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ABSTRACT

Local Regulation of Interchange Turbulence in a Dipole-Confined Plasma Torus using Current

Injection Feedback

Thomas Maximillian Roberts

Turbulence in plasma confined by a magnetic dipole is dominated by interchange fluctuations

with complex dynamics and short spatial coherence. We report the first use of local current-

collection feedback to modify, amplify, and suppress these fluctuations. The spatial extent of

turbulence regulation is limited to a correlation length near the collector. Changing the gain and

phase of collection results in power either extracted from or injected into the turbulence. This

mechanism is analogous to the magnetospheric-ionospheric coupling by field-aligned currents. The

measured plasma response shows some agreement with calculations of the linear response of global

interchange-like MHD and entropy modes to current-collection feedback.
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Chapter 1

Introduction

This thesis investigates the application of feedback to interchange-turbulent dipole-confined plasma

via inserted probes and electrodes. This work was performed at Columbia University on the

Collisionless Terrella Experiment (CTX). This chapter introduces some of the key concepts and

important physics of these plasmas, which apply both in Space and in the laboratory. Related work

in feedback of a similar nature is also briefly discussed, followed by a description of the organization

of this document.

1.1 Dipole-Confined Plasmas

Plasmas confined by dipolar magnetic fields occur commonly in two places in our solar system;

planetary magnetospheres and laboratory experiments. These magnetic fields, having neither

magnetic shear nor helicity, often exhibit low-frequency plasma dynamics dominated by interchange

instabilities. Collective plasma motion is perpendicular to the magnetic field lines and is driven by

gradients in plasma density and pressure.

1
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1.1.1 Planetary Magnetospheres

Long before Spitzer’s stellarator [1] or the ZETA Z-pinch experiments [2], plasmas were being

confined by the nearly dipolar magnetic fields of many of the planets in our solar system. The

Earth’s magnetic field is produced by a dynamo action of interior liquid metal where convection

drives electric currents. These currents in turn produce closed magnetic field lines which can extend

out for 10 Earth radii. This field, which can be represented by a dipole to first order, is then distorted

by pressure from the solar wind (Figure 1.1, left). Planets further from the Sun, such as Jupiter

and Saturn (Figure 1.1, right), experience reduced solar wind pressure and therefore are better

represented by the dipole magnetic geometry at larger radii.

Figure 1.1: Left, pressure from the solar wind distorted the Earth’s magnetosphere. Right, aurora
on Saturn’s southern pole indicating the presence of a magnetosphere.

Plasma from the solar wind (dominantly protons and electrons with some helium ions) is

incident on the sun facing side of the planet. The plasma trapped in the magnetosphere is partly

from the solar wind, but also from gas ionized in the ionosphere, such as oxygen. This plasma is

non-uniformly distributed in two (or sometimes three) “radiation belts”, located between 2-6 Earth

radii, as well as in the plasmasphere at lower altitude. It is this plasma that exhibits interchange

dynamics and convection similar to those observed in the laboratory.

In addition to the magnetosphere, planets also have ionospheres at significantly lower altitudes.

Ionospheres are the upper boundary of the planet’s atmosphere where a significant portion of the
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particles are ionized. This effectively creates a surface on the planet with a significantly higher

perpendicular conductivity than that of the magnetosphere. This conducting surface is connected

to the magnetosphere by the field lines which terminate on the surface of the planet, mostly at the

poles. As such, field aligned currents end up coupling magnetospheric dynamics to the ionosphere

[3]. A picture of these currents is shown on the left of Figure 1.21. Here, magnetospheric plasma

convection twists a flux tube, driving currents along the field line to the footprints in the ionosphere.

The conductive ionosphere can then carry these currents to the footprint of another field line,

effectively shorting them (right of Figure 1.2).

If the ionosphere is a good conductor, these currents can be maintained, which in turn maintains

the twist of the magnetic flux tube and the convection of the magnetospheric plasma. Alternatively,

if the ionosphere acts resistively, the ionospheric current is dissipated, reducing the field line helicity

and damping the plasma convection (i.e. fluctuations) in the magnetosphere 2. It is these currents

which cause the phenomenon known as aurora as precipitating electrons collide and ionize neutral

particles in upper atmosphere, creating amazing light shows in the sky around 10-20◦ latitude from

the geomagnetic poles.

Figure 1.2: Left, convection in the magnetosphere is transferred to and damped in the ionosphere.
Right, field aligned currents connecting the magnetosphere to the ionosphere.

1Figure credit to Paschmann [3].
2Interestingly, neutral winds driving plasma convection in the ionosphere can reverse this process, driving plasma

convection in the magnetosphere [3]. The ionosphere can put energy into the magnetosphere!
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Given these currents and assuming quasi-neutrality, the field-line integral of the divergence of

the perpendicular magnetic drift current must be balanced by field-aligned currents to the polar

ionosphere [4, 5, 6]. This statement is fundamental to describing the dynamics of plasma confined

in a planetary magnetosphere, but is not always true in laboratory magnetospheres. We will see

that the feedback described in the following chapters is in many ways analogous to this ionospheric

damping of magnetospheric plasma convection!

1.1.2 Laboratory Magnetospheres

The laboratory studies of dipole-confined plasma are among the first controlled plasma physics

experiments. Birkeland’s studies of the aurora [7] motivated the construction of the first “terrella”

experiment (Figure 1.3 a.), where a dipole magnet surrounded by a conductor was bombarded with

electrons. Almost exactly 100 years later, similar experiments were performed by Shaikhislamov

et al. [8], where ionospheric-like currents were observed in the laboratory with pulsed plasmas

discharges incident on a small dipole magnet surrounded by a segmented conducting shell (Figure

1.3 b.3). In both of these experiments, currents from the confined plasma can travel along the

field lines, pass through the conductor (“ionosphere”) and return to the plasma through a field line

elsewhere.

Another study of laboratory magnetospheres has taken place for the last 20 years. The CTX/LDX

group has studied the dynamics of dipole-confined plasmas produced by steady microwave heating.

CTX, which like the above experiments has a mechanically supported magnet (Figure 1.3 c.), has

focused on the study of radial diffusion, interchange modes, and interchange turbulence [9, 10, 11,

12, 13, 14]. LDX, which uses a levitated current ring (Figure 1.3 d.) to produce the magnetic field,

focuses on peaked density and pressure profiles shaped by plasma compressibility [15, 16]. In both

of these experiments, the parallel dynamics have been measured to be approximately zero (k|| ≈ 0)

and there are no field aligned currents. In LDX these current are prevented by short field lines which

close on themselves, while in CTX the termination points of the field lines are insulating.

3Figure credit to Shaikhislamov et al. [8]
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In these last two experiments, the field-line integral of the divergence of the perpendicular

magnetic drift current must be equal to zero [17]. Here, the electron diamagnetic current is balanced

by the ion polarization current. We will later see that by introducing a source of current with a

biasing electrode, we can simulate the effects of the field aligned currents in these systems. In this

manner, we impose an effective “ionospheric regulation” of fluctuations in laboratory confined

plasma.

Figure 1.3: a) Birkeland’s terrella experiment. b) Shaikhislamov’s ionospheric current experiment.
c) An image of a plasma in CTX. d) A plasma confined in a levitated dipole field (LDX).
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1.2 Basis Physics of Dipole Confined Plasmas

There are many ways to describe the motions of plasma confined by a magnetic field. In this section

we discuss the two extremes; the path of an individual particle as it moves in a magnetic dipole

geometry, and the motions of a continuum of these particles behaving as a fluid. Each picture has

insights that help us gain more intuition for the complicated dynamics of these systems.

1.2.1 Charged Particle Motion

The three fundamental motions exhibited by a charged particle in a magnetic field are depicted in

Figure 1.4. Assuming a dipole field, there will be gyration about the field line (green), bouncing

along the field (blue), and a drift in the symmetric direction of the field. Associated with each of

these motions is an adiabatic invariant [18]. For a large enough separation in the time scales of these

motions (ωc >> ωb >> ωd), these quantities will be effectively conserved. We’ll go through these

particle motions for completeness.

Drift

Bounce

Gyro

Figure 1.4: The three particle motions in a
dipole magnetic field; gyration, bounce and drift.
Related to each is an adiabatic invariant; µ for
gyro motion, J for bounce motion, and ψ for

drift motion.

Every student of physics knows that a charged particle in a magnetic fields is subject to the

Lorentz force, guiding any motion perpendicular to the field into circular orbits about the field lines.

The particle will orbit at the cyclotron frequency, given as:
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ωce,ci =
eB
me,i

(1.1)

This gyrating charged particle is a tiny current loop, and therefore has a magnetic moment

µ = W⊥/B. It can be simply shown with ∇ · B and conservation of energy that this quantity µ must

be conserved if the particle moves along the field line. A force, referred to as the mirror force,

parallel to the field line will oppose the motion of the particle toward a region of increasing field

strength. In a dipole this results in another periodic motion as the particle bounces back and forth

along a field line between regions of high field strength. This bounce motion occurs with period

2π/ωb, while the particle is also spiraling at ωc. Note that this gyro frequency increases in the

regions of increasing B, and this diamagnetic response can also be used to describe the invariance

of µ. The invariant for the parallel bounce motion is given as:

J =

∫ b

a
v||ds Invariant of bounce motion (1.2)

where a and b are the bounce points of the particle.

Finally, considering the effects of perpendicular gradients in the field strength, we see the

particle will experience a nonuniform gyro orbit. This manifests itself as a “drifting” of the center

of gyration and the particle will now begin to orbit the entire system in the periodic direction of

symmetry. This last motion is once again periodic. The related invariant effectively comes from

conservation of flux as the particle drifts around the dipole. As such, the invariant is simply the

magnetic flux, ψ in a drift orbit. This motion is generally much slower than the other two, and due

to collisionality is often not conserved very well.

Comparisons of these time scales specific to the CTX device are given in the following chapter,

and a more complete explanation of the calculation of these parameters is given in Appendix A.
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1.2.2 Fluid Description and the Interchange Instability

Often a fluid description can be the simplest and a surprisingly accurate way to describe a plasma,

even in the case of low collisionality! Fluid descriptions can either treat the ions and electrons as

separate, mixed fluids obeying different rules, or as a single fluid, ions and electrons effectively

bound together. For simplicity, we will discuss the ideal MHD (magnetohydrodynamic) [19] case,

where the plasma is “frozen” to the magnetic field lines. In a dipole, we discuss volumes of the

plasma as tubes of magnetic flux. Motion of the plasma can be viewed as the exchange of the

positions of two flux tubes. Given that the field of a dipole goes like 1/R3 [20], the volume of a

flux tube goes like R4 (as is shown in Appendix B). With motion in the radial direction, significant

changes to the flux-tube volumes can occur, adiabatically heating the inward moving flux tube, and

cooling the outward moving one. This motion can be described as a mechanism for minimizing the

potential energy of the system. This swapping of flux-tubes is referred to as an interchange, or flute,

instability. By definition the magnetic topology does not change and k|| = 0. Following Rosenbluth

and Longmire [21], we see that a plasma is interchange unstable when

∆E = δpδV + γp
(δV)2

V
= V−γδ(pVγ)δV < 0 (1.3)

This equation is the basis for designing plasma confinement devices with “good” curvature

(δV < 0), but dipoles are characterized by “bad” curvature. In order to be interchange stable in a

dipole, the other differential term in Equation 1.3 must be larger than zero. Given the volume of a

flux tube, we see this condition can only be satisfied for a sufficiently gentle pressure profile,

V ∼ R4, δ(pVγ) ∼ δ(pR4γ) (1.4)

So for p ∼ R−4γ, the condition for marginal stability is met (∆E = 0). A similar argument can

be applied to the density profile in a dipole field [22]. This concept has been studied for both the

pressure [16] and density [15] profiles in a levitated dipole.

Interchange motions are not unique to dipole-confined plasma and can occur in a variety of
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natural and laboratory settings. These include convective ionospheric storms [23], outward flows

from rotating magnetospheres [24, 25], space weather [4, 5, 6], plumes and fingers at the edge of the

plasmasphere [26], and filamentary structures, called “blobs”, at the edge of magnetic confinement

devices [27, 28]. The fundamental importance of interchange instability in magnetized plasma has

motivated several laboratory investigations of the structure, growth, and saturation of interchange

instabilities driven by energetic particles [9, 29], pressure gradients [30, 10, 13, 14, 31], and plasma

rotation [32, 33].

1.2.3 Interchange Turbulence in Dipole Plasmas

Under certain conditions, the interchange motions in dipole confined plasmas result in fully devel-

oped turbulent dynamics. Because interchange motion is everywhere perpendicular to the magnetic

field, interchange turbulence is essentially two-dimensional in these devices. When the field-aligned

currents are relatively weak, as is the usual case in laboratory experiments[13], during night-time

ionospheric storms [34], and when the dipole is magnetically levitated, interchange instabilities

develop into a state of 2D turbulence with a power-law fluctuation spectrum. Cross-field plasma

transport results from chaotic, low-frequency convective vortices that are field-aligned and generate

intermittent filaments [14, 15, 35]. A more detailed description of the turbulence specific to CTX is

given in the next chapter.

The majority of laboratory plasma turbulence studies have focused on drift-wave turbulence

which is believed to significantly enhance cross-field transport in many magnetic confinement

devices [36]. That being said, flute-like modes can develop at the edge of these devices which are

normally interchange stable, and turbulence there will drive enhanced outward transport [27, 28].

We can study interchange turbulence easily in dipole confinement devices as these plasmas can be

globally interchange turbulent (as opposed to only at the edge) and the large plasma volume allows

for simple diagnostic access. These studies could give insight to the edge turbulence found in other

machines.
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1.3 Feedback in Plasmas

The application of feedback to unstable plasmas is by no means a new concept [37, 38]. Examples

of the various forms of feedback include the stabilization of drift-waves via directly applied currents

[39] to the control of MHD kink modes with magnetic coils [40, 41]. Here we will focus on

two applications of feedback that contain elements related to the experiments described in this

thesis. Both involve the insertion of probes into the plasma and applying bias/currents to suppress

instabilities.

1.3.1 Feedback on Interchange Unstable Plasmas

In 1971, Prater was able to suppress large growth rate flute modes in a multipole-like magnetic

geometry driven unstable by bad curvature and a steep pressure profile [42]. The experiment, shown

in Figure 1.5 4, used a sensor to measure plasma density fluctuations which were then phase shifted

and amplified and passed to capacitively coupled global biasing electrodes. By tuning a plasma

collimator it was possible to destabilize a dominant m = 1 mode drifting in the ∇B direction at 18

kHz.

Figure 1.5: Left, experimental configuration for Prater’s flute-mode suppression work. Middle and
right, normalized mode amplitude with gain and phase (respectively), showing strong suppression

of the single mode.

By performing scans of applied phase and gain (Figure 1.5, right), the optimal parameters

were established where significant suppression of this flute mode was achieved. This work is one
4Image credit to Prater [42]
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of the few cases of feedback being applied to interchange unstable plasmas. Note though that

the experiment was configured specifically to produce a discrete number of modes and avoid the

broadband interchange turbulence we are discussing in this thesis.

1.3.2 Feedback on Turbulent Plasmas

More recently, researchers on the TEXT experiment studied the application of feedback with a

biasing electrode to drift-wave turbulence at the tokamak edge [43, 44, 45]. Here, field-aligned

fluctuations were measured and a bias was applied to the same field line in a similar manner to

that of Prater. The experimental configuration is shown in Figure 1.6 a, b5, with a sensor for

the feedback both near the biasing electrode and far (further along the field line). By applying

broadband feedback to these fluctuations, it was observed that the plasma local to the driver could

be significantly amplified or suppressed (Figure 1.6 c.). Further from the driver on the same surface

(field line), there was a reduced effect of the feedback on the turbulent spectrum (d.).

The application of feedback to turbulent plasma is similar to the experiments described in this

thesis, though the nature of the turbulence is very different from the turbulence in CTX. In TEXT,

the turbulence was due to drift-waves and was localized to the edge of the machine. Additionally,

the response to the feedback is measured only on the same field line, where as we will see in CTX,

the feedback influence is a cross-field effect.

5Image credit to Richards and Uckan [44, 45]
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Figure 1.6: a) Experimental configuration on the TEXT tokamak. b) The positioning of driver and
sensors on magnetic surface. c) The local response to feedback shows amplification and

suppression, while the influence is reduced further away (d).
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1.4 Organization

The organization of this thesis is as follows; Chapter 2 overviews the Collisionless Terrella Ex-

periment, CTX, and the nature of the confined plasma. In particular, the magnetic field, vacuum

chamber, plasma source and diagnostics are described in detail. Some of the more important

plasma parameters are discussed and tabulated for reference. In Chapter 3 the feedback system is

described. This includes discussion of the input measurement, circuit design and feedback output

to the plasma. Chapter 4 covers the various experiments performed in characterizing the feedback

system and the response of the plasma to feedback. These include observations of fluctuations as

feedback is triggered on and off in time, as well as the spectral influence as the gain and phasing

of feedback system are varied. Additionally, the effects of turbulent decorrelation on the feedback

influence are explored. Chapter 5 discusses a gyro-fluid model of dipole-confined plasmas. The

nonlinear equations are linearized to yield as eigensystem of potential, density and pressure. The

numerical calculations are explained and the solutions compared to the experimentally measured

values. Chapter 6 then concludes and provides several suggestions for experiments the author feels

would provide answers to questions that are still unresolved.

The main chapters of this thesis have been purposefully written as a concise overview of the

experiments and calculations performed in gaining an understanding of the effects of current-

injection feedback on interchange turbulent dipole-confined plasmas. Minimal background is

discussed in these chapters to deliver the subject matter efficiently to the knowledgeable reader.

Having not forgotten the work involved in achieving an understanding of the disperse and sometimes

difficult concepts required to conduct this research, an extensive appendix of various key topics has

been included. Reference to these are made throughout the text where further background might be

desirable. This is also an effort to compile a resource for future students of dipole-confined plasma

physics, as some subjects are less well documented than one might expect.



Chapter 2

The Collisionless Terrella Experiment

The experiments conducted in this thesis were performed on a device known as CTX, the Colli-

sionless Terrella Experiment, shown in Figure 2.1. CTX creates laboratory scale dipole-confined

plasmas in a vacuum chamber roughly 1.5 m in diameter and length. These plasmas are unstable to

the interchange instability described in the previous chapter, and under certain conditions exhibit

dynamics indicative of fully developed two-dimensional turbulence. The plasma parameters are

measured by dozens of diagnostics at various locations, allowing for resolved spatial and temporal

analysis of the fluctuations. This chapter discusses the design and parameters of the CTX device, the

diagnostics used, and the conditions and nature of the plasma. A description of the configurations,

“turn-on” procedures, and tips for using the equipment involved in running CTX is included in

Appendix C for the aid of future students.

14
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Figure 2.1: Top: Photo of the CTX device. Bottom: Rendering of the CTX vacuum chamber, cut
away to expose the magnet and probes inside.
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2.1 Magnetic Field

The dipolar magnetic field of CTX is produced by a mechanically supported current-winding,

housed in an insulating, alumina-coated casing. The current winding is composed of six coils in

12x14 pancakes, wound such that the connections are on the inside and in series, as shown in Figure

2.2. The wire is hollow for water cooling, which is performed in parallel.

Figure 2.2: Cross-section of
dipole magnet current-winding.
Six coils are wound into 12x14
pancakes such that the cabling

can be all internal.

The field is modeled as a point dipole, as was shown in [46] to be a good approximation. At the

inner face of the magnet (21 cm) the field strength is near 1500 Gauss, and falls to around 50 Gauss

at the chamber wall (68 cm). The magnetic dipole moment of CTX is 0.00172 Tm3, and from this

we can write the field at the midplane as:

|B| =
0.00172

R3 (2.1)

where R is the equatorial radius. As the dynamics of the plasma are highly dependent on

the magnetic field strength it is convenient to use the dipole field as a coordinate system. From

electromagnetic theory, the field of a point dipole in spherical coordinates has the form:
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~B =
2M
r3 cos θr̂ +

M
r3 sin θθ̂, |~B| =

M
r3

√
1 + 3 cos2 θ (2.2)

We can visualize the geometry of a dipole from the equation for a field line. By definition a field

line points in the direction of the field at all points in space, so the ratio of the field components

yields the equation of the field line. In spherical coordinates:

dr
rdθ

=
Br

Bθ

=
2M/r3 cos θ
M/r3 sin θ

=
2 cos θ
sin θ

(2.3)

Rearranging and integrating,

∫
dr
r

=

∫
2 cos θdθ

sin θ
→ ln r = ln sin2 θ + C → r = R sin2 θ (2.4)

where again R = r(θ = 0). The field lines at various R are plotted in black in Figure 2.3.

Figure 2.3: The spherical and flux coordinates in the dipole geometry. The electron cyclotron
resonance layer is also highlighted.

From the above equations, we see that the dipole field strength is symmetric in the azimuthal

direction, but varies in the polar and radial directions. Therefore, as a particle moves along a field

line both its radial location and polar angle change. Coordinates in which the periodic bounce

motion of a particle only changed one variable would simplify this issue. As explained in Appendix
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B, we can move to a coordinate system of magnetic flux ψ, magnetic scalar potential χ and azimuthal

angle ϕ. Here, magnetic flux acts as a radial coordinate, and the magnetic scalar potential is related

to the position along a field line and the magnetic field takes the form:

~B = ∇ϕ × ∇ψ = ∇χ (2.5)

Using this coordinate system (labeled in Figure 2.3), the position of probe locations in the

plasma can be mapped to specific field lines, as is well described in [46], and the theory of plasma

dynamics in dipole fields is greatly simplified. Additionally, it is often convenient to describe

volume in this coordinate system in terms of magnetic flux-tubes,

δV(ψ) ≡
∫ +∞

−∞

dχ
B2 (2.6)

where the flux-tube δV is a differential volume per unit magnetic flux. Integration along the

field line results in a dramatic simplification in the description of low frequency plasma dynamics,

allowing investigation of the interchange motions of interest. A detailed description of these

integrals is given in Appendix B.

