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ABSTRACT 

 

Simultaneous Iterative Learning and Feedback Control Design 

 

Anil Philip Chinnan 

 

Iterative learning controllers aim to produce high precision tracking in operations 

where the same tracking maneuver is repeated over and over again. Model-based 

iterative learning control laws are designed from the system Markov parameters which 

could be inaccurate. Chapter 2 examines several important learning control laws and 

develops an understanding of how and when inaccuracy in knowledge of the Markov 

parameters results in instability of the learning process.  While an iterative learning 

controller can compensate for unknown repeating errors and disturbances, it is not 

suited to handle non-repeating, stochastic errors and disturbances, which can be more 

effectively handled by a feedback controller.  Chapter 3 explores feedback and iterative 

learning combination controllers, showing how a one-time step behind disturbance 

estimator and one-repetition behind disturbance estimator can be incorporated together 

in such a combination.  

Since learning control applications are finite-time by their very nature, frequency 

response based design techniques are not best suited for designing the feedback 

controller in this context. A finite-time feedback controller design approach is more 

appropriate given the overall aim of zero tracking error for the entire trajectory, even for 

shorter trajectories where the system response is still in its transient phase and has not 

yet reached steady state. Chapter 4 presents a combination of finite-time feedback and 

learning control as a natural solution for such a control objective, showing how a finite-



 

time feedback controller and an iterative learning controller can be simultaneously 

synthesized during the learning process.  Finally, Chapter 5 examines different 

configurations where a combination of a feedback controller and an iterative learning 

controller can be implemented. Numerical results are used to illustrate the feedback and 

iterative controller designs developed in this thesis. 
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CHAPTER ONE: Introduction 

 
When designing and implementing a control scheme that aims to optimally combine 

iterative learning control (ILC) and feedback control (FBC) to meet specific control 

objectives, the designer can approach the problem in two different ways. One approach 

would be to develop the ILC and FBC independently, using methodologies established 

and commonly used in the respective fields, and then form an optimal combination of the 

separately designed controllers for implementation. The second approach is to 

simultaneously design a feedback and learning combination controller that can be tuned 

for any designer specified optimal behavior. The primary advantage of the simultaneous 

design approach is that it naturally facilitates division of the control burden and allows 

the designer to explicitly prioritize the control emphasis and objectives as desired. The 

ideal division of control burden is generally problem specific and will vary from one 

learning control application to the next. So, there are significant potential gains which 

can be realized through the ability to optimally tune a combination controller to operate 

principally as a feedback controller, or principally as a learning controller, or as a truly 

complimentary scheme involving both types of control actions. 

1.1: Historical Background 

The academic origins of ILC can be traced to the late 1970s when Masaru Uchiyama 

introduced the concept on high-speed motion control of a robotic arm to follow a desired 

trajectory through iterative trials.
[1] Though this seminal academic work spurred some 

industrial interest, dissemination of the learning control concept was initially limited 

because the publication was only available in Japanese. The concept of ILC began to 
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truly flourish and receive broad interest by the mid-1980s with further development 

motivated primarily by robotics applications.
[2-4]

 These contributions from Suguru 

Arimoto, Giuseppe Casalino, Giorgio Bartolini, and John Craig paved the way for ILC to 

become a very active research area with numerous publications. Over the years several 

books,
[5-8]

 special issues,
[9-11]

 and surveys
[12-19]

 have been produced, in addition to a 

significant number of journal and conference contributions annually. 

The learning control concept was initially referred to in a myriad of ways. These 

include iterative control, iterative learning control, repetitive control, betterment process, 

virtual reference, or simply as training. It should be noted that some of these terms are 

commonly used to represent other types of controllers and they can mean something 

different entirely. For example, repetitive control (RC) shares a lot of the same 

characteristics as ILC, but focuses on a slightly different problem where there is no 

resetting between operations, as in the case of ILC. The term virtual reference refers to 

the modified reference trajectory that results when a learning signal is used to update 

the actual reference trajectory to reduce the output tracking error.
[20]

 The virtual 

reference methodology is intuitive and logical because it tries to solve the inverse 

problem of finding the optimal input signal, to produce an output approaching the desired 

output, by modifying the reference signal. This control approach is considered in this 

thesis through a specific type of controller configuration in Chapter 5, where the learning 

signal is used to supplement the reference signal, effectively creating a virtual reference. 

Though the development of ILC originated in robotics where repetitive motion 

applications are abundant, situations where ILC can be applied are widespread. ILC is 

ideally suited for any repetitive control process which starts from the same initial 

conditions. It offers the potential for improved controller performance through iterative 



   

3 

 

learning. Learning control can bring the tracking error down to the repeatability of the 

hardware, which is the true limiting factor in terms of tracking error performance.
[21]

 In 

manufacturing and assembly applications that require a manipulator to perform some 

task repeatedly with high accuracy and speed, ILC can be leveraged to maximize the 

throughput. For satellites and spacecraft that perform high precision, iterative scanning 

maneuvers, ILC can be implemented to mitigate flexibility effects so that improved 

accuracy at higher rates can be achieved. 

As industrial interest and applications for ILC began to expand, so did research trying 

to combine or use results from other related fields to advance the theoretical 

developments of ILC. One such related field is adaptive control and there are many 

theoretical works found in the literature that utilize adaptive control concepts and apply 

them to learning control.
[16],[22-28]

 Owens and Munde provided an adaptive approach for 

ILC that included error feedback into an adaptive control law to effectively utilize the 

most recent error data.
[23]

 The use of the most recent error data, as opposed the data 

from previous trials for example, makes sense particularly in reactive control 

implementations which incorporate feedback, since the current performance is most 

accurately reflected in the current data. Error feedback can also be used to stabilize an 

unstable plant that would otherwise be inoperable or dangerous to work with. Another 

branch of control theory that researchers have tried to combine or use results from to 

gain further insight into ILC is robust control.
[29-33]

 This area of controls is known to 

involve approaches such as H∞ to address things like stochastic affects, repeating and 

non-repeating disturbance rejection, and other similar issues. Error feedback has also 
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been used specifically to improve overall robustness to non-repeating disturbances in 

learning control applications.
[34]

 

In addition to adaptive control and robust control, another related control field which 

has had significant impact on the development of ILC is optimal control.
[35-38]

 In fact, 

optimal learning control is widely considered to be one of the main ILC research areas. 

In 1995, Amann et al. focused on developing a controller that tries to incorporate 

feedback into the learning control framework by using optimal feedback and feedforward 

actions.
[36]

 Three years later, the same authors proposed a predictive optimal ILC, which 

minimized a cost function that weights incremental inputs and errors according to the 

iteration in which they occurred.
[37]

 This norm-optimal controller, as it is often called, 

fundamentally is trying to determine the optimal way to incorporate error feedback into 

the controller implementation in a recursive fashion. The steepest gradient method was 

used by Choi and Jang to optimize performance of iterative learning control in feedback 

systems using an performance index function.
[39]

 There has also been research which 

tries to merge both adaptive control and optimal control approaches in the context of 

learning control.
[40]

 The design of a feedback and iterative learning combination 

controller that exhibits a certain optimized learning behavior was also studied 

previously.
[41]

 That contribution makes use of independently developed ILC and FBC to 

implement a combination controller which attempts to achieve optimal performance in a 

loose sense, where optimality is attributed primarily to ILC performance only. These 

publications show that there has been notable interest since the early years of ILC to 

develop a control scheme that optimally utilizes both feedback and learning control 

actions in the controller implementation. 
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Along with these references, several more contributions have been made closely 

studying the striking similarities and clear distinctions between feedback and learning 

control from different perspectives. There is a collection of work that considers the 

equivalence between feedback control and ILC under certain conditions.
[42-47]

 In theory, 

one can argue that ILC operates in the repetition-domain in an analogous fashion as 

traditional feedback operates in the time-domain. However there are some critical 

shortcomings to suggesting a true equivalence and it is generally accepted that ILC 

algorithms have significant practical value which traditional feedback control does not 

offer. Learning control that is either based on or assisted by feedback control has been 

studied extensively for various applications.
[48-52]

 Among these is research into the use 

of feedback to improve robustness and transient behavior in the presence of model 

uncertainty for ILC based on an inverse process model.
[48]

 Such applications effectively 

use low-pass filtering, by suppressing higher frequencies when the model uncertainty 

becomes large, to robustly achieve monotonic convergence of the learning process. Also 

included are interesting applications in the areas of bioengineering,
[49]

 to control human 

limbs, and process control,
[50]

 for chemical reactors. Frequency domain analysis of the 

stability and convergence of learning control that is assisted by feedback is also 

available.
[52]

 While the use of frequency domain analysis is routine in FBC, there are 

important limitations associated with analysis of ILC in the frequency domain. 

For time domain analysis, considerable work investigating continuous time ILC, with 

specific incorporation of feedback,
[53]

  and discrete time ILC, with improved convergence 

also through the use of feedback,
[54-55]

 is available. The analogous frequency domain 

analysis is traditionally done using the Laplace transform for continuous time systems or 
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the z-transform for discrete time systems. Numerous contributions involving such 

frequency domain analysis of continuous time and discrete time ILC systems exist 

throughout the literature.
[56-59]

 The limitations of such analysis on ILC are inevitably 

encountered when the practical aspects of ILC are discussed. For continuous time 

systems analyzed using Laplace transforms, results on performance, convergence, and 

stabilization, through incorporation of error feedback, in the frequency domain have been 

established.
[57]

 The practical applicability of such results are limited, however, by the 

simple fact that iterative learning requires past experience to be stored as data. This 

means that the continuous time data must first be sampled, so the results using such an 

analysis can only be expected to estimate real implementations. For discrete time 

systems, the strict use of the z-transform requires that signals be defined over an infinite 

time horizon. This places another limit on applicability since all practical ILC applications 

are finite duration, so the results of analysis based on the z-transform are similarly 

considered approximations.
[58]

 Despite this limitation, some authors use z-transforms 

assuming notional signals of infinite length and then discuss the inferences that could be 

made from the theoretical results about practical, finite duration ILC systems.
[56],[58-59]

  

Additional studies comparing different ILC update rules in the frequency domain can 

also be found in the literature.
[60-61]

 The first study assumes the ILC is applied to a 

system that already has a FBC solution implemented, so it is effectively utilized in 

combination with the existing feedback.
[60]

 The second contribution similarly performs a 

comparison of different ILC update rules, but considers control strategies that utilize 

learning based on the prior iteration, the current iteration, and a combination of both.
[61]

 

This research concluded that the control strategy which combines learning based on 
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both the previous and current iterations was the best approach among those considered. 

It also found that the overall robustness of the ILC can be notably improved through the 

proper incorporation of feedback. While these types of research efforts have helped to 

establish a strong knowledge base related to feedback and learning control, there is still 

a lack of understanding of how to simultaneously design a truly optimal combination 

controller incorporating both feedback and learning control. This is especially true for 

practical applications of finite duration, where the ILC system does not have sufficient 

time during a cycle to settle into steady state and frequency response techniques are not 

suitable. It is the primary objective of this thesis to establish an end-to-end simultaneous 

design approach which is sufficiently flexible for use in all practical ILC applications. 

1.2: Description of Thesis Content 

The majority of ILC laws investigated in this thesis make use of a Toeplitz matrix of 

Markov parameters which are unique to the system being controlled.
[62]

 This use of a 

Toeplitz system matrix implicitly assumes that the system is linear, time-invariant (LTI), 

however the use of linear, time-varying (LTV) systems can also be easily accommodated 

in a similar matrix based framework.
[63]

 In a digital control application involving either a 

LTI or LTV system, depending on the sampling rate and time duration of the desired 

trajectory, the size of the system matrix can get quite large. This implies that there is a 

requirement for a rather large number of Markov parameters, i.e. a long unit pulse 

response history. In practice, one cannot simply measure the unit pulse response 

directly at the sample times and obtain a long accurate history of the response. Methods 

such as Observer Kalman Filter Identification (OKID) can be used to reliably extract the 

desired number of Markov parameters using a long and rich excitation input history.
[64]

 

Nevertheless, there will always be limits on the number of parameters one can obtain 
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with a desired accuracy. ILC is unusual in control theory because it asks for zero error at 

every time step and zero error for all frequency components up to Nyquist. In most 

practical systems, such a demand is likely to cause instability and one must use extra 

care to avoid this. In Chapter 2, a practical approach to generate convergent ILC laws 

with accurate knowledge of only a limited number of Markov parameters is developed by 

relaxing some of the more aggressive learning control objectives, such as achieving zero 

error at every time step. 

