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Bayesian hierarchical graph-structured model for pathway 
analysis using gene expression data
Abstract: In genomic analysis, there is growing interest in network structures that represent biochemistry 
interactions. Graph structured or constrained inference takes advantage of a known relational structure 
among variables to introduce smoothness and reduce complexity in modeling, especially for high-dimen-
sional genomic data. There has been a lot of interest in its application in model regularization and selection. 
However, prior knowledge on the graphical structure among the variables can be limited and partial. Empiri-
cal data may suggest variations and modifications to such a graph, which could lead to new and interesting 
biological findings. In this paper, we propose a Bayesian random graph-constrained model, rGrace, an exten-
sion from the Grace model, to combine a priori network information with empirical evidence, for applications 
such as pathway analysis. Using both simulations and real data examples, we show that the new method, 
while leading to improved predictive performance, can identify discrepancy between data and a prior known 
graph structure and suggest modifications and updates.
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1  Introduction
In genomics, there are many genome-wide networks constructed based on high-throughput experiments, 
such as protein-protein interaction networks (Franke et al., 2006) and gene synergy networks (Watkinson 
et al., 2008). Prior subject knowledge may lead to gains in statistical efficiency in data analysis. Indeed, 
there is an emerging class of methods that perform analysis based on prevailing knowledge of gene sets or 
modules. Baranzini et al. (2009) proposed to first identify gene subnetworks and then search for significant 
modules that are related to multiple sclerosis, an approach that can recover genes with a modest signal. 
Elbers et al. (2009) studied significantly overrepresented pathways using different pathway classification 
tools. Emily et al. (2009) searched for SNP interactions, but focusing only on those located near genes that 
have interactions, physically or functionally. However, such approaches completely rely on the quality of 
the a priori biological knowledge, which is incomplete and constantly being updated. It is therefore desir-
able to update such information according to data under study. Another limitation of current biological 
databases is that they usually indicate deterministic relations between variables (e.g., genes) that do not 
reflect the stochastic, highly inter-dependent, and conditional nature of biological interactions (Rzhetsky 
et al., 2006).

The Bayesian framework provides a natural way of utilizing empirical evidence to update prior knowl-
edge. Network information can be introduced using a suitable prior. Werhli and Husmeier (2007) constructed 
priors over network structures to combine different sources of the biological prior knowledge in a Bayesian 
network framework. Li and Zhang (2010) imposed an Ising prior on indicators of whether individual covari-
ates should be included in the model and related this prior to a known network structure of the covariates. 
Stingo et al. (2011) incorporated pathway membership and gene network information through priors on latent 
indicators, which determine the inclusion of both pathways and genes. Such priors lead to graph-structured 
dependence in variable selection. Liu and Lozano (2011) proposed a Bayesian regularization method with 
a graph Laplacian prior, which characterizes the dependence between variables. In this way, the structure 
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among the variables can be inferred directly. Such a prior also promotes graph-structured smoothness among 
coefficients estimates.

Li and Li (2008, 2010) proposed a regression model, Grace, with a penalty utilizing a given gene-gene 
network structure. Pan et al. (2010) proposed a similar procedure with different forms of penalty functions. 
In this paper, we develop a multilevel Bayesian regression model based on a variation of the Grace penalized 
regression model (Li and Li, 2008, 2010). Instead of using a fixed known graph structure as in Grace, we 
allow the graph structure to be random and adopt an informative prior centered at that a priori graph. Such 
a Bayesian formulation of penalized regression provides certain inferential benefits, such as a joint posterior 
distribution of the coefficients, better estimation of residual variance (Kyung et al., 2010), and potential gen-
eralization to broader model classes, answering the need of genomic data analysis (Yi and Xu, 2008). More 
specifically, in addition to results on individual covariates’ coefficients and their predictive performance, our 
method is able to combine prior knowledge with empirical information in the data into a posterior distribu-
tion of graph structures. This posterior distribution may suggest a different graph as the most probable rela-
tional structure among the covariates and will also indicate the probabilities of the interaction states between 
two covariates (positive, negative, or no interaction). We call the new method the random graph constrained 
(rGrace) model.

To overcome computational complexity due to the large number of possible random graphs, we further 
consider possible grouping structure among the covariates. The group lasso penalty is widely adopted to 
induce structured sparseness (Yuan and Lin, 2006; Meier et al., 2008; Friedman et al., 2010). Pan et al. (2010) 
studied group penalty based on L

γ
 norm with γ > 1. To encourage a grouping structure, in our penalized regres-

sion model (rGrace), instead of using the conventional L1 plus weighted L2 penalty, we use a group lasso 
penalty plus a weighted L2 penalty with grouping decided by the connected subgraphs.

This rest of the paper is organized as follows. Section 2 describes the model and the Markov chain 
Monte Carlo (MCMC) procedure for model inference. Section 3 provides a simulation study that compares 
our method to the Grace/aGrace procedures, followed by a real data application to brain aging in Section 4. 
Section 5 concludes the paper with a discussion.