2.2 Electron Cyclotron Resonance Heating

The plasmas confined in CTX are created through the application of plane-polarized microwaves

at 2.45 GHz to injected neutral hydrogen. A 1.6 kW magnetron is connected to the main vacuum

chamber through the wave guide system shown in Figure 2.4, in which both the input and reflected

microwave powers are measured. The microwaves are reflected by the chamber walls, passing

through the plasma many times before being absorbed.

The energy from the microwaves is absorbed by electrons with cyclotron frequency equal to the

input microwave frequency, increasing their perpendicular velocity. This resonance occurs where

the magnetic field strength satisfies qB/2πm = 2.45 GHz, or 875 Gauss, as shown in Figure 2.3 in
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red. When this resonance coincides with the midplane, it effects all the trapped electrons on that

field line. In CTX this occurs at a radius of 27 cm where hot, deeply trapped electrons form a radial

peak in plasma density and temperature. These electrons are responsible for an energetic particle

instability known as the Hot Electron Interchange instability, which was the study of early work

on CTX [9, 10, 12] and is observed on all dipole-confined devices [47, 48]. The parameters at this

location in the plasma will be used as values for the normalization performed in Chapter 5.

Figure 2.4: The waveguide connecting the magnetron to the vacuum chamber. Directional
microwave antennas measure input and reflected microwave power.

From the dispersion relation for an electromagnetic wave propagating in an unmagnetized

plasma [49], one can solve for the condition where the wave number becomes imaginary, and hence

the microwaves are reflected by the plasma. This occurs when the plasma density reaches a critical

threshold, determined by the plasma frequency, yielding a cutoff density for the 2.45 GHz wave:

ωpe =

√
e2n
ε0me

≈ 18π
√

n, nc ≈ 7.7 × 1016m−3 (2.7)

This sets roughly the upper limit on the densities CTX plasmas can attain.
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2.3 Diagnostics

CTX plasmas are observed with a multitude of diagnostics which allow for measurement of

dynamics at various azimuthal and radial locations. These include indirect measurements such as

photodiodes, a fast camera and x-ray detectors, and direct measurements of plasma parameters via

inserted Langmuir probes and gridded energy analyzers. In this section we focus on the latter of

these diagnostics as they were primarily used for the work in this thesis. For a review of the other

diagnostics, refer to [50]. All of the diagnostics in this section are recorded at 250 kHz on Jorway

A14 transient recorders.

2.3.1 Floating Potential Probes

During these experiments, CTX was equipped with 5 radially adjustable floating potential probes

located at 5 different azimuthal locations. Three were built or rebuilt during the course of this work,

and all were removed and tested to confirm they had similar impedance and dimensions. These

probes consist of a stainless steel wire tip with a 100 kΩ resistor immediately after the tip. This

resistor and coaxial connections are housed inside a 12” long alumina shaft, which then connects to

a stainless steel shaft which exits the vacuum chamber via a KF-40 sliding feedthrough. Some of

these probes will be the sensors for the feedback experiments.

2.3.2 Biasing Electrodes

Figure 2.5 shows one of the large diameter biasing electrodes on the bench. The spherical collection

area is roughly 20 cm2. The collecting surface is connected to a shielded conductor, with a design

similar to the floating probes described above. These electrodes will serve as the “actuators”, or

output, of the feedback system. Due to the large diameter, these probes are always positioned off

the midplane (θ , 90, where θ is the polar angle in Figure 2.3) so as to minimize the perturbation to

the plasma.
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Figure 2.5: Biasing electrode with a collection area of ∼ 20 cm2 will be the “actuator” for feedback.
Notice the 12” alumina shaft which connects to the stainless steel feedthrough shaft.

2.3.3 Langmuir Probe

The radially adjustable Langmuir probe used in this study consists of a small square plate, with a

collection area of 1 cm2 on each side. For all experiments this probe was biased to -180 V to collect

ion saturation current, as −180 V >> Te/e. This bias is provided by a battery with a parallel 0.1 µF

capacitor to improve high frequency response. The structural probe design is similar to the floating

potential probe described above.

2.3.4 Polar Imager

A plasma imaging diagnostic, which will be referred to as the “Polar Imager”, is positioned on

one of the poles of the magnet housing. Consisting of 96 individual gridded particle detectors, it

provides measurement of plasma parameters at 12 azimuthal locations on 8 radii. These detectors

are positioned on the B ≈ 2 kG surface, thus the particles entering each detector have the same gyro

radius. Figure 2.6 displays a photograph of this diagnostic as well as an illustration of the magnetic

field geometry relative to the detectors.

The housing for this diagnostic is stainless steel spray-coated with 12 mils of alumina, which

prevents the generation of field aligned currents. Holes in this housing allow ambipolar flow of

plasma to the gridded particle detectors inside. Figure 2.7 is a diagram of these detectors, showing

the individually biased stainless meshes in front of a collection plate. By tuning these biases,

a particle species, and energy, can be selected for collection, allowing for the mapping of the
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Figure 2.6: Left, a photograph of the Polar Imager in the CTX vacuum chamber. Right, a depiction
of the Polar Imager with the magnetic field lines (red) and surfaces of constant B (blue). The 96

gridded particle detectors are all positioned roughly on the 2 kG surface.

phase-space. The first grid is biased to repel electrons, while the second can be biased to repel ions.

The third is always biased at -9 V to suppress secondary electron emission at the collector plate.

For the experiments in this work, the bias on these detectors was tuned to collect flux-tube

integrated ion saturation current, giving a measure of plasma density at each detector location. A

current mapping of the detectors to the corresponding digitizer locations is provided in Appendix D,

along with additional details. For a complete description of this diagnostic, refer to the work of the

original installation [46], and the upgrade performed to measure the higher density plasmas [50].

Figure 2.7: Diagram of gridded particle detectors in polar imager. For all the experiments in this
work, these detectors were biased to collect flux-tube integrated ion saturation current.
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2.3.5 Rake Array

A new diagnostic has been installed on CTX with the potential for multipoint measurement of

azimuthal structure with significantly improved resolution. The “Rake” array consists of 31 tips,

which alternate as floating potential probes (16) and ion saturation probes (15). With the 16 potential

measurements, we can approximate the electric field at the location of the 15 measurements of

density. Figure 2.8 shows this diagnostic installed in CTX. Though this diagnostic was installed

during the course of this work, no measurements from the array are used in the analysis presented

here. A technical description of the Rake array and connections to the digitizing equipment is

included in Appendix E for use by future researchers.

Figure 2.8: Installed Rake array. 31 tips, alternating floating potential and ion saturation probes,
give measurements of potential and density fluctuations with enhanced azimuthal resolution.
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2.4 Turbulent Plasma Parameters

With sufficient neutral background, the plasmas created in CTX are characterized by quasi-steady

turbulence with large amplitude fluctuations in potential and density [50]. This turbulence is

produced by interchange motions driven by an unstable pressure profile from microwave heating.

The lower portion of Figure 2.9 plots ion saturation current which displays these large fluctuations

in density while the upper plot is a log spectrogram of floating potential fluctuations showing the

spectral content with time. In this turbulent regime the plasmas are near the cutoff density given by

Equation 2.7.

Figure 2.9: Top, a spectrogram of floating potential fluctuations. Right, the ensemble average of the
spectrogram displaying the stationary spectrum. Bottom, ion saturation current fluctuations,

approximately proportional to density fluctuations.

These plasmas are produced for hundreds of milliseconds, and from the long time records we

perform ensemble statistics to observe the stationary spectrum, which is shown on the right of Figure

2.9 for the data in the spectrogram. From these spectra, we observe the turbulence is dominantly in

the audio range. Also in the audio range is the electron magnetic drift frequency for electrons with
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Te ∼ 25 − 50 eV.

Grierson characterized this turbulence and found the modes to be radially broad, low-order, and

flute-like in structure [50]. We can visualize these modes with the Polar Imager, as shown in Figure

2.10. These modes are dominantly m = 1, 2 and 3 in structure, rotating in the electron magnetic

drift direction with amplitudes and phases which varies chaotically in time [13]. Cross correlation

analysis gives a combined turbulent correlation length of 50◦ − 75◦ azimuthally.

Figure 2.10: Viewing the plasma with the Polar Imager. An m = 1 mode is observed to rotate in the
electron magnetic drift direction. Notice the amplitude varies in time (all color bars the same), and

the appearance of some higher order modes.
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The turbulent spectra are also observed to obey power law scalings representative of turbulent

cascades. Figure 2.11 1 shows the power spectrum for potential and density, and energy spectrum

[51, 52] given by,

Ek =
( ñk

n̄

)
+ k2ρ2

s

(eΦ̃

Te

)
(2.8)

where the slopes (-5 and -3) indicate of a forward enstrophy cascade and an inverse energy

cascade, a signature of two dimensional turbulent dynamics [50, 53].

Figure 2.11: Fluctuations display power law trends indicative of the inverse energy cascade.

Most of the experiments described in this thesis were performed near an equitorial radius of 45

cm. For a quick reference of the relevant plasma parameters and the characteristics of the turbulence,

Table 2.1 is provided. A more detailed discussion of the CTX parameters is given in Appendix A.

1Image credit to Grierson [13]
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Table 2.1: Plasma and turbulence parameters at L = 45 cm

Mean Plasma Density n̄ ∼ 7 × 1010 cm−3

RMS Plasma Density ñ ∼ 3 × 1010 cm−3

Floating Potential V̄ f ∼ 25 V

Fluctuating Potential Ṽ f ∼ 4 V

Electron Temperature Te 25 − 50 eV

Electron Drift Frequency ωde 2-4 kHz

ECR Frequency fµ 2.45 GHz

Electron Cyclotron Frequency fbe 500 MHz

Ion Cyclotron Frequency fbi 250 kHz

Electron Bounce Frequency fbe 1.5 MHz

Ion Bounce Frequency fbi 7 kHz

B Field @ Resonance B0 875 Gauss

Correlation Time τc ∼ 75µs

Correlation Length (m) lc 40-60 cm

Correlation Length (◦) θc 50-75◦



Chapter 3

Feedback System Design

The experiments mentioned in Chapter 1 and described in detail in Chapter 4 were performed using

a feedback system composed of a sensor, filtering/amplifying circuit and electrode. This chapter

briefly discusses the theory of this simple feedback system, then describes the design of the feedback

circuit. As will be shown, this analog circuit is composed of various filters and amplifiers in series

which apply variable phase shifts and gains to the input signal.

3.1 Principles of Feedback

Before discussing the specifics of the feedback system, we briefly review the basic control theory

applicable to these experiments. Due to the simple nature of the control law applied, this introduction

is minimal. For a more complete introduction, a fantastic review of feedback theory is provided by

Bechhoefer [54].

Several of the basic concepts from control theory can be described with the simple example of a

car’s cruise control system. The car is traveling down the highway at some speed, 3. The driver

sets the cruise control system at this speed 3 and takes his or her foot off the gas pedal. A sensor

measures the velocity of the car and compares the measured velocity to the “set point” velocity.

If drag due to air and rolling resistances has slowed the car, the difference between the measured

velocity and the set point produces an error signal. A “control law” is applied to this error which

28
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determines the response sent to an actuator which rotates the valve on the throttle body, increasing

air/fuel flow to the engine, accelerating the car. The velocity is measured again and the cycle repeats.

The block diagram for this system is shown in Figure 3.1.

Cruise Control Law Throttle Body (gas)

Velocity Sensor

error control
set point car velocity

Figure 3.1: An example feedback system; a car’s cruise control.

The control law used determines the dynamics of the system with feedback. The simplest control

law is referred to as “proportional gain”, where the error signal is multiplied by a constant which

is then passed to the actuating system. This is the nature of feedback we apply to the turbulent

fluctuations in CTX. The fluctuating potential of the plasma is measured by a sensor, which is then

passed to the feedback circuit which applies a gain to that signal. This “control signal” is then input

to the plasma via an electrode (actuator) and the plasma responds. The sensor measures the change

in the plasma and the loop starts again. This system is displayed in Figure 3.2.

Feedback Circuit

Floating Potential Sensor

plasma

Electrode (actuator) �uctuating

Figure 3.2: Block diagram of the plasma-feedback system. Notice the control is only applied to the
fluctuations of the potential, as indicated by the low-pass and high-pass filters.

A subtle difference between this system and the car’s cruise control is the set point used. For

the car, a fixed value was set as the desired speed of the car. In the plasma, we are measuring only

fluctuations in the potential, and the control signal is added to the DC potential of the plasma, as

illustrated in Figure 3.2. This will be explained in the following section.
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3.2 Feedback System Design

The feedback system for these experiments is composed of three main elements; a sensor, an

actuator and a circuit to adjust the signal between the first two. The sensor is a floating potential

probe which measures fluctuations of potential in the plasma. The actuator is a large diameter

biasing probe with which we can drive current into the plasma. The circuit that connects the sensor

and actuator represents the block labeled “Feedback Circuit” in Figure 3.2 and applies the control

law. Some of the fundamentals of filter/op-amp theory are explained in detail in Appendix F, but

are more thoroughly reviewed elsewhere [55, 56, 57].

3.2.1 Overall Feedback Circuit Design

The phasing of the input signal determines whether we are applying positive or negative feedback

and is adjusted with a filter that imposes a linear phase shift on the measured plasma fluctuations.

Next, we wish to apply feedback only to the fluctuations of interest, excluding the low frequency

oscillations (and DC offset) of the plasma. The signal from the sensor is input to the feedback circuit,

but also recorded. We prevent the measured signal from being distorted with a buffer between the

sensor signal and the high-pass filter. We also use this buffer to pre-amplify the input signal. A

block diagram of the entire circuit is shown in Figure 3.3.

High Pass All Pass

Sensor Actuator

Digitizer

Pre-Amp

Figure 3.3: The fundamental components for the feedback circuit.
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3.2.2 Pre-Amplifier/Buffer

Starting with the first part of the circuit, the high input impedance of the non-inverting buffer/amplifier

prevents the feedback circuit from effecting the recorded sensor signal. This is crucial for measure-

ment of the applied phase shift and modification of the turbulent spectrum with feedback. A circuit

diagram is shown in Figure 3.4.

VIN

VOUT

RG

RF

Figure 3.4: Buffer element. Gain is set through choice of the gain and feedback resistors.

We can make a unity gain buffer by setting RF to zero and allowing RG to go to infinity. As

the signal from the floating probe is resistively divided for digitization, modest amplification was

imposed by choosing RF = 32.8 kΩ and RG = 10.0 kΩ, which corresponds to a gain of 4.28, as

given by:

G = 1 +
RF

RG
(3.1)

This gain was used for the majority of the experiments described in this thesis as the maximum

gain applicable within the limitations of the later stage four-quadrant amplifier. Chapter 4.4 describes

varying the gain of the feedback system, where these resistor values are modified to reduce the

overall gain.
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3.2.3 High-Pass Filter

The turbulent dynamics we are studying are in the range of 500 Hz - 15 kHz, so we design a filter to

neglect frequencies sufficiently lower than 500 Hz. The simplest high-pass filter is a passive circuit

composed of resistor and capacitor, but improved performance is obtained with active elements.

The general transfer function for high-pass filter is given as:

H(s) =
H∞

Π(1 + c1i
s + c2i

s2 )
(3.2)

where the ci are coefficients of the partial filters. Choice of these coefficients is what determines

our filter characteristics and are tabulated in various sources [55].

The second-order Sallen-Key topology was sufficient and is shown in Figure 3.5.

VIN
VOUTC1 C2

R1

R2

Figure 3.5: Second-order Sallen-Key high-pass filter.

For simplicity, we choose C1 = C2 = C, and apply no gain with this portion of the circuit. With

these choices, the transfer function is given as:

H(s) =
1

1 + 2
ωcR1C

1
s + 1

ω2
cR1R2C2

1
s2

(3.3)

where ωc is a normalization for the coefficients based on the filter’s corner frequency.

By choosing a reasonable value for C, we can solve for R1 and R2 with the coefficients:
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c1 =
2

ωcR1C
c2 =

1
ω2

cR1R2C2 (3.4)

which, solving for resistance yields,

R1 =
1

c1π fcC
R2 =

c1

4c2π fcC
(3.5)

With all the necessary values for this component, we choose elements with values close to

these (rule of thumb, capacitors within 10%, resistors 5%). The final values were C = 0.1 µF,

R1 = 10.0 kΩ, R2 = 21.8 kΩ for a corner frequency of 120 Hz. The Spice generated amplitude and

phase response for this component are plotted in Figure 3.6.
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Figure 3.6: Amplitude and phase response of the high-pass filter.
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3.2.4 All-Pass Filter (Phase Shifter)

We next require the ability to apply adjustable phase shifts to the input signal from 0◦ → 360◦.

Phase shifts are achieved through a filter with unity frequency response, which is designed to impose

a linear phase shift with frequency for the pass-band of interest. This is realized through cascading

two all-pass filters, each capable of applying nearly 180◦ shifts.

The transfer function for an all-pass filter can be found by taking the transfer function of the low

pass filter and setting H0 equal to the complex conjugate of the denominator:

H(s) =
H0

Π(1 + c1is + c2is2)
→ H(s) =

Π(1 − c1is + c2is2)
Π(1 + c1is + c2is2)

(3.6)

This gives a phase shift of φ, where the group delay is defined as t = −
dφ
dω . To minimize phase

distortion we need constant group delay across the frequency band. We define the corner frequency

of an all pass filter as the frequency at which the group delay drops by 1/
√

2, and as such can

normalize the group delay as T = t fc. This normalized group delay allows us to quantify the

“sharpness” of the constant group delay.

For our purposes we chose to use a first-order all-pass filter (Figure 3.7). This topology requires

only one resistor be changed to alter the applied phase shift, making shot-to-shot adjustment simple.

VIN
VOUT

R1

R

R1

C

Figure 3.7: Circuit diagram for first-order all-pass filter.

Interchange of the capacitor C and the resistor R simply results in a 180◦ phase shift. Choosing
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our corner frequency to be 20 kHz, R1 = 10 kΩ, and C to be 0.1µF, we find our resistor values

from:

R =
ai

2π fcC
(3.7)

which has a phase response as given in Figure 3.8.
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Figure 3.8: Phase response of first order all pass filter for various resistor settings.

We make this an adjustable phase shifter by making R a variable resistor. To get nearly a

0◦ → 180◦ phase shift, we need to resistances in the range from 0-10 kΩ. Most of the change in

phase takes place between 0-1 kΩ, so by installing two potentiometers in series, one 10 kΩ and

other 1 kΩ, we can obtained range and resolution.
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3.2.5 Measured Performance of Circuit

By combining the above components, we build the complete circuit for our feedback system, as

shown in Figure 3.9. The signal from the sensor is recorded and passed through a pre-amplifier. This

stage both isolates the recorded sensor signal from the feedback circuit and allows the application

of gain by varying the “RF” resistor. The signal is next high-pass filtered with a corner frequency of

120 Hz to remove DC and low frequency equilibrium dynamics. Next, a phase shift is applied by

two cascaded all-pass filters, where the applied phase shift is varied by tuning the resistors labeled

“R” in the all-pass filters shown in Figure 3.9. This is then input to an HP 6827A four-quadrant

voltage controlled amplifier (fixed 20x gain, inverting) and AC coupled to the electrode with a series

12 µF bipolar capacitor.

Pre-Amp High Pass

2x All Pass

RG

RF

R1

R

R1

C

R1

R

R1

C

C1 C2

R1

R2

20x

ElectrodeSensor

D
ig

it
iz

er

D
ig

it
iz

er
C

Figure 3.9: Complete feedback circuit. The signal from the sensor is passed through a pre-amplifier,
high-pass filtered, then phase shifted. This is then input to a four-quadrant amplifier and AC

coupled to the electrode with a series 12 µF bipolar capacitor. The phase is varied by adjusting “R”
in the all-pass filters, and gain is determined by the “RF” resistor in the pre-amplifier.
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Both the current driven into the electrode and the bias are recorded after the coupling capacitor.

By measuring the voltage before and after the feedback circuit, we can determine the transfer

function of the feedback system. Figure 3.10 (a) shows this phase response for various resistor

settings in circles for the experimentally measured values (in plasma) and in triangles for the SPICE

simulation. We observe that these values diverge from the predicted values at increasing frequency.

Figure 3.10 (b) compares the phase response of the circuit at the tuning frequency of 3 kHz (in

vacuum), we see a constant offset in phase of ∼ 5◦.

By measuring the phase response at each setting, we can observe the plasma’s response to

feedback for a given transfer function. We will use this in the next chapter to better quantify the

change in the turbulent spectrum with feedback.
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Figure 3.10: Comparison of the measured and SPICE simulated phase response of the feedback
circuit. Top, the circles show the measured phase response with applied feedback at the indicated

phase setting (at 3 kHz) as determined from the cross phase between the sensor and electrode
voltage measurements. The triangles show the spice calculated phase response at the same resistor
settings. Bottom, the measured and calculated phase shifts at the tuning frequency of 3 kHz. There

is an approximately constant shift of ∼ 5◦.
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3.3 Feedback Configuration in the CTX Device

The sensor and electrode described in the previous section can be positioned in the CTX vacuum

chamber in a variety of configurations. While radial adjustment was studied, we focus on the

azimuthal positioning of the sensor and electrode relative to one another and the direction of mode

rotation. Figure 3.11 shows two possible locations for the sensor and electrode which vary the

separation.

