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ABSTRACT

Learning Logic Rules for Disease Classification: With
an Application to Developing Criteria Sets for the

Diagnostic and Statistical Manual of Mental Disorders

Christine Mauro

This dissertation develops several new statistical methods for disease classification that directly

account for the unique logic structure of criteria sets found in the Diagnostic and Statistical Manual

of Mental Disorders. For psychiatric disorders, a clinically significant anatomical or physiological

deviation cannot be used to determine disease status. Instead, clinicians rely on criteria sets from

the Diagnostic and Statistical Manual of Mental Disorders to make diagnoses. Each criteria set

is comprised of several symptom domains, with the domains determined by expert opinion or

psychometric analyses. In order to be diagnosed, an individual must meet the minimum number

of symptoms, or threshold, required for each domain. If both the overall number of domains and

the number of symptoms within each domain are small, an exhaustive search to determine these

thresholds is feasible, with the thresholds chosen to minimize the overall misclassification rate.

However, for more complicated scenarios, such as incorporating a continuous biomarker into the

diagnostic criteria, a novel technique is necessary. In this dissertation, we propose several novel

approaches to empirically determine these thresholds.

Within each domain, we start by fitting a linear discriminant function based upon a sample

of individuals in which disease status and the number of symptoms present in that domain are

both known. Since one must meet the criteria for all domains, an overall positive diagnosis is

only issued if the prediction in each domain is positive. Therefore, the overall decision rule is

the intersection of all the domain specific rules. We fit this model using several approaches. In

the first approach, we directly apply the framework of the support vector machine (SVM). This

results in a non-convex minimization problem, which we can approximate by an iterative algorithm

based on the Difference of Convex functions algorithm. In the second approach, we recognize that



the expected population loss function can be re-expressed in an alternative form. Based on this

alternative form, we propose two more iterative algorithms, SVM Iterative and Logistic Iterative.

Although the number of symptoms per domain for the current clinical application is small, the

proposed iterative methods are general and flexible enough to be adapted to complicated settings

such as using continuous biomarker data, high-dimensional data (for example, imaging markers or

genetic markers), other logic structures, or non-linear discriminant functions to assist in disease

diagnosis.

Under varying simulation scenarios, the Exhaustive Search and both proposed methods, SVM

Iterative and Logistic Iterative, have good performance characteristics when compared with the

oracle decision rule. We also examine one simulation in which the Exhaustive Search is not feasible

and find that SVM Iterative and Logistic Iterative perform quite well. Each of these methods is

then applied to a real data set in order to construct a criteria set for Complicated Grief, a new

psychiatric disorder of interest. As the domain structure is currently unknown, both a two domain

and three domain structure is considered. For both domain structures, all three methods choose

the same thresholds. The resulting criteria sets are then evaluated on an independent data set of

cases and shown to have high sensitivities. Using this same data, we also evaluate the sensitivity of

three previously published criteria sets for Complicated Grief. Two of the three published criteria

sets show poor sensitivity, while the sensitivity of the third is quite good. To fully evaluate our

proposed criteria sets, as well as the previously published sets, a sample of controls is necessary so

that specificity can also be assessed. The collection of this data is currently ongoing. We conclude

the dissertation by considering the influence of study design on criteria set development and its

evaluation. We also discuss future extensions of this work such as handling complex logic structures

and simultaneously discovering both the domain structure and domain thresholds.



Table of Contents

List of Figures iii

List of Tables iv

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Introduction to Clinical Research Problem . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Current State of Disease Classification and the DSM Manual . . . . . . . . . 2

1.2.2 Complicated Grief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Introduction to Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Binary Classification and Support Vector Machines . . . . . . . . . . . . . . . 15

1.3.2 Exploratory Factor Analysis (EFA) . . . . . . . . . . . . . . . . . . . . . . . . 26

1.4 Summary of Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Statistical Methodologies 29

2.1 Statistical Framework of Clinical Research Problem . . . . . . . . . . . . . . . . . . . 29

2.2 Proposed Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Direct Optimization Method: Exhaustive Search . . . . . . . . . . . . . . . . 31

2.2.2 Linear Discriminant Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3 Iterative Optimization Method . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 Theoretical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Asymptotic properties of exhaustive search algorithm . . . . . . . . . . . . . 43

2.3.2 Fisher consistency of minimizing hinge-loss . . . . . . . . . . . . . . . . . . . 45

i



2.4 Choosing between Different Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 46

3 Simulations 49

3.1 Initial Data Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2 Other Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3 Methods Evaluated . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Practical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Real Data Application 66

4.1 Applications to Pittsburgh and CGTOA Studies: Model Training . . . . . . . . . . . 66

4.1.1 Determining the Domain Structure . . . . . . . . . . . . . . . . . . . . . . . . 67

4.1.2 Applying the proposed methods . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Applications to CGTOA and HEAL Data: A Validation Study . . . . . . . . . . . . 74

4.2.1 Study Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2.2 Assessments and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Discussion and Future Research 84

5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 91

Appendix: Structured Clinical Interview for Complicated Grief 97

ii



List of Figures

1.1 Criteria for Prolonged Grief Disorder (PGD) proposed by [Prigerson et al., 2009]. . . 7

1.2 Criteria for Complicated Grief (CG) proposed by [Shear et al., 2011]. . . . . . . . . . 8

1.3 Criteria for Persistent Complex Bereavement Disorder (PCBD) proposed by [Amer-

ican Psychiatric Association, 2013]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 SVM illustration, linearly separable case [Hastie et al., 2009]. . . . . . . . . . . . . . 16

1.5 Two classes not linearly separable in one dimension, but linearly separable in two

dimensions by including the square of the original values as an input [Noble, 2006]. . 19

1.6 SVM illustration, non-linearly separable case where ξ∗i = Mξi [Hastie et al., 2009]. . 19

1.7 Illustration of the hinge loss function, as well some other commonly used loss func-

tions for binary classification [Hastie et al., 2009]. . . . . . . . . . . . . . . . . . . . . 22

iii



List of Tables

3.1 Simulation Setting A; Two domains, Strong Correlation, n = 300 . . . . . . . . . . . 56

3.2 Simulation Setting B; Two domains, Strong Correlation, n = 150 . . . . . . . . . . . 57

3.3 Simulation Setting C; Two domains, Moderate Correlation, n = 300 . . . . . . . . . 58

3.4 Simulation Setting D; Two domains, Strong Correlation, n = 300, model misspecifi-

cation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.5 Simulation Setting E; Two domains (one count, one continuous), Strong Correlation,

n = 300 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.6 Simulation Setting F; Three domains, Strong Correlation, n = 300 . . . . . . . . . . 62

3.7 Simulation Setting G; Three domains, Strong Correlation, n = 300, model misspec-

ification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.8 Simulation Setting H; Model misspecification - One domain considered when the

truth is two domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Two Factor EFA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Three Factor EFA Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Diagnostic Performance of Derived Criteria Sets . . . . . . . . . . . . . . . . . . . . 70

4.4 Diagnostic Performance of Derived Criteria Sets (weighted by estimated population

prevalence), 2 domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Diagnostic Performance of PGD Criteria Set . . . . . . . . . . . . . . . . . . . . . . 77

4.6 Diagnostic Performance of CG Criteria Set . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Diagnostic Performance of PCBD Criteria Set . . . . . . . . . . . . . . . . . . . . . . 79

4.8 Diagnostic Performance of Proposed 2 Domain Criteria Set . . . . . . . . . . . . . . 81

4.9 Diagnostic Performance of Proposed 3 Domain Criteria Set . . . . . . . . . . . . . . 82

iv



4.10 Comparison of Criteria Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

v



Acknowledgments

First and foremost, I need to sincerely thank my dissertation adviser, Dr. Yuanjia Wang, for her

guidance and assistance over the last several years. Through countless meetings and emails, she

has taught me what it means to be a great biostatistician, a respected statistical collaborator, and

an exceptional mentor.

I would also like to deeply thank the chair of my dissertation committee, Dr. Bruce Levin, and

the other members of my committee: Dr. Roger Vaughan, Dr. Melanie Wall, and Dr. Katherine

Shear. My dissertation has been greatly improved as a result of their advice and suggestions. I

would especially like to thank Dr. Shear for bringing this problem to my attention and for allowing

me to use her data.

My grateful thanks are also extended to Dr. Donglin Zeng for his theoretical guidance and

assistance on this project.

To my grandmother, aunts, uncles, and cousins, thank you for always reminding me what is

most important in life. I especially need to thank my siblings, Jessica, Joey, and Mikey, for always

providing me with laughter when I need it the most. Lastly, I need to wholeheartedly thank my

parents. Without their sacrifices, never ending support, and constant motivation, this would not

have been possible.

vi



For my family

vii



CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Overview

This dissertation develops several new statistical methods for disease classification that directly

account for the unique logic structure of criteria sets found in the Diagnostic and Statistical Manual

(DSM) of Mental Disorders. In the remainder of this chapter, we provide an overview of the clinical

research problem (Section 1.2) and then briefly review the statistical methodology on which our

proposed methods will be based (Section 1.3). Chapter Two presents the statistical methodology

in four parts. In part 2.1, the statistical framework of the clinical problem is set up. In section 2.2,

three novel statistical methods are presented to address the clinical problem. Following that, in

section 2.3, we consider the theoretical properties of these methods. Finally in section 2.4, we

discuss how to choose between each of the proposed methods. In Chapter Three, we examine the

finite sample performance of these methods using simulation studies under various scenarios and

error structures. Following that, in section 4.1 we apply our proposed methods to a real data set to

develop criteria sets for Complicated Grief, a new psychiatry disorder of interest. We then evaluate

the resulting criteria sets on an independent validation data set in section 4.2. Using the same

validation sample, we are also able to compare, for the first time, the performance characteristics
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of three previously proposed criteria sets for Complicated Grief. In Chapter Five, we conclude with

a discussion on criteria set development and present some thoughts on possible extensions of these

methods.

1.2 Introduction to Clinical Research Problem

1.2.1 Current State of Disease Classification and the DSM Manual

In 2011, the National Research Council of the National Academies released a report entitled “To-

ward Precision Medicine: Building a Knowledge Network for Biomedical Research and and a New

Taxonomy of Disease,” [National Research Council of the National Academies, 2011] This report

was the result of a committee charged with exploring the feasibility and need for a New Taxonomy

of human disease based on molecular biology. The motivation for their study was the explosion

of molecular data on humans, particularly those associated with individual patients, and the sense

that there are large, as-yet-untapped opportunities to use these data to improve health outcomes.

They found that a new taxonomy that integrates multi-parameter molecular data with clinical data,

environmental data, and health outcomes in a dynamic, iterative fashion is absolutely necessary.

It was their argument that the new taxonomy system should describe and define diseases based

on their intrinsic biology in addition to the more traditional physical “signs and symptoms.” We

believe statisticians should play an integral role in helping with this merging of the “old” and “new”

and in tapping data to improve health outcomes.

In the field of Psychiatry, The Diagnostic and Statistical Manual (DSM) of Mental Disorders

has often been referred to as “the bible” of psychiatric diagnoses [Kupfer et al., 2008]. Interestingly,

DSM includes the word “statistical” in its name. This is because the first two editions of the DSM,

DSM-I and DSM-II, were proposed for purposes related primarily to counting cases to determine

disease prevalences. Starting with DSM-III, it was recognized that DSM diagnoses serve many
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other types of clinical and clinical research purposes as well. The “word ‘statistical’ in DSM now

takes on greater meaning, for one goal of DSM is to facilitate drawing correct statistical inferences

from what is observed” [Kraemer, 2007].

Similar to medical taxonomy in general, the DSM is also in a state of transition. In May 2013,

DSM-5 replaced the previous manual, DSM-IV, which was released in 1994. Although it took

almost 20 years to make the last revision, the DSM is now being viewed as a living document.

Following the publication of the DSM-5, ongoing review groups will be established to coordinate

and oversee periodic assessments of advancements. The review groups will determine if a more

intensive assessment or changes to the diagnostic criteria are warranted. This change is reflected

by the switch from Roman numerals to Arabic, of which the Arabic can be updated as incremental

updates are made (5.1, 5.2, etc.) [American Psychiatric Association, 2010].

Prior to the release of the new version, several members of the DSM-V Task force published

an article that outlined the set of revision principals used to guide the efforts of the DSM-5 work

groups [Kupfer et al., 2008]. Their very first principal, based on the overall goals extending from

the APA/NIH/WHO, was that all recommendations will be grounded in empirical evidence. In

addition, in discussing limitations of past versions of the manual, they wrote “The reliability of

DSM as a clinical tool has been upheld but less emphasis has been given to its validity. Face

validity has generally gone hand-in-hand with clinical reliability, but other forms of more stringent

validity, including specificity and sensitivity, are lacking.” Based on both the need to ground any

recommendations in empirical evidence and the need to focus on diagnostic measures such as sen-

sitivity and specificity, rather than reliability, we believe it essential for statisticians to be involved

in developing these disease classification systems or criteria sets.

Psychiatric diagnoses in the DSM manual are defined as polythetic - categorical concepts. Poly-

thetic refers to the fact that specific mental disorders are defined by multiple symptoms, and not
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all listed symptoms are necessary to consider a mental disorder present in a specific individual.

Rather, a specific combination and number of symptoms, less than the total number of symptoms

of the disorder, must be observed to consider a diagnosis present. This is in contrast to a mono-

thetic classification system, in which all criteria must be met in order to have a positive diagnosis.

Categorical refers to the fact that all mental disorders in the DSM are binary, “either/or” concepts.

Disorders are considered present in individuals when the right combination and number of symp-

toms are present, and absent when those symptoms are not present in the correct combination or

number. Some limitations that arise when using this type of model include comorbidity, within-

category heterogeneity, and the validity of subthreshold symptomatology [Krueger and Bezdjian,

2009]. Comorbidity refers to patients meeting the criteria for two or more diagnoses. Within-

category heterogeneity refers to the fact that patients with the same label are often heterogeneous

with respect to key clinical features, such as severity and prognosis. Lastly, patients who do not

meet the thresholds can still be significantly impaired.

In light of these limitations, [Kraemer, 2007] proposes an enhancement to DSM that she be-

lieves would enhance the reliability and validity of DSM diagnoses: “the addition of a dimensional

adjunct to each of the traditional categorical diagnoses of the DSM.” She argues that by including

a dimensional scale, along with a categorical diagnosis, the quality of a diagnosis will be improved.

The only time a dimensional scale will not add quality is if there is no meaningful clinical variation

among those who are diagnosed and no clinical variation among those who are not diagnosed, which

is virtually never the case. Although dimensional diagnoses did not end up being added to DSM-5,

the issues raised by this paper still exist and should be considered in future revisions to the manual.

Another common criticism of the DSM is that all symptoms within a domain have equal impact

in terms of their diagnostic ability because a simple sum of symptoms present is calculated. By

setting a cut-point, as polythetic disorders do, we are essentially more concerned with quantity
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rather than the quality of the items and are assuming that all items have similar frequency and

discriminating power. Numerous studies have found this assumption to be flawed [Clark and

McKenzie, 1994; Aggen et al., 2005; Cooper et al., 2010]. They all argue that diagnostic algorithms,

such as those found in the DSM, should instead incorporate weights that represent the relative

importance of a symptom in terms of its diagnostic ability.

Further, criteria sets in the current DSM all rely on the self-reporting of symptoms by patients

to their clinicians. In an American Journal of Psychiatry editorial, [First and Zimmerman, 2006]

argue for the possible inclusion of laboratory tests for some diagnostic criteria in addition to the

current list of symptoms. The advantages, they list, are that “laboratory tests are more objective,

would facilitate detection of mental disorders in primary care settings, and would highlight the

neurobiological basis of psychiatric disorders.” They further argue that rather than considering

whether a laboratory test by itself is sufficiently sensitive and specific to make a particular psychi-

atric diagnosis, we should instead consider finding the combination of clinical signs and symptoms

and laboratory tests that optimally defines the disorder of interest. In other words, rather than

having a diagnosis based solely on a list of symptoms, or solely on a lab test, some combination of

the two actually might be ideal and have improved performance over what already exists.

From a similar perspective as that of [First and Zimmerman, 2006], the current National Insti-

tute of Mental Health (NIMH) Strategic Plan calls for the development of new ways of classifying

psychopathology based on dimensions of observable behavior and neurobiological measures. The

Research Domain Criteria project (RDoC) has been launched to implement this strategy. The goal

of this process is to define basic dimensions of functioning to be studied across multiple units of

analysis, from genes to neural circuits to behaviors, cutting across disorders as traditionally defined

in the DSM. The motivation for this is based on several mental health findings that do not map

well onto current diagnostic categories. For example, some of the risk genes for psychotic disor-
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ders appear to be associated with both schizophrenia and bipolar disorder and the same prefrontal

region has been implicated in depression and PTSD. The goal of this project is to be able to trans-

late new findings from neurobiological and behavioral research to an improved understanding of

psychopathology and the development of new and/or optimally matched treatments for mental dis-

orders. The development of RDoc will follow three guiding principles: First, RDoC is conceived as

a dimensional system, spanning the range from normal to abnormal as opposed to the binary clas-

sifications found in the DSM. Second, RDoc will be agnostic about current disorder categories. The

reason for this is because the intent is to generate classifications stemming from basic behavioral

neuroscience, rather than starting with an illness and seeking its neurobiological underpinnings.

Lastly, RDoc will use several different units of analyses in defining constructs for study, including

imaging, physiological activity, behavior, and self-report of symptoms [National Institute of Mental

Health, 2011]. Again, statisticians can and should play a role in this transition process.

1.2.2 Complicated Grief

The applied focus of this dissertation will be on developing a criteria set for Complicated Grief (CG),

a new psychiatric disorder. However, our method is in no way limited to CG and can be extended

to address the more general emerging issues in disease classification discussed above. Acute grief

is a normal human response to the loss of a loved one that usually dissipates with time. In this

context, grief should not be considered pathological or treated medically. However, for a small

group of individuals, grief can be complicated in the sense that the symptoms are heightened and

their duration prolonged [Shear et al., 2011]. Those suffering from CG, also referred to as Prolonged

Grief Disorder (PGD) [Prigerson et al., 2009] or Persistent Complex Bereavement Disorder (PCBD)

[American Psychiatric Association, 2013], often exhibit symptoms of strong yearning for the person

who died, frequent thoughts or images of the deceased person, feelings of intense loneliness or
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Figure 1.1: Criteria for Prolonged Grief Disorder (PGD) proposed by [Prigerson et al., 2009].

emptiness, and a feeling that life without the person has no purpose or meaning [Shear et al.,

2011]. As is reflected by the several names for CG, multiple criteria sets have been proposed for

CG [Prigerson et al., 2009; Shear et al., 2011; American Psychiatric Association, 2013], and there is

a lack of agreement among clinical experts. Each of these criteria sets are presented in Figures 1.1 -

1.3 and discussed in more detail below. As a result of this disagreement, there is currently no gold

standard diagnosis.