2  Methods

2.1  Notation

Let [ ] n p
ijx ×= ∈X R  denote the matrix of gene expression measurements, with xij being the j th gene for the i th 

individual, while 1( , , )T n
ny y= ∈Y … R  denotes the response vector for n individuals. Assume the following 

model:

Y = Xβ+ε,

where ε~N(0, σ2I) and β = (β1, …, βp)T. Throughout the paper, we assume that the response vector Y is cen-
tered at zero, and the measurement matrix X is normalized so that each covariate is centered at zero and 

2
1

1n

iji
x n

=
= −∑  for j = 1, …, p. If X can be naturally partitioned into J groups, corresponding to a certain graph 

structure, we assume X = (X1, X2, …, XJ), where Xj is an n × pj matrix, 
1

.J

jj
p p

=
=∑  The coefficient corresponding 

to Xj is denoted βj.
Consider a labeled and unweighted graph G = (V, Ε) with P nodes, representing a known fixed graph 

based on prior knowledge, where V = {1, …, p}, each node corresponding to one covariate (gene), and 
E = {u~ν} is the set of edges, representing the relational structure among the covariates. Two nodes are con-
sidered adjacent if they are connected by an edge in the graph. Let A be the p × p adjacency matrix such that 
Au,v equals one if and only if u and v are adjacent and zero otherwise. Let du be the degree for node u, i.e., 
the number of edges incident to u, and let D be the p × p diagonal matrix with Du,u = du. Define the Laplacian 
matrix = −L D A�  of G as
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,

if = and 0,
1 if and are adjacent,

0 otherwise.

u u

u v

d u v d
L u v

 ≠
= −



�

The normalized Laplacian matrix L (Chung, 1997) is defined as follows:

,

1 if and 0,
1/ if and are adjacent,

0 otherwise.

u

u v u v

u v d
L d d u v

 = ≠
= −



Both the Laplacian and the normalized Laplacian matrix are semi-positive definite.

2.2  Random graph constrained (rGrace) model

Li and Li (2008) introduced the graph-constrained estimation of regression coefficients (Grace), defined as
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where, an L1 penalty is used for sparseness and a weighted L2 penalty is used to introduce smoothness in the 
coefficients along the edges of the graph, for better generative performance in prediction. In addition, Li and 
Li (2010) proposed another procedure, adaptive Grace (aGrace), which allows the regression coefficients of 
linked covariates to take opposite signs. The signs were determined by an initial step of ordinary least-square 
or elastic net regression (Zou and Hastie, 2005) that produces an estimate .�β  More specifically,

{ }2
2 1 1 2

ˆ argmin || || || || ,T
aGrace

β
β λ λ= − + +Y X SLSβ β β β

where 1( ( ),..., ( ) ).pdiag sign signβ β=S � �

Biological studies have shown that gene networks consist of modules defined as genes that are regu-
lated together as a group (Segal et al., 2003). Bar-Joseph et al. (2003) suggested that gene modules that par-
tition the genetic network aid in the reduction of graph complexity without significant loss of explanatory 
power and interpreted genes within a same module as having a common biological function. Langfelder 
and Horvath (2008) advocated analyzing highly connected modules as a biologically motivated data reduc-
tion approach. Gene modules can be formed based on expression profiles (Segal et al., 2003; Langfelder 
and Horvath, 2008; Kim et  al., 2011). However, Ravasz et  al. (2002) suggested that topological similarity 
can be used to define more stable gene modules and Bar-Joseph et al. (2003) argued that genes with similar 
expression patterns could be governed by distinct regulatory mechanisms. Multiple approaches have been 
proposed to discovery gene modules directly based on adjacency matrix of the genes (Newman, 2006; Yip 
and Horvath, 2007; Ruan and Zhang, 2008). In particular, Yip and Horvath (2007) developed a node dis-
similarity measure to identify nodes that have high topological overlap. For a large graph that is partitioned 
into several connected components, a natural way to extend Grace/aGrace is to consider group-Grace/
group-aGrace,

2
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The grouping based on connected subgraphs automatically leads to a block diagonal Laplacian matrix 
1( , , ).Jdiag=L L L� � �…  It is expected that connected genes share related biological functions as well as similar 

regression coefficients (Zhang and Horvath, 2005; Liu et al., 2013). Therefore, in this paper, we use the Lapla-
cian matrix L�  in our model instead of the normalized Laplacian matrix L, since we found the results from the 
former easier to interpret biologically. Our method is not affected by this choice.

Penalized regression models have been adapted to the Bayesian framework by choosing suitable priors, 
as for the Bayesian lasso (Park and Casella, 2008), Bayesian adaptive lasso (Griffin and Brown, 2007; Sun 
et al., 2009), Bayesian elastic net (Li and Lin, 2010), and Bayesian group lasso (Raman et al., 2009). Kyung 
et al. (2010) gave an overview of the Bayesian formulation of penalized regression methods and also gave full 
conditionals for Bayesian fused lasso.