While the goal of achieving zero error at every time step is difficult, if not impossible, 

for many practical situations, this goal becomes even more ambitious in the presence of 

general disturbances. Disturbances should be expected during each repetition, in most 

or all applications, from natural imbalances and imperfections that commonly persist in 

all types of system hardware. It is known that ILC can automatically compensate for 

unknown but repeating disturbances. Though ILC can potentially excel in applications 

involving such a disturbance environment, it suffers from a strict limitation on 

performance due to its inability to generate real-time corrective control actions to 

compensate for non-repeating errors and disturbances. Use of FBC, or current cycle 

feedback as it is known in the ILC literature, can be specifically considered for handling 

non-repeating disturbances and becomes necessary when real-time error corrections 

are desired. FBC can be designed, with increased complexity, to handle both repeating 

and non-repeating stochastic disturbances in time. However, it lacks the ability to learn 

and improve performance through previous interactions with its operating environment 

and must be strictly causal. Therefore, FBC alone is typically not considered to have the 

potential to approach system hardware repeatability limits.  
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Earlier work developed a unified ILC formulation and investigated approaches to 

produce learning control laws that aim to incorporate both FBC (in the form of current 

cycle feedback) and ILC (in the form of previous cycle feedback).
[65]

 For many practical 

systems, however, earlier works restricted the structure of the FBC gain matrices   and 

  to be of lower sub-triangular structure to ensure causality. That restriction is relaxed in 

Chapter 3 to allow the FBC gain matrices to be of lower triangular structure and still 

maintain causality, which can be particularly useful, especially in applications involving a 

well-conditioned plant. In addition, Chapter 3 provides further improvement of such a 

feedback and learning combination controller through the incorporation of disturbance 

estimators. Although ILC can handle repeated unknown disturbances in principle, the 

incorporation of disturbance estimation turns out to be especially advantageous. Both 

the feedback and learning performance can be improved with such disturbance 

estimators. In general, disturbance handling of both repeating and non-repeating 

disturbance is desired, with various works having investigated one or both of these 

within the context of ILC.
[66-68]

 

As stated earlier, while ILC can compensate for repeating disturbances, FBC is 

necessary to address stochastic or non-repeating disturbances. Conventional feedback 

controllers, such as proportional (P), proportional-integral (PI), proportional-derivative 

(PD), and proportional-integral-derivative (PID), are commonly designed using frequency 

response based techniques. However, since practical ILC applications are finite-time by 

their very nature, such steady state frequency response based design approaches are 

not best suited for designing the feedback controller. The design of finite-time FBC was 

investigated, for the purposes of combining it with ILC, in a prior study with the goal of 

achieving satisfactory performance in both the transient and steady states.
[69]

 While 



   

10 

 

strict causality must be followed for FBC, learning control can be non-causal since ILC is 

driven by previous cycle feedback. In Chapter 4, a novel approach that enables the 

design of a finite-time feedback and learning combination controller that can be tuned for 

a desired optimal behavior is presented. The approach is cost function-based and 

provides the designer full freedom to determine how the control burden is shared 

between FBC and ILC. 

For practical applications in which ILC can be considered, Chapter 4 shows that the 

incorporation of FBC will be advantageous in the majority of implementations. The 

benefits of complementing ILC with FBC include additional tracking and disturbance 

rejection capabilities that ILC lacks. While previous work presents approaches to 

combine FBC and ILC in some optimal way, there is no attempt to thoroughly investigate 

the various configurations in an exhaustive fashion. Such a comprehensive assessment 

was conducted for RC, where the effects of placing the repetitive controller inside or 

outside the feedback loop was explored.
[70-72]

 A detailed evaluation of different 

configuration options for feedback and learning control combinations is presented in 

Chapter 5. This evaluation directly results in the development of some novel designs for 

the controller implementation and evaluation techniques for the purposes of performance 

prediction and comparison. The approaches are cost function-based but differ with 

regards to the configuration used and control variable that is penalized in the cost. 

1.3: Mathematical Formulation of Iterative Learning Control 

The general learning control problem formulation utilized throughout this thesis is 

formally introduced here and will be referred to in subsequent chapters as necessary. 

The majority of the formulation will be applicable directly in each chapter.  Modifications 

to the formulation will be primarily related to the expected disturbance and shall be 
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specified within the individual chapters where appropriate. If no modifications are 

specified, then the setup introduced here is directly applicable. To develop the general 

problem formulation, begin with the discrete time representation of an n-th order state 

space system model expressed as 

                        

                      
(1.1) 

where       ,       ,       , and        are matrices describing the 

appropriate system dynamics. There are two distinct types of plant models which result 

from Eq. (1.1), one with direct feedthrough involving a nonzero   and one without direct 

feedthrough, where   is zero. Of these two cases, the case where     is the more 

common because the input typically does not influence the output instantly when applied 

in real systems. The index   denotes the time     , where   is the reciprocal of the 

sampling frequency   , and is often referred to as the time step. If the model represented 

by Eq. (1.1) is generated by discretizing a continuous-time plant fed by a zero-order hold 

(ZOH), then it is known that the discretization process normally introduces a one-step 

delay from input to output. The models considered for this work are limited to systems 

with a one-step input-output delay. From a practical perspective, digital controllers 

nominally require a one-step delay from input to output to compute and apply the desired 

control actions. The vectors     ,     , and      denote the system state, input, and 

output, respectively. In addition, it is assumed that the process disturbance      and 

measurement disturbance      are generally allowed to vary from iteration to iteration in 

an unknown, non-repeating fashion. 

While the representation given in Eq. (1.1) is good for time-domain consideration, the 

general learning control problem formulation must also facilitate repetition-domain 
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analysis and design. Performance in both of these two fundamentally distinct domains 

must be thoroughly evaluated to guarantee overall stability and desirable transient 

behavior. In ILC there are two types of transient effects which persist in the output. One 

is the well-known time-domain transient or natural response commonly seen in all 

applications when a system is forced from equilibrium. The other is unique to the 

repetition-domain and the description proposed by Phan and Longman in 1988 is ideally 

suited to evaluate this effect 
[73]

 

 

 
 
 
 
 
 
     

     

     

 
      

 
 
 
 
 

 

 
 
 
 
 

      
        
          

      
                 

 
 
 
 

 
 
 
 
 
 

     

     

     

 
        

 
 
 
 
 

 

 
 
 
 
 
 
     

     

     

 
      

 
 
 
 
 

 (1.2) 

          (1.3) 

This is often referred to as a lifted system representation because the input and output 

vectors,    and    respectively, are lifted into column vectors related to one another 

through  , a     matrix map representing the lifted system. Subscript j denotes the run 

or iteration number and an underbar is used to denote a column vector. In this thesis, it 

will generally be assumed that the product CB is not zero. This is a natural assumption if 

the system comes from feeding a differential equation with an input coming through a 

ZOH for discretization. If the product is zero, simple modifications can be made to the 

above mathematics. The result in Eq. (1.2) is obtained by assuming the standard 

convolution sum solution to the general state space problem presented in Eq. (1.1) 

above. This repetition-domain formulation is particularly useful in learning control 

applications and is routinely found in the ILC literature.
[74-80]

 It facilitates analysis of the 

system by transforming a problem with two independent variables (time step   and 
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repetition number  ) into a problem with a single repetition variable  , as shown above. In 

this manner, learning control research contributions that utilize the lifted system are 

similar to those based on 2-D system theory.
[81-85]

 Notice the lifted system 

representation is formulated around a static plant model   whose matrix dimensions are 

solely dependent on the number of times steps, here       , in the desired trajectory. 

The general disturbance vector    in Eq. (1.3) can be thought of as being influenced by 

two different elements, a repeating disturbance   and a stochastic disturbance    which 

changes each repetition 

        (1.4) 

The vector   represents the total effects of the initial conditions and repeating portions of 

both the process disturbance      and measurement disturbance     , which can, 

theoretically, be combined and modeled as a single unknown repeating disturbance at 

the output. The vector    represents the total effects of the random portions of both      

and     , which can similarly be lumped together and modeled as a cumulative 

unknown stochastic, non-repeating disturbance. 

The repeating disturbance portion of    can be eliminated from the formulation by 

introducing a backwards difference operator    that takes the difference of its operand, 

           , in repetition. So it is not difficult to see         and consequently 

              (1.5) 

Now, with the tracking error vector defined as         , where    is the desired 

output or reference trajectory, it should be clear that 

         (1.6) 
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               (1.7) 

Using Eqs. (1.5) - (1.7), it is possible to look at the output and tracking error as state 

space models in the repetition-domain as follows 

                 

           
(1.8) 

From inspection of this state space formulation, it is clear that the controllability of the 

system is determined entirely by the static plant model   and the system is completely 

observable in the repetition-domain. Given the relationship between output and error in 

Eq. (1.6) it is easy to show how a similar model can be realized for the tracking error and 

yield the same conclusions regarding controllability as drawn for the output.  

The limitations on performance in learning control applications, however, are set by 

both the static plant model   and the overall randomness from repetition to repetition of 

the observed stochastic disturbances. If the plant model is full rank and square and there 

are no stochastic disturbances present, then zero tracking error is theoretically possible 

in learning control applications. It should be noted that the condition number of the plant 

model also sets limitations on performance, since ill-conditioned plants are generally 

known to be difficult to control and zero tracking error may not be achievable. In 

implementations where the plant model is not full rank, error free control is not possible 

even if there are no disturbances present or if only repeating disturbances persist. 

Similarly, in the presence of stochastic disturbances, the performance will be limited by 

the magnitude of the randomness from iteration to iteration, even if the plant model is full 

rank and square. Is such a situation, particularly when the stochastic disturbances vary 

in repetition to the extent that learning from previous cycles is difficult or practically 



   

15 

 

impossible, substantial improvement can be achieved through the incorporation of 

feedback control, as will be demonstrated in this thesis. 
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CHAPTER TWO: Practical Approach to Designing Basic Iterative 

Learning Controllers 

 
As stated in Chapter 1, the majority of ILC laws investigated in this thesis make use of 

a Toeplitz matrix of Markov parameters representing the unit pulse response unique to 

the system of interest. Multiplying this matrix times the input produces the convolution 

sum solution for each time step of the output. The size of this matrix is determined by the 

number of sample times in the duration of the desired trajectory, and can therefore be 

very large. This implies that one can easily need a large number of Markov parameters 

to fill the matrix. In practice, one cannot simply directly measure the unit pulse response 

at the sample times and obtain a long accurate history of the response, because there is 

not sufficient energy in an initial pulse of unit height and one time step duration. Instead, 

one normally inputs a signal of long duration that is rich in frequency content for all 

frequencies up to Nyquist. From the resulting input-output data one can compute the unit 

pulse response history using time-domain methods such as the OKID algorithm,
[64]

 or 

one uses standard frequency response methods that take the inverse discrete Fourier 

transform (IDFT) of the transfer function computed as the ratio of the discrete Fourier 

transforms (DFT) of the output to that of the input.
[86]

 As expected, due to measurement 

noise and sensor limitations, there will always be limits on the number of parameters one 

can obtain with a desired accuracy.  It is the purpose of this chapter to investigate the 

implications of this in the performance of practical ILC systems and purpose a novel 

approach to generate convergent basic ILC laws with accurate knowledge of only a 
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limited number of Markov parameters. The research contributions of this chapter have 

already been published and can be found in the literature.
[87]

 

One might assume that for time steps for which the parameters have become small, 

one can simply substitute zero for the small but inaccurate parameter values. One 

expects that at some point this should become true, but ILC is unusual in control theory 

in that it asks for zero error at every time step, and this suggests caution in making 

assumptions. As an example, thinking in terms of frequency response, the zero error 

requirement every step can be restated as asking for zero error for all frequency 

components visible in the number of steps in the trajectory, all the way up to Nyquist 

frequency. It should be noted that frequency response concepts are not generally 

applicable to the finite-time ILC problem. Neglecting this fact, asking for zero error at all 

frequency components from zero to Nyquist is an unusual requirement in control theory. 

