractable size. We achieve this by initially setting the effective 

resolution to a coarse value of 300º and then gradually improve the resolution to finer values down 

to a minimum of 5º (the resolution limit of the dihedral library). For loop buildup using the 

dipeptide dihedral library, the effective resolution relationship becomes:  

∆ φ1
2 +∆ψ1

2 +∆ω 2 +∆ φ2
2 +∆ψ2

2 > Reff
2 ∆ϕ!! + ∆ψ!! + ∆ω! + ∆ϕ!! + ∆ψ!! > R!""! . 

  

Loop buildup using the helical dihedral library did not utilize any effective resolution relationship. 

Principally, this was because the size of the helical dihedral library is significantly smaller than the 

single peptide or dipeptide dihedral library. Due to a “lever effect”, a small change in the dihedrals at 

one end of a helix can significantly alter the coordinates of the opposite end of the helix. This effect 

becomes more dramatic for larger helices. To exclude what few candidate loops are produced during 

buildup because of a resolution cutoff would be to ignore this lever effect. Greater detail about the 

construction and composition of the helix dihedral library is presented below. 

 

To prevent expensive optimization of similar loop candidates, the k-means clustering algorithm73-74 is 

employed and only one representative loop per cluster is passed onto side chain sampling and 
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optimization. The number of clusters is set to be four times the number of residues in a loop, 

excluding residues initially flagged as helical during input to loop prediction, up to a preset 

maximum of 50 clusters. The number of clusters determines the number of representative loops 

passed onto side chain sampling/loop optimization and is empirically set to balance the 

conformational space that must be accurately scored against computational expense. Since the entire 

helix is constructed as a whole from the helical library, it would seem awkward to count the helical 

residues the same as the non-helical ones and so helical residues are excluded when determining the 

number of clusters to optimize. For the loops described in this chapter, this often had little 

consequence. For a 17-residue loop with a four-residue helix the maximum number of clusters, set 

at 50, is reached. The most common helical size was four residues (see Figure 3.2, below). For a 16-

residue loop with a four-residue helix, the number of clusters is 48. Only for the few cases, such as 

PDB 2JA2, where a 16-residue loop contains an eight-residue helix, were the number of clusters, set 

to 32, significantly different from the maximum value of 50. These cases are the exception, and as is 

described later, the results from these cases, despite the reduced number of clusters, were excellent. 
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Figure 3.2 Plot of the frequency observed of an α-helix rotamer per helix length.  

After a six-residue α-helix, rotamers were only observed no more frequently than three times.  
  

Side chain sampling is performed using a 10º-resolution rotamer library constructed by Xiang and 

Honig75. The algorithm for side-chain optimization works by initially placing side-chains in a random 

rotamer state onto the backbone. Self-consistent optimization is then performed where all side-

chains but one are held fixed while the free side chain is minimized. With the exception of loop 

prediction in a perturbed native environment, the default of one round of side-chain randomization 

per entire loop minimization was found sufficient. When considering perturbed native 

environments, where the surrounding side chains are included in refinement, additional rounds of 

side-chain randomization/self-consistent optimization is performed separately to compare to 

predictions done without this extra sampling. The lowest energy side-chain rotamers are selected 

across any additional rounds of side-chain randomization. After self-consistent side chain rotamers 
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are selected, the complete loop, with both side chains and backbone atoms, is then energy 

minimized. Full details about side-chain optimization are described in our past publications51, 76.  

Scoring is done using an augmented form of the Optimized Potential for Liquid Simulations (OPLS) 

all-atom force field28-29, 76. For solvation, an implicit model was used based on the Surface 

Generalized Born model as described initially in Ghosh et al.31 A variable dielectric approach is used 

to treat polarization from protein side chains34. Additional corrections were added to the energy 

model to better account for π-π interactions, self-contact interactions, and hydrophobic interactions.  

The force field, solvation model, and all correction terms are discussed in greater detail in Li et al.30 

The protonation state of all titratable residues was set using the Independent Cluster Decomposition 

Algorithm of Li et al.77 

  

Since we evaluate our loop prediction method against published crystal structures, crystal-packing 

effects were taken into consideration. The crystallographic asymmetric unit, as well as all atoms from 

other surrounding unit cells that are within 30 Å, are included in the simulation. The coordinates of 

all copies of the asymmetric units are updated for steric clash checking and energy calculation 

throughout the course of the loop prediction. 

Construction of the helical dihedral library 

As a natural extension to the dipeptide dihedral library, we constructed a helical dihedral library to 

exploit the coupled torsions present in an α -helix. An initial set of PDB structures was obtained 

from the precompiled culled PDB lists from the PISCES web server69. The parameters used to cull 

the structures were a percentage identity cutoff of 30%, a resolution cutoff of 2.0 Å or better, and an 

R-factor cutoff of 0.25. The PDB list was obtained on October 16, 2007. The list contained 3900 

PDB structures. Using an internal PLOP implementation of the DSSP algorithm72, α-helices were 
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identified with lengths ranging from four to twenty residues. The φ,ψ  angles for the helical residues 

were extracted. We ignored values for the ω  dihedral and instead used 180º during loop buildup. 

Deviations from the trans conformation are permitted during loop minimization. The dihedral angles 

were rounded and binned to a 10º resolution. The frequency of each binned helical rotamer was 

counted per helix length. In structures containing homomultimeric proteins, the helix was only 

counted once. We did not include helical fragments from larger helices as part of the set of dihedrals 

for smaller helices. That is, the torsions in a 6-residue α-helix are kept separate from the torsions in a 

4-residue α-helix. This adherence to the use of only complete helices was rigidly followed 

throughout loop prediction. Specifically, loop buildup from both ends of the loop was done such 

that the helix was not divided between both loop halves. When predicting a subsection of a loop, as 

is done during hierarchical loop prediction, in any instance where a subsection of the helix was 

predicted, the dipeptide dihedral library from Zhao et al.37 was used instead. 

  

Initially, we sought to include all rotamers observed with a frequency above a set cutoff. However, 

this approach was problematic. Despite the large number of PDB structures, for large helices, many 

rotamer sets do not appear more than once. For example, in a 9-residue helix containing 18 dihedral 

angles φ,ψ( ) , a single 10º difference in any φ,ψ  angle would place that rotamer in a new bin. For 

helices of this length, a helical rotamer was not observed with a frequency greater than twice (Figure 

3.2). Beyond a six-residue α-helix, rotamers were observed no more frequently than three times. We 

therefore felt that there was no suitable frequency cutoff to use. Ultimately, we arbitrarily decided to 

set the library to contain 2× LengthHelix  rotamers and populated the library with the most frequent 

rotamers that conformed closest to ideal helical dihedral angles of φ,ψ( ) = −60o,−40o( ) . Any non-
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ideality in a helix was left to be predicted during loop minimization and the multiple stages of loop 

refinement described in the following section. 

Hierarchical Loop Prediction 

Hierarchical Loop Prediction was first described by Jacobson et al.51 in 2004 and then expanded by 

Zhu et al.36 in 2006. In short, multiple runs of PLOP are performed where increasing constraints are 

applied to subsequent rounds of loop predictions. The lowest energy loops from each PLOP run are 

passed onto subsequent, constrained rounds of refinement. The lowest energy loop across all PLOP 

runs and all constraints is considered the final structure.  

  

Hierarchical loop prediction is begun with an initial set of candidate loops that are predicted by 

running PLOP at discrete values of the overlap factor (ofac). In this work, we permitted the ofac to 

vary from 0.3 to 0.7 in increments of 0.05. The best 15 loops, in terms of energy, are passed onto a 

Ref stage. A Ref stage constrains the Cα atoms of any new prediction to lie within a set radius of the 

Cα coordinates of the previous stage. In this case, the Ref1 stage used a 4 Å radius. The best 20 loops 

from this stage are passed onto a Fix-n stage. In a Fix-n stage, we repredict a subset of the original 

target loop but use the output from a previous stage as the scaffold, holding a total of n terminal 

residues fixed. For example, in a Fix3 stage, we hold three terminal residues fixed, and repredict the 

interior loop residues that remain. There are a total of four possible ways to fix three terminal 

residues: 

1. Fix three N-terminal residues 

2. Fix three C-terminal residues 

3. Fix two N-terminal residues and one C-terminal residue 

4. Fix one N-terminal residue and two C-terminal residues 
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All four possibilities are explored when selecting the lowest energy loop from the Fix3 stage. In 

general, there are n+ 1 possible combinations for a given Fix-n stage. We ran a total of eight Fix 

stages from Fix1 to Fix8. The Fix1 stage passed the top 10 loops onto Fix2. Each subsequent Fix 

stage passed one less loop onto a subsequent stage so that the Fix8 stage passed only the top three 

predictions. Finally, a second Ref stage is run, Ref2, where a 6 Å Cα constraint is used. In total, taking 

into account all permutations in the Fix stages as well as the Init stage and Ref stages, there is a 

minimum of 334 PLOP runs per hierarchical loop prediction. The minimum number of PLOP runs 

can be exceeded by adaptively varying the ofac during hierarchical loop prediction, described in 

greater detail below. 

  

To accommodate our helical dihedral library, we modified hierarchical loop prediction method in 

two ways: 

1. The generation of our helical library was based on complete helices. To be precise, the 

helical library for four-residue helices is taken only from the coordinates of helices that are 

exactly four residues. We do not include in our four residue helical library segments of, for 

example, an eight-residue helix spanning four residues in length. As such, we do not 

construct our loops using a separate set of “partial” secondary structural elements. As a 

result of this, Fix stages that would constrain part of a helix, instead revert to using our 

general dihedral library for the individual PLOP run. 

2. The use of a helical library also resulted in a large number of individual PLOP runs that 

failed to produce any candidate helices. This can happen under normal circumstances, say, 

during a late Fix stage where the majority of the loop is kept constrained and only a small 

subset of the loop is resampled. Loop construction in these late Fix stages requires the 
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residue buildup to occur without violating our ofac criterion despite being in an environment 

made all the more crowded by the unconstrained segments of the loop. This problem 

becomes compounded when working with a helical library. Since loop buildup with a helical 

library appends the helix onto a nascent loop in a single step, a slight displacement of the 

preceding residue leads to a large displacement of the terminal end of the helix – a sort of 

lever effect. If this crude displacement of the terminal residue of a helix places the loop in a 

steric clash with the surrounding environment, the loop candidate could be rejected due to 

the ofac criterion. In these cases, the outcome of a loop prediction becomes all the more 

sensitive to the ofac parameter. To further decouple the effect the ofac has on a successful 

loop prediction, any individual PLOP run beyond the Init stage that fails to succeed past 

loop buildup is automatically rerun with a lower ofac down to the lowest ofac sampled during 

the Init stage. In a PLOP run, the rate-limiting factor is during side chain 

optimization/minimization, rather than during loop buildup. Restarting a PLOP job after a 

failed buildup stage is on an order of magnitude of one minute. Since this procedural 

augmentation can apply to loop-helix-loops as much as it can to other loops, this improved 

sampling adjustment was applied to all cases studied in this work, regardless of the dihedral 

library used.  

Calculation of RMSD 

The success of loop prediction was gauged by using the backbone RMSD calculated against the 

native, crystal structure conformation of the loop. RMSD was calculated by superimposing the 

protein backbone, excluding the loop, and using the N, Cα, and C coordinates of the loop to 

compute the deviations. Unless otherwise stated, we report the RMSD for the lowest energy 

predicted loop. 
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Calculation of the relative energy 

Similar to RMSD, at the conclusion of complete hierarchical loop prediction, we report the relative 

energy of our predicted structure against the energy of the minimized native. This relative energy is 

defined as ∆ E = Eprediction −Enative . A final structure that has a poor RMSD but a calculated energy 

that is erroneously superior to the native would thus have a negative ∆E and would indicate a failure 

of our energy model. Minimization of the target for comparison against predictions is necessary to 

permit a fair comparison between structures but is particularly important when comparing to crystal 

structures as the PDB structures obtained have, in all the structures examined in this chapter, no 

explicit hydrogen atoms. The minimization of the native was performed similarly to 

minimization/optimization of candidate loop structures as described above in the Single-Loop 

Prediction subsection of the methods. For the native, the target loop is first minimized followed by 

side chain sampling using the protocol described above in the Single-Loop Prediction section. For 

predictions done in a perturbed native environment, ∆E reports are still against the energy of the 

minimized native. For these cases, all additional surrounding residues that are included in the 

prediction are also minimized in the native to permit an accurate comparison. In instances when we 

used additional rounds of side chain sampling, the native loop, during minimization, was also 

permitted identical number of additional side chain sampling. 

Sequence based secondary structure prediction 

Loop prediction using the helical dihedral library requires the user to provide a range of loop 

residues, known as the helical bounds, over which to apply this library. To serve as an initial test of 

our method without the complication of uncertainty in the existence and size of a helix, we 

predicted loop-helix-loops from previously published crystal structures. In these experiments, the 

helical bounds were known a priori. After we had observed success using exact helical bounds, we 
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tested the robustness of this method in a more realistic setting where the helical bounds were 

supplied by popular sequence-based secondary structure prediction software. Specifically, we ran 

local copies of the secondary structure prediction packages SSPro441, 78 and PSIPRED40. The output 

of either of these programs is a secondary structure assignment across each of the residues 

contained in the protein chain of interest. We examined the secondary structure assignments only 

for the residues that spanned our particular loops. Often times, these assignments labeled more than 

one set of intra-loop residues as helical. In particular, the loops discussed in this chapter are 

sometimes bounded by larger helices and these secondary structure assignment algorithms had 

occasionally assigned the terminal residues of the loop to be a part of that larger flanking helix. In 

other cases, three, two or even a single intra-loop residue was assigned as helical. As the loop-helix-

loop prediction method described in this chapter is intended for α-helices (helices of four residues 

or larger), assigning less than four residues as helical is not useful for our purposes. Thus, for 

simplicity, the largest intra-loop helical segment predicted by SSPro4 or PSIPRED, spanning at least 

four residues, was used as the inputted helical bounds. When both PSIPRED and SSPro4 offered 

useable helical bounds, we performed loop prediction with both bounds separately and compared 

the results. 

Loop prediction in an inexact environment 

Unless otherwise noted, all loop predictions in this work were done by deleting the loop residues but 

leaving all surrounding side chains intact, thereby preserving the crystal structure environment. In an 

actual homology modeling experiment, the surrounding side chains are unlikely to be placed a priori 

in their correct native conformation. To test the effectiveness of our method in refining loops in an 

inexact environment, we followed the approach of Sellers et al.38 to perturb the surrounding side 

chains to a reasonable but non-native conformation. To do this, we ran multiple rounds of PLOP to 
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predict the loop of interest in the crystal structure and selected a loop with a backbone RMSD of no 

better than 3 Å. A list of surrounding residues is obtained by noting all residues that are within 7.5 Å 

of any candidate predicted loop, not just the one loop with a 3 Å RMSD. The union of the side 

chains from the surrounding residue list as well as the loop side chains is minimized with the 3 Å 

backbone RMSD loop held in place. At this point, the surrounding side chains are “biased” towards 

the 3 Å RMSD loop. This structure then provides the surrounding environment for subsequent tests 

of our loop prediction methods. 

Dipeptide Rotamer Frequency Score 

For a number of challenging cases, we experimented with the use of a new addition to our energy 

model that penalizes loop conformations that are constructed with seldom-observed dipeptide 

dihedrals. The dipeptide rotamer frequency-based scoring term employed a greatly expanded 

dipeptide rotamer library (garnered from ~7500 high-quality PDB structures) that incorporated the 

frequency of each rotamer in this subset of the PDB.  This information was used to penalize loop 

dipeptides whose combination of (φ,ψ)  angles fall in an extremely unpopulated region of the five-

dimensional dipeptide analogue to the well-known Ramachandran plot. The set of five angles for 

each dipeptide in the predicted loop, using a "sliding window" scheme, is compared against the new 

library to find the nearest dipeptide rotamer.  Two criteria determine whether a penalty will be 

applied to the dipeptide:  

 1. If the Euclidean distance between the loop dipeptide and the nearest rotamer in the library 

is greater than a certain, empirically determined cutoff. 

 2. If the total population of rotamers within a set radius of the loop dipeptide is below a 

certain threshold.  
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The form of this penalty term, its implementation, and its successes in improving loop prediction in 

crystal structure and homology model environments will be discussed in detail in an upcoming 

publication. This term was used in two situations: 

1. For all of the predictions in inexact environments. This is a substantially more challenging 

sampling and scoring problem, and the information contained in the dipeptide score can be 

expected to improve results systematically. 

2. For a small subset of the predictions in the native environment where difficulties in the 

standard prediction approach were encountered. 

To date, we have not found any cases where this term worsens results. However, more extensive 

tests are underway and will be presented in a subsequent publication 

 

3.3 Results and Discussion 

Description of Test Cases 

Application of the discriminating criteria used to select suitable LHL test cases yielded a set of 35 

loop-helix-loops of 16 or 17 residues in length. These loops exhibited a distribution of helix size as 

shown in Figure 3.3. The distribution indicates a diversity of helix sizes within a 16- or 17-residue 

loop. Although the helical library described in this work is only for α-helices, loops were included 

that contained 310 helices, either separate from an α-helix already present in the loop, or as the sole 

secondary structure of the loop. It is these former cases where a loop contains both a 310 helix with 

an α-helix that led to the non-zero frequency for helices of length three (Figure 3.3). 
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Figure 3.3 Distribution of secondary-structural elements within the test set of loops.  

Helices of length 3 were from 310-helices found in loops already containing an α-helix. Hairpin 
length includes the terminal hydrogen bonded residues as well as all residues in between.  
  

PDB 1W27 contains a noteworthy example of a multi-helical loop. The 17-residue loop, contains a 

4-residue 310 helix and 5-residue α-helix separated by a single residue, D302 (Figure 3.4). Evidently, 

residue D302 permits flexibility in the backbone to transition from one helical type to another. We 

explored the use of our α-helical library in three approaches: 1) Loop prediction given the α-helix as 

the helical bounds; 2) Loop prediction given the 310-helix as the helical bounds; 3) Loop prediction 

where the 310 and α-helix bounds are combined to yield a 10-residue “α-helix.” The results of these 

approaches are described in greater detail below. 
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PDB 2VPN was another case of a multi-helical loop. The 16-residue loop of interest is composed of 

a 4-residue α-helix and a 7-residue α -helix separated by a single residue, E102 (Figure 3.5). Residue 

E102 is kinked, according to DSSP, failing to form the periodic hydrogen bond expected of an α-

helix. As in the 1W27 case, we tried three approaches to predicting this loop.  

  

For β-hairpins, a set of 41 cases was collected satisfying the criteria described in the methods 

section. The size of the hairpin region ranged from 6 to 13 residues within loops up to 17 residues in 

length. Hairpin size is defined to be the number of residues from the start of the first β-strand to the 

end of the second β-strand, including all non-β residues in between. Hairpins occurred most 

frequently as either six or eight residues in length (Figure 3.3). However, since the formation of the 

coordinated hydrogen bonds is what is most challenging in loop-hairpin-loop prediction, we feel it is 

useful to describe the distribution of hydrogen bonds across our set of β-hairpins. Hairpins 

contained from four to eight hydrogen bonded residues with the number of coil/turn residues 

contained within the hairpin ranging from two to seven residues (Figure 3.6). Thus, this test set of β-

hairpin containing loops required the successful prediction of at least one specific hydrogen bond 

spanning at most seven residues. 

Predictions performed in the crystal structure environment 

A total of 35 loop-helix-loop (LHL) cases and 41 beta-hairpin cases were predicted in the crystal 

structure environment. In the crystal structure environment, the loop of interest is deleted and 

rebuilt while the surrounding residues remain fixed. In this work, we compare the predictions done 

using a helical dihedral library versus predictions performed using the standard PLOP dihedral 

library37. 
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Loop-Helix-Loops predicted using the dipeptide dihedral library versus the helical dihedral library 

with exact helical bounds 

As a first test of the helical dihedral library, we performed loop prediction on the set of 35 LHL 

cases either with the previous dipeptide dihedral library37 or with the helical library described in this 

work. Experiments such as these were primarily meant to ensure that in the absence of uncertainty 

in the size and location of the helix, our helical library method could succeed. A prediction 

performed where the helix is postulated from secondary structure prediction software is our primary 

methodological algorithm to be used in realistic prediction situations, and is discussed later. Table 

3.1 provides a summary of the results as a function of helix length. Compared to the dipeptide 

dihedral library, the helical dihedral library consistently displays improved accuracy, with mean and 

median RMSD always below 1 Å.  No strong correlation is noted between the size of the internal 

helix and the results from either dihedral library. This suggests, consistent with past results30, 36-37, 

that the difficulty in loop prediction lies with the size of the loop, rather than the secondary 

structure contained in the loop, at least for helices up to eight residues in length.  
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Helix 

Length 

Number 

of Cases 

Dipeptide Dihedral Library Helical Dihedral Library with Exact 

Helical Bounds 

 RMSD     (Å) ∆E (kcal/mol) RMSD     (Å) ∆E   (kcal/mol) 

Median Mean 

 

Median Mean Median Mean Median Mean 

4 12 0.53 1.29 3.89 12.39 0.55 0.99 -0.02 -3.18 

5 7 0.91 1.09 -7.94 -6.19 0.51 0.80 -3.74 -3.41 

6 4 1.00 0.95 2.06 11.11 0.62 0.77 2.47 2.75 

7 5 0.55 1.94 0.51 5.19 0.79 0.91 2.52 1.59 

8 5 0.81 0.98 4.33 6.66 0.36 0.41 -4.22 -2.18 

 

Table 3.1 Comparison of Loop-Helix-Loop predictions with the dipeptide dihedral library 
versus the helical dihedral library.  

The two noteworthy multi-helical loops found in PDB 1W27 and 2VPN are excluded in this table. 
The ∆E value compares the energy of the lowest energy loop against the crystal structure loop 
coordinates, minimized using our energy function. The RMSD reported is of the lowest energy loop 
prediction and corresponds with the ∆E. 
  

For LHLs containing a four-residue helix, both dihedral libraries appear to perform similarly. As 

might be expected, the helical library shows the greatest advantage for predictions containing an 

eight-residue helix with superior median and mean RMSD values by around 0.5 Å. It is likely that 

the coordinated hydrogen bonds that need to be formed are easily generated when explicit helical 

dihedrals spanning the precise residues are deliberately introduced during sampling. This seems 

particularly relevant for the LHL in PDB 2YR5. This is a 16-residue loop containing a 7-residue α-

helix (Figure 3.7).  
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The dipeptide dihedral library produces a 7.26 Å RMSD loop with a ∆E of -0.9 kcal/mol relative to 

the minimized crystal structure, while the helical dihedral library leads to a 1.11 Å RMSD loop with a 

∆E of -18.34 kcal/mol. The dipeptide dihedral library clearly fails to form the native helix, forming 

instead a loop that protrudes out in solution. The prediction with the helical library is dramatically 

superior but forms a larger nine-residue α-helix. Evidently, the shorter seven-residue α-helix “seeds” 

the larger helix. Considering the large negative ∆E energy relative to the native, these additional two 

helical residues may be the result of an energy error incorrectly favoring formation of additional 

helical residues. While slightly detrimental to the accuracy of this particular loop prediction, as is 

discussed in greater detail below, the use of a shorter helix to “seed” a larger one is later exploited to 

find the lowest energy loop.  

  

Two PDB structures, 1W27 and 2VPN, each contain a multi-helical loop-helix-loop that still 

satisfied the criteria stated above for selecting loops (Figure 3.4, Figure 3.5). These cases provided an 

opportunity to explore the effect of the helical dihedral library in complex situations. We attempted 

to predict the loop by supplying as helical bounds either of the two helices or treated the helices as 

combined, disregarding the non-helical residues dividing the helices. Table 3.2 describes the result of 

these loop predictions. In both cases, the helical library produced the lowest energy conformation 

with sub-Ångström RMSD. 
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PDB 1W27 2VPN 

Helical 

Bounds 

Supplied 

None 4-res 

310-

helix 

5-res 

α -

helix 

Combined 

10-res 

“helix” 

SSPro 

truncated  

α-helix  

None 4-res 

α -

helix 

7-res α -

helix 

Combined 

12-res 

“helix” 

RMSD   (Å) 2.69 1.50 0.77 1.98 0.34 0.42 0.41 0.37 0.38 

∆E(kcal/mol) 38.96 22.27 -3.43 24.32 -12.19 2.01 11.08 -9.69 0.23 

 

Table 3.2 Prediction of multi-helical loops using various loop bounds.  