We now introduce the random graph constrained model (rGrace) as a multilevel model extension of 
Grace under the Bayesian framework. Following Park and Casella (2008) and Li and Lin (2010), we consider 
a fully Bayesian hierarchical model (conditioning on X is implicit):

2 2
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with Aij = Aij.
The gamma prior on σ2 is proper but vague with a small positive α and a large θ. In addition, gamma priors 

on 2
1λ  (not λ1) and λ2 permit easier implementation via the Gibbs sampler shown in the next section. Hyperpa-

rameters α1, θ1, α2, and θ2 are set such that during the MCMC procedure the ranges of sampled λ1, λ2 are comparable 
to the range of the searching grid when solving group-Grace or group-aGrace. We also examine the sensitivity 
of the inference results to the value of these hyperparameters, including α and θ, by running a parallel analysis 
on a few combinations of hyperparameters in the simulation study later on. Through imposing a prior on each 
element of the adjacency matrix corresponding to a graph G with p nodes, independent of σ2, we may overcome 
the drawback of a fixed graph structure based on an incomplete knowledge on biological pathways.

The aGrace estimator of Li and Li (2010) was motivated by the fact that two adjacent genes might have 
opposite effects on Y. Furthermore, gene regulatory networks explain the causality of gene expression regu-
lation via activators and suppressors. Mason et al. (2009) also reported the advantage of allowing positive 
and negative signs in gene co-expression networks. Therefore, we expect the regression coefficients, β, of 
two linked genes to show identical or opposite signs, depending on the underlying functional relation. For 
each edge in the graph, we allow the corresponding entry in the adjacency matrix to have a sign. Specifically, 
between any two nodes, there might be a positive edge (Aij = 1), a negative edge (Aij = –1), or no edge (Aij = 0). The 
Laplacian matrix equals D–A, as previously defined, and remains semipositive-definite.

For gene expression analysis, there are publicly available genomic network databases, such as KEGG, 
that provide information on whether an edge exists between two nodes (genes). However, the sign for an 
edge is usually not provided and is treated as positive by default. Denote the initial graph structure as G0 with 
adjacency matrix A0. We aim to update a graph structure using information from empirical data, while 
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maintaining high confidence in the prior knowledge. We achieve this by adopting the following informative 
prior on Aij. Given two cut off value –1 <  cl < 0, and 0 < cu < 1, if 0 0,ijA =  then

0

0

| 0

0

1 with prob. P( [ 1, ) ),
0 with prob. P( [ , ) ),
1 with prob. P( [ ,1] ),

l

ij b l u

u

Z c
A Z c c

Z c

− ∈ −
= ∈
 ∈

where Z0 follows a scaled beta distribution with parameters (b0,b0). Here a scaled beta distribution is defined 
as two times beta distribution minus one, so that it ranges from negative one to one. The scaled beta distribu-
tion with parameters (α, β) has density

1 1
1

( )( ; , ) (1 ) (1 ) , 1 1.
( ) ( )2

p y y y yα β

α β

Γ α β
α β

Γ α Γ β
− −

+ −
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= + − − ≤ ≤

Or if 0 1,ijA =

1

1

| 1

1

1 with prob. P( [ 1, ) ),
0 with prob. P( [ , ) ),
1 with prob. P ( [ ,1] ),

l

ij b l u

u

Z c
A Z c c

Z c

− ∈ −
= ∈
 ∈

where Z1 follows a scaled beta distribution with parameters (b1, b1). Hyperpriors are distributed as

0 0

1 1

~Unif (1, ),
~Unif ( ,1),

b B
b B

given hyperparameters B0 > 1 and B1 < 1. Essentially, we assume Aij is the truncation of a continuous latent vari-
able following a scaled symmetric beta distribution. If 0 0,ijA =  then the latent beta distribution has a shape 
parameter b0 larger than one with the mode at zero; otherwise the latent beta distribution has a shape param-
eter b1 smaller than one, with two peaks at negative one and one. This idea is depicted in Figure 1. Such a prior 
structure discourages removing or adding an edge between any two nodes and induces equal probabilities for 
the edge sign. Hyperpriors B0 and B1 control the informativeness of the prior.

Aij=0
0

Aij=1
0

-1 0 1

Scaled beta (b0, b0)

Scaled beta (b1, b1)

-1 cl 0 cu 1

-1 cl 0 cu 1

-1 0 1

Figure 1 Initial edge and latent scaled beta distribution.
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2.3  MCMC procedure for rGrace model inference

Motivated by the connection between the Laplace distribution and scale mixture of normal distributions 
(Andrews and Mallows, 1947), Park and Casella (2008) connected the lasso to the Bayesian paradigm. Also 
making use of this connection, we introduce instrumental variables s = (s1,…, sJ) and treat β|σ2,G alternatively 
as ∫s p(β|σ2,s, G) p(s|σ2, G)ds, where

1

2 2
2

2
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Here, Ds is a block diagonal matrix with J blocks, and the jth block 
jsD  is 1

j j
j

p ps ×I  and 
lj

w  is the lth eigenvalue 
of matrix .jL�  The derivation is given in the Appendix.