In classical control one often determines stability by examining the phase margin when 

the magnitude response goes through zero decibels. In so far as frequency response 

techniques apply to ILC, one realizes that this approach is not of much help since there 

are repeated zero dB crossings for the fundamental and all harmonics up to Nyquist 

frequency.  

This chapter is organized as follows.  First, the general mathematical formulation of 

the ILC problem introduced in Chapter 1 is appropriately modified for use here. Asking 

for zero tracking error every time step will very often result in what can be thought of as 

an internal instability.
[88-89] 

How to avoid this problem is then presented following where 

one asks for zero tracking error every other time step.
[90] Four general classes of 

effective ILC laws are then presented, including the Euclidean norm contraction mapping 
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law, partial isometry law, quadratic cost ILC, and a pseudoinverse control law.
[90-95]

 

These ILC laws are presented in the form needed to avoid the internal instability and are 

used throughout this chapter when evaluating stability and performance. Then the ability 

to obtain accurate unit pulse response histories is examined both by OKID and by IDFT 

of the ratio of DFT’s of output divided by input.  This provides a feel for the limitations on 

the number of Markov parameters that can be accurately obtained. The numerical 

studies that follow examine the use of a limited number of Markov parameters in 

generating an ILC law in three different ways: 

I. First, a fixed number of time steps in the desired trajectory, nominally requiring a 

fixed number of Markov parameters, is considered. The later Markov parameters 

are then replaced by zero to study the minimum number of parameters 

necessary to maintain asymptotic stability of the learning process, and how few 

parameters are needed to maintain monotonic decay of the Euclidean norm of 

the error while converging to zero error. In order to have a simple way to refer to 

this, this process will be called truncation.   

II. A variant of truncation is also studied. A window used in RC to improve 

stabilization when the number of Markov parameters that could be used in the 

real time computation of the repetitive control law is limited is incorporated 

here.[96] Of course, RC is studying stability in the time-domain while ILC is in the 

repetition-domain, but ILC and RC are very similar in many respects. Here the 

number of Markov parameters used is again truncated, but then the parameters 

are passed through the window before using them in the ILC law. 

III. The third type of investigation works in the other direction, expanding the number 

of time steps in the ILC law. Each control law makes use of a Toeplitz matrix of 
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Markov parameters having the property that every entry on the diagonal is the 

same, every entry on the sub-diagonal is the same, and so on. The Euclidean 

norm ILC law preserves this property in the ILC gain matrix, but the other ILC 

laws considered do not. Nevertheless, the central rows or columns of the 

learning gain matrix come close to satisfying this property, while the property is 

violated more strongly as one gets close to the edges of the matrix. Suppose that 

a certain number of accurately known Markov parameters have been obtained, 

and from this the ILC gain matrix for an ILC problem having the corresponding 

number of time steps has been generated. Next, assume a useful ILC law for a 

larger number of time steps is desired. To do this it is natural to expand the ILC 

gain matrix, stretching it by simply repeating the central column elements along 

their respective diagonal, and supplying zeros in the upper right and lower left 

corners of the matrix where no information is available. Such an expansion of 

each of the ILC laws is studied to determine what is needed to have the ILC 

process remain asymptotically stable in repetitions no matter how much 

expansion is performed. Similarly, what is needed to preserve good learning 

transients, in the sense that monotonic decay of the Euclidean norm of the error 

with iterations, is also studied. In order to have an easy way to refer to this type 

of design approach, it will be called expansion.  

Note the distinction between truncation and expansion. In truncation, the Toeplitz 

matrix of Markov parameters is assumed to start with the dimension dictated by the 

number of time steps needed in the problem, and zeros are introduced in this matrix for 

unknown or poorly known Markov parameters. Then this modified Markov parameter 

matrix of full size is used in computing the ILC gain matrix. In expansion, the Markov 
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parameter matrix is of a smaller size dictated by the number of Markov parameters one 

considers to be known and accurate, presumably less than the number of time steps in 

the ILC problem of interest. The ILC gain matrix is computed from this smaller size 

Markov parameter matrix, and then this matrix is stretched to get to the needed size. In 

order to meet the needed dimension of the ILC gain matrix, zero entries are introduced 

in the gain matrix at this last stage of the process for expansion, whereas the zeros are 

introduced in the Toeplitz matrix in the first stage of the process in truncation. These are 

two competing approaches to reaching the desired dimension. 

2.1: Problem Setup 

The general learning control formulation presented in Eqs. (1.1) – (1.8) is modified 

slightly here for use in this chapter. For simplicity, the process disturbance      and 

measurement disturbance      are assumed to be deterministic. This implies that the 

same disturbance will be experienced at every repetition, so 

     (2.1) 

The implication of using Eq. (2.1) to model the disturbance environment, as opposed to 

that of Eq. (1.4), means that basic learning control alone is sufficient to address the 

disturbance rejection needs for this problem setup. This can be shown by first modifying 

the output given in Eq. (1.3) to reflect the fact that only a repeating disturbance is 

present here 

         (2.2) 

Now, the difference operator can be applied to Eq. (2.2) in the same manner as done in 

Chapter 1, to obtain the following result 
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                    (2.3) 

Note that the entries in the lifted system matrix map  , introduced in Eq. (1.2), are the 

Markov parameters corresponding to the unit pulse response of the system. The pulse 

response of a system is the reaction to a unity input at time step zero, with zero input 

thereafter and zero initial conditions. It can be seen from Eq. (2.3) that proper application 

of a basic ILC law is sufficient to address the disturbance rejection needs for the 

disturbance environment modeled here. A general linear ILC law has the form 

               
(2.4) 

or equivalently, 



 j1u  Le j , where        and is designed using appropriately 

specified learning gains. Combining these equations produces the difference equation 

for the error history as a function of iteration number 



e j1  (I PL)e j  
(2.5) 

From Eq. (2.5) it can be concluded that ILC using learning gain matrix   will converge to 

zero tracking error for every time step of the desired trajectory, for all possible initial error 

histories, if and only if all eigenvalues of the coefficient matrix in this equation have 

magnitude less than unity 

iPLIi    1)(  (2.6) 

This necessary condition for convergence can be restated simply as the spectral radius 

of matrix      is required to be less than one. It is possible that a convergent process 

have bad error transients during the learning process even if Eq. (2.6) is satisfied. The 

more restrictive condition is that the maximum singular value of this matrix be less than 

unity 
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iPLIi    1)(  (2.7) 

To ensure monotonic decay of the Euclidean norm of the error history vector, decaying 

by at least a factor given by this maximum singular value each iteration, Eq. (2.7) must 

be satisfied. Hence, a designer often wants to satisfy this condition in particular 

whenever possible. 

2.2: Addressing the Internal Instability Issue 

Now, suppose that the designer has an initial run with input 



u1 and corresponding 

output 



y
1
. If the designer wants to have zero error in the next iteration, they can specify 

the desired change 



2 y  on the left of Eq. (2.3) and then try to solve for the required 

change 



2u  P
12 y . The resulting input history is unique and any ILC law that 

converges to zero tracking error must converge to the same input history. However, the 

  matrix can be ill-conditioned. As established by previously mentioned research, there 

is one particularly small singular value of   for every zero outside the unit circle in the 

discrete time transfer function of the system.
[90]

 When a differential equation is fed by a 

ZOH and the output sampled synchronously, there is an equivalent difference equation 

that has the identical input-output relationship. Generically, this difference equation has 

a z-transfer function with one less zero than pole, with the discretization process 

introducing the required number of additional zeros always on the negative real axis of 

the z-plane. If the differential equation had a pole excess of three or more, and the 

sample time is fast enough, then it has been shown that will be one or more zeros 

outside the unit circle.
[97]

 Hence inverting the system produces an unstable difference 

equation. Corresponding to this, there is one very small singular value of   for every 

zero outside the unit circle. One cannot precisely call this instability because the ILC 
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problem is finite-time and hence the time domain signal for the input does not go to 

infinity. However, the control action can grow each time step, oscillating from positive to 

negative and back as the steps progress. At every sample time the error is zero, but the 

error between sample times for the differential equation fed by the ZOH, is also growing 

every time step and oscillating in sign. Hence, although the ILC can produce zero error 

at the sample times, the solution is not practical. 

One way to address this problem is by modifying the statement of the ILC problem. 

Instead of asking for zero error every time step, one asks for zero error every other time 

step at the even numbered steps, but still allows the input to change each step. Then 

one deletes the odd numbered rows of   to produce the deleted   matrix 



PD  

























 CBBCABCABCABCABCABCA

CBCABBCABCABCABCA

CBCABBCABCA

CBCAB

P

PPPPPP

D











654321

2345

23

0

000

00000

 (2.8) 

Then the learning law is updated to 



u j1  u j LeDj  where 



eDj  is the error history vector 

containing only the errors at even numbered times steps, and          now, assuming 

that p is even. There error propagation in Eq. (2.5) becomes DjDDj eLPIe )(1  , and 

equations Eqs. (2.6) and (2.7) are modified by substituting 



PD  for  .  The next section 

presents the four types of ILC laws considered in this chapter, which incorporate the row 

deletions developed here.  

2.3: Iterative Learning Control Laws 

Contraction Mapping: The Euclidean norm contraction mapping learning law is 
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Dj

T

Djj esPuu 1  (2.9) 

where s is a scalar gain. Let the singular value decomposition of 



PD  be 



UV T  where 



T  S 0  and S is the diagonal matrix of 



p /2 singular values, while            and 

       are both unitary matrices. Then   

))(()(    ;   )( 2
11 Dj

T
Dj

T
Dj

T
DDDj eUsSIeUePsPIe    (2.10) 

Note that matrix U does not change the error history Euclidean norm, so the learning law 

converges to zero error every other time step provided one picks s so that 



1 s i

2 is 

smaller than one in magnitude for all singular values 



 i. Matrix 



PD  is automatically full 

rank for a system with time delay through the system of one time step, and can be 

modified appropriately otherwise. The slowest part of the system to learn is associated 

with the smallest singular value. The error at the intermediate steps as well as the error 

between steps no longer grows exponentially when using the deleted   matrix.
[90]

 

Partial Isometry: The learning rate of ILC law given in Eq. (2.9) can be improved at 

high frequencies by replacing 



PD
T  by its singular valued decomposition with all singular 

values replaced by unity: 

Dj

T

jj esVUuu 1  (2.11) 

The 



S 2  in Eq. (2.10) is then replaced by S, so that the small singular values are no 

longer squared and the factor 



1 s i  attenuates the error faster.  

Quadratic Cost ILC: A quadratic cost function can be used to compute the change 

in the control action for iteration 



j 1 

uRueQeJ j

T

jDj

T

Djj 11111     (2.12) 
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The symmetric weight matrices   and   allow one to directly influence the transients 

during the learning iterations, and are positive definite. Using Eq. (2.3), it is possible to 

minimize this cost to obtain the update law 

Dj

T

DD

T

Djj eQPRQPPuu 

  )(1  (2.13) 

The superscript + indicates the Moore-Penrose pseudoinverse. By proper choice of the 

structure of the weight matrices, one can again prevent any updates of the components 

of the control action on the space spanned by the null space of 



PD  and therefore prevent 

any instability in the control action with time step. 

The Pseudoinverse ILC Law: Convert Eq. (2.3) to deleted form 



 j1eD PD j1u , 

set the desired error in the next iteration to be zero, and use the pseudoinverse solution 

to get the control update that has minimum Euclidean norm of the change in the control. 