Figure 3.11: The possible sensor and electrode positions in the CTX vacuum chamber. The
indicated mode rotation direction, determines a convention. Red is a “downstream” region of the

plasma (relative to Electrode A), blue is an “upstream” region.
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As will be shown in the next chapter, the direction of mode rotation changes the effective

separation between the sensor and electrode. We reverse the rotation by reversing the magnetic field

polarity, which give us further adjustment of the separation. We will using the direction of mode

rotation and the position of the electrode to define a convention used throughout the rest of this

dissertation; regions of the plasma past the electrode in the direction of mode rotation (as indicated

in red in Figure 3.11) will be referred to as “downstream”, and regions before the electrode (blue)

are “upstream”.

It should be noted that both sensors and electrodes were located off the mid-plane to be less

perturbative. As the field aligned dynamics are effectively zero (k|| ≈ 0), the dynamics measured at

the higher polar angles maps to the entire field line. The radial location of all sensors and electrodes

were set such that they sit on field lines that trace to an equatorial radius of L = 45 cm. This was

found to maximize the influence of the feedback from performed radial scans.



Chapter 4

Plasma Response to Feedback

This chapter describes the application of the feedback system described in the previous chapter

to the CTX plasmas. The plasma created with and without feedback are compared showing clear

modification of the fluctuation amplitude and spectrum. These comparisons were made between

plasmas with the feedback on continuously, and plasmas where the feedback is triggered on and off

during the shot. The spectrum is observed to respond strongly to both the phase and gain of the

applied feedback, with the influence of the feedback attenuating with increasing separation from the

electrode. The locations of the sensor and electrode were varied azimuthally and it was found that

the relative separation in the direction of mode rotation plays a significant role effectiveness of the

feedback system.

4.1 Testing the Open-loop Response: Feedforward

Before applying feedback, we first test the open-loop response of the system by driving the electrode

with a known signal and observing the plasma response. A 4 kHz sine wave was input to the HP

amplifier, producing a ±40 V signal on the capacitively coupled electrode. This is illustrated in

Figure 4.1, where the electrode (labeled “Driver”) is the output of this feedforward system. The

direction of mode rotation is illustrated by the green arrow.

In this configuration we measure the power spectrum of the floating potential probe located 12◦
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downstream from the electrode. A coherent wave at the driven frequency is observed, as is shown

in the upper plot of Figure 4.2 by the red curve. If we look at the response measured by an identical

probe located 90◦ downstream, we observe the same wave, but reduced in intensity, as shown by the

green curve. Looking now 90◦ upstream, the blue curve shows a significantly reduced peak at 4

kHz, indicating little response to the driven current.

Figure 4.1: Experimental configuration for open-loop tests. An electrode is driven at 4 kHz, 80 V
peak-to-peak. The azimuthally positioned floating probes are used to measure the attenuating

influence in the direction of mode rotation.

The lower plot of Figure 4.2 shows the relative change in spectral power at 4 kHz as measured

by all five of the floating potential probes. The probes are positioned azimuthally relative to the

electrode indicated by the dashed line. With respect to the direction of mode rotation, we observe a

significantly reduced upstream influence of the driven current relative to the downstream effects.

We determine that the influence of current injection is localized and shifted in the direction of the

electron magnetic drift, (same as mode rotation).
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Mode Rotation

Upstream Downstream

Figure 4.2: Top, power spectra of three floating potential probes while driving a 4 kHz signal on the
electrode. Bottom, the relative change in spectral power at the driven frequency as measured on all

five floating probe. The amplitude decreases with separation and the oscillations appear to be
carried only in the direction of mode rotation.
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Figure 4.3 plots the current (red) and bias (blue) on the electrode as measured when driving the

4 kHz signal. We find that the driven current is in phase with the bias. Thus, the power driven by the

electrode into the sheath is always positive, which will be important in our power flow analysis later

in this chapter. The current is asymmetric about zero due to the mobility of electrons and the limit

of ion saturation current. Note that due to the capacitive coupling, the current in time must sum to

zero. The capacitive coupling also allows the probe to float to the DC floating potential, which is

near -40 V in this plot.

0.500 0.501 0.502 0.503 0.504 0.505
Time (s)

80

60

40

20

0

Po
te

nt
ia

l (
V)

100

50

0

50

100

150

Cu
rr

en
t (

m
A)

Bias and Current from Electrode with Driven 4 kHz Signal
Bias
Current

Figure 4.3: Current (red) and bias (blue) of the electrode when driving the 4 kHz signal. Note the
limit of ion saturation current and the DC floating potential.

The IV trace from this signal is shown in the upper plot of Figure 4.4. In the lower plot, analysis

investigates hysteresis in this voltage sweep by differentiating between the increasing (blue dots) and

decreasing (green dots) portions of the trace. The red and cyan curves show the averages of these

separate portions. As the increasing and decreasing portions of the characteristic show effectively

no hysteresis, we find the sheath of the electrode to behaves resistively (very little inductive or

capacitive behavior). The resistance near floating potential is approximated as 400 Ω from a linear

fit, though is significantly less at more positive voltages. We will use these assumptions in the

eigensystem discussed in Chapter 5.
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Figure 4.4: Top, IV trace from the 4 kHz driven signal. Bottom, analysis of the IV sweep indicates
resistive sheath behavior with a resistance of 400 Ω near floating potential.
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4.2 Closing the Loop: Feedback

By replacing the driving input signal of the feedforward experiments with a measure of the plasma

fluctuations, we create our feedback system. As described in the previous chapter, a measure

of floating potential is used as input. In doing so, we find we can excite or suppress the natural

oscillations of the plasma. Figure 4.5 shows the configuration of the feedback system of Chapter 3,

where the sensor is located 12◦ downstream from the electrode.

Figure 4.5: Experimental configuration for feedback. Notice here the sensor is a floating potential
probe located 12◦ upstream from the electrode.

Figure 4.6 displays an example of the measured fluctuations from the sensor and electrode when

we apply feedback which is in phase with the sensor measurements (red) or 180◦ out of phase (blue).

Comparing the sensor voltage (a) to the electrode voltage (b), we see the imposed amplification of a

factor of four, and the inversion of the blue curve. Looking at the electrode current for these cases

(c), we see that the current is generally in phase with the electrode voltage. This would indicate

positive power driven by the electrode which will be discussed later. The IV characteristic of the

electrode for the two cases is shown in (d) and (e).
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Figure 4.6: The sensor voltage (a), electrode voltage (b) and current (c) during feedback which is in
phase with the measured fluctuations (red) and 180◦ out of phase (blue). The lower plots are of the
IV characteristics during negative (d) and positive feedback (e). Note that the data shown in the IV

plots are from a much longer time period than shown in the three above plots.
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From these measurements we make several interesting observations; first, the excursions during

positive feedback (in phase) are larger than during negative feedback (180◦ out of phase). The

feedback is amplifying large oscillations in potential. Second, the negative current for both of

the cases is limited to the ion saturation current, ∼ −15 mA for this large diameter probe. The

positive current is larger for the amplifying feedback as the voltage swing more positively, drawing

more electrons. Third, for both cases, the IV traces are dominantly in the first and third quadrant,

indicating that the power driven by the electrode is on average positive. These first three topics will

be explored more in a later section. Finally, the slope of the characteristic, while admittedly broad,

does appear to change between positive and negative feedback. This will not be explored in this

thesis.

By implementing a triggering circuit, the signal to the electrode could be rapidly (20 µs) turned

on and off. This circuit is described in Appendix G. This allowed for same-shot comparison of the

turbulent fluctuations with and without feedback. Figure 4.7(a) shows the RMS fluctuations of the

sensor signal with amplifying (red) and suppressing (blue) feedback triggered on and off multiple

times for 18 ms intervals. (b) shows 18 of these triggering events averaged at 50% transparency,

with a smoothed signal indicating a 30% reduction or amplification in the measured fluctuation

level. (c) shows the same data in (b) for the time near the “off” trigger, and we observe the plasma

to respond as fast or faster than the trigger switching time. These shots were taken using the 12◦

configuration depicted in Figure 4.5.
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Figure 4.7: Triggering events as measured by the sensor. a) RMS, raw. b) Averaged over 18
triggering events. c) Zoom in of the trigger off time.
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4.3 Phase Scan

In the previous section we observed changes in fluctuation amplitude during positive and negative

feedback. These observations were made in the time domain, but we can also look in the frequency

domain to study how feedback changes the turbulent spectrum. Figure 4.8 displays the changes in

spectral intensity [58] as measured by the sensor when feedback is applied. The black curve is the

“natural” spectrum measured without feedback, red is the spectrum with positive feedback and blue

is with negative feedback.
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Figure 4.8: Spectra measured by the sensor without feedback (black), with positive feedback (red)
and negative feedback (blue). Feedback results in significant changes to the turbulent spectrum.

The spectra in this thesis are calculated in a ensemble, or Welch [59], manner. Here, a signal is

broken into many realizations each several correlation times long. The power spectrum of these

realizations are averaged to reveal the stationary spectrum of the turbulent fluctuations [58]. All

spectra reported here are composed of 60-80 realizations of a signal. The “natural” spectra are

additionally ensemble averaged over several shots, therefore generally contain more than 300
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realizations of plasma turbulence. This averaging allow us to determine the influence of feedback

in a statistically meaningful manner. We can consider the variation of the ensemble spectrum by

looking at the standard deviation with frequency from shots taken without feedback. Figure 4.9

(top) shows the same data plotted in Figure 4.8, with the standard deviation with frequency plotted

over the natural spectrum. We see the effects of feedback are significant over this variation.
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Figure 4.9: Top, standard deviation with frequency plotted about the natural spectrum to display the
variation in spectral content on a shot to shot basis. Bottom, percent variation in the spectrum. An

average variation of 18% is assumed for all spectra in this document.

From this we find the percent variation in spectrum with frequency as the standard derivation

divided by the average spectrum. This is plotted in the lower portion of Figure 4.9, and yields an

average variation of 18%. This will be assumed for the rest of the spectra shown in this thesis.
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The two cases of feedback reported above (red and blue) are two particular phase settings

which were found to result in peak amplification and peak suppression of the turbulent spectrum.

These phases are set by varying the resistor settings in the feedback circuit describe in Chapter 3,

which varies the applied phase shift. By performing scans of phase over multiple shots, we observe

the effect of feedback at a given phase by comparing the spectrum with feedback to the natural

spectrum.

Figure 4.10 shows in blue the sensor spectrum from shots taken using the 12◦ configuration

(shown in Figure 4.5) as the phase is varied. In black is the natural spectrum. It should be noted

that the resistor settings were chosen in increments of 45◦ for a 3 kHz signal, but the true phase

shift varies with frequency, as is shown by the cross-phase of the sensor and electrode plotted in the

lower portion of Figure 4.10 in green.
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Figure 4.10: Phase scan using the 12◦ separation configuration.

We observe that for some phase shifts there is suppression of the turbulent spectrum, while other

phases result in amplification. Notice that the spectrum is suppressed for frequencies where the

phase approaches 180◦, and is amplified for phases closer to 0◦. This results in a shifting of the

amplified frequencies as the phase is adjusted, dominantly between 1-10 kHz.

We summarize the results of this phase scan in two ways. First, by band integrating the spectra
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with feedback (PFB), and normalizing by the same integral of the natural spectrum (P),

I =

∫ 10

1
PFB(ω)dω∫ 10

1
P(ω)dω

(4.1)

we find the frequency integrated intensity I. Figure 4.11 (a) plots this quantity with phase, and

we see a maximum in amplification near 0◦ and a minimum near 180◦. Similarly, we can find the

frequency weighted frequency averaged quantity F,

F =

∫ 10

1
ωPFB(ω)dω∫ 10

1
ωP(ω)dω

(4.2)

which is plotted in Figure 4.11 (b). We observe that the dominant mode frequency changes as

we apply feedback, increased for some phase shifts and reduced for others. Error is computed as the

standard deviation of these integrated quantities from shots taken without feedback.
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Figure 4.11: Frequency integrated intensity (a) and frequency integrated, frequency weighted
intensity (b) with applied phase.
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4.4 Gain Scan

Gain scans were performed initially to find the operational limits of the feedback circuit, but

also demonstrated the effect of reducing the bias and current applied to the plasma. We begin by

discussing the technical limitation imposed by the amplifiers used.

The power amplifier used (HP 6827A) has a range of ±100V and 500 mA, which bounded the

gain we could apply. Looking at the cross-coherence between the sensor and electrode voltage

signals indicated how accurately the output followed the input. Figure 4.12 shows the cross-

coherence (upper plots) and cross-phase (lower plots) as the gain is varied from −6→ 6. Positive

and negative gains are achieved by setting the phases to peak amplification and peak suppression. In

blue are the cross-coherence and cross-phase between the sensor voltage and the electrode voltage,

and green between the sensor voltage and electrode current.
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Figure 4.12: Coherence and cross phase between sensor voltage and electrode voltage (blue), and
sensor voltage and electrode current (green) with increasing gain. As the gain is increased too high

with amplifying feedback, the power supply limits begin to have an effect.

While the output voltage remained coherent to the input for all gain setting, we found that

with gain larger than 4 the coherence of the driven current is significantly reduced. To maintain a

coherent output current, a gain of 4 was used for all of the experiments reported here (excluding the
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gain scan about to be discussed). Notice that the large negative gains remained coherent. Likely, the

power supply limits were being exceeded during amplifying feedback.

With the limits of the feedback established, we performed scans in the operational range of the

system to observe how feedback is effected by gain. Figure 4.13(a) shows the sensor spectrum

as the gain is adjusted from −4 → 4 in blue, with the natural spectrum in black. For amplifying

feedback we see that a significant amount of gain is needed (∼ 3) to start seeing changes in the

spectrum, while suppressing feedback requires less. Increasing the gain in both cases resulted in

a stronger ability to effect the turbulent spectrum. Using Equation 4.1, Figure 4.13(b) plots the

frequency integrated intensity from this gain scan. With increased positive gain we see increased

intensity, and negative gain results in reduced intensity.
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Figure 4.13: Top, measured spectrum as gain is increased from -4 to 4. Bottom, the frequency
integrated intensity. Positive gain amplifies the spectrum while negative gain suppresses it.
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4.5 Power Flow

We have shown that feedback can be used to amplify and suppress the fluctuations in the plasma.

This suggests that the feedback system is adding energy to the fluctuations with positive feedback

and removing energy during negative feedback. Hence, the sign of the power flowing into the

plasma should change as we vary the applied phase. In Section 4.2 we showed that the electrode

bias and current are generally in phase, which would mean the power delivered by the electrode is

always positive. How can we reconcile this? The missing component here is the sheath! Figure

4.14 illustrates the circuit we will use as a model:
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Figure 4.14: Illustration of the circuit model used to describe power flow. The electrode is biased
by the fluctuations in floating potential (measured by the sensor) multiplied by a complex gain. A
current is driven across the resistive sheath (not to scale) in proportion to the voltage difference

VE − VP.

Figure 4.14, with a greatly exaggerated sheath, displays that there are three voltages to consider.

The plasma has a fluctuating potential relative to ground, VP, and the sensor measures this as the

floating potential VF . This floating potential is then filtered, amplified and applied to the electrode.
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This electrode then either injects or collects current across the sheath depending on the bias relative

to the plasma potential.

This is a very complicated process, so we simplify things with a few assumptions; first, as the

signal measured by the sensor is high-pass filtered, the sensor signal is only the fluctuating part

of the floating potential. We will approximate this as the fluctuations in the plasma potential, so

ṼF ≈ ṼP and the bias to the electrode is given as ṼE = |G|eiθṼP. As the electrode is capacitively

coupled to the plasma, we assume that it “floats” to the DC floating potential. This means the

feedback is applied to the plasma about the floating potential of the electrode. Next, the difference

between the electrode bias and the plasma drives a current across the sheath. As mentioned above,

this current is in phase with the electrode bias, but not necessarily the plasma potential. From the

feedforward tests performed in Section 4.1, we found that the sheath was resistive, with Rs ∼ 400 Ω

near floating potential. Limiting our analysis to small deviations from VF , we take the fluctuating

current across the sheath as,

Ĩ =
ṼE − ṼP

RS
=
|G|eiθṼP − ṼP

RS
= (|G|eiθ − 1)

ṼP

RS
(4.3)

With these definitions we can consider the power of the system. We know the total power

injected into the system is the power measured by the electrode, PE = IEVE. As mentioned,

this power is on average positive, but where is the power going? It takes power to enhance the

fluctuations in the plasma, but it also requires power to drive current across the resistive sheath.

This means that regardless of the direction of current flow, energy will be dissipated in the sheath, a

positive offset in net power. We say the total power is given as:

Ptot = PE = PS + PP (4.4)

where PS is the power into the sheath and PP is the power into the plasma fluctuations. The

power into the plasma is found as the product of the sensor voltage and the electrode current,

PP = IEVP, which as mentioned before, can be negative. The power into the sheath is therefore the
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Figure 4.15: An example of the instantaneous power of the electrode, into the plasma and into the
sheath.
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difference between the total power and the power into the plasma, PS = PE − PP. Figure 4.15 plots

these three powers for a window of time during positive (red) and negative (blue) feedback. From

the traces, we can see that the power into the sheath is on average positive for both cases, while the

power into the plasma changes sign as the phase is changed. Figure 4.16 plots the time averages of

these three powers with positive (G = 4) and negative (G = -4) feedback. We see that the total power

and the power into the sheath are positive for both cases, while the power into the plasma reverses

sign during negative feedback. This indicates that the plasma is putting power into the sheath, and

this energy is coming from the fluctuations. During positive feedback the plasma is acting like a

load, and during negative feedback the plasma acts like a generator. Figure 4.17 illustrates these

two cases, where the voltage power supplies on the left hand side represent the plasma.
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Figure 4.16: Time averaged power for positive feedback (Gain = 4) and negative feedback (Gain =

-4). The total power and power into the sheath are positive for both cases. The reversal of the sign
of power into the plasma indicates the plasma acting as a load during positive feedback and a

generator during negative feedback.
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Figure 4.17: A cartoon of the simplified circuit diagram representing the coupled plasma-feedback
system during positive and negative feedback. The plasma is represented as a voltage source which

can act as a load or a generator, depending on the phase of the feedback.
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Using this definition of power into the plasma, we can view the alteration of the feedback circuit

gain as an adjustment in the admittance of the circuit. Due to the frequency dependence of the

circuit, we define this admittance in the frequency domain as,

Y(ω) =
V∗P(ω)I(ω)
|VP(ω)|2

(4.5)

where VP(ω) is the Fourier transform of the sensor signal and I(ω) is the Fourier transform of

the current measured to the electrode. The real part of this admittance is the conductance in the

frequency domain. Figure 4.18 (a) shows the spectral intensity from the gain scan of Section 4.4,

and (b) shows the associated conductance with frequency. We observe that when the conductance is

negative, the turbulence is suppressed, and when the conductance is positive, there is amplification

of the fluctuations.

Figure 4.18 (c) summarizes changes to the intensity (blue) and conductance (red), frequency

integrated in the band from 1→10 kHz (Equation 4.1). The increased turbulence intensity is clearly

related to the conductance of the circuit controlling current collection. The average power injected

into or extracted from the turbulence is equal to the product of the turbulent fluctuations (〈|VP|
2〉)

and the conductance, about 72 mW and 12 mW, respectively. This is in good agreement with the

values plotted in Figure 4.16.
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Figure 4.18: Intensity (a) and conductance (b) with frequency, and the band integration of the two
(c) indicate that positive conductance leads to amplification of the fluctuations, while negative

results in suppression.
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4.6 Observations of Feedback with Azimuthal Angle

As we observed in the open-loop tests, the influence of an input signal in the plasma is limited in

range azimuthally as the oscillations decorrelate. A similar range of influence is observed with

the application of feedback. The changes in RMS fluctuation, correlation and spectral content are

measured at various azimuthal separations from the electrode as feedback is applied. Figure 4.19

shows the experimental configuration with the relevant floating potential probes and polar imager

azimuthal array highlighted.

Figure 4.19: Experimental configuration for measuring influence of feedback with azimuth. Notice
here the sensor is a floating potential probe located 12◦ downstream from the electrode. The other
diagnostics discussed in the analysis are also displayed including the azimuthally separated floating

potential probes and polar imager detectors.
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Figure 4.20 shows the change in RMS fluctuations as feedback is triggered on and off (similar

to Figure 4.7(b)) for the floating potential probes shown in Figure 4.19. We observe the influence

of feedback only on probes downstream from the electrode in the direction of mode rotation. The

probe upstream from the electrode by 9◦ shows no noticeable change during triggering events, even

though it is closer than the sensor at 12◦.

Figure 4.20: Response to triggered feedback measured by floating potential probes at various
azimuthal separations from the electrode. The influence of feedback is strongest closer to the

electrode in the downstream direction and attenuates with increased separation.
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We improve our azimuthal resolution with measurements from the polar imager. Using the

detectors at the highlighted radius in Figure 4.19, we observe the change in fluctuations with azimuth

when feedback is applied. Figure 4.21 shows the RMS fluctuations normalized to the average levels

without feedback (circles) and the same measurement from the floating probes (triangles). The error

bars are determined by the variation in the averaged quantity shown in Figure 4.20. In red we show

these values for amplifying feedback, in blue for suppressing. We see a 30% increase or reduction

in these values near the sensor, attenuating with increasing azimuthal separation from the electrode.

Greater than 90◦ separation, the influence is no longer observable. Upstream from the electrode we

see no influence from the feedback.