Note that p( β| s, σ2 ,G) is proper since 2
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Hence, p(s|σ2) is proper, and the same is so for the prior
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(1)

The MCMC algorithm for the rGrace computation contains the following two main steps:
1. Update parameters given a fixed graph structure G. Given a graph structure G, it is straightforward to 

compute the full conditional distributions.
 – Sample β, given other parameters:

β|Y, σ2, s, λ1,λ2, G, b0, b1 ~ N(U–1XTY, σ2U–1),

where 2
2 .T

sσ λ= + +U X X D L�
 – Sample σ2, given other parameters:
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 To sample from σ2|Y, β, s, λ1, λ2, G, b0, b1, we apply the Metropolis-Hastings algorithm given an appropriate 
proposal density and evaluate (1) by numerical integration. For simplicity, we use a normal density with 
modest variance (always rejecting negative samples) as proposal densities. Computationally, with the 
block diagonal structure of the network, we are able to accurately evaluate (1) as a product of J integrals 
of one-dimensional functions. Without this assumption, we would have to deal with a single p-dimen-
sional integral, which is usually numerically infeasible.

 – Sample s, given other parameters:

p(s|Y, β, σ2, λ1, λ2, G, b0, b1)

2
1

4
1

2
1

4
1

( >0)1
2 8

( >0)
.

28

J
j jT

s j
j j

TJ
j j j j

j
j jj

I s p
exp D exp s

s

I s p
exp s

ss

λ

σ

λ

σ

=

=

     ∝ −       
  
 ∝ − − 
   

∏

∏

β β

β β

Therefore,

2
12

1 2 0 1 4
1

1| , , , , , , , ~ , , ,
24

J
j T

j j
j

p
G b b GIG a b p

λ
σ λ λ

σ=

 
= = = 

 
∏s Y β β β

where GIG(a,b,p) stands for the generalized inverse Gaussian distribution with the density
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with Kp a modified Bessel function of the third kind. In particular,
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 To sample from s|Y, β, σ2, G, b0, b1, the product of generalized inverse Gaussian distributions, we make 
use of the R function rgig in the package HyperbolicDist.
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 We again apply the Metropolis-Hastings algorithm with proposal density 1
1 1 4,
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2. Update graph structure G. When updating the graph structure, or equivalently the adjacency matrix, we 
constrain the model space to all graphs with the same group membership as the initial structure by 
allowing any deletion of edges but only the addition of edges within each group. Deletion of edges may 
result in isolated vertices or unconnected components within a group.

 – Sample A, given other parameters:
 Direct sampling from a conditional posterior is difficult. To obtain an efficient Gibbs sampler, we first 
augment the parameter space by defining the latent variable aij corresponding to Aij, where aij follows 
the scaled beta distribution with parameter b0 or b1, depending on whether 0

ijA  equals zero or one. 
Consequently,
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 In the Metropolis-Hastings algorithm, conditioning on the value of 0 ,ijA  we propose new aij from the trun-
cated scaled beta distribution, with parameter b0 or b1, truncated depending on the value of Aij. Once aij 
is accepted, it is truncated to get Aij.

 – Sample b0, given other parameters:
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 where K = {0, –1, 1}. We simply pick the proposal distribution to be Unif(1, B0) in the Metropolis-Hastings 
algorithm to sample b0.

 – Sample b1, given other parameters:
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 where K = {–1, 0, 1}. Choose proposal distribution Unif (B1, 1) in the Metropolis-Hastings algorithm to 
sample b1.

2.4  Variable selection

Following Kang and Guo (2009), with a series of posterior draws after a burn-in period, we first choose the 
optimal tuning parameters (λ1, λ2) that minimize prediction error based on the tuning data. We then draw 
samples from the conditional posterior, given the fixed optimal * *

1 2( , ),λ λ  and make inferences, including 
variable selection.

In the Bayesian framework, variable selection can be dealt with by a Bayesian spike and slap approach 
(Ishwaran and Rao, 2005; Li and Zhang, 2010) with a suitable prior or treated as a hypothesis-testing problem 
based on posterior samples. One can simply apply a hard-threshold rule with a pre-specified number δ so 
that βj is regarded as zero if its posterior mode is located in [–δ, δ] (Yi and Xu, 2008; Kang and Guo, 2009). 
Li et al. (2002) and Bae and Mallick (2004) explicitly parameterized the variance of each βj with prior distri-
bution as Λj and deleted the predictor if posterior Λj fell below a threshold. Alternatively, we can exclude a 
covariate if its posterior variance has a value below a small number c (Li and Lin, 2010). In this article, we 
employ three selection approaches:
1. M-cut: Select a coefficient whose absolute posterior mean exceeds δ = 0.05,
2. S-cut: Select a coefficient whose posterior standard deviation exceeds c = 0.05,
3. Z-cut: Select a coefficient whose absolute Z statistics exceeds Z = 1.96, which is the ratio of the posterior 

mean and posterior standard deviation

ˆ
.