When no helical bounds were supplied, loop prediction was performed using the dipeptide dihedral 
library. The 1W27 prediction using the 4-res 310-helix for helical bounds still employed the α-helix 
dihedral library described in this work. The combined helical bounds of 1W27 and 2VPN consider 
both helices to be one large α-helix during loop buildup. The truncated SSPro helix is equivalent to 
the 5-res α-helix but truncated one residue at the helical N-terminus. ∆E refers to the change in 
energy of the predicted loop relative to the native conformation. 
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Figure 3.4 Multihelical loop in PDB 1W27.  

The loop bounds are Q295 to H311. Residues preceding and following the helices are colored green. 
The five-residue α-helix is colored blue, while the four-residue 310-helix is colored cyan. Residue 
D302, the kinked residue dividing the two helices, is colored red. We attempted separately to use the 
helical bounds of either the α-helix or the 310-helix or treated all 10 residues as one “α-
helix”.SSPro4, a sequence-based secondary structure prediction program, assigned the four residues 
from L304-K304 as helical. The sequence annotation was generated using ESPript. This loop 
conformation and all other similar illustrations were produced using Pymol.  
 

 

Figure 3.5 Multihelical loop in PDB 2VPN.  

The loop bounds are S97 to G112. Residues preceding and following the helices are colored green. 
The seven-residue α-helix is colored cyan, while the four-residue α-helix is colored blue. Residue 
E102, the kinked residue dividing the two helices, is colored red. We attempted separately to use the 
helical bounds of either the seven-residue helix or the four-residue helix or treated all 12 residues as 
one “α-helix”.  
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Figure 3.6 Distribution of hairpin characteristics.  

Hairpins contained from four to eight hydrogen-bonded residues and with the internal turn/coil 
residues spanning a length from two to seven residues.  
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Figure 3.7 Loop-helix-loop predicted in PDB 2YR5.  

The native loop coordinates are colored blue with the seven-residue α-helix colored teal. The 
prediction using the helical dihedral library is shown in red with the resulting nine-residue α-helix 
colored in pink. The loop prediction performed using the dipeptide dihedral library is shown in 
green. Despite supplying the exact seven-residue helical bounds during loop prediction with the 
helical library, what resulted was a slightly larger helix, evidently “seeded” by the small seven- residue 
α-helix.  
 

Loop-Helix-Loop prediction based on helical bounds derived from SSPro4 and PSIPRED 

In the previous section, exact helical bounds were used which were taken from the output of DSSP 

when applied to the crystal structure. Such accurate information will not be known a priori. Indeed, 

significant variability in the definition of secondary structure assignment has been known to affect 

the precise bounds of secondary structure, especially as the number of secondary structure 

assignment definitions is now legion79. To simulate the effectiveness of using the helical dihedral 
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library in more realistic computational experiments, and to further gauge the sensitivity of our 

method to accurate knowledge of the helical bounds, we applied the popular sequence-based 

secondary structure prediction packages SSPro441, 78 and PSIPRED40 to our set of 35 loop-helix-

loops and attempted loop prediction using these predicted helical bounds. The results from these 

secondary structure prediction packages, excluding the multi-helical loops of PDB 1W27 and 2VPN, 

are presented in Table 3.3. 

 

Helical Bounds Predicted PSIPRED SSPro4 

Exact 2 14 

Truncated 6 2 

Overlapping 6 9 

Non-overlapping 1 1 

No Helix 18 7 

Total 33 33 

 

Table 3.3 Results of sequence-based secondary structure prediction packages PSIPRED 
and SSPro4 on our set of LHLs, excluding cases 1W27 and 2VPN, the multi-helical loops.  

Exact helical bounds are those that are in perfect agreement with the bounds assigned by DSSP on 
the crystal structure. Truncated helical bounds are those that lie within the DSSP assigned bounds. 
Helical bounds are considered overlapping if the secondary structure predicted helix has at least a 
single residue overlapping the exact bounds. No helix is considered predicted if the entire loop-
helix-loop lacks any helical assignments greater than three residues. 
  

Comparing the two packages, it would appear that SSPro4 could more reliably find exact or 

overlapping helical bounds compared to PSIPRED, however the two methods are complementary. 

For example, SSPro4 fails to find any helix in the LHL in PDB 3LY0, while PSIPRED found a 

truncated helix whose bounds are contained within the DSSP results. We must caution the reader 

that we do not attempt here to perform a rigorous evaluation of secondary structure prediction 
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algorithms. For that, we refer the reader to Koh et al. 200380 and Pirovano and Heringa, 201042. 

Rather, we simply selected two popular and easily available packages for our study. Alternative 

secondary structure prediction algorithms may be just as valid, as is using more than two packages to 

find the helical bounds. However, the fact that in a large set of cases, the exact, DSSP helical bounds 

were identified provides some legitimacy in interpreting the results from the previous section – 

accurate knowledge of a helix within an LHL is not unreasonable. 

  

For the two multi-helical loops in PDB 1W27 and 2VPN, the two secondary structure prediction 

methods contrast. For the LHL in PDB 1W27 (Figure 3.4), PSIPRED correctly identifies the five-

residue α-helix but fails to predict the four-residue 310-helix. SSPro4 also fails to identify the 310-helix 

but the α-helix is incorrectly predicted to be four residues, truncated at the N-terminus. In 2VPN 

(Figure 3.5), PSIPRED predicts a combined helix that spans both α-helices and extends one residue 

further towards the C-terminus. Contrastingly, SSPro4 considers the entire LHL to be one large 

helix – a result that is inadequate for our helical dihedral library approach. In both of these cases, 

PSIPRED offers a reasonable set of helical bounds for use in our method. 

 

Table 3.4 summarizes the results of LHL prediction using the helical bounds, when available, from 

PSIPRED and SSPro4. In general, the helical bounds provided by the sequence-based secondary 

structure prediction methods SSPro4 and PSIPRED are effective in loop-helix-loop prediction. 

Although the statistics might suggest that the fewer cases afforded by PSIPRED result in higher 

quality predictions, we refrain from making such a conclusion, as it may be necessary to also take 

into account the size of exact helix studied. This does illustrate, however, that sequence based 

secondary structure assignments are useful to our method when performing three-dimensional loop 

prediction. 
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Method Number of Successful Cases RMSD     (Å) ∆E (kcal/mol) 

Median Mean Median Mean 

PSIPRED 13 0.44 0.49 -1.37 -1.54 

SSPro4 25 0.60 0.91 1.05 0.65 

 

Table 3.4 LHL prediction using the helical bounds available from PSIPRED and SSPro4.  

Multi-helical cases 1W27 and 2VPN are included in these statistics. Cases where the helical bounds 
provided by sequence-based secondary-structure prediction are not useable in our method are 
excluded. Further, cases where no loops were able to be predicted with the supplied helical bounds 
are also excluded. 
  

It should be mentioned that five cases were found where the helical bounds offered by either 

PSIPRED or SSPro4 resulted in failed loop predictions where not a single predicted loop was 

constructed. In four of these five cases (PSIPRED bounds: PDBs 1N45, 1OAO, 2YR5; SSPro4 

bounds: PDB 3GWI), the sequence-based secondary structure assignment places the helix as part of 

the N or C terminus. It would appear that in these cases, the sequence-based assignment is 

extending the larger helix that forms the boundary of the loop-helix-loop into what DSSP, and the 

criteria used in this chapter, consider to be part of the loop. Although in practice, assigning the 

terminal residues of a loop to be helical is not fatal – PSIPRED and SSPro4 both place a helix on 

the C-terminus of the LHL in PDB 1HN0 and yet a sub-0.5 Å RMSD loop is predicted – loop 

prediction without any non-helical residues to precede the helix is extremely difficult.  

  

In these situations, the lever effect, described previously in the single-loop prediction section of 

Materials and Methods, becomes very pronounced. As PLOP constructs the loop in a tree-based 

method, where the tree is split into additional branches as more loop residues are predicted, placing 

the helix at a loop terminus means there are no preceding branches to rely upon. Whatever few 
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positions the leading residue of the helix is placed at are set entirely by the sparse number of helical 

rotamers present in our library. In practice, this means that all the rotamers in our helical rotamer 

library for a given helix size are easily rejected. Although in principle, one could reduce the ofac 

parameter to permit greater steric overlap between a loop residue and the surrounding environment, 

in practice, the ofac was rarely seen as the limiting factor. The one case that permitted loop prediction 

after adjusting the ofac was the PSIPRED bounds for 1N45, however, we had to set the ofac to an 

abnormally low value of 0.20, meaning enormous steric clashes were permitted. Even still, the 

output of this loop prediction only produced a 5.69 Å RMSD loop with a ∆E of 9.30 kcal/mol.   

  

In all cases, nascent loop segments were screened out when the helix placed a residue too far from 

the body of the protein to what has been empirically observed across published crystal structures 

containing protein loops. Or instead, loops were screened when the distance between the loop 

segment containing the helix and the opposing end of the loop is considered too great to be 

spanned by whatever intermediate residues remain. In other words, the helix places one half of the 

loop too far away for loop closure to be possible. These loop screening methods are described 

briefly in the Materials and Methods section, and in greater detail in Jacobson et al.51 Setting the ofac 

to an arbitrary low value has no effect on these screens – the helical rotamer library simply does not 

contain a suitable rotamer to permit loop prediction with the supplied helical bounds. Although 

there is certainly an argument to be made for increasing the size of the helical library, as evidenced 

from our other successes, the size of the library does not appear to be an impediment to loop-helix-

loop prediction. Rather, the practitioner of our method might gain insight by noting that if no 

suitable rotamer is present in the library, it may be prudent to consider alternative helical bounds. 

Indeed, none of these terminus-bounded helices are the crystal structure helical bounds – we 

avoided such cases by our definition of loop-helix-loops. Determining the helical bounds from the 
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output of our previous dipeptide-dihedral library method, as discussed in greater detail below, may 

be a fruitful alternative. The multi-helical loop of 2VPN (Figure 3.5) is one slight exception. In this 

case, PSIPRED combines the 4-residue α-helix and the adjacent 7-residue α-helix into one large 

helix and even extends the helical bounds further by one additional residue to produce a 13-residue 

helix. SSPro4 simply considers the entire loop-helix-loop to be one large helix, an outcome useless 

for our helical dihedral library. In this case, the helical bounds provided by PSIPRED produce 

independent N- and C-terminus loop segments but closure is not achieved. This result occurs 

regardless of how low we set the ofac. Again, extending the size of the helical library may offer a 

solution to this case, but more likely, the helical bounds provided deviate too greatly from the native 

structure to permit reasonable loop prediction. 

 

Truncated helical bounds from sequence-based secondary structure prediction or derived from 

inspection of coordinates predicted with the standard PLOP dihedral library 

In a few cases, sequence-based secondary structure prediction methods produced a helix that was 

truncated relative to the native helical bounds, yet these cases performed as well, if not better, than 

the native bounds. For example, PDB 1W27, one of the multi-helical loops, is composed of a four-

residue 310-helix and an adjacent five-residue α-helix (Figure 3.4). SSPro4 fails to identify the 310-

helix but predicts the α-helix to be truncated by one residue at the helical N-terminus, relative to the 

exact helical bounds (Figure 3.4). PLOP was able to predict this LHL with an RMSD of 0.77 Å and 

a ∆E of -3.43 kcal/mol when using the native, five-residue α-helix. However, the SSPro4 bounds led 

to a predicted LHL with a superior RMSD of 0.34 Å and a ∆E of -12.19 kcal/mol. Table 3.2 

summarizes these results. These loop predictions are illustrated in Figure 3.8. 
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Figure 3.8 Loop-helix-loop prediction for the multihelical loop in PDB 1W27.  

The native loop is shown in red. Loop prediction using the exact five-residue α-helix is shown in 
green. Loop prediction using the truncated, four residue α-helix provided by SSPro4 is shown in 
blue. Loop prediction using the truncated four-residue α-helix bounds appears to permit improved 
sampling of the α-helix. Notice that the greatest discrepancy between the two loop predictions 
occurs along the α-helix near the C-terminus.  
  

Consistent with our past discussion, the smaller helix may permit less of a lever effect and thereby 

enable finer sampling of the α-helix. It should be noted, however, that the absence of any helical 

bounds, that is, using the previous dipeptide dihedral library from our previous work, results in a 

2.69 Å RMSD prediction (Table 3.2). Thus the small helix is shown to also seed our hierarchical 

sampling method to more heavily explore conformational space near α-helices. 

  

The LHL in PDB 2YR5 is another case where truncated helical bounds led to a superior prediction. 

However, this is one of the cases where the helical bounds provided by both PSIPRED and SSPro4 

were attached to the LHL C-terminus and no loops emerged from our attempts at predicting this 

LHL with such helical bounds. Rather, we attempted LHL prediction using as helical bounds all 
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possible four-residue α-helices that lie within the 10-residue α-helix suggested by PSIPRED and 

SSPro4 – a set of seven possible helical bounds. Both PSIPRED and SSPro4 suggested identical 

helical bounds. The results from these predictions are shown in Table 3.5. 

 

Helical Bounds RMSD (Å) ∆E (kcal/mol) 

None 7.26 -0.9 

B:248 – B:254 (Native bounds) 1.11 -18.34 

Bounds derived from PSIPRED/SSPro4 Truncation 

B:246 – B:249 1.11 -6.2 

B:247 – B:250 1.11 -18.72 

B:248 – B:251 1.11 -18.49 

B:249 – B:252 1.11 -18.43 

B:250 – B:253 1.10 -18.18 

B:251 – B:254 1.10 -18.28 

B:252 – B:255 4.27 28.57 

 

Table 3.5 Prediction results from the LHL in PDB 2YR5.  

LHL prediction without helical bounds refers to the use of the dipeptide dihedral library exclusively. 
The native bounds are those provided by DSSP analysis on the crystal structure. The 
PSIPRED/SSPro helical bounds are from B:246 and B:255 and bracket the seven truncation 
attempts shown. The lowest energy prediction across all helical bounds is highlighted in red. 
 

The predictions indicate that nearly every possible four-residue 𝛼-helix attempt produces results that 

are nearly identical to the LHL prediction performed using the native, seven-residue α-helix. While 

knowledge of the precise, native helical bounds may not be available, we demonstrate that we can 

still exploit information provided by sequence-based secondary structure prediction, even if that 
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information does not perfectly match the DSSP secondary structure identification obtained from the 

crystal structure of the native conformation. 

  

In total, we attempted all possible four-residue α-helix bounds for all LHL cases where the lowest 

energy loop was found only by using the native helical bounds. This was performed in order to 

discount the concern that precise a priori information about a helix must be known. In many cases, 

information about a helix was provided by sequence-based secondary-structure prediction. 

However, as we show in Table 3.1, providing no helical bounds and using the dipeptide dihedral 

library can still lead to low RMSD predictions and the formation of a helix. From these cases where 

a helix four-residues or larger was produced ab initio, we also applied our truncation sampling 

method across the predicted helix and took the lowest energy loop. When the dipeptide-dihedral 

library simply produced a four-residue helix, we reattempted loop prediction using the helical 

dihedral library with this previously found 4-residue helix as bounds. The lowest energy loops 

predicted from these experiments are shown in Table 3.6. In general, the truncation method 

produces helices that, on their own, are quite accurate with sub-Ångström RMSD routinely reported. 
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PDB RMSD (Å) ∆E (kcal/mol) 

1HN0 0.31 -2.77 

1Q1R 0.30 -8.07 

1WOV 0.95 -6.08 

2EX0 1.74 0.91 

2FHF 0.62 -8.02 

2II2 0.35 -3.4 

2J9O 1.55 2.65 

2QMC 0.49 -3.05 

2VPN 0.22 -11.94 

2YR5 1.11 -18.72 

3GWI 0.53 3.77 

Mean 0.80 -4.28 

Median 0.58 -3.23 

 

Table 3.6 Result of LHL prediction using truncated helical bounds.  

All possible 4-residue helical bounds that lie within bounds provided by sequence-based secondary 
structure prediction or by analyzing the results from the dipeptide-dihedral based predictions were 
used. What is shown is the lowest energy prediction across all helical bounds attempted. 
 

Creation of a systematic method for predicting loop-helix-loop regions 

We have described above a number of different approaches to predicting LHL regions, each of 

which exhibits significant success for a subset of test cases. We briefly enumerate these methods 

below: 

1. Normal loop prediction, without any use of the helical rotamer library. 
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2. Use of the rotamer library with helical bounds specified by the results of either SSPro or 

PSIPRED secondary structure prediction (this leads to two separate calculations). 

3. Reprediction of the loop subsequent to normal loop prediction, using as helical bounds 

helical regions forming spontaneously in the normal loop prediction simulation. 

4. Truncated helix loop prediction where all possible four-residue helixes that can fit within 

previously obtained helical bounds are explored. 

Our final algorithm is a composite method in which all of the above calculations are performed for 

each loop, and the lowest energy prediction is selected as the predicted result. The computational 

cost of this composite method is roughly 4X that of one normal loop prediction. In return, one 

achieves a remarkably high level of reliability as is shown in Table 3.7 below.  The vast majority of 

predictions are sub-Angström, an exceptionally low level of error for loops of this length and 

complexity.  Only one loop has an RMSD greater than 2A, the loop in PDB 2O70.  We discuss this 

case further below, but in essence neither normal loop prediction, nor any of the secondary structure 

prediction methods, predict a helix in the relevant region. When the native helix is seeded into the 

calculation, a superior prediction is returned.  Thus, this is a sampling problem, which we can hope 

to solve by improving the sampling algorithm.  However, with the current approach, such sampling 

errors are very infrequent. 

  

Arguably, the results from predictions with the native helical bounds rely on information that may 

not be precisely known in a homology modeling experiment. As such, we also report in Table 3.7 

the RMSD of the lowest energy loop prediction across all sampling methods. For comparison, 

results of LHL prediction using helical bounds taken only from the native PDB are shown in the 

right half of Table 3.7. 

 



 63 

 
 

PDB 

Helical Bounds Identified Without DSSP Exclusively DSSP Identified Helical Bounds 

Method RMSD (Å) ∆E (kcal/mol) RMSD (Å) ∆E (kcal/mol) 

1BKR SSPro4 0.55 1.05 0.55 1.05 

1E3D SSPro4 0.55 -1.1 0.55 -1.10 

1HN0 PSIPRED 0.35 -5.51 0.3 0.22 

1L5W SSPro4 0.4 -3.74 0.4 -3.74 

1LLF PSIPRED 0.44 -5.53 0.45 -5.5 

1N45 Dipeptide 0.36 -4.22 2.05 12.55 

1N7O SSPro4 0.4 -1.18 0.4 -1.18 

1O7E* SSPro4 0.37 3.34 0.37 3.34 

1OAO SSPro4 0.49 -80.01 0.49 -80.01 

1OX0 Dipeptide 1.35 -13.23 0.58 -8.7 

1Q1R Truncate 0.3 -8.07 0.3 -8.07 

1QMY SSPro4 1.27 -2.67 1.27 -2.67 

1SU8 Dipeptide 0.43 2.24 1.45 18.65 

1W27 SSPro4 0.34 -12.19 0.77 -3.43 

1WOV Truncate 0.95 -6.03 0.67 -2.88 

1ZX0 Dipeptide 1.04 11.2 1.81 20.12 

2DEB Dipeptide 1.35 -10.14 1.55 8.93 

2EX0 PSIPRED 0.44 -0.86 0.33 -4.4 

2FHF Dipeptide 0.54 -8.7 0.54 -10.16 

2II2 Truncate 0.35 -3.4 0.36 -4.22 

2J9O Truncate 1.55 2.65 1.55 2.65 

2JA2 Dipeptide 0.81 0.13 0.72 1.15 

2JDI SSPro4 0.51 15.02 0.51 15.02 

2O70 Dipeptide 3.24 -12.42 1.71 -15.09 
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2P0W Dipeptide 0.47 -7.94 0.51 -6.96 

2QMC Truncate 0.49 -3.05 0.49 -3.05 

2RJ2 PSIPRED 0.31 -1.37 0.57 4.72 

2V36 Dipeptide 0.18 -1.22 0.25 -0.37 

2VPN Truncate 0.22 -11.94 0.37 -9.69 

2WEU Dipeptide 0.91 -10.24 1.73 12.19 

2YR5 Truncate 1.11 -18.72 1.11 -18.34 

3CWW SSPro4 0.28 -12.04 0.27 -10.71 

3GWI Truncate 0.53 3.77 0.38 7.28 

3HL0 PSIPRED 0.93 -2.04 0.39 2.52 

3LY0 PSIPRED 0.54 1.28 0.79 9.14 

Mean  0.70 -5.91 0.76 -2.31 

Median  0.50 -3.57 0.55 -1.74 

 

Table 3.7 Results of all LHL predictions independent of helical bounds derived from 
analysis of the crystal structure as well as the results using bounds derived exclusively from 
the crystal structure.  

By sampling with alternate helical bounds derived from sequence-based secondary-structure 
prediction and/or the truncation method, the LHL prediction statistics are slightly superior to 
predictions using helical bounds derived from the output of DSSP. The four cases that are inferior 
to LHL prediction with exact DSSP helical bounds are highlighted in red. Only one case, 2O70, has 
an egregiously poor RMSD. The LHL in PDB 1O7E was an exception in that the low Å RMSD 
reported herein was only produced by introducing the native helical dihedrals into our helical 
dihedral library. 
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Overall, by exploring helical bounds provided by sequence-based secondary-structure prediction 

methods, as well as using the truncation method, we were able to predict LHLs with slightly superior 

accuracy than if we were to rely on the DSSP identified helical bounds. However, there were four 

cases where we were unable to produce a prediction that was superior to approach using the DSSP-

based bounds. Three of the four predictions are 0.11 Å from the DSSP results and can be left as 

acceptable.  

  

The only egregiously inferior prediction was for the LHL in PDB 2O70. Here, the use of the DSSP-

based helical bounds led to a 1.71 Å RMSD prediction compared to a 3.24 Å RMSD prediction 

performed solely using the dipeptide dihedral library – that is, without any supplied helical bounds 

(Table 3.7). Evidently, this LHL is a challenge for sequence-based secondary-structure prediction as 

well since neither PSIPRED nor SSPro4 predict there being any helix at all within the LHL. 

Cendron et al., 2007 argue that the sequence of PDB 2O70, an OHCU decarboxylase from Danio 

rerio (zebrafish), lacks homology with other known amino acid sequences81. This may have been the 

case in early 2007 but evidently is now longer so. In June 2007, the crystal structure of Arabidopsis 

thaliana OHCU decarboxylase was published (PDB: 2Q37), and in 2010, the Klebsiella pneumoniae 

structure (PDB: 3O7I) was deposited in the PDB82-83. However, in these two more recent structures, 

the five residues comprising the 𝛼-helix are not conserved and the more homologous eukaryotic 

2Q37 structure fails to form a helix at this position. It seems reasonable then that PSIPRED and 

SSPro4 would fail to identify this helix.  

  

With respect to size of our helical dihedral library, the LHL in PDB 1O7E posed the only challenge. 

In the above Table 3.7, we report the prediction results when using an augmented helical dihedral 
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library containing the native dihedrals for the helix. In the absence of this addition to our library, the 

LHL prediction led to a sampling error with an RMSD of 2.09 Å and a 16.99 kcal/mol ∆E 

compared to a 0.37 Å RMSD and 3.34 kcal/mol ∆E with the augmented library. As discussed in the 

methods section, our helical dihedral library is populated with rotamers that conform close to 

ideality. This approach fails here and seems likely due to the large discrepancy from ideal φ,ψ  

angles for the two terminal residues of the helix. While we expect angles near φ,ψ( ) = −60o,−40o( ) , 

the torsions for two of the N-terminus residues of the helix, A223 and G224, are 

φA223,ψA223( ) = −68o,−20o( ) and φG224,ψG224( ) = −104o,1o( ) ϕ!""#,ψ!""# = -‐104!, 1! . In 

particular, the terminal glycine residue poses the largest problem. From this limited case, there may 

indeed be utility in further expanding our helical dihedral library, but even in its current 

implementation, the difficulty in this LHL case appears anecdotal. 