Despite the fact that CG is a “new” disorder and a gold standard diagnosis does not exist,

there are several ratings scales that help to distinguish CG patients from the normal population,

the most common of which is the Inventory of Complicated Grief (ICG), a 19 item self-report

questionnaire [Prigerson et al., 1995]. In fact, both the [Prigerson et al., 2009] Criteria Set and the

[Shear et al., 2011] Criteria Set were derived in part based on data from the ICG. Further, ICG

is often used as one of the main inclusion criteria for CG treatment studies [Shear et al., 2005;

Shear et al., 2014]. The ICG is a well validated self-report measure of CG symptom severity



CHAPTER 1. INTRODUCTION 8

Figure 1.2: Criteria for Complicated Grief (CG) proposed by [Shear et al., 2011].
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Figure 1.3: Criteria for Persistent Complex Bereavement Disorder (PCBD) proposed by [American

Psychiatric Association, 2013].
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with prior evidence for high internal consistency (Cronbachs α = 0.94) and test-retest reliability

(0.80) [Prigerson et al., 1995]. The ICG assesses a range of CG symptoms including preoccupation

with the person who died, intrusive and distressing thoughts related to the death, avoidance of

reminders of the person who died, feelings of yearning for the person who died, loneliness, and

feelings of bitterness, anger and/or disbelief regarding the death. Each item is rated on a 5-point

likert scale, with responses ranging from 0=“not at all” to 4=“severe.”

Another measure of disease severity is the Structured Clinical Interview of Complicated Grief

(SCI-CG), a 32 item scale administered by a clinician [Bui et al., 2015]. This is a diagnostic

instrument designed to capture 30 complicated grief symptoms that are present in at least one of

the three proposed criteria sets mentioned above. The SCI-CG is scored 1=“Absent,” 2=“Unsure

or Equivocal,” and 3=“Present.” It also includes an item on functional impairment. The SCI-CG

has been shown to have good internal consistency (Cronbachs α = 0.76), test-retest reliability

(ICC= 0.68), and inter-rater reliability (ICC = 0.95) [Bui et al., 2015].

Both the PGD and CG criteria sets were empirically derived, but the study samples and method-

ologies differed. The criteria proposed for prolonged grief disorder [Prigerson et al., 2009] was based

on a community sample of 291 bereaved individuals, 28 of whom were judged to have PGD. The

method for deriving the criteria set included several phases that were preceded by prior instrument

development and modification. In phase 1 of the final criteria development, the authors employed

the Inventory of Complicated Grief - Revised (ICG-R) and used Item Response Theory (IRT) and

differential item functioning (DIF) to derive a set of informative symptoms of CG. The ICG-R

is a modification of the Inventory of Complicated Grief (ICG) [Prigerson et al., 1995], which was

designed to assess putative CG symptoms. The ICG-R included additional symptoms proposed

by an expert panel. Phase 1 analyses resulted in 12 symptoms that were deemed informative,

unbiased symptoms of CG and therefore were to be considered in the diagnostic algorithm. In
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Phase 2, the authors ordered the individuals in terms of CG symptom severity based on the scores

from the IRT analysis from the first phase. In addition, for each individual, a rater separately

determined whether the person had CG or not. They then used a cut-off score that maximized the

agreement between the rater and score-based diagnosis as their CG criterion standard. In Phase

3, the authors identified an optimal diagnostic algorithm for PGD. Since yearning was the most

common and informative of the symptoms in the analyses, they decided that it would be considered

a mandatory symptom. The authors then sought to determine using combinatorics the number and

combination of the remaining 11 items that would yield the most efficient diagnosis for CG with

respect to their criterion standard. The net result was a criteria set with two symptom clusters,

Domain B (separation distress) and Domain C (cognitive, emotional, and behavioral symptoms).

The authors proposed that one symptom out of one is required from domain B and at least five

out of 12 from domain C.

Numerous criticisms of the [Prigerson et al., 2009] study are discussed by [Shear et al., 2011].

[Shear et al., 2011] point out that the sample used by [Prigerson et al., 2009] consisted of primarily

older, white widows and was not necessarily generalizable to the CG population as a whole. In ad-

dition, the sample size was relatively small (n=291) with only 28 study participants judged to have

CG. In addition, their criteria set was developed using IRT, which relies on the initial assumption

that the trait being measured is best represented as a single factor. Further, no justification is given

on why only 22 of the 39 possible symptoms of the ICG-R were included in the initial analysis. In

addition, their final criteria set requires that the patient has been bereaved for at least six months,

yet the data that this analysis was based on included individuals who were bereaved for less than

six months. Lastly, and most importantly, the methodology they used is suspect due to its circular

nature; they used the 12 items and clinical impression to select a cut point score for caseness and

then used that cut point to determine which combination of those same items were important in
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making a diagnosis.

The criteria proposed by [Shear et al., 2011], with detailed methodology presented in a com-

panion paper [Simon et al., 2011], was based on a sample of bereaved healthy controls (n=95),

patients diagnosed as having either a mood or anxiety disorder (n=369) and patients presenting

for treatment of CG (n=318). Among those presenting for treatment of CG, only those who scored

at least a 30 on the ICG and were also diagnosed with CG on clinical interview were considered

to have the condition of interest (n=288). The authors performed an exploratory factor analysis

of the baseline ICG from these cases and found a clear six-factor solution. These six factors were

viewed as symptom clusters and then used to guide the development of the final criteria set. In later

research, we validated this six factor structure on a much larger clinical sample using confirmatory

factor analyses, and further showed it to be consistent across three distinct study samples [Mauro

et al., 2015b]. To be consistent with the PGD criteria, Shear et al. maintained the division of CG

symptoms into separation distress (domain B) and associated symptoms (domain C). However, the

factor analysis in the clinical CG sample indicated that yearning was a part of a cluster of four

items that comprised one of the six factors discovered. As a result, the authors included all four

symptoms together in Domain B (separation distress), rather than making yearning itself necessary.

They then collapsed the remaining five factors to obtain domain C. Further, suicidal thinking and

behavior was added to domain B based on strong research evidence of the association between CG

and suicidality and judgment of its clinical significance. Once the domain structure was determined,

they then used the combined sample (cases and controls) to compute the sensitivity and specificity

for varying thresholds for each each of the two domains, choosing the best ones. The final proposed

criteria set required at least one out of four symptoms from domain B and at least two out of eight

from domain C.

In return, the [Shear et al., 2011] criteria set received some criticisms from [Boelen and Prigerson,
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2012]. They argued that the analyses were based solely on the ICG, but some symptoms included in

the final criteria set were not actually tapped by this measure, resulting in a criteria set that was not

completely empirically derived. Further, some of the criteria are broadly formulated allowing for too

many ways to qualify for a CG diagnosis. Another concern they had was that the majority of the

sample (73%) had at least one secondary diagnosis, or comorbidity. Of most interest statistically,

they argued that it was not entirely clear how they moved from factor analysis results to the final

criteria set. The factor analysis had six factors, while the final criteria set only had two domains.

It is this specific criticism that we are targeting with our proposed methods.

The most recent criteria for CG was given in the newest edition of the DSM. Here, provisional

criteria is given for Persistent Complex Bereavement Disorder (PCBD) in section III, “Emerging

Measures and Model”. Essentially these are disorders which require further study before being

moved to the main part of the manual and being recognized as an official diagnosis. In many ways,

the PCBD criteria set appears to be a compromise between [Prigerson et al., 2009] and [Shear et

al., 2011] criteria sets. Like the CG criteria set, yearning is not considered a necessary symptom for

PCBD, where one out of four possible symptoms is required from Domain B. However, similar to

the PGD criteria set, a majority of symptoms is required from Domain C (six or more out of 12).

In order to get CG moved into the main part of the DSM manual, it is absolutely crucial that this

disagreement among the experts is resolved. As statisticians, we hope to help resolve this problem

by constructing a criteria set that is as empirically based and objectively derived as possible.

Recall, one of the major criticisms the [Shear et al., 2011] criteria set received was that there

was not a direct link between the factor analyses and the final criteria set. With our proposed

methods, we will attempt to provide that link. In this context, factors are often thought of as

symptom clusters or domains; these symptom clusters or domains could also be the result of a

conceptual model for the disease. We will assume that this structure is already known. Further,
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one of the major differences among the criteria sets is the number of items required from each of

the domains in order to have a positive diagnosis. More specifically,

• [Prigerson et al., 2009]: 1 out of 1 item required from Domain A, 5 or more items out of 9

required for Domain B.

• [Shear et al., 2011]: 1 or more out of 4 items required from Domain A, 2 or more items out

of 8 required for Domain B.

• DSM-5: 1 or more out of 4 items required from Domain A, 6 or more items out of 12 required

for Domain B.

As our result, our goal is to empirically determine the minimum number of symptoms to

require from each domain in order to make a positive diagnosis. Essentially, this is a binary

classification problem, for which we rely heavily on support vector machine (SVM) and logistic

regression methods.

The data on which we will apply and evaluate our proposed methods come from three NIHM

funded randomized clinical trials for CG treatment. The first, which we will refer to as the Pitts-

burgh study, recruited participants to a university-based clinic [Shear et al., 2005]. Participants

were either assigned to Complicated Grief Therapy (CGT) or to Interpersonal Psychotherapy (IPT),

a standard therapy for depression. Those randomized to CGT were significantly more likely to im-

prove (51% vs. 28%, p = 0.02). The second trial, referred to as CGTOA, also examined the

performance of CGT versus IPT at a university-based clinic, but instead looked at a sample of

only older adults (aged 60 or older). Those randomly assigned to CGT also show significantly

more improvement when compared to those randomized to IPT (70.5% vs. 32.0%, p < 0.001),

[Shear et al., 2014]. The last trial, HEAL, is still ongoing. This trial is recruiting patients to four

different university-based clinics to assess the efficacy of an antidepressant medication as compared
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to placebo. In addition to a medication assignment, patients are also randomized to CGT or no

therapy, resulting in a four arm trial. With this design, in addition to assessing for a medication

effect, the possibility of a medication therapy interaction will also be evaluated. We will be using

baseline data from all three of these trials, with data from the Pittsburgh study and part of CGTOA

serving as our training sample and data from HEAL and another part of CGTOA as our validation

sample.

1.3 Introduction to Statistical Methods

1.3.1 Binary Classification and Support Vector Machines

In a normal classification problem, a predictor function takes on a discrete number of values rep-

resenting each level of the outcome. In the case of binary prediction, which is the focus of this

paper, the predictor function can take only one of two values (for example diseased or not dis-

eased). Because of this property, we can always divide the input space into a collection of regions

labeled according to the classification rule. The boundaries that separate these regions, or decision

boundaries, can either be rough or smooth depending on the function that is used for prediction.

For some classification procedures this boundary is linear. For the familiar case of logistic regres-

sion, the linear decision boundary is the set of all points for which the log odds are zero, or more

specifically, the hyperplane defined by {x|β0 + βTx = 0}. Those with log odds greater than zero

are classified as diseased and those less than zero are classified as not diseased.

Another approach to classification is to explicitly model the boundary between two classes as

linear. In the case of a two-class problem in a p-dimensional input space, this results in modeling

the decision boundary as a hyperplane [Hastie et al., 2009]. One such method that looks for this

separating hyperplane is Support Vector Machines (SVM). SVMs, in the form of linear separating

hyperplanes, were first discussed by Vladimir N. Vapnik in 1996. The SVM seeks to find an
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Figure 1.4: SVM illustration, linearly separable case [Hastie et al., 2009].

optimally separating hyperplane if one exists, where an optimal separating hyperplane separates

the two classes and maximizes the distance to the closest point from either class, or the margin

[Vapnik, 1996]. In the case that one does not exist, the SVM was extended to find a hyperplane

that minimizes some measure of overlap between the classes in the training data or by allowing

for a non-linear decision boundary. First, attention will be focused on the case that an optimally

separating hyperplane exists, or, that is, the classes do not overlap in the feature space. Next, the

extension of SVM to the case when the data are not linearly separable will be discussed. The next

subsections are heavily reliant on Chapter 12 of “The Elements of Statistical Learning” [Hastie et

al., 2009].

1.3.1.1 Separable Case

Consider the training data of n pairs (x1, y1), (x2, y2), . . . , (xn, yn), where xi ∈ Rp and yi ∈ {−1, 1}.

Define a hyperplane by

{x : f(x) = xTβ + β0 = 0},
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where β is a unit vector: ‖β‖ =
√
β21 + . . .+ β2p = 1. A classification rule induced by f(x) is

G(x) = sign[f(x)] = sign[xTβ + β0].

In fact, f(x) gives the signed distance from a point x to the separating hyperplane. Since the

classes are separable, the sign of yi and f(xi) will always be the same, as no points lie on the wrong

side of the hyperplane in the case that the data are linearly separable. Therefore, it is possible to

find f(x) such that yif(xi) > 0 ∀i. This then allows us to find the hyperplane that creates the

biggest margin between the training points from each class. By selecting this specific separating

hyperplane, we are maximizing the SVM’s ability to predict the correct classification of new data

sets [Noble, 2006]. Mathematically, this results in the following optimization problem:

max
β,β0,‖β‖=1

M (1.1)

subject to yi(x
T
i β + β0) ≥M, i = 1, . . . , n.

This set of conditions ensures that all of the training points are a least a signed distance M from

the decision boundary defined by β and β0. However, the ‖β‖ = 1 constraint is not desirable due

to the fact that this makes it a non-convex optimization problem. Therefore, the problem needs to

be further manipulated. It turns out that the conditions in Equation 1.1 can be replaced with the

following condition since ‖β‖ = 1:

1

‖β‖
yi(x

T
i β + β0) ≥M

or

yi(x
T
i β + β0) ≥M‖β‖.
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Since for any β and β0 satisfying this inequality, any positively scaled multiple satisfies it too, we

can arbitrarily set ‖β‖ = 1/M . This results in the following optimization problem:

min
β,β0
‖β‖2 (1.2)

subject to yi(x
T
i β + β0) ≥ 1, i = 1, . . . , n.

Because this is a convex optimization problem with a quadratic criterion and linear inequality

constraints, finding a solution is routine. The problem is presented graphically in Figure 1.4.

1.3.1.2 Non-separable Case

One option in the case that the data are not linearly separable is to enlarge the space of the data

using kernel functions. In general a kernel function will project data from a low-dimensional space

to a space of higher dimension. If one chooses a good kernel function, data that was not linearly

separable in its original space might become linearly separable in a higher dimensional space. For

example, see Figure 1.5. Here the original data is not linearly separable, but when the square of

the original variable is included as an additional input, the data become linearly separable in two

dimensions. When the linear decision boundary in the enlarged space is projected back to the

original feature space, the decision boundary is no longer linear.

However, in some cases, even this method will not work. For example, if observations from two

different classes share exactly the same inputs, no matter how the data is transformed, it will not

be perfectly separable. In addition, projecting into very high-dimensional space can be problematic

due to the curse of dimensionality. This refers to the fact that as the number of variables in the

model increases, the number of possible solutions also increases dramatically, making it hard for

the SVM to select the correct model [Noble, 2006]. In addition, if a very high dimensional kernel

function is used, the boundary that results will be very specific to the examples in the training

data. Therefore, a better method that can handle the non-separable case is necessary.
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Figure 1.5: Two classes not linearly separable in one dimension, but linearly separable in two

dimensions by including the square of the original values as an input [Noble, 2006].

Figure 1.6: SVM illustration, non-linearly separable case where ξ∗i = Mξi [Hastie et al., 2009].



CHAPTER 1. INTRODUCTION 20

Suppose that the classes overlap in the feature space. One way to deal with this overlap is

still to maximize M , the margin, but allow for some points to be on the wrong side of the margin.

Define the slack variables, a measure of the overlap for each point, as ξ = (ξ1, ξ2, . . . , ξN ). Then

there are two ways to modify the constraint in Equation 1.1:

yi(x
T
i β + β0) ≥M − ξi, (1.3)

or

yi(x
T
i β + β0) ≥M(1− ξi), (1.4)

∀i, ξi ≥ 0,
∑N

i=1 ξi ≤ constant. However, both of these constraints lead to different solutions.

Geometrically, constraint 1.3 measures the overlap in actual distance from the margin, while con-

straint 1.4 measures the overlap in relative distance, which changes with the width of the margin M .

Although the former might seem like the more natural choice, it results in a nonconvex optimization

problem, while the latter does not. For this reason, the standard SVM uses constraint 1.4.

The value ξi in the constraint yi(x
T
i β + β0) ≥ M(1 − ξi) is the proportional amount that the

predicted value f(xi) = xTi β + β0 is on the wrong side of its margin. Therefore by bounding
∑
ξi,

we are actually putting a bound on the total proportional amount by which the predictions fall on

the wrong side of their margin. Misclassifications will occur when ξi > 1, as the distance from the

margin will then be a negative value. When 0 < ξi < 1, the observation is on the correct side of

the boundary but falls within the margin. When ξi = 0 no misclassification has been made and

the point is far enough away from the decision boundary. By putting a bound on
∑
ξi, call it K,

we are actually limiting the number of misclassifications in the training data to K.

By dropping the norm constraint on β and letting M = 1/‖β‖ as we did before, we end up with
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the following optimization problem:

min
β,β0
‖β‖2 (1.5)

subject to yi(x
T
i β + β0) ≥ 1− ξi ∀i, ξi ≥ 0,

∑
ξi ≤ K.

This is illustrated graphically in Figure 1.6.

1.3.1.3 SVMs from a Decision Theory Perspective

From a computational prospective it turns out that it is easier to represent (1.5) in the following

form:

min
β,β0

1

2
‖β‖2 + C

N∑
i=1

ξi (1.6)

subject to ξi ≥ 0, yi(x
T
i β + β0) ≥ 1− ξi ∀i,

where C, known as the cost parameter, has replaced K in the equation. Here C is a tuning

parameter that controls the trade-off between wanting to maximize the margin and minimize the

error bound.

By letting λ = 1/C and noticing that ξi = max[0, 1−yif(xi)], Equation 1.6 can be re-expressed

as:

min
β,β0

n∑
i=1

[1− yif(xi)]+ +
λ

2
‖β‖2, (1.7)

where f(x) = xTβ + β0 and (a)+ = a if a > 0, 0 otherwise.

This has the form loss + penalty which is a very familiar principle in the function estimation

literature. From this perspective, the SVM is clearly minimizing a loss function, more specifically

the “hinge” loss function, subject to a penalty that shrinks the coefficients (excluding the intercept)

towards zero. The tradeoff between the two is controlled by the tuning parameter λ. The “hinge”

loss function is defined as L(y, f) = [1 − yf ]+ where (a)+ = a if a > 0, 0 otherwise. The loss
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Figure 1.7: Illustration of the hinge loss function, as well some other commonly used loss functions

for binary classification [Hastie et al., 2009].

function will be zero only if yif(xi) ≥ 1, which is true if the points are well inside their margin.

For points that are misclassified or too close to the decision boundary, a linear penalty is paid. The

hinge loss function, as well as some other commonly used loss functions for binary classification,

are presented graphically in Figure 1.7.

