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Abstract

Using glucose time series data from a well measured population drawn from an electronic health record (EHR) repository,
the variation in predictability of glucose values quantified by the time-delayed mutual information (TDMI) was explained
using a mechanistic endocrine model and manual and automated review of written patient records. The results suggest that
predictability of glucose varies with health state where the relationship (e.g., linear or inverse) depends on the source of the
acuity. It was found that on a fine scale in parameter variation, the less insulin required to process glucose, a condition that
correlates with good health, the more predictable glucose values were. Nevertheless, the most powerful effect on
predictability in the EHR subpopulation was the presence or absence of variation in health state, specifically, in- and out-of-
control glucose versus in-control glucose. Both of these results are clinically and scientifically relevant because the
magnitude of glucose is the most commonly used indicator of health as opposed to glucose dynamics, thus providing for a
connection between a mechanistic endocrine model and direct insight to human health via clinically collected data.
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Introduction

Intuitively we know that many macroscopic human traits, or

phenotypes, including many diseases, are a composite of many

interacting variables and systems spanning scales from the

molecular to the social. Moreover, we also understand and

observe that human phenotypes are time-dependent, or dynamic;

diseases evolve in time, the probability of acquiring diseases,

including those with a strong genetic component, can change in

time, and general physical characteristics change with age. Yet, for

the most part, the dynamic nature of phenotyping has been

neglected. We hypothesize that the current lack of phenotypes that

are dependent on temporal characteristics of humans is due in part

to the fact that important temporal features that affect phenotypic

differences require data sets that span large populations and

diverse time scales such that differences can be observed.

Collecting such data solely for the sake of science is likely too

expensive and intrusive to ever be done on a large scale. The

solution to this problem is to use data that are automatically

collected for a different purpose, electronic health record (EHR)

data. Nevertheless, using EHR data in a more basic science

context requires a better integration between physiology and

clinical practice to both drive useful innovation and to cope with

health-care-process dependent data complexities [1].

Human physiology focuses on the mechanical, physical, and

biochemical functioning of humans. Physiology uses basic science

machinery (e.g., molecular biology, mathematics) and well

understood phenotypic definitions in a very narrow, precise, and

controlled way. For example, the data that human physiologists

collect and study are captured in highly controlled environments

from very carefully chosen and controlled individuals usually over

relatively short time periods. Discovering and quantifying diverse

phenotypes and their evolution in time is difficult while remaining

within the context of human physiology because such controlled

and small populations of data over limited time scales do not

contain the potential for resolving diverse and evolving pheno-

types.

Clinical practice involves the practical management of patients in

a hospital or other care center. Clinical phenotypes are often

complex, broadly and descriptively defined, and their definition is

driven and guided to help identify and treat a macroscopic

observable condition such as a disease. While physiology is applied

in some clinical practice environments, physiology is often used for

intuition rather than for concrete decision making. The focus of

clinical research is primarily practical because the clinicians are

required to help the patients with a degree of immediacy that

makes it difficult perform some types of research. Discovering and

precisely quantifying diverse phenotypes and their evolution in

time is difficult solely within the context of clinical practice because

of the immediate need for clinical treatment of individuals.

Despite the fact that physiology and clinical practice are highly

related, currently they are not well integrated. More bluntly,

clinical practice and physiology are not unified in the same way

that engineering and physics are, despite the fact that physiology
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forms the scientific basis for many medical practices and

treatments in the same way that physics is used to construct

bridges. At its heart, the difference lies in the lack of computation

that might integrate or translate complex physiologic information

into clinically actionable knowledge. Engineers use physics to

precisely calculate features required to construct bridges whereas

doctors rarely use physiology to precisely compute features

required to give care to individuals. One of the aims of

personalized medicine is to customize treatment for an individual

based on individual situations and characteristics. Integrating the

mechanistic knowledge of how physiology affects health state into

clinical practice in a tangible way, allowing for differences in

people to be accounted for and used to predict future health, will

make personalized medicine possible.

We feel that the time has come to begin integrating physiology

with clinical practice in a more explicit way. Moreover, we assert

that the integration should occur via a common data set, EHR

data that are collected for clinical purposes. EHR data are

comprised of all the information clinicians collect, are complex in

nature (e.g., lab values, billing information, and narrative text),

span many scales in space and time, are not collected in a

controlled environment and therefore contain many complex

biases [2] [1], and are large in size. In ‘‘Toward Precision

Medicine: Building a Knowledge Network for Biomedical

Research and a New Taxonomy of Disease’’ [3] (cf. Fig. S-1,

page 2) the authors call for the creation of a new taxonomy (e.g.,

data driven phenotypes) as a way of pushing both clinical practice

and basic biological understanding of humans forward in a data

driven manner:

Creation of a New Taxonomy first requires an Information

Commons in which data on large populations of patients

become broadly available for research use and a Knowledge

Network that adds value to these data by highlighting their

inter-connectedness and integrating them with evolving

knowledge of fundamental biological processes. [3].

Because EHR data are collected in a clinical environment, they

contain a broad population, and they can act as a practical bridge

between basic science and clinical practice because the data that

are available in an EHR represent what information can be, and

are in practice, measured by clinicians. The hope is then that the

use of this common data set will form a feedback loop where

clinically collected data suggest physiologic problems to solve,

which drives now physiologic understanding, which drives new

clinical treatments and measurements, that again motivate new

physiologic problems, etc.

Dynamical phenotyping
With a data set spanning a broad population over a long time

period, there are many options available for stratifying the

population into different categories that can be understood

physiologically. Here we develop a method based on the

dynamical differences of subpopulations, where dynamical differ-

ence is defined by inter-individual differences in signals generated

use nonlinear time series analysis techniques. As shown in Fig. 1,

there are two ways to conceive of dynamically phenotyping a

population. First, one can employ directed dynamical phenotyping

which begins by stratifying the population a priori (e.g., diabetics

and non-diabetics), generating signals for the different populations

that show difference, and then explaining the sources of those

differences. Second, one can employ undirected dynamical phenotyping

which begins with a complex population for which temporal

signals are calculated and then used to stratify the population. The

final step in both cases involves explaining the signal sources and

the source of the signal differences. We believe that oscillating

between these approaches will drive a hypothesis generation and

hypothesis refinement feedback loop that will further both clinical

and basic biological understanding.

Narrowing the scope, in this paper we are concerned with

understanding variations in endocrine dynamics in humans over a

time scale of days to weeks and how differences in glucose

dynamics on this time scale can be explained using mechanistic

glucose/insulin models [4] [5]. In Albers et al [6] we employed a

directed dynamical phenotyping approach using two populations,

glucose values from a population of 800,000 random patients, and

glucose values of a population of 43 tube fed, comatose patients in

an ICU setting. This paper demonstrated that while raw glucose

values could not be used to separate the two populations based on

their glucose dynamics, a derived value (the time-delayed mutual

information (TDMI), cf. section 0.4) could. Specifically, the TDMI

of the random and ICU populations differ in that the TDMI for

the random population does display a diurnal cycle, and that

diurnal cycle is driven by structured (conditionally random) eating

habits. These results were explained and confirmed using a

mechanistic glucose/insulin model [4], which in turn verified the

mechanistic physiologic model well beyond the context within

which it was originally designed to apply. Nevertheless, within the

population of 800,000 patients, there was diversity within the

TDMI-based diurnal signal. Whereas, Albers et al [6] represents a

directed dynamical phenotyping approach, this paper represents a

substantial refinement using an undirected dynamical phenotyping

approach aimed at understanding the nature of the diversity

within a population of random humans not controlled within an

ICU context. To explain the diversity of diurnal TDMI signal we

must use both a mechanistic glucose/insulin model and the full

breadth of the EHR data set via natural language processing

(NLP) analysis and manual review of patient records.

Materials and Methods

0.1 Ethics statement
This work was approved by the Columbia University Institu-

tional Review Board. Informed consent was waived by the

Institutional Review Board for this retrospective research.

0.2 Data assess statement
Unfortunately, the data for this study cannot be made publically

available because the detail and complexity of the data put it at

risk for re-identification. Similar data are publically available from

the PHYSIONET and MIMIC data repositories.

0.3 Methodological background
Adopting the undirected dynamical phenotyping approach

requires, as a starting point, dynamical signals that register

diversity within a population. Here we rely on two results from

Albers and Hripcsak [7] that provide the necessary distribution of

signals that provide the necessary diversity. The first result says that

the TDMI for a population can be computed via two different

ways of collecting the same measurements, and that the outcome

of those calculations are identical (up to bias) if and only if the

population is homogeneous (cf. conjecture 1 of Albers and

Hripcsak [7]). The second result, shown in Fig. 6a of Albers and

Hripcsak [7] shows that, for the EHR subpopulation used to

demonstrate the workings of the TDMI calculation in the EHR-

data context, the given subpopulation was heterogeneous when observed

over short time periods and homogeneous over longer time periods. That this is

Dynamical Phenotyping
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the case means that there is meaningful variation in the distribution of

TDMI values for patients in this population for time scales of 6hrs

and less. This in turn implies that we can stratify this patient

population by TDMI calculated over for time separations of 6hrs.