The result is the control law 

Dj

T

jDjDjj eU
S

sVuesPuu 














0

1

1  (2.14) 

where an overall gain s has been inserted allowing one to adjust the size of the control 

adjustment made each iteration.  

2.4: Obtaining Pulse Response Data 

There are various approaches to obtaining the Markov parameters needed to fill the 



PD  matrix. One way is to identify a state space difference equation model from data, and 

then use the  ,  ,   matrices to compute the parameters. Doing this involves making 

choices of model order, decisions about what modes are noise modes and what modes 

are system modes, etc. Various methods for identifying the  ,  ,   matrices such as the 

Eigensystem Realization Algorithm
 
or the Ho-Kalman algorithm are designed to start 
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from pulse response data, and one can simply use the direct computation of the pulse 

response from data avoiding the system identification. Since there is very little energy in 

a unit pulse for one time step, it is not practical to directly measure the pulse response 

and have a substantial response history before the output disappears below the noise 

level. The traditional method of finding the pulse response, is to input a long rich signal, 

take the DFT of the input and the DFT of the output, take the ratio that represents the 

transfer function, and then take the inverse transform. The time domain alternative is the 

OKID algorithm. Both methods are investigated in this work for comparison purposes. 

The aim is simply to get some general understanding of how noise influences the 

computed parameters, so there is no real focused effort to optimize the parameters 

involved in the problem. Now, consider a third order continuous time system represented 

by the following transfer function 

       0

2

0 02
Y s G s U s U s

s s s



  

  
    

    
 (2.15) 

where 



a 8.8, 



o  37, and 



 0.5 . The equivalent discrete time system representation, 

analogous to Eq. (1.1), can be found by assuming the input comes through a ZOH. For 

the purpose of numerical simulation, a 100 Hz sample rate is used in this investigation. 

The deterministic input is chosen as white zero mean Gaussian noise of unit variance 

with 



2
14  time steps and the initial condition is taken as zero.  

Figure 2-1 gives the Markov parameters versus time step using our perfect 

knowledge of the model matrices. Then simulated noisy data were generated with 

various noise levels, and the DFT approach and the OKID approach were used. Note 

that the DC gain of the above system is unity, so it is reasonable to consider that the 

input and the output have the same units. Plant noise was considered to be additive to 
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the input function. The standard deviation of the input function was specified in picking 

the deterministic input numbers. So, it is possible to generate additional random 

numbers of the needed standard deviation to produce the desired signal to noise ratio 

for the process noise. Here, standard deviation of the deterministic signal is divided by 

that of the random noise distribution. Note that the presence of process noise ensures a 

noise floor that will limit the number of Markov parameters that can be accurately 

identified. To set the measurement noise level, the chosen deterministic input function 

was applied to the system, and the root mean square (RMS) of the resulting output 

function was computed and used as the standard deviation of the output signal. Then 

random noise was added to produce any desired signal to noise ratio for measurement 

noise. Ten thousand Monte Carlo runs were made and used to compute the standard 

deviation of the identified Markov parameters. Figures 2-2 and 2-3 give the relative error 

of the computed Markov parameters versus time step using the DFT method, and 

Figures 2-4 and 2-5 give corresponding results using OKID. The number of observer 

Markov parameters is set to 20 and the row dimension of the Hankel matrix is set to 40. 

The first few Markov parameters using OKID are not plotted since the algorithm, as 

implemented, allows a direct feed through term which made the uncertainty in these few 

terms large. The relative error is computed as the computed standard deviation of the 

identified Markov parameter divided by the actual value of the Markov parameter. 

Figures 2 and 3 show results using a DFT and IDFT with all 



2
14  points. In all cases, the 

relative error grows as the Markov parameters decay. Using DFT, the worst result has a 

standard deviation of the identified Markov parameter that is 40 times the size of the 

Markov parameter itself. The OKID results are significantly better. It seems clear that 

even with some optimization of the Markov parameter identification process, the relative 
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error will eventually become large. It is also true that if the system is asymptotically 

stable, the Markov parameters eventually get small, and one might expect that their 

values could be replaced by zeros and still have a functioning ILC law. 

2.5: Truncating and Expanding ILC Laws 

 Truncation: Consider a problem in which the number of Markov parameters one 

has with confidence is less than the number of Markov parameters needed to fill the 



PD  

matrix, i.e. the number of time steps in the desired trajectory. A logical approach is to 

simply enter a value of zero for any unknown parameters. With this modified 



PD  matrix, it 

is possible to substitute it into any of the four ILC laws, Eqs. (2.9), (2.11), (2.13), or 

(2.14), presented earlier. As demonstrated through prior research, one can send the 

Markov parameters through an accelerated exponential window to improve the 

identification process.[96] If it is desired to keep   Markov parameters, the  th parameter 

is multiplied by 



exp[(k) /(M k1)] in order to decrease the influence of any step 

discontinuity from the last Markov parameter used to the zeros that follow. Note that a 

possible disadvantage of doing this over the expanding approach below, is that this 

approach could demand manipulating large matrices to compute the laws given in Eqs. 

(2.11), (2.13), and (2.14). 

Expansion: Note that if the gains in   correspond to a linear time invariant rule, then 

  will have the Toeplitz property that each element within any given diagonal has the 

same value. This becomes a bit more complicated since odd numbered rows are deleted 

here, so for the Euclidean norm law the concept of a diagonal takes on the stair case 

form as follows 
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a)   



d1  

d2  

 d1 

 d2 

  d1

  d2

























         (b)     



c1 c7 c13

c2 c8 c14

c3 c9 c15

c4 c10 c16

c5 c11 c17

c2 c12 c18

























     (c)    



c1 c7 0 0 0

c2 c8 0 0 0

c3 c9 c7 0 0

c4 c10 c8 0 0

c5 c11 c9 c7 c13

c6 c12 c10 c8 c14

0 0 c11 c9 c15

0 0 c12 c10 c16

0 0 0 c11 c17

0 0 0 c12 c18





































              (2.16) 

Notice that Eq. (2.16a) has the aforementioned stair case form. Given the Euclidean 

norm gain matrix, it is possible for example, to expand it by two rows and one column. 

This is done by introducing two initial zeros in the new column followed by repeating the 

original last column shifted downward by two rows. Repeat this to expand further. It may 

be simpler to just imagine the full original 



PT  matrix, introduce zeros for the appropriate 

Markov parameters in the upper right hand corner, and then delete every other column.  

The other three ILC laws manipulate the 



PD  matrix to form the gain matrix, for 

example by using singular valued decomposition, and this does not preserve the 

Toeplitz property of all elements being the same on any given diagonal. Nevertheless, 

the central part of the learning gain matrix still has this property, and only near the edges 

of the matrix do the entries on a given diagonal start to deviate. Starting by considering a 

           for the system given in Eq. (2.15) sampled at 100 Hz sample rate, and then 

deleting the odd numbered rows, Figure 2-6 plots the 



d1 and 



d2 diagonals as in Eq. 

(2.16a) for the partial isometry law, Figure 2-7 does the same for the quadratic cost law, 

and Figure 2-8 for the pseudoinverse law. Given the   matrix for one of these laws 

computed from a given number of Markov parameters, one then expands the matrix to 

apply to a larger number of time steps by repeating the entries in the central part of the 
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matrix. In Eq. (2.16b), consider the first and last columns as part of the edges as in 

Figures 2-6 to 2-8 for each of the step diagonals, and the middle column as 

corresponding to the middle part of these plots. Then to stretch the matrix   by four rows 

and two columns, convert to the matrix in Eq. (2.16c) where the middle column is 

repeated two times. Note that it may desirable to want to do a combination of truncation 

and expansion, by using a larger initial   matrix than the number of parameters available 

allows, but not so large that one has difficulty performing the singular value 

decompositions or other computations needed.  

Table 2-1 presents results from a similar investigation. It considers the 

pseudoinverse ILC law, but similar results apply to partial isometry and quadratic cost. 

Starting again with a            for Eq. (2.15), the odd rows were deleted, and the 

        gain matrix generated. The first entry on the table uses only the entries in   that 

correspond to 



d1 and 



d2 in Eq. (2.16a) and sets all of the remaining gains in   equal to 

zero. Note that these values that correspond to 



d1 and 



d2 are not identical for all entries 

on the diagonal for this law. It also gives the maximum eigenvalue magnitude from the 

left hand side of Eq. (2.6) and the maximum singular value from the left hand side of Eq. 

(2.7). The second row includes the first entry to the right of each 



d1 and the first entry to 

the left of each 



d1. The third row in addition uses the entries to the right and the left of 

each 



d2. One observation is that once a relatively small number of diagonals have been 

included, the learning gain matrix is able to stabilize the system and produce monotonic 

decay. This fact is the basis for the ability to do expansion as discussed here. It should 

be noted that when the sample rate is increased, the number of necessary diagonals 

seemed to increase substantially faster for the Euclidean norm and the quadratic cost 
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laws, than for the partial isometry and the pseudoinverse laws. A second observation is 

that when doing the expanding, it is natural to expand by multiples of 4 diagonals added 

to the initial 2 diagonals. The numerical investigation of expanding presented below 

expands according to this rule. 

Figures 2-9 and 2-10 study the minimum number of Markov parameters needed to 

create a Euclidean norm ILC law that can be expanded indefinitely, while maintaining 

stability with respect to Eq. (2.6) or maintaining monotonic decay as described by Eq. 

(2.7), for Eq. (2.15) with a 100 Hz sample rate. The value of the 



a  in Eq. (2.15) was 

varied from 3 to 8.8 and 13.4, resulting in the three values of bandwidth for the 3 dB 

down point as indicated. Increasing the bandwidth decreases the number of parameters 

needed. Increasing the sample rate seems to make a linear increase in the number of 

Markov parameters needed for both stability and monotonic decay. There are actually 6 

plots in each figure and the three corresponding to applying the window discussed 

above all lie approximately on top of each other. The use of the window is seen to very 

substantially reduce the number of Markov parameters need to start the expansion. The 

same was true when the windowed Markov parameters were used in computing the 

quadratic cost ILC. However, neither the partial isometry nor the pseudoinverse laws 

were helped by using the windowed parameters. The same trends were observed for a 

second order system when the real part of the continuous time roots were kept at -8.8 

and the imaginary parts of the roots were moved from zero to 8.8 and 17.6. On the other 

hand, for a first order system the number of parameters needed was two, independent of 

the bandwidth of the system and the sample rate. 
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2.6: Numerical Studies of Truncating and Expanding ILC Laws 

Numerical simulations are performed to examine how well the process of expanding 

ILC laws works, and how well truncating works. We will say that an ILC law obtained for 

the number of Markov parameters equal to the dimension of   is expandable, if both the 

stability and the monotonic decay conditions, inequalities Eqs. (2.6) and (2.7) are 

satisfied when   is expanded to any higher dimension. The third order system of Eq. 

(2.15) is used. Figures 2-11 and 2-12 give results for truncation, and will be discussed in 

more detail below. Figures 2-13 and 2-14 treat expansion and consider 50 Hz and 100 

Hz sample rates for the zero order hold input to Eq. (2.15), while using noiseless values 

for the Markov parameters. There can be 8 curves on a plot and one needs some 

guidance to be able to interpret the curves. Subplots a, b, and c in Figure 2-13 are three 

different views of the same plots, done to different amplifications. There are 4 ILC laws 

with the plot key for each below the figure title. For the pseudoinverse there is one curve 

in Figure 2-13a that starts with dimension 14 and a second curve starting with dimension 

18, where the dimension in each case is that of the original   matrix, corresponding to 

the number of Markov parameters used. The dimension on the horizontal axis is then the 

dimension of   after expansion. Note that the solid line starting at 14 maintains the 

maximum singular value less than unity for a while as the matrix dimension is expanded 

but then goes above one. The solid line starting at 18 does not go above one, and 

corresponds to the first dimension for which monotonic decay is maintained when 

expanding the learning gain matrix to any desired final dimension. The corresponding 

two curves for partial isometry start with 2 and 4 Markov parameters, for the Euclidean 

norm 6 and 10, and the quadratic cost 6 and 10. In order to be able to distinguish the 

different curves, Figure 2-13b zooms in so that one can see that the partial isometry law 
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is less than unity when using 6 Markov parameters, but not for 2. Then Figure 2-13c 

zooms in further to establish when these ILC laws are expandable. Figures 2-13d, e, and 

f are analogous but look at the spectral radius, i.e. stability. 