In 2008, Zou, Zhu, and Hastie presented a unified statistical view of the binary margin-based

classifier, which includes the SVM. Let y ∈ C where y is the class label and C = {−1, 1}. Consider

a margin-based loss function φ(y, f) = φ(yf), where the quantity yf is called the margin. The

empirical φ risk is defined as EMRn(φ, f) = 1
n

∑n
i=1 φ(yif(xi)). Then a binary margin-based φ

classifier is obtained by solving

f̂ (n) = arg min
f∈Fn

EMRn(φ, f),

where Fn denotes a regularized functional space. The classifier is given by sign(f̂ (n)(x)). In the

case of SVM, φ is clearly the hinge loss and Fn is the collection of penalized kernel estimators.

It turns out that the loss function plays a fundamental role in the success of the margin-based

classification problem such as the SVM. Lin 2002 showed that in the SVM case, the population
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minimizer of the hinge loss is exactly the Bayes rule. The Bayes rule is the optimal classification

rule if the underlying distribution of the data is known. Thus the SVM directly approximates

the Bayes rule without needing to estimate the conditional class probabilities, P (y = ci|x). Lin

2004 later extended this to the idea of Fisher-consistent loss functions for classification problems.

In the traditional estimation problem, an estimator is Fisher consistent if when the estimator is

calculated using the entire population, rather than the sample, the true value of the estimator is

obtained. More explicitly, suppose we have a random sample X1, X2, ..., Xn where each Xi follows

a cumulative distribution Fθ. Let θ̂ = T (F̂n). Then the estimator is Fisher-consistent if T (Fθ) = θ.

In the binary classification problem, a loss function φ is said to be Fisher-consistent if

f̂(x) = arg min
f(x)

[φ(f(x))p(y = 1|x) + φ(−f(x))p(y = −1|x)]

has a unique solution ˆf(x) and

sign(f̂(x)) = sign(p(y = 1|x)− 1/2).

This condition basically states that with infinite samples, you can exactly recover the Bayes rule

by minimizing the φ loss. Lin 2004 showed that under very general conditions, margin-based

loss functions are Fisher consistent and any Fisher consistent loss can be used to construct a

binary-margin classifier. Since the SVM was originally developed from the perspective of simply

maximizing a margin, this connection to loss function theory helps to explain the success of the

SVM as a classification tool.

In general, Fisher consistency is a necessary condition for a loss function to give reasonable

performance. It means that the loss function has the correct target function, but does not guarantee

that the procedure converges to this target function quickly. However, in function estimation

problems, Fisher consistency usually leads to consistency and rate of convergence results under some

mild conditions if the function space is large enough. Since this nice property is known for estimation
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problems, Lin 2004 makes a connection between consistency in classification and consistency in

function estimation. He shows that consistency in classification follows from consistency in function

estimation. By making this connection, researchers can rely on the well-established framework for

establishing asymptotic results for loss function-based methods in function estimation problems

rather than dealing with the consistency of the classifier directly.

1.3.1.4 Primal/Dual Form of the SVM

The optimization problem given in (1.6) is quadratic with linear inequality constraints, so is there-

fore convex and can be solved using Lagrange multipliers. The Lagrange (primal) function corre-

sponding to this optimization problem is given by:

Lp =
1

2
‖β‖2 + C

N∑
i=1

ξi −
N∑
i=1

αi[yi(x
T
i β + β0)− (1− ξi)]−

N∑
i=1

µiξi, (1.8)

which we minimize with respect to β, β0, and ξi. Setting the derivatives to zero we get,

β =
N∑
i=1

αiyixi (1.9)

0 =

N∑
i=1

αiyi (1.10)

αi = C − µi,∀i, (1.11)

as well as the constraints αi, µi, ξi ≥ 0∀i.

By substituting (1.9) – (1.11) into (1.8), we obtain the Lagrangian (Wolfe) dual objective

function:

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′x
T
i xi′ , (1.12)

which gives a lower bound on the objective function (1.6) for any feasible point. We maximize LD

subject to 0 ≤ αi ≤ C and
∑N

i=1 αiyi = 0. In addition to (1.9) – (1.11) the Karush-Kuhn-Tucker
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(KKT) conditions include the constraints:

αi[yi(x
T
i β + β0)− (1− ξi)] = 0 (1.13)

µiξi = 0 (1.14)

yi(x
T
i β + β0)− (1− ξi) ≥ 0, (1.15)

for i = 1, . . . , N . Together, (1.9) – (1.15) uniquely characterize the solution to the primal and dual

problem. It turns out that maximizing the dual (1.12) is a simpler convex quadratic programming

problem than the primal (1.8).

1.3.1.5 The Kernel Trick

Consider a transformation of the original feature variables, h(xi). By making this transformation,

we will have a non-linear boundary in the original input space. In this case, the Lagrange dual

function (1.12) has the form:

LD =

N∑
i=1

αi −
1

2

N∑
i=1

N∑
i′=1

αiαi′yiyi′〈h(xi), h(xi′〉), (1.16)

From (1.9) we see that the solution f(x) can be written as,

f(x) = h(x)Tβ + β0

=
N∑
i=1

αiyi〈h(xi), h(xi′)〉+ β0 (1.17)

So both (1.16) and (1.17) only involve h(x) through inner products. It turns out that we do

not need to specify the transformation h(x) at all, but only need to know the kernel function

K(x, x′) = 〈h(x), h(x′)〉 (1.18)

that computes inner products in the transformed space. So one can either explicitly map the data

with h(x) and take the inner product, or take any kernel and use it right away, without knowing
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or caring what h(x) looks like. It turns out for particular choices of h, these inner products can be

computed very cheaply when compared to the dimensionality of h.

1.3.1.6 Choosing the tuning parameter

Minimizing the objective function of the SVM, given by (1.7), requires choosing a value for the

tuning parameter λ. The most common way to do this is using K-Fold Cross-Validation. This

works by splitting the data into K roughly equal parts. For each k = 1, 2, . . .K, we fit the model

with a given value of parameter λ to the other K − 1 parts. We then apply this fitted model to

the kth part and compute the misclassification rate. Since we will do this process for each of the

K parts, we will end up with K estimates for the misclassification rate that we then average to

get the cross-validation error. We repeat this process for many values of λ, choosing the λ that

minimizes this cross-validation error.

1.3.2 Exploratory Factor Analysis (EFA)

Before being able to to determine the minimum number of symptoms to require from each domain,

we first need to know the number of domains and the items they contain. For this we will employ

the methodology of [Simon et al., 2011], by performing an exploratory factor analysis (EFA) on

the measure of interest, in this case the ICG, on confirmed cases. Heuristically, an exploratory

factor analysis will use the correlation matrix of the items of interest and derive factors, which

are weighted combinations of all of the variables. For example, if we were looking at two factors

derived from the correlation matrix of 10 variables, our first two factors would look like:

F1 = w1,1X1 + w1,2X2 + . . . w1,10X10

F2 = w2,1X1 + w2,2X2 + . . . w2,10X10,

where the F are factors, X are the items, and w are the weights.
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As many factors as there are items is possible. The factors are extracted following specific rules.

The weights for the first factor are chosen so that it explains the maximum amount of variability

among the scores across all of the subjects. The second factor is derived so that it explains the

maximum amount of variance that remains and is uncorrelated, or orthogonal, to the first factor.

All remaining factors are derived in the same way. If we wanted to completely capture all of the

variance, we would need to use all 10 factors. However, if we are okay with only explaining some

percentage of the variance, then we can replace the 10 items with a reduced number of factors.

There are a number of criteria to help in choosing the number of factors including percent of

cumulative variation explained, number of eigenvalues greater than 1 (Kaiser’s rule), scree plots,

and interpretability of the factors.

Often, the factors will be rotated to aid in the overall interpretation of the factors. By examin-

ing which items load onto which factors, we can learn which items tend to be correlated with one

another. These groupings may also allow us to “see” what underlying constructs our scale might

be capturing. When the items are continuous, the factors are derived using Pearson’s correlation.

However, when we have dichotomous or ordinal items, we instead need to use polychoric correla-

tions. Further, the assumption that the factors are uncorrelated (or orthogonal) can be relaxed, by

using an oblique rotation. This allows for the factors to be correlated with one another, a realistic

property when examining most mental health scales [Streiner and Norman, 2008].

1.4 Summary of Introduction

In this dissertation, we propose an empirically based algorithm for disease classification. Suppose

that we have j = 1, · · · , p variables, each belonging to one of k = 1, · · · , G domains. We are going

to assume we already know which domain (or symptom cluster) each variable belongs to. Our

goal is to learn a classification rule based on this group structure to classify subjects as diseased
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or non-diseased. Further, the form of this classification rule needs to be consistent with criteria

sets found in the DSM. Our focus will be Complicated Grief, a new psychiatric disorder, but our

method can also address many of the emerging issues in disease classification discussed above.
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Chapter 2

Statistical Methodologies

2.1 Statistical Framework of Clinical Research Problem

Suppose there are j = 1, · · · , p variables in k = 1, · · · , G groups, or symptom domains. The number

of domains, and the symptoms they contain, is usually determined by psychometric analysis or

based on a conceptual model for the disease. For simplicity, we assume this structure is given a

priori and present methodology on how to obtain this structure if it is unknown in Section 4.1.1.

Using this grouping structure among the variables, we aim to develop a DSM-like criteria set in

order to diagnose, or classify, whether a subject has a certain psychiatric disorder. Most DSM

criteria sets require ck number of symptoms to be present in each of the domains in order to receive

a positive diagnosis [American Psychiatric Association, 2013]. Generally, ck is unknown and needs

to be estimated.

Let i = 1, · · · , n index subjects and yi ∈ {0, 1} be our binary outcome denoting a subject’s

disease status (with one representing diseased, and zero non-diseased). Let

xik = number of symptoms in domain k for the ith subject.

Let xi. = (xi1, · · · , xiG). For the general problem of estimating a decision rule h(x.) mapping a
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subject’s symptoms or other biological measures to his or her disease status y, define a loss function

associated with h as L[h(x.), y]. The optimal decision rule under L(·, ·) is defined as the one that

minimizes the expected value of the loss function. That is, the optimal rule is defined by

h∗(x.) = argminE {L[h(Xi.), Yi]} . (2.1)

Unfortunately the expected loss function involves the joint distribution of Xi. and Yi and cannot be

directly computed. In practice, the optimal decision rule is obtained by minimizing the empirical

loss, that is,

argmin
n∑
i=1

{L[h(xi.), yi]}. (2.2)

Evaluating the expected loss (2.1) and its empirical version (2.2) provides a theoretical basis for

our methods development and comparison.

Based on the above notation, a DSM-like criteria expresses the decision rule as

h(xi.) = I(xi1 ≥ c1, xi2 ≥ c2, . . . , xiG ≥ cG) (2.3)

with unknown parameters c1, · · · , cG. An estimated decision rule should be of the form

I(xi1 ≥ ĉ1, xi2 ≥ ĉ2, . . . , xiG ≥ ĉG).

A commonly used loss function for binary classification problems encountered in the DSM criteria

set development is the zero-one loss, or the misclassification error. Thus, substituting zero-one loss

to the general problem in (2.1), the optimal DSM-like rule we aim to obtain is given by

h∗(x.) = I(x1 ≥ c∗1, x2 ≥ c∗2, · · · , xG ≥ c∗G)

= argminE{I(Yi 6= h(Xi.,))}

= argminP {Yi 6= I(Xi1 ≥ c1, Xi2 ≥ c2, . . . , XiG ≥ cG)} .
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The optimal rule defined in this sense minimizes the expected misclassification error rate, or the

expected misdiagnosis rate, between the true disease status and the identified diagnosis rule. In

practice, the probability measure in the above minimization problem is unknown, so we seek to

minimize the empirical loss function:

n∑
i=1

I
(
yi 6= I(xi1 ≥ c1, xi2 ≥ c2, . . . , xiG ≥ cG)

)
. (2.4)

2.2 Proposed Statistical Methods

2.2.1 Direct Optimization Method: Exhaustive Search

The existing DSM criteria sets for most psychiatric disorders contain a small number of domains

(i.e., G is small) and a moderate number of symptoms in each domain. Therefore ck can only take

a moderate number of possible values. Due to the discrete nature of this problem, the empirical

loss (2.4) can be directly minimized by assessing the misclassification rate for all possible tuples,

(l1, l2, . . . , lG), where lk ∈ (0, pk) and pk is the maximum number of variables in domain k, and

choosing the tuple that minimizes the overall misclassification rate. In the case that two or more

tuples both minimize the misclassification rate, one will be chosen at random. This method will

be referred to as the Exhaustive Search. Using this approach is reasonable when the number of

domains being assessed is small and the number of items within each domain is also small. As

either of these become larger, or if one of the domains is no longer a count of symptoms, but rather

a continuous biomarker [First and Zimmerman, 2006], the Exhaustive Search becomes infeasible

and another solution is necessary. We introduce a few alternatives in the next sections and compare

pros and cons of the Exhaustive Search with these other methods in Section 2.4.
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2.2.2 Linear Discriminant Rules

Let the binary variable zkj denote the presence or absence of the jth symptom in the kth domain,

and let pk denote the total number of symptoms in this domain. The current system used in DSM

criteria sets uses diagnosis decision rules based on the total counts of symptoms in each domain,

that is, xk =
∑pk

j=1 zkj . However, a symptom-specific weight can also be used to build diagnosis

scoring rules and assist clinical decisions (e.g., Framingham risk score). Let z.k = (z1k, · · · , zpkk).

Consider the linear discriminant rule for the kth domain as

fk(z.k) = β0k +

pk∑
j=1

βjkzjk, k = 1, · · · , G, j = 1, · · · , pk,

and, if fk(z.k) > 0, then the criteria in the kth domain is met. Note that when β1k = β2k, · · · ,=

βpkk, this weighted rule reduces to the unweighted symptom counts based rule. To estimate linear

discriminant rules with unknown weights, the Exhaustive Search does not apply.

In the situation where there is only one variable per domain, such as the symptoms count, the

linear discriminant rule within each domain takes the form,

fk(xk) = β0k + β1kxk, k = 1, · · · , G,

and if fk(xk) > 0 then the criteria in the kth domain is considered met. The overall DSM-diagnosis

rule is to meet all the criteria in each domain, that is, a certain number of symptoms is present in

each of the domains. The overall rule therefore takes the “AND” form. That is, a positive diagnosis

will be issued only if the prediction in each domain is positive. In the situation of one variable

per domain, the linear discriminant rule is equivalent to the previously introduced existing DSM

decision rule I(x1 ≥ c1, · · · , xG ≥ cG) in (2.3), and thus covers it as a special case.

For the ease of notation and presentation, the rest of this section is developed for the one

variable per domain scenario. The results automatically carry over to the more general case of
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multiple variables per domain. Based on the DSM structure, the overall decision rule is the sign of

the minimum of all domain-specific rules, which is defined as

h(x.) = sign{min(f1(x1), · · · , fG(xG))}.

Substituting this decision rule and zero-one loss into (2.2), the optimal decision functions we aim

to obtain is given by

(f∗1 (x1), ..., f
∗
G(xG)) = argminE{L[h(X.), Y ]}

= argminP {Y 6= sign(min(f1(X1), ..., fG(XG)))} ,

where Yi is the binary outcome of disease status, but now coded {−1, 1}. The final optimal decision

rule (or diagnosis rule) is given by

h∗(x.) = sign(min(f∗1 (x1), ..., f
∗
G(xG))).

This optimal rule aims to minimize the misclassification error rate (or the misdiagnosis rate) as

in (2.1), only with the decision function replaced by several domain-specific linear discriminant

functions. Corresponding to (2.2), the empirical loss function to be minimized here is

n∑
i=1

I {yi 6= sign(min(f1(x1), ..., fG(xG)))} . (2.5)

2.2.3 Iterative Optimization Method

2.2.3.1 Overview

It is well known that the loss function in (2.5) is difficult to minimize due to discontinuity and

non-convexity of the zero-one loss [Hastie et al., 2009]. To tackle this problem, we consider two

iterative algorithms. The first common approach is to replace the zero-one loss by some convex

surrogate loss and develop a computationally tractable procedure [Steinwart, 2005]. For example,
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we can fit this model by a large-margin based classifier, in particular, the support vector machine

(SVM), which replaces the zero-one loss by a regularized hinge loss function as a surrogate. Here we

approximate the loss simultaneously using all domain-specific decision functions and all subjects.

Our first algorithm then iteratively updates the approximated surrogate loss function. We introduce

details of this algorithm in Section 2.2.3.2, and refer to it as iteratively optimizing a simultaneous

approximation of the original empirical zero-one loss function.

Our second iterative algorithm is motivated from an observation that the expected population

loss function can be re-expressed in an alternative form, and thus the optimal rule also has an

alternative conditional expression. An iterative algorithm can then be applied to fit each domain-

specific rule in turn using a surrogate loss on a subset of subjects conditioning on the other domains.

We introduce details of this second algorithm in Section 2.2.3.3, and refer to it as optimizing a

surrogate of a conditional optimal rule on a subsample.

2.2.3.2 Simultaneous algorithm:

The hinge loss function, a convex approximation to the zero-one loss function, is defined as L(y, f) =

[1− yf ]+ where (a)+ = a if a > 0, and 0 otherwise. Replacing the original loss function (2.5) by a

regularized hinge loss, the resulting optimization problem is thus given by:

min
β0k,β1k,k=1,··· ,G

{1− yi min(f1(xi1), ..., fG(xiG))}+ + λ

G∑
k=1

1

2
‖β1k‖2. (2.6)

By letting λ = 1/C and noticing that ξi = max[0, 1− yi min(f1(xi1, ..., fG(xiG))], the optimiza-

tion problem (2.6) can be reparameterized into:

min
βk,ξi

1

2
(β211 + · · ·+ β21G) + C

n∑
i=1

ξi, (2.7)

subject to the following constraint

yi min(f1(xi1), ..., fG(xiG)) ≥ 1− ξi, ξi ≥ 0. (2.8)
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For diseased subjects, yi = 1 and fk > 0, ∀k, so constraint (2.8) actually requires yifk ≥

1 − ξi, ∀k. For non-diseased subjects, yi = −1 and only requires at least one fk to be negative

enough for (2.8) to hold. As a result, the optimization problem can be rewritten as follows:

min
βk,ξi

1

2
(β211 + · · ·+ β21G) + C

n∑
i=1

ξi

subject to two separate sets of constraints for diseased and non-diseased subjects:

for yi = 1 : yi(β0k + β1kxik) ≥ 1− ξi, k = 1, · · · , G, ξi ≥ 0 (2.9)

for yi = −1 : yi min(β01 + β11xi1, · · · , β0G + β1GxiG) ≥ 1− ξi, ξi ≥ 0. (2.10)

For the constraints (2.9) placed on diseased subjects, there is a penalty controlled by non-zero

slack variables ξi if the prediction in any of the G domains is negative. For the constraints (2.10)

placed on non-diseased subjects, there is a penalty only if all of the predictions in each domain

yields a positive sign, i.e., min(β01 + β1kxi1, · · · , β0G + β1kxiG) > 0. Otherwise, if at least one

domain yields a negative sign, then min(β01 + β1kxi1, · · · , β0G + β1kxiG) < 0, and the penalty is

zero. The constraint (2.10) involves taking a minimum as an operation.