The primary foci of this paper are to: (i) begin to investigate

whether variation in predictability for a population, quantified by

the TDMI, can be used to stratify the population, and (ii) begin to

understand the meaning of the strata of populations cleaved by

predictability.

To stratify the EHR subpopulation and then understand the

strata, we will use four tools: (i) clustering of the TDMI

distribution; (ii), the TDMI variation of a mechanistic model of

glucose/insulin dynamics [4] [5] under parameter variation; (iii)
an NLP analysis of the patient notes; and (iv), a manual review of

the patient records. More constructively, we begin with the

distribution of TDMI values for a population of patients knowing

from previous work that the first order dependence of this

distribution is nutrition [6].

To separate the population based on the variation within the

TDMI distribution we cluster the TDMI distribution using flow-

based clustering (FBC) [8]. We then use the glucose/insulin model

to explain the variation observed in the TDMI from a mechanistic

modeling perspective. Finally, we use both NLP analysis and

manual review to interpret the meaning of the clusters based on

the patient notes and records to verify the results of the

comparison with the mechanistic model and to endow the clusters

with a clinical and physiologic interpretation.

0.4 Time-delay mutual information
The TDMI [9], [10] in its most simple form is given by:

I(xt,xt{dt)~{

ð
p(xt,xt{dt)log

p(xt,xt{dt)

p(xt)p(xt{dt)
dxtdxt{dt ð1Þ

where xt and xt{dt represent the same variable measured at t and

t{dt respectively; these collected pairs of variable form ensembles,

and p(:) denotes the probability density function (PDF) defined by

those ensembles. Note that the TDMI captures linear and

nonlinear correlations in time, which differs from, say, auto or

linear correlation calculations. Under most circumstances, the

TDMI is calculated for an individual. For reasons that will become

clear shortly, we want to calculate the TDMI for a population, and

for the individuals within the population. There are roughly two

different explicit means of calculating the TDMI for a population.

First, one can calculate an average TDMI, which is just an average

of the TDMI calculated for individuals; in this case (xt,xt{d)
would represent all the pairs of measurements separated by dt for

an individual. This calculation yields both a distribution of TDMI

values for the population, and a population average. Second, one

can calculate the TDMI for the aggregated population; in this case

(xt,xt{dt) represents a collection of all the intra-patient pairs of points in

the population of time series separated by a time dt aggregated together.

The average and aggregate TDMI for a population are equal if

and only if the populations are identical in distribution [7]. It is

known from previous work (cf., Fig. 6a of Albers and Hripcsak [7])

that the population we use in this paper is heterogeneous for dtƒ6hrs

and homogeneous for dtv12hrs, thus implying that on relatively fast

time-scales, the population appears diverse and can be stratified.

More practically, the TDMI is a unit-less quantity; a TDMI of 0
(within bias) implies that there is no correlation between sequential

values in a time series for a given dt. TDMI values begin to

become important when they exceed the expected bias associated

with calculating the mutual information, which is approximately 1
M

where M is the number of pairs of points used to estimate the

TDMI (*0:001 in this experiment). With a perfect correlation

between sequential values, the TDMI will be equal to the entropy

(or auto-information) of the series, which is numerically equal to

the TDMI at dt~0 (and is calculated automatically as part of the

experiment). In this experiment the entropy was about 0:85 and

represented the maximum TDMI. (In most of our experiments,

the entropy is in the 0:5 to 2 range.) Note that perfect correlation

of a constant function (implying PDFs that are d functions) yields

a TDMI of zero for all dt. Finally, to calculate the TDMI, one

must estimate the joint and marginal PDFs, here we used a kernel

density estimation (KDE) routine [11] implemented on MA-

TLAB.

0.5 The glucose/insulin model
We use the model developed by Sturis et al [4] which consists of

six ordinary differential equations (ODEs), specifically:

dIp

dt
~f1(G){E(

Ip

Vp

{
Ii

Vi

){
Ip

tp

ð2Þ

dIi

dt
~E(

Ip

Vp

{
Ii

Vi

){
Ii

ti

ð3Þ

dG

dt
~f4(h3)zIG(t){f2(G){f3(Ii)G ð4Þ

and a three stage linear filter:

dh1

dt
~

Ip{h1

td

ð5Þ

dh2

dt
~

h1{h2

td

ð6Þ

dh3

dt
~

h2{h3

td

ð7Þ

where the state variables correspond to: Ip, plasma insulin; Ii,

remote insulin; G, glucose; and h1, h2 and h3 which corresponds to

three parameterized delay processes. The major parameters

include: (i) E, a rate constant for exchange of insulin between

the plasma and remote compartments; (ii) IG , the exogenous

(externally driven) glucose delivery rate; (iii) tp, the time constant

for plasma insulin degradation; (iv) ti, the time constant for the

remote insulin degradation; (v) td , the delay time between plasma

insulin and glucose production; (vi) Vp, the volume of insulin

distribution in the plasma; (vii) Vi, the volume of the remote

insulin compartment; (viii) Vg, the volume of the glucose space; (ix)

f1(G)~
Rm

1{exp( {G
Vgc1

za1)
, insulin secretion; (x)

f2(G)~Ub(1{exp(
{G

C2Vg

)), insulin-independent glucose utiliza-

tion; (xi) f3(Ii)~
1

C3Vg
(U0z

Um{U0

1z(kIi)
{b

), insulin-dependent glu-

cose utilization (k~
1

C4

(
1

Vi

{
1

Eti

)); and (xii) f4(h3)~
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Rg

1zexp(a(
h3

C5Vp
{1))

, insulin-dependent glucose utilization.

One of the major advancements in the above model over more

minimal models is how glucose,
dG

dt
is modeled. Glucose is added

both by exogenous nutrition that is independent of insulin (e.g., via

eating), IG , and by insulin dependent processes controlled by the

liver via glycogenolysis and gluconeogenesis (e.g., via exercise

[12]). The rate at which glucose is added to the blood by liver-

related processes is controlled td , the delay time between plasma

insulin and glucose production. Similarly, glucose is removed by

insulin independent glucose utilization, f2, and insulin dependent

glucose utilization, f3.

The meaning and nominal values of all these variables, except

IG which is discussed below, and constants are summarized in

table 1. Note that in Sturis et al [4] they did perform a sensitivity

analysis, meaning that they numerically demonstrated that the

dynamic types (e.g., periodic orbit, fixed point, etc.) were stable under

small parameter perturbations.

The delivery of nutrition or the exogenous glucose delivery rate, IG(t),
is an external driving and is the most dominant force in glucose/

insulin dynamics. Previously we have considered five different

feeding patterns [6]. Of those five different feeding patterns, here

we will use the noisy-periodic individual because this nutrition pattern

most accurately represents a human population eating regular, but

not exactly periodic, meals.

To construct mealtime feeding, define the mealtime set

M~fm1, � � � ,mng, where the mi’s represent times over a 24-hour

interval, and n is the number of meal times within a 24-hour

period. The exogenous glucose delivery rate at the current time, tc,

is defined by a function:

IG(tvtc)~
XN

i

Ije
k

t{mi ð8Þ

where Ij is the peak rate of delivery of glucose for a given

individual j at time mi, N~#fmivtcg represents the total

number of meals that have passed by time t, and k is the decay

constant (k~0:5). The decay constant determines that the meal is

digested over two hours, a time that is considered realistic [4].

Next, fixing m1~8, m2~12, and m3~18, define the mealtimes of

the noisy individual, M~½m1zn1(k),m2zn2(k),m3zn3(k)�, where

ni(k) is a uniform random variable on the interval ½{1,1� and k

represents an integer day (implying that ni changes every day).

Formally the noisy-periodic individual, IG,npi ), is defined by:

IG,npi(t)~
XN

i

Ie
k

t{mi ,I~216mg=min,mi[M ð9Þ

The first statistical order, the TDMI mean signal per dt bin, was

accurately reproduced for a broad EHR population [6] by the

model we use here. Moreover the model predicted the difference

between continuously (enterally/tube) fed patients and patients

who acquired nutrition more normally [6], implying both that the

model represents humans reasonably well and that nutrition is the

most important factor driving the TDMI signal. Here we are really

working to understand the higher order statistical factors that

affect the predictability of glucose as quantified by the TDMI —

meaning, we are trying to understand the sources of variance in

the TDMI as they relate to human dynamics and health.

The ODEs were integrated over time-periods ranging from nine

days to three weeks. A standard fourth-order Runge-Kutta

integration routine, with a step-size of 10{4, was used.