ˆ( )
Z β

σ β
=

3  Results

3.1  Toy example

We consider a hypothetical graph that consists of only four nodes {A, B, C, D}, representing four genes, with 
the causal relationship depicted in upper left panel of Figure 2. For a healthy individual, D is suppressed 
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while A is activated, which in turn activates B and suppresses C; otherwise, A is suppressed and D is acti-
vated, which in turn activates C, but the status of B is unregulated. The status of each gene is shown in the 
upper middle panel of Figure 2. To model this relationship, depending on gene’s on/off status, we generate 
the expression level of each gene u, xu, according to the following rule:

2
1

2
0

2 2
1 0

( , ) if is on,
~ ( , ) if is off ,

( , ) (1 ) ( , ) if is unregulated.
u

N u
x N u

N N u

µ σ

µ σ

τ µ σ τ µ σ




 + −

For the following examples, we take μ1 = 1, μ1 = -1, σ2 = 0.08, and τ = 0.1. For an individual with disease, response 
Y is set to one and otherwise negative one. We simulate datasets that consist of 100 cases and 100 controls. 
For each simulated trial, we generate a training dataset, a tuning dataset, and a testing dataset, each with 
equal sample size 200 from the same model. The tuning parameters (λ1 for lasso, and λ1, λ2 for Grace/aGrace) 
are chosen to minimize the residual sum of squares based on the tuning dataset. For all the methods, the 
corresponding regression coefficients are used to compute prediction errors based on the testing dataset. 
The regression coefficients for rGrace are taken as the posterior mean of the coefficients generated after we 
determine the optimal tuning parameters. Given a training set, rGrace starts from lasso estimates of the 
regression coefficients and after 5000 burn-in iterations, runs the MCMC procedure for 10,000 iterations to 
select optimal tuning parameters. Given the selected tuning parameters, draw another 10,000 samples from 
the conditional posterior. Set hyperparameters (α, θ, α1, θ1, α2, θ2, B0, B1) to (0.1, 10, 2, 0.1, 2, 0.1, 10, 0.1). The 
sensitivity of the inference to the specification of the hyperparameter is formally investigated in the next 
section.
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Figure 2 Simulation model and identified MAP graphs under different priors. The simulation model is based on causal relation-
ships between genes {A, B, C,D} (upper-left panel). We consider two initial graph structures for setting up the informative priors. 
The most common MAP graphs and the probability distributions of each edge status identified in the MAP graph using the 
proposed methods are plotted (see the upper right panel for the color legend).

Brought to you by | Columbia University
Authenticated

Download Date | 3/28/15 7:47 PM



Hui Zhou and Tian Zheng: Bayesian hierarchical graph-structured model for pathway analysis using gene expression data      403

In the first example, correct network structure is provided for Grace, aGrace and rGrace, but without 
signs. With a correct initial network structure, we compute the maximum a posteriori probability (MAP) graph 
structure (the graph structure that occurs most frequently among the posterior draws) for each replicate. 
The MAP graph for 92 replicates out of 100 equals the assumed causal graph structure, in other words, the 
positive edges between A and B, and between C and D, and the negative edge between A and C. The second 
column of Figure 2 shows the most frequent MAP graphs among the 100 replicates. Based on the posterior 
MAP samples using rGrace, we compute for each edge the probability of being positive, negative, or no edge. 
The third column of Figure 2 shows these probabilities of each edge with a color reflecting the inferred sign 
and strength for rGrace. As indicated in the upper right panel in Figure 2, red represents a positive edge (cor-
responding to +1 in the adjacency matrix A), blue represents a negative edge (–1 in A), and gray denotes no 
edge. Given the correct structure, rGrace is able to recover the true signs with great certainty.

In the second example, we provide an incorrect network structure with two edges connecting A to B, 
and C to D. The positive signs for these two edges can be recovered successfully as shown Figure 2, but it is 
uncertain where the negative edge is between the groups {A, B} and {C,D}. Such uncertainty comes from the 
lack of prior information. If a correct initial graph structure was given as a prior, with the prior in Section 2, 
we would prefer the edge AC over the other three edges, BC, AD and BD. In this example, however, both edges 
are equally penalized. The causal relationships between these four genes only imply similar regression coef-
ficients for A and B, similar coefficients for C and D, and distinct signs for the two groups. In this sense, any 
negative edge between two nodes, one from either group, is equivalent to another.

To better understand the effects of different priors, we directly calculate, under both the correct and 
incorrect network priors, the Bayes factors of all 729 (each edge has three possible signs, yielding a total of 
36 = 729) graph structures. We run 729 MCMC chains on the same simulated data set, one for each structure, 
and use the posterior samples to calculate the Bayes factor. We then rank all graph structures by their Bayes 
factors. We repeat this procedure for 50 independently generated samples and add the ranks for each graph 
structure across these 50 samples. Figure 3 shows the top five models based on the sum of ranks and any 
plotted edge takes a positive (red) or negative (blue) value. When the correct graph structure (without signs) 
is used as the prior, rGrace is able to recover the assumed causal structure. In example 1, where the correct 
graph structure is provided, each of the top five structures contains the AC edge. In example 2, all top five 
structures contain the AB and CD edges, consistent with the prior. However, since there is no prior informa-
tion about the AC edge, the top five graphs include all four possible ways of connecting {A, B} and {C, D} by 
adding one edge.