Figure 2-14 is the same as Figure 2-13 except that the sample rate is changed to 

100 Hz. This time the last number of Markov parameters before expandability is 26, 6, 

34, and 30, and the first number of Markov parameters that produce an expandable 

control law is 30, 10, 38, and 34, for the pseudoinverse, partial isometry, Euclidean 

norm, and quadratic cost ILC laws respectively. Note that the partial isometry law needs 

much fewer Markov parameters to make an expandable ILC gain matrix than the other 

laws.  

Figures 2-15 and 2-16 are analogous using the same initial dimensions for 

expansion, but the Markov parameters obtained using OKID were employed, with plant 

noise having a signal to noise ratio of 20. As might be expected, the pseudoinverse ILC 

law is the most adversely affected by introduction of noise, and partial isometry seems to 

be least affected. Figure 2-17 goes back to noiseless Markov parameters and 

investigates 1000 Hz sample rate. This time only the pseudoinverse and partial isometry 

laws are plotted, because the Euclidean norm and quadratic cost required so many more 

Markov parameters in order to be expandable. The largest number of Markov 

parameters before expandability is 50 and 34, and the first number that is expandable is 

62 and 38, for the pseudoinverse and the partial isometry laws respectively. 

Now return to the truncation method of generating the ILC laws as treated in Figures 

2-11 and 2-12. For comparison with expanding as detailed in Figure 2-14, these plots 

use noiseless Markov parameters and a 100 Hz sample rate. They also start with the 

same number of Markov parameters as used in Figure 2-14, one of which was just 
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below the value needed for expandability, and the other just above. The top curves in 

Figures 2-11 and 2-12 correspond to the pseudoinverse. There are 6 other curves on the 

plot which are not distinguishable and all are very near one throughout. By zooming in 

we find that these other laws go above one on both the stability and the monotonic 

decay plots except for the partial isometry law, which happens to be identical whether 

one uses the truncation method or the expansion method. Hence, the truncation method 

requires more Markov parameters in order to work. In particular, the number of 

parameters needed for the pseudoinverse increased from 30 to 46, for the partial 

isometry increased from 10 to 38, and the quadratic cost went from 34 to 38. Of course, 

the Euclidean norm stayed at 38.   

Numerical simulations of the learning process for each ILC law were made. The 

command trajectory was created using the following polynomial 

       

 

 
 
 

 

 
  
  

  

 

 
 

 

    

 

 
  
  

  

 

 
 

 

  

 

 
  
  

  

 

 
 

 

 

 
 

 
(2.17) 

This is used, then reflected, and then repeated to form the curve in Figure 2-18 as 

desired. The polynomial has the characteristic that it has zero velocity and acceleration 

at the start and end. Figures 2-19 through 2-26 present the absolute value of the errors 

as a function of time. The ILC law aims to achieve zero error at every even time step, 

and such time steps form the bottom of the black areas. No attempt is made to get zero 

error at the odd numbered time steps, and the error for these steps forms the top of the 

black areas. Figures 2-19 through 2-22 use noiseless Markov parameters, while Figures 

2-23 through 2-26 use noisy Markov parameters from OKID with measurement noise 

exhibiting a signal to noise ratio of approximately 20. The degradation due to noise is 
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evident in the partial isometry and the pseudoinverse results. In the latter case the 

zoomed in plot in Figure 2-27 shows the influence of noise. 

2.7: Summary of Findings 

ILC laws are usually based on the Toeplitz matrix of Markov parameters. One can 

directly compute the Markov parameters from rich input-output data, and this can be 

desirable in that it does not rely on identifying a model of the system with the associated 

decisions of what are noise modes and what are system modes. However, plant and 

measurement noise in the data used will limit how many Markov parameters can be 

accurately identified. In addition, in some ILC applications the size of the learning gain 

matrix needed can be sufficiently large that one has numerical difficulties in performing 

the needed computations, such as a singular value decomposition. In either case, one 

may be able to generate the learning gain matrix of the size for a certain number of time 

steps in the trajectory, but need the matrix for a larger number of steps. The 

expandability concept used here shows how it is possible to do such an expansion, 

preserving both stability and the desired monotonic decay property, provided one has 

enough Markov parameters to start with. In particular, the partial isometry ILC law is 

seen to only need a rather small number of parameters before the learning gain matrix 

can be expanded with stability and monotonic decay by the method presented here to 

any arbitrary larger size. 
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Table 2-1. Effects of Truncation on Pseudoinverse Control Matrix 

Diagonals 
Singular 

Values 
Eigenvalues 

Singular 

Values 
Eigenvalues 

2 38.5398 1.7544 38.5398 1.7544 

4 19.5287 0.7892   

6 13.3777 3.5496 13.3777 3.5496 

8 11.5596 1.6708   

10 3.6286 2.4304 3.6286 2.4304 

12 4.5853 1.0997   

14 1.3222 1.1008 1.3222 1.1008 

16 1.7658 0.3662   

18 0.5069 0.3619 0.5069 0.3619 

 

 

  

Figure 2-1. Pulse Response of 3
rd

 Order Plant Figure 2-2. DFT: Measurement Noise SNR = 20 
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Figure 2-3. DFT: Measurement Noise SNR = 100 Figure 2-4. OKID: Measurement Noise SNR = 20 

  

Figure 2-5. OKID: Measurement Noise SNR = 100 Figure 2-6. Diagonals for Partial Isometry Law 

  

Figure 2-7. Diagonals for Quadratic Cost Law Figure 2-8. Diagonals for Pseudoinverse Law 
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Figure 2-9. Reqs for   < 1 of 2
nd

 Order Plant  Figure 2-10. Reqs for ||  < 1 of 2
nd

 Order Plant 

  

Figure 2-11. Reqs for   < 1 of 3
rd

 Order Plant Figure 2-12. Reqs for ||  < 1 of 3
rd

 Order Plant 
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a. Singular Value No Zoom 
 

d. Spectral Radius No Zoom 

  

  
 

b. Singular Value Zoom One 
 

e. Spectral Radius Zoom One 

  

  
 

c. Singular Value Zoom Two 
 

f. Spectral Radius Zoom Two 

 
Figure 2-13. Effects of Expansion on Noiseless Parameters Sampled at 50 Hz 
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a. Singular Value No Zoom 
 

d. Spectral Radius No Zoom 

  

  
 

b. Singular Value Zoom One 
 

e. Spectral Radius Zoom One 

  

  
 

c. Singular Value Zoom Two 
 

f. Spectral Radius Zoom Two 

 
Figure 2-14. Effects of Expansion on Noiseless Parameters Sampled at 100 Hz 

 
──  Pseudoinverse − − −  Partial Isometry − ∙ −  Euclidean Norm ∙ ∙ ∙ ∙  Quadratic Cost 
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a. Singular Value No Zoom 
 

d. Spectral Radius No Zoom 

  

  
 

b. Singular Value Zoom One 
 

e. Spectral Radius Zoom One 

  

  
 

c. Singular Value Zoom Two 
 

f. Spectral Radius Zoom Two 

 
Figure 2-15. Effects of Expansion on Noisy Parameters Sampled at 50 Hz 
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a. Singular Value No Zoom 
 

d. Spectral Radius No Zoom 

  

  
 

b. Singular Value Zoom One 
 

e. Spectral Radius Zoom One 

  

  
 

c. Singular Value Zoom Two 
 

f. Spectral Radius Zoom Two 

 
Figure 2-16. Effects of Expansion on Noisy Parameters Sampled at 100 Hz 

 
──  Pseudoinverse − − −  Partial Isometry − ∙ −  Euclidean Norm ∙ ∙ ∙ ∙  Quadratic Cost 
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a. Singular Value No Zoom 
 

c. Spectral Radius No Zoom 

  

  
 

b. Singular Value Zoom One 
 

d. Spectral Radius Zoom One 

 
Figure 2-17. Effects of Expansion on Noiseless Parameters Sampled at 1000 Hz 

 
──  Pseudoinverse − − −  Partial Isometry 
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Figure 2-18. Polynomial Command Signal Figure 2-19. Error with Noiseless Euclidean Norm 

  

Figure 2-20. Error with Noiseless Quadratic Cost Figure 2-21. Error with Noiseless Partial Isometry 

  

Figure 2-22. Error with Noiseless Pseudoinverse Figure 2-23. Error with Noisy Euclidean Norm 
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Figure 2-24. Error with Noisy Quadratic Cost Figure 2-25. Error with Noisy Partial Isometry 

  

Figure 2-26. Error with Noisy Pseudoinverse Figure 2-27. Initial Cycles of Noisy Pseudoinverse 
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CHAPTER THREE: Feedback and Iterative Learning Control With 

Disturbance Estimators 

 
In Chapter 2, a practical approach to designing and implementation basic ILC when 

faced with real world limitations such as an imperfect model and pulse response data 

was presented. In this chapter, the design of a feedback and iterative learning 

combination controller is presented initially assuming the same disturbance environment 

model and problem setup, Eqs. (2.1) – (2.3), used in the last chapter. Earlier works 

restricted the structure of the FBC gain matrices   and   to be of lower sub-triangular 

structure to ensure causality. That restriction is relaxed in this chapter to allow the FBC 

gain matrices to be of lower triangular structure and still maintain causality, which can be 

particularly useful, especially in applications involving a well-conditioned plant. 

This chapter also provides additional improvement of such a feedback and learning 

combination controller through the incorporation of disturbance estimators. The 

disturbance is estimated both in time and in repetition. Although ILC can handle 

repeated unknown disturbances in principle, the incorporation of disturbance estimation 

turns out to be especially advantageous. Both the feedback and learning performance 

can be improved with such disturbance estimators. In general, disturbance handling of 

both repeating and non-repeating disturbance is desired, with various works having 

investigated one or both of these within the context of ILC. Previous research includes 

disturbance analysis leading to both recursive and explicit expressions for the measured 

error in terms of desired output and disturbances, in addition to general discussions 

relating to the effects of disturbances on error evolution. The general aspects of 

disturbances in learning control as well as approaches to filter the ILC control actions, in 
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an effort to reduce the impact of noise on the error, have also been explored. 

Disturbance effects on a closed-loop system and a non-recursive expression of the 

tracking error, valid for both repeating and non-repeating disturbances, can also be 

found. This chapter builds upon prior research by developing simple techniques to take 

any FBC that is non-causal by one time step, defined here to be control gain matrices of 

lower triangular structure, and combine it with an ILC in an optimal fashion to ensure 

error convergence through the use of disturbance estimation. Specifically, for the 

feedback controller, the disturbance estimator is a one-time step behind disturbance 

estimator. For the iterative learning controller, the disturbance estimator is a one-

repetition behind disturbance estimator. This chapter will introduce these disturbance 

estimation concepts and provide a method to build these disturbance estimators into an 

existing feedback and iterative learning combination controller. Significant improvement 

in both tracking performance and learning behavior can be achieved by the incorporation 

of these disturbance estimators without altering the structures of the existing feedback 

and iterative learning controllers. As with Chapter 2, the research contributions of this 

chapter were also published previously and are available in the literature.
[98]

 

The chapter is organized in the following manner. First, the learning control problem 

is formulated to facilitate finite time-domain (current cycle) analysis for the FBC portion 

and repetition-domain (previous cycle) analysis for the ILC portion of the combination 

controller. Then, finite-time inverse FBC in the form of a Finite Impulse Response (FIR) 

filter, where the inverse of the model is used as controller gains in current cycle 

feedback form, is investigated. The investigation reveals the surprising result that this 

current cycle feedback action will not result in the expected inverse solution, but only half 

of the inverse solution. To approach the exact inverse solution through FIR FBC, high 
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gains must be used. If an Infinite Impulse Response (IIR) filter is used in place of the FIR 

filter, then the resultant FBC is shown to approach the desired inverse solution without 

the need for high gains. Both of these solutions, however, are known to be non-causal 

by one time step and therefore are not suitable for conventional FBC implementation. 