To minimize the empirical loss, we encourage the fitted overall decision rule to have the same

sign as the outcome. In order to have a a positive classification (or diagnosis), the criteria in

each domain would need to be met. In contrast, in order to receive a negative classification (or

diagnosis), only the criteria in one of the domains is required not to be met. It is straightforward

to show that the loss function corresponding to this optimization problem (2.6) is

min
β0k,β1k,k=1,··· ,G

{ n∑
i=1

max
k=1,··· ,G

I(yi = 1)[1− (β0k + β1kxik)]+

+

n∑
i=1

min
k=1,··· ,G

I(yi = −1)[1 + (β0k + β1kxik)]+

+
1

2
λn(||β11||2 + · · ·+ ||β1G||2)

}
.
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The key point is that the loss function for the positive and negative classes is different. The “max”

operation corresponds to L∞ norm of G hinge loss functions.

Once we have estimated our linear discriminant functions, the parameters ck, i.e., the number

of symptoms to be required from each domain can be estimated as

ĉk = [x∗ : such that β̂0k + β̂1kx
∗ > 0],

where [x] denotes the smallest integer a such that a ≥ x. In other words, ĉk is the smallest integer

leading to a positive classification in the kth domain. If ĉk is greater than the maximum number

of variables in domain k denoted as pk, we then let ĉk = pk. If ĉk < 0, we let ĉk = 0. In this case,

the kth domain is not needed for diagnosis and we achieve domain level variable selection. For a

domain negatively related to disease status (for example, less number of beneficial factors indicates

disease status), we reverse code these factors to count non-presence of beneficial factors. By this

reverse coding, missing more beneficial factors (more non-present beneficial factors) indicates a

higher likelihood of disease.

Recall our minimization problem is:

min
n∑
i=1

{1− yi min(f1(xi1), ..., fG(xiG))}+ + λn

G∑
k=1

1

2
‖β1k‖2.

Unfortunately, due to the minimization inside the objective function, min(f1, · · · , fG), this is not

a convex minimization problem. However, the above objective function can be rewritten as

n∑
i=1

I(yi = 1) max {(1− f1(xi1))+, ..., (1− fG(xiG))+}+ λn

G∑
k=1

1

2
‖β1k‖2

−
n∑
i=1

I(yi = −1) max {(−1− f1(xi1))+, ..., (−1− fG(xiG))+} , (2.11)

which is a difference of two convex functions that allows us to use a global optimization technique

called the difference convex (DC) alogorithms [An and Tao, 1997].
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Here we briefly introduce the DC algorithm. Let s = s1 + s2 where s1 is convex and s2 is

concave. The basic idea of the DCA is to construct a sequence of subproblems defined by the affine

minorization of sw,

s1(w) + s2(w
l) + 〈∇s2(wl), w − wl〉

and solve them iteratively, where ∇s2(w) is the subgradient of sw(wl) at wl. Given the solution of

the lth subproblem, the (l + 1)th subproblem can be solved by minimizing s1(w) + 〈∇s2(wl), w〉

with respect to w. By concavity of s2, DCA yields a sequence of nonincreasing convex upper ap-

proximations s1(w) + s2(w
l) + 〈∇s2(wl), w−wl〉 to s(w). This process is iterated until convergence

is established.

Algorithm 1: Simultaneous Approximation of Loss Function

Based on formulation (2.11), we propose the following algorithm for the optimization:

Step 1. Estimate f1, ..., fG separately using standard SVMs and treat these as initial estimates.

Step 2. Iteratively apply the DC (difference of convex functions) algorithm to update f1, ..., fG.

This requires updating only one fk at a time, replacing all others with their current estimate. At

each iteration, it is a quadratic programming optimization.

This iteration algorithm above is based on the cyclic coordinate descent algorithm [Luenberger,

1984]. Cyclic coordinate descent begins by setting all variables to some initial value. It then sets the

first variable to a value that minimizes the objective function, holding all other variables constant.

This is a one-dimensional optimization problem. The algorithm then finds the minimizing value

of a second variable, while holding all other values constant (including the new value of the first

variable). Then the third variable is optimized and so on. When all variables have been passed, the

algorithm restarts. Multiple passes are made until some convergence criterion is met [Genkin et al.,
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2007]. The convergence properties of coordinate descent in convex problems are well-established

[Tseng, 2001]. For non-convex problems, global convergence is not guaranteed and a reasonable

choice of initial values is required. For each proposed method, we provide appropriate initial values.

Using these values, we found satisfactory convergence performance in our simulations studies. This

algorithm has been successfully applied to various types of outcomes (e.g., continuous outcomes,

survival outcomes) and applications [Genkin et al., 2007].

Details of DC algorithm for step 2:

In order to apply the DC algorithm to our problem, we first need to recognize that the function

in (2.11) is equivalent to

n∑
i=1

max {(1− yif1(xi1))+, ..., (1− yifG(xiG))+}+ λn

G∑
k=1

1

2
‖β1k‖2

−
n∑
i=1

I(yi = −1)
[

max {(−1− f1(xi1))+, ..., (−1− fG(xiG))+}

+ max {(1 + f1(xi1))+, ..., (1 + fG(xiG))+}
]
.

To minimize this function, we start with f1, fixing f2, . . . fG as done in a cyclic coordinate descent

algorithm.

Consider updating f1. Let

ai = max {(1− yif2(xi2))+, ..., (1− yifG(xiG))+} ,

bi = max {(−1− f2(xi2))+, ..., (−1− fG(xiG))+}

and

ci = max {(1 + f2(xi2))+, ..., (1 + fG(xiG))+} .
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We aim to minimize

1
2λn‖β11‖

2 +
∑n

i=1 max {(1− yif1(xi1))+, ai}

−
∑n

i=1 I(yi = −1) [max {(1 + f1(xi1))−, bi}+ max {(1 + f1(xi1))+, ci}] .

A DC algorithm is another iteration procedure: at the kth iteration, let the current f1 be

f
(k)
1 (xi1) ≡ β(k)01 + β

(k)
11 xi1.

To obtain the updated β01, β11’s, we minimize

n∑
i=1

max {(1− yif1(xi1))+, ai}

−
n∑
i=1

I(yi = −1)
[
I(1 + f

(k)
1 (xi1) ≤ −bi) + I(1 + f

(k)
1 (xi1) > ci)

]
f1(xi1)

+
1

2
λn‖β11‖2. (2.12)

This is now a convex minimization so we can obtain its dual problem and solve it by quadratic

programming.

As an aside, for some criteria sets in the DSM manual, the relationship between the domains is

“OR”, rather than “AND”. One example is ADHD, where children must have at least six symptoms

from either the inattention group or the hyperactivity and impulsivity criteria [American Psychiatric

Association, 2013]. To fit an “OR” relationship, our classification rule now takes on the form:

sign {max(f1, · · · , fG)} .

As long an individual meets the criteria for at least one domain, i.e. fk is positive for at least one

k, that individual will be classified as diseased. The objective function is still the same as (2.7),

however, the constraints will be modified as

for yi = 1 : yi max(β01 + β11xi1, · · · , β0G1 + β1G1xiG1) ≥ 1− ξi, ξi ≥ 0,

for yi = −1 : yi(β0k + β1kxik) ≥ 1− ξi, k = 1, · · · , G1, ξi ≥ 0
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Using linear constraints to replace the ‘max’ operation in the above display, we obtain

for yi = 1 : β01 + β11xi1 ≤ ζi, · · · , β0G1 + β1G1xiG1 ≤ ζi, yiζi ≥ 1− ξi, ξi ≥ 0.

Also, note that the “OR” rule can be fit by switching labels for yi, i.e., replacing “1” by “-1” and

vice-versa, and applying the same algorithm for the “AND” rule presented above.

2.2.3.3 Conditional algorithm

As an alternative to Algorithm 1 proposed above, we propose a second algorithm, referred to as the

Conditional Approach, that is motivated by solving for the optimal rule for our decision function

iteratively within each domain. This approach is based on a useful observation that re-expresses

the expected population loss function in an alternative form, and thus reveals an alternative con-

ditional form of the optimal rule on a sub-sample of subjects given decision functions for the other

domains. We can then apply an iterative algorithm to estimate this optimal rule by updating each

domain sequentially.

Theoretical motivation for Algorithm 2:

Still let Xk denote the number of symptoms for a subject (or more generally, a feature variable)

in each domain k for k = 1, ..., G. Recall that the optimal decision functions we aim to obtain is

(f∗1 (x1), ..., f
∗
G(xG)) = argminP {Y 6= sign(min(f1(X1), ..., fG(XG)))} .

Note

P {Y 6= sign(min(f1(X1), ..., fG(XG)))}

= E [I(f2(X2) > 0, ..., fG(XG) > 0)I(Y 6= sign(f1(X1))]

+E [I(at least one of f2(X2), ..., fG(X2) ≤ 0)I(Y 6= −1)] .
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Therefore, given f∗2 , ..., f
∗
G, f∗1 minimizes

E [I(f∗2 (X2) > 0, ..., f∗G(XG) > 0)I(Y 6= sign(f1(X1))]

=

∫
x1

{P (f∗2 (X2) > 0, ..., f∗G(XG) > 0, Y = 1|X1 = x1)I(sign(f1(x1)) = −1)

+P (f∗2 (X2) > 0, ..., f∗G(XG) > 0, Y = −1|X1 = x1)I(sign(f1(x1)) = 1)} dP1(x1),

where P1(x1) denotes the distribution of X1. Therefore, it is clear that the optimal Bayes classifier

for f∗1 is

sign(f∗1 (x1)) = sign [P (f∗2 (X2) > 0, ..., f∗G(XG) > 0, Y = 1|X1 = x1)

−P (f∗2 (X2) > 0, ..., f∗G(XG) > 0, Y = −1|X1 = x1)]

= sign [P (Y = 1|X1 = x1, A
∗
1)− P (Y = −1|X1 = x1, A

∗
1)] ,

where

A∗1 = {f∗2 (X2) > 0, ..., f∗G(XG) > 0} .

Similarly, we obtain that the Bayes classifier f∗k (xk), k = 1, ..., G, is given as

sign(f∗k (xk)) = sign [P (Y = 1|Xk = xk, A
∗
k)− P (Y = −1|Xk = xk, A

∗
k)] ,

where

A∗k =
{
f∗1 (X1) > 0, ..., f∗k−1(Xk−1) > 0, f∗k+1(Xk+1) > 0, ..., f∗G(XG) > 0

}
.

Algorithm 2: Conditional Optimal Rule

From the above derivation, it motivates us to develop the following algorithm. Suppose A∗k to

be known. Then to estimate f∗k , it would be ideal to minimize the empirical risk

n∑
i=1

I(subject i ∈ A∗k)I(yifk(xik) ≤ 0)).
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However, the minimization of this empirical risk is not feasible. Thus, using the formulation of

SVM, we estimate fk by replacing the second indicator function by its surrogate loss and instead

minimize the following regularized hinge-loss:

n∑
i=1

I(subject i ∈ A∗k)
(
{1− yifk(xik)}+ + λn‖fk‖2

)
,

where (1 − x)+ = max(x, 0) and ‖fk‖ is some reproducing kernel Hilbert space (RKHS) norm for

fk. For the linear discriminant rule in Section 2.2.2, ‖fk‖ =
∑

j β
2
jk. This minimization can be

easily carried out using existing SVM software packages.

From this perspective, the algorithm is not specific to the SVM. In fact, any appropriate loss

function could be used. For example, we could also estimate fk by minimizing the negative log-

likelihood loss (binomial deviance) for logistic regression:

n∑
i=1

I(subject i ∈ A∗k) log[1 + e−yifk(xik)].

Here yi would need to be coded as (0, 1) instead of (−1, 1). Again, this minimization can be easily

carried out using existing logistic regression software packages.

Since A∗k is not known, we then propose the iterative procedure as follows:

Step 1. We estimate f1, ..., fG independently using their corresponding feature variables in each

domain and treat them as initial classifiers;

Step 2. For k = 1, ..., G, we define Ak the same way as A∗k but replace those f ’s by the updated

f ’s. We then apply the SVM or logistic regression to estimate fk using the subjects who belong to

Ak.

Step 3. We iterate Step 2 until convergence.

When using the formulation of the SVM, the method will be referred to as SVM Iterative.

When using the logistic loss function, the method will be referred to as Logistic Iterative. Note
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that like Algorithm 1, this algorithm also relies on cyclic coordinate descent, i.e. estimating one

parameter while holding all of the other parameters constant.

For clarity’s sake, let us assume that we only have two domains and we are using the SVM loss

function. Then the algorithm would proceed as follows:

1. Fit a SVM using only the domain 1 variable xi1 to obtain decision function f̂1(xi1).

2. Restrict the full sample to all subjects who meet the domain 1 criterion, i.e., the sub-sample

S1 = {i : f̂1(xi1) > 0}.

3. Using only the subjects in S1 and the domain 2 variable, obtain decision function f̂2(xi2).

4. Now restrict the full sample to all subjects who meet the domain 2 criterion, i.e., S2 = {i :

f̂2(xi2) > 0}, and use the domain 1 variable xi1 to re-fit decision function f̂1(xi1).

5. Iterate steps 2 and 3 until convergence. The convergence criterion will be met when the

parameter estimates are no longer changing (below some small threshold). The final decision

rule is to classify a subject as diseased if f̂1(xi1) > 0 and f̂2(xi2) > 0.

2.3 Theoretical Considerations

In this section, we examine the asymptotic properties of the Exhaustive Search and the iterative

method.

2.3.1 Asymptotic properties of exhaustive search algorithm

Let Zi = (X11, · · · , X1G, Y1), · · · , Zn = (Xn1, · · · , XnG, Yn) be i.i.d. random variables in a mea-

surable space (X ,A) with probability law P , and for a measurable function h : X → R. Let the
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expectation, empirical measure and empirical process at f be denoted by

Ph =

∫
hdP, Pnh =

1

n

n∑
i=1

h(Zi), Gnh =
√
n(Pn − P )h.

Define a specific functional h(·) as h(Zi) = I
(
Yi 6= I(Xi1 ≥ c1, . . . , XiG ≥ cG)

)
. Recall the solution

for exhaustive search method, ĉn = (ĉ1, · · · , ĉG), is obtained by minimizing the empirical objective

function defined in (2.4),

Pnh =
1

n

n∑
i=1

h(Zi) =
1

n

n∑
i=1

I
(
Yi 6= I(Xi1 ≥ c1, . . . , XiG ≥ cG)

)
.

Let c∗ = (c∗1, · · · , c∗G) denote the true optimal cut points that minimize the expected loss,

Ph = P {Yi 6= I(Xi1 ≥ c1, . . . , XiG ≥ cG)}

and we assume that such a maximum is unique. We show the following theorem hold for ĉn by

empirical processes theory [van der Vaart and Wellner, 1996].

Theorem 1 Under conditions (a) c∗ exists and is unique; and (b) P (Y = 1|X = x) and the joint

density of X is continuous in the whole space [−∞,∞] × · · · × [−∞,∞]. Then it holds that with

probability one,

ĉn → c∗.

Proof. Indicator functions I(x1 ≥ c1, . . . , xG ≥ cG) are cadlag processes which are bounded in

total variation and belong to the Vapnik-Červonencis class. Thus they are bounded in uniform

entropy integral with square-integrable envelope. It follows that they belongs to a Donsker class,

and hence Glivenko-Cantelli. Therefore {h ∈ F : I
(
Yi 6= I(Xi1 ≥ c1, . . . , XiG ≥ cG), 0 ≤ c1 ≤

p1, · · · , 0 ≤ cG ≤ pG

)
} is Glivenko-Cantelli. By the Glivenko-Cantelli theorem, with probability

one,

sup
∣∣∣(Pn − P )I

(
Yi 6= I(Xi1 ≥ c1, . . . , XiG ≥ cG)

)∣∣∣→ 0.
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For any convergent subsequence in ĉn = (ĉ1, ..., ĉG) which converges to (c̃1, ..., c̃G) (c̃’s can be

infinity), we have

PnI
(
Yi 6= I(Xi1 ≥ c∗1, . . . , XiG ≥ c∗G)

)
≥ PnI

(
Yi 6= I(Xi1 ≥ ĉ1, . . . , XiG ≥ ĉG)

)
= (Pn − P )I

(
Yi 6= I(Xi1 ≥ ĉ1, . . . , XiG ≥ ĉG)

)
+ PI

(
Yi 6= I(Xi1 ≥ ĉ1, . . . , XiG ≥ ĉG)

)
≥ PI

(
Yi 6= I(Xi1 ≥ ĉ1, . . . , XiG ≥ ĉG)

)
−
∣∣∣(Pn − P )I

(
Yi 6= I(Xi1 ≥ ĉ1, . . . , XiG ≥ ĉG)

)∣∣∣
If we take the limit of both the left-hand side (first line) and the right-hand side (last line) and note

that the second term of the right-hand side converges to zero, we can conclude based on condition

(b),

PI
(
Yi 6= I(Xi1 ≥ c∗1, . . . , XiG ≥ c∗G)

)
≥ PI

(
Yi 6= I(Xi1 ≥ c̃1, . . . , XiG ≥ c̃G)

)
.

Since c∗ is the unique minimum by condition (a), it yields that c̃ = c∗. In other words, any

convergent subsequence in ĉn must converge to c∗. Therefore, the whole sequence ĉn converges to

c∗ almost surely.

Furthermore, if we assume that PI
(
Yi 6= I(Xi1 ≥ c1, . . . , XiG ≥ cG)

)
is twice continuously

differentiable in a neighborhood of c∗ and its second derivative is strictly negative, then the asymp-

totic normality of the exhaustive search solution can be obtained from the standard M-theorem

(c.f. Thorem 3.2.16, [van der Vaart and Wellner, 1996]). In other words,
√
n(ĉn − c∗) converges to

a normal distribution with mean zero.

2.3.2 Fisher consistency of minimizing hinge-loss

Recall, the iterative method minimizes a hinge-loss instead of a zero-one loss and it considers a

more general class of diagnosis rules that includes the DSM-like rule. We show Fisher consistency of
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using hinge-loss to replace zero-one loss. Let f∗1 , ..., f
∗
G be the limit of the optimal decision functions

minimizing the population hinge loss function,

L(f1, ..., fG) = E
[
{1− Y min(f1(X1), ..., fG(XG))}+

]
.

Thus, by simple algebra for any X = (X1, ..., XG), f∗k , k = 1, ..., G should minimize

P (Y = 1|X) {1−min(f1(X1), ..., fG(XG))}+

+P (Y = −1|X) {1 + min(f1(X1), ..., fG(XG))}+ .

Due to the nonparametric choice of (f1, ..., fG), Z = min(f1(X1), ..., fG(XG)) can be chosen to be

any real number, so we conclude that the optimal value for Z must satisfy sign(Z) = sign(2P (Y =

1|X)− 1). In other words, the sign of min(f∗1 , ..., f
∗
G) is the same as the Bayes rule. We thus obtain

the Fisher consistency for replacing the zero-one loss function by the hinge loss function.