Based on 100 replicates, Table 1 shows the estimated prediction errors (with standard errors) using lasso, 
Grace, aGrace, and rGrace. Using the proposed methods, we observe a notable reduction of mean prediction 
errors under both correct and incorrect prior specifications.
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Figure 3 Top five structures based on Bayes factors under two priors. The ranking is based on average rank (shown in paren-
theses) among 729 models, using 50 simulations.
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3.2  Simulation studies

In this section, the data are generated based on a linear regression model Y = XTβ+e. For each replicate, the 
size of the dataset, n, equals 100 for a training, a tuning and a test set. We assume predictors X form 10 groups 
(X1, …, X10), each consisting of 21 variables; hence p = 210. Predictors within each group are marginally stand-
ard normal, with compound symmetry correlation ρ = 0.2. The significant variables are chosen to be the first 
two groups. The true coefficient vector β is given by (β1, β2, 0, …, 0 ). Vector β1 is of length 21 with all elements 
equal to three, and all elements in β2 equal to –2. The correct graph structure consist of 10 separate connected 
components, each a fully connected subgraph with 21 nodes and 210 edges. The initial graph structure has 
the same grouping as the true graph, but with a ring-shaped network with 21 edges in each group. The inde-
pendent and identically distributed error term e follows a normal distribution with zero mean and variance 
βT β/4. As mentioned in the previous section, after 5000 burn-in iterations, rGrace runs for 10,000 iterations 
to select optimal tuning parameters, and then runs another 10,000 iterations to make inferences. The Grace/
aGrace solution is computed via the coordinate-descent algorithm provided by Li and Li (2010). We use the 
SGL() function in the SGL R package (Simon et al., 2012) to obtain the group-Grace/aGrace solution with arti-
ficial Y* and X*, defined as

,
0

 
= 

 
* Y

Y

1/ 2
2

.
( )λ

 
= 

 
*

X
X

SL�

To examine how the choice of hyperparameters affects the inference results, we consider the three combina-
tions of hyperparameters (α, θ, α1, θ1, α2, θ2, B0, B1) shown in Table 2.

In setting the hyperparameters (B0, B1) for the distribution of the scale parameters (b0, b1), a smaller B1 
(larger B0) leads to a curvier scaled beta distribution, concentrating on the initial graph. On the other hand, a 
larger B1 (smaller B0) induces a flatter scaled beta distribution. To evaluate the performance of each method, 
we calculate the number of true positives (TP), true negatives (NP), false positives (FP), and false negatives 
(FN) and report the average false positive rate (FPR) and average false negative rate (FNR), defined as

Table 1 Mean prediction error and standard error (std. err) based on 100 simulated replicates, using lasso, Grace, aGrace, and 
rGrace.

Graph Lasso Grace aGrace rGrace

Example 1 1.283 1.025 1.022 0.992
Std.err 0.0302 0.0117 0.0117 0.0095
Example 2 – 1.029 1.028 1.005
Std.err – 0.0118 0.0118 0.0103

Each bold value is the smallest number in the corresponding row.

Table 2 Three combination of hyperparameters.

C1 C2 C3

α 0.1 0.1 2
θ 10 10 50
α1 2 2 5
θ1 0.1 0.1 0.05
α2 2 2 5
θ2 0.1 0.1 0.05
B0 10 3 3
B1 0.1 0.3 0.3
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respectively. Moreover, the proportion of selected edges relative to the number of true edges (%Edge) together 
with the proportion of selected edges with the correct sign (%Sign-Edge) for each MAP graph will be reported. 
For a particular dataset, the sample trace plots of two significant regression coefficients, an instrumental var-
iable and a tuning parameter for the last 5000 iterations (before the optimal tuning parameters are chosen) 
are shown in Figure 4. Table 3 gives the means of the four selected nonzero coefficients (β1, β21, β22, β42), TPR, 
TNR, %Edge, and %Sign-Edge, where the hyperparameter combination (C1) is used. Compared to compet-
ing methods, rGrace exhibits promising performance in terms of smaller prediction errors, more accurate 
parameter estimates and larger TNR values. Although the initial graph structure contains only 10% of the 
actual edges, rGrace is able to recover about one-fourth of the total edges. With a less informative prior, say, 
the hyperparameter combination C2, rGrace is capable of discovering around half of the true edges, as shown 
in Table 4. As suggested by Table 4, a different choice of (α, θ, α1, θ1, α2, θ2) does not have a significant impact 
on the inference results.

3.3  Application to a gene expression study of brain aging

Li and Li (2010) analyzed gene expression data measured in the human brain (Lu et al., 2004), with the loga-
rithm of the individual age as the response and log10 of the expression levels as covariates. Using the same 
network structure as for Li and Li (2010) and applying the default algorithm of Yip and Horvath (2007), we 
identified 174 separate gene modules with a total of 1237 genes and 3478 intra-modular edges. The largest 
module contains 76 genes. To estimate the regression coefficients, the tuning parameters are chosen based 
on a five-fold cross validation (CV) applied to the entire dataset for lasso, Grace/aGrace, and group-Grace/
aGrace. For rGrace, instead of choosing the tuning parameters that minimize CV-error, we compute the 
average of the optimal tuning parameters in each fold. With selected tuning parameters, rGrace runs MCMC 
for 100,000 iterations to sample from the posterior distribution (total computing time 270 hours on an Inteli5-
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Figure 4 Sample trace plots of two significant regression coefficients, an instrumental variable, and a tuning parameter.
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Table 3 Prediction errors (PE), the means of four nonzero coefficients (β1, β21, β22, β42), the true positive rate (TPR), the true 
negative rate (TNR), the proportion of selected true edges (%Edge), and the proportion of selected true edges of correct sign 
(%Sign-Edge), based on 100 replicates.