0.6 Flow-based clustering
Clustering a raw time series is relatively uncommon and can be

complex because nonstationary and measurement properties

(frequency, number of measurements, non-uniformity of measure-

ments, etc.) can affect the ability to resolve modeled states and can

affect the stability of parameter fittings of time series. If system

parameters change in time, enough data must be collected and the

model must be fit over time scales short enough such that the

system is essentially stationary. Moreover, many models can be

unstable relative to small changes in parameters or data; when

using real data that is constrained by the ability to measure, the

instability in models can be exacerbated. For example, a time

series fit to a polynomial function is often unstable — small

perturbations in parameters can wildly change the qualitative

observed dynamics [13]. Therefore, in the time-series context

what is more often done, and what we do here, is to derive a value

from the time series that is stable (e.g., TDMI) and then cluster

that value explicitly [14] [15]. We have applied a similar

methodology in the context of cross-correlation coefficients using

hierarchical clustering [1]; not surprisingly in that work we found

that the clusters could be dependent on clustering method and

non-hierarchical methods such as k-means did not yield

interpretable results.

Given a starting point of stationary collections of features, the

clustering problem consists of partitioning a set of observations

into p clusters Ck with common traits [16]. The most general way

to characterize these traits is through a probability density rk(x),
which specifies how likely it is to find a sample with observables x
in the class Ck.

Given one such probability density for each class, the posterior

probability p
j
k that the observation xj belongs to the class Ck

follows from Bayes formula,

p
j
k~

p
j
k rk(xj)X
q

pj
q rq(xj)

: ð10Þ

Our procedure [8], flow-based clustering (FBC), is based on fluid-

like flows in feature space that cluster a set of observations by

transforming them into likely samples from p isotropic Gaussians,

where p is the number of classes sought. The map yk(x) that

transforms the density rk(x) of class k into a Gaussian m(y)
automatically provides an estimation of the underlying density,

through the change of variables formula

rk(x)~Jk(x)m(yk(x)), ð11Þ

where Jk(x) is the Jacobian of the map.

The parameter fitting is carried out using an expectation-

maximization (EM) approach. Throughout the algorithm, each

observation is softly assigned to each class, through the posterior

that it belongs to it under the current density estimation for the

various classes — this is the E step. The observations act as

Lagrangian markers, or free floating buoys, that move with the

flows at different rates depending on the current strength of the

assignment to the corresponding class that determines the strength

and direction of the flow — this is the M step. This procedure

allows us to integrate the expectation-maximization methodology

Dynamical Phenotyping
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into a descent framework, based on the likelihood function

L~
X

k

Lk, where Lk~
X

j

p
j
k log(rk(xj)): ð12Þ

In the E step, the procedure starts by assigning each observation j

a nearly uniform prior pi
k, with a small random bias towards one

class so as to break the symmetry among classes. Then, in the M

step, a map depending on parameters b is proposed, and the

parameters are chosen so as to maximize the likelihood L. As the

observations start to cluster into classes as the EM is iterated, their

posteriors become sharper; it is these posteriors p
j
k that weight

each observation in the likelihood function and specify which data

belong to which class. The plot in Fig. 2(e) depicts the final value of

L (the mean among all Lk) for various numbers of clusters.

0.7 Dynamical phenotyping using EHR data
In the introduction we proposed the concept of dynamical

phenotyping (cf. Fig. 1) which we then split into directed and

undirected types of dynamical phenotyping. In the context of

EHR data, both of these approaches have pitfalls. Directed

dynamical phenotyping is difficult even when equipped with an

intuitive phenotype construction because EHR data contain

complex biases [2], are collected in uncontrolled environments,

have complex reasons for existence whose intent for measurement

may carry unintended consequences [1], and do not uniformly

represent all individuals. For example, one may want to contrast

glucose dynamics in diabetics (types 1 and 2) with healthy non-

diabetics. However, there is a great deal of diversity in the health

state and glucose management within the various diabetic

populations; as we will see, enough to drown out a diabetic/

non-diabetic signal. Moreover, uniformly healthy non-diabetics

are rarely measured and thus do not have enough data to be

compared with sicker patients who are measured more frequently.

Finally, this approach builds in intuitive bias a priori which can

limit results and potential for discovery. Similarly discovering a

stratification of a complex population using undirected dynamical

phenotyping can be difficult because of the potential diversity

within the population; the lack of a narrowed population that can

induce bias that can confound results simply because there can be

too many categories to resolve for a given data set. To mitigate

these pitfalls, we advocate for oscillating between both approaches

to refine the populations and narrow the diversity of potential

sources of signals while allowing for new, surprising information to

Table 1. Full list of parameters for the glucose/insulin model [4] used in this paper; note that these are the model parameters we
us in this paper.

Glucose model parameters and their TDMI relationships

Parameter nominal value meaning linear correlation, p-value linear regression (slope) effect on TDMI

Vp 3 l plasma volume 0.44, 0.05 4.6610256661024 —

Vi 11 l insulin volume 0.28, 0.21 2.46102461025 —

Vg 10 l glucose space 0.9, 1028 46102461024 8

E 0.2 l min21 exchange rate for insulin between
remote and plasma compartments

0.15, 0.5 1.3610256661026 —

tp 6 min time constant for plasma insulin
degradation (via kidney and liver
filtering)

20.67, 1023 21610246861024 :

ti 100 min time constant for remote insulin
degradation

0.13, 0.57 1610256661024 —

td 12 min delay between plasma insulin and
glucose production

20.82, 1024 25610246261023 :

Rm 209 mU min21 linear constant affecting insulin
secretion

0.72, 1024 21610246761024 :

a1 6.67 exponential constant affecting insulin
secretion

0.88, 1027 7.4610246361023 8

C1 300 mg l21 exponential constant affecting insulin
secretion

0.87, 1027 96102463610210 8

C2 144 mg l21 exponential constant affecting IIGU 20.04, 0.86 4610266661024 —

C3 100 mg l21 linear constant affecting IDGU 0.8, 1026 25610246261023 :

C4 80 mU l21 factor affecting IDGU 0.16, 0.47 2610246761024 —

C5 26 mU l21 exponential constant affecting IDGU 0.76, 1025 1610246761024 —

Ub 72 mg min21 linear constant affecting IIGU 0.87, 1027 6610246261023 8

U0 4 mg min21 linear constant affecting IDGU 0.85, 1027 3610246161023 8

Um 94 mg min21 linear constant affecting IDGU 0.028, 0.9 2610266661024 —

Rg 180 mg min21 linear constant affecting IDGU 20.86, 1027 22610236961023 :

a 7.5 exponential constant affecting IDGU 20.84, 1026 26610246361023 :

b 1.77 exponent affecting IDGU 20.25, 0.26 22.4610246661024 —

doi:10.1371/journal.pone.0096443.t001
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be found. Previously, neither of these approaches have been

concretely applied.

0.7.1 Columbia University Medical Center data set

composition. The data set we use here was not filtered or

carefully selected in anyway other than the criteria that the

patients are the 100 patients with the most glucose values in the

Columbia University Medical Center (CUMC) EHR at the time of

collection.

There is considerable diversity within this data set; two example

time series, one with high TDMI and one with low TDMI are

shown in Figs. 3(a) and 3(b) respectively. The mean length of

record is 8:6 years with a maximum of 18 years and a minimum of

100 days; the kernel density estimate (KDE) of the lengths of

records is shown in Fig. 4(a). The mean number of measurements

per individual is 1600 with a minimum of 1200 and a maximum of

3700; the KDE of the number of measurements can be found in

4(b). There is very little correspondence (e.g, linear correlation)

between number of measurements and length of record or glucose

value [17]; for example, the individual with the most measure-

ments had one of the shortest records in time. The mean-mean

glucose value for this data set was 165 mg/dl with a maximum

mean glucose of 235 mg/dl and a minimum mean glucose of 105
mg/dl; the KDE of mean glucose values per individual can be

found in Fig. 4(c).

Because EHR data are not collected in a controlled environ-

ment, it is important to give a flavor of the complicated nature of

the composition of EHR data as a data source. To demonstrate

this, consider the hypothesis that diabetics would have the most

frequently recorded glucose values. While a careful verification of

this hypothesis is a substantial research question, we can make a

rough inference into the validity of such a statement. Within this

data set, 75% have at least one billing code for diabetes [7]. Thus,

at least 25% of these patients are not diabetic at all. One can

imagine many plausible reasons for this. One example might be

that a substantial portion of the glucose measurements come as

part of a panel with seven other measurements, so many of the

glucose measurements could be measured as part of a routine for

caring for particularly sick patients, such as patients admitted for

congestive heart failure. Thus, stratifying such data could be done

in a nearly infinite number of ways. The point of this discussion is

that EHR data are unpredictably complex and surprising and thus

making any unverified assumptions about EHR data can lead to

plausible, but false conclusions.