As a remark, although theoretically, we require f ’s to be fully nonparametric to obtain the

Fisher consistency of using the hinge-loss, our empirical experience shows that linear rules for f ’s

are often sufficient in terms of prediction performance (e.g., sensitivity and specificity).

2.4 Choosing between Different Approaches

The Exhaustive Search is certainly the simplest of the methods presented, and the easiest to

implement. Based on the statistical theory, we also expect that it will perform quite well under

suitable conditions. However, there are many scenarios where the Exhaustive Search becomes

infeasible, and another option, such as SVM Iterative or Logistic Iterative becomes necessary. If the

number of domains becomes quite large and/or the number of symptoms within a domain becomes

large, carrying out the Exhaustive Search will become very time intensive. This is especially true

if one of the domains is replaced with a continuous biomarker. In this scenario, how to even carry

out an exhaustive search is not clear.
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Another advantage of the iterative methods compared to the Exhaustive Search is their flexibil-

ity to incorporate item-specific weights, or to empirically determine a scoring system. The current

DSM criteria sets give each symptom in a domain the same weight and simply counts the total

number of symptoms in each domain. Another advantage lies in its great flexibility to include

non-linear decision rules and a large number of variables within domains through the kernel trick

for SVM.

As for the two iterative algorithms, both rely on cyclic coordinate descent [Luenberger, 1984],

in that one set of parameters are updated while holding all of the others constant. Algorithm 1 is

flexible in the sense that it can easily incorporate ‘AND’ relationships as well as ‘OR’ relationships

(see 5.2). However, our current clinical application only requires ‘AND’ relationship. Algorithm 2 is

flexible in the sense that in each iteration any appropriate classifier (e.g., SVM, logistic regression,

random forest) can be used. In Algorithm 1, the solving for fk directly depended on the current

values for the other discriminant functions, f̂1, . . . , f̂k−1, f̂k+1 . . . , f̂G. This required using another

algorithm, the DC algorithm, to handle the non-convexity problem that results. On the other hand,

in the Algorithm 2 approach, the estimate for fk is only indirectly related to the current values for

the other domains. This is through the subset of data that is being used to estimate fk, Ak. As

a result, this approach does not have a non-convexity problem since it chooses to focus within a

single domain only, rather than across the domains.

Although both algorithms are reasonable approaches to solving this problem, the first algorithm

is computationally much more intensive. This is because it is an iterative algorithm that contains

another iterative algorithm (DC algorithm). Further, the second algorithm can be carried out using

software packages for SVMs and logistic regression, while the first one requires using a quadratic

programming solver. We have shown that if we know A∗k, then this second algorithm is the Bayes

classifier. For these reasons, we will only examine the performance properties of Algorithm 2 (SVM
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Iterative and Logistic Iterative) in the remainder of this dissertation.
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Chapter 3

Simulations

3.1 Initial Data Simulation

All of the data used to evaluate the Exhaustive Search and the iterative methods was simulated to

reflect the actual data as closely as possible.

In the initial simulation setting (Setting A), we randomly selected n = 300 vectors of length 17

from a multivariate normal distribution with mean zero. The 17 Dimensions reflect 17 symptoms

within two domains. Domain A has five items, Domain B, 12. Items within the same domain had

a correlation of 0.8, items across domains a correlation of 0.65, and the variance for each item was

set to one. Each item was then dichotomized, with the cut point chosen to reflect the prevalence

of each item in the real data. The dichotomized items were then summed within each domain to

determine CountA and CountB, the number of symptoms present in each domain.

Next, we assigned a case status to each individual; if CountA≥ 1 and CountB ≥ 3, then the

individual was classified as diseased, else as not diseased. Therefore, the true c1 = 1 and c2 = 3.

We added random noise to either the case status, the counts, or both.

• Error Structure 1 (case status only): Randomly switched the case status for 25% of the

observations that fell near the decision threshold (0 ≤ countA ≤ 2 and 2 ≤ countB ≤ 4).
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This updated case status was used in the simulations.

• Error Structure 2 (counts only): Randomly added one to CountA with 10% probability or

randomly subtracted one to CountA with 10% probability. If the updated CountA was -1 or

6 (i.e. outside the range of Domain A), CountA was reverted to 0 or 5 respectively. The same

process was repeated for CountB. Updated counts were used in the simulations.

• Error Structure 3 (counts only): Randomly added one to CountA with 15% probability or

randomly subtracted one to CountA with 15% probability. If the updated CountA was -1 or

6, CountA was reverted to 0 or 5 respectively. The same process was repeated for CountB.

Updated counts were used in the simulations.

• Error Structure 4 (case status and counts): Case status was manipulated in the same way as

Simulation 1. Further, the counts were manipulated as in Simulation 2.

• Error Structure 5 (case status and counts): Case status was manipulated in the same way as

Simulation 1, except case status was only switched 15% of the time. Further, the counts were

manipulated as in Simulation 2.

1000 data sets were simulated under each of these error structures and used to train each of the

competing methods. Each resulting decision rule was then evaluated on an independent test set of

size n = 10000 with the same error structure as the original data set. It is well known that using

the training data to evaluate model performance is not appropriate, as the training error does not

properly account for model complexity. Training error tends to decrease whenever we increase model

complexity. However, with too much fitting, the model adapts itself too closely to the training data

and will not generalize well [Hastie et al., 2009]. For this reason, having an independent test set is

recommended. Using this test set, sensitivity, specificity, and misclassification rate were computed
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for each estimated decision rule produced by each of the 1000 training sets and then averaged. In

addition, the proportion of times (c1, c2) was correctly chosen was also computed.

3.2 Other Simulation Settings

In addition to Simulation Setting A described above, the competing methods were also evaluated

under several other varying data structures (two and three factors), sample sizes (n = 150 and

n = 300), correlation strengths (strong and moderate), data types (counts as well as continuous

biomarkers), and with and without model misspecification. Details of each setting are given below.

Setting A: Two factors, strong correlation among factors, n = 300. See above.

Setting B: Two factors, strong correlation among factors, n = 150. Same as Setting A, except

each training data set was of size 150 instead of 300.

Setting C: Two factors, moderate correlation among factors, n = 300. As in Setting A, we

randomly selected n = 300 vectors of length 17 from a multivariate normal distribution with mean

zero, except that items within the same domain had a correlation of 0.65 (rather than 0.8), and

items across domains a correlation of 0.5 (instead of 0.65). The remainder of the data simulation

was as in Setting A.

Setting D: Two factors, strong correlation among factors, n = 300 with model misspecification.

Data was simulated exactly as in Setting A. However, rather than using the symptom counts based

on the true data structure in the model training, counts based on an incorrect data structure were

used. To be more specific, one item that truly loaded on Domain B was treated as though it

belonged to Domain A. To make this as realistic as possible, the item chosen to be misspecified

had a moderate cross-loading on the other domain in the real data example and therefore could

have been mistakenly placed on the wrong factor. Based on this misspecification, countA could

now range from 0-6 and countB from 0-11. Error structures two through five were all applied to
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these misspecified counts, rather than the true counts.

Setting E: Two factors (one count, one continuous), strong correlation among factors, n = 300.

Here, we randomly selected n = 300 vectors of length 13 from a multivariate normal distribution

with mean zero. The first 12 dimensions reflect a symptom cluster with 12 symptoms and the last

dimension, a continuous biomarker. Items within the symptom cluster had a correlation of 0.8.

The correlation between each symptom and the continuous biomarker was 0.65. The variance for

each symptom and the continuous biomarker was set to one. Each item within the symptom cluster

was then dichotomized, with the cut point chosen to reflect the prevalence of each item in the real

data. The dichotomized items were then summed within the domain to determine CountA. A case

status was then assigned to each individual based on the number of symptoms they had (CountA)

and their continuous biomarker level(totalB); if CountA≥ 2 and totalB ≥ −0.5, then the individual

was classified as diseased, else as not diseased. Therefore, the true c1 = 2 and c2 = −0.5.

The error structures discussed above needed to be adapted to handle the continuous biomarker.

In structure 1, case status was randomly switched for 25% of the observations that fell near the

decision threshold (1 ≤ countA ≤ 3 and −1 ≤ totalB ≤ 0). For error structure 2, the noise

added to CountA remained the same. For totalB, 20% of the time an observation from a N(0,

0.2) distribution was added to it. In error structure 3, this percentage was upped to 30%. Error

structure 4 remained a combination of error structure 1 and 2, and error structure 5 a combination

of error structure 1 (with a reduced probablility of switching) and error structure 2.

In addition to evaluating the sensitivity, specificity, and misclassification rate in this setting,

the mean squared error was also computed based on the true value of the threshold for TotalB.

Setting F: Three domains, strong correlation among factors, n = 300. We randomly selected

n = 300 vectors of length 17 from a multivariate normal distribution with mean zero. The 17

Dimensions reflect 17 symptoms within three domains. Domain A has nine items, Domain B six,
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Domain C two. Items within the same domain had a correlation of 0.8, items across domains a

correlation of 0.65, and the variance for each item was set to one. Each item was then dichotomized,

with the cut point chosen to reflect the prevalence of each item in the real data. The dichotomized

items were then summed within each domain to determine CountA, CountB, and CountC. Next, a

case status was assigned to each individual; if CountA≥ 2, CountB ≥ 1 and CountC ≥ 0, then the

individual was classified as diseased, else as not diseased. Therefore, the true c1 = 2, c2 = 1, and

c3 = 0. The same error structures described above were extended to handle three counts rather

than two.

Setting G: Three domains, strong correlation among factors, n = 300 with model misspec-

ification. Data was simulated as in Setting F. However, rather than using the symptom counts

based on the true data structure in the model training, counts based on an incorrect data structure

were used. To be more specific, one item that truly loaded on Domain A was treated as though

it belonged to Domain C. This item had a strong cross-loading on Domain C in the real data and

therefore could have been realistically placed on Domain C by mistake. Based on this misspecifi-

cation, countA could now range from 0-8, countB from 0-6, and countC from 0-3. Error structures

were all applied to these misspecified counts, rather than the true counts.

Setting H: Truth is two domains, but one domain is used instead Here, the data are simulated

exactly as in Setting A, with all of the same error structures applied. However, instead of estimating

the true decision rule based on two domains, a decision rule based on one domain is estimated

instead. The count used for this single domain model is just the sum of the counts observed

for Domain A and Domain B (countA+countB). This represents a more severe form of model

misspecication than previously examined. Previously, only one item was incorrectly placed in the

wrong domain; now, the overall grouping structure is wrong. In the one domain scenario, both

Logistic Iterative and SVM Iterative reduce to just performing a single regression to determine the
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threshold, as there are no other domains to iterate across.

3.3 Methods Evaluated

In addition to evaluating the performance of our three newly proposed methods, Exhaustive Search,

SVM Iterative, Logistic Iterative, we also evaluated four other methods: SVM Näıve, Logistic Näıve,

SVM Linear, and Logistic Linear.

SVM Näıve: In the two factor settings, a linear SVM of the form f(x1) = b01 + b11 ∗x1, where

x1 is the symptoms count for Domain A, was fit on the full data to determine c1. A separate linear

SVM of the form f(x2) = b02 + b12 ∗ x2, where x2 is the symptoms count for Domain B, was fit on

the full data to determine c2. The classification rule was taken to be the intersection of these two

decisions rules, (c1, c2).

Logistic Näıve: In the two factor settings, a logistic model of the form log( p
1−p) = b01+b11∗x1,

where x1 is the symptoms count for Domain A, was fit on the full data to determine c1. A separate

logistic model of the form log( p
1−p) = b02 + b12 ∗ x2, where x2 is the symptoms count for Domain

B, was fit on the full data to determine c2. The classification rule was taken to be the intersection

of these two decisions rules, (c1, c2).

SVM Linear: In the two factor settings, a linear model of the form f(x) = b0 + b1x1 + b2x2

was fit using an SVM. If f(x) ≥ 0, then the person is classified as diseased, otherwise, not diseased.

Logistic Linear: In the two factor settings, a logistic model of the form log( p
1−p) = b0 +b1x1 +

b2x2 was fit. If f(x) ≥ 0, then the person is classified as diseased, otherwise, not diseased.

Unfortunately both SVM Linear and Logistic Linear do not provide classification rules that are

consistent with the logic structure of the DSM. They are explored here purely out of statistical

interest.

After evaluating the performance of SVM Näıve, Logistic Näıve, SVM Linear and Logistic
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Linear under all of the two factor scenarios (A-E), we decided to eliminate them as alternatives

due to poor performance. For this reason, they were not evaluated in the three factor settings.

3.4 Simulation Results

In all of the tables of simulation results, there is a column labeled Oracle. This is the average

sensitivity, specificity, and misclassification rate of the true classification rule when applied to the

test data and can be thought of as a gold standard by which to judge the competing methods.

Table 3.1 presents the results of Simulation A under each of the error structures. Under all of the

error structures, the Exhaustive Search, Logistic Iterative, and SVM Iterative perform similarly

in terms of average sensitivity, specificity, and misclassification rates, with rates very close to the

Oracle. In terms of selecting the correct (c1, c2), Exhaustive Search has the highest chance, followed

by Logistic Iterative, and then by SVM Iterative. The gaps between our proposed methods and the

Oracle diverge more as the error structure becomes more severe, but does not seem to drastically

impact the overall diagnostic measures. Both of the linear rules, which were included out of

statistical interest and not clinical relevance, perform moderately worse than the previous three

methods, with misclassification rates that are somewhat worse than the Oracle method. Lastly,

the two näıve methods perform the worst of all, with misclassification rates greater than 10% in

all cases. Neither of the näıve methods ever select the correct (c1, c2), always overestimating them

both.

In Simulation Setting B, presented in Table 3.2, the training sets were of size n = 150 instead

of n = 300. The overall pattern of results remains similar, with the Exhaustive Search, Logistic

Iterative, and SVM Iterative performing well, the linear rules performing slightly worse, and the

näıve methods performing the worst of all. Unlike in Setting A, where the Exhaustive Search

outperformed all methods, under Error Structure 2, SVM Iterative and Logistic Iterative actually
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Table 3.1: Simulation Setting A; Two domains, Strong Correlation, n = 300
Error Oracle Exhaustive Linear Näıve Iter Linear Näıve Iter

Search Logistic Logistic Logistic SVM SVM SVM

1 (c1, c2) N/A 99.4% N/A 0.0% 99.0% N/A 0.0% 96.3%

avg sens 0.927 0.927 0.855 0.609 0.926 0.855 0.659 0.924

avg spec 0.986 0.985 0.948 1.000 0.986 0.946 0.999 0.985

avg misclass 0.035 0.035 0.084 0.137 0.035 0.085 0.121 0.036

2 (c1, c2) N/A 99.8% N/A 0.0% 95.3% N/A 0.0% 90.9%

avg sens 0.981 0.972 0.884 0.625 0.966 0.889 0.649 0.962

avg spec 0.972 0.981 0.955 1.000 0.982 0.953 1.000 0.982

avg misclass 0.022 0.022 0.069 0.126 0.023 0.068 0.118 0.025

3 (c1, c2) N/A 96.9% N/A 0.0% 85.2% N/A 0.0% 79.2%

avg sens 0.959 0.956 0.878 0.623 0.942 0.883 0.644 0.938

avg spec 0.973 0.974 0.955 1.000 0.976 0.952 1.000 0.975

avg misclass 0.031 0.032 0.071 0.126 0.035 0.071 0.120 0.037

4 (c1, c2) N/A 96.6% N/A 0.0% 87.2% N/A 0.0% 76.5%

avg sens 0.908 0.905 0.848 0.606 0.895 0.847 0.626 0.889

avg spec 0.970 0.970 0.946 1.000 0.972 0.944 0.999 0.969

avg misclass 0.052 0.052 0.088 0.139 0.055 0.089 0.132 0.059

5 (c1, c2) N/A 98.3% N/A 0.0% 91.6% N/A 0.0% 82.3%

avg sens 0.934 0.933 0.862 0.615 0.925 0.863 0.632 0.919

avg spec 0.976 0.976 0.950 1.000 0.977 0.948 0.999 0.975

avg misclass 0.039 0.039 0.081 0.133 0.041 0.081 0.127 0.044
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Table 3.2: Simulation Setting B; Two domains, Strong Correlation, n = 150
Error Oracle Exhaustive Linear Näıve Iter Linear Näıve Iter

Search Logistic Logistic Logistic SVM SVM SVM

1 (c1, c2) N/A 91.8% N/A 0.0% 89.0% N/A 0.0% 79.4%

avg sens 0.927 0.923 0.854 0.607 0.915 0.850 0.664 0.915

avg spec 0.986 0.981 0.946 1.000 0.985 0.945 0.998 0.976

avg misclass 0.035 0.039 0.086 0.138 0.039 0.087 0.119 0.046

2 (c1, c2) N/A 91.5% N/A 0.0% 83.6% N/A 0.0% 78.1%

avg sens 0.972 0.965 0.883 0.620 0.953 0.883 0.654 0.950

avg spec 0.981 0.965 0.952 1.000 0.982 0.951 0.999 0.973

avg misclass 0.022 0.0351 0.071 0.127 0.027 0.071 0.116 0.0345

3 (c1, c2) N/A 82.9% N/A 0.0% 68.8% N/A 0.0% 70.7%

avg sens 0.959 0.942 0.878 0.618 0.924 0.873 0.650 0.932

avg spec 0.973 0.970 0.952 1.000 0.977 0.950 0.999 0.967

avg misclass 0.031 0.039 0.073 0.128 0.041 0.073 0.118 0.045

4 (c1, c2) N/A 78.8% N/A 0.0% 70.1% N/A 0.0% 64.2%

avg sens 0.908 0.894 0.846 0.601 0.878 0.845 0.635 0.889

avg spec 0.970 0.968 0.944 0.999 0.972 0.942 0.998 0.957

avg misclass 0.052 0.058 0.090 0.141 0.061 0.091 0.130 0.067

5 (c1, c2) N//A 87.4% N/A 0.0% 76.6% N/A 0.0% 70.2%

avg sens 0.934 0.924 0.861 0.609 0.909 0.857 0.640 0.913

avg spec 0.976 0.974 0.947 1.000 0.977 0.945 0.999 0.965

avg misclass 0.039 0.043 0.082 0.135 0.047 0.082 0.125 0.053

do slightly better here. In addition, with a smaller sample size, the gap between the three methods

of interest and the Oracle is slightly wider than it was under the larger sample size. For example,

under error structure 5, where noise has been added to both the counts and the case statuses, the

Oracle rule yields a misclassification rate of 0.039 on the independent test set. When the sample

size is n = 300, the average misclassification rates for the Exhaustive Search, Logistic Iterative, and

SVM Iterative are 0.039, 0.041, and 0.044 respectively. When the sample size decreases to n = 150,

the rates are slightly higher at 0.043, 0.047, 0.053.

Table 3.3 presents the results if the domains are only moderately correlated, as opposed to

strongly correlated in Table 3.1. Results under this scenario are nearly identical to when the

correlation was strong, and therefore will not be discussed in detail.