 

The ability of the energy model to robustly pick out the correct loop as being lowest in energy 

provides new confirmation of the quality of our latest generation model, supporting the results 

obtained in Li et al., for long loop regions without secondary structure elements embedded30.  It is 

true that phase space available to the loop is significantly restricted when the native environment is 

(as here) retained; nevertheless, previous results from our group and others show that it is quite easy 

to generate grossly incorrect predictions (with substantial energy errors) with an inferior scoring 

function.  The results discussed below in which surrounding side chains are allowed to move, in 

which sub-Ångström results are uniformly obtained, provides further evidence of scoring function 

accuracy and robustness. 
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Hairpins predicted using the standard PLOP dihedral library 

In addition to loop-helix-loops, we also attempted prediction of, what could be termed, loop-

hairpin-loops as another challenge of loop prediction containing local secondary-structure.  

 

The results from loop-hairpin-loop prediction, arranged by hairpin length, are shown in Table 3.8, 

and the complete results for all 41 hairpin predictions are provided in Table 3.9. 

 

Hairpin Length Number of Cases Dipeptide Dihedral Library 

 RMSD (Å) ∆E (kcal/mol) 

Median Mean Median Mean 

6 11 0.41 1.07 -5.61 -5.05 

7 2 1.13 1.13 -21.38 -21.38 

 8* 16 0.64 0.90 -6.47 -6.77 

9 7 0.51 0.89 -5.00 -5.74 

10 2 0.42 0.42 -7.32 -7.32 

11 1 0.53 0.53 -10.55 -10.55 

12 1 0.30 0.30 -3.06 -3.06 

13 1 0.44 0.44 -0.04 -0.04 

 

Table 3.8 Results of loop-hairpin-loop predictions using the dipeptide dihedral library.  

The ∆E value compares the energy of the lowest energy loop against the crystal structure loop 
coordinates, minimized using our energy function. The RMSD reported is of the lowest energy loop 
prediction. * - Of the eight-residue hairpins, one of the cases, the loop-hairpin-loop as part of PDB 
2ZBX, initially reported the best structure as that with a 17.29 Å RMSD. The results for this 
prediction were rescored, using the RFS, leading to a 1.02 Å prediction being considered the lowest 
in energy and was used in the statistics reported in this table.  This rescoring is discussed in detail in 
the text. 
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PDB Loop Length Hairpin Length RMSD (Å) ∆E (kcal/mol) 

1C7N 13 8 0.69 -3.34 

1F0L 11 6 0.41 -1.71 

1GWI 15 8 0.64 -9.05 

1GYH 14 9 0.38 -3.18 

1LLF 11 6 1.69 -5.61 

1NVM 15 9 0.51 -9.55 

1O5K 11 6 0.17 -10.79 

1TC5 15 8 1.08 1.69 

1U60 14 8 0.47 -12.09 

1U8V 13 9 0.33 -1.05 

2BS2 15 9 0.6 0.03 

2C0D 11 7 0.29 -10.5 

2CIU 15 10 0.29 -7.11 

2IJ2 16 9 0.61 -7.83 

2O36 12 9 3.61 -5 

2OKX 16 8 2.88 -6.87 

2PB2 13 9 0.21 -13.6 

2R2N 8 6 0.24 -6.21 

2RFG 11 6 0.63 -5.61 

2SLI (A: 177 – 190) 14 6 0.26 -0.93 

2SLI (A: 236 – 249) 14 8 0.47 -8.88 

2WIY 16 8 0.63 -2.36 

2WM5 15 8 1.14 -18.43 

2YR5 13 6 0.63 -10.95 

2YWN 17 13 0.44 -0.04 

2ZBX 15 8 1.02 4.70 
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2ZWA 16 11 0.53 -10.55 

2ZYO 8 6 0.36 -1.32 

3A9S 12 6 0.18 -4.65 

3BF7 11 6 0.98 -9.1 

3BJE 12 8 0.34 -3.33 

3CSS 17 12 0.30 -3.06 

3CU2 11 8 0.38 -3.71 

3EGW 12 8 0.49 -10.12 

3EI9 15 8 2.12 -2.04 

3EJA 15 7 1.97 -32.25 

3F8T 14 10 0.54 -7.52 

3FAU 13 6 6.21 1.33 

3GW9 15 8 0.51 -6.06 

3HVW 16 8 0.47 -11.81 

3LID 10 8 1.02 -16.62 

 

Table 3.9 Results of all loop-hairpin-loop predictions.  

For PDB 2SLI, two hairpins satisfying the criteria described in Materials and Methods were found. 
Those predictions occurred for the chain A residues 177 - 190 and 236 - 249. 
 
 

Similar to the results for loop-helix-loop predictions, we observe no correlation between the size of 

the hairpin and the RMSD of the predicted loop-hairpin-loop. We note however that one of the 

eight-residue hairpin cases produced a large discrepancy between the median and the median (Table 

3.8). This case is part of PDB 2ZBX and led to an RMSD of 17.29 Å with a surprising ∆E of -

177.74 kcal/mol. It should be noted that the second best case has an acceptable RMSD of 1.02 Å 

and a ∆E of -10.91 kcal/mol. Of course, we cannot choose this 1.02 Å loop as the best case a priori 
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as determination of the best loop is made purely on energetic grounds. The apparent lowest-energy 

loop and the native are shown in Figure 3.9. 

 

 

 

Figure 3.9 Loop-hairpin-loop prediction for PDB 2ZBX.  

The native loop is shown in gray while the predicted loop is shown in green.  

 

However, it was observed that the dihedrals in the predicted loop occupy regions of dipeptide-

dihedral space φ1,ψ1,ω,φ2,ψ2( )  that are poorly populated across a set of high quality PDB 

structures. It became possible in this case, and in other cases not discussed in this work, to identify 

the more “native-like” loop by introducing a dipeptide-dihedral rotamer frequency-based scoring 

(RFS) term that penalizes structures with non-native dipeptides confirmations. The details of the 

RFS will be discussed in a future publication. We applied this penalty term to this loop-hairpin-loop 

case. 
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Application of the penalty term ranks the 1.02 Å RMSD prediction lower in energy than the 17.29 Å 

RMSD prediction (Table 3.10). Aside from 2ZBX, five hairpin cases remain where the predictions 

remain at around 2 Å or worse. These cases are highlighted in red in Table 3.10. For these cases, we 

explored the use of the RFS throughout the entire loop prediction, rather than just to rescore the 

final loop candidates. The results for these five cases when using the RFS are shown in Table 3.11. 

 

RMSD (Å) Freq.-based Score (kcal/mol) Total Energy (kcal/mol) ∆E (kcal/mol) 

0.0 (native) 9.89 −15697.1 0.0 

1.02 25.65 -15692.4 4.7 

17.29 4387.82 −9927.01 5770.09 

Table 3.10 Energy of the 2ZBX loop-hairpin-loop predictions after application of the 
frequency-based penalty term. 

 

 

PDB 

Standard Energy Model Standard Energy Model + RFS 

RMSD (Å) ∆E (kcal/mol) RMSD (Å) ∆E (kcal/mol) 

2O36 3.61 -5.00 0.93 -10.71 

2OKX 2.88 -6.87 3.62 6.42 

3EI9 2.12 -2.04 0.36 0.24 

3EJA 1.97 -32.25 1.86 -27.2 

3FAU 6.21 1.33 0.51 -11.6 

Table 3.11 Re-prediction of hairpin cases with initial RMSDs of around 2 Å or worse.  

Re-predictions were performed by using the RFS throughout the prediction, rather than just to 
rescore the final putative loops. 
 

The RFS appears successful at correcting the energy error and leading to a lower RMSD in three of 

the five cases. PDB 2OKX remains a difficult case. Although this case appears to exhibit an energy 

error before penalizing unlikely structures with the RFS, now a sampling error remains where we 
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appear unable to produce the native conformation. PDB 3EJA appears to remain an energy error 

and this case warrants further discussion. 

  

PDB 3EJA contains a 7-residue hairpin within a 15-residue loop that satisfies the various criteria 

specified in the methods section. In particular the global quality criteria of having suitably highly 

resolution and superior R-factors was satisfied as well as the local criteria for B-factors and real-

space R-factors. Inspection of the predicted loop reveals that we are able to form a reasonable 

hairpin (Figure 3.10a), and further that during hierarchical loop prediction we succeed in producing 

a near native loop with an RMSD of 0.94 Å and a ∆E of -1.16 kcal/mol, relative to the native 

(Figure 3.10b). This would seem to suggest the sampling is not an issue here. The fact that the 

lowest energy loop predicted (Figure 3.10a) was found nearly 30 kcal/mol lower in energy than the 

native was surprising. Inspection of the individual residues comprising the loop revealed an unusual 

close contact between the oxygen on the amide side chain of Q108 and an aromatic carbon on 

Y191. The distance between these polar and non-polar atoms was a surprising 3.0 Å. Loop 

minimization perturbs the hairpin such that this distance is increased to 3.5 Å where Y191, like all 

surrounding residues, is held fixed (Figure 3.10c).  The suspicion was that these residues might have 

been improperly built in the crystal structure and indeed inspection of the electron density showed 

Y191 to be confidently placed while Q108 was modeled into sparse density (Figure 3.10d). We see 

no alternative positions to place Q108, however it is beyond the scope of this work to construct the 

necessary omit maps and attempt model refinement. In describing the structure, the 

crystallographers do describe a possible role for Y191 but no mention is made of Q108 and so 

perhaps this residue simply does not hold a stable conformation84. Difficulty in modeling an 

occasional residue in a high-resolution crystal structure is certainly not uncommon. We attempted to 

exclude loops that were affected by problems such as these in using a real-space R-factor cutoff of 
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2.0. However, this residue has a real-space R-factor of 0.185. In future studies, it appears a more 

stringent cutoff is required.  

 

 

Figure 3.10 Loop-hairpin-loop predictions in PDB 3EJA.  

In all panels, the native loop is shown in green. (A) Native hairpin versus the lowest energy 
prediction using the RFS. (B) Native hairpin versus an intermediately ranked loop. This loop has a 
0.94 ̊A RMSD and a ∆E of -1.16 kcal/mol. (C) Native hairpin versus minimization of the native 
hairpin. After minimization, the distance between Q108 and Y191 increases from 3.0 ̊A to 2.5 ̊A. (D) 
2Fo-Fc map contoured at 2σ around residues Q108 and Y191. Observe that while Y191 is 
confidently built, Q108 has very poor density.  
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Predictions performed in an inexact environment 

Throughout all loop predictions, we have relied on the crystal structure to provide the surrounding 

environment of the loop. This too, like the precise knowledge of helical bounds, may not be 

accurately known in a homology modeling experiment. To explore the effectiveness of our sampling 

and energy model in a more realistic setting, we minimized the surrounding environment in the 

presence of a predicted, but poor, 3Å RMSD loop. This produced a non-native but locally 

minimized surrounding side chain environment. However, the backbone environment is still that of 

the native. From here, we deleted the target loop and performed loop prediction with simultaneous 

refinement of all surrounding residues. This approach was for both loop-helix-loops and hairpins. 

We repredicted in an inexact surrounding environment one loop for each secondary-structure 

length. The loops selected had a sub-1 Å RMSD when predicted in the native environment. For 

loop-helix-loops, this selection was based on the results from predictions using the exact helical 

bounds. As would be expected, prediction of the loop as well as surrounding side chains increases 

the sampling required and computational cost of these predictions. In particular, we found it 

necessary to introduce additional rounds of side-chain randomization (Table 3.12).  Hence, we used 

only the exact helical bounds to avoid the added complication and expense of sampling surrounding 

side chains with all the combinations of alternative helical bounds.  We also explored the use of the 

rotamer frequency score (RFS), mentioned previously when describing the improvement in hairpin 

case 2ZBX (Figure 3.9 and Table 3.10) and others (Table 3.11). Here, we used the RFS throughout 

the loop prediction, penalizing all intermediate loops as necessary so that only structures with the 

lowest penalty are likely to advance onto subsequent refinement. The results of these predictions for 

LHLs are shown in Table 3.12.  
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Helix 

Length 

PDB Native 

Environment 

Perturbed Native Perturbed Native 

with extra side-

chain 

randomization 

Perturbed Native 

with extra side-

chain 

randomization and 

RFS 

  RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD 

(Å) 

∆E 

(kcal/mol) 

4 1BKR 0.55 1.05 1.67 24.54 2.77 2.42 0.61 -2.11 

5 1L5W 0.4 -3.74 0.78 -1.39 0.98 -8.97 0.54 -15.03 

6 1WOV 0.67 -2.88 1.29 5.25 1.32 -12.85 0.66 -22.55 

7 3HL0 0.39 2.52 0.62 -6.97 0.6 -16.28 0.68 -17.84 

8 2EX0 0.33 -4.40 2.28 23.84 0.54 10.49 0.76 7.77 

 

Table 3.12 Results from LHL prediction in an inexact environment.  

The RMSD is relative to the native structure. The ∆E shown is relative to the energy of the native 
where the loop and surrounding side chains are minimized. 
 

In all cases, we were able to recover the loop with sub-1 Å RMSD when utilizing additional rounds 

of side-chain randomization and the RFS. The use of additional rounds of side-chain randomization 

finds in all cases a lower energy structure. In 2EX0 the effect is most pronounced where a 2.28 Å 

prediction is improved to 0.75 Å. Still in the cases 1BKR, 1L5W, and 1WOV, additional rounds of 

side-chain randomization is further improved with the addition of the RFS, which brings, in the 

most striking example, a 2.77 Å prediction down to 0.61 Å.  
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Similar results were seen for hairpins as is shown in Table 3.13. As before, the use of additional 

rounds of side-chain randomization improves results. Most notably, this additional side chain 

sampling takes the perturbed native prediction for 2CIU from 6.18 Å to 0.41 Å.  

 

Hairpin 

Length 

PDB Native 

Environment 

Perturbed Native Perturbed Native 

+ addl. side-chain 

randomization 

Perturbed Native 

+ addl. side-chain 

randomization + 

RFS 

  RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD 

(Å) 

∆E 

(kcal/mol) 

6 1F0L 0.41 -1.71 0.72 12.68 0.74 -10.01 0.73 -14.16 

7* 2C0D 0.29 0.89 0.89 -14.19 2.34 -27.39 1.71 -1.54 

8 2SLI 0.48 -6.85 0.54 -1.64 3.22 -8.67 0.49 -12.72 

9 1GYH 0.38 -3.18 0.73 0.45 0.82 0.18 0.9 1.54 

10 2CIU 0.29 -7.11 6.18 29.67 0.41 -22.61 0.57 -10.21 

11 2ZWA 0.53 -10.55 0.91 -10.16 0.46 -6.17 0.77 7.68 

12 3CSS 0.30 -3.06 0.57 2.05 0.4 -4.86 0.37 -3.73 

 

Table 3.13 Results from hairpin prediction in an inexact environment.  

The RMSD is relative to the native structure. The ∆E shown is relative to the energy of the native 
where the loop and surrounding side chains are minimized. The hairpin of length 7, 2C0D is shown 
before protonation of D136 in chain B. After protonation of this residue, the energy errors shown 
here are eliminated. Energy errors occur when predicted loops are reported substantially lower in 
energy than the native but have poor RMSD. This is discussed in greater detail in the text.  
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PDB 2C0D evidently posed a significant challenge. The lowest energy structure reported is 

substantially lower in energy than the native and other similar calculations on 2C0D (Table 3.13). 

This suggests a problem separate from sampling. Visual inspection of the predicted structure relative 

to the native illustrates the source of this energy error being due to incorrect protonation state 

assignment.  

  

This situation is illustrated in Figure 3.11. Shown is the close contact between D136 and Y63. Both 

residues are part of chain B but Y63 is interacting from a crystallographically related monomer. The 

distance from the carboxylic oxygen in D63 to the 𝐶!is only 3.2 Å while the distance from that same 

carboxylic oxygen to that residue’s backbone carbonyl is 3.35 Å. Were D63 to be assigned as 

charged, as it originally was using our previously published algorithm77, substantial  repulsion 

between D136 and Y63 shown in 3.11.b is expected. D136 lies at the tip of the hairpin and so a large 

deviation of this residue can lead to a significant RMSD for much of the hairpin. Once D136 is 

assigned as protonated, the successful prediction shown in 3.11.c results. Here, a 0.56 Å loop is 

produced with a ∆E of -19.02 kcal/mol. The effect of protonation of this residue on all three 

perturbed native predictions performed for PDB 2C0D is shown in Table 3.14. 
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D136 

Protonation 

State 

Perturbed Native Perturbed Native + addl. 

side-chain randomization 

Perturbed Native + addl. 

side-chain randomization + 

RFS 

 RMSD 

(Å) 

∆E 

(kcal/mol) 

RMSD (Å) ∆E (kcal/mol) RMSD (Å) ∆E (kcal/mol) 

Deprotonated 0.89 -14.19 2.34 -27.39 1.71 -1.54 

Protonated 1.34 19.14 0.71 -22.56 0.56 -19.02 

 

Table 3.14 The effect of protonation of D136 on the hairpin prediction in PDB 2C0D. 

  

Remarkably, the prediction of this hairpin when the surrounding environment is native is possible 

with D136 left as deprotonated (Table 3.13). As shown in Figure 3.11b, incorrect protonation state 

assignment of D136 leads to residue Y63 being perturbed from its native conformation. Evidently, 

leaving Y63, and all surrounding environment residues constrained to their native position, removes 

the heavy dependence on correct protonation state assignment of D136. The fact that the removal 

of this constraint leaves our predictions sensitive to additional factors is not surprising. Additional 

perturbed native experiments such as these will be run in the future to expose more weaknesses in 

our algorithm, however for the cases presented in this work, the difficulties appear isolated to this 

case and are tractable. 
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Figure 3.11 Protonation errors in the perturbed native prediction in PDB 2C0D.  

In all panels the native loop is shown in green for comparison. (A). The native loop with all atoms 
shown for D136 and surrounding side chain Y63 and T64. The suspicious close contacts that 
motivated protonation of D136 are shown dotted in this panel. (B) The coordinates of the atoms in 
the RFS prediction with D136 deprotonated. (C) The coordinates of the RFS prediction with D136 
protonated. Notice the similarity to the native loop in panel A.  
 

Interpretation of the relative energies 

Throughout this work, we have reported results comparing the geometry of our predicted structure 

to the native coordinates via the RMSD, and comparing the energy of our predicted structure to the 

minimized native via the ∆E. As mentioned in the methods section, ∆ E = Eprediction −Enative . In any 

successful energy model, the minimized native structure should be reported as being lowest in 

energy and yet we report negative ∆E values across various predictions. It is worth speculating on 

the source of this. We believe there are two general possibilities: 

1. There are problems in the backbone of the crystal structure that cannot be rectified with our 

gradient-based minimization as our energy model places the backbone in a local minimum. 

This seems perfectly plausible in crystal structures, even for the high quality structures 

explored in this work, as hydrogen atoms positions are not experimentally known, 

preventing, at the least, the use of an all-atom energy model for refinement. Indeed, Bell et 

al., report a successful reduction in non-bonded clashes in crystal structures, introduced after 

consideration of explicit hydrogen atoms, through the use of an all-atom refinement 
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procedure without any loss in adherence to the diffraction data85. Thus, what we may be 

observing instead is a slightly physically superior structure obtained during the extensive 

sampling performed during our ab initio loop prediction. 

2. That negative ∆E values observed in predictions with remarkably low sub-Ångström 

backbone RMSD may instead be due to improper side-chain contacts being formed. For 

example, Table 3.12 includes a 0.33 Å prediction of an LHL in PDB 2EX0 with a ∆E of   -

4.40 kcal/mol. It may well be that these improper contacts are due to a flaw in our energy 

model, and although this is possible, our ability here to select the lowest energy structure and 

achieve sub-Ångström RMSDs appears unaffected. As such, in this chapter we do not 

investigate in greater detail the source of these errors. 

 

We also observe systematic differences in the ∆E across methods and secondary structure. For 

example, Table 3.1 reports the RMSD and ∆E of LHL predictions performed using just our normal 

dipeptide dihedral library versus the helical dihedral library presented in this work. In this table, the 

mean ∆E for all helix lengths predicted is lower with the helical dihedral library than without. This 

suggests that without the helical dihedral library, there are sampling errors, which are removed by 

seeding the helix. 

  

For the hairpin predictions, Table 3.8 and Table 3.9 show that the vast majority of predictions 

conclude with a structure with a negative ∆E. Referring to the first of our two speculations on the 

source of these negative ∆E values, it may be that the extensive sampling performed in loop 

prediction is producing superior backbone hydrogen bonds that are not accessible through 

minimization of the crystal structure. 

 



 81 

3.4 Conclusions 
 

We have developed a robust algorithm to exploit secondary structure prediction of small helical 

segments in loops to yield routinely accurate loop-helix-loops predictions to atomic accuracy. 

Furthermore, we have demonstrated that our previous dipeptide-dihedral library and all-atom energy 

model can successfully predict loops containing hairpins. By running parallel loop predictions with a 

systematically generated set of putative helical bounds from two secondary structure prediction 

algorithms (SSPro4 and PSIPRED) as well as the normal loop prediction protocol, we have 

demonstrated that the native loop-helix-loop can be reliably sampled and accurately scored. 

  

This application of a separate, helical dihedral library to a subset of loop residues is at the crux of 

our method. It affords us increased likelihood of the formation of the coupled hydrogen bonds that 

define secondary structure by performing loop buildup with the coupled dihedral angles already in 

place, but it has also introduced a sort of lever effect, where small changes at the base of the helix 

lead to significant displacement of the terminal end of the loop. For smaller helices, this is obviously 

less of a problem but for larger helical bounds, such as the LHLs predicted in PDBs 1OAO and 

2YR5 where the helical bounds were supplied by PSIPRED, it became impossible for loop buildup 

to be performed – all possible helix conformations produced loop halves that were considered 

impossible to close.  

  

Rather than seek to expand the size of our helical dihedral library to include more rotamers, we 

found it more effective to attempt loop-helix-loop prediction with shorter helical bounds, one that 

would be less likely to demonstrate a lever effect. This led to the use of our truncated helix sampling 

method. We leave it up to subsequent rounds of further minimization and sampling to form the 
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remainder of the helix, and indeed this appears to be effective. Nonetheless, for very large helices, 

our limited dihedral library may fail to contain a sufficient number of rotamers to avoid a sampling 

error and the truncation method may leave too large of a sub-loop to correctly sample and form the 

remaining coupled dihedrals that are necessary to complete the helix. In practice though, this is not a 

very large concern for us. Such large helices are likely the well-conserved regions between 

homologous proteins. Knowledge of these helical bounds would likely be found with sequence-

based secondary structure prediction methods, but crucially, the conformation of these large loop-

helix-loops lies squarely within the purview of our previous rigid helix placement algorithm67. 

  

Hairpins, somewhat surprisingly, appeared as a simpler type of secondary structure to predict. The 

small non-locality of the hydrogen bonds deterred us from wanting to introduce a separate hairpin 

dihedral library as such a library would seem to produce a bias in the non-hydrogen bond turn-

region of the hairpin between the two β-strands. Rather, we attempted loop-hairpin-loop prediction 

using only our previous dipeptide-dihedral library37. Low RMSD loops were successfully predicted to 

atomic accuracy with no significant change to our past algorithms, other than permitting a flexible 

ofac to be tried throughout all rounds of hierarchical loop prediction. For both hairpins and loop-

helix-loops, it would be desirable in the future to further establish this methodology by running 

blind tests where the structure of a given loop is available but unknown to the researcher. However, 

we do not anticipate the results of such experiments to diverge from what we present here as our 

method is automated, using only the energy and not user input, to determine the final loop 

conformation. 