The diversity according to billing, or ICD9 codes can be found

in Albers et al [7].

Finally, the patient records we study include patient notes that

consist of both structured (e.g., forms) and unstructured text

documenting events such as admissions, discharges, surgeries,

radiology visits, etc. Of the 100 patients, 97 of the patients had

notes (we do not know whether the remaining three patients had

no notes, or whether these patients’ notes were not accessible,

which can happen for a variety of reasons). A full description of the

composition of the notes will be discussed in the results section.

Results

0.8 Clustering the population by the TDMI distribution
for dt~6hrs

The distribution of TDMI values, shown in Fig. 2(a), is multi-

modal, implying that that there is separable diversity within the

population that is captured by the TDMI. The first step toward

understanding the source of the multi-modality is to cluster the

modes, which we will accomplish using FBC. Three examples

(recall that FBC is dependent on the initial conditions of the

clustering routine) of the resulting FBC of the TDMI distribution

assuming two, three and four modes are shown in Figs. 2(b), 2(c),

Figure 1. Depicted above are the two different dynamical phenotyping strategies, directive dynamical phenotyping where the
population is stratified and then characterized by differences in dynamics, and undirected dynamical phenotyping where a complex
population is stratified by differences in dynamics.
doi:10.1371/journal.pone.0096443.g001
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and 2(d) respectively. The respective variation in the distribution

of the log-likelihood for the different models (e.g., the goodness of

fit) with differing number of clusters is shown in Fig. 2(e). Based on

these results one can observe that: (i) the variance is minimized

with 2 and 3 clusters, and is relatively high for 4 clusters; (ii) the

log-likelihood is maximized for 4 clusters; and (iii) there are big

jumps in the goodness of fit between 1 and 2 clusters, and 3 and 4
clusters and there is a relative plateau for 2 and 3 clusters. This

analysis yields the conclusion that four clusters will yield the best

separation, but the difference between 2 and 4 clusters is not

substantial, especially given the fact that the log-likelihood must

increase when the number of clusters is increased.

Figure 2. Depicted above are: (a) the histogram of the raw TDMI of glucose time series for dt~6 hrs for the population of 100
patients; (b) the 2 mode FBC model of the TDMI distribution; (c) the 3 mode FBC model of the TDMI distribution; (d) the 4 mode FBC
model of the TDMI distribution; (e) variation in the distribution (as quantified by the mean and variance) of the log-likelihood for
models with 1–4 modes.
doi:10.1371/journal.pone.0096443.g002
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Figure 3. Depicted above are: (a) the glucose time series of an individual with high TDMI, 0:4, in the dt~6hrs bin — this individual
falls into cluster two; (b) the glucose time series of an individual with low TDMI, 0:1, in the dt~6hrs bin — this individual falls into
cluster one.
doi:10.1371/journal.pone.0096443.g003

Figure 4. Depicted above are: (a) KDE of the length of individual records; (b) KDE of the number of measurements per individual;
(c) KDE of the mean glucose per record.
doi:10.1371/journal.pone.0096443.g004
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Visual inspection of the plots of the empirical and model

distributions yields a different interpretation. Begin by noting how

representative the final distribution of each fit is with respect to the

original distribution; the original distribution seems to have two

peaks and a single long tail, which is mimicked well by both the 2
and 3 mode models. Furthermore, the third mode in the three

mode model, and the fourth mode in the four mode model both

model the tail of the distribution, yet allowing for substantial

overlap in probability with the other classes. This implies that the

two mode model may be the most useful for separating the

populations. In all cases, there is substantial overlap in probability

between distributions. Concentrating on the two mode model

(Fig. 2(b)), note how much of probability of mode one overlaps

with the support (including the location of the maximum

probability) of the second mode. This implies that the middle of

the TDMI distribution will likely be difficult to separate into

different classes because there is too much probability mass

overlap between the modes. This interpretation makes intuitive

sense given that much of the mass of the TDMI distribution is near

the overlap between modes and that there can be many reasons for

a given TDMI value.

It is important to remember that we are, in essence, attempting to

understand the mapping between a one-dimensional TDMI distri-

bution or value and a physiologic explanation that may be of much

higher dimension. In this context, over-fitting with too many clusters

will likely yield poor results. Because of this, it is likely that the best

stratification we can achieve with a single variable will be bi-modal

and will correspond to individuals with high and low TDMI

values. Therefore, in this work we will concentrate on under-

standing two phenotypes, patients with high and low TDMI

values.

0.9 Interpreting the meaning of the dynamical clusters
0.9.1 Static analysis of the dt~6hrs TDMI

distribution. Before pushing on to the dynamical explanations

for the clusters, it is important to rule out static explanations for the

TDMI clusters. Potential explanations for the variation in the

TDMI peak at dt~6hrs could be due to correlations between a

static variables such as the mean, standard deviation, or number of

glucose measurements per patient. We find that there is no

significant linear relationship between the TDMI and either the

mean glucose (LC of 0:17, p-value for the hypothesis of no

correlation against their being correlation, 0:1) or the standard

deviation of glucose values (LC of 0:09, p-value for the hypothesis

of no correlation against their being correlation, 0:36). While there

does appear to be a relationship between the TDMI and the

number of measurements per patient (p-value for the hypothesis of

no correlation against their being correlation, 0:01, number of

measurements ranged from approximately 4000{1500 per

patient), the relationship was extremely weak (LC of {0:25).

The overall point is that glucose value or variance is not a good

proxy for predictability for this set of patients [17].

0.9.2 Dynamical systems, mechanistic physio-model

analysis of the dt~6hrs TDMI distribution. To deduce

the physiologic mechanisms that can be the source of the broad

multi-modality of the TDMI distribution shown in Fig. 2(a), we

observe how the TDMI distribution, estimated using time-series

generated by the mechanistic physiologic model introduced in

section 0.5, varies when the parameters of the mechanistic

physiologic model are varied. This analysis also yields predictions

of fine scale structure in the TDMI distribution that cannot be

resolved with the data we use in this paper, but that will hopefully

be resolvable using a more refined and filtered data set in the

future.

Variation of TDMI with variation of parameters: To

understand what the TDMI, which quantifies predictability,

implies about physiology, we must understand which variables

control the width of the TDMI distribution (i.e., the variance) for a

given time separation. We investigate this by performing a

parameter variation TDMI-based analysis where we vary each

of the 20 parameters of the model systematically within +10% of

their nominal values (with 20 discrete increments), and then

observe the changes in the TDMI. The effects of the variation of

parameters have on the TDMI are then quantified in two steps.

First, we calculated the linear (Pearson’s) correlation coefficient

(LCC) and its associated p-value to ascertain the strength of the

linear relationship between the parameter variation and the

TDMI. The closer the LCC is to +1, the tighter the distribution

lies about the line of best fit whereas the closer the LCC is to zero,

the weaker the linear relationship is (note that an LCC close to

zero essentially implies no linear relationship, but nothing else).

Further recall that roughly speaking, a p-value of v0:05 indicates

that the linear correlation was significantly different from zero.

Second, we calculated a linear fit (via standard linear regression)

between the TDMI and the percentage change in the parameters,

to assess how variation changed the TDMI — whether increasing/

decreasing a given parameter increased/decreased or did not

change the TDMI. The results are shown in Fig. 5 and detailed in

table 1.

The results of this analysis are shown in Fig. 5 which details the

effect the variation in parameters had on the TDMI distribution.

After processing the sum of the parameter variation, the following

conclusions can be drawn. TDMI increases with insulin indepen-

dent glucose utilization (IIGU) (C2, Ub), insulin secretion (Rm, C1,

a1), plasma insulin degradation rate (filtering rate by liver and

kidneys) (tp), the delay between plasma insulin and glucose

production (td ), and glucose volume Vg. In contrast, the TDMI

decreases with insulin dependent glucose utilization (IDGU) (in

general) C3, C4, C5, U0, Um Rg a, b. The faster insulin is filtered,

the faster glucose is utilized independent of insulin, and longer the

delay between plasma insulin and glucose production, the higher

the predictability of glucose (this in turn implies faster glucose/

insulin dynamical response). The more the system is dependent on

insulin to cope with glucose, the slower the filtering of insulin, and

the faster the reaction between plasma insulin and glucose

production (e.g., by the liver), the less predictable the glucose.

From a more dynamics perspective, the faster the glucose

dynamics, meaning the quicker the oscillations between high

and low levels of glucose coupled with a faster damping of the

oscillations, the more predictable the glucose time series.