Mode Rotation

Figure 4.21: The normalized RMS levels from the polar imager detectors (circles) and the floating
probes (triangles) for positive (red) and negative (blue) feedback. Each measurement is normalized
to its multishot averaged RMS level without feedback. We observe a 30% reduction in RMS levels

with suppressing feedback, and a 30% increase with amplifying feedback. This only occurs
downstream in the direction of mode rotation, sharply defined after the electrode.

We find that the correlation of the plasma also changes with applied feedback. Cross-correlation

[58] between two separated diagnostics gives a measure of the lead/lag time and the decorrelation,

which is a measure of organization, or lack thereof, in the plasma. By measuring the cross-correlation

of the sensor signal with the various polar imager detectors, we observe the influence of feedback
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on the turbulence in the plasma. Figure 4.22 shows the peak correlation between the sensor and

a radius of polar imager detectors when positive (red) and negative (blue) feedback is applied

compared to the correlation without feedback (black). We see that the downstream correlation is

increased for amplifying feedback and reduced for suppressing feedback, a similar trend to that

seen in RMS. Positive feedback is creating large amplitude, coherent structures in the plasma, and

negative feedback is removing them.

Mode Rotation

Figure 4.22: The peak coherence between the sensor and various polar imager detectors for
amplifying (red), suppressing (blue) feedback, and without feedback (black). Again, the influence

of the feedback on coherence is downstream from the electrode.

From both of these azimuthally resolved measurements, there is strong indication that the

feedback can only influence the plasma in a range of roughly 90◦ downstream from the electrode.

Comparing this to the correlation length measured in CTX of roughly 50◦ at this radius [13], the

fluctuations driven by the electrode are significantly decorrelated after reaching the more separated

diagnostics.

We also observe changes of the spectra measured by the polar imager detectors. In Figure 4.23,

the spectrum for each detector on a radius (L = 5, r = 39 cm) is plotted for shots with no feedback

(black) and amplifying and suppressing feedback (red and blue, respectively), positioned in the

figure relative to their azimuthal location. The polar imager is illustrated in the center and the L =

5 radius is highlighted. The location of the sensor and electrode are indicated pictorially and the
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detector’s separation from the electrode is labeled in each plot. We see the effects of amplifying and

suppressing feedback immediately downstream from the electrode, and the discernible influence

attenuates with increased separation.

Mode Rotation

Electrode

Sensor

Figure 4.23: The spectrum as measured by the various polar imaging detectors on the L = 5 radius.
Black is without feedback, red is amplifying and blue is suppressing feedback. The plots are

positioned according to the detector azimuth in the plasma. The influence is observed to attenuate
with increased separation.
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4.7 Varying the Azimuthal Separation

Observing the influence of increasing azimuthal separation on the effectiveness of feedback, we

next explore the effects of sensor-electrode separation. Using the two positions for the sensor and

electrode illustrated in Figure 3.11, we perform four phase scans with various azimuthally separated

configurations.

Figure 4.24 (a) shows the configuration discussed in the previous sections where the sensor is

positioned 12◦ downstream from the electrode. 4.24 (d) shows the phase scan performed with this

configuration. As previously pointed out, the maximum amplification in this configuration occurs

near 0◦ applied phase shift, and peak suppression is obtained closer to 180◦.

We perform the same phase scan using the configuration illustrated in 4.24 (b), where the sensor

is now 90◦ downstream from the electrode. Figure 4.24 (e) displays a similar trend to 4.24 (d), but

the phases of peak amplification and suppression are shifted by approximately 90◦. In addition, the

relative amount of amplification and suppression are reduced. The azimuthal separation affects the

phasing of the feedback while decorrelation of the signal in transit reduces the effectiveness.

By reversing the magnetic field direction, we reverse the direction of mode rotation. This

increases the effective separation between the azimuthally fixed sensor and electrode used in 4.24 (e)

from 90◦ to 270◦ (4.24 (c)). In 4.24(f), the red curves show the results from a phase scan performed

using this 270◦ configuration. We observe almost no change in the spectrum measured by the sensor.

If we use an electrode 90◦ upstream in this reversed field configuration (blue electrode in 4.24 (c)), a

phase scan yields the result shown in blue, where a trend similar to that seen in the 90◦ configuration

of 4.24 (e) is seen.

The trend with phase is clearly related to the sensor-electrode separation. If we assume only

an m = 1 mode structure in these plasmas, the phase of maximum amplification is such that it

compensates for the phase shift produced by the azimuthal separation of a mode rotating between

the sensor and electrode. If the separation is too large, the effects of the feedback are attenuated

significantly and so spatially imposed phase shifts larger than 90◦ are not observed.
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d
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e

Figure 4.24: (a-c) show various sensor-electrode configurations with the direction of mode rotation
and azimuthal separation indicated. (d-f) show a comparison of phase scans performed with the

various configurations. The trend shifts with the azimuthal separation as long as the separation is
small enough that the effects of feedback are not attenuated significantly.
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4.8 Zero Net Injected Current

In the feedback experiments described so far, the circuit has been assumed to complete through

the plasma to ground, most likely to the vacuum chamber wall. Alternatively, the circuit could be

completed by collecting the injected current on another electrode located elsewhere in the plasma.

To study the difference between these two cases, the two configurations illustrated in Figure 4.25

were used to perform phase scans.

Figure 4.25: a) Two independent feedback systems driven by one sensor apply oppositely phased
feedback, pulling nearly opposite currents. b) One system is driven by the sensor and two

electrodes are coupled to the outputs of the amplifier. The current through the electrodes is equal
and opposite, and the circuit completes through the electrodes.

Figure 4.25 (a) shows a configuration where two independent systems connected to the same

sensor apply feedback that is 180◦ out of phase. Here, two amplifiers are used, and for each, the

circuit is completed through ground. The electrodes are separated by 180◦ azimuthally, with the

sensor directly between (90◦ upstream and downstream). Effectively, whenever one electrode is

drawing positive current, the other draws negative current. These circuits complete through the

chamber wall, though technically the current injected by one could be collected by the other.

Figure 4.25 (b) shows a configuration where one feedback system is driven by the sensor, but

the amplifier is coupled to two electrodes to draw a zero net current from the plasma. So any current

that goes into one electrode must be drawn out of the other. In this manner, we force the feedback
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system to complete between the electrodes. An isolation transformer was required to decouple the

power supplied from ground. Details on this are provided in Appendix G.

Figure 4.26 shows the phase scans performed using these two configurations, the “two system”

test on top and the “zero net current” test on the bottom. We observe similar trends in amplification

and suppression in each case, suggesting that the “path of completion” isn’t a factor in the nature

of the feedback. Due to the large separation, it is possible that the circuit in the second case does

in fact pass through the wall. A future experiment with a close proximity pairing of two electrode

would be an interesting test.
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Figure 4.26: Phase scans performed using the two configurations of Figure 4.25. The similar
response suggests that whether the circuit completes through the chamber wall or through another

electrode does not effect the plasma response to feedback.
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4.9 High-Pass Filtered Feedback

Two dimensional turbulence theory predicts a process known as the “Inverse Energy Cascade” [58],

where small structures aggregate into larger structures and energy is transferred from small to large

scales. This is in contrast to the direction of energy transfer observed in three dimensional turbulent

systems. Due to the rapid bounce motion of the electrons, we often discuss dipole plasma dynamics

as a two dimensional system. Grierson suggested the presence of this inverse energy cascade in

CTX [13], and the work of Worstell involved applying static biases to drive the cascade [53].

If higher frequencies correspond to smaller scale structures, as suggested in [50], then exciting

higher frequency modes would inject energy at large k and we could actively drive the inverse

energy cascade. We attempt this idea by high-pass filtering the applied feedback. Simply varying

the resistor values used in the existing high-pass filter (used to remove < 120 Hz dynamics) we can

effectively only apply feedback to the high frequency portion of the spectrum.

Figure 4.27 shows the response to feedback applied with the standard 120 Hz filter (a), a filter

with 5 kHz corner frequency, (b), and a 10 kHz corner frequency (c). Note that due to the modified

transfer functions, the applied phases weren’t exactly the same, but similar to within 20◦ for the

passband of interest. Also note that the increased dynamics at 3 kHz for the high-pass tests was due

to differing vacuum conditions, not the adjusted filter (as is seen from the “natural” spectrum in

black).

We find that the ability to amplify the spectrum at frequencies below 5 kHz is significantly

reduced with filtering, increasingly so for the 10 kHz. We do still see a strong influence of the

suppressing feedback above 4 kHz, but as was shown in Section 4.4, less gain is required for

suppression than amplification.

From the inverse energy cascade, we would expect that injecting energy at high frequencies

would result in increased spectral power at low frequencies. Hence, applying amplifying feedback

at 10 kHz and above, we might expect the spectrum to be enhanced at low frequencies as well.

From Figure 4.27(b-c), when we apply filtered feedback we see no excitation of the low frequency

spectrum. This suggests that the inverse energy cascade, if present, is not excited by feedback.
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Figure 4.27: Phase scans performed with high-pass filtered feedback. Dashed lines indicate the
corner frequencies of the high-pass filters. Excitation of higher frequencies does not appear to drive

the inverse energy cascade.



Chapter 5

Gyro-Fluid Model

This section describes the equations used to model the plasma behavior. Previously, both an

MHD and two-fluid approach have been used to explain the curvature and centrifugal interchange

instabilities [46] in CTX plasmas. A gyro-fluid model is employed to include effects related to

entropy modes [60, 61]. The initial equations are first described, then are transformed to flux-tube

averaged dipole coordinates. Approximations are made to linearize these equations, then the

numerical solve is discussed. Finally, the results are compared to the experimental measurements.

The assumption of β << 1 allows us to neglect perturbations to the background magnetic field

by the relatively small plasma currents. As described in Chapter 2, we use the coordinates of a ideal

dipole field described in terms of (ψ, χ, ϕ),

ψ =
M
r

sin2 θ, χ =
M
r2 cos θ, ~B = ∇ϕ × ∇ψ = ∇χ

Additionally, when the parallel dynamics are significantly faster than the dynamics of interest,

integration over the χ coordinate can be used to reduce the dimensionality of the problem, studying

only the cross-field interchange dynamics. We define the flux-tube average of a quantity A as:

< A >≡
1
δV

∫ +∞

−∞

dχA
B2 (5.1)

75
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A derivation of these coordinates and this integral is provided in Appendix B.

5.1 Building the Model: Gyro-Fluid Equations

We start with the gyro-fluid equations derived by Ricci for a Z-pinch configuration [62]. These

equations come from evaluating moments of the gyro-kinetic equations with β << 1 and assuming

Maxwellian equilibrium distribution functions. Additionally, assuming Te >> Ti and J|| = 0, we

arrive at the simplified set of equations in a dipole:

Force balance: nMi
dV
dt

= −∇Pe + J × B − nMiνiV (5.2)

Particle continuity:
∂n
∂t

+ ∇ · nV = 0 (5.3)

Ohm’s law: E + Ve × B = −
1
en
∇Pe (5.4)

Current constraint: ∇ · J ≈ 0 (5.5)

Pressure dynamics:
∂Pe

∂t
+ ∇ · (PeVE) + (γ − 1)Pe∇ · VE = γ

2
ωci

b̂ × κ · ∇(PeC2
s ) (5.6)

Note the velocities in these equations; in the force balance equation, the velocity is that of the

bulk fluid plasma, dominantly the E × B drift. In Ohm’s law, Ve describes the electron fluid velocity,

which is primarily due to E × B and diamagnetic drifts. Next, as the pressure felt by the ions is

composed of the ion and electron partial pressures, if we approximate that Ti ≈ 0, the pressure is

only from the electron contribution. The second and third terms on the LHS of the pressure equation

are related to adiabaticity and the RHS is a collisionless heat flux.

In the following subsections we will transform each of the above equations into flux-tube

averaged dipole coordinates in detail.
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5.1.1 Particle Continuity

We define the number of particles in a flux-tube as the flux-tube average of the particle density times

the differential flux-tube volume:

N(ψ, ϕ, t) ≡< n > δV (5.7)

where the brackets denote flux-tube averaging.

In the absence of sources and sinks, the particle continuity equation has the form:

∂n
∂t

+ ∇ · nV = 0

where n is the particle density and V is the particle velocity. Considering the electrons, we can

find the velocity from Ohm’s law:

E + Ve × E = −
1
en
∇Pe ⇒ V =

E × B
B2 −

1
en

B × ∇Pe

B2

where these are the E × B and diamagnetic drifts, respectively. Expressing these in dipole

coordinates,

E = −∇Φ = −
∂Φ

∂ui∇ui = −
∂Φ

∂ψ
∇ψ −

∂Φ

∂ϕ
∇ϕ

Pe =
∂Pe

∂ψ
∇ψ +

∂Pe

∂ϕ
∇ϕ

So our expression for electron velocity becomes:
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Ve = −
∂Φ

∂ψ

∇ψ × ∇χ

|∇χ|2
−
∂Φ

∂ϕ

∇ϕ × ∇χ

|∇χ|2
−
∂Pe

∂ψ

∇χ × ∇ψ

enB2 −
∂Pe

∂φ

∇χ × ∇φ

enB2

= −
∂Φ

∂ψ

∇ϕ|∇χ||∇ψ|

|∇χ|2
+
∂Φ

∂ϕ

∇ψ|∇χ||∇ϕ|

|∇χ|2
+
∂Pe

∂ψ

|∇χ||∇ψ|

en|∇χ|2
∇ϕ

|∇ϕ|
−
∂Pe

∂ϕ

|∇χ||∇ϕ|

en|∇χ|2
∇ψ

|∇ψ|

= − (
∂Φ

∂ψ
−

1
en
∂Pe

∂ψ
)
∇ϕ

|∇ϕ|2
+ (

∂Φ

∂ϕ
−

1
en
∂Pe

∂ϕ
)
∇ψ

|∇ψ|2

Before returning to the continuity equation, we observe that the divergence of a vector in general

coordinates is:

∇ · ~A = ∇ · (Ai√g
~ei
√

g
) =

~ei
√

g
· ∇(Ai√g) =

1
√

g
∂(Ai√g)
∂ui (5.8)

where ∇ · ( ~ei√
g) = 0 is used between the first and second step, then ~ei · ∇ f =

∂ f
∂ui . Recalling that

Ai = ~A · ∇ui:

∇ · (n~v) =
1
√

g
∂(nvi√g)

∂ui

=B2 ∂

∂ψ
(
∇ψ · nVe

B2 ) + B2 ∂

∂ϕ
(
∇ϕ · nVe

B2 )

= − B2 ∂

∂ϕ
(

n
B2

∂Φ

∂ψ
−

1
en
∂Pe

∂ψ
) + B2 ∂

∂ψ
(

n
B2

∂Φ

∂ϕ
−

1
en
∂Pe

∂ϕ
)

Taking a flux tube average, assuming Φ and Pe as constant along field lines,

< ∇ · (n~v) > δV = −

∫ +∞

−∞

B2 ∂

∂ϕ
(

n
B2

∂Φ

∂ψ
−

1
en
∂Pe

∂ψ
)
dχ
B2

+

∫ +∞

−∞

B2 ∂

∂ψ
(

n
B2

∂Φ

∂ϕ
−

1
en
∂Pe

∂ϕ
)
dχ
B2

= −
∂

∂ϕ
(N
∂Φ

∂ψ
−
δV
e
∂Pe

∂ψ
) +

∂

∂ψ
(N
∂Φ

∂ϕ
−
δV
e
∂Pe

∂ϕ
)

With this, we find the flux-tube averaged continuity equation as,
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∂N
∂t
−

∂

∂ϕ

(
N
∂Φ

∂ψ
−
δV
e
∂Pe

∂ψ

)
+

∂

∂ψ

(
N
∂Φ

∂ϕ
−
δV
e
∂Pe

∂ϕ

)
= 0 (5.9)

5.1.2 Current Constraint

By crossing the momentum equation with B, one arrives at an expression for the perpendicular

current density,

~J =
~B × ∇Pe

B2 +
nMi

B2
~B ×

(dVE

dt
+ νiVE

)
where VE is the E × B velocity. Expressing this in terms of the gradient vectors of dipole

coordinates:

~J =
∇χ × (∂P

∂ψ
∇ψ + ∂P

∂ϕ
∇ϕ)

B2 +
nMi

B2 ∇χ ×
( d
dt

+ νi

)(∇χ × (∂Φ
∂ψ
∇ψ + ∂Φ

∂ϕ
∇ϕ)

B2

)
Next, using:

∇ϕ × ∇ψ = ∇χ ∇χ × ∇ϕ =
|∇ϕ||∇χ|

|∇ψ|
∇ψ ∇ψ × ∇χ =

|∇ψ||∇χ|

|∇ϕ|
∇ϕ

the expression for J can be rewritten as:

~J = −
∂P
∂ψ

∇ϕ

|∇ϕ|2
+
∂P
∂ϕ

∇ψ

|∇ψ|2
−

nMi

B2

( d
dt

+ νi

)(∂Φ

∂ψ
∇ψ +

∂Φ

∂ϕ
∇ϕ

)
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Plugging this into the expression for divergence free current density,

∇ · ~J =
1
√

g
∂(Ji√g)
∂ui = B2∂( ~J·∇ui

B2 )
∂ui

=B2 ∂

∂ψ

( 1
B2

∂P
∂ϕ
−

nMi

B4

( d
dt

+ νi

)(∂Φ

∂ψ
|∇ψ|2

))
+ B2 ∂

∂ϕ

(
−

1
B2

∂P
∂ψ
−

nMi

B4

( d
dt

+ νi

)(∂Φ

∂ϕ
|∇ϕ|2

))
We can take the flux-tube average to find:

< ∇ · ~J > δV =
∂

∂ψ

(
δV

∂P
∂ϕ

)
−
∂

∂ϕ

(
δV

∂P
∂ψ

)
−

∂

∂ψ

( ∫ +∞

−∞

dχ
B2

nMi

B2 |∇ψ|
2
( d
dt

+ νi

)(∂Φ

∂ψ

))
−

∂

∂ϕ

( ∫ +∞

−∞

dχ
B2

nMi

B2 |∇ϕ|
2
( d
dt

+ νi

)(∂Φ

∂ϕ

))
= 0

which can be reorganized as

− < ∇ · ~J > δV =
( d
dt

+ νi

)[ ∂
∂ψ

(
εψ
∂Φ

∂ψ

)
+

∂

∂ϕ
εϕ
∂Φ

∂ϕ

]
−

∂

∂ψ

(
δV

∂P
∂ϕ

)
+

∂

∂ϕ

(
δV

∂P
∂ψ

)
= 0 (5.10)

where, with |∇ψ|2 = B2L2 and |∇ϕ|2 = 1/L2,

εϕ =

∫ +∞

−∞

dχ
B2

nMi

B2

1
L2 , εψ =

∫ +∞

−∞

dχ
B2 nMiL2
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5.1.3 Pressure Dynamics

The pressure equation is again given as:

∂Pe

∂t
+ ∇ · (PeVE) + (γ − 1)Pe∇ · VE = γ

2
ωci

b̂ × κ · ∇(PeC2
s )

where κ is the field line curvature pointing in −ψ̂ direction. Taking a closer look at the RHS:

γ
2
ωci

b̂ × κ · ∇(PeC2
s ) = γ

2Mi

eB2 ∇χ × (−κψ∇ψ) · ∇(PeC2
s )

= γ
2Mi

eB2 κψ
|∇χ||∇ψ|

|∇ϕ|
∇ϕ · ∇ϕ

∂

∂ϕ
(PeC2

s )

= γ
2
e
κψ
∂(PeTe)
∂ϕ

Finding the LHS in dipole coordinates,

∂Pe

∂t
+ B2 ∂

∂ϕ

(
−

Pe

B2

∂Φ

∂ψ

)
+ B2 ∂

∂ψ

(Pe

B2

∂Φ

∂ϕ

)
+ (γ − 1)P

[
B2 ∂

∂ϕ

(
−

1
B2

∂Φ

∂ψ

)
+ B2 ∂

∂ψ

( 1
B2

∂Φ

∂ϕ

)]
and taking a flux-tube average,

∂Pe

∂t
−

∂

∂ϕ

(
Pe
∂Φ

∂ψ

)
+

1
δV

∂

∂ψ

(
PeδV

∂Φ

∂ϕ

)
+ (γ − 1)

P
δV

∂δV
∂ψ

∂Φ

∂ϕ

where the last two terms can be combined by multiplying/dividing by δVγ. Canceling terms, the

expression for the flux-tube averaged pressure equation is,

∂Pe

∂t
−
∂Pe

∂ϕ

∂Φ

∂ψ
+

1
δVγ

∂(PeδVγ)
∂ψ

∂Φ

∂ϕ
= γ

2
e
〈κψ〉Te

(
2
∂Pe

∂ϕ
−

Te

δV
∂N
∂ϕ

)
(5.11)

where we have used C2
s = Te/Mi, Pe = 〈n〉Te, 〈n〉 = NδV , and 〈κψ〉 is the flux-tube averaged

curvature. This pressure equation describes the adiabatic response of electron (LHS) modified by

perturbations to the diamagnetic drift resulting in a collisionless heat flux (RHS).
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5.1.4 Linearized Equations

In order to find a linear set of equations from the above nonlinear set, several assumptions are made.