So, a technique is developed to convert these controllers into causal form. A physically 

realizable combination controller, incorporating both current cycle and previous cycle 

feedback, is then presented. This new implementation is shown to have the same form 

as the original combination controller and also enables use of the same non-causal FBC 

gain matrices, converted to causal form, with any desired ILC. The concept of 

disturbance estimation is then introduced to enhance this new combination controller. 

The one-step behind disturbance estimator is considered first to supplement the IIR FBC 

portion of the combination controller. The one-repetition behind disturbance estimator is 

then incorporated to enhance the ILC portion of the combination controller. Finally, a 

controller with full disturbance estimation, both one-step behind and one-repetition 

behind disturbance estimators, is presented. Numerical simulations are conducted using 

a well-conditioned and ill-conditioned plant to illustrate the effectiveness of this 

combination controller with disturbance estimators and conclusions are given. 

3.1: Finite-Time Non-Causal Inverse FBC 

It is known that ILC designs are typically restricted to finite-time applications, so that 

assumption is naturally extended to FBC here, without loss of generality. A hybrid 

controller, incorporating both finite-time FBC and ILC, where the current control input is a 

linear combination of the current and previous repetition control input and current and 

previous repetition tracking error, was presented in earlier work 
[41],[65]
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                            (3.1) 

Here, the error vectors            and       represent the difference between the 

observed output     at iteration  , or    , and the desired output    or reference 

trajectory. Assume for now that the ILC portion of the hybrid controller is removed 

leaving only the FBC portion, then Eq. (3.1) would be modified to 

              (3.2) 

Next, assume that the plant to be controlled using Eq. (3.2) is well-conditioned and a 

very simple inverse FBC, in the form of a Finite Impulse Response (FIR) filter where the 

inverse of the model is used as controller gains, is generated 

           (3.3) 

Recall from Eq. (1.2) that the plant model   is lower triangular, hence the inverse, 

assuming   is well-conditioned, is also lower triangular. Therefore, in the absence of 

direct feedthrough, which was assumed in this work for reasons given above, this very 

basic FIR FBC design is non-causal by one time step. Now, neglecting the non-causality 

aspect, it is reasonable to propose that this implementation should yield the exact 

inverse solution. Common intuition would suggest that if a plant is invertible and a 

controller can be designed to perform such an inversion, in theory, it should output the 

reference signal exactly. However, application to the system model given in Eq. (2.2) 

shows that the exact inverse solution can never be obtained using such an error 

feedback controller, even with zero initial conditions and no disturbances present 

            (3.4) 

    
 

 
   (3.5) 
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Clearly, Eq. (3.5) is not the desired inverse solution; rather, it is only the “half-inverse” 

solution. If the inverse FIR FBC is modified to allow a scalar multiplication of the 

controller gains, then the exact inverse solution can be approached 

            (3.6) 

    
 

   
    (3.7) 

It can be shown that the exact inverse solution is achieved in the limit as   ∞, 

resulting in the well known high-gain FBC, which is generally poorly behaved and 

undesirable. Next, consider an inverse FBC in the form of an Infinite Impulse Response 

(IIR) filter, again where the inverse of the model is used as controller gains 

                 (3.8) 

    
 

   
   (3.9) 

If implemented in this fashion, the exact inverse solution is achieved in the limit as   

 , however if    , then the input would become undefined in Eq. (3.8) when one tries 

to solve the equation for    , so such a setup should be avoided. An implementation 

where   is close to one avoids the necessity for high-gain FBC that is required for Eq. 

(3.7) and can still produce an output that is much better than Eq. (3.5) or the “half-

inverse”  solution. It should be noted that both the FIR and IIR FBC designs are non-

causal by one time step when Eq. (1.2) is considered and therefore not directly suitable 

for conventional FBC implementation. 

3.2: Non-Causal FBC and ILC Combination Controller  

Now if the ILC portion is reinstated and the controller presented in Eq. (3.1) is 

considered, then conditions exist to match the learning behavior of the finite-time FBC 

and ILC combination controller to an ILC only implementation 
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      (3.10) 

               (3.11) 

For the ILC portion, there are no restrictions with regards to causality, since the control 

matrices operate on previous cycle information. Following the same approach used for 

inverse FBC above, an inverse ILC design can be formulated and, using matching 

conditions Eqs. (3.10) - (3.11), can be used to examine the corresponding combination 

controller. Now, consider the very basic ILC law 

                  

                 

(3.12) 

This basic linear learning control law can be used without loss of generality because 

more general forms of ILC laws very often equate to laws of this form. The matching 

combination controller is a more specific version of Eq. (3.1), with    , as presented 

here 

                       

                               

(3.13) 

An examination of Eq. (3.13) reveals the fact that the combination controller can be 

designed to be of the form of learning with current cycle error feedback only, by setting 

    and solving for   using Eq. (3.11), or learning with previous cycle error only, by 

setting     in Eq. (3.13), as desired. These two different forms can be interchanged, 

since it can be shown that they are mathematically equivalent, or simultaneously 

incorporated. Interested readers can refer to Appendix A for the mathematical proof of 

this equivalence. For the case when learning with current cycle error feedback only, the 

combination controller will be 
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       (3.14) 

The other case, when learning with previous cycle error only, is the inverse ILC 

controller given in Eq. (3.12). A comparison of these two controllers highlights the fact 

that ILC will produce the exact inverse solution, assuming zero initial conditions and no 

disturbances, without the need for high gain. This can be seen by setting     in Eq. 

(3.12) and implementing as follows 

                                      (3.15) 

       (3.16) 

It was determined earlier that if an FIR FBC implementation is used, then it is necessary 

to use high gains to get the desired inverse solution. Here, when the analogous current 

cycle error feedback learning controller in Eq. (3.14) is equated to the previous cycle 

error learning controller of Eq. (3.12) with    , high gains naturally result. As stated 

earlier, these types of high gain controllers are generally considered to be poorly 

behaved and undesirable, not to mention they are non-causal in the common framework 

which is considered for this work. 

3.3: Non-Causal to Causal Combination Controller Without Disturbance 
Estimation  

It is possible to allow the FBC gain matrices to be of non-causal form by one time 

step and convert to an equivalent causal form that is suitable for conventional FBC 

design. For the case where the FBC is causal to begin with, which requires the control 

matrices to have gains of zero on the main diagonal and all upper diagonals, the 

conversion will have no effect. Here, however, the gain matrices considered are all non-
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causal by one time step and must be converted to causal form before they can be 

implemented. So, begin with the general combination controller written as follows 

                                        (3.17) 

Here subscripts   and   represent the diagonal and sub-diagonal portions, respectively, 

of the corresponding lower-triangular control matrices. For systems without direct 

feedthrough, earlier works restricted the structure of the FBC gain matrices   and   to 

be of lower sub-triangular structure to ensure causality.
[41],[65]

 That restriction is loosened 

here to allow the FBC gain matrices to be of lower triangular structure and still maintain 

causality. To enable this, the diagonal matrices of Eq. (3.17) must be factored out to 

ensure the current input is independent of future error terms limited to a posteriori 

operation only. This is done by substitution using two additional equations, one for the 

error vector,           , and the standard, disturbance free, convolution sum solution, 

                   , to replace the output term. Using these two equations and 

going through some algebraic manipulations yields the desired causal combination 

controller. Focusing on the first iteration, where only the FBC portion is active, the causal 

feedback law is 

                   (3.18) 

                         

                  

                   

(3.19) 

Here, the originally lower-triangular FBC matrices   and   have been converted to 

causal, lower sub-triangular matrices   and   as necessary for implementation. Since 

vector    is fully known at all times,    does not need to be lower sub-triangular for 
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implementation. For the case where an IIR FBC design is utilized, the causal feedback 

law becomes 

                     

                            

                           

                                  

                                    

     
 

   
                       

(3.20) 

Here,   represents the scalar gain of the matrix           which results when the 

above equation is simplified. When this result is compared to the original IIR FBC design 

given in Eq. (3.8), it becomes clear that the Eq. (3.20) controller is well-suited for direct 

practical implementation, even with    , because there are no potential issues with the 

input becoming undefined or causality concerns. Through use of this causal FBC law, it 

is possible to achieve the effect of high-gain feedback without the need for high gains. 

This causal FBC is used for the first repetition; however the controller must be 

modified to incorporate learning for successive repetitions. Again using matching 

conditions Eqs. (3.10) - (3.11), the causal FBC and ILC combination controller, for    , 

becomes 

                                 (3.21) 
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(3.22) 

As before,   and   are lower sub-triangular as required. Since   and   operate on data 

from previous trials, they do not need to be lower suw-triangular. Also, since    operates 

on   , which is always known, it is not required to be lower sub-triangular either. 

Readers interested in the detailed derivation of the above controller are encouraged to 

refer to Appendix B.1 for more information. Recalling that the matching conditions 

ensure the learning behavior of the combination controller follows that of the ILC only 

implementation given in Eq. (3.12), it is important to establish conditions to ensure 

convergence in the repetition-domain. It was shown in earlier work that propagation of 

the tracking error in the repetition-domain is 
[21],[41] 

                (3.23) 

If the inverse ILC law specified in Eq. (15) is considered, is it easy to show that the 

necessary condition to ensure convergence in the repetition-domain is 

        (3.24) 

It is important to note that the above non-causal to causal controllers assumed the ideal 

case when there are no disturbances present, for initial analysis purposes. Such an 

assumption should not be taken in practice, so the above formulations are now modified 

to include disturbance estimation. 
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3.4: Disturbance Estimation  

It is understood that ILC handles unknown deterministic disturbances, present every 

iteration, automatically. This can be easily shown in the repetition-domain, even if 

disturbances are unmeasurable and, generally, without the need for an explicit model. 

For FBC, however, the presence of unmeasurable disturbances is generally known to 

degrade performance. This is true regardless of disturbances being deterministic or 

stochastic, unlike ILC, which is only ill equipped for stochastic errors and disturbances. 

In practical applications, all different types of disturbances can potentially enter the 

process and, in such situations, the causal combination controller proposed in Eqs. 

(3.21) - (3.22) will have performance limitations. Thus the control actions generated, in 

the presence of a disturbance, will cause the error to digress from the convergence track 

predicted by Eq. (3.23) for learning and deteriorate the performance of the subsequent 

cycles. The resulting propagation of the tracking error in the repetition-domain will in fact 

be 

                              (3.25) 

Interested readers are encouraged to refer to Appendix C.2 for the detailed derivation of 

this tracking error propagation result. Clearly, convergence to zero error is not possible 

with this controller even when only a repeating disturbance is present, as has been 

assumed until this point. Now consider another problem where learning control is 

applicable, but the deterministic errors and disturbances go through a sort of evolution 

phase in the repetition-domain before settling. The evolution can be an adjustment 

period following changes to the system itself, such as hardware modifications and 

replacements, or to a dynamic operating environment. This phenomenon can persist in 

any iterative process involving a system which routinely starts up from a dormant or shut 
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down state and can be referred to as a cold start.
[99]

 These types of practical problems, 

whether it be a repeating disturbance that iteratively persists or evolves before settling 

into a persistent state, are known to plague common learning control applications. For 

such a disturbance environment, use of Eqs. (2.1) – (2.3) is no longer valid since non-

repeating disturbances must now be generally assumed. Therefore, the remainder of 

this chapter will utilize the general learning control formulation, Eqs. (1.1) – (1.8), 

introduced in Chapter 1. 