  

Predictions performed in a non-native surrounding environment were successful, albeit requiring 

additional sampling and the use of our rotamer frequency score to accurately predict the loop. An 
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apparent caveat is that the additional degree of freedom now present in the surrounding 

environment can magnify energy errors. As shown in the hairpin in PDB 2C0D, incorrect 

protonation state assignment of an aspartic acid is compensated for through the coupled movement 

of a surrounding environment residue. Although only this case had such a problem, clearly more 

experiments need to performed across a large set of loops, with and without secondary structure, to 

expose weaknesses in our algorithm and correct them. These experiments are already underway and 

will be discussed in a future publication.  
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Chapter 4 : Improving the accuracy of homology model loop 
prediction in antibodies 
 
 

In this chapter, we extend the application of Plop to loops in increasingly non-native environments 

and introduce a new scoring term that penalizes loops containing extremely uncommon backbone 

structure. With this scoring term, it is possible to increase sampling yet avoid the propagation of 

candidate loops that are energetically reasonable but never seen in nature. However, additional effort 

is needed to efficiently obtain the level of sampling required to reach sub-Angstrom accuracy in full 

homology models. We conclude this chapter with a discussion of new sampling methods in active 

development. 

 

4.1 Introduction 
 

Homology modeling applies computational methods to determine the three-dimension structure of 

proteins, using their known sequence and the experimentally determined structures of homologous 

proteins.  Accurate structural knowledge is key to understanding and manipulating a protein’s 

function and biological properties, but structure determination via X-ray crystallography and nuclear 

magnetic resonance (NMR) spectroscopy remains time-consuming and often challenging.   

 

The grand promise of homology modeling is to bridge the gap between the number of known 

sequences and the significantly smaller number of solved structures.  This is one of the explicit 

components of the National Institute of Health (NIH)’s Protein Structure Initiative, a program 

begun in 2000 with the goal of making the atomic-level, three-dimensional structure of most 

proteins easy to obtain from sequence86. Once enough structures representing all of the major 
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protein families are experimentally determined, the reasoning goes, homology modeling of sequence 

homologs can flesh out the structures within each family. Known structures could then catch up 

with sequences, and biochemists interested in studying the function of various proteins could draw 

on a wide swath of structural information. 

 

To be as biochemically useful as a crystal structure, though, homology models must be reliably 

produced at high accuracy: generally, this involves predicting the position of non-hydrogen atoms 

within <1 Å of their actual positions.  

 

A further complication is that some of the most interesting regions of proteins are often the most 

difficult to model. Accurate atomic-level knowledge of binding and active sites is desirable for 

studying ligand docking and protein-protein interactions, but the prevalence of loops among the 

secondary structure elements in these regions pose a challenge. 

 

In template-based homology modeling, one or more sequences with known structures are aligned to 

a sequence of interest to build a model.  This method is effective for secondary structure regions 

that are highly conserved across homologous proteins, but leaves something to be desired in 

accurately modeling loops and other poorly conserved regions. Predicting and refining loop regions 

is, therefore, a necessary complement to template-based homology modeling. 

 

Skepticism abounds over the practical, biochemical utility of homology models and the scope of the 

Protein Structure Initiative87. But homology modeling and computational design has proliferated in 

the area of antibody modeling, beginning with humanization efforts in the 1980s8, 88-89. 
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Antibodies are well suited for template-based modeling. The fragment antigen binding (Fab) 

fragments of an antibody consist of heavy and light chain constant domains (CH1 and CL) and 

variable domains (VH and VL), with the variable domains at the N-terminus forming the antigen 

binding site. The variability in the VH and VL domains come from the hypervariable, or 

complementarity-determining regions (CDRs) – as with the constant domains, they have a highly 

conserved beta barrel as the core framework. The hypervariable region in each variable domain 

consists of three loops, denoted L1, L2, L3 in VL and H1, H2, H3 in VH. These loops are positioned 

near the surface of the antibody and determine the specificity of the antibody-antigen interaction90. 

 

The range of conformations observed for five of the six hypervariable loops fall into a set of discrete 

structural classes, the “canonical structures” first classified by Chothia and Lesk in 198791. Using this 

scheme, these five loops can be classified by their sequences and modeled accurately using known 

structures from the same class. Yet the H3 loop persists in its extreme variability and so far defies 

classification – and accurate prediction via template-based modeling8.  

 

This diversity is a key factor in making antibodies effective, and a full and accurate representation of 

the hypervariable region is important for predicting and evaluating binding activity. Reliable H3 loop 

prediction is therefore essential for antibody homology modeling to fully achieve its potential. 

 

In this work, we present the results of ab initio H3 loop predictions in a set of antibody homology 

models using the Protein Local Optimization Program (“Plop”). We also describe a new scoring 

term that has been added to Plop that penalizes loops constructed with sets of dipeptide dihedral 

angles that are rarely observed in the Protein Data Bank (PDB).   
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Up until this point, Plop has been shown to successfully re-predict loops of up to 20 residues in the 

native environment37. Recently, Plop was used to refine loops in constructing a homology model of 

the human β2-adrenergic G-protein coupled receptor50. Previous studies have also employed Plop in 

predicting antibody H3 loops in the crystal structure92, and in an environment with native and 

nonnative elements, though with diminished accuracy38. 

 

With the addition of the dipeptide dihedral penalty term, we now demonstrate that Plop can predict 

antibody H3 loops in full homology models with accuracy comparable to or better than the current 

state of the art93. While this is discussed in the context of antibody modeling, our loop prediction 

method remains completely general and applicable to the broader loop modeling problem. 

 

4.2 Methods 

Overview 

We predicted the H3 loop in two sets of antibodies with Plop, applying a new scoring term to 

penalize dipeptide dihedrals from unpopulated regions of phase space in candidate loops.  The first 

set consists of “partial” homology models, where the six hypervariable loops were modeled from 

templates grafted onto the native framework region. The second set consists of “full” homology 

models, constructed completely from templates using Schrödinger, Inc.’s Bioluminate software 

package94. Hypervariable loops throughout were identified using the Chothia definition91. 

 

Test sets 

The “partial” model set consists of the thirteen antibody cases containing a five to eight residue H3 

loop analyzed by Sellers, et al38. Fourteen antibodies from the benchmark antibody set compiled by 
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Sivasubramanian, et al.93 comprise the “full” homology model data set. H3 loops in these structures 

range from 7 to 12 residues in length. Loop sequences for each set are provided in Tables 4.1 and 

4.2.  

 

These cases were chosen because each native crystal structure, used as a reference point, does not 

contain any antigen.  This allowed us to reliably compare the predicted H3 loop, which often 

undergoes structural changes upon binding8, to its counterpart of known structure. While relevant to 

homology modeling in some cases, predicting an antigen’s structure and/or precise orientation 

relative to an antibody homology model upon binding is a separate question not explored in this 

work. 

 

PDB 
ID 

H3 
Length H3 Sequence 

1A7Q 8 ERDYRLDY 
1CR9 5 DLHDY 
1FLR 7 SYYGMDY 
1KCV 7 GGTGFPY 
1MEX 5 EYLDY 
1MJU 7 NKLGWFP 
1NGZ 5 RDSDY 
1UAC 5 WDGDY 
1UB6 6 GQGRPY 
1UJ3 8 DSGYAMDY 
1UZ8 8 ETGTRFDY 
1YQV 7 GNYDFDGW 

 

Table 4.1 H3 loop sequences for partial model test set 
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PDB 
ID 

H3 
Length H3 Sequence 

1A6T 8 
 

RDDYYFDF 
1CGS 7 GYSSMDY 
1FGN 8 DNSYYFDY 
1IGM 12 HRVSYVLTGFDS 
1IGT 9 HGGYYAMDY 
1JPT 8 DTAAYFDY 
1KEM 8 WGSYAMDY 
1MCP 11 NYYGSTWYFDV 
1MLB 7 GDGNYGY 
1VFA 8 ERDYRLDY 
2ADG 11 HEDGNWNYFDY 
2AJU 10 YDYYGNTGDY 

 

Table 4.2 H3 loop sequences for full model test set 

 

Model Construction  

The partial models were built as described by Sellers, et al.38 and briefly recounted here. For each 

variable light and heavy chain, all three CDR loops were removed from the scaffold. A model for 

each loop, excluding CDR H3, was selected based on sequence identity from a library of canonical 

antibody CDR loops, classified using Martin et al.’s definition95. The criteria for sequence identity 

were highest identity between the template and target, and a cap of 60% identity to avoid selecting 

the native conformation. Template structures were then grafted onto the native scaffolds using 

Plop’s homology model tool. 

 

For loops that either did not match the canonical sequence definitions (<75% of residues fitting the 

class rules) or did not find a template with a high enough sequence identity, the database was 

searched using different length target sequences until a template was found. That is, for an N residue 

loop sequence that did not fit the canonical class rules or match with a template, the sequences for 
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loops N-1, N+1, N-2, N+2, etc. are used to search the database until a template is found and gaps 

or insertions are modeled as needed using Plop when the loop is grafted onto the scaffold. 

 

While the CDR loops were generated separately for the heavy and light chains, grafting these loops 

onto native scaffold ensured that the native H:L chain orientation remained constant. After the non-

H3 loops were constructed on the scaffold, the H and L chain PDB files were simply concatenated. 

In each case, the H3 loop was left truncated and re-predicted ab initio using the Plop methodology 

discussed below. 

 

The full homology models were built using BioLuminate, part of the Schrodinger Biologics Suite94. 

BioLuminate’s antibody modeling process is described in detail by Zhu, et al.96 and summarized 

here.  

 

The model building proceeds in two primary steps: selecting templates for the framework, or 

scaffold, region and for each of the CDR loops. The scaffold sequence is used to search a curated 

antibody structure database (from PDB structures) via direct sequence alignment, using the Smith-

Waterman algorithm97 and the BLOSUM62 scoring matrix98. Heavy and light chain sequences are 

searched in pairs and the template with the highest similarity after averaging the heavy and light 

chain similarity scores is selected. 

 

Templates for the CDR loops are chosen using a three-step process: 

1. Loop sequences and conformations are identified separately for each of the six CDR loops. 

2. For each CDR loop, the corresponding loop database is filtered based on three criteria: (a) 

target sequence, (b) loop length, (c) stem residue geometry. The stem residue geometry is 
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defined by the distance, angles, and dihedrals linking the first and last loop residues to the 

remainder of the protein (i.e., C-alpha and C atoms adjacent to the N-terminus of the loop 

and N and C-alpha residues adjacent to the C-terminus). 

3. Filtered loop candidates are aligned by stem residues and clustered based on backbone 

RMSD. In each cluster, a representative loop is selected by highest sequence to target within 

that cluster. Then, starting with the largest cluster, the representative loop templates are 

checked against a sequence similarity cutoff. The template for each CDR loop is the first 

loop to exceed the similarity cutoff; in the event that no loops reach this score, the highest-

similarity loop from all clusters is used. 

 

Once templates are obtained for each component of the loop, an initial model is built by inserting 

conserved backbone and side chain residues into the scaffold region, mutating non-conserved 

scaffold residues, and grafting in the CDR loops. Finally, all non-conserved residues undergo side-

chain optimization and minimization. This refined homology model thus becomes the input for H3 

loop prediction.  

 

Template framework and loop structures for each full model are listed in Table 4.3.  
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Light 
Chain 
Scaffold 

Heavy 
Chain 
Scaffold 

L1 
Loop 

L2 
Loop 

L3 
Loop 

H1 
Loop 

H2 
Loop 

H3 
Loop 

1A6T 2OSL_L 2OSL_H 1DQD 15C8 1HIM 1I9I 2OSL 1A2Y 
1CGS 1PLG_L 1PLG_H 1A4J 1M7D 1FPT 1BQL 1YQV 1PLG 
1FGN 1D5I_L 1D5I_H 1PG7 1IQW 1DN0 1ZA3 1AFV 1KEL 
1IGM 3BN9_C 3BN9_D 1XF4 2Q1E 1NGX 3CXD 3HI5 3MA9 
1IGT 2ZUQ_E 2ZUQ_F 1RZ7 1KCS 1IGT 1FL3 1IEH 1IGT 
1JPT 3EO9_L 3EO9_H 3HB3 3KLH 3MO1 1NJ9 3I75 2G60 
1KEM 2CJU_L 2CJU_H 1L7T 2IGF 3IFO 1Q9K 2V17 1XGY 
1MCP 3HZY_A 3HZY_B 1MVU 2MCP 1VGE 1MCP 3L1O 1MCP 
1MLB 3FMG_L 3FMG_H 1DQJ 1UAC 1DQQ 1I9I 2IFF 1HQ4 
1VFA 1FNS_L 1FNS_H 1AR1 1PSK 3DSF 1NC2 1P4I 2GHW 
2ADG 1I8I_A 1I8I_B 1I8K 1I8I 1I8I 1OPG 3FFD 1A6U 
2AJU 3LEY_L 3LEY_H 1KN2 1N0X 1AE6 1AY1 1OSP 2UUD 

 

Table 4.3 Templates used to build antibody homology models.  

 

Loop Prediction in Plop 

The standard procedure for predicting loops of 4 to 20+ residues in Plop has been reported 

extensively36-37, 39, 51. Here, we provide a summary of the general protocol and describe the key 

parameters for sampling loops in a completely non-native environment. 

 

Plop carries out ab initio loop prediction, generating loops with a hierarchical algorithm and scoring 

them with a physics-based energy model, VSGB2.030. This energy model includes an optimized 

Generalized Born implicit solvent model and physics-based corrections to the OPLS molecular 

mechanics force field. 

 

Loop prediction begins by sampling a large number of possible conformations using a backbone 

rotamer library, which is a discrete collection of all possible ϕ,ψ dihedral angle pairs – the backbone 

equivalent of widely used side chain rotamer libraries.  Loop conformations with steric clashes 
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and/or no space for side chain atoms are screened out, and remaining loops are clustered. Cluster 

centroids proceed into iterative side chain addition, minimization, and energy scoring. 

 

Many iterations of this single loop prediction procedure constitute a full loop prediction. In an initial 

stage, multiple single loop predictions proceed in tandem with varying overlap factor (OFAC) 

parameters, or cutoffs for steric clash screening. The top n lowest energy, non-redundant loops from 

this stage are passed on to a refinement stage, where the loops are predicted again, subject to a 4.0Å 

Cartesian constraint on the Cα atoms. The lowest energy loops are again passed on to subsequent 

predictions. Fix N Stages, where N residues at each loop terminus are fixed, allow long loops to 

benefit from increased sampling, and N can be increased with loop length. Finally, a second 

refinement stage is carried out with a 6.0Å Cartesian constraint on the Cα atoms, and the lowest 

energy loop across all predictions is deemed the predicted loop. 

 

To reliably generate native-like loops in a homology model context, additional sampling is needed to 

compensate for a nonnative surrounding environment. In this work, we used the “HLP-SS” 

protocol described by Sellers, et al.38 to iteratively sample surrounding side chains conformations 

while adding loop side chains in the same way. Likewise, during minimization, neighboring residues’ 

backbone atoms were allowed to move. These considerations partially address the possibility of an 

inaccurate surrounding environment steering the loop away from the native conformation.   

 

Additionally, during the initial stages, the number of clusters was increased from 4 x (number of 

residues) to 6 x (number of residues). While there is a small computational cost associated with 

optimizing more conformations, the expanded number of loops competing for refinement in 

successive stages increases the likelihood of a native-like loop emerging. 
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Dipeptide Dihedral Rotamer Frequency-Based Scoring Term 

We also introduced a new term for loop scoring in Plop: the dipeptide dihedral Rotamer Frequency-

based Scoring term, or RFS.  It penalizes loops containing one or more dipeptides with a dihedral 

(ϕ, ψ, ω, ϕ, ψ) angle set found in highly unpopulated regions of phase space, based on comparisons 

to a library of dihedrals found in PDB structures. 

 

To implement this term, it was necessary to construct a library of experimentally observed dihedral 

angles. We analyzed a slice of the PDB limited to high resolution (< 2.0 Å) x-ray structures and 

culled it using the PISCES web server69 to eliminate structures with a percent identity > 95%, to 

eliminate duplicate crystal structures. Every backbone dihedral between consecutive residues in the 

remaining structures was inspected and stored, separated out by amino acid pair, and binned at five-

degree increments. Each resulting discrete (ϕ, ψ, ω, ϕ, ψ) angle set is considered a ‘backbone 

rotamer.’  The number of angles binned into each rotamer was also stored in the library. 

 

During loop scoring, this library is used to identify dipeptides whose dihedral angle sets fall well 

outside populated regions of phase space. Two criteria are used to determine if a dipeptide will incur 

a penalty, as depicted in Figure 4.1: 

1. The Euclidean distance between the predicted dipeptide’s dihedral angle set and the nearest 

library rotamer; 

2. The number of rotamers within a certain radius of the predicted dipeptide’s dihedral angle 

set. 

The penalty is then added to the total energy as a pseudo-energy term. 
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Figure 4.1 Flowchart for how the RFS is calculated.  

Examples of rotamers are shown in the top left for a hypothetical loop fragment. A dipeptide 
rotamer is the set of five angles describing a pair of residues; the library consists of five-mers of 
rotamers observed, for the specific amino acid pair, in the PDB. The logic behind calculating the 
RFS penalty is illustrated in the box at the bottom. 
 

The Plop user can specify each of these variables: distance d, radius r, population within the radius p, 

and scaling constant c. In this initial application, we used a distance cutoff of 23, a population cutoff 

of 40 rotamers, a radius of 23, a scaling constant of 0.4 in the Initial, Refinement 1, and early Fix 

stages of full loop prediction, and a scaling constant of 0.8 in the final Fix and Refinement stages.  
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These values were empirically chosen after analyzing a large set of predicted loops, but further 

optimization of these parameters via additional testing over a larger data set is pending. 

 

Each adjacent residue pair in the loop is compared to its amino acid pair-specific library in this way. 

The first and last non-loop residues are included with the terminal residues, so all loop residues are 

scanned in two dipeptide combinations. If a penalty is incurred, it is added to final energy of the 

loop and therefore contributes to the energetic ranking of predicted loops, both at the end of a full 

Plop prediction and in individual stages when loops are being passed on to successive stages. 

 

Measuring Accuracy 

We evaluated the accuracy of our predictions using root mean square deviation (RMSD) in atomic 

coordinates compared to the native crystal structure. RMSD was measured, using Plop, over all 

backbone heavy atoms on the loop. Where needed, the model was first aligned to the native 

structure; alignments were carried out over all backbone heavy atoms in the protein. However, the 

RMSD does not factor in to the scoring of loops generated by Plop; the resulting loop reported for 

each Plop prediction is the final lowest energy conformation, and the RMSD is measured after 

selecting this loop based on the energy for purely evaluative purposes. 

 

4.3 Results 

Predicting the H3 Loop in Antibody Partial Models 

We re-predicted the H3 loop in the antibody partial models using three different schemes: a.) 

buildup with single peptide backbone rotamers and scoring without the RFS term; b.) buildup with 
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dipeptide backbone rotamers and scoring without the RFS term; and c.) buildup with single peptide 

backbone rotamers and scoring with the RFS term.  

 

All three of these scenarios used a full loop prediction in Plop, as described in the “Methods” 

section. No Fix stages were used, because the loops in this test case are relatively short (ranging 

from 5 to 8 residues in length). Additionally, the number of initial loops generated was not increased 

from the default value of 4 x (number of residues). 

 

For comparison, we also re-predicted the H3 loop in the native crystal structure. In these 

predictions, the single peptide backbone rotamer library was used for buildup, no RFS was applied, 

Fix stages were omitted and surrounding residues were not optimized. Essentially, the Plop 

parameters developed for accurate homology modeling were not employed, because the surrounding 

environment is considered precise when starting with a crystal structure. 

 

The full data for each case is tabulated in Table 4.4. It is clear that re-predicting native loops in the 

crystal structure is trivial for these loops, with a median and mean RMSD of < 0.5 Å. However, this 

level of accuracy disappears when the H3 loop is re-predicted in the context of CDR loops modeled 

from templates. 
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Crystal 
Structure 

(HLP) 

No RFS, 
Single 

Peptide 
No RFS, 

Dipeptide 

RFS, 
single 

peptide 
PDB ID H3 Length RMSD RMSD RMSD RMSD 

1A7Q 8 0.8 1.3 0.6 1.0 
1CR9 5 0.3 4.0 0.5 0.5 
1FLR 7 0.2 4.0 2.0 0.6 
1KCV 7 0.7 2.7 1.2 1.0 
1MEX 5 0.3 0.6 -- 0.7 
1MJU 7 0.3 4.9 1.0 1.1 
1NGZ 5 0.3 1.3 -- 0.8 
1UAC 5 0.3 0.5 -- 0.6 
1UB6 6 0.4 3.8 0.9 0.7 
1UJ3 8 0.3 0.8 0.8 0.4 
1UZ8 8 0.7 5.2 1.6 1.6 
1YQV 7 0.4 2.0 1.5 1.0 

 
Mean 0.4 2.6 1.1 0.8 

 
Median 0.3 2.3 1.0 0.8 

 

Table 4.4 H3 loop prediction results in antibody partial homology models.  

Note that 6 residues is the minimum loop length for using the dipeptide rotamer library (column 5).  
 

Without the RFS penalty and building up loops from single peptide backbone rotamers, the mean 

RMSD is 2.6 Å. Using dipeptide backbone rotamers improves this to 1.1 Å, but for three of the 

cases, every loop fragment was screened out during buildup. Applying the RFS penalty improves the 

mean and median RMSD to 0.8 Å, and loops are successfully built in each case. 

 

Figure 4.2 more thoroughly demonstrates the benefit of applying the RFS penalty to these cases. 

Beyond an improvement in mean and median RMSD, it is able to eliminate extremely inaccurate 

loops and effectively shrink the range of predicted-loop RMSDs.   
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Figure 4.2 Improvement in H3 RMSD-to-native with RFS in Plop.  

The maximum, minimum, and median points are shown and the box denotes the 25th and 75th 
percentiles. “Starting model” is the H3 loop built from template, “Plop” is the Plop H3 prediction 
without the RFS, and “Plop & RFS” is the Plop H3 prediction with RFS. 
 

Many cases see a relatively insignificant improvement in RMSD with the addition of the RFS 

penalty. 1A7Q improves from 1.3 Å to 1.0 Å, 1UJ3 improves from 0.8 Å to 0.4 Å, and two cases get 

marginally worse: 1MEX goes from 0.6 Å to 0.7 Å, and 1UAC from 0.5 Å to 0.6 Å. These are trivial 

differences, however, and the results remain quite accurate with and without the RFS penalty.  

 

In other cases, though, applying the RFS penalty makes a large difference in predictive accuracy. 

1FLR improves from 4.0 Å to 0.5 Å, 1MJU improves from 4.9 Å to 1.1 Å, and 1UZ8 improves 

from 5.2 Å to 1.6 Å.  
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Of course, the loop prediction problem is simplified in these cases because the non-CDR regions 

making up the scaffold of each antibody retains the native conformation.  Once we achieved 

accurate results with these training wheels on, we progressed to predicting H3 loops in full 

homology models. 

  

Predicting the H3 Loop in Antibody Homology Models 

As discussed in the “Methods” section, the starting models in these predictions were predicted 

entirely from templates using the BioLuminate software94. The cases were chosen from the 

benchmark set of Sivasubramanian, et al.93, and limited to those with antigen-free crystal structures. 

 

The H3 loops in these structures were predicted using a full loop prediction in Plop, including Fix 

stages and optimization of surrounding residues. The RFS penalty was applied throughout each 

stage and the single peptide library was used to build up loops.  

 

Again, the H3 loop was also repredicted in the crystal structure context using the basic Plop 

algorithm without the RFS penalty and without optimizing surrounding residues. This can be 

considered the baseline accuracy level for repredicting these H3 loops. 

 

Case-by-case results are listed in Table 4.5. The mean RMSD of predicted H3 loops in the homology 

models using the default parameters is 2.9 Å. More notably, almost half of the loops - 42% - were 

predicted with RMSD < 1.5 Å. Because we know the native loop conformation for these test cases, 

we were able to identify and further investigate the poorly predicted cases. For each of these cases, 

we ultimately identified a set of parameters to sample and select a native-like loop.  
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The mean RMSD is 1.1 Å when various parameters are employed and the lowest overall relative 

energy loop is chosen from all parameters. This level of accuracy is on par with what we can achieve 

in the crystal structure context and is therefore an extremely encouraging result.  