Mechanistic explanation of the variation in the TDMI:
Broadly, there are three dynamical changes that are controlled by

the parameters in the parameter ranges of +10%: (i) a change in

the amplitude of the finite-time steady state oscillation of glucose;

(ii) a change in the damping rate on the finite-time oscillation, which

decreases the amplitude of oscillation and more importantly,

induces a bifurcation in finite-time glucose dynamics from a periodic

orbit to a fixed point; and (iii) a change in the mean glucose value.

To observe these dynamical changes in action, consider five test

parameters, Ub, C1, tp, td , and Rg which control (i) IIGU,

(ii)insulin secretion, (iii) kidney/liver filtration rates, (iv) delay

between plasma insulin and glucose production, and (v) IDGU

respectively.

(i). Insulin independent glucose utilization (IIGU).
Figure 6 shows that increases in IIGU (Ub) decreases the

amplitude of the steady state oscillations, making the glucose

distribution less like a uniform distribution, and thus
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increasing the TDMI (predictability). For parameter

variation of +10% the TDMI varies about an order of

magnitude (10{3 to 10{2); thus variation in IIGU has a

reasonably strong effect on predictability.

(ii). Insulin secretion. Figure 7 shows that increases in C1,

which decreases insulin secretion, changes two dynamical

features of glucose. First, increases in C1 increase the

mean glucose value which does not change the TDMI;

changing the mean glucose level likely has a significant

effect on the health of the individual. Second, increases in

C1 increase the rate of damping of the steady state oscillation,

thus changing the short term dynamics of the system from

an oscillation to a fixed point. Changing the damping rate,

and thus the finite-time dynamics, has a substantial effect on

the TDMI by making the glucose distribution more of a

sharp, unimodal peak that, combined with the dynamics,

induces a higher TDMI (predictability). For parameter

variation of +10% the TDMI varies about an order of

magnitude (10{3 to 20{2); thus variation in insulin

secretion has a reasonably strong effect on predictability.

(iii). Kidney and liver function and filtering rate.
Figure 8 shows that increases in tp, which increases the

filtration rate in the kidney/liver, changes two dynamical

features of glucose. Specifically, increases in tp decreases

the mean glucose value and increases the amplitude of the

steady state oscillation. Thus, increases in tp have

approximately the opposite effect of increases in IIGU.

Decreasing the mean glucose value does little to change the

TDMI; it likely has a significant effect on the health of the

individual. In contrast, increasing the amplitude of

oscillations makes the glucose distribution more like a

uniform distribution, which, combined with the dynamics,

induces a lower TDMI. For parameter variation of +10%
the TDMI varies by about a factor of 3 (0:05 to 0:015);

thus variation in kidney and liver function and filtering rate

has a relatively weak effect on predictability.

(iv). Delay between plasma insulin and glucose pro-
duction. Figure 9 shows that increases in the delay

between plasma insulin and glucose production (td )

increase the amplitude of the steady state oscillations while

slowing the glucose dynamics, making the glucose

distribution more like a uniform distribution, and thus

decreasing the TDMI. The effect of increasing the delay

between plasma insulin and glucose production is the

opposite from the effect of increasing IIGU. For parameter

variation of +10% the TDMI varies about an order of

magnitude (10{2 to 10{3); thus variation in the delay

between plasma insulin and glucose production has a

reasonably strong effect on predictability.

(v). Insulin dependent glucose utilization (IDGU).
Figure 10 demonstrates how changes in the IDGU have

a dramatic effect on the TDMI and on the glucose

dynamics. The IDGU has several parameterizations, all of

which are self consistent; however, to simplify the analysis,

we will concentrate on Rg, which affects the IDGU in a

linear, and relatively simple way (via f4). Decreasing Rg

from the nominal value sharply increases the damping on

the glucose and changes the finite time dynamics from a

periodic orbit to a fixed point, thus greatly increasing the

TDMI. Similarly, increasing Rg from the nominal value

increases the amplitude of the steady state oscillation,

decreasing the TDMI. It is possible that continued increase

Figure 5. Parameter variation plot versus predictability (TDMI) for selected parameters.
doi:10.1371/journal.pone.0096443.g005
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in the Rg would eventually decrease the TDMI. For

parameter variation of +10% the TDMI varies about an

order of magnitude times about 4 (40{2 to 10{3); thus

variation in IDGU has a relatively strong effect on

predictability.

The surprisingly consistent results of the parameter variation

analysis are shown in table 2. The mean glucose value does not

have a strong effect on the TDMI more or less by definition when

the mean is constant for the entire patient record. The TDMI is elevated when

the marginals are dependent and are not uniform distributions. Because of

this feature, changing the amplitude of the finite-time steady state,

or the decay rate to a different finite time steady state (a fixed

point), do have a substantial effect on the TDMI. However, it is

the change in the amplitude of oscillation of the finite-time steady

state oscillation that has the biggest effect on the TDMI. Because

the strength of the oscillation is determined largely by the delayed

feedback control within the endocrine system, the TDMI is a proxy

for how well the endocrine system is maintaining the finite-state

oscillation. Specifically, the TDMI seems to be minimized when

the oscillation is strong (e.g., large amplitude, no decay to a fixed

point). Put into more biological terms, the faster insulin is filtered,

the faster glucose is utilized in a way that is dependent on insulin,

and the faster the reaction between plasma insulin and glucose

production (e.g., via the liver), the lower the predictability of

glucose. The more insulin is secreted, the more glucose is removed

independent of insulin, and the slower insulin is filtered by the

kidneys and liver, the higher the predictability of glucose.

The analysis above assumes that the model patients are

stationary in the sense that their dynamic type does not vary

Figure 6. Depicted above are: (a) glucose time series for three different values of a linear constant affecting IIGU, Ub; (b) glucose
time series density for three different values of a linear constant affecting IIGU Ub.
doi:10.1371/journal.pone.0096443.g006

Figure 7. Depicted above are: (a) glucose time series for three different values of an exponential constant affecting insulin
secretion, C1; (b) glucose time series density for three different values of an exponential constant affecting insulin secretion, C1.
doi:10.1371/journal.pone.0096443.g007
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because their parameters do not vary in time. In real situations

captured in EHR data, this assumption is often violated. For

instance, as is explained in Ref. [7], a single patient whose mean

glucose has large variation can have a profound effect on the

TDMI. Specifically, the TDMI can capture and represent the

different mean glucose steady states (e.g., a mean of 100mg=dl

versus 500mg=dl) while missing many of the other, more subtle

effects on the TDMI due to parameter variation. In this way

changes or differences in both insulin secretion and liver and

kidney function can dominate the estimated TDMI.

Extended TDMI analysis of two clinically important
parameters: kidney function and insulin secretion: In a

practical sense, mean levels of glucose are important. For instance,

clinicians sometimes conceive of glucose as being in gross

categories (low, normal, high, etc.) in accordance with the acuity

of the patient. Thus far, none of the parameter variations we have

induced changed the mean glucose level outside of normal ranges.

What we did do is achieve an understanding of how variations in

the 20 parameters affect the model glucose dynamics, glucose

mean, and the TDMI. Nevertheless, to drive the model to have

glucose values ranges that indicate differences in endocrine health

that would appear in EHR data, we must alter the parameters that

affect the mean glucose values more drastically. The two

parameters that control mean glucose levels in the most acute

way are kidney/liver function (tp) and insulin secretion (C1).

Focusing on these parameters, Fig. 11 depicts the TDMI variation

Figure 8. Depicted above are: (a) glucose time series for three different values of a time constant for plasma insulin degradation
(via kidney and liver filtering), tp; (b) glucose time series density for three different values of a time constant for plasma insulin
degradation (via kidney and liver filtering), tp.
doi:10.1371/journal.pone.0096443.g008

Figure 9. Depicted above are: (a) glucose time series for three different values of the delay rate between plasma insulin and
glucose production, td ; (b) glucose time series density for three different values of the delay rate between plasma insulin and
glucose production, td .
doi:10.1371/journal.pone.0096443.g009
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when these two parameters are varied within z200={100% of

their nominal values (note, neither parameter can be decreased by

more than 100% of its nominal value). Further note that insulin

(Ip) must remain positive; if we reduce Ip to a one dimensional

ODE, qualitatively Ip~0 is either a attractor or a repellor.

Large changes in insulin secretion: As can be seen in

Fig. 12, large changes in insulin secretion (C1) change both glucose

dynamics and glucose levels. Specifically, even a 130% increase in

C1 can drive glucose into an unhealthy range. Moreover, with the

increase in mean glucose also comes drastic changes the glucose

dynamics from a weakly damped oscillator that relaxes to an

oscillatory state to a very highly damped oscillator that relaxes

single value. Further increases in C1 do generate bifurcations (cf.