One potential way to address both repeating and evolving disturbances, within the 

context of this work, is the use of disturbance estimation. For the case of a slowly 

fluctuating disturbance, a discrete time control process can be aided with knowledge of 

what the disturbance was during the last time step. If the change in the disturbance for 

successive time steps in not large, this knowledge can help improve the learning 

process in ILC applications. Here disturbance estimation is now utilized to re-establish 

the originally presented optimized error propagation given in Eq. (3.23) irrespective of 

the presence of a disturbance. Define the following  

 
 
 
 
 
    

    

    
 

     
 
 
 
 

 

 
 
 
 
 
     
     
     
     
      

 
 
 
 

 
 
 
 
 
    

    

    
 

     
 
 
 
 

 

 
 
 
 
 
    

    

    
 

     
 
 
 
 

 (3.26) 

         (3.27) 

Here epsilon   is the one-step behind error of   , which will approach zero as the 

change in the disturbance for successive time steps approaches zero. This definition will 

now be used to aid the FBC portion of the combination controller, through the use of 
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one-step behind estimation. The ILC portion of the combination controller will then also 

be improved, through incorporation of one-repetition behind estimation. 

3.5: One-Step Behind Disturbance Estimator 

To incorporate a one-step behind disturbance estimator, the practical formulation of 

Eq. (1.3), where a disturbance is generally present, is considered. Start with the inverse 

FIR FBC design given in Eq. (3.6) and implement it with Eq. (1.3) to output 

    
 

   
   

 

   
   (3.28) 

The exact inverse solution is again achieved in the limit as   ∞, so high-gain control 

also works in the presence of unknown disturbance. Next, consider the inverse IIR FBC 

design given in Eq. (3.8) and using this type of controller will produce 

    
 

   
   

   

   
   (3.29) 

Here, the exact inverse solution is again achieved in the limit as    , even in the 

presence of unknown disturbances. As before, however, if     the input again 

becomes undefined, so such a setup should be avoided. An implementation where   is 

close to one avoids the necessity for high-gain while still achieving the same high-gain 

effect. 

In order to implement the above FBC designs, both will generally need to be 

converted to causal form as done before, but this time incorporating one-step behind 

disturbance estimation. For the FIR FBC start with the general version of Eq. (3.3) 

written as follows 

               (3.30) 

Here subscripts   and   are defined in the same fashion as in Eq. (3.17) but for the 

corresponding lower-triangular error FBC gain matrix. The causal version of this 
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feedback law with a built-in one-step behind disturbance estimator is derived starting 

with Eq. (3.30) as follows 

                                       

                                          

                                            

                                                      

                                                    

                                              

(3.31) 

In the above derivation, Eq. (1.3) is used to define the output in terms of the input and 

disturbance. Then use of Eq. (3.27) enables one-step behind disturbance estimation with 

available a posteriori input-output information. Finally, collecting all the diagonal matrices 

and simplifying results in 

                      (3.32) 

                        

                     

                      

                

(3.33) 

Assuming that the disturbance does not change substantially from one time step to the 

next, we estimate the disturbance at the current time step to be equivalent to the 

disturbance at the previous time step. This approximation is accomplished by neglecting 

the epsilon term in Eq. (3.32) to arrive at the same general form of causal FBC as Eq. 

(3.18), but with the gain matrices newly designed for one-step behind disturbance 
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estimation. Depending on how the error FBC gain matrix   is defined, the output can be 

shown to be the “half-inverse” or exact inverse solution as before, however one-step 

behind estimating of the disturbance will occur for both cases here. 

To reformulate the IIR FBC design to include one-step behind estimation, start by 

rewriting the general control law, Eq. (3.2), as follows 

                          (3.34) 

Again, subscripts   and   are defined as in Eq. (3.30) and, using the FIR FBC results, 

the causal version of this feedback law with an integrated one-step behind disturbance 

estimator is obtained 

                      (3.35) 

                              

                        

                         

                   

(3.36) 

Here the epsilon term should also be neglected and the same general form of causal 

FBC reoccurs, but again with the gain matrices designed for disturbance estimation. Like 

Eq. (3.18), this IIR FBC design is also well-suited for direct practical implementation 

since there are no causality concerns or potential for an undefined input. However, this 

causal IIR FBC law is improved because not only is it able to achieve the high-gain 

effect, it also implicitly performs one-step behind disturbance estimation. This FBC can 

be combined with an ILC using the matching conditions Eqs. (3.10) - (3.11) or 

implemented independently. However, without the incorporation of learning, this 

implementation has no way to utilize previous repetitions information and cannot take full 
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advantage of the experience gained from interactions with the real world, which are 

fundamental goals of learning control applications. 

3.6: One-Repetition Behind Disturbance Estimator  

The one-step behind estimator will aid the FBC portion of the combination controller, 

but does nothing to enhance the ILC portion of the combination controller, which 

requires incorporation of one-repetition behind estimation. In order for learning to work in 

the presence of disturbance, the causal FBC and ILC combination controller is 

reformulated starting again with Eq. (3.17) above. For the first cycle, since there is no 

previous repetition information available for disturbance estimation, the same causal 

FBC design developed earlier in Eqs. (3.18) – (3.19) can be used. For the second 

iteration forward, one-repetition behind estimation of the disturbance is incorporated 

                                              

                                                       

(3.37) 

Again, collecting the diagonal matrices and simplifying produces the desired combination 

controller 

                            (3.38) 

                         

                  

                       

                      

(3.39) 

The detailed development of the above controller is provided in Appendix B.2 and 

interested readers are referred there for the full derivation. 
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This controller is more general than the original causal FBC and ILC combination 

controller given in Eqs. (3.21) – (3.22) since it does not require use of a    term. The 

one-repetition behind estimation allows this term to be integrated into the   gain matrix 

through implicit use of previous cycle information. With the use of this form of estimation, 

the resulting combination controller is able to effectively compensate for any purely 

repeating disturbance and the error will follow the convergence track predicted by Eq. 

(3.23) for learning as desired. The resulting propagation of the tracking error in the 

repetition-domain is predicted to be 

                                    (3.40) 

Readers interested in the detailed derivation of this tracking error propagation 

expression are encouraged to refer to Appendix C.3 for more information. Clearly, this 

controller is an improvement from the original causal FBC and ILC combination 

controller given in Eqs. (3.21) – (3.22) because it can converge to zero error even in the 

presence of a repeating disturbance. However, inclusion of the one-step behind 

estimator can enhance the combination controller even further. 

3.7: Controller With Full Disturbance Estimation  

To implement a combination controller with both one-step behind and one-repetition 

behind disturbance estimators, start again with Eq. (3.17), the general combination 

controller. For the first iteration, where only the FBC portion of the combination controller 

is active, the causal FBC law with an integrated one-step behind disturbance estimator, 

developed earlier, is used 

                   (3.41) 
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(3.42) 

Notice that this is the same controller given in Eqs. (3.35) – (3.36) but without the epsilon 

term. From the second iteration forward, a new controller is derived by combining the 

above one-step behind disturbance estimator law with a one-repetition behind 

disturbance estimator law as follows 

                                                   

                                                                    

(3.43) 

From Eq. (3.43), it can be seen that one-step behind estimation is used to estimate the 

current cycle disturbance and one-repetition behind estimation is used to estimate the 

one-step behind error epsilon   which is neglected for the first iteration. For the 

remaining cycles, epsilon is estimated as shown in Eq. (3.43) and the resultant 

combination controller is 

                            (3.44) 

                              

                        

                            

                          

(3.45) 

Interested readers are encouraged to refer to Appendix B.3 for the detailed derivation of 

this controller utilizing full disturbance estimation. 

Here again note that this controller is more general than the original causal FBC and 

ILC combination controller without disturbance estimation since there is no    term. The 
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use of full estimation enables this combination controller to also effectively compensate 

for any purely repeating disturbance and, additionally, to better handle an evolving 

repeating disturbance, introduced earlier. In fact, this combination controller can closely 

follow the convergence track predicted by Eq. (3.23) for learning even during the 

evolution or transient phase of an evolving repeating disturbance. Here, the tracking 

error propagation in the repetition-domain is anticipated to be 

                                         (3.46) 

For comparison purposes, the use of the basic ILC law given in Eq. (3.12) will result in 

tracking error propagation, in the presence of an evolving disturbance, following 

                     (3.47) 

The detailed derivations for both of the tracking error propagation expressions presented 

in Eqs. (3.46) and (3.47) are provided in Appendix C.4 and C.1 respectively. A 

comparison of Eqs. (3.25), (3.40), (3.46), and (3.47) shows that if a combination 

controller using lower triangular FBC gain matrices is desired, disturbance estimation is 

necessary to handle any purely repeating disturbance. If disturbance considerations are 

expanded to include evolving repeating disturbances, full disturbance estimation shows 

potential to maximize disturbance rejection. 

3.8: Numerical Simulation  

Numerical simulations were conducted on MATLAB 7.7 to illustrate the effectiveness 

of the above feedback and iterative learning combination controllers. Two different types 

of system models are utilized to cover commonly encountered practical situations. A 

well-conditioned system model will effectively consider control problems in which a 

designer has the option to implement some of the inverse controllers discussed above. It 

is very important to remember that in order to be able to use an inverse controller in 
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practice, a relatively accurate system model is generally required. An ill-conditioned 

system model will effectively consider control problems where the inverse controllers are 

not realizable design options. With both models, lower triangular, hence non-causal by 

one time step, combination controllers are allowed. Simulations then demonstrate the 

effect of including disturbance estimators, one-repetition behind and full disturbance 

estimation, in the ideal case and the practical case where a repeating disturbance is 

generally present. Simulations with an evolving repeating disturbance are also 

conducted. 

3.8.1: Implementation Using Well-Conditioned and Ill-Conditioned Plant 

The first setup to be simulated is the most ideal case where the plant is well-

conditioned and there is no disturbance affecting the control process. For this setup, a 

third order system model with the following transfer function is considered 

              
   

          

                 
  

     (3.48) 

For the numerical simulations      ,      , and       , and the continuous time 

model was discretized using a ZOH, as described in the learning formulation section, 

using a 100 Hz sample rate. Notice that the continuous time transfer function has a pole 

excess of one. Therefore, no zeros are introduced by the discretization process that can 

potentially be outside the unit circle. 

An ill-conditioned plant is considered also using a third order system model, but with 

a transfer function with a pole excess of three as follows 

               
 

   
  

  
 

           
 
      (3.49) 
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As before, for the numerical simulations      ,      , and       , and the 

continuous time model was again discretized using a ZOH at a 100 Hz sample rate. 

When the pole excess is three or more and the sample time is fast enough, a zero is 

introduced outside the unit circle by the discretization process.  This means that the 

inverse problem that is addressed by learning control, of finding the input needed to 

produce the desired output, is working with the inverse of a discrete transfer function 

which is unstable. Therefore, this plant is considered ill-conditioned in this context and 

inverse control is not possible. Furthermore, with an ill-conditioned plant, perfect tracking 

is not possible even in the ideal case where there is no disturbance present. 

3.8.2: Results 

Using the well-conditioned plant modeled by Eq. (3.48) and the ill-conditioned plant 

modeled by Eq. (3.49), numerical simulations were conducted to determine the 

effectiveness of the combination controllers presented in this chapter at following a 

polynomial command signal based on 

       

 

 
 
 

 

 
  
  

 
 

 

 
 

 

    

 

 
  
  

 
 

 

 
 

 

  

 

 
  
  

 
 

 

 
 

 

 

 
 

 (3.50) 

A plot of the desired trajectory is given in Figure 3-1 with a fundamental frequency of 2 

Hz. The equation used to generate the first quarter of this command is Eq. (3.50) and 

the second quarter is merely a reflection of the first quarter. Then that signal is repeated 

to produce the entire command. This trajectory has the unique characteristic that it has 

continuous position, velocity, and acceleration starting from rest and along the segment 

boundaries described above, which implies that it will induce relatively smooth operation.  