Lasso Grace aGrace Group-Grace Group-aGrace bGrace rGrace

M-cut S-cut Z-cut M-cut S-cut Z-cut

PE 50.3 11.3 10.3 8.2 8.6 7.2 – – 4.4 – –
Std.err (17.6) (3.3) (3.0) (1.8) (2.0) (1.6) – – (1.3) – –
β1 = 3 2.33 2.76 2.80 2.90 2.83 2.83 – – 2.87 – –
Std.err (0.95) (0.52) (0.55) (0.20) (0.36) (0.19) – – (0.18) – –
β21 = 3 2.29 2.81 2.82 2.91 2.86 2.82 – – 2.85 – –
Std.err (0.83) (0.52) (0.60) (0.20) (0.26) (0.20) – – (0.17) – –
β22 = –2 –1.28 –1.67 –1.73 –1.81 –1.77 –1.84 – – –1.85 – –
Std.err (0.76) (0.46) (0.48) (0.25) (0.32) (0.17) – – (0.18) – –
β42 = –2 –1.28 –1.72 –1.71 –1.85 –1.76 –1.82 – – –1.84 – –
Std.err (0.59) (0.44) (0.52) (0.29) (0.35) (0.18) – – (0.15) – –
TPR 98.2% 99.1% 99.0% 100% 100% 99.2% 99.3% 99.4% 100% 99.4% 99.0%
Std.err (0.06) (0.01) (0.01) (0.00) (0.00) (0.01) (0.01) (0.04) (0.00) (0.05) (0.01)
TNR 45.6% 52.1% 52.3% 54.6% 52.7% 55.6% 46.8% 84.8% 63.7% 57.2% 88.9%
Std.err (0.11) (0.06) (0.07) (0.06) (0.08) (0.07) (0.12) (0.16) (0.09) (0.11) (0.17)
%Edge 10% 10% 10% 10% 10% 10% – – 26.4% – –
Std.err – – – – – – – – (2.23%) – –
%Sign-Edge 10% 10% 10% 10% 10% 10% – – 26.3% – –
Std.err – – – – – – – – (2.41%) – –

Table 4 Prediction errors (PE), the means of four nonzero coefficients (β1, β21, β22, β42), the true positive rate (TPR), the true 
negative rate (TNR), the proportion of selected true edges (%Edge), and the proportion of selected true edges of correct sign 
(%Sign-Edge), for bGrace and rGrace (use the Z-cut method for variable selection) with three sets of hyperparameters based on 
100 replicates.

bGrace rGrace

C1 C2 C3 C1 C2 C3

PE 7.2 – 7.1 4.4 3.8 4.0
Std.err (1.6) – (1.6) (1.3) (1.2) (1.3)
β1 = 3 2.83 – 2.81 2.87 2.87 2.82
Std.err (0.19) – (0.18) (0.18) (0.16) (0.19)
β21 = 3 2.82 – 2.80 2.85 2.83 2.83
Std.err (0.20) – (0.19) (0.17) (0.17) (0.18)
β22 = –2 –1.84 – –1.82 –1.85 –1.82 –1.86
Std.err (0.17) – (0.16) (0.18) (0.17) (0.20)
β41 = –2 –1.82 – –1.82 –1.84 –1.87 –1.82
Std.err (0.18) – (0.17) (0.15) (0.15) (0.17)
TPR 99.4% – 98.9% 99.0% 97.9% 98.9%
Std.err (0.04) – (0.04) (0.01) (0.09) (0.03)
TNR 84.8% – 84.3% 88.9% 95.2% 93.3%
Std.err (0.16) – (0.14) (0.17) (0.06) (0.06)
%Edge 10% – – 26.4% 55.0% 55.4%
Std.err – – – (2.23%) (4.45%) (6.19%)
%Sign-Edge 10% – – 26.3% 54.8% 55.5%
Std.err – – – (2.41%) (4.46%) (6.30%)

2320, 3 GHz processor, 6 GB RAM). To estimate the prediction errors, we apply a nested CV procedure, with 
an outer three-fold CV loop and an inner five-fold CV loop (Varma and Simon, 2006). Table 5 shows the pre-
diction errors, and the number of genes and edges based on the regression coefficients for various methods. 
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Our proposed methods achieve better prediction performance than Grace/aGrace without using information 
about the potential signs of the regression coefficients. Table 6 displays the nonzero edges among signifi-
cant genes selected by rGrace using Z-cut. The identified genes CAV1 and CAV2 are associated with progres-
sive optic nerve degeneration (Wiggs et al., 2011). Gene CD247 is reported to be significantly enriched in 
neurological disease (de Jong et al., 2012) and gene CDK5 is related to adult-onset neuro-degeneration, as 

Table 5 Prediction errors based on brain aging gene expression data, using lasso, Grace, aGrace, group-Grace, group-aGrace 
and rGrace.