In Simulation Setting D, the model has been misspecified. The true classification rule is based
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Table 3.3: Simulation Setting C; Two domains, Moderate Correlation, n = 300
Error Oracle Exhaustive Linear Näıve Iter Linear Näıve Iter

Search Logistic Logistic Logistic SVM SVM SVM

1 (c1, c2) N/A 99.9% N/A 0.0% 99.2% N/A 0.0% 96.1%

avg sens 0.915 0.915 0.837 0.527 0.914 0.842 0.587 0.911

avg spec 0.979 0.979 0.938 1.000 0.979 0.936 0.998 0.978

avg misclass 0.045 0.045 0.100 0.177 0.045 0.099 0.156 0.047

2 (c1, c2) N/A 100.0% N/A 0.0% 98.7% N/A 0.0% 94.9%

avg sens 0.961 0.961 0.875 0.544 0.959 0.885 0.582 0.954

avg spec 0.981 0.981 0.945 1.000 0.981 0.942 0.999 0.981

avg misclass 0.026 0.026 0.080 0.162 0.027 0.077 0.149 0.029

3 (c1, c2) N/A 99.5% N/A 0.0% 94.3% N/A 0.0% 86.7%

avg sens 0.949 0.948 0.871 0.542 0.941 0.880 0.572 0.932

avg spec 0.972 0.972 0.944 1.000 0.973 0.941 0.999 0.972

avg misclass 0.036 0.036 0.082 0.163 0.039 0.080 0.153 0.042

4 (c1, c2) N/A 98.0% N/A 0.0% 91.9% N/A 0.0% 75.3%

avg sens 0.887 0.886 0.832 0.521 0.879 0.835 0.554 0.869

avg spec 0.966 0.965 0.934 0.999 0.966 0.931 0.997 0.961

avg misclass 0.064 0.064 0.105 0.180 0.067 0.105 0.168 0.074

5 (c1, c2) N/A 99.2% N/A 0.0% 95.2% N//A 0.0% 82.5%

avg sens 0.918 0.917 0.854 0.533 0.912 0.858 0.565 0.899

avg spec 0.969 0.969 0.937 0.999 0.970 0.935 0.998 0.967

avg misclass 0.049 0.050 0.093 0.170 0.051 0.093 0.160 0.057
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Table 3.4: Simulation Setting D; Two domains, Strong Correlation, n = 300, model misspecification
Error Oracle Exhaustive Linear Näıve Iter Linear Näıve Iter

Search Logistic Logistic Logistic SVM SVM SVM

1 avg sens 0.927 0.904 0.856 0.646 0.890 0.855 0.668 0.966

avg spec 0.986 0.971 0.948 1.000 0.972 0.947 1.000 0.966

avg misclass 0.035 0.053 0.084 0.124 0.057 0.085 0.117 0.057

2 avg sens 0.981 0.952 0.884 0.661 0.929 0.887 0.679 0.941

avg spec 0.972 0.971 0.955 1.000 0.975 0.954 1.000 0.968

avg misclass 0.022 0.036 0.069 0.114 0.040 0.068 0.108 0.041

3 avg sens 0.959 0.936 0.878 0.655 0.910 0.881 0.673 0.929

avg spec 0.973 0.967 0.955 1.000 0.973 0.953 0.999 0.964

avg misclass 0.031 0.043 0.071 0.115 0.0481 0.071 0.110 0.0478

4 avg sens 0.908 0.882 0.848 0.640 0.865 0.848 0.651 0.879

avg spec 0.970 0.963 0.946 0.999 0.965 0.944 0.999 0.957

avg misclass 0.052 0.066 0.088 0.127 0.070 0.089 0.124 0.070

5 avg sens 0.934 0.910 0.862 0.648 0.892 0.865 0.659 0.908

avg spec 0.976 0.967 0.950 1.000 0.970 0.948 0.999 0.961

avg misclass 0.039 0.053 0.080 0.122 0.057 0.080 0.118 0.057

on two domains, one domain with five items, the other with 12. Instead of using the true counts

to perform the classification, misspecified counts were used instead, where one item from Domain

B was included in Domain A instead. Results are presented in Table 3.4. As there no longer

exists a “true” (c1, c2) based on the modified counts, that row was removed from the table. The

same general pattern exists with the Exhaustive Search, Logistic Iterative, and SVM Iterative all

doing reasonably well, followed by the linear rules which perform okay, and then by the näıve rules

which do not perform well at all. Under all scenarios, the Exhaustive Search performs the best

of all, with the two iterative methods not very far behind. In addition, under all of the error

structures, we see a small gap between the misclassification rate under the Oracle Rule and the

Exhaustive Search for the first time. The differences in the misclassification rates under the Oracle

rule and the Exhaustive Search range from 1.4 to 1.8 percentage points. In previous settings, it

was generally under half a percentage point. Despite this, all three methods still perform quite well

in the presence of some model misspecification.
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Table 3.5 presents the results if instead of two counts, we have one count and one continuous

biomarker to perform classification. Under this scenario, the Exhaustive Search becomes infeasible

and is therefore not evaluated. Here, Logistic Iterative seems to perform the best, closely followed

by SVM Iterative, in terms of diagnostic performance measures. Its average misclassification rates

are very close to the Oracle, with rates that are just about a half a percentage point higher. In

terms of selecting the correct c1, Logistic Iterative also performs the best, correctly getting c1 over

96% of the time. Since the second domain is now a continuous measure, mean squared error was

used to determine how close each of the methods comes to the true threshold value, again with

Logistic Iterative performing the best of the evaluated methods.

In Setting F, Table 3.6, we move to a three domain structure. Under all of the error structures,

we see the Exhaustive Search performing closest to the Oracle rule, with almost no discrepancies.

We do see a small gap between Logistic Iterative and the Exhaustive Search, and a slightly larger

gap between SVM Iterative and the Exhaustive Search than was previously seen under the two

factor simulation settings. When we move to a misspecified three factor model, as is the case

in Table 3.7, we see the Exhaustive Search and Logistic Iterative performing similarly, with the

SVM Iterative performing slightly worse. As was the case with the misspecified two factor model

(Table 3.4), there is a larger gap in the misclassification rates for the Exhaustive Search compared to

the Oracle rule than was seen when using the correctly specified model. Here the difference ranges

from 2.3 percentage points to 2.7 percentage points, where previously with the two factor model

the gap was between 1.4 to 1.8 percentage points. In general, the misclassification rates (both of

the Oracle rule and the evaluated methods) were higher for the three factor settings than they were

for the two factor settings, which makes sense as the three factor structure is more complicated.

In the last simulation setting, Setting H (Table 3.8), the true decision rule is based on two

domains (as was the case in Setting A). However, all three methods are applied to come up with



CHAPTER 3. SIMULATIONS 61

Table 3.5: Simulation Setting E; Two domains (one count, one continuous), Strong Correlation,

n = 300
Error Oracle Linear Näıve Iter Linear Näıve Iter

Logistic Logistic Logistic SVM SVM SVM

1 (c1) N/A N/A 15.4% 99.8% N/A 55.5% 98.2%

MSE N/A N/A 0.483 0.005 N/A 0.444 0.025

avg sens 0.963 0.906 0.677 0.959 0.915 0.722 0.957

avg spec 0.984 0.951 1.000 0.980 0.949 1.000 0.976

avg misclass 0.025 0.069 0.141 0.029 0.066 0.122 0.033

2 (c1) N/A N/A 5.4% 98.3% N/A 51.6% 95.5%

MSE N/A N/A 0.520 0.008 N/A 0.471 0.028

avg sens 0.978 0.906 0.667 0.972 0.918 0.714 0.969

avg spec 0.978 0.951 0.999 0.972 0.948 0.995 0.969

avg misclass 0.022 0.068 0.144 0.028 0.065 0.126 0.031

3 (c1) N/A N/A 3.8% 97.1% N/A 44.4% 92.5%

MSE N/A N/A 0.522 0.011 N/A 0.472 0.033

avg sens 0.967 0.901 0.665 0.960 0.911 0.707 0.950

avg spec 0.970 0.949 0.999 0.965 0.946 0.994 0.961

avg misclass 0.031 0.071 0.144 0.037 0.069 0.130 0.044

4 (c1) N/A N/A 8.4% 96.9% N/A 46.8% 90.9%

MSE N/A N/A 0.486 0.012 N/A 0.449 0.051

avg sens 0.946 0.892 0.667 0.940 0.898 0.705 0.924

avg spec 0.966 0.945 0.999 0.960 0.943 0.995 0.955

avg misclass 0.043 0.078 0.146 0.049 0.077 0.132 0.059

5 (c1) N/A N/A 7.2% 98.1% N/A 47.0% 92.5%

MSE N/A N/A 0.500 0.010 N/A 0.457 0.026

avg sens 0.958 0.896 0.666 0.952 0.904 0.707 0.942

avg spec 0.971 0.948 0.999 0.965 0.945 0.995 0.961

avg misclass 0.035 0.075 0.146 0.040 0.073 0.131 0.047
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Table 3.6: Simulation Setting F; Three domains, Strong Correlation, n = 300

Error Oracle Exhaustive Iterative Iterative

Structure Search Logistic SVM

1 (c1, c2, c3) N/A 99.9% 98.6% 95.3%

avg sens 0.904 0.904 0.901 0.893

avg spec 0.979 0.979 0.979 0.976

avg misclass 0.050 0.050 0.052 0.057

2 (c1, c2, c3) N/A 99.7% 92.1% 86.1%

avg sens 0.969 0.969 0.948 0.934

avg spec 0.976 0.976 0.977 0.963

avg misclass 0.027 0.027 0.034 0.048

3 (c1, c2, c3) N/A 96.1% 74.8% 79.2%

avg sens 0.954 0.950 0.904 0.915

avg spec 0.965 0.966 0.970 0.951

avg misclass 0.039 0.040 0.054 0.062

4 (c1, c2, c3) N/A 97.7% 88.7% 78.0%

avg sens 0.887 0.884 0.866 0.854

avg spec 0.962 0.962 0.964 0.950

avg misclass 0.068 0.069 0.075 0.088

5 (c1, c2, c3) N/A 98.7% 90.2% 81.5%

avg sens 0.923 0.922 0.904 0.888

avg spec 0.967 0.967 0.969 0.956

avg misclass 0.050 0.050 0.056 0.070
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Table 3.7: Simulation Setting G; Three domains, Strong Correlation, n = 300, model misspecifica-

tion
Error Oracle Exhaustive Iterative Iterative

Structure Search Logistic SVM

1 avg sens 0.904 0.862 0.845 0.874

avg spec 0.979 0.965 0.973 0.946

avg misclass 0.050 0.076 0.078 0.083

2 avg sens 0.969 0.902 0.885 0.909

avg spec 0.976 0.973 0.976 0.946

avg misclass 0.027 0.053 0.057 0.068

3 avg sens 0.954 0.884 0.868 0.886

avg spec 0.965 0.969 0.969 0.937

avg misclass 0.039 0.062 0.068 0.082

4 avg sens 0.887 0.833 0.816 0.848

avg spec 0.962 0.959 0.966 0.922

avg misclass 0.068 0.091 0.093 0.107

5 avg sens 0.923 0.864 0.845 0.881

avg spec 0.967 0.965 0.970 0.929

avg misclass 0.050 0.074 0.078 0.090

a threshold based on a single domain. The count used for this single domain model is just the

sum of the counts observed for Domain A and Domain B in the true model. This represents a

more severe form of model misspecication than previously examined. Previously, only one item

was incorrectly placed in the wrong domain; now, the overall grouping structure is wrong. Under

all three scenarios, the methods perform nearly identical to one another. This simulation, when

compared to Simulation A, also illustrates that there is much to be gained by knowing the true

number of domains. In Simulation A, when the number of domains is correct, all three methods

come very close to using the oracle decision rule. When one factor is used incorrectly, there is a

discrepancy between what the methods are able to obtain in terms of diagnostic performance when

compared to the oracle. Despite this, under the wrong domain structure, all of the misclassification

errors remain under 10%, suggesting some robustness to choosing the wrong number of domains.
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Table 3.8: Simulation Setting H; Model misspecification - One domain considered when the truth

is two domains
Error Oracle Exhaustive

Structure Search Logistic SVM

1 avg sens 0.927 0.827 0.852 0.845

avg spec 0.986 0.958 0.947 0.948

avg misclass 0.035 0.088 0.086 0.088

2 avg sens 0.981 0.882 0.883 0.884

avg spec 0.972 0.949 0.952 0.951

avg misclass 0.022 0.073 0.071 0.071

3 avg sens 0.959 0.877 0.877 0.877

avg spec 0.973 0.949 0.953 0.953

avg misclass 0.031 0.075 0.073 0.073

4 avg sens 0.908 0.823 0.845 0.839

avg spec 0.970 0.952 0.943 0.945

avg misclass 0.052 0.093 0.091 0.093

5 avg sens 0.934 0.846 0.860 0.856

avg spec 0.976 0.951 0.947 0.948

avg misclass 0.039 0.085 0.083 0.084

3.5 Practical Considerations

In implementing the above algorithm on the simulated data, a problem arose especially when the

sample size was small or the number of factors increased. At some points in the iterative process,

the number of controls would become very small or even zero. In these scenarios, both the SVM

and logistic regression failed to converge or could not be estimated at all. From the perspective of

the clinical problem, this essentially meant that once we knew the symptom count(s) for the other

domain(s), the current domain was not necessary in terms of classification. Therefore, the threshold

for this domain should be set to zero. To incorporate this into the algorithm, at each step in the

iteration, if the number of controls was below five, instead of running an SVM or logistic regression,

the slope and intercept for that domain at that iteration was set to zero and one respectively and

it moved to the next step in the procedure. If the number of controls was greater than five, then



CHAPTER 3. SIMULATIONS 65

the algorithm proceeded as normal.

In terms of time needed to execute each of the methods, Logistic Iterative was always the

fastest, followed by the Exhaustive Search. In the more complicated three-factor structures, Logistic

Iterative was almost always twice as quick as the Exhaustive Search. SVM Iterative took longer than

Logistic Iterative since it required tuning a cost parameter (5-fold cross-validation) at each step.

However, we have found that the time necessary to carry out SVM Iterative can be drastically

reduced without any effect on the diagnostic performance. Instead of tuning at each iteration,

tuning only needs to be carried out in the first iteration. The tuning parameters selected in the

first step are then used in the remainder of the iterations. As a result, computing time for SVM

Iterative was reduced 55%− 78%.
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Chapter 4

Real Data Application

4.1 Applications to Pittsburgh and CGTOA Studies: Model Train-

ing

The data to which each of the three methods, Exhaustive Search, SVM Iterative and Logistic Itera-

tive, were applied is the same data set as was used in [Simon et al., 2011]. This sample was comprised

of bereaved healthy controls (n=95), patients diagnosed as having either a mood or anxiety disor-

der (n=369), and patients presenting for treatment of CG (n=318). All participants completed the

19-item Inventory of Complicated Grief [Prigerson et al., 1995], a well validated self-report measure

of CG symptom severity with prior evidence for high internal consistency (Cronbachs α = 0.94)

and test-retest reliability (0.80). The ICG assesses a range of CG symptoms including preoccupa-

tion with the person who died, intrusive and distressing thoughts related to the death, avoidance

of reminders of the person who died, feelings of yearning for the person who died, loneliness, and

feelings of bitterness, anger and/or disbelief regarding the death. Each item is rated on a 5-point

scale, with responses rated as occurring either 0=never, 1=rarely, 2=sometimes, 3=often, or 4=al-

ways. Among those presenting for treatment of CG, only those who scored at least a 30 on the

ICG and were also diagnosed with CG on clinical interview were considered to be cases (n=288).
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These cases participated in the Pittsburgh and CGTOA studies, discussed in more detail in the

Introduction. Noncases were defined as bereaved individuals who did not present with CG as their

primary diagnosis and scored less than a 25 on the ICG (n=377). This resulted in a total sample

size of n=665.

4.1.1 Determining the Domain Structure

The same methodology that was used to determine the six factor structure of the ICG in [Simon

et al., 2011] was used here, with the exception that we instead examined two and three factor

structures in order to determine our symptom domains. First, all ICG items were dichotomized

with “often” or “always” being treated as the symptom was “present” and other categories as

“absent”. Next a two factor and a three factor exploratory factor analysis model was fit on the

data for cases only. Robust weighted least squares (WLSMV in Mplus version 7, [Muthën and

Muthën, 2012]) and geomin orthogonal rotation were used for both models. An item was considered

as loading on a factor if its loading was 0.3 or greater in magnitude. If an item loaded on multiple

factors, it was assigned to the factor with the highest loading or to the factor with which it made

the most conceptual sense. Results of the two factor model are presented in Table 4.1 and the three

factor model in Table 4.2.

In the two factor model, items 3, 6, 7, 8, and 17 loaded together into one symptom domain and

items 1, 2, 4, 9, 10, 11, 13, 14, 15, 16, 18, 19 loaded together into another symptom domain. Items 5

(drawn to places/things) and 12 (avoid reminders) did not load on either factor and therefore were

dropped from the analyses. To summarize, the first domain has five symptoms and the second,

twelve. Domain 1 seems to represent reactions to the death (denial, anger, disbelief, stunned, bitter,

etc.) while Domain 2 represents other CG symptoms. The goal is now to estimate how many items

from Domain 1 (out of five) and how many items from Domain 2 (out of 12) should be required in
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Table 4.1: Two Factor EFA Model

Item Description Factor 1 Factor 2

item 1 think about person 0.189 0.513

item 2 Memories upset me 0.080 0.432

item 3 cannot accept death 0.572 0.205

item 4 longing for person 0.131 0.546

item 5 drawn to places/things 0.139 0.268

item 6 feeling angry 0.780 -0.023

item 7 disbelief 0.927 -0.011

item 8 stunned or dazed 0.844 0.023

item 9 hard to trust -0.189 0.471

item 10 lost ability care about others -0.222 0.711

item 11 pain in the same area -0.038 0.390

item 12 avoid reminders 0.147 0.215

item 13 life is empty 0.006 0.774

item 14 hear the voice of the person 0.073 0.523

item 15 see the person 0.200 0.463

item 16 unfair that I should live 0.259 0.499

item 17 bitter over death 0.687 0.088

item 18 envious of others 0.040 0.346

item 19 lonely a great deal -0.128 0.903
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Table 4.2: Three Factor EFA Model

Item Description Factor 1 Factor 2 Factor 3

item 1 think about person 0.243 0.484 0.019

item 2 Memories upset me 0.193 0.316 0.206

item 3 cannot accept death 0.621 0.159 -0.298

item 4 longing for person 0.009 0.732 -0.349

item 5 drawn to places/things 0.134 0.301 -0.093

item 6 feeling angry 0.949 -0.348 0.005

item 7 disbelief 0.912 -0.002 -0.705

item 8 stunned or dazed 0.832 0.008 -0.530

item 9 hard to trust 0.045 0.132 0.711

item 10 lost ability care about others 0.006 0.437 0.771

item 11 pain in the same area 0.055 0.292 0.269

item 12 avoid reminders 0.312 0.001 0.270

item 13 life is empty -0.015 0.833 0.006

item 14 hear the voice of the person 0.078 0.552 0.023

item 15 see the person 0.195 0.519 -0.134

item 16 unfair that I should live 0.311 0.467 -0.028

item 17 bitter over death 0.821 -0.204 0.144

item 18 envious of others 0.099 0.286 0.145

item 19 lonely a great deal -0.090 0.905 0.282

order to be diagnosed with CG.