 

Crucially, in each of these cases, the eventual native-like loop had a lower relative energy. Applying 

the same tests further improved two additional cases with already acceptable results. These specific 

parameters are outlined below. 

 

 
    

Any 
Parameters 

Standard 
Parameters 

Other  
Parameters  

PDB 
ID 

# 
Res 

Native 
Predicted 

RMSD RMSD 
Final 

Energy RMSD dE RMSD dE 

ddE = 
other dE 
- std dE 

1A6T 8 0.6 1.17 -7432.53 2.83 -91.60 1.17 
 

  
1CGS 7 1.5 1.64 54769.64 1.64 -16349.27 --     
1FGN 8 0.5 1.38 -5388.62 4.72 -105.18 1.38 -1347.32 -1242.14 
1IGM 12 0.5 1.00 -6217.92 1.00 -70.56 --     
1IGT 9 1.0 0.78 -6598.23 0.78 -775.11 --     
1JPT 8 0.3 1.37 -7233.29 1.37 -795.29 --     
1KEM 8 0.8 1.38 -5969.80 1.38 -95.00 --     
1MCP 11 0.3 0.71 8982.84 3.78 -103.17 0.71 -131.67 -28.50 
1MLB 7 0.2 0.67 7144.34 1.22 -80.09 0.67 -54403.2 -54323.2 
1VFA 8 0.5 1.62 -7463.00 1.94 -74.12 1.62 -3833.03 -3758.91 
2ADG 11 0.6 0.88 162066.5 10.35 -67.47 0.88 -134.56 -67.09 
2AJU 10 0.5 0.79 1323.10 3.38 -149.89 0.79 -585.00 -435.11 
Mean 8.9 0.6 1.12  2.87  1.03   

 

Table 4.5 H3 loop prediction results in antibody homology models.  

Cases with nonstandard parameters are explained in detail in the text. The ddE calculated in the last 
column demonstrates that the “other” parameters obtained a final, lowest-energy loop that is lower 
in relative energy than the final, lowest-energy loop predicted using standard parameters. 
 



 102 

Additional surrounding sidechain sampling 

In the HLP-SS method, the list of surrounding sidechains to sample along with loop sidechains is 

generated by building in a rough set of possible loop backbones and selecting all side chains within a 

cutoff distance – here, 9 A. However, case 2ADG was drastically improved – from a lowest-energy 

loop close to 4 A to under 1 A – by sampling a specific set of surrounding side chains, some of 

which were not placed on the initial list. The sidechain list that allowed the native-like loop to be 

sampled was generated by selecting all residues within 9 A of loops generated on a fully minimized 

antibody scaffold. Interestingly, the full loop prediction on this structure, with this extra residue list, 

did not generate any native-like loop conformations. Using the native structure to generate an extra 

residue list, similar to the previous method of identifying interfacial residues on the native structure, 

also did not sample a native-like loop. It seems like some or all of the eight residues on the 

minimized extra residue list are critical to our ability to accurately sample this loop. Generalizing this 

discovery to our overall methods is examined in the following discussion. 

 

Predicting multiple loops 

While many of the non-H3 CDR loops can be accurately modeled from templates, in some cases, 

structural deviations in a nearby CDR loop can preclude accurate H3 loop prediction. In 1A6T, we 

found that simultaneously predicting the H3 loop and residues L:89-97, the L3 loop, allowed us to 

reach a near-native RMSD for the H3 loop, a reasonable RMSD for the L3 loop, and a lower relative 

energy than predicting the H3 loop alone. A full description of the multiple loop algorithm will be 

presented in a forthcoming publication. Briefly, we implemented multiple loop prediction by 

predicting each loop separately with the opposite loop coordinates deleted. Then all candidate 

conformations for each loop are iteratively paired and pairs with steric backbone clashes are 
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eliminated. Pairs of loops are then subject to further screening based on the position the C-beta 

atoms on loop residues, to ensure that there is sufficient room in the space of the pair of loops to fit 

reasonable conformations for each of the loop side chains. Remaining structures, now containing 

two loops, undergo minimization, sidechain optimization, and energy evaluation. These combined-

loop structures are then clustered and promoted or eliminated, as in a standard full Plop prediction. 

This is carried out during each individual, standard Plop prediction. Predictions in Ref and Fix stages 

use the same protocol, adding in the constraints and shortened loops as defined previously for these 

stages. 

 

Localized sampling and refinement 

Improving our ability to refine candidate loops is an area of active development, and cases 1MCP 

and 2AJU were found to need enhanced refinement to find lowest-energy native-like loops. We 

tested two things: (1) whether it was possible to build a native-like loop conformation in these 

models and if so, (2) how the energy of such a structure would rank compared to the predicted, non-

native-like loops. To answer the first question, the native loop was inserted into the homology 

model. Then, a localized sampling algorithm was used that made very small changes to the starting 

dihedral angles of the loop. After using this high-resolution sampling on the entire loop, the middle 

of the loop, residues 99-102, was sampled again. Many of these candidate loops were thrown out for 

sidechain or backbone atom clashes, and the energy was calculated for remaining loops. In both 

1MCP and 2AJU, the final lowest-energy loop after localized sampling had a sub-Angstrom RMSD. 

But more importantly, the final energy of each of these loops was lower than the final energy of any 

predicted loop. While this is also not a generalizable protocol for homology model loop prediction, 

it demonstrates that a native-like loop in each of these homology models is indeed the lowest energy 
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conformation. Therefore, the problem is narrowed down to a sampling problem, not an energy 

problem, and it should be possible to a priori select such a loop when we are able to sample it. 

 

Sampling the heavy:light chain interface 

Three cases, with PDB IDs 1FGN, 1MLB, and 1VFA, improved significantly when the interface 

between the antibody heavy and light chains was sampled throughout the loop prediction. This was 

carried out by: 

1. Identifying the list of interfacial residues to be sampled:  The “structure” toolkit in Plop was 

used to identify residues within a certain distance of a defined interface. Here, we used a 9 A 

distance and defined the interface as the H3 loop, or the command “structure interface 9 

H:95 H:102” in Plop. 

2. Implementing the INTFC stage: Sampling of these interface residues was carried out 

between loop prediction stages in Plop. All loops promoted by the Init, Ref1, and the final 

FixN stages were passed on to an INTFC stage. All resulting structures from the INTFC 

stage were then passed on to the subsequent Plop stage; no additional clustering was done 

during the INTFC stages. 

3. Sampling the interfacial residue list: During the INTFC stage, residues on the interfacial 

residue list each structure underwent a complete sidechain optimization, in the presence of 

each predicted loop structure passed on from the previous stage. 

 

For these cases, the first step was carried out on the native PDB structure and that “real” residue list 

was used in the INTFC stages for homology model loop prediction. While this would not be a real 
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world protocol, it shows that it is indeed possible to sample a lowest-energy native-like loop in these 

cases, with implications discussed later on. 

 

4.4 Discussion 
 

In this study, we predict the highly variable H3 loop ab initio in two sets of antibody models using 

Plop, with additional sampling and a new dipeptide dihedral frequency-based penalty term.  The first 

set retains native coordinates in the antibody scaffold but modeled the other five CDR loops from 

templates; these structures are more amenable to H3 loop prediction than full models. We also show 

the ability to predict H3 loops in completely non-native homology models with reasonable accuracy 

with a generalized protocol, and with high accuracy when the protocol is adapted based on 

knowledge of the native structure. Because we are able to pinpoint the best, most native-like loop 

using our energy function, the next step towards a high accuracy, generalized protocol is improving 

our ability to sample native-like loops over the course of the prediction.  

  

Dipeptide Dihedral Rotamer Frequency-based Scoring Term 

A key facet of the Plop algorithm is constructing candidate loops from a backbone rotamer library. 

Like a set of side chain rotamers, this library contains sets of possible dihedrals – in this case, ϕ and 

ψ angles. Previous work37 introduced a dipeptide rotamer library  to more efficiently sample 

conformations of very long (> 13 residue) loops. Where the single-peptide rotamer library contains 

one list of possible (ϕ,ψ) torsion angles for all residues except glycine and proline, the dipeptide 

library has a specific set of observed (ϕ, ψ, ω, ϕ, ψ) torsion angles for each of the 400 possible 

dipeptide pairs between standard amino acids.   
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The premise of this improvement was to temper the explosion of generated loop candidates in 

building up many-residue loops, as well as to improve the realized effective sampling resolution.  

However, because it is composed of dipeptide segments in the PDB, it also serves to focus the 

sampling towards likely dipeptide conformations.  

 

For example, there are approximately twice as many possible dipeptide rotamers for an Ala-Ala 

segment as for an Arg-Arg segment, but the single peptide library uses the same set of rotamers to 

build each residue in both segments.  The dipeptide library therefore provides a level of specificity 

that is not imparted via the single peptide library. 

 

However, the single peptide library clearly provides more coverage for individual residues, and 

provides more exhaustive sampling for loops whose length provides no combinatorial 

computational challenges. The rotamer frequency-based scoring term (RFS) term uses the 

information encoded in the dipeptide rotamer library to penalize loop dipeptides whose torsion 

angles fall in highly unpopulated regions of the five-dimensional (ϕ1, ψ1, ω, ϕ2, ψ2) space, analogous 

to the two-dimensional Ramachandran plot. 

 

An updated dipeptide rotamer library containing frequency information was constructed (see 

“Methods”) and used to compute the penalty pseudo-energy term, which is included in the total 

energy calculated for each candidate loop. 

 

As discussed above, each dipeptide pair in the loop is evaluated using a sliding window scheme such 

that each individual residue is taken twice, including the first and last residue in the loop, which are 



 107 

evaluated with the adjacent non-loop residues.  The set of five torsion angles for each dipeptide is 

compared to the new library to find two values:  

1. Euclidean distance to the nearest rotamer in the library;  

2. Population of rotamers within a given radius of the set of loop torsion angles. 

A penalty is applied to dipeptide segments with a large distance to the nearest library rotamer and a 

small population of nearby rotamers. This penalty is scaled and added to the energy calculated using 

the physics-based force field. 

 

Example 

The mechanics of this penalty term are more easily illustrated by example. In Figure 4.3, we show 

two predicted H3 loops for the antibody with PDB ID 1UB6 alongside the native structure. These 

are the loops with the lowest energy after all stages of loop prediction starting from the same partial 

model; the penalty term is the only difference in the input parameters. 
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Figure 4.3 Effect of RFS term on 1UB6 H3 loop prediction.  

 

It is clear via visual inspection that the loop predicted with the penalty is much closer to the native 

conformation, and the 0.9 Å RMSD-to-native is a major improvement over the 3.9 Å RMSD of the 

prediction without the penalty term. 

 

Analyzing each dipeptide pair, as Plop does when applying the penalty term, we find that the Gly-

Arg dipeptide dihedrals (residues H:99 to H:100) in the no-penalty prediction are far from any 

neighboring dipeptide rotamers in the GLYARG library. The observed dipeptide rotamer’s distance 

from the nearest rotamer is d =174.67. In addition to exceeding the distance cutoff of 23.0, there are 

zero rotamers within a radius (r = 0.45) of the observed rotamer, so the formula (distance)2 x 

(scaling constant) is used for a greater penalty. Therefore, a penalty of ((d2) x c) = ((174.67)2 x 0.4) = 

12203.4 would be applied to this loop, likely eliminating it from the lowest-energy position. For 

comparison, the final energy of this case without the penalty is -7917.9. It is therefore not surprising 
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that when this penalty is applied at each stage of a full loop prediction, this Gly-Arg rotamer is not 

found in the final candidate loops. In fact, a 0.9 Å RMSD loop emerges as the lowest energy loop. 

 

Because Plop initially built up the 3.9 Å RMSD loop from acceptable single peptide rotamers, it may 

seem strange that a resulting dipeptide dihedral combination occurs so far from anything in its 

amino acid-specific library. Amino acid identity considerations (e.g., using the same library to build 

Val-Ala pairs as Tyr-Trp pairs) can explain some penalties, and averaging of Cα positions in loop 

closure may alter the middle dipeptides.  Finally, the all-atom minimization of loop residues can 

nudge dipeptides away from the library-provided torsions. When this is propagated through 

refinement stages that constrain loop Cα atoms, dipeptide dihedrals from highly unpopulated regions 

of phase space, such as those constituting the Gly-Arg segment in the poor 1UB6 prediction, may be 

observed in predicted loops.  

 

From Partial Models to Homology Models 

Applying the dipeptide dihedral penalty term significantly improves the accuracy of H3 loop 

prediction in nonnative environments. We are able to predict H3 loops in partial models with 

accuracy on par with loop re-prediction in the crystal structure environment, and our results in full 

homology models are on par with the state of the art99. 

 

Successful loop prediction in partial models is a necessary but not sufficient test for homology 

model loop prediction. Partial models, as constructed here, isolate the problem to building a loop in 

an inexact environment, where nearby loops are modeled and the non-loop scaffold regions are 

exact. This is a relevant test in antibody models, as the six CDR loops form the variable region that 



 110 

binds to antigen. The starting point for H3 loop prediction in these models is a binding pocket 

largely modeled from templates.  

 

The partial model results demonstrate that we can accurately generate native-like H3 loops amid 

template-modeled, inexact CDR loops. With the addition of the RFS penalty term, we eliminate 

candidate loops containing highly unlikely dipeptide dihedral combinations, and we identify the 

native-like H3 loop using energy as computed by our physics-based force field, reaching sub-

Angstrom accuracy. 

 

Moving to full homology models, where the entire antibody is constructed from structures with 

homologous sequences, escalates the environmental challenges to predicting the H3 loop.  In 

addition to inexact placement of backbone and/or sidechain atoms in nearby loops, the positioning 

of nearby loops along the non-loop scaffold can shift relative to the H3 loop endpoints, and the H3 

loop stem can also deviate from its native position.  

 

Components of Plop’s sampling algorithm have been optimized, as detailed in previous work38, to 

circumvent these problems and generate a swath of candidate loops including those with native-like 

conformations. Among these, two stand out as essential for allowing a low-RMSD loop to emerge. 

First, surrounding residues’ backbone and side chain atoms are allowed to move during 

minimization. While this introduces more dimensions to the minimization, which is carried out on 

each candidate loop after clustering, it prevents errors in the surrounding environment from 

precluding correct loop positions. Second, initial predictions are run with OFAC values of 0.3 to 0.7. 

Extending the OFAC down to 0.3 essentially allows some steric clash between candidate loops and 

the surrounding backbone.  In subsequent stages, a higher OFAC is used and such clashes can be 
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refined, but early on, this is important in sampling a diverse set of loops that ideally includes one or 

more candidates similar to the native loop. 

 

However, any increases in sampling carry a computational cost – both in terms of the computing 

power required to carry out additional sampling and minimization, and in terms of complicating the 

problem of parsing out and propagating the best loops. Merely generating loops from a broader area 

of conformational space is not enough: the downstream steps in loop prediction must also improve 

to reliably convert increased coverage to accurate results. 

 

In this work, we found that, for several cases, this extended sampling combined with the ability of 

the RFS to weed out egregious dihedral pairs was still not enough to generate and select a native-like 

loop. For each of these cases, we investigated where the algorithm fell short: was in generating 

promising loop conformations, selecting and propagating these conformations, or both?  

 

An exhaustive look at the hundreds of candidate loops generated over each stage of these problem 

predictions (PDB IDs 1A6T, 2ADG, 2AJU, 1MCP, 1MLB) showed us that the first issue was 

definitely a factor. Using the standard homology modeling parameters outlined above, no sub-2A 

loops were predicted at any stage for these cases. The problem was not screening out good loops, or 

a failure of the energy model to promote good loops - the problem was that Plop did not find these 

loops in the first place. 

 

To investigate where the sampling fell short, we experimented with various parameters and 

protocols as outlined in the Methods section. In each case, we were ultimately able to sample a 

native-like loop with customized parameters, guided by the ability to calculate the RMSD of 
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predicted loops. As mentioned previously, this would not be possible in a true homology model test 

– but is a crucial diagnostic tool towards developing a protocol for true homology modeling.  

 

Yet while these customized parameters are not generally applicable to homology modeling, they 

show that with specific, focused sampling, Plop successfully identifies a native-like loop as the 

lowest energy conformation. This is important because it narrows the scope of the problem to the 

sampling algorithm, not the energy function. To answer the question posed previously: the issue is in 

generating promising loop conformations.  

 

Developing improved sampling algorithms 

Here, we explain how the outcomes of these experiments are guiding future development of Plop 

loop prediction with an eye towards overcoming these sampling issues in true homology model 

cases, where we cannot use a native structure as a guide. Three key areas have emerged for 

improvement: sidechain sampling, multiple loop prediction, and enhanced loop buildup.  

 

It’s clear from these test cases that occasionally, specific non-loop-residue sidechain positioning can 

be critical to determining a loop’s structure. Further, when starting from a homology model, it may 

be initially unclear what residues in the surrounding region are critical to the network of hydrogen 

bonding interactions that support the native conformation. One possible way of ameliorating this 

uncertainty is simply to re-predict all sidechains in the protein, or within some large distance from 

the loop region.  
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However, as currently implemented, any brute force approach re-predicting a large number of 

surrounding sidechains would drastically increase the computational requirement for Plop 

predictions - and more crucially, run up against the limitations of the existing sidechain optimization 

algorithm. To compensate for this issue, we first implemented the interfacial sampling stage in Plop 

(see “Methods”). However, because this stage uses the same sidechain optimization algorithm, it 

does not solve the issue of reliably optimizing a large number of surrounding sidechains. Further, 

our approach in these experiments hinged on knowledge of the native structure. With a more robust 

sidechain optimization algorithm, we could sample a wider swath of residues along the homology-

modeled H:L interface, confident that this larger radius would both include the key native-interface 

residues and result in a converged, fully sampled result. 

 

A new method to reliably optimize sidechains in less ordered systems, like homology models, is 

currently in development in our group and will be disclosed in detail in a forthcoming publication. 

Briefly, this algorithm will allow us to achieve superior side chain sampling by completely 

disregarding the input coordinates for each side chain and explicitly pre-computing the gas-phase 

pairwise energy of each interacting side chain rotamer state, for each side chain, as in an Ising model. 

We then are able to run a large number of Monte Carlo iterations rapidly, as the cost to evaluate the 

energy of each side chain conformation is trivial - the process is simply a matter of reading the 

energy from the previously generated table. Implementing this method will make optimizing larger 

zones of surrounding sidechains tractable and efficient as a standard part of the homology model 

loop prediction protocol. 

 

In other cases, optimizing surrounding sidechains is not sufficient – neighboring loop backbones 

need refinement to allow the loop of interest’s native conformation to emerge. This was the case for 
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PDB 1A6T; predicting the nearby L3 loop was necessary to generate a native-like H3 loop. Multiple 

loop prediction is an important tool for cases where a neighboring loop has weak homology to 

known structures, is placed such that it may have substantial interactions (potentially clashes) with 

the loop of interest, or has possible backbone interactions with the loop of interest.  

 

The sidechain optimization and multiple loop prediction algorithms address challenging surrounding 

environments, but in other cases, the sampling problem could not be isolated to either of these 

factors. Native-like loops for cases 1MCP and 2AJU were not build up successfully, but when the 

actual native loop was inserted and refined in the homology model, resulted in a lower energy than 

any loop built up in Plop. Here, the question is how to initially construct a truly diverse set of loops 

that either includes one or more native-like structures, or includes structures that can be refined to a 

native-like structure.  

 

One way of addressing this current limitation is by improving the way loops are initially built up in 

Plop. Currently, it is possible to generate enough loops to hit memory limits in the loop buildup 

phase without even trying most of the possible rotamers – i.e., sampling at a very low resolution. In 

some cases, the upper limit of about 100,000 half-loops does not get in the way of sampling at a 

finer resolution, because steric clashes in the surrounding environment limit the number of possible 

half-loops. However, in highly solvent-exposed loops, or loops where the surrounding environment 

is somewhat disordered and also being sampled, the existing loop buildup process may not actually 

build up candidate loops from rotamers representing remotely native-like dihedrals. 

 

A new ordered buildup routine, currently in development, will address this issue by scoring and 

ranking rotamers at each point in the half-loop construction. Instead of starting at the lowest (worst) 
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resolution and arbitrarily saving every rotamer set that does not clash with the surrounding 

environment until the memory limit is reached, this new algorithm will apply more nuanced 

screening criteria and scores to possible rotamers and build the set of loop halves from the most 

promising dihedral pairs. As side-chain atoms are not yet placed during backbone sampling, scoring 

is performed using an energy function, currently in development that treats side-chain atoms 

implicitly. In comparison with the hard, steric-like screens currently being used to prune rotamers 

during buildup, the application of even an approximate scoring function is expected to triage some 

of the more egregious loop candidates and improve the likelihood of finding a native-like loop 

within memory limitations. We are confident that these improvements will fix the sampling problem 

for these cases and generate loops that can be refined into the low-energy, low-RMSD structures we 

have identified. 
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Chapter 5 : Antibody Structure Determination Using a Combination 
of Homology Modeling, Energy-Based Refinement, and Loop 
Prediction 
 
 

In this chapter, we present a complete, fully automated antibody homology modeling program and 

benchmark its performance against other methods from the community in the Antibody Modeling 

Assessment II.iii  

 

5.1 Introduction 
 

Computational structure prediction of antibodies is an important step in the modeling, engineering, 

and design of novel antibodies with desired therapeutic properties. The variable domains (Fvs) of 

the heavy and light chain are of special interest, as they typically impart most or all of the specificity 

of an antibody for its antigen target. The Fv can be further divided into the hypervariable regions 

and the framework regions (FRs). The hypervariable regions are so called complementarity-

determining-regions (CDRs), which are composed of 6 hypervariable loops on the surface of the 

antibody, thereafter denoted as H1, H2 and H3 of the heavy variable domain (VL), and L1, L2 and 

L3 of the light variable domain (VH). Due to the highly conserved nature of the framework regions 

of the VL and VH domains, research into Fv structure prediction has largely focused on the 

prediction of the 6 CDR loops. Analysis of antibody crystal structures led to the discovery of 

“canonical” classes for the five non-H3 CDR loops in the 1980s and 1990s91, 95, 100-101. Antibody 

structure predictions based on this type of analysis and categorization are often qualitatively 

successful for loops L1-L3 and H1-H2, although predictions of H3 are more problematic. Recently, 

Dunbrack and coworkers performed clustering of a new expanded set of crystal structures (> 1300 
                                                
iii Reproduced with permission from Proteins 2014 82 (8), 1646-55. Copyright 2014 Wiley Periodicals Inc. 
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antibody structures in the PDB) and proposed 72 clusters for the five non-H3 loops102. 

Approximately 85% of the non-H3 sequences can be assigned to one of these conformational 

clusters based on gene source and sequence. Prediction of the H3 loops remains difficult, however. 

In contrast to the other CDR loops, the H3 loops are extremely diverse in the length and 

conformation. Although there have been a number of attempts, no satisfying classification has been 

possible for the H3 loops103-107. 

 

The modeling of non-H3 loops has traditionally relied on the canonical classes, beginning with those 

based on the first studies that derived loop classifications from only a small number of crystal 

structures91, 100. However, with the rapidly increasing number of the antibody structures in the PDB, 

the methods that use sequence similarity and other generic criteria in homology modeling instead of 

antibody rules have become popular and perform comparably well to the canonical classes based 

approach108. An advantage to these generic homology based approaches is that new structures can be 

added to the dataset more easily than with the older canonical class analyses. The large number of 

available structures has revealed the limitation of sequence-based analysis and its predictive power. 

For example, Martin and Thornton observed that a loop might be closer in sequence to one class, 

but structurally belongs to another95. Clearly, the loop conformation is not determined by its 

sequence alone — the interactions between a loop and its environment must be considered to make 

an accurate prediction. 

 

On the other end of the spectrum of the loop modeling techniques are ab initio prediction methods16, 

18, 34, 36-37, 51, 109. These methods generally use a discretized rotamer library to sample the 

conformational space and a scoring function or energy function to rank the candidates. One of the 

advantages of ab initio methods is that they are independent of the protein structure database and 
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thus can be used when no suitable template is available. With progress in sampling techniques and 

increased sophistication of the energy function, ab initio prediction methods have demonstrated high 

accuracy in the prediction of loops generally30, 110-113, and in the prediction of loops for antibodies92-93, 

114 and other protein families49, 115. 