Lasso Grace aGrace Group-Grace Group-aGrace rGrace

PE 0.099 0.081 0.080 0.107 0.107 0.067
#Genes 19 61 84 99 105 58
#Edges 0 4 22 58 61 38

Each bold value is the smallest value in the row.

Table 6 Edges among significant genes obtained by rGrace based on brain aging gene expression data.

Gene pair Sign Sign in initial graph

NCR2 TYRPOBP 1 1
CDC25B YWHAB 1 1
CDC25B YWHAE 1 1
PLAT PLG 1 1
MPZ MPZL1 1 1
NLGN1 NRXN1 1 1
DVL1 FRAT2 –1 1
DVL3 FRAT2 –1 1
F12 PLG –1 1
PLG SERPINF2 –1 1
MLLT4 SSX2IP –1 1
CAV1 CD247 1 0
CAV1 NCR3 1 0
CAV1 SHC1 1 0
CAV2 CD247 1 0
CAV2 CDK5 1 0
CAV2 LCK 1 0
CAV2 SHC1 1 0
CD247 SHC1 1 0
CDK5 SHC1 1 0
LCK NCR3 1 0
NCR2 YES1 1 0
DVL1 DVL3 1 0
F12 SERPINF2 1 0
CAMK2A PPP3CB –1 0
CAV1 NCR2 –1 0
CAV1 YES1 –1 0
CAV2 NCR2 –1 0
CAV2 YES1 –1 0
CD247 NCR3 –1 0
CD247 TYROBP –1 0
CDK5 NCR2 –1 0
CDK5 TYROBP –1 0
LCK NCR2 –1 0
NCR2 NCR3 –1 0
NCR2 SHC1 –1 0
TUBB2C TUBB4 –1 0
PLAT SERPINF2 –1 0
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the lack of CDK5 within the nervous system leads to abnormalities in neuron development (Trunova and 
Giniger, 2012). Among discovered edges, it is interesting to note that physical interaction was confirmed 
between gene pairs (CD247, NCR3), (CD247, SHC1), (CAVA1, YES1), and (DVL1, DVL3) based on iRefIndex 
(Razick et al., 2008). Genes PLAT and SERPINF2 share protein domains based on InterPro (Hunter et al., 
2009). Also, gene pairs (F12, SERPINF2) are colocalized (Schadt et al., 2004). This biological evidence sup-
ports the validity of rGrace.

4  Discussion
We have proposed a Bayesian hierarchical model, rGrace, that incorporates the network (graph) structure 
of covariates and produces posterior inference of regression coefficients and a graph structure. Compared 
to Grace/aGrace, rGrace can discover different gene-gene relations by allowing random graph structure. A 
simulation study and real data analysis demonstrated that the estimated coefficients have lower prediction 
error. The MCMC procedure also facilitates the estimation of the posterior probability of the graph structure.

Our prior for the graph structure encourages similar structures as the initial graph. To further induce 
sparseness or fewer groups, the prior can, for instance, take the form

P(G)∝exp(–λG#{edges}),

or

P(G)∝exp(–λG#{groups}).

In general, as suggested by Mukherjee and Speed (2008), one can take a log-linear network prior,

( ) exp ( ) ,G i i
i

P G w f Gλ
 

∝ −  ∑

where each fi(G) maps certain feature of the graph to a real value that increases if the graph deviates more 
from prior belief, with weight wi. Such a feature can also include edges within each group, degree distribu-
tion, the number of two-stars, triangles, and so forth. This general class of informative network priors is also 
consistent with exponential random graph models (Robins et al., 2006). However, more equivalent graphs 
may arise with such specification.

In this paper, we use the MCMC procedure to sample graphs. Alternatively, for a moderate number of 
possible models (graphs), the Metropolized Carlin and Chib (1995) method can be adopted by setting up 
pseudopriors. If the number of graph structures of interest is small, one can even run a Gibbs sampler for 
each fixed graph structure and directly compare the Bayes factor, which is possible since the prior is proper. 
Other Bayesian model selection methods can be found in the survey of Han and Carlin (2001) and Dellaportas 
et al. (2002).

The linear model in this paper can be extended to generalized linear models. Holmes and Held (2006) 
discussed Bayesian logistic regression and multinomial regression based on auxiliary variable methods. Yang 
and Song (2010) studied a Bayesian probit regression model for disease classification, utilizing a latent vari-
able representation. Intercept and regression coefficients are integrated out to avoid convergence problems 
in the MCMC algorithm. With suitable implementation, the rGrace procedure can be extended to generalized 
linear models.

Appendix A Derivation of Sampling Scheme for β|σ2

According to Andrews and Mallows (1947), for a > 0, a scale mixture of normal distributions representation of 
the Laplace distribution is
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where each Oj is an orthogonal matrix and j∧  is a diagonal matrix, that is 
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