In the three factor model, the item loadings were as follows: Domain 1 items 1, 2, 4, 5, 13, 14,

15, 16, 19; Domain 2 items 3, 6, 7, 8, 12, and 17; Domain 3 items 9 and 10. Items 11 (pain in the

same area as the deceased) and 18 (envious of others) did not load on either factor and therefore

were dropped from the analyses. To summarize, the first domain has nine symptoms, the second

six, and the third two. Here Domain 2 is very similar to Domain 1 in the two factor model and
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Table 4.3: Diagnostic Performance of Derived Criteria Sets

2 Domains 3 Domains

All Methods All Methods

sensitivity 0.9167 0.9097

specificity 0.9920 0.9894

misclassification rate 0.0406 0.0451

seems to represent reactions to the death. Domain 3, comprised of “9 = hard to trust others”

and “10 = lost ability to care about others,” seems to represent some sort of social impairment.

Finally, Domain 1 seems to represent other CG symptoms. As is the case with two domains, our

goal is to now estimate how many items to require from each domain in order to have a positive

CG diagnosis.

4.1.2 Applying the proposed methods

Using the domain structure in Section 4.1.1, we can apply each of our methods to our full data

(cases and non-cases) to determine our thresholds, ck. This requires computing the domain counts

based on the individual item endorsements. In the case of two domains, all three methods choose

the same thresholds, c1 = 1, c2 = 2. That is, 1 item out of 5 should be required from Domain 1,

and 2 items out of 12 from Domain 2 for a positive CG diagnosis. On the training data, this results

in a sensitivity of 0.9167, specificity of 0.9920, and misclassification rate of 0.0406.

For the three factor model, again all three methods choose the same thresholds c1 = 2, c2 =

1, c3 = 0. The threshold c3 = 0 implies that the third domain (social impairment) is not necessary

for disease diagnosis and can therefore be dropped. These thresholds result in a sensitivity of

0.9097, specificity of 0.9894, and misclassification rate of 0.0451. The diagnostic performance of

both the derived criteria sets are summarized in Table 4.3.

So far, the diagnostic performance of each of the methods on both of the factor structures is
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examined on the same data that was used to fit the model, our training data. In Section 4.2, we

will evaluate these derived criteria sets on an independent test set as a validation study. This same

data will also provide us with the first opportunity to evaluate and compare some of the previously

proposed criteria sets for CG.

The data we used to perform these analyses was essentially collected under a case-control design:

cases were collected from two clinical studies of treatment seeking CG population, and controls

were collected from a bereaved population. Under this design, the proposed methods may optimize

diagnostic performance (e.g., sensitivity and specificity) of criteria sets under a different weighting

scheme than if we used data collected from the general population. To illustrate this point, consider

the empirical loss function in (2.2) under the zero-one loss and prediction rule h(xi.) = sign(f(xi.)),

which is

1

n

n∑
i=1

{I(yi = 1)I(f(xi.) < 0) + I(yi = −1)I(f(xi.) ≥ 0)} .

Taking the expectation leads to the following working case-control population loss function from

which the case-control samples are drawn:

E(f(Xi.) < 0|Yi = 1)P ∗(Yi = 1) + E{f(Xi.) ≥ 0|Yi = −1}P ∗(Yi = −1). (4.1)

Under the case-control design, the above conditional expectation given case or control status can

be consistently estimated from data. However, the sample proportions of cases and controls do

not converge to the true population prevalence in the general population. We use P ∗(Y = 1) and

P ∗(Y = −1) to denote the limit of the sample proportions which depend on the case-control design.

Viewing P ∗(Y = 1) as a cost parameter c for the objective function, it is clear that this objective

function (4.1) minimizes a weighted average of false negatives (1-sensitivity) and false positives

(1-specificity),

cFN + (1− c)FP. (4.2)
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If the sample has an approximately 1:1 case-control ratio, c = 0.5, sensitivity and specificity

will receive equal weights. In our application, c = 288/(288 + 377) = 0.43. The thresholds c1 and

c2 estimated by the proposed methods using this data maximize a weighted average of sensitivity

and specificity with a weight of 0.43 given to the former and 0.57 to the latter. In contrast, when

using data collected from a general population of subjects with major bereavements to construct

criteria sets, the estimated thresholds minimize the empirical version of (4.2) with c equal to the

population prevalence of CG, that is, c = 6.7% [Kersting et al., 2011]. A reasonable choice of the

cost parameter depends on the target population to which the criteria set is intended to be applied.

To investigate the Bayes rule under the case-control design, define E∗ as the expectation of

(X,Y ) under the working population. The expected loss in (4.1) is then E∗{I(Yih(X.) < 0)}. The

Bayes rule minimizing this working population loss function is

sign{P ∗(Y = 1|X)− 1/2}.

Since

P ∗(Y = 1|X) =

[∫
f(x|Y = 1)ds

]
P ∗(Y = 1)/f(X)

=

{[∫
f(x|Y = 1)ds

]
P (Y = 1)P ∗(Y = 1)/P (Y = 1)

}
/f(X)

= P (Y = 1|X)
P ∗(Y = 1)

P (Y = 1)
,

the Bayes rule minimizing the working case-control population is

sign

{
P (Y = 1|X)− 1

2

P (Y = 1)

P ∗(Y = 1)

}
.

Again if the sample has an approximately 1:1 case-control ratio, the Bayes rule is

sign {P (Y = 1|X)− P (Y = 1)} .
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In other words, the Bayes rule classifies a subject as a case if the conditional probability of being

a case given covariates X is greater than the probability of being a case in the general population

(prevalence of case in the population).

When the criteria set is intended to be used in a general bereaved population but the data is

collected from a case-control design, an adjustment to the objective function is needed to estimate

thresholds that will have good performance in the general population. The key step is to modify

the empirical loss function being minimized in (2.2) using sampling weights to reflect the case-

control design, when an estimated prevalence of CG in the general population is available. The

prevalence of CG in individuals with major bereavements was estimated as 6.7% [Kersting et al.,

2011]. For Exhaustive Search, the empirical misclassification rate will be adjusted using this CG

prevalence instead of the observed CG sample proportion. Logistic Iterative and SVM Iterative

will be adjusted by giving sampling weights to each subject. Since there were 288 cases and 377

controls, the sampling proportions for cases and controls were, 288/(6.7%N) and 377/(93.3%N)

respectively, with N denoting the total number of subjects in the population. The sampling weights

can then be computed as 0.094 = 377/93.3/(288/6.7%) for cases, and one for controls.

With these adjustments, the updated results on the training data are reported in the first few

columns of Table 4.4. It can be seen that Exhaustive Search and Logistic Iterative are more sensitive

to the choice of weights, while the results for SVM Iterative remain the same. Both Exhaustive

Search and Logistic Iterative have lower sensitivity and higher specificity compared to the results

in Table 4.3, where we did not adjust for the population prevalence, which is as expected. The

misclassification error rate estimated in the general bereaved population is low for all three methods.

However, it is dominated by the specificity due to the much higher prevalence of non-CG subjects.

One of the possible reasons that the estimate for SVM Iterative did not change might be due to

the fact that the specificity was already almost one without the re-weighting. The sensitivity on
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Table 4.4: Diagnostic Performance of Derived Criteria Sets (weighted by estimated population

prevalence), 2 domains

Training Data Validation Data

Method c1 c2 sens spec misclass∗ sens

Exhaustive 2 2 0.8403 1.0000 0.0107 0.7640

Logistic Iterative 1 3 0.8750 0.9947 0.0133 0.8539

SVM Iterative 1 2 0.9167 0.9920 0.0130 0.9160

∗: Misclassification rates are adjusted by prevalence of CG.

the validation data is discussed in the next section.

4.2 Applications to CGTOA and HEAL Data: A Validation Study

4.2.1 Study Participants

Participants in our validation study were n = 178 individuals who were assessed for participation

in one of two NIMH-funded treatment studies of CG; these studies were either the CGTOA or

HEAL studies, both discussed in the Introduction. Participants scored a 30 or higher on the ICG

and were confirmed by the study PI or his or her delegate to have CG on clinical interview. This

interview established prolonged acute grief symptoms accompanied by complicating dysfunctional

thoughts, feelings or behaviors. In addition, all participants in the current analysis reported on a

structured interview, significant functional impairment from grief symptoms and all were bereaved

for at least twelve months. Of note, functional impairment is required by all three published

criteria sets. Further, the [Prigerson et al., 2009] and [Shear et al., 2011] criteria sets both require

the death to be at least six months ago, while the [American Psychiatric Association, 2013] criteria

set requires at least a 12 month period. By limiting our sample to just those who have functional

impairment and deaths at least 12 months prior, we are ensuring that any differences observed
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among the criteria sets in terms of performance are actually due to the differences that exist among

the Domain B and Domain C components in the criteria sets. In addition, our proposed methods

only target the symptom domains components of the criteria set, so that is our primary interest in

these analyses.

4.2.2 Assessments and Methods

All participants in this validation sample completed both the ICG [Prigerson et al., 1995] and the

SCI-CG [Bui et al., 2015]. Both of these measures are discussed in more detail in Section 1.2.2. Each

of the published criteria sets will be evaluated using the SCI-CG, which was specifically designed

to capture symptoms present on any of them. Each of our proposed criteria sets (2 domain model

and 3 domain model) will be evaluated using the ICG, the same measure that was used to derive

them.

Since data is only available on confirmed CG cases, only sensitivity can be assessed in this

validation study. Fortunately, we will soon be able to evaluate specificity as well, as a sample of

treatment seeking controls was recently recruited to complete both the ICG and SCI-CG. The data

collection process has recently finished and we are currently in the data cleaning process.

In order to assess sensitivity for each of the published criteria sets, each symptom from each

of the criteria sets was matched with a corresponding item from the SCI-CG and rated as present

(score = 3) or absent (score= 1 or 2) . In the case of two or more matching SCI-CG items for a

particular symptom, the symptom was considered present if ANY of the matching SCI-CG items

were endorsed. The classification algorithms provided by each of the criteria sets were then used

to determine if each individual was considered a “case under the respective criteria set:

• PGD: Yearning endorsed (Domain B, separation distress) and at least 5 symptoms out of 9

from Domain C (Cognitive, emotional and behavioral symptoms)
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• CG: At least 1 out of 4 symptoms from Domain B (separation distress) and at least 2 out of

8 from Domain C (other grief symptoms)

• PCBD: At least 1 out of 4 from Domain B and at least 6 out of 12 from Domain C.

The count and percentage of participants endorsing each individual symptom as well as meet-

ing the overall domain criterion will be used to compare and evaluate the criteria sets. Further,

sensitivity of each the criteria sets will be computed as the total number of people meeting that

criterion’s classification rule divided by the total number in the CG sample (n=178).

4.2.3 Results

A list of SCI-CG items used in the matching for each of the three published criteria sets is given

in the Appendix.

Tables 4.5 - 4.7 provide the matching between each of the published criteria set symptoms

and the SCI-CG. In addition, they presents the count and percentage of participants endorsing

each symptom, meeting the domain specific criteria, as well as meeting the overall criteria. As

all participants in this sample are cases, the percent meeting the overall criteria is actually the

sensitivity.

The sensitivity of the PGD criteria set was 56.2% (95% CI: 48.9% − 63.5%). Yearning, a

necessary symptom for this criteria set, was only endorsed by 87.6% of the CG sample, evidence

that yearning may not be a necessary symptom. Further, only 64.0% of individuals with CG met

the required five or more symptoms from Domain C, suggesting that the threshold of five or more

is too high. Individual symptom endorsements ranged from 41.0% to 76.4%.

The sensitivity of the CG criteria set was 99.4% (95% CI: 98.3% − 100.0%). All but one

individual had at least one symptom from Domain B (separation distress) and all individuals had
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Table 4.5: Diagnostic Performance of PGD Criteria Set
SCI-CG Number Percent

Item Match Endorsing Endorsing

OVERALL SENSITIVITY 100 56.20%

B. Separation Distress: The bereaved person experiences

yearning (e.g. craving, pining, or longing for the de-

ceased; physical or emotional suffering as a result of the

desired but unfulfilled reunion with the deceased) daily

or to a disabling degree

2 156 87.60%

C. Cognitive, emotional and behavioral symptoms: The

bereaved person must have five or more of the following

symptoms experienced daily or to a disabling degree:

114 64.00%

1. Confusion about one’s role in life or diminished sense

of self (i.e. feeling that a part of oneself has died)

30 103 57.90%

2. Difficulty accepting the loss 7 98 55.10%

3. Avoidance of reminders of the reality of the loss 14 124 69.70%

4. Inability to trust others since the loss 24 73 41.00%

5. Bitterness or anger related to the loss 11 136 76.40%

6. Difficulty moving on with life (e.g. making new

friends, pursuing new interests)

31 106 59.60%

7. Numbness (absence of emotion) since the loss 9 98 55.10%

8. Feeling that life is unfulfilling, empty or meaningless

since the loss

28 104 58.40%

9. Feeling stunned, dazed or shocked by the loss 8 81 45.50%

at least two symptoms from Domain C. Separation distress symptoms ranged in frequency from

24.7% to 87.6%. Symptoms from Domain C ranged in frequency from 24.2% to 91.6%.

The sensitivity of the PCBD criteria set was 67.4% (95% CI: 60.5%− 74.3%). 94.4% of the CG

sample had at least one symptom from Domain B, while only 70.8% had at least six symptoms

from Domain C. The poor overall sensitivity is possibly due to the threshold for Domain C being

too high. Domain B symptoms ranged in frequency from 65.2% to 87.6%. Symptoms from Domain

C ranged in frequency from 17.4% to 76.4%.

The performance results of our proposed two domain criteria set are given in Table 4.8. The

sensitivity was 91.6% (95% CI: 87.5%−95.7%). 92.1% of the CG sample had at least one symptom

from Domain A, while 98.9% had at least two symptoms from Domain C. Domain A symptoms
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Table 4.6: Diagnostic Performance of CG Criteria Set
SCI-CG Number Percent

Item Match Endorsing Endorsing

OVERALL SENSITIVITY 177 99.40%

B. At least one of the following symptoms of persistent

intense acute grief has been present for a period longer

than is expected by others in the persons social or cul-

tural environment

177 99.40%

1. Persistent intense yearning or longing for the person

who died

2 156 87.60%

2. Frequent intense feelings of loneliness or like life is

empty or meaningless without the person who died

26, 28 155 87.10%

3. Recurrent thoughts that it is unfair, meaningless, or

unbearable to have to live when a loved one has died,

or a recurrent urge to die in order to find or to join the

deceased

22, 23 44 24.70%

4. Frequent preoccupying thoughts about the person who

died

4, 5 142 79.80%

C: At least two of the following symptoms are present

for at least a month

178 100.00%

1. Frequent troubling rumination about circumstances

or consequences of the death

6, 12, 13 160 89.90%

2. Recurrent feeling of disbelief or inability to accept the

death, like the person cannot believe or accept that their

loved one is really gone

7 98 55.10%

3. Persistent feeling of being shocked, stunned, dazed or

emotionally numb since the death

8, 9 129 72.50%

4. Recurrent feelings of anger or bitterness related to the

death

11 136 76.40%

5. Persistent difficulty trusting or caring about other

people or feeling intensely envious of others who have

not experienced a similar loss

24, 25, 27 146 82.00%

6. Frequently experiencing pain or other symptoms that

the deceased person had, or hearing the voice or seeing

the deceased person

20, 21 43 24.20%

7. Experiencing intense emotional or physiological reac-

tivity to memories of the person who died or to reminders

of the loss

16, 17 136 76.40%

8. Change in behavior due to excessive avoidance or the

opposite, excessive proximity seeking.

14, 15, 18, 19 163 91.60%
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Table 4.7: Diagnostic Performance of PCBD Criteria Set
SCI-CG Number Percent

Item Match Endorsing Endorsing

OVERALL SENSITIVITY 120 67.40%

B: Since the death, at least 1 symptom experienced on

more days than not and persisted to

168 94.40%

1. Persistent Yearning/longing for deceased 2 156 87.60%

2. Intense sorrow and emotional pain in response to death 3 154 86.50%

3. Preoccupation with the deceased 4 130 73.00%

4. Preoccupation with the circumstances of the death 6 116 65.20%

C: Since the death, at least 6 of following symptoms

experienced more days than not, and have persisted for

at least 12 months

126 70.80%

1. Marked difficulty accepting death. 7 98 55.10%

2. Experiencing disbelief or emotional numbness 8, 9 129 72.50%

3. Difficulty with positive reminiscing about the deceased 10 37 20.80%

4. Bitterness of anger related to death 11 136 76.40%

5. Maladaptive appraisals about oneself in relation to

the deceased or the death (e.g. self-blame)

12 114 64.00%

6. Excessive avoidance of reminders of the loss 14 124 69.70%

7.A desire to die in order to be with the deceased 22 31 17.40%

8. Difficulty trusting other individuals since the death 24 73 41.00%

9. Feeling alone or detached from other individuals since

the death

25 121 68.00%

10. Feeling that life is meaningless or empty without the

deceased, or the belief that one cannot function without

the deceased

28 104 58.40%

11. Confusion about one’s role in life, or a diminished

sense of one’s identity

30 103 57.90%

12. Difficulty or reluctance to pursue interests since the

loss or to plan for the future

31 106 59.60%
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ranged in frequency from 53.4% to 66.9%. Symptoms from Domain B ranged in frequency from

10.1% to 83.2%.

The performance results of our proposed three domain criteria set are given in Table 4.9. The

sensitivity of our proposed 3 domain criteria set was 87.1% (95% CI: 82.2% − 92.0%). 93.8% of

the CG sample had at least two symptoms from Domain A, while 92.1% had at least one symptom

from Domain C. Since no symptoms were required from Domain C, it does not impact overall

sensitivity, but is included for the sake of completeness. In actuality, this is essentially another two

domain criteria set. Domain A symptoms ranged in frequency from 10.1% to 83.2%. Symptoms

from Domain B ranged in frequency from 34.3% to 66.9%.

Table 4.10 provides a summary of the sensitivities, with 95% Confidence Intervals, for all of the

five criteria sets. The [Prigerson et al., 2009] criteria set has the lowest sensitivity, closely followed

by the DSM-5 [American Psychiatric Association, 2013] criteria set. Both of these sensitivities are

surprisingly low, considering the subset of patients being examined here. In order to be included

in this sample, not only did the individuals need to have an ICG score of 30 or higher, they also

were confirmed to have CG by an expert as well as have functional impairment as a direct result of

their grief symptoms. Based on this, we would expect to see sensitivities that are almost perfect.

From this respect, the [Shear et al., 2011] criteria set performs best of all with an almost perfect

sensitivity. Both of our proposed methods do reasonably well, with the 2 domain structure doing

slightly better with a sensitivity of 91.6%.