First we require that there is no equilibrium potential (Φ0 = 0), and that the equilibrium density and

pressure profiles are axisymmetric (∂(N0, P0)/∂ϕ = 0). Starting with the continuity equation, by

dropping higher order terms we find the linear expression,

∂Ñ
∂t

+
∂N0

∂ψ

∂Φ̃

∂ϕ
−

1
e
∂δV
∂ψ

∂P̃e

∂ϕ
≈ 0 (5.12)

Similarly we find the linearized pressure equation,

∂P̃e

∂t
+

1
δVγ

∂

∂ψ
(P0δVγ)

∂Φ̃

∂ϕ
−

2
e
γ〈κψ〉Te

(
2
∂P̃e

∂ϕ
−

Te

δV
∂Ñ
∂ϕ

)
= 0 (5.13)

where we have taken Te = Pe/〈N〉.

Next, the current constraint equation is linearized by neglecting the nonlinear convective

derivative, d/dt ≈ ∂/∂t:

( ∂
∂t

+ νi

)( ∂
∂ψ
εψ

(∂Φ̃

∂ψ

)
+

∂

∂ϕ
εϕ

(∂Φ̃

∂ϕ

))
−
∂δV
∂ψ

∂P̃
∂ϕ

= 0 (5.14)

This expression indicates that the diamagnetic current of the electrons is balanced by the

polarization current (and collision current) of the ions. Equations 5.12, 5.13, and 5.14 form the

linearized representation of the gyro-fluid model for the plasma. This is the system we will use to

understand our experimental results. Note that we will be making a comparison of a linear system

to a highly nonlinear experiment, but it is a starting point that gives us intuition toward the more

complicated system.
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5.1.5 Normalized Equations

By normalizing these equations, we clarify the problem to be solved and allow for a simple

comparison of similar systems at different scales. The resulting normalized problem is simply

parameterized by one value and two equilibrium profiles. We normalize by values found at the

equatorial radius, L0. Here the magnetic flux is ψ0, and the ion cyclotron frequency is ωci,0 = eB0/Mi.

We define the normalized flux coordinate, y = ψ/ψ0, where at L0, y = 1. The normalized sonic

gyroradius is defined to be ρ∗ = Cs/ωciL0, allowing us to normalize time as τ = t/t0, where

t0 = (ωciρ∗
2)−1. From here on equilibrium quantities will be denoted with a 0 subscript, and

quantities evaluated at L0 with a (ψ0). Note that Te represents the equilibrium temperature profile.

In these normalized coordinates the flux-tube volume and its radial derivative become,

δV →
δV(ψ0)

y4 ,
∂δV
∂ψ
→ −

4
ψ0

δV(ψ0)
y5 (5.15)

The equilibrium profiles are also normalized to their values at y = 1,

N0 →
N0(ψ)
N0(ψ0)

= hn(y), G0 = P0δVγ →
G0(ψ)
G0(ψ0)

= hg(y) (5.16)

For the particle continuity equation, we normalize ψ with yψ0 and t with τt0. So multiplying

through by t0/N0(ψ0),

∂

∂τ

Ñ
N0(ψ0)

+
t0

ψ0

∂hn

∂y
∂Φ̃

∂ϕ
+

4t0

eψ0N0(ψ0)
δV(ψ0)

y5

∂P̃e

∂ϕ
≈ 0

where one can show easily with PeδV = NTe that

t0

ψ0
=

e
Te(ψ0)

=
e

MiC2
s
,

t0δV(ψ0)
eψ0N0(ψ0)

=
1

〈n0〉(ψ0)Te(ψ0)
=

1
P0(ψ0)

,

where the above left is our normalization for potential, and right is the normalization for pressure.
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With these, the normalized continuity equation is

∂Ñ
∂t

+ h′n
∂Φ̃

∂ϕ
+

4
y5

∂P̃e

∂ϕ
≈ 0 (5.17)

where Ñ, Φ̃, P̃e, t are now taken to be the normalized quantities.

In normalized coordinates 〈κψ〉 = −4δV(ψ0)/(2δVψ0y5). Utilizing this and multiplying the

pressure equation by t0/P0(ψ0):

∂

∂τ

P̃e

P0(ψ0)
+ y4γh′g

e
Te(ψ0)

∂Φ̃

∂ϕ
+ γ

4
y5

t0

ψ0

TeδV(ψ0)
eδV

(
2
∂

∂ϕ

P̃e

P0(ψ0)
− y4 Te

Te(ψ0)
∂

∂ϕ

Ñ
N0(ψ0)

)
= 0

Allowing the normalized quantities to be represented by the original variables, and observing

that y4Te/Te(ψ0) = y4γhg/hn, this expression reduces to:

∂P̃e

∂t
+ y4γh′g

∂Φ̃

∂ϕ
+ γ

4
y5 (y4γ hg

hn
)
[
2
∂P̃e

∂ϕ
− (y4γ hg

hn
)
∂Ñ
∂ϕ

]
= 0 (5.18)

Finally, we normalize the current constraint,

( 1
t0

∂

∂τ
+ νi

)[ 1
ψ0

∂

∂y
εψ

1
ψ0

∂Φ̃

∂y
+

∂

∂ϕ
εϕ
∂Φ̃

∂ϕ

]
+

4
y5

δV(ψ0)
ψ0

∂P̃
∂ϕ

= 0

where

∂δV(ψ0)
∂ψ0

= −
1
ψ0

4
y5 δV(ψ0)

Multiplying and dividing the ε terms by N0 = 〈n0〉δV , and multiplying the entire equation by

eB2
0L2

0t0/(N(ψ0)MiTe(ψ0)),
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( ∂
∂t

+ νit0

) e
N0Te

[ ∂
∂y

N0Ey
∂Φ̃

∂y
+

∂

∂ϕ
N0Eϕ

∂Φ̃

∂ϕ

]
+

4
y5

eB2
0L2

0t0

N0MiTe

δV(ψ0)
ψ0

∂P̃
∂ϕ

= 0

where the dimensionless dielectrics are

Eϕ =
1
δV

∫ +∞

−∞

dχ
B2

n
〈n〉

B2
0

B2

L2
0

L2 , Ey =
1
δV

∫ +∞

−∞

dχ
B2

n
〈n〉

L2

L2
0

(5.19)

Finally, normalizing the potential by e/Te(ψ0), the density by N0(ψ0) and the pressure by

〈n0〉(ψ0)Te(ψ0), this takes the form

ρ2
∗

( ∂
∂t

+ νit0

)[ ∂
∂y

hnEy
∂Φ̃

∂y
+

∂

∂ϕ
hnEϕ

∂Φ̃

∂ϕ

]
+

4
y5

∂P̃
∂ϕ

= 0 (5.20)

5.1.6 Localized Equations

A dispersion relation is found by assuming the solutions can be Fourier decomposed in the azimuthal

coordinate, then considering a subset of solutions at a special radial location. The complete set of

modes in the Fourier basis is represented as:

{
Φ̃(ψ, ϕ, t), Ñ(ψ, ϕ, t), P̃e(ψ, ϕ, t)

}
= Σ

{
Φ(ψ),N(ψ), Pe(ψ)

}
e−i(ωmt−mϕ) (5.21)

Taking the pressure for example, P = Pmei(mϕ−ωt), the normalized derivative terms become:

∂P
∂ϕ

= imPmei(mϕ−ωt),
∂P
∂τ

= t0
∂P
∂t

= −iωt0Pmei(mϕ−ωt) = −iωPmei(mϕ−ωt) (5.22)

where in the rightmost expression we use ω to represent the normalized frequency ωt0. All the

derivatives of ϕ and t are expressed in this manner.

Next, localizing our solution to the radial location y ≈ 1 where ∂Φ
∂y ≈ 0, we see the linearized

equations simplify to:
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ωÑ − mh′nΦ̃ − 4mP̃e ≈ 0

ωP̃e − mh′gΦ̃ − 4mγ
[
2P̃e − Ñ

]
= 0

ρ2
∗

(
ω − iνit0

)
m2
⊥EϕΦ̃ + 4mP̃e = 0

where, m2
⊥ ≡ m2 − (Ey/Eϕ)Φ̃−1

m ∂
2Φ̃m/∂y2|y=1 represents the total perpendicular mode number

squared. Note that everything is now in terms of Ñ, P̃e, Φ̃ as well as the presence of the h′n and h′g

factors.

In the case where h′n, h
′
g = 0, there with be a damped electrostatic convective cell with no density

or pressure components as well as two stable modes rotating in the electron drift direction. One of

these two modes rotates faster than the electron drift frequency, the other slightly slower. These

correspond to the entropy modes driven by azimuthal pressure variations, the faster due to pressure

variations from temperature, and the slower due to pressure variations from density.

This marginally stable case is the stability limit from ideal MHD. A critical parameter for

stability, η, is related to a comparison of the pressure and density profile steepness as given by,

η =
d ln T
d ln N

=
∇Te

∇N
N
Te

(5.23)

For the MHD stability limit, η = 2/3. By including the collisionless heat flux in the pressure

equation, instability can occur for more gentle pressure gradients [60]. It can also be seen that

for steep temperature profiles with η > 2/3 the modes will rotate more quickly, while for steep

density profiles (η < 2/3) the mode rotation will slow or even reverse direction, as was recently

demonstrated on LDX via pellet lithium pellet injection [63]. Simulation indicates these instabilities

drive the profiles to the marginally stable, or “invariant”, profiles which yield η = 2/3 [64].
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5.1.7 Including the Feedback

Lets now consider how the inclusion of feedback would change this system. Taking the electrode

to be simply a source of current at a specific azimuthal and radial location in the plasma, at this

location we are effectively saying ∇ · J , 0. Specifically to describe the current into the plasma, an

appropriate expression would be:

δV〈∇ · JFB〉 = IFBδ(ψ − ψE)δ(ϕ − ϕE) (5.24)

where (ψE, ϕE) is the location of the electrode in the plasma. Assuming the electrode is in the

volume of integration, clearly,

∫ ∫ ∫
dV∇ · J =

∫ ∫
dψdϕδV〈∇ · J〉 = IFB

The current to the electrode is set by the gain and phase of the feedback circuit described in

Chapter 3, the plasma potential at the electrode and sensor, and the electrode sheath resistance:

IFB(t) =
1
R
[
− Φ(ψE, ϕE, t) + GΦ(ψS , ϕS , t)

]
(5.25)

where the sign on the plasma potential is chosen by the convention for positive current flowing

out of the electrode and (ψE, S , ϕE,S ) are the locations of the electrode and sensor in the plasma.

Taking the Fourier transform of our expression for the flux-tube integrated divergence of current,

∫ ∞

−∞

eimϕδV〈∇ · J〉dϕ =
e−iωt

R
[
− Φ(ψE) + GΦ(ψS )eim(ϕS−ϕE)]δ(ψ − ψE)
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Next, normalizing by the same factors applied to the current constraint in previous sections,

δV〈∇ · J〉 =
t0

eN0(ψ0)
Te

e
e−iωt0τ

Rψ0

[
−

eΦ(yE)
Te

+ G
eΦ(yS )

Te
eim(ϕS−ϕE)]δ(y − yE)

where here we are normalizing the potential as usual, and the coefficient is dimensionless:

t0

eN0(ψ0)
Te

e
1

Rψ0
=

1
e〈n0〉(Rψ0)δV(ψ0)

∼
Bm2

e
1
Ω

= Ω
1
Ω

The linearized, normalized current constraint equation with current injection feedback is now

given as:

ρ2
∗

( ∂
∂t

+ νit0

)[ ∂
∂y

hnEy
∂Φ̃

∂y
+

∂

∂ϕ
hnEϕ

∂Φ̃

∂ϕ

]
+

4
y5

∂P̃
∂ϕ

=

[
−

eΦ(yE)
Te

+ G
eΦ(yS )

Te
eim(ϕS−ϕE)]δ(y − yE)e−iωt0τ
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5.2 Solving the Global Eigenvalue Problem

The linear equations 5.17, 5.18, 5.20 define a global eigensystem with eigenmodes of density,

pressure and potential and corresponding eigenvalues. These eigenmodes are determined by radial

gradients of the flux-tube integrated equilibrium profiles for density and pressure. We form a linear

set of equations to be solved by using a second-order finite difference approximation for the radial

derivatives and using a Fourier decomposition for the azimuthal derivatives. Provided here is a

detailed description of the numerical global solve.

5.2.1 Equations to be Solved

Again, the normalized system of linear equations to be solved is given as:

∂Ñ
∂t

+ h′n
∂Φ̃

∂ϕ
+

4
y5

∂P̃e

∂ϕ
= 0

∂P̃e

∂t
+ y4γh′g

∂Φ̃

∂ϕ
+ γ

4
y5 (y4γ hg

hn
)
[
2
∂P̃e

∂ϕ
− (y4γ hg

hn
)
∂Ñ
∂ϕ

]
= 0

ρ2
∗

( ∂
∂t

+ νit0

)[ ∂
∂y

hnEy
∂Φ̃

∂y
+

∂

∂ϕ
hnEϕ

∂Φ̃

∂ϕ

]
+

4
y5

∂P̃
∂ϕ

= 0

Note these are three coupled equations for the rate of change of potential, pressure and density.

The hn and hg terms are the equilibrium radial profiles for density and entropy (pressure).

We can pose this problem as an eigensystem with minimal manipulation. Here the related

eigenvectors for this system are composed of three distinct components:

~xm ≡ {Φm,Nm, Pm} (5.26)

The linear eigensystem must be composed of an operator acting on an eigenvector resulting an

equations of the form:
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A · ~x = ω~x (5.27)

To put the above equations in this form, we use a finite difference approximation for the radial

derivatives and a Fourier decomposition in the periodic (azimuthal) direction. Arranging terms

properly, we get a system of the form:

ωM · ~x = N · ~x (5.28)

where the structure ofM and N properly relate to the corresponding structure of ~x, while the ω

terms come from terms with time derivatives. AsM is invertible (with given boundary conditions),

we can rewrite this in the form of an eigensystem:

A · ~x =M−1 · N · ~x = ω~x (5.29)

As such, the solve is an inversion of the matrixM. In a later subsection we will go through the

composition of the matrices in this system.

5.2.2 Equilibrium Profiles

The entire solve depends on only three parameters. These are the normalized sonic gyro radius,

ρ∗, and the two normalized equilibrium profiles for density and entropy, hn and hg. ρ∗ is a scaling

which depends only on the electron temperature and the magnetic field strength, which relates to the

relative importance of the ion inertial term. As such, this term is set by our estimates of the electron

temperature in CTX and the known magnetic field.

The actual profiles are known with significantly less accuracy, and so here we make some

assumptions. The equation which defines the density and pressure profiles is described in [16] and

is trifurcated:
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Figure 5.1: The profile function h and its derivative. Notice the change in sign of the derivative
term at y = 1.

h(y) =



(
y−ymax
1−ymax

)α
y > 1 + δy

Ay2 + By + C 1 + δy > y > 1 − δy

y4c y > 1 + δy

(5.30)

where α = 4c(|y| − 1) and A, B,C are chosen such that h and its derivative are continuous, as

shown in Figure 5.1. This piece-wise continuous function is used as the base profile for both the

density and the entropy. These are given as,

hN(y, c, h0, ymax) = (1 − h0)
1
y4 h(y, c, ymax) + h0

hG(y, c, h0, ymax) = (1 − h0)
1

y20/3 h(y, c, ymax) + h0

Adjusting the steepness and peak of these profiles allows us to find reasonable conditions

where the eigenmodes resemble the structure, growth rates and rotation frequency of the modes

we experimentally observe. For a central density of 7.5 × 1010 cm−3, peak electron temperature

(Te = Pe/n) of 50 eV, cN = .9, cG = 1.97, we find the profiles in Figure 5.2. From Equations 5.17,

5.18, 5.20, we see that these terms and their derivatives determine the nature of the eigensystem.
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Figure 5.2: Density and temperature profiles used for the calculations.

5.2.3 Matrix Structure

The problem will be solved on an n × n domain. Given the three equations, this means that the

matrices that need to be solved will be 3n × 3n, as at each grid point there is a potential, density

and pressure. These matrices are clearly sparse, and the structure of each determined by the

approximations to the operators and the coupling between the terms.

Equation 5.28 is composed of two matrices,M and N . First, the structure of these matrices is

fundamentally determined by the organization of our eigenvector (the unknowns we are solving

for). This is chosen to be arranged as:

~xm =
(
Φ[1],Φ[2], ...,Φ[n − 1],N[1],N[2], ...,N[n − 1], P[1], P[2], ..., P[n − 1]

)
(5.31)

where the [0] and [n] terms are known (boundary conditions) and are not solved for. As such,

the system effectively looks like:



CHAPTER 5. GYRO-FLUID MODEL 93

A~xm = A


Φ

N

P

 (5.32)

With this structure, we can think of the matrices as composed of 9 sections. The top rows of

these matrices (three sections) describe the Possion equation contribution to the system. The middle

rows are due to the continuity equations and the bottom rows from pressure dynamics. The columns

of these matrices represent the components of each equation that are related to a particular quantity.

The left columns contain terms with potential, the middle with density and the right columns are

pressure terms. Figure 5.3 illustrates this description for clarity.

Figure 5.3: Structure of matrices and vectors in terms of the potential, density and pressure
components. The matrix representation on the left displays the organization of the coupling.

Using this representation, we describe the matrices of Equations 5.28, where the M matrices

involve time derivatives (ω), and the N matrices describe the coupling. Notice that the M matrices

for the density and pressure equations simply have 1’s on the diagonal, while for the current

constraint, the matrix is tridiagonal as this equation involves a second derivative in space. These

contributions are illustrated for a small case (n = 10) in Figure 5.4. Note that the total M matrix is
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the sum of these contributions.
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Figure 5.4: Structure of theM matrix. The potential involves off-diagonal terms due to the radial
derivatives.

Similar to the M matrix, the N matrix is composed of sub-matrices representing the terms

without time derivatives. Figure 5.5 displays an example of these matrices. Note that the “Φ” rows

are missing contributions related to the density (N) as the current constraint is not directly dependent

on density. The structure of the matrix describes the coupling taking place.
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Figure 5.5: Structure of the N matrix. The coupling of the potential, density and pressure from the
three equations can be observed from the non-zero elements (black).

5.2.4 Eigensystem

The entire eigensystem is now described in the form ωM · ~x = N · ~x. We find the eigenvalues and

eigenmodes by multiplying each side of the system by the inverse ofM,

M−1N · ~x = ωM−1M · ~x = ω~x
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where ω, are the complex eigenvalues related to the growth rate and rotation frequency of the

eigenmodes, ~x. The first n − 2 values of the eigenmode describe the potential structure, the next

n − 2 describe the density mode, and the remaining describe the pressure. Given that we are solving

an n × n system, we will get n eigenvectors each composed of three components. We solve this for

a system with n = 100 and the profiles of Figure 5.2. The eigenvalues for these modes are plotted

in Figure 5.6 on the complex plane. Growth rates below zero are damped modes, above zero are

unstable modes. From these eigenvalues we find the mode with the highest growth rate and assume

this mode is dominant. In Figure 5.6, the rotation rate of the dominant mode is roughly 5 kHz.
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Figure 5.6: The 100 eigenvalues from the solve. The real part (rotation rate) is on the x-axis, and
the imaginary part (growth rate) is on the y-axis. The dominant mode is taken to be the mode with

the largest growth rate, here roughly 3.5 × 104 s−1

Looking at the eigenvector corresponding to the dominant mode, Figure 5.7 plots the real (blue)

and imaginary (red) parts of the radial profile for the three components. The broad radial structure

of the potential is characteristic of modes observed in dipole-confined plasmas [11, 13].

The azimuthal phasing of the potential, density and pressure is revealed by the real and imaginary

components of the modes. Figure 5.8 shows the azimuthal structure of these modes and the phase



CHAPTER 5. GYRO-FLUID MODEL 96

0.2 0.3 0.4 0.5 0.6
Radius (cm)

0.05

0.00

0.05

0.10

0.15

0.20
Potential Mode

0.2 0.3 0.4 0.5 0.6
Radius (cm)

0.05

0.04

0.03

0.02

0.01

0.00

0.01

0.02

0.03

0.04
Density Mode

0.2 0.3 0.4 0.5 0.6
Radius (cm)

0.02

0.01

0.00

0.01

0.02

0.03
Pressure Mode

real
imag

Figure 5.7: The real and imaginary parts of the potential, density, and pressure components of the
dominant mode.

shifts between them.

Figure 5.8: The two dimensional structure of the dominant eigenmode in potential, density and
pressure.

5.2.5 The Addition of Current Injection

We include the effects of the current injection term described earlier in this Chapter by adding a

matrix to N with only two elements, one representing the potential at the sensor location, the other

at the electrode location. These are given by the expression:
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MFB =
1
R

(
− Φ[iE, jE]eiϕE + |G|Φ[iS , jE]ei(ϕS +∆φ

)
(5.33)

where R is the sheath resistance of the electrode is taken to be 200 Ω. The indices iS and iE

represent the radial location of the sensor and electrode, respectively. The case most representative

of the experimental configuration is shown in Figure 5.9, with the sensor at 45 cm and the electrode

at 44 cm.
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Figure 5.9: The radial locations of the sensor and electrode elements superimposed on the dominant
potential eigenmode.

Notice the index of the terms is chosen to only effect the location of the electrode as determined

by the potential at the sensor. Using the gain, |G|, and phase setting, ∆φ, we can simulate phase and

gain scans similar to those performed experimentally.

Note that we are making the assumption that the probe acts only as a source of current, not a

source or sink of particles. CTX plasmas in this turbulent state are maintained in an equilibrium

between the source of plasma from the ECRH and the losses of plasma to the walls and magnet.

This model make no attempt to represent this. Similarly, particles lost to the electrode surface are

not modeled. From probe theory we can assume for relatively small variations about the floating
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potential that the ion current to the probe is constant, while we vary the amount of collected electrons.

Modeling this would require a steady loss of ions with a fluctuating electron sink term. We choose to

only represent the current injected by the electrode as a simplified model of the feedback influence

on the plasma.