 

In this chapter, we describe our approach to antibody structure modeling and present our results for 

the Antibody Modeling Assessment II (AMA-II)99, 116. Antibody Modeling Assessment is a 

community-wide blinded test of the state of the art antibody modeling methods, and is similar in 

form to CASP1. The first assessment (AMA-I) was organized in 2011, in which four approaches 

(three software packages and a web server) were evaluated by predicting nine then-unpublished 

antibody crystal structures108. For AMA-II, six groups and an automated Web server attempted to 

predict 11 then-unpublished antibody crystal structures, and the results were used to benchmark the 

modeling performance. The AMA-II assessment consisted of two stages. In the first stage, the 

participants were asked to predict the full Fv structures of 11 antibodies from sequence. In the 

second stage, the crystallographic coordinates of each of the antibody structures minus the coordinates 

of the H3 loops were made available, and each participating group was then asked to predict the 

coordinates of the H3 loops. The second stage of the assessment is new to AMA-II, and reflects the 

known difficulty in predicting H3 loops. 

 

We have developed a novel knowledge-based method to predict the CDR loops using a 

combination of sequence similarity, geometry matching, and conformational clustering of the 

database structures. The homology models are optimized with a physics-based energy function 

(VSGB2.030), which we show significantly improves the quality and accuracy of the models. 

Subsequently, we present and discuss the results using our ab inito approach for the second stage of 
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the assessment--H3 loop predictions in the context of the crystallographic structure scaffolds--and 

compare these to the results of the same approach when carried out in the context of homology 

models for the remainders of the Fv regions. 

 

5.2 Materials and Methods 
 

Figure 5.1 depicts the flowchart of the steps in our antibody homology modeling protocol. Our 

protocol starts with a template search for the framework region (FR) in our curated antibody 

database, which is derived from the publically available crystal structures in the Protein Data Bank 

(PDB). Instead of a heuristic search algorithm such as BLAST117 or PSI-BLAST118, we do a direct 

alignment of the query sequence to every sequence in the database using the Smith-Waterman 

algorithm97 with BLOSUM6298 for the scoring matrix. Because there are only about 1200 antibody 

structures in the curated database, this direct alignment can be done relatively quickly, usually in 1-3 

seconds. We select a matching pair of light and heavy chain templates from a single antibody 

template. There has been discussion in the literature119-120 regarding the question of whether one 

should use the light and heavy chain templates from a single structure, or whether selecting them 

from different templates (requiring subsequent structural alignment) might be preferable. Although 

there is no systematic benchmark study, there is evidence that using both chains derived from a 

single antibody template offers some advantage119. The framework region and CDRs are defined 

according to the Chothia numbering. The templates are ranked by the average framework sequence 

similarity of the heavy and the light chain, and the best template is chosen as the one with the 

highest average similarity. 
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Figure 5.1 The antibody homology modeling flowchart. 
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The selection of the templates for CDR loops has three steps. First, a set of loop sequences and 

conformations is derived individually for each loop position (L1, L2, L3, H1, H2, and H3). Next, 

each of the six resulting loop databases is dynamically filtered based on the query sequence, loop 

length, and the stem residue geometry of the framework template that has been selected. The stem 

residues are the adjacent residues in the N- and C- termini of the loop. The stem geometry is defined 

using the distance, angles, and torsions by the Cα and C atoms in N-terminal stem residue and the N 

and Cα atoms in C-terminal stem residue121. After the filtering for each of the six loops, all 

remaining loop candidates are clustered with a complete linkage algorithm based on their backbone 

RMSDs with the stem residues being aligned. The clusters are ranked by the cluster size, and the 

“representative loop” of each cluster is defined as the one with the highest sequence similarity (as 

defined by BLOSUM62) to the query loop within that cluster. If the sequence similarity of the 

representative loop in the largest cluster exceeds a sequence similarity cutoff, this loop candidate will 

be chosen for the template; otherwise, the representative loop in the second largest cluster will be 

checked against the sequence similarity cutoff, and so on. If none of the representative loops in any 

cluster exceeds the similarity cutoff, then the representative loop with the highest sequence similarity 

will be chosen. The similarity cutoff for H3 loops and non-H3 loops are 0.3 and 0.6, respectively.  

 

Once the templates for the framework and the six CDRs are chosen, we construct the initial 

homology model by first copying over the backbone coordinates and also side chains for conserved 

residues in the framework region, then mutating the non-conserved residues in the framework, and 

finally grafting the CDR loops onto the framework homology model. The non-conserved residues 

of the framework, and all CDR loop residues, are subject to a rotamer search to remove clashes and 

are then minimized with the OPLS 2005 force field122 in vacuum. Lastly, a side-chain prediction and 
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minimization using the implicit solvent energy model VSGB2.0 are performed on all the non-

conserved residues to further refine the model. 

 

In the AMA-II, each modeler was asked to submit three models. The workflow, as described above, 

was used to produce our model #1. Our model #2 was generated by using the template loop 

candidate with the highest sequence similarity regardless the CDR loop clusters (framework 

selection was not changed). For model #3, we used Prime ab initio loop prediction to re-predict the 

H3 loops on model #1. The loop prediction follows the protocol in our previous study92, and the 

side chains within 5 Å were also repacked simultaneously.  

 

The second stage of the antibody modeling assessment was based on the well-known observation 

(also reflected in the aggregate results for the first stage of this assessment) that the H3 loop is 

generally the most difficult loop to correctly predict. Each participating modeling lab was challenged 

to predict the H3 loop conformations for a set of unpublished crystal structures, given the Fv crystal 

structure coordinates without the H3 loop. Our prediction strategy follows the protocol in our 

previous study92, which is based on the Prime loop prediction method, but with some slight 

variations. Before the loop prediction job, the protein structure was prepared with Protein 

Preparation Wizard122 available in Maestro 9.4,123 which assigns the polar hydrogen positions, 

protonation states, and amide group flips. Because the starting structure does not have the 

coordinates for the H3 loop, we run the “preparation-then-prediction” process twice, first on the 

provided structure without H3 loop, and then again once a loop has been modeled in the H3 

position. The loop predictions are performed on the H3 loop plus one extra residue on each end to 

make the loop terminal residues fully flexible. The rest of the model is kept fixed. Five models are 

submitted for each target, ranked by Prime energy function. 
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5.3 Results and Discussion 
 

The Homology Model Accuracy 

Table 5.1 and 5.2 show the PDB templates for constructing our homology models (the number 1 

model submission) and the RMSD values of different regions to the crystal structure. The 11 

antibody targets are denoted as AM1 to AM11. All CDRs are defined according to Chothia 

numbering. The structure alignment uses the Cα atoms, and the RMSD is calculated based on the 

backbone atoms (N, Cα and C). The first target is a rabbit antibody, which does not have high 

similarity to any templates in the PDB, especially for the light chain. The sequence similarity of the 

best template is significantly lower than other antibodies, which results in significantly worse 

RMSDs. (In the AMA-II assessment, no participant was able to produce an acceptable model for the 

rabbit antibody due to lack of homologous data in existing crystallographic databases. Prediction of 

this structure was deemed a failure for all participants and it was subsequently removed before the 

second phase of the competition99, 116.) Excluding the rabbit antibody, the average RMSDs of the Fv 

region and of just the frameworks for the 10 targets are 1.19 Å and 0.74 Å, respectively. The five 

non-H3 CDR loop RMSDs range from 0.61 Å to 1.05 Å.  Not surprisingly, the H3 loop remains to 

the most challenging constituent of the structure to predict, with an RMSD of 2.91 Å. In 

comparison, all modeling groups in AMA-II generate similar results on the FR and non-H3 loop 

predictions with no appreciable differences in the average RMSDs99.  Predictions of the H3 loops 

exhibit a larger spread among the different groups and our results rank in 3rd place by the average 

RMSD. Note that the RMSDs in ref. 29 are calculated using only backbone carbonyl atoms and the 

values are slightly different from here. 
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Model1 FR L1 L2 L3 H1 H2 H3 

AM1 2X7L 0.87 3LMJ 0.54 3L95 0.71 3MLW 0.15 2VXS 0.86 3MLX 0.60 2BDN 0.50 

AM2 4H20 0.95 3O2D 1.00 2I9L 1.00 3O2D 0.88 1F11 1.00 4HK0 1.00 1EHL 0.73 

AM3 2XTJ 0.99 2A6D 0.91 1RZI 1.00 3CMO 0.63 1OPG 0.86 3GBM 0.83 1A2Y 0.63 

AM4 3MXV 0.92 2R0L 1.00 1T4K 0.86 3IY0 1.00 1EGJ 1.00 1UWX 1.00 1FL6 0.63 

AM5 3MLW 0.95 2JB6 0.71 1Q1J 1.00 2J6E 0.73 2B1H 1.00 4DGI 1.00 2R0L 0.75 

AM6 3HR5 0.96 1VGE 1.00 2ZU

Q 

0.71 2J4W 0.89 2VXV 0.86 3GIZ 0.67 2AAB 0.50 

AM7 1F58 0.97 1I7Z 0.87 4F9L 0.71 2ZCH 0.67 2AJU 1.00 3J1S 0.60 1QFW 0.63 

AM8 2I9L 0.92 1AP2 1.00 1XCT 1.00 1MCP 1.00 1P2C 0.86 1P2C 0.83 1A6U 0.64 

AM9 3HM

W 

0.98 3HI5 0.91 2JIX 1.00 1KCV 0.89 1C5C 1.00 3MLT 0.83 4DN3 1.00 

AM10 2I9L 0.94 3W11 1.00 1XCT 1.00 1JRH 0.75 3IY3 0.86 1Z3G 0.83 1E6J 0.55 

AM11 2OZ4 0.93 4DGI 0.91 4F2M 1.00 3D9A 0.89 4HK3 1.00 4FQH 0.83 2UUD 0.80 

 
Table 5.1 The PDB templates for constructing the homology models (model 1, stage 1) and 
the corresponding sequence similarities.  

The light and heavy chain templates are taken from a common template framework. The CDR loop 
templates are chosen according to a combination of stem residue geometry, sequence similarity and 
database loop clustering (see main text). For each column, the template PDB ID and sequence 
similarity are listed. 
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 Align ALL FR L H FRL FRL FRL FRL FRH FRH FRH FRH 

RMSD ALL FR L H FRL L1 L2 L3 FRH H1 H2 H3 

AM1 2.96 2.51 3.76 1.54 3.45 5.20 3.91 4.91 0.83 1.12 2.05 4.74 

AM2 1.64 0.81 0.64 1.90 0.65 0.40 0.39 1.04 0.61 0.45 0.82 6.49 

AM3 0.92 0.64 0.45 1.04 0.39 0.59 0.50 0.71 0.55 3.12 1.18 1.41 

AM4 1.25 1.14 0.71 1.32 0.72 0.54 1.12 0.43 1.07 0.93 1.23 3.31 

AM5 1.12 0.89 1.03 0.80 0.54 1.82 0.58 2.54 0.70 0.84 0.40 1.80 

AM6 1.06 0.72 0.46 1.14 0.33 0.49 0.77 1.07 0.54 0.92 0.51 3.04 

AM7 0.78 0.54 0.64 0.70 0.44 1.31 0.55 0.84 0.38 1.12 0.86 1.88 

AM8 1.21 0.66 0.49 1.18 0.45 0.82 0.35 0.62 0.64 0.61 0.83 3.34 

AM9 0.70 0.50 0.44 0.78 0.37 0.47 0.85 0.56 0.38 0.60 0.84 2.50 

AM10 2.06 0.69 0.75 0.82 0.40 1.99 0.32 0.50 0.44 1.10 0.62 2.27 

AM11 1.12 0.81 0.51 1.16 0.44 0.39 0.68 0.82 0.75 0.82 1.57 3.10 

Avg 1.19 0.74 0.61 1.08 0.47 0.88 0.61 0.91 0.61 1.05 0.89 2.91 

 
Table 5.2 The backbone RMSDs between the predicted antibody models and those of the 
associated crystal structures, divided into various structural elements.  

The structure alignment uses the Cα atoms and the RMSD is calculated on the backbone atoms (N, 
Cα and C) in Å. The average RMSD for antibody target AM2-AM11 is given in the last row of the 
table. ALL: whole Fv; FR: framework; FRL: light chain framework; FRH: heavy chain framework. 
 

The CDR Loop Homology Modeling Protocols: Clustering and Sequence Similarity 

CDR loops can have identical sequences with very different conformations. This poses an issue for 

methods that rely on sequence alone to select the loop template. To overcome this issue, our 

primary model (model #1) is produced using a method that combines sequence similarity, stem 

geometry matching, and conformation clustering, as detailed in the Methods. Our second submitted 

model uses only sequence similarity to select the CDR loop templates. This experiment provides a 
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blind assessment of the two methods. Figure 5.2 compares the backbone RMSDs of six CDR loops 

generated by these two methods. The clustering method shows some advantage over the similarity 

method with smaller RMSDs on all six CDR loops. The biggest improvement is for L3 with an 

improvement of 0.4 Å in the RMSD, followed by H2 with an improvement of 0.3 Å. On average, 

the RMSDs are about 0.1-0.2 Å better with the clustering approach. It should be pointed out that 

this observation is based on a relatively small data set, which is not sufficient to make a definitive 

conclusion about these two methods. A large-scale test should be conducted in the future to 

compare these methods.   

 

 

Figure 5.2 The backbone RMSDs of six CDR loop predictions using loop clustering and 
sequence similarity.  

“Non-H3” is the average of five CDR loops excluding H3. 
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H3 Loop Prediction 

In the first stage of this assessment, our third submitted model is different from the first model only 

in the H3 loop, which is based on ab initio prediction by Prime in the context of a homology model 

for the remainder of the Fv. Analysis of the blinded predictions for these loops in model #3 versus 

model #1 allows us to evaluate the ability this ab initio method to improve the predictions derived 

using standard homology templates. The loop prediction methodology in Prime has been extensively 

validated and recently we have shown encouraging H3 loop predictions in the context of crystal 

structure scaffolds, as well as when a highly homologous scaffold is available92. Table 5.3 shows the 

backbone RMSDs of H3 loop homology models and Prime predictions. On average, Prime 

refinement improves the backbone RMSD by 0.2 Å. This improvement, although small, would have 

put us in the 2nd place among AMA-II participants if we had submitted the ab initio models as the #1 

models. The accuracy of ab initio loop prediction in the context of homology models is heavily 

influenced by the quality of the homology model itself, but this influence is largely local instead of 

global (i.e. the structures near the loop in question) in a way that is hard to quantify. 

 

H3 RMSD AM2 AM3 AM4 AM5 AM6 AM7 AM8 AM9 AM10 AM11 Avg 

Homology 6.49 1.41 3.31 1.80 3.04 1.88 3.34 2.50 2.27 3.10 2.91 

Ab initio 2.29 1.49 2.04 1.78 4.69 1.50 3.99 3.78 2.05 3.10 2.67 

 
Table 5.3 The comparison between Prime ab initio H3 loop predictions and the predictions 
made by knowledge based homology modeling.  

The homology models are the submitted model #1 in stage 1, and the Prime ab initio models are the 
submitted model #3. The accuracy is measured by backbone RMSDs in Å. 
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MolProbity 

In constructing our homology models, we keep the side-chain conformations from the template for 

all conserved residues. The side chains of non-conserved residues and CDR loop residues are first 

optimized by a simple rotamer search to minimize the steric clashes. Then a Prime side-chain 

prediction is performed to optimize the side-chain conformations. Finally, all atoms on non-

conserved residues and CDR loops are minimized with the VSGB2.0 energy function in Prime. In 

Table 5.4, we compare the MolProbity assessment of the homology models before and after Prime 

refinement. MolProbity score and clash score are improved significantly by the refinement. We 

should note that MolProbity is a measurement of structure model quality or self-consistency of the 

model. It does not necessarily correlate with the “correctness” of a model. Nevertheless, the side-

chain accuracy after Prime refinement is also improved and for some models the improvements are 

substantial. The backbone accuracy does not change significantly (RMSD data not shown), which 

can also be seen from the relatively minor change in Ramachandran favored backbone torsions. 
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 Before Prime Refinement After Prime Refinement 

Clash 

score 

(Perc) 

Rama 

favored  

MolP 

score 

Side 

Acc 

(%) 

Clash 

score 

(Perc) 

Rama 

favored  

MolP 

score 

Side 

Acc (%) 

AM1 19.3(34) 87.6 3.2 38 7.3(85) 89.4 2.8 38 

AM2 17.4(40) 93.7 2.8 45 8.7(78) 94.2 2.0 54 

AM3 6.4(89) 91.6 2.4 51 4.6(95) 93.0 2.2 51 

AM4 9.6(74) 94.4 2.4 49 1.8(99) 95.3 1.3 50 

AM5 22.2(27) 93.6 3.0 36 5.7(92) 93.6 2.4 43 

AM6 10.3(70) 95.5 2.6 41 5.9(91) 95.5 2.1 52 

AM7 16.3(44) 94.5 2.6 54 3.8(96) 95.0 1.8 56 

AM8 24.5(22) 93.7 3.1 44 15.5(48) 92.9 2.7 49 

AM9 19.2(35) 93.1 3.0 48 11.7(64) 94.1 2.7 62 

AM10 25.7(20) 92.4 3.2 46 15.9(46) 92.8 2.8 48 

AM11 12.8(59) 94.0 2.6 42 4.5(95) 95.4 1.8 39 

 
Table 5.4 Prime side chain prediction and minimization improves MolProbity score (model 
1, stage 1).  

Compared with the crystal structure, the refinement also improves the side chain accuracy. A correct 
side chain prediction is defined as the χ1 angle within 30 degrees of the corresponding crystal 
structure.  “Side Acc” is the percentage accuracy of all side chains on the model. “Clash score” 
shows both the raw score and the percentile in parenthesis. “Rama favored” is the percentage of 
backbone torsional angles falling within favored Ramachandran region. 
 

 

H3 Loop Prediction in the Context of the Crystal Structure Scaffold 

In the second stage of the assessment, all modelers were given the 10 crystal structures (the first 

rabbit antibody was excluded) with the H3 loops removed and asked to predict the conformations 
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of the missing H3 loops. The purpose of this phase of the assessment is to determine how much the 

prediction depends on the scaffolds and how much improvement can be made if the perfect 

scaffolds are available. Figure 5.3 shows graphical illustrations of our predicted H3 loop (the first 

model among 5 submitted models) and the comparison with the crystal structure.  Table 5.5 

provides the backbone RMSD and side-chain χ1 angle accuracy of all 5 submitted models for each 

antibody, as well as our  #1 model performance relative to that of other AMA-II participants. The 

average backbone RMSD of the first models is 1.28 Å. The 5 models are ranked by their Prime 

energy, and the model backbone accuracy is generally consistent with their ranking. Notably, our 

predictions rank the best among all AMA-II participants for seven of the ten targets in this category, 

and are within a fraction of an Å to the best model for two more of targets. In only one case (target 

5) is our method significantly worse than the best approach by another group. Interestingly, in this 

case, one of our alternative models (#4 model) would have placed this prediction as the best among 

all groups. 
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 Model1 Model2 Model3 Model4 Model5 Model1 

rank vs. 

other 

methods

29 

RMSD χ1 RMSD χ1 RMSD χ1 RMSD χ1 RMSD χ1 

AM2 2.78 63% 1.78 63% 2.54 50% 2.14 25% 2.81 38% 2 

AM3 0.37 63% 1.28 75% 0.80 75% 1.14 75% 0.89 50% 1 

AM4 0.65 75% 1.09 63% 1.27 63% 1.18 63% 0.74 75% 4 

AM5 2.37 63% 3.42 38% 2.10 38% 0.36 50% 3.92 50% 6 

AM6 3.11 46% 4.53 54% 4.04 31% 8.54 15% 6.08 31% 1 

AM7 0.45 43% 1.67 29% 1.69 86% 1.15 57% 0.37 57% 1 

AM8 1.25 57% 1.61 71% 3.57 57% 1.77 43% 1.33 43% 1 

AM9 0.54 75% 3.40 38% 3.14 25% 3.72 50% 3.10 63% 1 

AM10 0.85 63% 1.74 63% 3.30 63% 3.54 50% 5.49 63% 1 

AM11 0.40 50% 1.46 75% 2.17 50% 0.89 38% 0.45 50% 1 

Avg. 1.28 60% 2.20 57% 2.46 54% 2.44 47% 2.52 52%  

 
Table 5.5 Top 5 models for the H3 loop prediction in the context of the crystal structure 
scaffold.  

For each model, the backbone RMSD and side chain χ1 angle accuracy are reported. Side chain 
accuracy is defined as the χ1 angle within 30 degrees of the corresponding crystal structure. The 
model 1 ranks among all participating groups in AMA-II are also reported in the last column based 
on Almagro, et al99. 
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Figure 5.3 Graphical illustrations of the predicted H3 loop structures (model 1, stage 2) and 
corresponding crystal structures.  

The crystal structures and the predictions are colored turquoise and blue, respectively. From left to 
right:  top: AM2-AM6; bottom: AM7-AM11. 
 

 

Considering the high accuracy of loop backbone predictions, it is interesting to examine how well 

the side chains are predicted. From Table 5.5, however, we do not see strong correlations of side 

chain prediction accuracy and the backbone RMSDs. For example, the side chain accuracy of model 

1 averaged over the six H3 loops where the backbone RMSD is less than 1.0 Å is 63%; for the three 

H3 loops where the backbone RMSD is greater than 2.0 Å, the average side chain accuracy is 57%. 

The side-chain prediction accuracy for very accurate loop backbone predictions is not much better 

than that for the incorrectly predicted loops.  A possible explanation for this is that the side-chain 

conformations are highly opportunistic — they can take distinctively different states depending on 

slight variation of the backbone positions. For buried side chains, the flexibility may be very limited, 

but surface residues can have much freedom to take different conformations without much energy 

costs. Figure 5.4 shows the side-chain predictions of AM7 and AM9. Both predictions have excellent 
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backbone RMSDs (0.45 Å and 0.54 Å, respectively), but side-chain predictions are very different: 

43% vs. 75%. The buried side chains are always predicted correctly according to the crystal 

structure, but the surface residues may not necessarily assume the crystal structure conformations, 

although the loop backbones are predicted very accurately. This suggests that the observed 

difference in the side chain fine detail may not reflect a weakness of the prediction algorithm as 

much as the ability of these residues to adjust based on their environment. 

 

 

Figure 5.4 H3 loop Side chain prediction accuracies of AM7 (left) and AM9 (right).  

The H3 loops are shown on the surface of the rest of the protein. The turquoise is the crystal 
structure and the blue is the prediction. The backbone RMSD and side chain accuracy for AM7 are 
0.45 Å and 43%, respectively.  The correct side predictions are H99, H100 and H104, and the 
incorrect predictions are H102, H103, H105 and H106. The backbone RMSD and side chain 
accuracy for AM9 are 0.54 Å and 75%, respectively. The correct side predictions are H99, H102, 
H103, H105, H106 and H107; the incorrect predictions are H100 and H108. Some of the side 
chains are omitted for clarity. 
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Knowledge-Based and Energy-Based Methods on H3 Loop Prediction 

Table 5.6 shows a direct comparison of H3 loop predictions made using both homology modeling 

and the Prime ab initio method.  As more antibody structures become available, the chances of 

finding a good template for H3 loop in the database will continue to improve. However, there is still 

much room for improvement for homology modeling, as demonstrated by the fact that homology 

model predictions are often significantly worse than the best available template (columns 3 and 4). 

The ab initio prediction method in Prime does not depend on the structure database, and its accuracy 

on crystal structure scaffolds is in most cases as good as the best template in the database. In fact, in 

several cases the ab initio H3 prediction is significantly better than any template in the PDB. On the 

other hand, Prime performance is sensitive to the loop environment. The relative advantages to 

homology modeling decrease as we move from a “perfect” crystal structure to an inaccurate 

homology model for the remainder of the structure. One of the reasons is that the Prime energy 

function is sensitive to structural errors in the “fixed” regions, such as shifted backbone positions, 

misplaced side-chain rotamers, and incorrect protonation states. A direct Prime energy evaluation of 

the knowledge based homology model with minimization usually does not yield favorable energy. 