Fig. 11), but the overall dynamics and mean glucose effects change

in a roughly monotonic way. Large decreases in C1 do not change

the dynamics nor the mean glucose value in a dramatic way (note,

there is a lower bound for C1). More mechanistically, focusing on

the f1 term that controls insulin secretion, increases in C1 make f1

more negative per a fixed glucose (G) value, thus removing insulin

from the blood more quickly, forcing both the glucose levels to rise

and the distribution of glucose values to become more peaked (cf.

Fig. 12). The effect increases the TDMI but not necessarily

monotonically.

Large changes in kidney and liver function and
filtering rate: As observed in Fig. 13, decreases in kidney and

liver function and filtering (tp) have a sharp effect on the dynamics

and the glucose levels. For instance, an 80% decrease in tp drives

the mean glucose value up into the unhealthy range. Moreover, as

was the case with increases in C1, the increase in mean glucose

accompanies drastic changes the glucose dynamics from a weakly

damped oscillator that relaxes to a periodic-like orbit to a very

highly damped oscillator that relaxes to a single value. In contrast,

a 190% increase in tp does little to change the glucose dynamics,

although the glucose levels are driven down to some extent.

Focusing more mechanistically on the term that governs how the

kidneys and liver remove insulin from the blood,
Ip

tp

, increases in tp

from zero increases the strength of the attraction of plasma insulin

(Ip) to zero. Therefore, increases in tp increases the rate at which

insulin is removed from the bloodstream which forces both the

glucose levels to rise and the distribution of glucose values to

become more peaked (cf. Fig. 13). The effect of decreasing tp

increases the TDMI monotonically.

Summarizing, decreases in insulin secretion (f1 via increases in C1)

and decreases in the rate plasma insulin is filtered (
Ip

tp

via decreases in

Figure 10. Depicted above are: (a) glucose time series for three different values of a linear constant affecting IDGU, Rg; (b) glucose
time series density for three different values of a linear constant affecting IDGU, Rg.
doi:10.1371/journal.pone.0096443.g010

Table 2. Summary of the effects of various key parameters on the glucose dynamics, and TDMI that are observed when varying a
parameter from 10% below the nominal value to 10% above the nominal value.

Glucose model parameters and their TDMI relationships

Physical effect parameter amplitude of oscillation decay rate mean glucose effect on TDMI

IIGU Ub 8 : 8 — 8

Insulin secretion C1 8 : 8 8 8

Kidney/Liver filtration tp 8 8 — : :

Delay between plasma insulin and
glucose production

td 8 8 : — :

IDGU Rg 8 8 : —

doi:10.1371/journal.pone.0096443.t002
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tp) have similar effects as both decrease the amount of insulin

present in the blood, increasing the amount of glucose in the

blood, and destroying the oscillatory steady state of plasma

glucose. This effect is confirmed by the effects on the TDMI

shown in Fig. 11. Nevertheless, visual inspection of Figs. 12 and 13

shows that while there is a change in the mean, the glucose

dynamics are affected slightly differently. Specifically, decreases in

tp retains a part of the oscillation in glucose while increases in C1

induces an immediate return to the fixed point steady state.

Figure 11. Depicted above are: the variations in TDMI for insulin secretion, C1, and kidney/liver function, tp, when varied by up to
200% of their nominal values. Note that both undergo at least one bifurcation (qualitative state change) over this variation in parameters.
doi:10.1371/journal.pone.0096443.g011

Figure 12. Depicted above are: (a) glucose time series for different values of the constant affecting insulin secretion, C1; (b) glucose
time series density for different values of the constant affecting insulin secretion, C1.
doi:10.1371/journal.pone.0096443.g012
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0.9.3 NLP-based analysis of the dt~6hrs TDMI
distribution. We extracted all the notes of the patients in

our data set and experimented with their content similarity,

roughly defined as the amount of content overlap between two

records. The goal was to assess whether it is possible to separate

the patients in the data set based on the content of the notes

written in their longitudinal record. The records had approxi-

mately 1,400 notes on average (250 min, 5800 max, 1,100 stdev)

and spanned 8:9 years on average (0:3 min, 20 max, 6:4 stdev).

To test whether patients can be separated based on their clinical

characteristics, we extracted all mentions of disorders in their

longitudinal records [18]. Disorders include names of conditions

(e.g., hypertension) as well as signs, symptoms, and findings (e.g.,

edema, fever). Overall, the vocabulary of disorder concepts

extracted from the notes in our dataset consisted of 5,500
concepts. Longitudinal records had an average of 700 different

disorders (270 min, 1200 max, 220 stdev).

When comparing the space of disorder mentions across all

patients through a pairwise cosine similarity metric [19], records

could not be separated according to their cosine similarity. For

instance, consider two clusters, where one cluster contains the 10
records with the highest TDMI, and the other contains the 10
records with the lowest TDMI. We indexed the disorders in all the

notes of the patients according to their TF � IDF scores [19]. The

TF � IDF score for a given disorder d and a particular patient p is

a composite score which combines two weights: (i) the term

frequency (TFd,p) of the disorder in a particular patient (i.e., how

many times d is mentioned in the patient record p); and (ii) the

inverse document frequency (IDFd ) defined as log(N=DFd ),
where N is the number of patients in the datasets, and DFd is

the document frequency of d, that is the number of patient records

in the dataset which mention the disorder d . As such, the

TF � IDF score for d in patient p is low either if it is an infrequent

disorder in the record or if many patient records in the dataset also

mention the disorder. Conversely, the TF � IDF score will be high

if a disorder is frequently mentioned within a record and the

disorder is rarely mentioned in the records in the dataset.

We computed all pairwise similarities amongst the 20 records.

We found that the average intra-cluster similarities (the 10 records

in cluster 1 had on average a pairwise similarity of 0:06, the 10
records in cluster 2 had on average a pairwise similarity of 0:05)

were the same as the average inter-cluster similarity (on average

0:06), that is the similarity values did not correlate with TDMI.

The same result was observed when indexing only the Signout and

Progress notes in the records rather than all the notes (these note

types are written by clinicians when a patient is in the hospital and

summarize all the events during a particular shift), and when

indexing based on all the words in the notes rather than disorder

mentions.

The automated analysis of the patient narratives shows that

basic, time-agnostic metrics do not allow to compare patients

effectively, when trying to separate patients according to their

stability in time.

0.9.4 Manual-review-based analysis of the dt~6hrs TDMI
distribution. To attain a clinical interpretation of the TDMI

clusters, we (GH and AP) performed a blind manual review of

select patient records.

To begin, GH was given two lists of patient medical record

numbers (MRNs) to review and cluster, data set a which had 20
patients selected randomly from the four cluster grouping (5 per

cluster), and data set b, which had 20 patients randomly selected

from the two cluster grouping (10 per cluster). The patients in each

data set were randomly ordered, and GH was not shown the

TDMI values. GH then reviewed the electronic medical records of

each patient and grouped them according to factors likely to be

correlated with glucose dynamics. This included the patient’s age,

type of diabetes (type 1 or type 2), glucose levels, medications,

severity of illness, feeding type (intravenous, enteral, normal, etc.),

state of pancreas (e.g., failing, not failing, etc.), and other diseases

(particularly those that affect glucose). GH grouped them by

clinical similarity rather than attempting to rank them by

suspected predictability. To assess the degree of agreement

between the TDMI clusters and the expert-derived clusters, a p-

value was obtained by generating random cluster assignments and

estimating the distribution of the degree of overlap between the

two clustering methods.

There was found to be no significant clustering for the four

cluster grouping. GH then made the following expert-based

Figure 13. Depicted above are: (a) glucose time series for different values of the constant affecting kidney/liver function, tp; (b)
glucose time series density for different values of the constant affecting kidney/liver function, tp.
doi:10.1371/journal.pone.0096443.g013
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categories: C1 no explicit diabetes, no chronic insulin, may have

some glucoses in the 200 and over range due to hospitalization,

and may have some temporary insulin; C2 diabetes of type 1, type

2, or steroid induced, with several glucoses over 400, and many in

the 300s, clearly repeatedly out of control; and C3 diabetes (type

1, type 2, known steroid induced) well controlled with vast

majority of glucoses under 200. These three clinically defined

categories were reduced to two categories of glucose dynamics,

patients with episodes out-of-control glucose (C2) and patients with

glucose in control (C1 and C3). These clusterings of patients precisely

predicted the TDMI clustering (the categorization was 100% accurate).

The C1 and C3 patients all had low TDMI values, while the C2

patients had high TDMI values. We hypothesize that the intra-

patient variability of the C2 patients makes the patients behave as

a diverse population (patients with high and low glucose

dynamics), driving up their TDMI values. In contrast, the C1

and C3 patients behave like homogeneous populations with similar

glucose dynamics on the six-hour time windows. This would imply

that to resolve more fine scale glucose dynamics would require

filtering the patient population, restricting to only patients with in-

control glucose values. The methodology and reasoning for this

argument can be found in Albers and Hripcsak [7] (specifically,

compare the results for data sets 1 or 3 with data set 6).