5.2.6 Quantifying the Effects of Current Injection

In the plasma, the sensor (a floating potential probe) doesn’t measure the amplitude of one mode,

but all modes. Similarly, the response to feedback isn’t the effect on an individual mode, but

the collective effect on all the modes composing the turbulent spectrum. To compare the model

described in this section to the feedback performed experimentally, we must use an analogous

treatment.

In observing the effect of the above current source on the eigenmode amplitude, we can measure

the mode amplitude at the “sensor” location on the grid. Each of the 100 eigenvectors will have a

mode amplitude at this location for potential, density and pressure. How these mode amplitudes

change with applied feedback phase and gain is what we wish to compare.

As mentioned above, we take the dominant mode to have the largest growth rate. Therefore, we

say the subdominant modes proceed in decreasing growth rate. The response of all the eigenmodes

to the current injection term is taken to be the response of the “plasma” to feedback. Taking the

squared amplitude of each mode at the sensor location, we sum these mode amplitudes weighted by

the growth rate of each eigenmode. This is normalized by the same value calculated without the

current injection. This summed normalized amplitude is explicitly given as:

Σγm|Φm[iS ][ϕS ]|2

Σγm0|Φm0[iS ][ϕS ]|2
(5.34)

where the potential Φm is evaluated at the sensor location, both radially and azimuthally for each

eigenmode, and the 0 in the denominator represents the values without current injection.

In addition to the change in mode amplitude, there is also an associated change in mode rotation
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frequency when current injection is applied. We can account for this with an approach similar to

the change in mode amplitude. We still weight the dominant modes by their growth rates, but also

weight them by their rotation frequency, normalized in an appropriate manner:

Σγmωm|Φm[iS ][ϕS ]|2

Σγm0ωm0|Φm0[iS ][ϕS ]|2
(5.35)

with ωm the mode rotation frequency of each eigenmode.

5.2.7 Phase and Gain Scans

Using the current injection described above, we can simulate the gain and phase scans performed

experimentally. By varying |G| and ∆φ in Equation 5.33, we can adjust the effective gain and applied

phase, respectively. The response of the eigenmodes in amplitude and rotation rate is quantified

using Equations 5.34 and 5.35. For the eigensystem solved in Figure 5.6, we simulate a phase scan

with the gain set to 4 (similar to experimental settings) with the sensor-electrode separation equal

to 12◦. The left plot of Figure 5.10 shows the relative change in summed mode amplitude at the

sensor, while the right plot shows the change is mode rotation rate. We see that the summed mode

amplitude is amplified by roughly 40% near 0◦, and suppressed by more than 40% near 150◦. The

frequency also displays a changing rotation rate that is shifted from the trend in amplitude by 90◦.

This is typical of many feedback systems [54].

By varying the magnitude of the gain G we also perform scans of gain. Similar to the experi-

mental gain scans, by setting the feedback for peak amplification and suppression, with |G| = 4, we

perform scans from G = ±4. The summed mode amplitude and change in frequency for this scan is

plotted in Figure 5.11. We observe amplification and suppression of mode amplitude up to ±40%.

A trend in changing frequency is also observed with varied gain.
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Figure 5.10: Phase scan performed with current injection term included in model. Left, Equation
5.34 with applied phase. Right, Equation 5.35 with applied phase.
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Figure 5.11: Gain scan performed with current injection. Left, Equation 5.34 with gain. Right,
Equation 5.35 with gain.
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5.3 Comparing the Model to the Experiment

We summarized the results of the experimentally perform gain and phase scans by integrating

over the modified spectra and normalizing by the integral of the “natural” spectrum (Equations 4.2

and 4.1). In doing this we looked at the summed response to feedback over all the modes in the

frequency band of integration. This is similar to the summing over the eigenmodes of Equations

5.34 and 5.35. We directly compare the experimental feedback results to the calculated eigenmode

response with current injection in this manner. Figure 5.12 plots an overlay of the experimental

results from Figure 4.11 with the calculated results of Figure 5.10, with the modification to the

summed amplitudes on top and the change in frequency in the lower plot.
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Figure 5.12: Comparison of the experimental phase scan results (blue) to the current injection scans
of the eigensystem (red). Top is the relative change in intensity/mode amplitude, and on bottom is

the relative change in dominant mode frequency.

While the general trends appear similar, we observe some important differences between the

response of the eigensystem and the response of the plasma. Considering the modification to the

intensity (amplitude), we see that we can obtain comparable levels of suppression, but we are not

able to achieve the same amplification as measured experimentally (for similar gain and resistance).

Additionally, there is roughly a 30◦ phase shift between the trends. Considering the lower plot of
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Figure 5.12, we obtain similar shifts in the frequency of the dominant modes, but there is again a

slight phase shift between the trends.

We compare the gain scans in the same manner. Figure 5.13 displays the experimental gain scan

results of Figure 4.13 (blue) with the calculated results of Figure 5.11. The summed mode amplitude

follows a similar trend to what we observe experimentally, with amplification occuring after a gain

of 1, and suppression for gain less than 1, which is in accord with the form of Equation 4.3. We

again observe that while the levels of suppression are comparable, the predicted amplification is

less than what is measured. Additionally, the trend predicted in frequency is not observed.
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Figure 5.13: Comparison of the experimental gain scan results (blue) to the current injection scans
of the eigensystem (red). Top is the relative change in intensity/mode amplitude, and on bottom is

the relative change in dominant mode frequency.

Considering we are comparing the eigenmodes from a linearized model to the response of a

turbulent plasma, there is substantial agreement between these results. Clearly a nonlinear model is

required to fully understand what is taking place in these highly nonlinear plasmas. Additionally,

modeling of the particle sources and sinks may be important in understanding the dynamics of the

turbulent collisional plasmas in CTX. Appendix H describes an existing nonlinear simulation which

has been used to explain the dynamics of previous experimental studies on CTX [17, 10, 50].
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Conclusion

Plasma confined by a magnetic dipole is subject to interchange instabilities for sufficiently steep

density and temperature profiles. In the laboratory, these profiles are driven unstable by microwave

heating of the electrons at a resonance layer. With sufficient collisionality, these plasmas exhibit

hallmarks of a turbulent system including complex dynamics and short spatial coherence. The

magnetosphere, while generally not turbulent, undergoes similar interchange motions driven by

the solar wind. These motions are regulated (to a degree) by field aligned currents which couple

the magnetosphere and ionosphere, resistively damping the plasma convection. The experiments

described in this work were performed on the CTX device, which has no field aligned currents due

to an insulating casing on the magnet. The effects of these currents were “added” by inserting a

biasing electrode to regulate the turbulent interchange motions. This thesis reports the first use of

local current-collection feedback to modify, amplify, and suppress interchange fluctuations in a

dipole confined plasma. Various experiments were performed to test the nature of this feedback

mechanism and the response of the plasma. A gyro-fluid model was also developed and included a

representation of the feedback system. The related global linear eigensystem displayed a response

to current injection feedback with some agreement with experimental observations.
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6.1 Discussion of Results

A feedback system is composed of a sensor, electrode (actuator) and feedback circuit (control law).

For all experiments reported here, the sensor was a radially adjustable floating potential probe and

the electrode was a large diameter biasing probe. A feedback circuit was designed and fabricated

consisting of a pre-amplifier/buffer, high-pass filter, phase shifting elements and a four-quadrant

power amplifier. With this feedback system a variety of experiments were performed:

• Feedforward. Open-loop tests of the plasma response to current injection were performed.

The electrode was driven with a known signal and the spectrum of the fluctuations was

measured at various points in the plasma. The system launched a wave at the driven frequency

which decayed with increased azimuthal separation.

• Triggered Feedback. Feedback (closed-loop) was triggered on and off with the circuit

phased for peak amplification or peak suppression. The RMS fluctuations of the plasma were

observed to be amplified or suppressed by ±30%. Fluctuations returned to the levels without

feedback in under 20 µs when the feedback was switched off.

• Phase Scans. By performing feedback with varied applied phase shift, dramatic modification

to the turbulent spectrum was measured. Significant amplification was observed for phase

shifts close to 0◦, while broadband suppression occurred closer to 180◦. The dominant mode

frequency also varied with applied phase.

• Gain Scans. Gain scans were performed by tuning the feedback circuit for peak amplification

and suppression while adjusting the gain, effectively varying the gain from −4 → 4. It

was observed that for increasing positive gain we saw increasing amplification, while more

negative gain resulted in suppression. This was described in terms of a “power flow” model

where changing the phase and gain of the feedback circuit effectively changes the sign and

magnitude of the system’s conductance. During positive feedback the plasma acts as a load,

while with negative feedback the plasma acts as a generator.
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• Turbulent Decorrelation of Feedback. By observing the effects of feedback globally, we

observe the influence to be limited to roughly two turbulent correlation lengths from the

electrode in the electron drift direction. This was observed with multiple identical floating

potential probes at various azimuthal positions as well as with the Polar Imager array. This

effect of separation was seen in the changing RMS levels with feedback, as well as the

modified correlation of the plasma. We find that the feedback is a localized effect, and

that positive feedback increases the local correlation, while negative feedback reduces it.

Additionally, the relative position and orientation of the sensor and electrode were varied.

Increased separation reduces the influence of the feedback and again the effect is only observed

in the direction of mode rotation.

• J = 0 Feedback. A comparison was made between the response to a feedback system where

the circuit completed through the walls of the vacuum chamber or the circuit completed

through an electrode 180◦ degrees away such that the net current injected into the plasma was

zero. The response to both circuits was similar, indicating the feedback mechanisms were the

same.

• High-Pass Filtered Feedback. By increasing the corner frequency of the high-pass filter,

we could effectively apply feedback only to the higher frequency (smaller scale) spectrum

of the turbulence. In doing so we could inject energy at smaller scales and attempted to

observe an active driving of the inverse energy cascade. Though the feedback did drive only

higher frequencies, no change to the low frequency portion of the spectrum (aggregate) was

observed.

• Gyro-Fluid Model. A gyro-fluid model for the plasma and feedback system was conceived

and the related global linear eigenvalue problem was solved. The eigenmodes produced by

this model were similar to the experimentally observed modes in dipole-confined plasma. For

a reasonable set of parameters, modes were found with growth rates and rotation frequencies

similar to those measured in CTX. By performing scans of gain and phase of the current
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injection terms, the response to feedback could also be compared to the experiment. While

there was some agreement between the model and measurement, not all features were

accurately captured. A nonlinear model is required for a complete understanding of the effects

of current injection feedback on these turbulent plasmas.

6.2 Questions and Opportunities for Continued Research

While many facets of current injection feedback in dipole confined plasmas were explored in this

thesis, there are even more experiments the author, if given infinite time and funding, would enjoy

exploring. Here are listed a few areas where more study would help develop a more complete

understanding of this method of controlling turbulence:

• Additional Testing with the Sensor/Electrode Parameters. While the sensor and electrode

positions were varied significantly during these experiments, there are many possibilities left

untested. A few example are; a sensor that measured density instead of potential could have

an stronger effect on the density fluctuations. An electrode that was a “hot wire” which could

actually act as a source of electrons (instead of simply a sink). Using the equatorial biasing

array as a sensor or actuator (or both) would allow for feedback at the inner plasma boundary.

The tips of the newly installed Rake array could be used for further J = 0 experimentation

with nearby injecting/collecting electrodes. The effects of radial separation between the sensor

and electrode could be explored in detail by radially adjusting the probes.

• Multi-Point Feedback for Global Suppression. As mentioned, the influence of feedback is

localized. By installing additional sensors and electrodes, the effects of this localized feedback

could be used to globally suppress turbulence in the system. These feedback systems could

be independent (multiple versions of the current system), or could be connected by an FPGA

controller for coordinated multi-point feedback (MIMO).
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• Current-Injection Feedback in a Nonlinear Gyro-Fluid Simulation. Turbulent systems

are highly nonlinear, and the comparison to a linear model, while a good initial step, is

missing crucial physics of the system. An existing nonlinear simulation of these plasmas has

been used to investigate interchange dynamics in dipole-confined plasmas. The integration

of a representation of the current-collection feedback into this model could be an interesting

and useful simulation study. Appendix H is an overview of this simulation for the interested

reader.

• Feedback in a Closed Field Line Configuration. CTX, as a mechanically supported dipole,

has open field lines which result in significant parallel losses of particles due to pitch-angle

scattering. LDX, which is a levitated coil, allows particles to pass through the dipole drastically

reducing losses. In LDX, the effects of feedback on the dominant loss mechanism of radial

transport could be studied. By suppressing the turbulent fluctuations at the edge, would

transport be reduced? Would confinement improve, resulting in higher plasma density? This

could be explored by applying this nature of feedback to LDX plasmas.
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Appendix A

CTX Parameters

The magnetic field of CTX is approximately dipolar for the experimental regions investigated in this

thesis. Figure A.1 plots the magnetic field strength at the equatorial plane as given by Equation 2.1

in green. The magnetic flux is plotted in light blue. Orange shows the differential flux tube volume

with radius, Equation 2.6. Notice the magnetic field falls off like 1/r3 (magnetic flux like 1/r), and

the flux tube volume increases as r4. The inner boundary of the plasma on the magnet housing is

roughly at r = 21 cm, while the outer boundary is close to 68 cm.
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Figure A.1: Left: The equatorial magnetic field strength (green), the magnetic flux (blue). Right:
The differential flux tube volume increase like r4.

Figure A.2 plots the gyro frequency (Equation 1.1) and radius for electrons on the left, ion on
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the right. The equation for the gyro radius is assumed from the particle energy:

ρ =
vt

ωc
(A.1)

In Figure A.2, Te = 25 eV and Ti = 1 eV. These curves change as the temperatures change.

Resonance with the microwaves occurs near 27 cm. For the experimental regions of this thesis, the

electron have a gyro radius of ∼ 4 mm, while the ions gyro radius is closer to an inch.
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Figure A.2: Electron and ion gyro frequencies (dashed) and Larmor radii (solid) with radius. The
electron gyro frequency is resonant with the microwaves near to 27 cm.

We can approximate the bounce frequency of the particles by dividing the thermal velocities of

each species by the length of a field line,

ωb = 2π fb = 2πvt

[ ∫ π

0
R sin2 θ

]−1
= 2π

vt,e

πR/2
= 4

vt,e

R
(A.2)

Figure A.3 plots this values for electrons on the left and ions on the right. We see the electrons

are significantly above the band of our turbulent dynamics (MHz), while the ions are bouncing well

within the audio range. This is clearly a very rough estimate of the actual bounce frequency which

depends on the pitch angle of the particle.

From these values we see that ωc >> ωB, for both the ions and electrons, though the bounce

frequency of the electrons is faster than the ion cyclotron frequency. As such, in a flux tube, the

rapid motion of the electrons neutralizes any charge imbalance, leaving the flux tube at the same
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Figure A.3: Approximated bounce frequency for electrons (left) and ions (right).

potential at every location (E|| ≈ 0).

Azimuthal drifts of particles in a dipole field arise from curvature of the field lines, gradients

of the magnetic field strength, and electric fields. We estimate the electron drift in CTX using a

guiding center Hamiltonian [65], where the drift frequency is given as the velocity in the periodic

coordinate:

ωd =
3c
e
µB
ψ

(A.3)

At the cyclotron resonance, taking Te = 50 eV, B = 875 Gauss, and the magnetic flux ψ = 6×105

Maxwells, we find the magnetic moment µ = kTe/B = 9 × 10−14 ergs/Gauss. From Equation A.3,

we find ωd = 2π 4 × 103 rads/s, or a drift frequency of 4 kHz. From these very rough estimates, for

electrons in CTX, ωc >> ωB >> ωd. As a result, when looking at the dynamics of the interchange

turbulence of interest to this thesis, it is reasonable to ignore the dynamics of the gyration and

bounce of the particles along field lines.

The Debye length is an important parameter is plasmas related to the ability of a plasma to

shield imposed electric fields. In CTX, for electron temperature of 25 eV and density of 1016 m−3,

λD =

√
ε0Te

e2n0
≈ 7440

√
Te

n0
= .372mm (A.4)
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Dipole Coordinates

Dipole coordinates are a simplified branch of magnetic coordinates which only consider a poloidal

field [52]. Although simplified, understanding the transformation from Cartesian coordinates has

some subtleties. The most direct approach uses “generalized” coordinates to establish an orthogonal

bias. Methods from generalized coordinates allow one to find operators like curl and gradient

in a different coordinate system easily. The following sections explain the basics of generalized

coordinates going though an example, then goes through the necessary derivations to arrive at the

magnetic coordinates of a dipole field.

B.1 Intro to Generalized Coordinates

Cartesian coordinates, (x, y, z), are the simplest and most intuitive coordinate system. We can use

these coordinates to describe any three dimensional vector field, but in many cases this can become

complicated. Some systems are more easily represented by a different set of coordinates. For

example, a charged particle’s helical trajectory on a straight magnetic field line would be simplest

to describe in a cylindrical coordinate system. This subsection explains some of the basic properties

of generalized coordinates following some very clear notes by Qian Peng.
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We can generally describe a point in space, ~X, in a coordinate system (u1, u2, u3) as:

~X(u1, u2, u3) =



x(u1, u2, u3)x̂

y(u1, u2, u3)ŷ

z(u1, u2, u3)ẑ

To describe this vector we need a basis. There are two bases we can use, the tangent basis and

the gradient basis. Each is useful in certain situations. We find the tangent basis as:

~e1 =
∂~X
∂u1 , ~e2 =

∂~X
∂u2 , ~e3 =

∂~X
∂u3 (B.1)

Using the tangent vectors, we can define several important quantities. First, the covariant metric

tensor is defined by:

gi j ≡ ~ei · ~e j covariant metric tensor (B.2)

and from this the Jacobian is found:

J = ~e1 · (~e2 × ~e2), J2 = det |gi j · gi j| = g (B.3)

and therefore J =
√

g. The gradient basis is obtained by considering the gradient of a scalar

field f . If we dot this gradient with our tangent vectors, we get:

~ei · ∇ f =
∂ f
∂ui (B.4)

if we take f = u j, we find:

~ei · ∇u j =
∂u j

∂ui = δi j (B.5)

where we define our gradient basis as ∇u j. From these, we can find the contravariant metric
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tensor as gi j = ∇ui · ∇u j.

We can now expand a vector in this coordinate system in two bases:

~A = Ai~ei = Ai∇ui (B.6)

and by definition, dotting with either a tangent vector or gradient vector yields either the

covariant or contravariant coefficient:

Ai = ~A · ~ei, Ai = ~A · ∇ui (B.7)

These representations will prove to be valuable when deciding how to represent operators in

these bases. Note that the gradient basis should be unique if the tangent basis is given. The metric

tensors can be used to transform from the tangent and gradient basis as ~ei = gi j · ∇u j, and vise versa

∇ui = gi j · ~e j. Also note,

εi jk
~ek
√

g
= ∇ui × ∇u j ∇ui = εi jk

~e j × ~ek
√

g
(B.8)

Using the properties of these basis vectors, we can now discuss the operators for gradient,

divergence and curl in general form. The gradient is simple. As we defined the gradient basis

vectors using the example of scalar field f , the gradient is best given by the contravariant form:

∇ f =
∂ f
∂ui∇ui (B.9)

Things get slightly trickier when we consider the divergence operator. If one takes note that

∇ui×∇u j = ∇× (ui∇u j) = ~ek√
gεki j, we can see it makes sense to use the covariant form for divergence:

∇ · ~A = ∇ ·
(
Ai√g

~ei
√

g

)
=

~ei
√

g
· ∇(
√

gAi) =
1
√

g
∂(
√

gAi)
∂ui (B.10)
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Similarly, if we use the fact that the curl of a gradient is zero (hence the curl of a gradient vector

is zero), the curl operator is easiest to find using the contravariant form for ~A:

∇ × ~A = ∇ × (Ai∇ui) = ∇Ai × ∇ui =
∂Ai

∂u j∇u j × ∇ui =
∂Ai

∂u j ε jik
~ek
√

g
=

1
√

g
εi jk

∂Ai

∂u j
~ek (B.11)

B.1.1 Test it out: Spherical Coordinates

Now we’ll use generalized coordinates to reproduce something familiar, operators in spherical

coordinates. First we define the transformation to spherical from Cartesian:

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ (B.12)

~x = xx̂ + yŷ + zẑ = r cosϕ sin θx̂ + r sinϕ sin θŷ + r cos θẑ (B.13)

Now we find the tangent vectors:

~er =
∂~x
∂r

= cosϕ sin θx̂ + sinϕ sin θŷ + cos θẑ (B.14)

~eθ =
∂~x
∂θ

= r cosϕ cos θx̂ + r sinϕ cos θŷ − r sin θẑ (B.15)

~eϕ =
∂~x
∂ϕ

= −r sinϕ sin θx̂ + r cosϕ sin θŷ (B.16)

From the tangent vectors we build the metric tensor,

grr = ~er · ~er = 1 (B.17)

gθθ = ~eθ · ~eθ = r2 (B.18)

gϕϕ = ~eϕ · ~eϕ = r2 sin2 θ (B.19)
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where all the off-diagonal elements are zero as the bias vectors are orthogonal. From this we

get:

gi j =


1 0 0

0 r2 0

0 0 r2 sin2 θ


and as the matrix is diagonal, the contravariant metric tensor is given by the reciprocal of the

diagonal elements,

gi j =


1 0 0

0 r−2 0

0 0 (r2 sin2 θ)−1


As such, we can find the Jacobian as:

J =
√

g =

√
gi j · gi j = r2 sin θ (B.20)

and we can use this to find the gradient vectors from the tangent vectors as:

∇ϕ =
~er × ~eθ
√

g
=

1
r2 sin θ

[
− r sinϕx̂ + r cosϕŷ

]
(B.21)

∇θ =
~eϕ × ~er
√

g
=

1
r2 sin θ

[
r cosϕ sin θ cos θx̂ + r sinϕ sin θ cos θŷ − rẑ

]
(B.22)

∇r =
~eθ × ~eϕ
√

g
=

1
r2 sin θ

[
r2 sin2 θ cosϕx̂ + r2 sin2 θ sinϕŷ − r sin2 θ cos θẑ

]
(B.23)

We can now derive operators in spherical coordinates. As an example, the Laplacian:

∇2 f = ∇ · (∇ f ) = ∇ ·
( ∂ f
∂ui∇ui

)
= ∇ ·

( ∂ f
∂ui g

i j~e j

)
=

1
√

g
∂

∂ui

(√
ggi j ∂ f

∂ui

)
(B.24)
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where the term in parenthesis is given as,

gi j ∂ f
∂ui =


∂ f
∂r

1
r2
∂ f
∂θ

1
r2 sin2 θ

∂ f
∂ϕ


and we arrive at the correct expression:

∇2 f =
1
√

g
∂

∂ui


∂ f
∂r

1
r2
∂ f
∂θ

1
r2 sin2 θ

∂ f
∂ϕ

 =
1
r2

∂

∂r

(
r2∂ f
∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂ f
∂θ

)
+

1
r2 sin2 θ

∂2 f
∂ϕ2

B.2 Generalized Coordinates to Dipole Coordinates

The magnetic field from a point dipole is well known [20] to have radial and polar dependence as:

~B = −
2M
r3 cos θr̂ −

M
r3 sin θθ̂, |~B| =

M
r3

√
1 + 3 cos2 θ (B.25)

As the magnetic flux, ψ, is the surface integral of the magnetic field, and B = ∇ × ~A, where ~A is

the magnetic vector potential, following Hasegawa [52],

ψ =

∮
~B · d~S =

∮
(∇ × ~A) · d~S =

∮
~A · d~l = 2πr sin θAϕ (B.26)

where the vector potential only has a −ϕ̂ components as the dipole field has no toroidal field.