Furthermore, the sampling problem is more challenging for homology models, as a small change in 

the nearby environment can greatly influence the generation of a structural candidate ensemble.  
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H3 RMSD 

(Å) 

H3 

Length 

Best in 

Database 

Using Crystal Structure Using Homology Model 

Homology 

Prediction 

Prime 

Prediction 

Homology 

Prediction 

Prime 

Prediction 

AM2 11 1.69 4.35 2.78 6.49 2.29 

AM3 8 0.88 1.48 0.37 1.41 1.49 

AM4 8 0.72 2.20 0.65 3.31 2.04 

AM5 8 1.00 2.35 2.37 1.80 1.78 

AM6 14 2.60 3.12 3.11 3.04 4.69 

AM7 8 1.46 2.33 0.45 1.88 1.50 

AM8 11 1.68 3.30 1.25 3.34 3.99 

AM9 10 0.73 1.89 0.54 2.50 3.78 

AM10 11 1.53 2.79 0.85 2.27 2.05 

AM11 10 0.37 2.56 0.40 3.10 3.10 

Average  1.26 2.64 1.28 2.91 2.67 

 

Table 5.6 Comparison of H3 loop predictions with homology modeling and the Prime ab 
ini t io  method.  

Best in Database: The H3 loop in the PDB database with the best backbone RMSD to the 
crystallographic conformation of the target H3 loop. Using Crystal Structure: H3 loops built in the 
context of the remainder of the antibody structure taken from crystallographic coordinates. Using 
Homology Model: H3 loops built in the context of the remainder of the antibody structure taken 
from our “Model #1” submission from the first part of this assessment. 
 

 

5.4 Conclusions 
 

AMA-II has offered an opportunity for blinded testing of our approach to antibody homology 

modeling and refinement, as implemented in the programs BioLuminate and Prime within 



 136 

Schrodinger Suite. Our homology modeling features a novel knowledge based approach to modeling 

the CDR loops, using a combination of sequence similarity, geometry matching, and the clustering 

of database structures. This method does not rely on the antibody canonical classes or other specific 

rules, and performs on par with the state of the art antibody modeling methods. Our homology 

models benefit significantly from the energy-based refinement, as demonstrated by the side-chain 

placement and H3 loop prediction. The ab initio loop prediction method in Prime performs very well 

when applied to repredicting the H3 loops in the context of crystal structures. Its accuracy on 

homology models degrades, but the method still performs better than the best database approach 

presented here. The refinement of homology models, in terms of reducing backbone RMSDs, still 

remains a very challenging problem. Its success depends heavily on the starting homology models 

and it should be used with caution.  One particular situation where we have shown Prime works 

well24 is when the template and target structure are highly homologous and the structural differences 

are relatively isolated (e.g. two antibodies with only differences in H3 loops and with minor changes 

in other CDR loops). This is a relatively common real-world scenario in antibody optimization, for 

which we expect our methods will be useful. 
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II. Applications in anti-HIV antibodies 

 

Chapter 6 : Introduction  
 

In this section, I discuss the application of the loop prediction methods outlined in the preceding 

chapters to study anti-HIV antibodies.  

 

Human immunodeficiency virus-1 (HIV-1), the precursor to acquired immunodeficiency syndrome 

(AIDS), is a major cause of death worldwide. In 2013, the World Health Organization reported 2.1 

million people newly infected with HIV – including 240,000 children – and a total of 35 million 

people living with HIV124. While antiretroviral therapy has drastically improved life outcomes for 

many HIV-positive individuals, there is still a great need for effective ways of preventing infection.  

 

Currently, the only non-behavior-based preventative treatment option for HIV is pre-exposure 

prophylaxis, a daily course of antiretroviral therapy that can prevent viral replication and permanent 

infection upon exposure to HIVC125. This course of treatment has been shown to decrease the 

incidence of HIV in high-risk populations126-129, but only when the daily protocol is consistently 

followed.  

 

Developing a preventative approach that provides immunity against HIV therefore remains a major 

goal, both for at-risk populations and in preventing “vertical” transmission from mothers to infants. 
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The first step in this approach is identifying antibodies that can neutralize a broad spectrum of HIV 

strains. These antibodies would have therapeutic potential for “passive immunization,” transferring 

the antibodies directly to the patient immune system, as well as targets for developing a vaccine that 

could elicit such antibodies.  

 

The structural region of the HIV-1 virus most relevant to binding and infection is the outer 

envelope spike, which consists of glycoprotein gp120 on the surface and gp41 as the transmembrane 

domain; gp120 binds to the CD4 T-cell receptor in the cell which causes conformational changes to 

gp120 and instigates viral entry130. Based on their position and key roles, these surface glycoproteins 

seem to be an ideal target for antibodies to block binding to CD4 or subsequent receptors and 

prevent viral entry. But while this strategy has worked in other viruses, elements of HIV-1 envelope 

glycoprotein structure pose unique challenges to eliciting a neutralizing immune response130-131. 

 

Three main structural elements make HIV-1 a challenging neutralization target: (1) glycan shielding, 

(2) entropic barrier masking, and (3) antigenic variation132. Much of the gp120 molecule is covered 

with glycans, a type of carbohydrate that is not recognized as a non-self “attacked” by the immune 

system and therefore functions as a shield for the attacking virus.  The multi-domain organization 

and intrinsic flexibility of gp120 may create a high entropic/conformational barrier that could 

prevent antibodies from targeting the receptor binding region133. Substantial sequence variation over 

particular regions in isolated HIV-1 structures may also prevent neutralization134. 

 

Despite this, many HIV-1-infected individuals have been found to develop broadly neutralizing 

antibodies that can provide immunity against many different strains of HIV-1135. While these 



 139 

antibodies do not provide a meaningful clinical benefit to these patients, studies have shown that 

they are effective at passive immunization in animal models of HIV-1 transmission136-137. 

 

Successful monoclonal antibody therapeutics must be able to achieve therapeutic response in 

humans at a reasonable concentration in the blood after administration via injection. An antibody’s 

effectiveness is dependent on its binding affinity to its antigen (a portion of the HIV virus, in this 

case). The antibody’s concentration in the blood serum must be above KD, the dissociation constant 

for the antibody-antigen binding reaction. To reduce the required concentration, and by extension 

the therapeutic dose, KD must be also reduced. This can be achieved by increasing the binding 

affinity through optimizing the design of the antibody and/or epitope.  

 

Here, we focus on computational tools for optimizing and designing more potent antibodies against 

HIV-1. Leveraging computational methods can save time and money in the antibody development 

process: modifications and alterations to the structure can be screened rapidly and cheaply in silico 

and the best performing leads can be passed along for synthesis and experimental testing.  However, 

in order to optimize an antibody’s binding affinity, we must have an accurate and robust method for 

predicting the change in binding affinity upon modification (typically, residue(s) mutation) to 

antibody-antigen complexes.  

 

This technology exists in the form of free energy perturbation (FEP) simulations. FEP simulations 

calculate the free energy difference between two highly similar systems by taking an alchemical path 

between the two systems. To measure the relative binding affinity, or free energies of binding, 

between two protein-protein systems, an alchemical path transforms the wildtype protein into the 

mutated protein in both the complex form and the uncomplexed form. The intermediate changes in 
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free energy (dG) are calculated between (1) the complexed wildtype and mutated type and (2) the 

uncomplexed wildtype and mutated type. While these dG values have no physical corollary, the 

difference in dG (ddG) is equivalent to the relative free energies of binding that are experimentally 

measured separately for each of the wild and mutated types.  

 

McCammon, Kollman and Jorgensen originally applied FEP methods to calculating protein-ligand 

relative binding affinities beginning in the 1980s59, 138-143. Through improvements to force fields, 

conformational sampling, and cost-effective parallel computing, advanced FEP implementations are 

now being successfully deployed in small-molecule drug discovery lead optimization workflows144. 

Protein ligands, however, pose additional challenges: namely, they are much larger than small 

molecules. This demands greater sampling and additional computational power. Focused sampling 

methods developed by Wang, et al.145-147 as well as the ability to run simulations on graphics 

processing units (GPUs) brought small molecule ligand FEP to mainstream144. Now, we are focusing 

on extending these tools to protein-protein systems. 

 

The pathway to designing more potent anti-HIV antibodies begins with developing a protein-

protein FEP protocol that consistently produces accurate (under ~1 kcal/mol root mean square 

error between computation and experiment) predictions for the relative change in free energy. The 

methods can be tested in two ways: first in retrospect, by replicating existing experimental data, and 

then by prospectively predicting new candidate modifications to be experimentally validated.  

 

In addition to tuning the parameters of the FEP simulation itself, a successful protocol will require 

accurate input structures for the simulation, and methods to evaluate the sampling carried out over 
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the course of the simulation. Non-free-energy-based, time-independent structure prediction 

methods can contribute to these tasks and supplement FEP in the overall optimization protocol. 

 

The system we are using to build out and test this protocol is the VRC01 class of anti-HIV 

antibodies, which have been isolated and optimized by researchers at the NIH Vaccine Research 

Center (VRC)134, 148. VRC01 is one of many antibodies generated against the CD4-binding region of 

viral envelope glycoprotein gp120. It has unique structural features that go beyond simply mimicking 

CD4 binding, make it a highly potent and broadly neutralizing agent against HIV-1134. 

 

Experimental optimization has been able to further improve the binding affinity of the VRC01 

antibody, but it would still require treatment on the order of grams per month to be effective. 

Improving the binding affinity by one to two orders of magnitude would mean only milligrams of 

the antibody would need to be delivered as a treatment, which is a more therapeutically and 

economically reasonable quantity. 

 

VRC01 is also an ideal test system because of the wealth of structural and binding affinity data 

available. Nineteen crystal structures have been published for various VRC01-class antibodies alone 

and in complex with gp120 proteins from a range of HIV-1 clades, and binding affinity has been 

measured for multiple different mutations over several orders of magnitude. With both input 

structures and binding affinities to compare to the FEP output, this is a complete and biologically 

relevant data set for validating the FEP protocol. 

 

In the following chapters, I will focus on the role of structure refinement and validation in protein-

protein FEP simulations. In Chapter 7, I will discuss data confirming our ability to model key loop 
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regions in the VRC01-class systems. Then, in Chapter 8, I will present several case studies 

incorporating structure prediction and loop modeling into a complete FEP protocol. This work is a 

critical first step towards practical deployment of FEP simulations to study the VRC01-class system. 
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Chapter 7 : Loop prediction in VRC01-class antibodies  
 

7.1 Introduction 
The HIV-1 virus relies on its outer envelope spike to instigate binding and infection, consisting in 

part of glycoprotein gp120, which binds to the CD4 receptor in the target cell and leads to viral 

entry. Antibodies can therefore block HIV infection by targeting this CD4 binding site (CD4bs) on 

gp120. Researchers have recently shown a small subset of HIV-infected patients produce broadly 

neutralizing antibodies149-151, and researchers at the NIH Vaccine Research Center (VRC) have 

identified broadly neutralizing antibodies in donor sera as binding to the CD4bs of gp120152-154. 

 

The first of these highly effective, broadly neutralizing antibodies, VRC01, was identified and 

reported by Wu, et al.148, 155. Since then, several similar antibodies have been identified and added to 

the VRC01 class156. VRC01-class antibodies share common features, in particular a heavy chain that 

mimics the CD4 receptor, five-residue CDR L3 loops, and a high degree of somatic mutation155. 

Typical antibodies see 5-15% of their variable region sequence change throughout the affinity 

maturation process157, but the mature VRC01 sequence differs by over 40% from the germline148. 

 

This class of antibodies has now been studied extensively from many angles, including ontogeny of 

the class by Zhou, et al.158, antigenic optimization by Joyce, et al.159, identification of unusual somatic 

framework mutations by Klein, et al.160, comparing epitope specificity and neutralization patterns by 

Georgiev, et al.161, and crystallizing additional VRC01-like antibodies to understand maturation and 

binding by Wu, et al.155 Over the course of these investigations, many VRC01-class antibodies have 

been crystallized and deposited in the PDB, creating a valuable corpus of crystal structures that can 

be used for computational optimization efforts. 
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In order to use rational, structure-based tools to further optimize VRC01 and related antibodies, we 

must first be able to re-predict structural features of the crystal structures. To that end, we present 

and discuss results of ab initio H3 loop predictions over the entire set of VRC01-class antibody 

crystal structures.  

 

7.2 Methods 

VRC01 Structures 

Nineteen crystal structures of VRC01-class antibodies have been deposited in the Protein Data Bank 

(PDB)68 and comprise the cases used for these predictions. Within this set there are eleven distinct 

antibody-antigen combinations. Two structures contain the unbound antibody and the remaining 

seventeen are in complex with envelope glycoprotein gp120 or gp160.   

Numbering and identification of CDR loops 

All structures were renumbered with the Chothia numbering scheme91 using the Abnum antibody 

numbering server162. 

 

Antibody CDR loop H3 was identified, where possible, using the abYsis webserver’s Key 

Annotation tool163. Manual identification was used for structures that the webserver could not 

annotate. Both methods defined the H3 loop as beginning after the residue sequence CAR and 

ending before the residue sequence WGXG where X is any residue162. The resulting loops ranged 

from ten to fifteen residues in length. 
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Loop Prediction 

Loop prediction was carried out using the Protein Local Optimization Program (PLOP). Previous 

chapters of this thesis and past publications36-37, 164-165 describe Plop’s features in great detail, and the 

protocol used here is presented in depth in chapters three and four.  

 

As the goal of this study was to restore the loops as crystallized in their native structure, all non-loop 

surrounding residues were treated as fixed atoms and were not sampled in loop buildup or 

refinement.  Fix stages, where loop termini are frozen in sections and sub-loops are built up to focus 

sampling, were used in all loops containing six or more residues; the number of Fix stages was set so 

that the shortest loop predicted was four residues. The loop input file, or “looplist” format and the 

wrapper script that controls Fix stages was modified to read insertion codes as unique residues and 

iterate over, for example, residues 100, 100A, and 100B separately in setting up the Fix stage 

predictions.  

 

Protonation states were assigned and hydrogens were added to the input structures using the 

Prepwizard and PROPKA tools through the Schrodinger Suite123, based on the crystallization pH 

reported in the PDB. Two cases were found to be particularly sensitive to protonation state 

assignment and will be discussed later in this chapter. 

Plop Parameters 

The following key parameters were used in these predictions: 

• Energy function: VSGB2.0 (See Li, et al.30). 

• Stages: Init, Ref1, Fix1 … Fix8, Ref2. 

• Buildup library: the single peptide dihedral library was used (keyword ‘segment no’). 
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• Rotamer frequency score: applied with default scaling constant in all stages except Ref2, 

where the scaling constant was doubled for final refinement. (See Chapter 3 of this thesis.) 

• Side chain optimization: only loop side chains were sampled. 

 

7.3 Results 
CDR H3 was re-predicted in the crystal structure surroundings for all nineteen crystallized VRC01 

class antibody systems. In each prediction, the native coordinates for the loop of interest were 

deleted from the structure and the loop was built up fully ab initio using Plop. The ultimate predicted 

loop structure for each case is the final lowest-energy loop structure generated by the Plop sampling 

algorithms, and scored using the VSGB2.0 all-atom physics-based force field, as described in 

Chapter 1 of this thesis.  

 

The average root mean square deviation (RMSD) between the predicted H3 loop and the native 

structure, calculated over loop backbone atoms, was 0.98 Å. Eleven of the nineteen cases were 

predicted at an accuracy of < 1.00 Å, and seventeen out of nineteen were under 1.5 Å. There was no 

significant difference in results based on loop length – most of the 14-residue loops were predicted 

to the same level of accuracy as the 10-12 residue loops.  
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PDB 
ID 

H3 
Length Heavy chain Light chain 

Plop H3 
RMSD 

Plop H3 
dE 

4GW4 10 3BNC60 with P61A 3BNC60 0.51 -17.14 
4JPV 10 3BNC117 3BNC117 0.33 -4.05 
4LSV 12 3BNC1171 3BNC1171 0.85 -84.82 
3NGB 12 VRC01 VRC01 1.09 -21.18 
4LSS 12 VRC01 VRC01 with N72T 0.93 -23.83 
4LST 12 VRC01 VRC01 0.37 -9.71 
4JPI 12 VRC01 germline VRC01 germline 0.82 -14.69 
4JPK 12 VRC01 germline VRC01 germline 0.71 -20.07 
4J6R 12 VRC23 VRC23 0.36 -12.05 
4LSP 13 VRC-CH31 VRC-CH31 1.76 -35.50 
4LSQ 13 VRC-CH31 VRC-CH31 1.21 -25.89 
4LSR 13 VRC-CH31 VRC-CH31 1.06 -130.16 
4JPW 13 12A21 12A21 0.87 -165.27 
4LSU 13 VRC-PG20 VRC-PG20 0.96 -103.85 
3SE9 14 VRC-PG04 VRC-PG04 1.37 -23.57 
4I3S 14 VRC-PG04 VRC-PG04 1.08 -14.92 
4I3R 14 VRC-PG04 VRC-PG04 1.00 -8.05 
3SE8 14 VRC03 VRC03 0.80 -15.12 
4JB9 15 VRC06 VRC06 2.58 -33.62 

 
Table 7.1 Results of VRC01 H3 loop prediction 

 

Four H3 cases required slight modifications to the default protocol: 

Additional sampling:  

Under the default parameters, the cases with PDBIDs 4LST and 4LSQ resulted in sampling errors – 

that is, the lowest energy predicted loop was higher in energy than the native loop. This indicates 

that the native conformation was never sampled. These cases were rerun with two changes to the 

parameters in the initial “Init” Plop stage: (1) the number of side chain optimization iterations was 

doubled to a total of 6 iterations per loop prediction, and (2) the number of loop clusters in buildup 

for this stage was doubled. These parameters ensure that a large number of loops are generated early 

on. While it is more time-intensive to run more side chain optimizations on a larger number of loops 

(from the additional clusters), it succeeded in identifying candidate loops that, when refined in 
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subsequent stages, were appropriately native-like and slightly lower in energy than the native 

structure. 

Glycan molecules 

While many of the VRC01 complexes are heavily glycosylated, H3 loop residues in PDBs 4JPI and 

3SE9 interact directly with glycans in the crystal structure. We found that the native H3 loop 

conformation was sensitive to the presence of a glycerin molecule in 4JPI and an n-acetyl d-

glucosamide molecule in 3SE9. These molecules were included in the 4JPI and 3SE9 predictions 

(with Plop parameter ‘load het yes’) reported here.  

 

7.4 Discussion 
We demonstrated Plop’s ability to successfully restore the native H3 loop in all crystallized VRC01-

class antibodies, which include antibodies alone and in complex with gp120. These results mean that 

we can confidently move forward to predict H3 loops with mutations or other modifications that do 

not have crystal data but may be important for optimization efforts. Additionally, these results give 

us a baseline accuracy level for predicting modified loops. Overall, we can predict the H3 loop in 

these cases to an accuracy of about 1 Å in the crystal structure context. 

 

 In re-predicting these loops, we also developed insight about various aspects of these systems. 

Here, we will discuss our findings in two key areas: protonation state assignment and glycosylation. 

Protonation 

We discovered that protonation of a histidine residue near the H3 loop is critical to accurately re-

predict the H3 loop in antibody VRC20.  
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This structure, PDB ID 4LSU, was not yet deposited when we used it as a blinded loop prediction 

test. In preparing the system, we found that histidine residue H:35 was near the empty loop pocket 

and, as such, its protonation state may be linked to the native loop conformation. Additionally, the 

final loop residue is also a histidine. We sampled all possible protonation states for both histidines: 

protonating the delta position only (HID), protonating the epsilon position only (HIE), or 

protonated both positions and forming a charged residue (HIP). 

 

Based on our predictions with each protonation state, we determined that in order to restore the 

native loop conformation, H:35 must be doubly protonated (charged) to form a salt bridge with the 

loop, and H:102 should be protonated in the epsilon position to avoid forming a competing salt 

bridge. At first, we were surprised that H:35 could be doubly protonated because it would appear to 

clash with a neighboring tryptophan residue (H:47). However, we established from the 

crystallographers that the TRP residue is accurately placed and the density is good in this region.  

 

Looking closer at the native loop, we realized that this charged histidine forms a strong salt bridge 

with a glutamic acid residue on the loop, residue H:100B, that likely overwhelms the slight H-H 

clash with the TRP residue. We predict this interaction when H:35 is set to doubly protonated and 

H:102 is set to be epsilon protonated. Indeed, this prediction restores the nativelike loop altogether, 

with heavy atom RMSD to native of 0.96 Å.  This network of interactions is shown in Figure 7.2.  
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Figure 7.1 VRC20 prediction compared to native  

Backbone trace showing accurate reprediction (left); Native salt bridge between H:35 and H:100B 
(center); Predicted salt bridge with H:35 HIP (and H:102 HIE) (right).   
 

While some of the crystal structure refinement data suggests that the H:102 loop residue was doubly 

protonated, we found that HIE protonation here was necessary to restore the native loop. When 

H:102 is doubly protonated, we predicted a loop that forms a salt bridge between H:102 and 

H:100D ASP. This salt bridge is not found in the native loop, and the predicted loop's conformation 

is highly distorted compared to the native loop (RMSD > 5 A). Alternatively, this alternate 

conformation is a low-energy well, and more sampling could identify a nativelike loop making the 

H:35-H:100B salt bridge with even lower energy. However, there is also no compelling interaction in 

the native structure that would motivate a charged H:102.  
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Figure 7.2 The 5.5 Å prediction with H:102 doubly protonated (blue) compared to the native 
(orange).  

 

This antibody experiences a high degree of interplay between protonation states and H3 loop 

conformation. When this may be the case, due to titratable residues on or near the loop of interest, 

it’s clearly necessary to test loop prediction under different protonation state assignments, and 

carefully examine the resulting structures to help identify the conformation with the most favorable 

interactions.  

 

Antibody CH31, PDB ID 4LSR, has the same neighboring and loop-terminal histidines, and as such, 

we re-predicted the H3 loop with each possible protonation state assigned. Results of this prediction 

as well as the VRC20 predictions are shown in Table 7.2. Here, we did not find any predictions for a 

salt bridge with H:35, which matches the native behavior. The interactions for both this and the 
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histidine at H:102 are consistent with the native for all predictions with H:35 protonated in the 

epsilon position or both positions.  

 

Protonation VRC20 (4LSU) CH31 (4LSR) 
H:35 H:102 H3 RMSD Final E H3 RMSD Final E 
HID HID 6.8 

6.6 

7175.62 6.2 5449.14 
HIE HIE 4.7 7180.36 1.2 5427.68 
HIP HIE 1.0 7191.54 1.1 5457.34 
HIP HIP 5.5 8185.79 1.0 6825.24 

 
Table 7.2 VRC20 and CH31 H3 loop predictions for each histidine protonation state. 

 

Glycosylation 

As mentioned in the methods section, we found that neighboring glycans are crucial to restoring the 

native loop in two cases: the uncomplexed VRC01 putative germline antibody (PDB ID 4JPI) and 

antibody VRC03 (PDB ID 3SE9). For 4JPI, including glycans in loop prediction substantially 

improved the H3 RMSD to native from 2.49 Å to 0.82 Å. Including glycans in 3SE9 improved the 

result by 0.75 Å, going from 2.31 Å RMSD to native to 1.56 Å. This data is also presented in Table 

7.3. 

 

In 4JPI, a glycerin molecule near the H3 loop forms a hydrogen bond with the sidechain of 

asparagine residue H:97, depicted in Figure 7.3 (a). When this molecule is included in its crystal 

structure position, loop prediction identifies a nativelike (<1 Å) lowest-energy loop, shown in green 

in Figure 7.4 (a), that also restores this hydrogen bond. Without glycerin, the loop diverges 

significantly from the native conformation, shown in orange in Figure 7.4 (a). It appears that native 

loop conformation is highly dependent on the glycerin as positioned in the crystal, and this must be 

a consideration in any further computational experiments involving this protein and loop region. 
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The 3SE9 H3 loop interacts with an n-acetyl d-glucosamide (PDB ligand code NAG) molecule, 

forming a hydrogen bond between the carbonyl on glycine H:100A and NAG, residue G:776. Loop 

predictions with and without including glycans show that NAG primarily improves our result by 

blocking a low-energy but extremely non-native loop (>6 Å RMSD to native), shown in orange in 

Figure 7.3 (b). This loop clearly clashes with NAG in the crystal structure and, unsurprisingly, is not 

built as a candidate loop when NAG is included.  