To verify this categorization, we extracted another (indepen-

dent) 20 patient data set from the two cluster grouping and had AP

categorize the patients according to C1, C2, and C3 without

knowledge of the TDMI. AP’s analysis matched GH’s results with

a single exception, one patient was classified as C1 who seemed to

belong in the C2 category. Upon reviewing the glucose values of

this patient, we found that the patient had a single glucose value

that was deemed an outlier (1450
mg

dl
). Such an outlier would cause

the TDMI to be high for the same reason the TDMI was high for

the C2 patients.

Summarizing, using a manual review we achieved a clinically

relevant explanation for the TDMI clusters. Specifically, the high

TDMI clusters correspond to patients who have episodes of out-of-

control glucose and the low TDMI clusters correspond to patients

with in-control glucose values regardless of disease (e.g., type 1 or 2

diabetes).

Discussion

1.1 Key results
Time matters when studying human physiology or human

health. While this fact seems obvious, time is rarely used in the

study of health using EHR data. Here we demonstrate one

instance where time can be important — we stratify patients by

health using derived measures of physiologic variables that have time

as a key parameter. Written differently, we can use dynamic

information to derive a phenotype. Specific to this paper,

predictability of glucose over a six hour time window for a

random set of patients cleaved the population into a set of patients

with episodes of in- and out-of-control glucose values (high

TDMI), and patients with in-control glucose values (low-TDMI).

Thus, the high TDMI indicates a diversity of health states, which

serves as a proxy for higher acuity in the context of endocrine

dynamics.

Raw glucose values do have meaning, especially to a

clinician attending to a patient, but when integrating over an

entire record and then an entire population, it seems that the

derived values that incorporate time such as the TDMI or the

LLC [20] are more useful for understanding and stratifying

patients in a broad context.

Mechanistic physiologic models can be used to explain the

physiologic sources of the variation in EHR data, here via the

TDMI. Tying physiologic changes to disease outcomes is a more

complex problem yet to be solved.

The patient notes, which greatly increase the breadth and

power of EHR data, are a complex and difficult data set to

leverage. In some sense, the notes can be considered a gold

standard because they represent a written (often free-text, and thus

quite expressive) representation of a patient at a time. On the

other, the notes are not a gold standard because they are collected for

clinical purposes and only include clinically relevant observations

whose very relevance is biased by the clinician’s training, opinions

and time constraints [21]. Information about the patient is not

captured in the notes in the same way that a scientist would record

observations in a controlled setting. Moreover, temporality in the

context of patient notes is a complex phenomenon: the narrative in

a note can refer to multiple time points in the past and the future,

some mentioned directly (e.g., ‘‘MI 09/02’’, which conveys that

the patient had a myocardial infarction in September 2002), some

indirectly (e.g., ‘‘rash two days after surgery’’), and some in an

approximate fashion (e.g., ‘‘cat scan 3 weeks ago’’ means the

patient had a cat scan approximately three weeks ago). Capturing

these temporal expressions and resolving them on a patient

timeline remains an open research topic for now [22]. Thus, in our

analysis of the patient notes, while we leveraged the concepts to

understand the clusters of TDMI values, we did not carry out a full

temporal-aware analysis of the patient notes.

1.2 EHR-NLP based analysis in the context of physiology
Clinical decision support systems, augmented with knowledge

extracted from the notes, have much promise to help clinicians

with diagnosing a patient or making decisions on plan of care [23].

Thus, most of the research in NLP for clinical notes occurs in the

context of information extraction (e.g., recognizing phrases in the

text of patient notes denoting particular concepts, like a disorder,

medication, or laboratory test). NLP of clinical text is challenging

because of the underlying linguistic characteristics of clinical

language (see [24] for an overview of NLP in the medical domain).

There is much lexical ambiguity in clinical texts; for instance, the

string ‘‘2/2’’ can refer to a date (February 2nd ) or the abbreviation

for ‘‘secondary to,’’ ‘‘HF’’ can mean ‘‘heart failure’’ or ‘‘hispanic

female.’’ Furthermore, because of the presence of free text, typos

and mispellings can be found in a note, complicating the

extraction process when relying on existing dictionaries of medical

terms like the UMLS [25] as gold standard. More critically, from a

semantics standpoint, because free text has a large power of

expressiveness, there are many ways to refer to the same piece of

information, or concept. For instance, the presence of type 2
diabetes in our data set of notes was conveyed in a varied number

of ways, including ‘‘DM2,’’ ‘‘diabetes,’’ ‘‘t2dm,’’ and ‘‘type II

diabetes,’’ as well as less direct phrases such as ‘‘blood sugar’’ and

‘‘hyperglycemia,’’ or even names of diabetes medication like

‘‘glucophage.’’ Not all variants are included in existing medical

dictionaries (of the ones mentioned for diabetes for instance, only

three variants are listed in standard dictionaries). Finally, the

mention of a concept alone is not enough to determine whether

the concept is actually relevant to a patient under examination –

other linguistic indicators, or modifiers, affect the meaning of the

concept. For instance, presence of negation (itself conveyed

through many alternative phrases such as ‘‘absence of’’ or ‘‘patient

denies’’ or ambiguous abbreviations like ‘‘-’’), uncertainty (e.g.,

‘‘possible’’ or ‘‘suggests’’), and temporal expressions (‘‘history of’’

vs. ‘‘current’’ vs. ‘‘risk of’’) are important to recognize and process

in the note to get an accurate semantic representation of a note.
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We are not aware of work linking NLP of clinical notes to

physiology or concepts dealing with physiology in a patient note.

While the results presented in this paper indicate that the NLP

analysis could not separate the patients in the same way as the

TDMI analysis, future work will consider the impact of

incorporating the temporal signals of disorders within the TDMI

analysis of glucose, and investigate whether this refines the clusters

even further.

1.3 TDMI-based interpretation of the clinical and
physiologic results

1.3.1 Small variations in the TDMI and glucose dynamics

and its clinical interpretation. Focusing on Fig. 5 which

details the effects of 10% in parameter variation on the TDMI, we

have several potentially clinically relevant explanations related to the

TDMI variation. The less one’s body requires insulin to process

glucose, say, through exercise, higher metabolism, or lower insulin

resistance, the faster one’s glucose/insulin dynamics, and the more

predictable one’s glucose/insulin dynamics become over time

scales shorter than 6 hours on a fine scale (i.e., neglecting large

intra-patient changes in health state). More fundamentally, this

phenomena is not limited to type 2 diabetes; we know this because

the manual review, which did take type 2 diabetes into account,

was not able to separate the population due to type 2 diabetes

(meaning, the population didn’t separate into patients with and

without type 2 diabetes). Moreover, from considering Figs. 6–10 it

is clear that the TDMI can change for a multitude of reasons that

change the distribution of glucose values. There are two notable

reasons why this is important. First, there is a diversity among the

patients within this particular data set, and therefore among these

patients there are many reasons why a patient can be highly

dependent on insulin to process glucose, or have impaired filtering

mechanisms (e.g., impaired liver and kidneys). This means the

mapping between physiologic dynamics and disease is complex, many-to-one,

and not necessarily onto. For instance, one patient with type 2 diabetes

that is managed well can have a similar health state as a patient

without type 2 diabetes, while a different patient with type 2

diabetes can have a health state similar to a patient with a severely

failing pancreas without type 2 diabetes. More generally, a broad

phenotype (e.g., type 2 diabetes) whose specification is binary

cannot quantify severity of acuity, while measures such as glucose

predictability can. Second, mechanistic models do not explicitly

have health states built in, but rather have physiologic processes

that affect glucose and insulin dynamics — the health state is a

result of the functioning of these processes and possibly many

others. Here it just so happens that poor health states (poor

filtering, insulin resistance, high level of insulin required to process

glucose) correlates with the same characteristics that lead to low

predictability of glucose as quantified by the TDMI. The situation

could have easily been reversed, or even shown no correlation at

all. Finally, these conclusions do provide a compelling match to

type 2 diabetes and connect this constructive model to longer term

physiologic/pathophysiologic dynamics — this is a surprising result

given that the model was designed to work over time periods of minutes to hours.

The stark conclusion then is that EHR laboratory data are

capturing glucose dynamics and health at a finer scale than

medical professionals are recording in the notes using broad

phenotypes. Specifically, degree of acuity often goes unmentioned

in the patient notes, but EHR glucose data does seem to

synchronize with physiology/pathophysiologic models in such a

way that one can stratify patients into different health states using TDMI-

specified predictability of glucose. It goes without saying that there is

much left to understand regarding these results; moreover, this

analysis highlights to why it is critical to understand the population

and to model the collection and representation of EHR data.

These results give hope that through the combination of modeling

and EHR-data analysis, better treatment though a combination of

EHR-data-driven analysis and physiologic modeling is possible.