From this, we can express the magnetic field in terms of flux by:

~B = ∇ × (−Aϕϕ̂) = −∇ ×
ψ

2πr sin θ
ϕ̂ =

1
2π
∇ϕ × ∇ψ (B.27)

Note that this expression still allows ∇ · ~B = 0. Finally, we use the fact that the cross product of

two gradient can be expressed as the gradient of a third,
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~B = ∇ϕ × ∇ψ = ∇χ (B.28)

Note the factor of 2π from the azimuthal integration is dropped, which is the convention used in

this thesis. The quantity χ is referred to as the magnetic scalar potential is related to position along

a field line. These scalar fields and and their gradients are given as:

ψ =
M
r

sin2 θ, ϕ = ϕ, χ =
M
r2 cos θ (B.29)

∇ψ = −
M
r2 sin2 θr̂ + 2

M
r2 sin θ cos θθ̂ (B.30)

∇ϕ =
ϕ̂

r sin θ
(B.31)

∇χ = −
2M
r3 cos θr̂ −

M
r3 sin θθ̂ = ~B (B.32)

Note that these are the gradient vector basis for the dipole coordinate system! From this we can

find our contravariant metric tensor as:

gi j =


∇ψ · ∇ψ 0 0

0 ∇χ · ∇χ 0

0 0 ∇ϕ · ∇ϕ


where J =

√
g is one over the square root of the determinant of the above matrix:

J =
√

g = (|∇ψ||∇χ||∇ϕ|)−1

and as B = ∇ϕ × ∇ψ = ∇χ, clearly J = 1
|B|2 ! Given the gradient vectors and the Jacobian, we

have the tools for finding the operators in dipole coordinates, some of which are derived in H.
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B.3 Dipole Field Lines

We can define a field line as a curve on which any point is aligned with the direction of the field at

that point. As such, the ratio of the vector components must match the slope of the field line, or:

dl =
dr
Br

=
rdθ
Bθ

(B.33)

The above can be solved for the equation of a dipole field line in polar coordinates as:

dr
rdθ

=
Br

Bθ

→ r = L sin2 θ (B.34)

where L is the radius of the field line at the equatorial midplane.

This definition of a field line can be related to our definition of χ simply:

B2 = ~B · ~B = ~B · ∇χ = B
dχ
dl
→ dl =

dχ
B

(B.35)

where as the slope of χ is always in the direction of the magnetic field, the ratio is between dχ

and the total field magnitude.

B.4 Flux Tube Integration

Flux tube volume plays an important role in the dynamics of dipole confined plasmas. We can

define the volume of tube of uniform magnetic flux as:

V =

∫
A · dl =

∫
ψ

B
dl = ψ

∫
dl
B
→ δV =

V
ψ

=

∫
dl
B

(B.36)

where δV is the differential volume per unit flux. Combining this with our above definition of

dl, we define the differential magnetic flux tube volume as:

δV(ψ) ≡
∫ +∞

−∞

dχ
B2 (B.37)
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Flux tube averaging is an integration along field lines over a differential flux tube volume. We

perform these averages as the dynamics along the field lines are much faster than the interchange

dynamics we are interested in. We can get a better idea of the value of the above integral with a

change of variables:

χ =
M
r2 cos θ =

M
( M
ψ

sin2 θ)2
=
ψ2 cos θ
M sin4 θ

(B.38)

then we can find an expression for dχ (taking ψ fixed) as:

dχ =
∂χ

∂θ
dθ = −

ψ2

M
1 + 3 cos2 θ

sin5 θ
dθ (B.39)

Next, we find B2 as:

B2 =
M2

r6 (1 + 3 cos2 θ) =
ψ6(1 + 3 cos2 θ)

M4 sin12 θ
(B.40)

Returning to the integral,

δV(ψ) =

∫ 0

π

−
ψ2

M
1+3 cos2 θ

sin5 θ
dθ

ψ6(1+3 cos2 θ)
M4 sin1 2θ

= −
M3

ψ4

∫ 0

π

sin7 θdθ (B.41)

If we take this integral numerically, we find:

δV(ψ) ≈ .91
M3

ψ4 (B.42)

With this, we define the flux-tube average of a quantity A as:

< A >≡ δV−1
∫ +∞

−∞

dχA
B2 (B.43)



Appendix C

CTX Equipment and Running

This section contains information relevant only to someone trying to operate or diagnose a problem

on the CTX device. As I received a significant amount of training from the previous graduate

students on CTX, it seems only fair to try to pass on what I know to the next generation. These

instructions are meant only as a loose guide and a detailed understanding of the equipment should

be obtained before attempting operation. That being said, sometimes things just ”work”...

C.1 Starting Up Procedures for Running CTX

This is a brief run down of the necessities to start and run the CTX device. This is how I do them, in

order:

1. Magnet Controls. Turn on National Instruments SCXI-1000 for magnet power supply

control. This is located in the control room on top of the Dell computer. Open the LabVIEW

file “Magnet Control.vi” to interact with the magnet controls.

2. Gas Pressure. Also in the control room is the hydrogen bottle for gas puffing. This is opened

generally with two valves, one on top of the bottle, the other on the regulator. Set the pressure

to desired value. Note; this regulator has “creep”. Check it a few minutes after adjustment.
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3. Magnetron Power Supply. The power supply is located at the bottom of the stairs into the

lab. First move the switch on the box marked “Spellman” to the “ON” position. The green

standby light should come on. Then move the switch on the power supply for the optical

isolation (above the Spellman box) to “AC PWR”. Moving to the blue panel facing the stairs,

make sure the central dial is rotated completely counter-clockwise, then press the green power

button. Making sure to keep the current (right gauge) under 20 A, slowly increase the voltage

(left gauge) to 4 V by turning the dial clockwise.

4. Polar Imager Power. Near the magnet power supply feed-through are a total of four power

supplies for the Polar Imager. An HP 6827A is tuned to bias the detectors to collect ions

(-100 V), turn this on. There are two large identical blue and white boxes, one on the floor,

the other on the machine (directly above). Flip the switches to power these and a red light

should turn on. Finally, there is a small black box marked “Secondary Electron Grid Bias”.

Turn this on. Remember to occasionally make sure this bias is still 9 V. The Polar Imager

should be ready to collect ions lost to the poles!

5. Hard X-ray Detector. In the leftmost blue cabinet, look at the upper rack. Flip the power

switch on the “Ortec High Voltage Power Supply”, a red light should turn on. Then flip the

small switch all the way to the right. An orange light should turn on directly below.

6. Gas Valve. Directly opposite the X-ray power supply on the vacuum chamber is the inlet

for the hydrogen (a small copper line). This puffs gas when triggered by a high voltage

supply. Depress the small button to purge the line. Note; there is definitely a leak in the line

somewhere, and it should be found. Next, turn on the HP 6827A that supplies 12 V to the

high voltage supply for this gas valve. Note; using an HP for this is overkill. Make a 12 V

supply to replace this.

7. Isat Bias. Next to the HP for the gas valve is a small box. Flip this to the “ON” position. If

you are operating in “high density”, make sure the dial is set to 100 Ohms.
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8. Digitization. Moving to the middle, blue cabinet, turn on all three “crate controllers” for

crate 11 (middle), 12 (top) and 14 (on the ground). The digitizers for HBT also need to be

turned on, ask someone downstairs for help. To ready the crates for digitization, log in to

Spitzer and run “crates on”, twice. You will get an error the first time, ignore it.

9. Magnet Power Supply. The power supply is the huge orange box on the HBT level of the

reactor room that say “ACME” on the front. It’s a fickle relic. Don’t do these operations out

of order. Halfway down the stairs to the basement on the left is switch on the wall, this turns

on the cooling pump. Flip it. Go back up the stairs and turn on the large red switch on the

box marked “277/480 V”, then go to the back of the ACME box and flip the breaker marked

“Access to main circuit breaker ” up high. All of the orange lights on the front will be off

except for “Grounded” and possibly “Magnet Failure”, which just means you haven’t turned

on LabVIEW yet. If you forget to turn on the water first, the “Water Flow Failure” light will

come on and most likely stay on. This relay (located on the inside of the power supply front

left door) sticks and needs to be reset manually. Reverse this procedure for power down.

10. Taking Shots. To take shots, on Spitzer run “take shot ctx.py”. This will open the shot

window. To take a shot, hit “New Shot”, then “Prepare”. Prepare the magnets in LabVIEW

by flipping the “Interlock” switch (should turn yellow), then clicking the run arrow. Turn the

magnets on with “Magnet Start” and wait till the magnet current levels out (roughly 1600 A),

then quickly click “Fire”, then “Magnet Stop” (big button). You just took your first shot.
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C.2 Vacuum Procedures

This section covers the equipment involved in maintaining the roughly 10−7 Torr base pressure

that makes for nice plasmas in CTX. This vacuum is achieved through three systems; a roughing

pump, a turbomolecular pump and cryogenic pump. The “cryo” is the last stage in pumping as it

can achieve the highest vacuum, but the others are used for initial pump down or as backup. The

cryo should stay at a temperature under 20 K. I’ll describe the use of this vacuum equipment in the

context of bringing the vacuum system “up to air”, which is required for installation of some probes,

then back to a high vacuum state.

C.2.1 Going “Up to Air”

In preparation for installing or removing diagnostics, the vacuum of the chamber must be careful

broken. In the case of a short or simple installation/removal of a diagnostic, the chamber can be

filled with nitrogen (instead of air) as this prevents the accumulation of water in chamber, making

for a faster pump down. In the case where someone needs to work in the machine, the chamber

must be filled with air. Before doing either of these, close the gate valves to the cryo and/or turbo

pumps and turn off the ionization gauge (button marked “Power” on the Varian Ionization Gauge

Controller).

The difference between these two procedures are in the valves. Beside the microwave waveguide,

there is a valve connecting the hydrogen fill line to the puffing line which can be bypassed into

the chamber. By switching the regulator from the hydrogen bottle to the nitrogen, this line can be

opened slowly to begin filling the chamber. Alternatively, to fill the chamber with air, set the bypass

valve to the open copper line.

If going up to air for a while, the cryo should be switched off. This is not as simple as pushing

a button as ice evaporates in the cold head and pressure builds. Left unattended, the cryo could

burst! To safely warm the cryo, flip off the red switch on the compressor (box labeled “Ebara

Cryocompressor 2.1”) and monitor the pressure over the next couple hours. When the pressure goes
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over 1 atmosphere, turn on the roughing pump with the switch on the wall behind the ionization

gauge controller. Open the gate valve between the pump and the backing lines, then open the line

on the back of the cryo. Do this periodically for the next couple hours. This procedure needs to

be done a few times a year to remove the built up ice inside the coldhead, and is referred to as

“regeneration.”

C.2.2 Pump Down

The process of pumping down from atmospheric pressure is as follows; roughing pump till ∼ 75

mTorr, turbo pump till 10−6 Torr, then cryo. To pump on the chamber with the roughing pump,

close the backing valve on the turbo (assuming it’s off, which it better be) and open the valve to the

chamber. Turn on the roughing pump. Open the gate between the lines and the roughing pump to

pump down.

Move the cryo thermocouple to the chamber port (backside near the vent valves). Using the

lower gauges on the ionization gauge controller, monitor the vacuum. When it gets below 100

mTorr, begin turning on the turbo. This involves:

1. There is a blue panel below the ionization gauge controller. Switch the interlock to “OFF”.

There is a second interlock which trips if the roughing pressure is above 100 mTorr.

2. Switch the turbo on.

3. Watch the dial (with very strange units) increase. When it reaches roughly 0.7, close the

roughing line to the chamber and open the backing to the turbo in that order.

4. Wait a few minutes, watching to make sure nothing fails. Try turning on the ionization gauge.

It may not take immediately, sometime pressing and holding the button for a few seconds

works. Once the ionization gauge is on, move the interlock switch to the middle. Only now is

it safe to leave!
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Pumping with the turbo can usually be left overnight or for an entire day or two. Once the

pressure is low enough, turn the cryo on to begin cooling. When the cryo has cooled (< 20 K),

close the gate to the turbo then open the gate to the cryo. Close the backing line and gate before the

roughing pump, then switch off the turbo and roughing.
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Polar Imager

Many of the Polar Imager detectors are not connected or no longer measure strong signals. Figure

D.1 shows the currently working detectors and the digitizer inputs they map to. Read the diagram as

follows; the different concentric rings correspond to the different radii of detectors (8). The circles

on the rings are the detectors. If the circle has an “X”, it is either not connected or malfunctioning.

The numbers in the working detectors map to the A14 digitizer they are connected to according to

the key in the upper left corner of the figure. Note the angles of the detectors are indicated on the

outer boarder of the circle, and the “L” values (radii) are marked on the right hand side.

Interpretation of this figure is slightly tricky as this image is the “view” from inside the imager

looking out. So a very small student inside the magnet would be facing the wall opposite the hallway

windows, with the control room on his or her right. As an additional note, the “best” radii (most

functional, clearest dynamics) are L = 3,4, and 5. The inner and outer most radii don’t receive strong

signals, and many are not working. As mentioned before, Ben Levitt’s [46] and Brian Grierson’s

[50] theses provide more details on the design, circuitry and use of this powerful diagnostic.
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Figure D.1: Polar Imager detectors with mapping to digitizer locations.



Appendix E

Rake Array

A new diagnostic has been installed on CTX with the potential for multi-point measurement of

azimuthal structure with high resolution. The “Rake” array consists of 31 tips, which alternate as

floating potential probes (16) and ion saturation probes (15). With the 16 potential measurements,

we can approximate the electric field at the location of the 15 measurements of density. Thus, we

have 15 measurements of radial transport, as

Γ = ñṽ = ñ
Ẽ × B

B2 → Γr = ñ
Ẽϕ

B
(E.1)

Figure E.1 shows this diagnostic during the construction process and installation in CTX. The

circuit for this diagnostic biases all ion saturation probes from one power supply while preventing

cross-talk between the signals. Figure E.2 shows the completed circuit and circuit diagram for each

floating potential and ion saturation probe. The ion saturation probes are biased to -180V. Notice

the 1 mF cap which acts as a charge reservoir. The 100 kΩ resistor allows slow charging of the caps,

but prevents coupling between the probes through the power supply. The complete PCB layout is

shown in Figure E.3.
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Figure E.1: Installation of Rake array (left top and bottom). 31 tips, alternating measurements of
floating potential and density, give 15 measurements of radial transport (right, top and bottom).
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Isat

V�oat

Figure E.2: Top, the complete circuit for the Rake array. The grey ribbon cable connects to the
Rake array, the colored twisted pair ribbon cable connect to the digitizer. Bottom, the circuit

diagram for the floating potential probes (left) and the ion saturation probes (right). The 1 mF cap
and 100 kΩ resistor in the ion saturation circuit allow the use of one power supply for all probes.
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Figure E.3: PCB for the entire Rake array. Red is the top layer copper, green is the lower layer,
black is the silk screen.
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The output numbers are labeled on the PCB of Figure E.3 in increasing order from 1-31. The

odd numbered outputs are the floating potential probes, the evens are ion saturation probes. These

leave the enclosure is a twisted pair bundle and connect to LEMO adapters which are then connected

to the various TRAQ digitizers in crate 14. At the time of this writing these connection are all

labeled correctly. Figure E.4 shows the connector with tips 1 and 31 labeled. The numbers increase

in the counter-clockwise direction.

Initial testing of the insertion of the Rake array shows strong signal levels on all tips, confirming

the circuit design was functioning correctly. Signals which appeared to be arcing between tips were

observed, and the bias to the ion saturation tips was reduced to -90V. While the diagnostic works as

expected, the perturbation due to the insertion of 31 tips into the plasma is significant. Extracting

the Rake to act as an edge diagnostic is an option, but due to oscillation of the magnet current

(±100 A ∼ 6% of total current) the “edge” is poorly defined in CTX. It is the author’s belief that

this diagnostic could be made significantly less perturbative (hence more useful) by the removal of

some of the tips. An array of 5 radial transport measurements might be more reasonable.
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Figure E.4: Connector for the array
to the PCB enclosure (female side).
Tip 1 connects to “B”, and the tips
follow sequentially to Tip 31 on “j”.

“A” is not connected.



Appendix F

Filter Theory

This appendix covers some of the fundamentals of filter theory. Some significantly more detailed

literature [56, 57, 55] may be of use to the interested reader.

F.1 Introduction to Filters

A filter is an electrical network which is designed to amplify or attenuate certain components of a

signal. The amplification, or gain, from a filter is inherently dependent on frequency and is known

as the amplitude response. Similarly, the phase shift applied by a filter depends on frequency and is

referred to as the phase response. Control of the phase response is how our feedback system can

apply an amplifying or suppressive response given an input signal.

All of the frequency response behavior is described by the filter’s “transfer function”. The

transfer function is the ratio of the Laplace transforms of the filter’s output signal to the input signal:

H(s) =
Vout(s)
Vin(s)

(F.1)

We get the amplitude response and phase response from the transfer function as:
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|H(s)| = |
Vout(s)
Vin(s)

| amplitude response (F.2)

arg(H(s)) = arg
Vout(s)
Vin(s)

phase response (F.3)

A simple example of a filter is shown on the left of Figure F.1, with a series capacitor followed by

a resistor to ground. This configuration is a type of “high-pass” filter, which allows high frequencies

to pass but removes low frequencies.
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Figure F.1: High-pass filter and frequency response.

Here we find the transfer function as:

H(s) =
Vout(s)
Vin(s)

=
χR

χC + χR
=

R
1

sC + R
=

iωRC
1 + iωRC

(F.4)

where s = iω. One can see that H(s) goes to unity as ω→ ∞ and zero as the frequency drops

to 0, attenuating the low frequency portion of the signal. The amplitude response (solid line) and

phase response (dashed) are plotted on the right of Figure F.1. Notice that with the attenuation of

frequency also comes a shifting in phase.
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The order of a filter is the highest power of s in the transfer function, and is related to the number

of capacitors and inductors in the network. The example just discussed had one capacitor and was

a first-order filter. A higher order filter generally has more desirable properties (steeper roll-off,

increasingly linear phase response, etc), but comes at the cost of having more components and being

harder to design. The general transfer function for an n-order filter is given as:

H(s) = H0
sn + bn−1sn−1 + bn−1sn−1 + . . . + b0

sn + an−1sn−1 + an−1sn−1 + . . . + a0
(F.5)

where the coefficients ai and bi are chosen by the type of filter and completely determine the

filter’s characteristics.

In the high-pass filter example, the range of frequencies which were allowed to pass, known as

the passband, are all frequencies higher than the cutoff frequency. The cutoff frequency is defined

as the point at which the gain has fallen by -3 dB. The range of frequencies where the signal has

been significantly attenuated is known as the stopband. The sharpness of the transition between the

passband and stopband is a parameter we can tune, quantified by Q, the quality factor of the filter.

In addition to the high-pass filter just discussed there are several other filter types. A low-

pass filter is the reciprocal to the high-pass filter, allowing low frequencies and removing higher

frequencies. If we combine a low and high pass filter correctly, we can select a portion of the

spectrum that is passed by the filter, this is known as a band-pass filter. It’s reciprocal, the notch-filter,

removes only a portion of the passed frequencies.

The last basic filter type is the all-pass filter. An all-pass filter is designed to apply a phase shift

to the signal, but have unity amplitude response for all frequencies. These are often used to correct

the phase response imposed by other circuit components, but can also be used in a feedback system

to apply a desired phase shift between the sensor and actuator (electrode) signals.