 

But we would expect that including the glycan would not only block sterically impossible 

conformations but also form a hydrogen bond with the predicted loop. Yet our final predicted loop 

in the presence of NAG does not form the native hydrogen bond at residue 100A. This loop is also 

on the upper end of what we consider an acceptable RMSD to native. We hypothesize that 

additional sampling would eventually identify and refine a more nativelike loop with the NAG 

interaction and a lower RMSD. 
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Figure 7.3 Glycan interaction with native H3 loop in (a) PDB 4JPI and (b) PDB 3SE9  

 

 

 

 4JPI 3SE9 
 H3 RMSD dE H3 RMSD dE 

Without Glycans 2.49 -13.89 2.31 -20.37 
With Glycans 

 

0.82 -14.69 1.56 -23.82 
 
Table 7.3 Loop prediction results with and without glycans for PDB 4JPI and PDB 3SE9  
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Figure 7.4 Loops predicted with and without glycan molecules for (a) PDB 4JPI and (b) 
PDB 3SE9  

 

These loops are highly sensitive to the presence of glycans nearby. At a minimum, further 

computational experiments relying on these structures and considering interactions or perturbations 

on or near the H3 loops should carefully include these molecules.  
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Chapter 8 : Structure prediction to inform computational binding 
affinity predictions in a VRC01 antibody system 
 

8.1 Introduction 
The overall goal of this study is to develop a robust computational protocol for predicting the 

change in binding affinity upon mutation to a protein-protein antibody-antigen system. The first 

step, which we will focus on here, is developing our methods by comparing to preexisting 

experimental data over a set of simple perturbations to a VRC01-class antibody. 

 

As in the previous chapter, we are using the VRC01 antibody as the test case. VRC01 is a broadly 

neutralizing, highly potent antibody against HIV-1 that has been found to target the CD4 binding 

site on gp120134. Structural studies of VRC01 in complex with gp120 indicate that VRC01 mimics 

some elements of CD4-gp120 binding but differs from CD4 in key ways, allowing it to exceed the 

neutralization potency of other CD4-binding-site (CD4bs) antibodies. Briefly, the VRC01-gp120 

interaction surface is approximately 2500 A2 in area, with roughly equivalent contributions from 

both proteins. As with CD4, which has a CDR2-like region centrally involved in gp120 binding, the 

largest part of VRC01’s interaction surface comes from CDR H2134. But comparing both CD4 and 

VRC01 structures each bound to gp120, it is evident that the domains have different orientations. 

Zhou et al. showed that VRC01 in complex with gp120 rotates 43 degrees and translates 6 A away 

from the corresponding CD4 position relative to gp120134. VRC01 also makes contacts between its 

light chain and a glycan molecule; in CD4, this glycan shields a contact site134. Overall, VRC01 

distinguished by both its similarities and differences to CD4 binding, and the depth of structural 

understanding of its binding surface and activity make it a promising candidate for computational 

studies with the ultimate goal of improving its binding affinity for gp120. 
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To computationally determine the change in binding affinity upon perturbing or mutating parts of 

gp120, we use free energy perturbation (FEP) simulations. As mentioned in the previous chapter, to 

measure the relative binding affinity, or free energies of binding, between two protein-protein 

systems, FEP simulations take an alchemical path from the wildtype protein to the mutated protein 

in both the complex form and the uncomplexed form. The intermediate changes in free energy (dG) 

are calculated between (1) the complexed wildtype and mutated type and (2) the uncomplexed 

wildtype and mutated type, and subtracted to obtain:  

ddG = dGcomplex – dGsolvent 

This value can be compared with an experimental ddG value, calculated from:  

ddG = dGmutant binding – dGwildtype binding 

 

The perturbation we focus on here is individual residue mutations to alanine, or “alanine scanning.” 

This is a useful starting point, both computationally and for understanding the antibody-antigen 

contacts that contribute to binding affinity. Computationally, the perturbation going from any side 

chainiv to alanine is straightforward and attainable in a standard-length simulation. This data also 

provides useful insight to the system: when we essentially remove side chains, the resulting change in 

binding affinity tells us how important the native interaction is to binding.  

 

In this chapter, I discuss two experiments: first, preliminary FEP change in binding affinity data for 

mutating a set of contact residues on VRC01 to alanine, as compared to the experimental alanine 

scanning data; and second, case studies in using structure prediction as input or a guide for these 

FEP simulations. 

 

                                                
iv Excluding charged residues, which must be treated differently and are not investigated here. 
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8.2 Alanine scanning experiment 
The experimental data we are working to replicate come from an alanine scanning experiment 

conducted by collaborators at the NIH vaccine research center (VRC). The antibodies used in this 

study, VRC01, VRC03, and VRC-PG04, target the CD4 binding side on the envelope glycoprotein 

gp120 to potently neutralize up to 90% of HIV-1 strains. In order to evaluate the role of individual 

contact residues in binding to the gp120 antigen, the VRC researchers individually mutated each 

contact residue to alanine, expressed each mutated antibody, measured its affinity for HIV-1 gp120 

and determined the change in Gibbs free energy (dG). dG was calculated using the formula  

dG = RT ln (Kd) 

where R is the gas constant, T is the temperature, and Kd is the dissociation constant equal to Koff / 

Kon.  

 

This was calculated for each unmutated wild type antibody and the mutated antibody and used to 

calculate ddG = dGmutant – dGwildtype. Therefore, a positive ddG suggests that the alanine mutation 

makes binding less favorable, typically suggesting that the wildtype residue is important in the 

binding reaction or structural features involved in binding. A negative ddG indicates that mutating 

to alanine – essentially, removing the side chain atoms in all cases but glycine – actually improves the 

binding. This overall ddG value is what we can compare against in benchmarking the accuracy of the 

FEP binding affinity calculations. Results of this experiment are listed in Table 8.1 in section 8.5. 

 

8.3 FEP-REST simulations 
FEP simulations are a method for calculating the change in protein-ligand binding free energy, 

initially in systems with small molecule ligands and moving into systems with protein ligands (as in 

this work). FEP carried out through molecular dynamics (MD) simulations, here simply referred to 
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as “FEP simulations,” is one of several approaches to computationally determine binding free 

energy. It stands out for its ability to completely characterize the binding energetics and 

thermodynamics of the system, which should result in the most accurate binding energy prediction. 

However, the attainable accuracy hinges on the accuracy of the underlying force field and the degree 

to which the phase space of the system is sampled.  

 

To address the phase space sampling factor, Wang, et al. developed an enhanced sampling approach: 

Free Energy Perturbation / Replica Exchange with Solute Tempering or FEP/REST147. This 

implementation of REST increases the sampling power of the FEP simulation, so that more varied 

binding site conformations can be explored. The FEP/REST methodology has been detailed in the 

literature147 and applied to protein-small molecule ligand systems146, generating reliably good results 

for systems of pharmaceutical interest144. Here, we will briefly outline how FEP/REST improves 

sampling and therefore the accuracy of binding free energy calculations, as described in detail by 

Wang, et al.147  

 

Alone, FEP simulations calculate the free energy difference between two systems – for our purposes 

here, a wildtype antibody and a mutated antibody – by alchemically transforming the wildtype 

system into the mutated system. This transformation is executed in a series of discrete steps, or λ 

windows which range from λ=0 in the initial, wildtype state to λ=1 in the final mutated state. In 

FEP/REST, this general protocol is preserved, and the sampling power is cranked up in the 

intermediate λ windows by scaling the potential energy in a localized region by a factor < 1, so that 

the energy barriers between conformations states are lowered in this region. This is done by 

increasing the effective temperature (by scaling the Hamiltonian) incrementally in the first half of λ 
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windows, then reducing back down to the initial effective temperature over the second half of λ 

windows in this “lambda hopping” workflow147. 

 

Lowering energy barriers allows the system to more freely explore phase space, sampling more 

conformations than would be possible with a “true” potential energy and avoiding “trapping” the 

system in the initial conformation. These different conformations are then exchanged between 

neighboring λ windows and propagated to the final mutated state through the Hamiltonian replica 

exchange method147. 

 

The localized region targeted for additional sampling is called the “hot” region, and in protein-

protein systems, typically consists of the residue being mutated. Selection of the “hot” region is 

outlined by Wang, et al.147 and requires balancing the degree of sampling (by increasing the hot 

region size) with the precision of free energy results (which degrades as the difference between 

subsequent λ windows increases).  

 

Our FEP/REST simulations were carried out using Desmond166, as implemented to run on graphics 

processing units (GPUs). We used the OPLS2.1 force field27, 29, solvated the system in a water box of 

buffer 5.0 A around the molecule, and ran the simulation for a total of 10 ns in the production 

(lambda hopping) stage. 

 

8.4 Modeling gp120 
We chose to initially focus on antibody VRC01 featured in the alanine scanning experiment. 

However, while a crystal structure has been determined for VRC01 in complex with gp120 (PDB 
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ID: 3NGB134), the gp120 used in the alanine scanning experiment differed from the gp120 reported 

in 3NGB.   

 

The alanine scanning experiment studied VRC01 in complex with a gp120 resurfaced stabilized core 

3 (RSC3) probe. This molecule was designed by Wu, et al. to identify CD4-binding site-specific 

neutralizing antibodies, and it maintains the core structure of the CD4 binding site’s neutralizing 

surface in the absence of other antigenic regions of HIV-1148. 

 

We used the complexed gp120 in PDB 3NGB as the template for constructing a homology model 

with the RSC3 probe’s sequence, and used this model as the “ligand” with the VRC01 antibody in 

the FEP simulations discussed here. The model was built in BioLuminate using the standard 

homology model-building tool167. The gp120 “G” chain of PDB 3NGB was the only structure 

template provided. As Figure 8.1 shows, regions closest to the CD4 binding site were able to be 

modeled with residue side chain mutations; most loops with substantial reconstruction were on the 

opposite side of the protein. The model was then subject to five rounds of total side chain re-

optimization, using Plop, while in complex with the VRC01 antibody. Finally, protonation states 

were optimized using the Protein Preparation Wizard and ProPKA tools in the Schrodinger Suite123. 
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Figure 8.1 RSC3 gp120 homology model from 3NGB gp120 template 

 

8.5 Change in binding affinity predictions 
In our initial FEP simulations on this system, we obtained results in good agreement with the 

experimental data, as shown in Table 8.1. For the twenty highest-magnitude ddG mutations, 

excluding charged residues, our simulations predicted a binding affinity within 1.0 kcal of the 

experimental value for 70% of the cases. All but one mutation obtained a ddG within 1.5 kcal of the 

experiment. This is also depicted in Figure 8.2, which shows the correlation between experimental 

ddG and FEP-predicted ddG.  
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The complete alanine scanning data set shows an overall experimental noise of 0.45 kcal/mol for 

each measurement, and the cumulative error when subtracting the two measurements to obtain ddG 

gives an experimental accuracy of 0.9 kcal/mol. Nearly 70% of our simulations are therefore 

accurate to within the experimental limitations, and this noise explains much of the overall deviation 

from center in Figure 8.2. 

 

Residue Wildtype Mutation 

Experimental 
ddG 

(kCal/mol) 

Simulation 
ddG 

(kcal/mol) 
Absolute 

Error 
H:30 ILE ALA -0.01 1.09 1.10 
H:33 THR ALA 0.70 0.29 0.41 
H:47 TRP ALA 1.19 4.43 3.24 
H:50 TRP ALA 1.28 0.41 0.87 
H:54 GLY ALA -1.28 -1.31 0.03 
H:55 GLY ALA 1.26 2.34 1.08 
H:57 VAL ALA 1.35 1.21 0.14 
H:58 ASN ALA 1.76 0.71 1.05 
H:59 TYR ALA 0.54 0.59 0.05 
H:64 GLN ALA -0.35 0.35 0.70 
H:69 MET ALA 0.52 0.31 0.21 
H:73 VAL ALA 1.08 0.41 0.67 

H:100 TYR ALA 1.42 -0.04 1.46 
H:100A ASN ALA 1.11 0.42 0.69 
H:100B TRP ALA 4.45 4.47 0.02 

L:27 GLN ALA -0.78 0.69 1.47 
L:28 TYR ALA 0.97 0.22 0.75 
L:30 SER ALA -0.15 -0.26 0.11 
L:91 TYR ALA 2.01 1.41 0.60 
L:97 PHE ALA 0.85 0.40 0.45 

   
Mean Absolute Error 0.75 

   
Root Mean Square Error 1.04 

 

Table 8.1 FEP Alanine Scanning Results 
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Figure 8.2 FEP Alanine Scanning Deviation from Experimental Results  

 

However, there is clearly one outlier beyond the reasonable error range. The tryptophan to alanine 

mutation at residue H:47, with a simulated ddG of 4.43, is well above the experimental ddG of 1.19 

and as such overestimates the penalty for removing the tryptophan side chain.  Figure 8.3 shows the 

location of this residue near the H:L interface and adjacent to a gp120 loop. 
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Figure 8.3 Position of tryptophan residue H:47 in the VRC01 antibody-gp120 complex 

 

Experimenting with slight modifications to the input parameters continued to over-predict this 

mutation by 1-3 kcal. We are currently investigating the source of this error. One possible factor is 

the position of a nearby loop on gp120.  

 

This could be affecting the simulation in multiple ways: 

• Homology model loop: This loop was conserved on the homology model constructed for 

the RSC3-gp120. However, it is possible that in the context of the RSC3 sequence 

modifications, this loop would have a different conformation that could affect the H:47 

interaction. 
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• Glycosylation: In the VRC01-gp120 complex crystal structure, 3NGB, residues G:275-6 on 

this loop form contacts with a nearby n-acetyl glucosamine molecule, shown in Figure 8.4. 

The RSC3 probe used in the alanine scanning experiment was heavily glycosylated but the 

positioning of the glycans is not confirmed. If the crystal structure loop conformation is 

dependent on a glycan that was not present in the experimental complex, our simulation 

may not capture the actual interactions with the current input structures. 

• Loop flexibility: It is also possible that the gp120 loop is more flexible than we have so far 

captured in the REST-stage sampling, particularly in the absence of the large tryptophan 

side chain.  

We are actively investigating these possible complications and their effect on the simulation results. 

 

 

Figure 8.4 Glycosylation on the gp120 loop near the H:47 mutation in crystal structure 
3NGB 
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8.6 Endpoint modeling 
Ideally, the set of test cases for these simulations would include several mutated antibody crystal 

structures, both alone and in complex with the antigen. If these structures were available, we could 

conclusively determine whether the simulation fully sampled the actual mutated antibody 

conformation. In the absence of crystal structures, though, we can use loop prediction to suggest 

possible mutated conformation(s) and compare simulation frames to the predicted mutant 

structures. The work discussed here provides a starting point for further study, especially as we 

move on to attempt more complicated mutations than mutating to alanine. 

 

In the case of VRC01 (PDB 3NGB), our primary test case so far, we used structure prediction to 

understand the result of our reverse mutation experiment on residue H:100B. In the alanine 

scanning experiment and simulation, this residue was mutated from tryptophan (W) to alanine (A). 

The reverse mutation mutates this residue back to W from A.  

 

First, we used the output structure from the forward (W->A) simulation as input to the reverse 

mutation. This approach has some similarities to the cycle closure for mutation paths in small 

molecule ligand mutation simulations146. The reverse mutation should result in a ddG of similar 

magnitude to the forward mutation (and experimental alanine scanning result) but with the reverse 

sign. The hysteresis, or sum of the forward and reverse mutations, should be zero in a perfectly 

converged simulation using a perfect force field146. In practice, of course, this is not the case. 

Systematic force field errors compared to the true energy of the system, combined with sampling 

errors from incompletely examining phase space contribute to a nonzero hysteresis in the best case 

scenario; typically, hysteresis around 1.0 kcal is considered acceptable146 and the magnitude of the 
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hysteresis gives us a hint as to the possible convergence or energy errors in simulations, especially as 

we extend these methods to protein-protein systems. 

 

The ddG for the reverse mutation starting from the final forward mutation frame was calculated to 

be 3.82 kcal, compared the target of -4.45 for the A->W mutation (from the W->A experiment) as 

shown in Table 8.2. Clearly, error(s) came into play in this simulation, and we employed loop 

prediction to identify the source of the error – the critical first step in improving first, this case and 

then, the overall methodology. 

 

 
Starting Structure 

Res-
idue Mutation 

Complex 
dG 

Solvent 
dG 

Simulation 
ddG 

Experime
ntal ddG 

Absolute 
Error 

1 Native VRC01 (PDB 3NGB) H:100B W -> A 5.31 2.03 3.28 4.45 1.17 

2 Final structure from forward 
mutation H:100B A -> W 5.87 2.05 3.82 -4.45 8.27 

3 Native VRC01 with W->A 
mutation H:100B A -> W -5.09 -1.26 -3.83 -4.45 0.62 

4 Predicted H3 in native with 
W->A mutation H:100B A -> W 3.08 1.00 2.08 -4.45 6.53 

 
Table 8.2 Change in binding affinity from FEP simulation of H:100B mutation in VRC01.  

Data presented here: 1. A successful forward mutation simulation - note that this simulation was run 
with the gp120 crystallized in 3NGB, not the RSC3 model, and is provided here for reference. 2. 
Result using output from (1) as input for the reverse mutation back to tryptophan. 3. Result starting 
from native structure with tryptophan sidechains deleted (“Alanine mutation”) and mutated back to 
tryptophan over course of FEP simulation. 4. Result from native structure, alanine mutation at 
H:100B, and full H3 loop re-prediction with alanine at H:100B. 
 

This mutation is part of the CDR H3 loop and has a contact with the gp120 antigen. Looking at the 

H3 loop and surrounding region in the crystal and mutated W100BA output structure, it’s evident 

that the loop and region undergo conformational shifts over the course of the simulation, including 

the domain shifting shown in Figure 8.5. First, we wanted to determine whether this was a legitimate 

loop conformation for the mutant structure, or if the simulation was affected by a degree of bias 

towards a disordered state. To test this, we re-predicted the H3 loop in the crystal structure context, 



 169 

but with 100B mutated to alanine. If this loop predicted recovered a nativelike loop, we would 

investigate how the force field allowed the observed, possibly disordered structure to be propagated 

in the simulation. Alternatively, if loop prediction found a nonnative loop lowest in energy, we 

would investigate whether this conformation is observed in the FEP simulation, and look at the 

FEP sampling in more detail. 

 

 

Figure 8.5 Comparison of VRC01 FEP simulation starting and ending structures.  

The input, shown in cyan, is the native structure and the output, shown in orange, is after mutating 
residue H:100B to alanine. The H3 loop is shown on the left and the light chain is on the right. The 
light chain’s orientation relative to the heavy chain shifts substantially over the course of the 
simulation phases. 
 



 170 

 

Figure 8.6 VRC01 H3 loops observed in forward and reverse FEP simulations.  

The native H3 loop is shown in cyan and the gp120 residues within 12 Å from the H:100B mutation 
are shown in gray surface representation. The H3 loop after mutating to alanine is shown in orange. 
The alanine side chain is replaced here with the native tryptophan for visibility. The green loop is the 
H3 loop from the FEP simulation mutating H:100B back to tryptophan, with the forward mutation 
output (the orange structure) as the starting structure. 
 

We found that the crystal structure mutated loop prediction identified a lowest-energy H3 loop with 

conformation in between that of the native and the simulation output structure. RMSDs are shown 

in Table 8.3. In the absence of a crystal structure with this mutation, this result tells us that the 

starting conformation for the reverse mutation is reasonable. Further, we can conclude that the 

primary error source is incomplete sampling in the reverse simulation, not force field errors. The 

challenge is getting over the energy barrier between this state and a nativelike conformation for the 

“mutant” 100BW.  
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Structure 
H3 RMSD  
to Native dE 

Wildtype VRC01 - H:100BW 1.28 -18.21 
Mutated VRC01 -  H:100BA 2.54 -34.01 

 
Table 8.3 Results of H3 loop prediction in VRC01 with wildtype and mutated residue 
H:100B.  

The mutated (H:100BA) loop RMSD is also calculated in reference to the native, H:100BW-
containing H3 loop. The dE reported is the relative energy to the starting structure, defined as dE = 
(final loop energy) – (minimized starting structure energy). 
 

 

Figure 8.7 Predicted mutated H3 loop compared to native and FEP-mutated loops.  

The purple loop was predicted using Plop with H:100B ALA. The orange loop is the final frame of 
the FEP simulation mutating H:100B to ALA. The cyan loop is the native structure. 
 

Next, we ran reverse mutation simulations with two additional starting configurations: (1) the crystal 

structure with 100B mutated to alanine (by simply removing the tryptophan side chain above C-
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beta) and (2) the predicted H3 loop with 100BA, from the loop prediction in the native context 

discussed above. The results of these simulations are shown in Table 8.2. Both calculations support 

the A->W sampling barrier hypothesis. Starting with a native H3 loop and surrounding context, we 

obtain the expected ddG with low hysteresis compared to the forward mutation. The simulation 

from the predicted 100BA-containing H3 loop returns the wrong sign for ddG, as with the initial 

reverse mutation, and is similar in magnitude to that initial reverse mutation. These tests show us 

that the H3 loop conformation is interdependent with this mutation, and that we are not sufficiently 

sampling the A->W pathway to overcome the energy barrier between the mutated and wildtype 

100B H3 conformations.  

 

Before addressing the sampling specifically, though, we are using this result to consider the best 

method for gleaning insight from the “reverse” mutations and other attempts to recreate cycle 

closure in protein-protein FEP simulations. Here the combined protein-“ligand” phase space is 

much larger and subject to more random fluctuations than in the well-studied small molecule ligand 

systems.  

 

One approach is to use loop prediction to determine the mutated region’s conformation and use 

that structure as the input to the reverse simulation. In this case, such an approach would not 

succeed out of the box but does lower the error somewhat. Another, possibly complementary, 

approach is specific to cases like this one, where the mutation builds up a much larger residue, like 

tryptophan, than the wild type. In these cases, we could use an intermediate mid-sized mutation. 

Instead of mutating directly from A->W, we could run two successive simulations A->X->W, 

where X is a residue larger than alanine but smaller than tryptophan. For this approach to effectively 

improve the A->W sampling, we would need to carefully avoid intermediate mutations that 
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substantially alter the loop conformation and introduce new challenging energy barriers, so part of 

this approach would involve predicting the H3 (or other relevant) loop with multiple possible 

intermediate mutations and selecting a mutation that supports a relatively nativelike loop 

conformation.  

 

8.7 Future directions 
We have shown successful proof-of-concept results for calculating binding affinity using FEP-REST 

simulations on a VRC-class antibody in complex with gp120. Further, we have shown the key roles 

homology modeling and loop structure position can play in constructing an input model, when the 

exact crystal structure for a set of experimental data is unavailable, and in understanding the source 

of error in simulations. 

 

Moving forward, there are several active and pending areas of inquiry to bring this research closer to 

predicting novel mutations to optimize VRC01’s binding affinity, in addition to the ongoing 

challenge cases discussed above.  

 

Currently, we are getting a handle on the precision of these results. By running multiple trials of each 

mutation with different random seeds and/or slightly different hardware, we are evaluating the 

effect of averaging multiple runs on overall accuracy. We will also expand the data set for testing our 

protocols. First, we are simulating mutations besides X->A, as introduced previously. The additional 

considerations in building up larger resides from smaller wildtype residues may require adjustments 

to the current protocol, whether large scale, like inserting one or more intermediate structures in the 

cycle, or parameter modifications like increasing simulation time or expanding the size of the REST 

region. We are also looking to validate our protocols in other VRC01-class antibodies for which 
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there is experimental data. By leveraging our structure prediction toolkit to better understand 

systems and results over the course of these studies, we are confident that protein-protein FEP 

simulations will provide useful information to guide prospective VRC01 optimization efforts. 
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