1.3.2 Large variations in the TDMI and glucose dynamics

and its clinical interpretation. The primary clinical observ-

able related to glucose is its magnitude; in a clinical setting glucose

dynamics are not normally assessed and are difficult to measure on

a time scale faster than an hour (in the near future we will be able

to measure glucose continuously in a clinical setting). There were

three model parameters that affected the magnitude of the glucose,

caloric intake (exogenous glucose delivery), insulin secretion (C1)

and kidney/liver function (tp). The dominant TDMI feature that is

observed in EHR data and is relatable to the physiologic model is

known to be driven by nutrition [6]. Stratifying the population by

the TDMI signal beyond nutrition, we found the variation in the

TDMI could be driven by health state. The form of the health

state was, however, surprising. Instead of the TDMI stratifying the

population by disease, the population was stratified into two modes

corresponding to populations with both in- and out-of-control

glucose dynamics, and populations with in-control glucose

dynamics. According to the mechanistic model, glucose can be

driven out of control primarily through insulin secretion and

kidney/liver filtration. In both cases, removing (or rendering

ineffective) insulin too quickly causes a rise in glucose. Moreover,

increasing insulin secretion (increasing C1) and increasing the

filtration of insulin (decreasing tp) had identical effects on the

TDMI and mean glucose values. Therefore, it is likely that

implicitly, it is the time varying insulin secretion, which is

parameterized by three parameters, that led to the out-of-control,

nonstationary nature of the dynamics of the high-TDMI cohort.

The question remains as to whether we can do more fine scale

physiologic analysis with EHR data, either by refining the

population a la directed dynamical phenotyping or by generalizing

to a multi-variate situation in the undirected phenotyping context.

In either case, it seems that EHR data will be helpful in model

refinement, including generalizing the model we use here into

more pathophysiologic contexts.

1.4 Future exploratory analysis: connecting physiology
and clinical practice

This paper is primarily about using EHR data in the context of

mechanistic physiologic modeling. Specifically, we want to use

EHR data to refine, develop, and use mechanistic modeling. The

results here suggest broad problems that we can now begin to

solve.

Tying dynamics to outcomes: It is likely that the single

greatest key to connecting physiology to clinical practice in the

way that physics has been unified with engineering is to tie

physiology to macroscopic outcomes. Inherently, this implies using

temporal analysis to cleave and understand different groups of

patients because health outcomes evolve implicitly over time.

There are numerous ways of achieving this goal. As an example,

consider the question: do fast time (order minutes) glucose

dynamics matter for long term health? As can be seen in Fig. 10,

changes in IDGU though Rg can have a profound impact on the

observed glucose dynamics. Specifically, decreases in Rg tend to

decrease glucose oscillation whereas increases in Rg tend to do the

opposite. The question then becomes, do these oscillations in

glucose have an impact on the long term outcomes such as the

health of the individual? Here the dynamics are probably

indications if not causes of poor outcomes, but such an assertion

remains to be shown with data. These types of questions may play

a significant roll in discovering, for instance, the optimal means of
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administering nutrition to individuals in the ICU that lead to the

optimal outcomes.

Forecasting future health using data assimilation:
Data assimilation [26] [27] combines observed data from the

current (and often the past) state(s) of the system with underlying

dynamical principles governing the system (i.e., a constructive

model) to make an accurate estimate or forecast of the true state of

the system at any given time, including variables that were not measured.

From a more practical standpoint, DA schemes perform two

functions: (i) they reconstruct the state variables of a model,

including both observed and unobserved variables; and (ii), they

forecast the future in a way that can be directly tested with future

measurements (and used to implement control theory). This allows

for ‘‘patient forecasts,’’ where different outcomes can be based on

current and future observations and/or hypothetical data,

allowing for exploration of ‘‘what if’’ scenarios with patients. This

in turn allows us to take a more personalized view of treatments for

patients in clinical applications. Finally, some DA schemes (e.g.,

unscented Kalman filters) allow for ‘‘empirical observability,’’ or

the ability to rank which variables are the most useful for

reconstructing the other variables, allowing us to determine the

most useful clinical variables, in some sense. Sedigh-Sarvestan et al

[28] applies a DA applied to the model in this paper that includes

empirical observability ranking of parameters and variables.

Designing optimal treatment using control theory:
Control theory [27] [29] [30] [31] applied to solve biomedical and

clinical problems has a very successful but limited history.

Examples include implantable cardioverter-defibrillator or pace-

makers to cope with irregular heartbeats, work toward creating an

artificial pancreas [32], and to design treatments for prostate

cancer [33]. To apply (optimal) control theory to any problem,

one usually requires three components, an explicit model of the

process to be controlled (e.g., the glucose/insulin model shown

here), a statement regarding the constraints of the system (e.g.,

fixed or disallowed parameter settings, initial conditions, boundary

conditions, etc.), and specification of the performance (e.g., how

tightly one wants to control glucose) [29]. EHR data will likely be

the only data available on a population scale that can be used to

test a models, specify the constraints, and specify the desired

performance (based on retrospective EHR-data based study) based

on desired outcomes. With a control theory infrastructure in place

for a given physiologic system applications are very broad. For

instance, one could design a controller to regulate glucose in an

ICU setting (cf. Sedigh-Sarvestan et al [28] where an unscented

Kalman filter is applied to the model in this paper), one could use

the controller to design optimal treatment strategies over long

periods of time for outpatient type 2 diabetics, or one could design

artificial organs such as the artificial pancreas project [34] [35]

[36]. But these possibilities are only possible in practice when we

have a constructive model available as well as defined target

dynamics that are tied with outcomes.

In silico experimentation: If a mechanistic model can be

verified sufficiently well it can be used to test new drugs and

treatments even without data (e.g., outside of a personalized

medicine approach where data assimilation is used). Such a

situation is referred to as in silico experimentation, and it has

already begun in some contexts. For example, recently an

endocrine model of the type 1 diabetes, being used in the context

of developing an artificial pancreas [32], has been approved by the

FDA as a substitute for animal trials for preclinical trials [36] [34]

[35]. In this case, artificial data is created (based on real data, but

not a DA analysis), and then different treatment strategies are

tested. This approach has the potential to greatly accelerate the

rate of advancement of therapy in many different contexts.

Limits of EHR data: EHR data are diverse and collected in

an uncontrolled environment. What is the limiting dynamical

resolution that can be observed through refining the EHR

population, and what are the right ways to go about refining or

filtering the population as is required for constructive dynamical

phenotyping (cf. Fig. 1)? For instance, if we select patients whom

are measured frequently, these patients will likely have high acuity;

sometimes such measurement characteristics can be used to help

identify phenotypes [17]. In this circumstance we many want to

exclude certain diseases and include others. However, such

filtering can limit and bias observations. The original hypothesis

we formulated here was that we could split the population via a

disease such as having diabetes (type 1 or 2) or not. This turned

out to not be the primary force driving the difference in TDMI in a

broad EHR population. Thus, the filtering of the population and the

discovery of the limits of what EHR data can verify are non-trivial

problems.

Multivariate dynamical phenotyping: In this paper we

used a single signal to stratify the population and test the model.

Disease state is almost never univariate; complex phenotypes are

always multi-variate and multi-scale. Thus, it is likely that

dynamical phenotyping, especially in the case of undirected

dynamical phenotyping (cf. Fig. 1), will require a multi-variate

approach, leading to the question, what will constitute the most

useful variables for stratifying and understanding a population

given the constraints of EHR data. Currently, very few temporal

processing techniques have been adapted for the EHR data

context [37]; some traditional time-to-event techniques are being

developed to apply to EHR data [38].

Deconvolution of complex biases from EHR and data:
To forge a more practical relationship between physiology and

applying physiologic principles in a clinical setting, we must tie

physiologic dynamics to observable outcomes. To associate

physiologic dynamics to observable outcomes, we must have a

diverse and large enough population to allow for the calculation of

convergent, meaningful statistical quantities. EHR data may be

the only data set that will be large and diverse enough to discover

physiologic connections to outcomes in concrete ways because of

its uncontrolled and broad nature. Nevertheless, with uncontrolled

nature of EHR data also comes complex biases [2]. For instance,

here we stratify the population not by disease, but by the intra-

patient diversity of glucose dynamics. This stratification is, in some

sense, an EHR bias because the stratification is based on the fact

that a single patient can simultaneously represent multiple health

states. Because of this, as well as other reasons such as the fact that

many diseases can lead to the same physiologic effect in a subset of

the human systems (e.g., the endocrine system), the stratification by

dynamics or dynamical phenotyping using a single variable, does not

cleanly map according to clinical notions of disease. This is the

reason why we suggest moving to multi-variate dynamical

phenotyping as a possible solution in the context of undirected

dynamical phenotyping.
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