An ideal filter would have constant gain for a desired range of frequencies, and a gain of zero

for all other frequencies with an discontinuous boundary between the passband and stopband. This

is clearly not physically attainable so approximations are made. The steepness and sharpen of the

gain roll-off, both near the cutoff frequency and far from it, can be adjusted by increasing the order
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of the filter and choice of coefficients. Increasing the order of the filter comes at the cost of adding

“ripple” to the passband and stopband. This ripple applies a non-monotonic gain with frequency to

your signal. Finally, the transient response of your filter to an input can exhibit “ringing”. Higher

order filters and higher Q will result in increased ringing.

Optimizing a filter for a particular application depends on the quantities you care about. There

are three classic filter polynomials which are optimized for specific filter properties. Butterworth

filters have maximally-flat amplitude response with little to no passband ripple, and have medium

roll-off steepness. Chebyshev filters trade increased ripple in the passband for a steeper roll-off

near the cutoff frequency. Bessel filters have the most mild roll-off of the three, but achieve more

linear phase response in the passband. Increasing the order of a Bessel filter makes this response

increasingly linear.

For the nature of feedback we wish to apply, a Bessel-type filter is the best choice. As mentioned,

the difference between filter types is merely the choice in coefficients used in equation F.5. These

are commonly tabulated in frequency-normalized form [55].

The implementation of a filter design can be done in two ways. Similar to the example above,

an LRC filter is composed of only passive elements; resistors, capacitors and inductors. These

are convenient when the application high frequency (> 1 MHz) or noise is as issue. A significant

disadvantage of LRC filter is the the use of inductors, which become very large and expensive

for low frequency applications. In addition to this, the complexity of high order filter design, low

input impedance and the inability to apply signal gain makes the use of passive filters a challenge.

For lower frequency applications, the use of “active” filters, using operation amplifiers, greatly

simplifies these issues.

F.2 Active Filters

As mentioned above, active filters have many advantages. Operational amplifiers act to effectively

replace the inductors in the passive circuits, and allow us to also apply amplification to the input



APPENDIX F. FILTER THEORY 142

signal. The active analog of the high-pass filter from the last section is shown in Figure F.2

VIN
VOUTC2

R1

R2

R3

Figure F.2: A first order high-pass filter.

Creating higher-order filters is simplified with active component as the cascading of first and

second order filters can be used to produce an n-order filter. We can see this directly from the

transfer function F.5 by putting the polynomials in factored form. This factoring can be manipulated

to be the product of first and second-order polynomials, relating to first and second-order filters. For

an n-order filter:

H(s) = H0
(s2 + b11s + b10)(s2 + b21s + b20) . . .
(s2 + a11s + a10)(s2 + a21s + a20) . . .

even order (F.6)

H(s) = H0
(s + b10)(s2 + b21s + b20) . . .
(s + a10)(s2 + a21s + a20) . . .

odd order (F.7)

The product of these terms represents the cascading of these low-order filters in series to produce

the n-order filter. Second-order active filters come in two main topologies, Sallen-Key and Multiple-

Feedback, shown in Figure F.3. Multiple-Feedback filters are generally used in filters with high Q

and need high gain. For our application we used Sallen-Key, so we will focus on these. The two

resistors (R3 and R4 in Figure F.3) allow for independent adjustment of gain, as H0 = 1 + R4/R4, but

unity gain can be set choosing R4 = 0, and letting R3 → ∞.
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VIN
VOUT

C1

C2

3C

R2

R1

Sallen-Key Multiple Feedback

R3 R4

VIN
VOUT

R2

C1 C2 R1

Figure F.3: Sallen-Key and MFB second-order high-pass filter topologies.

The second-order Sallen-Key high-pass filter on the left of Figure F.3 is the topology used in the

feedback circuit for improved roll off and phase response.
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Additional Circuits

G.1 Triggering Circuit

In order to rapidly turn the feedback on and off, a triggering circuit was implemented using two

AQY-277 optical relays. A 5 V pulse from the Jorway triggered the switches. Turn off time was

around 20 µs, while the turn on time was significantly longer (50 − 100 µs). This switch was

positioned after the 12 µF cap but before the divider for electrode voltage digitization. The current

was also measured after the switch. A diagram of the switch is shown in Figure G.1.

VIN
C

12k 12k 12k

VOUT

Trigger

400 400

AQY
277

AQY
277

Figure G.1: Triggering circuit for feedback experiments.
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G.2 Isolation Transformer

To properly decouple the HP amplifier from ground for the “zero-net-current” experiments, an

isolation transformer was used to connect the feedback circuit output to the inputs of the HP. This

allowed the bias electrodes to always draw equal and opposite current without ground reference. An

A262A2E audio transformer was used for this purpose and a circuit diagram is sketched in Figure

G.2

VIN VOUT
A2

62
A2

ES2

S1

F2

F1

S2

S1

F2

F1

Figure G.2: Isolation transformer for “zero-net-current” experiments.



Appendix H

HEIsim Equations and Numerical Methods

This is a detailed derivation of the equations used to model and numerically solve the Hot Electron

Interchange instability. Kinetic electrons are evolved with a guiding center Hamiltonian, using

Hamilton’s equations of motion to describe the dynamics. The ions are treated as a cold fluid,

moving due to E×B and polarization drifts. These two species are coupled via Poisson’s equation,

and a nonlinear solve is performed to find the rate of change of the potential from the constrained

current. All of these equations are in Gaussian units. The derivation of these equations in dipole

coordinates will be explained, then some of the related numerical methods will be discussed. The

addition of a particle conserving source/sink term for the continuity equations to reproduce high

density plasma [50] is also described.

H.1 Equations

The self-consistent evolution of interchange dynamics can be described by the motion of kinetic

electrons and cold, fluid ions coupled by the bounce-averaged form of Poisson’s equation:

∂Fe

∂t
+ ∇ · (FeVe) = 0

∂ni

∂t
+ ∇ · (niVi) = 0 ∇2Φ = −4πρ

The electron distribution function is represented by multiple electron species at different energies,

146
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µB. Due to the sufficient separation in frequency of the gyro, bounce and drift dynamics, we

can assume that µ and J are conserved. In addition, it has been observed that the interchange

dynamics are flute-like, k‖ ≈ 0 [46], justifying the use of flux-tube averages to reduce the problem’s

dimensionality.

H.1.1 Poisson’s Equation

We derive Poisson’s equation in dipole coordinates starting with the microscopic version of Gauss’s

Law:

∇ · E = −∇ · ∇Φ = 4πρ

where ρ is the total charge. In covariant notation, the Laplacian is:

∇2Φ = |B|2
∂

∂ψ
(
|∇ψ|2

|B|2
∂Φ

∂ψ
) + |B|2

∂

∂χ
(
|∇χ|2

|B|2
∂Φ

∂χ
) + |B|2

∂

∂ϕ
(
|∇ϕ|2

|B|2
∂Φ

∂ϕ
)

Taking a flux-tube average (killing the ∂
∂χ

term):

< ∇2Φ >=

∫ +∞

−∞

∂

∂ψ
(

dχ
|∇ϕ|2

∂Φ

∂ψ
) +

∫ +∞

−∞

∂

∂ϕ
(

dχ
|∇ψ|2

∂Φ

∂ϕ
)

=hϕ
∂2Φ

∂ϕ2 + hψ
∂2Φ

∂ψ2 =

∫ +∞

−∞

(−4πeρ)
dχ
B2 = −4πe(Ni − Ne)

where hψ and hϕ are geometric terms given as:

hψ =

∫ +∞

−∞

dχ
|∇ϕ|2

= 4M hϕ =

∫ +∞

−∞

dχ
|∇ψ|2

= 2
M
ψ2



APPENDIX H. HEISIM EQUATIONS AND NUMERICAL METHODS 148

H.1.2 Cold Ion Fluid

Cold ions in a dipole magnetic field move under the influence of E × B and polarization drifts. The

electric field in terms of potential is given as:

E = −∇Φ = −
∂Φ

∂ui∇ui = −
∂Φ

∂ψ
∇ψ −

∂Φ

∂ϕ
∇ϕ

So our expressions for the E × B and polarization drifts become:

~vE = c
~E × ~B

B2 = −c
∂Φ

∂ψ

∇ϕ

|∇ϕ|2
+ c

∂Φ

∂ϕ

∇ψ

|∇ψ|2

~vP =
c

ωciB
dE
dt

= −c
Mi

eB2

d∇Φ

dt
= −c

Mi

eB2

d
dt

[∂Φ

∂ψ
∇ψ +

∂Φ

∂ϕ
∇ϕ

]
In the absence of ion sources/sinks, we transform the ion continuity equation into dipole

coordinates and plug in our velocities:

−
∂ni

∂t
= B2 ∂

∂ψ

[
c

ni

B2

(∂Φ

∂ϕ
−

Mi

eB2 |∇ψ|
2 d
dt
∂Φ

∂ψ

)]
+ B2 ∂

∂ϕ

[
c

ni

B2

(
−
∂Φ

∂ψ
−

Mi

eB2 |∇ϕ|
2 d
dt
∂Φ

∂ϕ

)]
and taking a flux tube average,

−
∂Ni

∂t
=

∂

∂ψ

[
cNi

(∂Φ

∂ϕ
− εψ

d
dt
∂Φ

∂ψ

)]
−

∂

∂ϕ

[
cNi

(∂Φ

∂ψ
+ εϕ

d
dt
∂Φ

∂ϕ

)]
where N is the flux-tube averaged density. The density weighted, flux-tube averaged coefficients

for the polarization drifts are found by assuming a sin θ distribution of density along a field line:
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εϕ =
1
δV

∫ +∞

−∞

dχ
B2

niMi

e〈ni〉B2 |∇ϕ|
2 ≈ 0.66

M2B0

ψ4ωci0

εψ =
1
δV

∫ +∞

−∞

dχ
B2

niMi

e〈ni〉B2 |∇ψ|
2 ≈ 0.77

M2B0

ψ2ωci0

H.1.3 Kinetic Electron Dynamics

The motion of deeply trapped (J ≈ 0) electrons in a curl free magnetic field is given by the guiding

center drift Hamiltonian [65] with Hamilton’s equations:

H =
µcB

e
− cΦ ϕ̇ =

∂H
∂ψ

=
µc
e
∂B
∂ψ
− c

∂Φ

∂ψ
ψ̇ = −

∂H
∂ϕ

= c
∂Φ

∂ϕ

where µ = mev2/2B.

For time scales significantly slower than the gyration and bounce periods, µ and J are preserved

quantities as an electron moves across field lines. The Vlasov equation for the electron distribution

function is given as:

dFe

dt
=
∂Fe

∂t
+
∂~x
∂t
·
∂Fe

∂~x
=
∂Fe

∂t
+

∂

∂ϕ
(ϕ̇Fe) +

∂

∂ψ
(ψ̇Fe) = 0

=
∂Fe

∂t
+

∂

∂ϕ

[
(
µc
e
∂B
∂ψ
− c

∂Φ

∂ψ
)Fe

]
+

∂

∂ψ

[
c
∂Φ

∂ϕ
Fe

]
= 0

We use a bounce-averaged distribution, Fe = Fe(µ, J, ψ, ϕ, t), where Fe is given as the sum of a

cold and hot electron population:

Fe = Ni0(ψ)
(
[1 − α(ψ)]δ(µ)δ(J) + α(ψ)G(µ)δ(J)

)
, G(µ) =

µl−1ll

µl
0Γ(µ)

e−µl/µ0

G(µ) is the electron distribution in µ. Integration over velocity space then returns the number of
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electrons per unit flux, Ne =
∫

dµdJFe. The first azimuthal term represents the hot electron drift

frequency ωd ≡
µc
e
∂B
∂ψ

=
µc
e

3B
ψ

.

H.1.4 Normalization

We make these equations dimensionless, normalizing them with parameters evaluated at the profile

peak (heating resonance). Starting with Poisson’s equation, we normalize the following quantities

as:

ψ

ψ0
≡ y,

Ni

Ni0
≡ N̂i

eΦ

µ0B0
≡ Φ̂, ωdh0t ≡ t̂

µ

µ0
≡ µ̂

where the x0 quantities are defined at the profile peak. We multiply Poisson’s equation through

by eψ2/Mµ0B0:

2
y2

∂2Φ̂

∂ϕ2 + 4
∂2Φ̂

∂y2 = −4πe
eL0

µ0

Ni0

Ni0
(Ni − Ne) = −.91

L2
0

λ2
D0

(N̂i − N̂e)

where λ2
D0 = µ0B0/4πe2〈ni0〉.

We normalize the ion continuity equation, dividing by ωdh0Ni0,

∂N̂i

∂t̂
+
∂

∂y

[
N̂i

(1
3
∂Φ̂

∂ϕ
− ε̂y

d
dt̂
∂Φ̂

∂y

)]
−

∂

∂ϕ

[
N̂i

(1
3
∂Φ̂

∂y
+ ε̂ϕ

d
dt̂
∂Φ̂

∂ϕ

)]
= 0

ε̂ϕ =
0.66
3y4

ωdh0

ωci0
ε̂y =

0.77
3y2

ωdh0

ωci0

Finally, dividing the electron equation by ωdh0, with the same normalization for E × B drift:
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∂Fe

∂t̂
+

∂

∂ϕ

[
(
ωdh

ωdh0
−
∂Φ̂

∂ψ
)Fe

]
+
∂

∂y

[∂Φ̂

∂ϕ
Fe

]
= 0

where ωdh
ωdh0

= µ̂y2.

This normalization shows that the simulation is only dependent on two parameters, the ratio of

L0 to λD0 and hot electron drift frequency over the ion cyclotron frequency.

H.2 Numerical Techniques

The simulation solves the finite-difference approximations to the coupled equations given above.

The potential is advanced with a nonlinear solve of the equation for charge continuity. Due to the

periodic boundary condition in the ϕ direction, employing a pseudo-spectral method effectively

reduces the dimensionality of the finite difference problem to be solved. We implement a numerical

stepping scheme for advancing the ion and electron populations based on a flux conserving method

by Zalesak [66].

H.2.1 Trapezoidal Leap-Frog Method

A second-order trapezoidal leap-frog algorithm for explicit time integration is implemented to

advance the ion and electron populations and potential. First, the ion and electron populations are

advanced a half-step in time by using the existing potential. At this half-step, a new potential and

charge density are calculated using the intermediate values of Fe and Ne, and with these we find

the intermediate fluxes. With the intermediate fluxes, we advance the populations a full trapezoidal

time step, then recompute the potential and charge density. These two steps are identical aside from

the time-base of the terms being advanced. If we have a population, f (t), with a rate of change

ḟ = −∇ · Γ, we can describe this method as:
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ft−∆t/2 =
1
2
(
ft + ft−∆t

)
ft+∆t/2 = ft−∆t/2 − ∆t∆Γt

ft+∆t = ft − ∆t∆Γt/2

where Γ = Γ
(
f (t),Φ(t), Φ̇(t)

)
is the flux calculated at each half-step, which includes solving for

the potential. In this approach, the populations are advanced by fluxes which are always a half-step

off in time.

H.2.2 Nonlinear Solve for ∂Φ̂
∂t

To advance the potential at each half-step, we can consider the rate of change of charge density. We

can find this by equating the time derivative of Poisson’s equation to the combination of the ion and

electron dynamic equations:

2
y2

∂2 ˙̂Φ
∂ϕ2 + 4

∂2 ˙̂Φ
∂y2 = −.91

L2
0

λ2
D0

∂ρ̂

∂t̂
= −.91

L2
0

λ2
D0

(
∂N̂i

∂t̂
−
∂N̂e

∂t̂
)

= .91
L2

0

λ2
D0

( ∂
∂ϕ

[
ρ̂
∂Φ̂

∂y
+ N̂iε̂φ

∂ ˙̂Φ
∂ϕ

+ Σµ̂y2Fe, u

]
−
∂

∂y

[
ρ̂
∂Φ̂

∂ϕ
− N̂iε̂y

∂ ˙̂Φ
∂y

])
where ρ̂ is the difference of the normalized flux-tube averaged ion density and the electron

distribution function integrated over velocity space.

We note the ˙̂Φ terms on both sides of our rate equation. To efficiently implement a pseudo-

spectral technique, we bring the azimuthally symmetric part of the polarization terms (N̄i = N̂i − Ñi)

to the LHS. We rewrite the equations with an effective dielectric:
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2
y2

∂

∂ϕ
ε̂ϕ(y)

∂ ˙̂Φ
∂ϕ

+ 4
∂

∂ψ
ε̂y(y)

∂ ˙̂Φ
∂y

= .91
L2

0

λ2
D0

( ∂
∂ϕ

[
ρ̂
∂Φ̂

∂y
+ Ñiε̂φ

∂ ˙̂Φ
∂ϕ

+ Σµ̂y2Fe, u

]
−
∂

∂y

[
ρ̂
∂Φ̂

∂ϕ
− Ñiε̂y

∂ ˙̂Φ
∂y

])
where

ε̂ϕ ≈ 1 +
N̄i

9.99y2

L2
0

λ2
D0

ωdh0

ωci0
ε̂y ≈ 1 +

N̄i

17.1y2

L2
0

λ2
D0

ωdh0

ωci0

The above equation is iteratively solved for the time rate of change in potential at the half

and full leap-frog steps. This must be done before advancing the ions as the polarization velocity

depends on the rate of change in potential.

H.2.3 Flux-Corrected Transport Algorithm

The ∆Γ expression in the Leap-Frog section is an operator representing the fourth order FCT

process. “High-order” fluxes improve the spatial resolution of the time step, but can cause numerical

oscillations and lead to instability. To limit these oscillations, “low-order” fluxes are used as an

artificial diffusion, specifically chosen to prevents numerical artifacts from high-order methods to

develop. The process at each time step is:

1. Find the ion and electron velocities.

2. Find the ion and electron low and high order fluxes, FL and FH.

3. Define the anti-diffusive flux, A ≡ FH − FL

4. Limit A so as not to produce or enhance extrema in step 5.

5. Find time advanced populations with the limited A.

The low order flux is given by an “upwind” differencing scheme and an ad-hoc diffusion:
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ΓL
ϕ(l, k + 1/2) =

1
2

[vϕ(l, k + 1) + vϕ(l, k)]FDC(l, k + 1/2) −
1
8

∆ϕ

∆t
[F0(l, k + 1) − F0(l, k)]

ΓL
y (l + 1/2, k) =

1
2

[vy(l + 1, k) + vy(l, k)]FDC(l + 1/2, k) −
1
8

∆y
∆t

[F0(l + 1, k) − F0(l, k)]

where FDC represents the flux from an “upwind” donor cell. The high-order flux is a fourth

order finite differencing known as “ZIP” form:

ΓH
ϕ (l, k + 1/2) =

2
3

[vϕ(l, k)F(l, k + 1) + vϕ(l, k + 1)F(l, k)]

−
1
12

[vϕ(l, k)F(l, k + 2) + vϕ(l, k + 2)F(l, k)

+ vϕ(l, k − 1)F(l, k + 1) + vϕ(l, k + 1)F(l, k − 1)]

ΓH
y (l + 1/2, k) =

2
3

[vy(l, k)F(l + 1, k) + vy(l + 1, k)F(l, k)]

−
1
12

[vy(l, k)F(l + 2, k) + vy(l + 2, k)F(l, k)

+ vy(l − 1, k)F(l + 1, k) + vy(l + 1, k)F(l − 1, k)]

With these two fluxes, we define A(l, k) = ΓH − ΓL, and then limit this flux as described in [66]

to prevent the formation of new extrema, or the enhancement of existing extrema. We use a centered

differencing method to represent the convection velocities of the ions and electrons.

H.2.4 Numerical Dissipation in Potential

To prevent numerical instability in advancing the potential, dissipation is added. This also acts as

the physical nonresonant dissipation which limits the frequency sweeping observed in HEIs. We

advance the potential in the leap-frog manner as:



APPENDIX H. HEISIM EQUATIONS AND NUMERICAL METHODS 155

Φt−∆t/2 =
1
2
(
Φt + Φt−∆t

)
Φt+∆t/2 = Φt−∆t/2 + ∆tΦ̇t − (−1)k∆tν∇2kΦt

Φt+∆t = Φt + ∆t ˙Φt+t/2 − (−1)k∆tν∇2kΦt+t/2

k sets the dissipation length scale, and adjustment of ν sets the nonresonant dissipation for

limiting the frequency sweeping.

H.3 Particle Conserving Source/Sink

To reproduce dynamics related to driven turbulence, we require a mechanism to maintain the

unstable profile. Grierson implemented a conservative source and sink of particles and electron

energy [50]. In normalized magnetic coordinates, the particle continuity equation becomes:

∂N̂
∂t̂

+
∂

∂ϕ
(N̂vϕ) +

∂

∂y
(N̂vy) = 1.8D̂hDy2∂

2N̂
∂ϕ2 + 3.2D̂

∂

∂y

[
hD

∂

∂y
(y4N̂)

]
+ D̂Dshs (H.1)

hs and hD are the normalized source and diffusion profiles. Conservation requires the number of

particles in the volume to be fixed, therefore the volume integral of the above equation yields:

Ds =
−

∫
1.8hDy2 ∂2N̂

∂ϕ2 − 3.2 ∂
∂y

[
hD

∂
∂y (y4N̂)

]
d2x∫

hsd2x
(H.2)

At every time step Ds is calculated, and the ion and electron grids are updated with a source/sink

grid that sums to zero. For the electrons we are also conserving energy, so the grid integrated over µ

sums to zero as well.

Notice that D̂ is on all the new terms, so the effect of this source/sink can be tuned simply by
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varying this parameter. A value for D̂ is found that maintains a slightly unstable density profile and

results in the onset of radially broad convective cells.
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