In the previous section, we performed an analysis on the training data when the aim is instead

to minimize the misclassification rate in the general bereaved population. Recall this corresponds

to minimizing (4.2) with c = P (CG) = 6.7% in the major bereaved population. This criterion

down-weights the role of sensitivity and focuses on specificity. The sensitivity of the criteria set

obtained from each of the three methods evaluated on the validation data is summarized in the
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Table 4.8: Diagnostic Performance of Proposed 2 Domain Criteria Set
Number Percent

ICG Item Endorsing Endorsing

OVERALL SENSITIVITY 163 91.57%

Domain A: At least 1 symptom experienced 164 92.13%

3. I feel I cannot accept the death of “name of loved one”... 98 55.06%

6. I can’t help feeling angry about “name of loved one” death... 110 61.80%

7. I feel disbelief over what happened... 119 66.85%

8. I feel stunned or dazed over what happened... 107 60.11%

17. I feel bitter over “name of loved one” death... 95 53.37%

Domain B: At least 2 symptoms experienced 176 98.88%

1. I think about “name of loved one” so much that its hard

for me to do the things I normally do...

104 58.43%

2. Memories of “name of loved one” upset me... 134 75.28%

4. I feel myself longing for “name of loved one”... 147 82.58%

9. Ever since “name of loved one” died it is hard for me to

trust people...

80 44.94%

10. Ever since “name of loved one” died I feel like I have

lost the ability to care about other people or feel distant from

people I care about...

108 60.67%

11. I have pain in the same area of my body or have some of

the same symptoms as “name of loved one”...

23 12.92%

13. I feel that life is empty without “name of loved one”... 140 78.65%

14. I hear the voice of “name of loved one” speak to me... 22 12.36%

15. I see “name of loved one” stand before me... 18 10.11%

16. I feel that it is unfair that I should live when “name of

loved one” died...

52 29.21%

18. I feel envious of others who have not lost someone close... 79 44.38%

19. I feel lonely a great deal of the time ever since “name of

loved one died...

148 83.15%
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Table 4.9: Diagnostic Performance of Proposed 3 Domain Criteria Set
Number Percent

ICG Item Endorsing Endorsing

OVERALL SENSITIVITY 155 87.08%

Domain A: At least 2 symptoms experienced 167 93.82%

1. I think about “name of loved one” so much that its hard

for me to do the things I normally do...

104 58.43%

2. Memories of “name of loved one” upset me... 134 75.28%

4. I feel myself longing for “name of loved one”... 147 82.58%

5. I feel drawn to places and things associated with “name of

loved one”...

72 40.45%

13. I feel that life is empty without “name of loved one”... 140 78.65%

14. I hear the voice of “name of loved one” speak to me... 22 12.36%

15. I see “name of loved one” stand before me... 18 10.11%

16. I feel that it is unfair that I should live when “name of

loved one” died...

52 29.21%

19. I feel lonely a great deal of the time ever since “name of

loved one died...

148 83.15%

Domain B: At least 1 symptom experienced 164 92.13%

3. I feel I cannot accept the death of “name of loved one”... 98 55.06%

6. I can’t help feeling angry about “name of loved one” death... 110 61.80%

7. I feel disbelief over what happened... 119 66.85%

8. I feel stunned or dazed over what happened... 107 60.11%

12. I go out of my way to avoid reminders of “name of loved

one”...

61 34.27%

17. I feel bitter over “name of loved one” death... 95 53.37%

Domain C: NO symptoms required 178 100.00%

9. Ever since “name of loved one” died it is hard for me to

trust people...

80 44.94%

10. Ever since “name of loved one” died I feel like I have

lost the ability to care about other people or feel distant from

people I care about...

108 60.67%
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Table 4.10: Comparison of Criteria Sets

Criteria Set Sensitivity 95% Low 95% Upp

PGD [Prigerson et al., 2009] 56.2% 48.9% 63.5%

CG [Shear et al., 2011] 99.4% 98.3% 100.0%

PCBD [American Psychiatric Association, 2013] 67.4% 60.5% 74.3%

Proposed 2 Domain 91.6% 87.5% 95.7%

Proposed 3 Domain 87.1% 82.2% 92.0%

last column of Table 4.4. We can see that Exhaustive Search has a sensitivity of 76% and Logistic

Iterative has 85% as compared to SVM Iterative with 92% on the validation data.

Based on sensitivity alone, both the [Prigerson et al., 2009] criteria set and the DSM-5 [American

Psychiatric Association, 2013] criteria set appear to be missing a significant portion of the CG

population. However, in order to fully judge the [Shear et al., 2011] criteria set, as well as our

proposed criteria sets, we will also need to examine specificity. Fortunately, our clinical collaborators

are currently in the process of collecting the necessary data from a treatment-seeking sample that

is deemed free of CG. Once this data is available, we will be able to examine specificity.
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Chapter 5

Discussion and Future Research

5.1 Discussion

In this dissertation, we have presented and evaluated several methods to perform disease classi-

fication in the presence of the unique logic structure found in DSM-style criteria sets. Based on

numerous simulation studies, an Exhaustive Search, the simplest of the techniques, is best applied

when the number of domains is small and the predictor variables of interest are counts as it always

performs closest to the oracle rule. In these same studies, the newly proposed methods, SVM

Iterative and Logistic Iterative, also perform quite well, although not as good as the Exhaustive

Search in some cases. However, there are many situations in which the Exhaustive Search becomes

infeasible, and hence the need for our two novel approaches, SVM Iterative and Logistic Iterative.

As a real example of such a scenario, consider a recent study of major depression and cortisol

(stress hormone) levels [Owens et al., 2014]. At baseline, the researchers collected symptoms of

depression as well as cortisol levels and used latent class analysis to discover four subgroups. The

group with a high number of depressive symptoms and high cortisol levels at baseline was about

seven times more likely to go on to develop clinical depression during the three year follow up

period as those with low depressive symptoms and low cortisol levels. Based on these results,
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it might be desirable to incorporate cortisol levels into future diagnostic criteria for depression.

Our proposed methods provide a mechanism to do exactly that. By treating cortisol levels as

“Domain 1” in our algorithm and depressive symptom counts as “Domain 2,” we could determine

the minimum level of cortisol and depressive symptoms necessary to predict a future depression

diagnosis. We could then use these thresholds as a screening tool to identify those at high risk

of developing clinical depression and offer interventions to prevent its onset or to treat it early to

reduce its burden. As was laid out in the Introduction, the need to incorporate biomarker data,

similar to this example from the literature, is likely to become more and more common as a result

of the transition that medical taxonomy is going through [National Research Council of the Na-

tional Academies, 2011], and more specifically psychiatric taxonomy [First and Zimmerman, 2006;

National Institute of Mental Health, 2011]. We have shown in our simulation studies that when

one of our domains is indeed a continuous biomarker, both SVM Iterative and Logistic Iterative

perform quite well when compared to using the oracle rule.

One limitation of the SVM Iterative method is that it takes longer to run than either Logistic

Iterative or the Exhaustive Search in the simulations and data example scenarios that include a

small number of variables per domain. Unlike the other two methods, SVM Iterative requires the

tuning of a cost parameter. We have found that rather than performing 5-fold cross validation

at each step of the iterative process, we could instead perform tuning only in the first iteration

and carry that tuning parameter forward for future iterations. This did not appear to impact the

performance of SVM Iterative in any quantifiable way. In addition to its extra computing cost, in a

few of the simulation settings (e.g. where there are three domains), SVM Iterative performs a little

bit worse than Logistic Iterative, which is not entirely surprising. The advantage of SVM and other

machine learning approaches is most evident in high-dimensional settings where the signal is weaker

and some noise variables are involved. Although high-dimensional data is not encountered in our
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current clinical application, as we discussed earlier, the field is moving towards a more biologically

sound diagnostic system using high-dimensional biomarkers and machine learning approaches are

being advocated for these applications [Oquendo et al., 2012]. In future work, we plan to explore our

approaches in a high-dimensional setting and experiment with other disorders such as depression

where biomarkers are currently being collected and assessed.

In our validation study, of which we were only able to evaluate sensitivity, it was clear that

both the criteria for PGD [Prigerson et al., 2009] and PCBD (DSM-5) [American Psychiatric

Association, 2013] were failing to capture a significant portion of individuals with impairing CG.

The CG criteria set [Shear et al., 2011], as well as both the two domain and three domain criteria

sets derived based on our proposed algorithms perform reasonably well in terms of sensitivity. As

was discussed, data from a sample of bereaved individuals without CG is in the process of being

collected. Once available, we will also be able to assess the specificity and overall misclassification

rate of the criteria sets. Only then we will be able to assess the full picture. These results are being

summarized in [Mauro et al., 2015a].

Several design issues specific to criteria set development have become apparent to us while

working on this project. The first is that the data used to develop the criteria set should be

sampled from the target population in which it will be used. Otherwise, appropriate adjustments

based on the disease prevalence are necessary. We note that the choice of this prevalence most

certainly depends on the target population to which the criteria set will be applied. In addition,

other evaluations of a criteria set (for example, Positive Predictive Value and Negative Predictive

Value) can only be considered under proper design or valid estimation of the disease prevalence.

The second issue is that the items on which we build our criteria set should be representative of

all of the important domains of the disorder we are measuring. In these analyses, we relied on the

ICG, which is known to be missing some key CG symptoms, like suicidal ideation [Shear et al.,
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2011]. However, another measure that does capture all of the important CG symptoms has already

been developed, the SCI-CG. However, we are currently limited to using the ICG because we have

the ICG available for a sample of cases and controls, but only have the SCI-CG available on cases.

Once we have this new instrument collected on controls, we can easily reapply our techniques and

hopefully develop an even better performing criteria set.

Another important part of this process is that we need a valid approach to group symptoms into

domains. Our proposed methods assume that the domain structure and the symptoms that belong

to each is already known. In the real world, this is not typically the case. To get around that,

we used exploratory factor analysis methods to come up with an appropriate grouping structure.

However, there may be better ways to do this. Further, for some applications, there may be evidence

that using a simple sum score, rather than symptom clusters with thresholds, is a better approach to

disease classification. Our framework can easily accommodate this single domain scenario. Lastly,

in order to determine the threshold values, an accepted alternative to the gold standard, sometimes

referred to as the “LEAD” standard, is necessary. Our methods assume that the case status is

known for a subset of the population, despite the fact that a criteria set does not yet exist. In this

application, caseness was defined using a well accepted threshold on the ICG as well as a diagnosis

by an expert clinician. As a final note, to fully understand the performance of the developed criteria

set, antecedent, concurrent and predictive validity set should also be evaluated.

5.2 Future Work

With respect to including other types of data to perform classification, our proposed methods are

very flexible. Suppose that instead of domain counts, we had a large number of genes for one domain

and imaging measures as our second domain. In this case the Exhaustive Search is certainly not

applicable. However, due to the flexibility of the SVM and the kernel “trick,” we can easily replace
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our linear decision boundary with a nonlinear boundary that uses a Gaussian kernel, for example.

This allows us to make a high-dimensional problem feasible. This flexibility also extends to changing

how we measure our outcome. Right now we only consider a binary outcome, as is consistent with

the DSM. However, it is likely, that in the future, we will instead see a dimensional outcome either in

addition to or replacing the current binary diagnoses [Kraemer, 2007; Krueger and Bezdjian, 2009;

National Institute of Mental Health, 2011]. The essential idea of our algorithm would remain the

same in this scenario; we could replace the SVM in SVM Iterative with Support Vector Regression or

logistic regression of Logistic Iterative with linear regression. Lastly, the methods we have evaluated

currently assume that all items are equally important in terms of diagnostic ability. As was discussed

in the Introduction, this is generally not true [Clark and McKenzie, 1994; Aggen et al., 2005;

Cooper et al., 2010]. In section 2.2.2 we laid out the theoretical framework to empirically estimate

the relative importance of different symptoms in disease classification. We plan to implement and

evaluate this in future work.

In operationalizing our methods, we assume that we know the number of domains and which

items they contain. In reality, these are both unknowns and we need to employ statistical methods

such as EFAs to derive them. Our current methods do not address this added variability in any

way. For our clinical application, we are currently choosing the two factor model over the three

factor model because it had a lower misclassification rate on the training data. If we had a full test

set, we would use the misclassification rate from that instead to choose between the two competing

models. Our simulations settings give us some confidence in using this approach; when the correct

number of domains was used, all three methods had lower misclassification errors than when they

were applied to the incorrect number of domains (Setting A versus Setting H). However, we are

unsure if this is the “best” way to decide between competing structures. Of great interest to us

is if there is a way to combine these two processes together; that is, estimate the structure and



CHAPTER 5. DISCUSSION AND FUTURE RESEARCH 89

the thresholds simultaneously. Right now we are choosing the optimal thresholds based on a given

structure. A better approach might be to choose both the structure and thresholds based on some

composite performance measures that evaluate fitness of factor model (e.g., through a likelihood)

and diagnostic performance (e.g., through misclassification rate) and jointly estimate the structure

and thresholds. We plan to examine such a joint approach in future work.

Another strong assumption that we are making is that in our training data, our cases are truly

cases and that our controls are truly controls. Because Complicated Grief is a new disorder, and no

gold standard exists, it is pretty much impossible for this assumption to hold. In previous work, we

proposed a method to perform disease classification in the absence of a gold standard [Wang et al.,

2013]. In this approach, our feature variables are known symptoms, such as the ICG items. In order

to carry out classification, the method borrows information from auxiliary prognostic markers, such

as measures of functional impairment. The task is viewed as statistical learning in the presence of

missing data, and introduces a pseudo-EM algorithm to carry out the classification. One limitation

of this method is that it results in a linear classification rule based on the feature variables, which

is not consistent with criteria sets currently found in the DSM. Eventually, the goal is combine

this previous work with our current work to produce criteria sets that are consistent with the DSM

logic structure while also accounting for the fact that we do not have a gold standard diagnosis.

Although we did not need the Simultaneous Approach in this application, it is still necessary

in other applications such as the “OR” scenario found in the ADHD that was briefly discussed in

section 2.2.3.2. Recall, that for ADHD, children must have at least six symptoms from either the

inattention group OR the hyperactivity and impulsivity criteria [American Psychiatric Association,

2013]. However, one can imagine more complicated logic structures including some combination

of “AND/OR.” For example, assume it is known that domains k = 1, · · · , G1 have an “OR”

relationship and domains k = G1 +1, · · · , G have an “AND” relationship. The overall classification
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rule is now of the form

sign {max[f1, · · · , fG1 ,min(fG1+1, · · · , fG)]} .

Our objective function is the same as in (2.7), but our constraints are modified in the following

way:

for yi = 1 : yi max(β01 + β11xi1, · · · , β0G1 + β1G1xiG1) ≥ 1− ξi, and

yi(β0k + β1kxik) ≥ 1− ξi, k = G1 + 1, · · · , G, ξi ≥ 0

for yi = −1 : yi(β0k + β1kxik) ≥ 1− ξi, k = 1, · · · , G1, ξi ≥ 0

yi min(β0G1+1 + β1G1+1xiG1+1, · · · , β0G + β1kxiG) ≥ 1− ξi.

This is also useful in genetic studies when it is known that a path is activated only when all the

genes in the same pathway are turned on and a few pathways jointly influence the disease risk

additively. In this case, we will know which genes belong to the “AND” group and which belong

to the “OR” group. In this case, assuming there are J pathway each with Gj genes, the disease

risk can be predicted as

sign
{

max
[

min(f1, · · · , fG1), · · · ,min(fGJ−1+1, · · · , fGJ
)
]}
.

In practice, we may not be known which domains have an “AND” relationship and which have

an “OR” relationship. In this case, we can consider taking an iterative step-wise approach. We

start with an “AND” rule or an “OR” rule. At each step, there are two operations to build on the

existing diagnosis rule: “AND” combination or “OR” combination. We could choose the domain

and the operation that will minimize the cross validation misclassification error. This should work

when a gene or a domain can only be in an “AND” group or an “OR” group, but not both. For

the more complicated situation when a variable can be involved in both, another approach seems

necessary. Such an approach would be useful for discovering complicated logic interaction models.
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Appendix

Structured Clinical Interview for Complicated Grief (SCI-CG)

2. Do you often find yourself yearning or longing for “name of loved one” a lot or feel a very strong

desire to be with her/him again?

3. Do you often have intense feelings of sorrow or emotional pain because of the death, like pangs

of grief?

4. Do you often have thoughts or images of “name of loved one” that keep coming back even when

you’re focused on other things, for example visualizing “name of loved one” as he/she was just

before he/she died or other thoughts or images of her/him?

5. Do you often get lost or absorbed in thoughts or daydreams about “name of loved one”?

6. Do you think or worry a lot about how or why “name of loved one” died?

7. Do you have trouble accepting the idea that “name of loved one” is not coming back, like you

can’t really believe it, or like you think it should not have happened?

8. Have you felt shocked or stunned since the death?

9. Have you felt emotionally numb, like you couldn’t feel anything even if you wanted to?

10. Do you have difficulty having positive memories or thoughts about “name of loved one”?

11. Do you feel bitter or angry about the death, or about something related to the death?

12. Do you have guilty or self-blaming thoughts or beliefs related to the death?
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13. Do you worry a lot about not being able to manage without “name of loved one”?

14. Do you avoid anything because it is a reminder of your loss? For example, do you avoid places

you went together, activities with other people that you associate with her/him, looking at pictures

of her/him or anything else?

15. Do you avoid getting rid of “name of loved one” possessions even if you really need to?

16. When you encounter reminders of the loss, do you often have intense emotional reactions?

17. When you encounter reminders, do you often have physical reactions like feeling nausea or

upset stomach, or dizzy or racing heart or trouble breathing or other physical symptoms?

18. Are there things you do or places you go that are special, that help you feel close to “name

of loved one” or feel sure you won’t forget him/her, like visiting the cemetery/spending time with

ashes, reminiscing about him/her, making scrapbooks, or other things like that?

19. Do you often want to see, hear, touch, smell or spend time with things that remind you of “name

of loved one”? Like looking at pictures or holding or smelling things that belonged to him/her?

20. Do you often feel pain or think you have other symptoms that “name of loved one” had?

21. Do you often think you are hearing her/his voice or seeing him/her?

22. Do you often have a wish to die in order to find or join “name of loved one”?

23. Do you often have a wish to die because life is not worth living if “name of loved one” is not

here?

24. Do you have difficulty trusting other people who haven’t experienced a similar loss?

25. Do you find it difficult to care about or feel close to family or friends - like feeling distant or

cutoff or alienated from them?

26. Do you often feel very lonely, like you are all alone in the world now that “name of loved one”

is gone?

27. Do you often feel intensely envious of others who haven’t experienced similar loss?
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28. Do you often feel like your life is empty or no longer has purpose or meaning since “name of

loved one” died?

29. Do you feel it is very hard for you to experience joy or satisfaction without “name of loved

one”?

30. Do you feel confused or uncertain about your role in the world or your identity since “name of

loved one” died?

31. Do you find it difficult to pursue interests or plan for the future because you can’t share things

with “name of loved one” anymore?
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