Also, the fundamental frequency of this command is set by specifying   , its period.  For 
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the simulations involving disturbances, Figure 3-2 shows the repeating disturbance, 

which purposely includes noise to introduce higher frequency components, and Figure 3-

3 shows the evolving disturbance. The first series of simulations conducted started with 

the most ideal case, a well-conditioned plant and no disturbances. All three of the 

combination controllers simulated performed identically, with results given in Figure 3-4 

showing their performance. Next, the repeating disturbance was introduced for the well-

conditioned plant and Figures 3-5 – 3-7 show how the controller performed with no 

disturbance estimation, only one-repetition behind disturbance estimation, and full 

disturbance estimation, respectively. The second series of simulations were for the ill-

conditioned plant and, as before, all three combination controllers performed identically 

in the no disturbance case, see Figure 3-8 for results. Similarly, Figures 3-9 – 3-11 show 

the performance of the three controllers in the presence of the repeating disturbance, as 

before. The final series of simulations involved the evolving repeating disturbance, with 

Figures 3-12 – 3-13 showing performance on a well-conditioned plant and Figures 3-14 

– 3-15 presenting the results on the ill-conditioned plant. 

3.9: Summary of Findings  

Improved combination controllers, incorporating both FBC and ILC, have been 

developed for learning controller applications in linear systems. These controllers stem 

from previously derived combination controllers, but with an enhancement that allows for 

the use of FBC designs which are non-causal by one time step. The controllers are then 

further advanced through the utilization of disturbance estimators. Numerical simulations 

confirm that these combination controllers, with disturbance estimation, significantly 

improve both the tracking performance and the learning behavior. 
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Figure 3-1. Desired Trajectory Figure 3-2. Repeating Disturbance 

  

 

Figure 3-3. Evolving Repeating Disturbance 
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Figure 3-4. Well-Conditioned Plant With No 

Disturbance Present  

Figure 3-5. Well-Conditioned Plant With Repeating 

Disturbance and No Estimation 
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Figure 3-6. Well-Conditioned Plant With Repeating 

Disturbance and One Rep Estimation 

Figure 3-7. Well-Conditioned Plant With Repeating 

Disturbance and Full Estimation 
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Figure 3-8. Ill-Conditioned Plant With No 

Disturbance Present 

Figure 3-9. Ill-Conditioned Plant With Repeating 

Disturbance and No Estimation 
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Figure 3-10. Ill-Conditioned Plant With Repeating 

Disturbance and One Rep Estimation 

Figure 3-11. Ill-Conditioned Plant With Repeating 

Disturbance and Full Estimation 
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Figure 3-12. Well-Conditioned Plant With Evolving 

Disturbance and One Rep Estimation 

Figure 3-13. Well-Conditioned Plant With Evolving 

Disturbance and Full Estimation 
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Figure 3-14. Ill-Conditioned Plant With Evolving 

Disturbance and One Rep Estimation 

Figure 3-15. Ill-Conditioned Plant With Evolving 

Disturbance and Full Estimation 
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CHAPTER FOUR: Optimized Finite-Time Feedback and Iterative 

Learning Controller Design 

 
This chapter presents a novel approach that enables the design of a finite-time 

feedback and learning combination controller. The cost function-based approach allows 

for simultaneously design of both the FBC and ILC portions of the combination controller 

and naturally facilitates design decisions related to how the control burden is shared 

between FBC and ILC. If the designer decides the optimal combination controller should 

exhibit qualities primarily associated with FBC, then such a controller can be easily 

produced through the appropriate tuning. Similarly, if the optimal controller should have 

primarily ILC attributes, then it can be designed in an analogous fashion. In many ILC 

problems, the ideal division of control burden is difficult or impossible to determine 

initially. So, a combination controller that iteratively adapts in some optimal fashion 

through interactions with its operating environment may perform best. This chapter 

presents a method that can achieve these objectives by adjusting a few gains in the 

basic design, or a few weighting matrices in a more complex and tailored design. 

The remainder of this chapter is organized into four main sections. In the first section, 

the learning control problem is formulated to facilitate finite time-domain (current cycle) 

analysis for the FBC portion and repetition-domain (previous cycle) analysis for the ILC 

portion of the combination controller. The second section presents an optimized finite-

time FBC and ILC design in six sub-sections. The first sub-section provides background 

information on the causal   matrix based finite-time FBC concept. The second sub-

section proposes the general   matrix for finite-time FBC conversion along with some 
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basic guidelines for implementation. The third and fourth sub-sections present the 

derivation of the optimal static   based finite-time FBC and ILC design and the 

corresponding error propagation equations. The last two sub-sections present the 

derivation of the optimal dynamic   based finite-time FBC and ILC design and the 

corresponding error propagation equations. The third section discusses some general 

design considerations for both the static and dynamic optimal   based combination 

controllers related to training matrices, finite-time sensitivity transfer matrices, and the 

implementation of conventional FBC using   matrix based designs. The final section 

presents the results of numerical simulations using a well-conditioned plant and two 

different ill-conditioned plants to illustrate the effectiveness of the proposed designs in 

various practical operating environments involving repeating and random, non-repeating 

disturbances. 

4.1: Optimized Finite-Time FBC and ILC Design  

The design of finite-time FBC was investigated in a previous study. However, the 

design of a feedback and learning combination controller was not established.
[69]

 The 

study presents feedback controllers based on a causal inverse matrix   of the form 

        (4.1) 

This   matrix is essentially an intermediate step used in the derivation of a linear 

solution to the initially non-linear problem of finding the gain matrices   and   to 

implement the feedback controller of the form 

              (4.2) 

The steps involved in designing   and then finding the corresponding gain matrices   

and   to implement the controller of Eq. (4.2) require extensive use of the stack operator 
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and the Kronecker product.
[69]

 The direct relationship between the inverse matrix   and 

the associated feedback gain matrices   and   is 

              

    

(4.3) 

Here, the matrix   is introduced purely for convenience because it will be seen that the 

term            appears repeatedly in numerous subsequent derivations. It is 

important to clarify that the use of Eq. (4.3) to define the inverse matrix   directly from 

any set of causal feedback gain matrices   and   is always acceptable and valid. 

However, it is even more imperative to establish that these definitions are unidirectional 

and the use of Eq. (4.3) to find   and   directly from   in learning control applications is 

generally invalid. This is due to the fact that in order to enable the general use of Eq. 

(4.3) to calculate   and   directly from  , the   matrix must be accordingly incorporated 

into the relationship between the overall plant input and the feedback and learning 

combination controller. This can be clearly seen through the following derivation, starting 

with the feedback controller given in Eq. (4.2) combined with the learning control signal 

   , and use of Eq. (1.3) along with the standard definition for tracking error 

 
 
   

 
   

 
  

 
 

 
 
   

 
        

 
  

 
   

 
 

                         

                

(4.4) 

It is apparent that the general use of Eq. (4.3) to calculate   and   directly from   would 

undo the desired linearization effect because   would now be introduced as an unknown 
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variable as shown in Eq. (4.4), which is counterproductive. In other words, if the overall 

plant input is generated using Eq. (4.4), it would be a function of three variables  ,  , 

and   , all of which are to be designed. If these variables are unknown, then designing 

them simultaneously using a cost function is again a non-linear problem because of the 

inherent coupling between   and   that naturally exists with this type of feedback 

implementation. Therefore, a more suitable conversion will be established in this 

chapter. Recall, as long as the   matrix is calculated independently, determining the 

feedback gain matrices   and   from it is a linear problem. For feedback and learning 

combination controller implementations, the design of the   matrix is done 

simultaneously with the design of the learning control signal. So the overall plant input 

should be defined as 

            

               

         

(4.5) 

Notice that the stack operator, denoted with the superscript S, and the Kronecker 

product, denoted with the symbol  , are both used to permute the original equation. 

This is done so that the unknown   matrix can be transformed into an unknown stacked 

  vector, which can then be optimized using a cost function. The design objective is to 

optimize both  , or  , and the learning signal     according to some specified criteria. 

Once  , or the elements of  , are determined in the stacked vector form given in Eq. 

(4.5), they must be transformed back into the   matrix by reversing the steps used to 

define the original stacked vectors. It is up to the designer to determine if time varying or 

time-invariant elements are desired. The use of time-invariant elements will result in a 
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lower-dimensional problem since the resulting   matrix would be Toeplitz. Therefore, 

only a smaller number of unique elements need to be determined, as opposed to the 

time varying   matrix solution where significantly more unique gains must be calculated. 

It is generally recommended that for either design, full freedom be given by using all 

available gains in the solution. If full freedom is not given, achieving the goal of finding a 

truly optimal combination of   and     may not be possible. 

4.1.1: General Q Matrix to Finite-Time FBC Conversion for Learning Control 
Applications 

For the moment, assume that such an optimization was done and the corresponding 

optimal combination of   and     have been determined. Furthermore, assume that   

was designed with exact knowledge of the disturbance using the following condition 

                     (4.6) 

In order to implement the optimal combination, the feedback gain matrices   and   need 

to be calculated. To do this, start with the appropriately modified versions of Eqs. (4.1), 

(4.2), and (4.5) and equate the appropriate terms 

                     (4.7) 

Next, the appropriate definitions should be inserted into Eq. (4.7) for the overall current 

cycle plant input     and current cycle error     as shown 

                               

                              

                             

                             

(4.8) 
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Now, since it was assumed that the current cycle disturbance    is known exactly, the 

definition for   , given as part of Eq. (4.6), can be applied 

                                               

                                               

                                            

                                     

                             

(4.9) 

It should be clarified that the use of the unidirectional definition given Eq. (4.3) in the 

derivation of Eq. (4.9) is valid since   is being defined as only a function of   and  , or 

more fundamentally   and  , and not the other way around. It is also worthwhile to note 

that the current cycle disturbance cancels out in Eq. (4.9) if, and only if, the condition 

given in Eq. (4.6) is satisfied. Recall, however, that Eq. (4.6) assumes the current cycle 

disturbance is known exactly, which is not a practical assumption for most applications. 

Typically,    is treated as an unknown that must be estimated or compensated for by the 

controller design. The   matrix based finite-time FBC and ILC design is well-equipped to 

handle such unknowns, as discussed later in this sub-section. It is sufficient, for now, to 

simply accept that the given optimal combination of   and     was appropriately 

designed. Given such a controller, it is possible to replace    with    in Eq. (4.7) and go 

through a similar derivation to arrive at the final result of Eq. (4.9), which does not 

involve the unknown current cycle disturbance. This is the most general approach, so 

Eq. (4.7) is redefined accordingly 
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                     (4.10) 

Now, the same final result given in Eq. (4.9) can be obtained by going through similar 

steps, but starting with Eq. (4.10) instead of Eq. (4.8) and neglecting    entirely from the 

derivation. This is acceptable because even though the necessary condition in Eq. (4.6) 

for designing   involved theoretical vector   , a more practical condition can be used in 

its place to design   in an analogous fashion. This alternative constraint could use an 

argument similar to   , but containing only known information about the disturbance 

environment. In order to obtain the desired feedback gain matrices from the final result 

of Eq. (4.9), it is necessary to permute the equation using the stack operator and the 

Kronecker product as shown 

     
 
          

 
                     

 
         

       

        
 

         
 
 

(4.11) 

This process is analogous to the finite-time FBC only conversion, with the major 

difference being that the learning signal must now be incorporated into this derivation. 

Once the feedback gains are determined in the stacked vector form given in Eq. (4.11), 

they must be transformed into gain matrices in a similar fashion as done for the   matrix. 

Here, it is again up to the designer to determine if time varying gains are desired or 

traditional time-invariant feedback gains are desired. As with the   matrix, it is generally 

recommended that full freedom be given, meaning all available gains should be used in 

either implementation. Once this is decided, both the   matrix and associated   and   

feedback gain matrices should be generated accordingly. In either case, Eq. (4.11) will 

allow one to obtain the desired feedback gain matrices from given   and    , even for 
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more than one desired signal. If a family of signals must be followed or disturbances 

spanning a particular frequency band must be rejected, the   matrix based design 

facilitates this objective by simply replacing the singular desired signal vector    with a 

training matrix   , as appropriate. It should be noted that the training matrix    is not the 

same as the theoretical vector    specified in Eq. (4.6), yet they both serve the same 

essential purpose. It is through the appropriate use of the training matrix   , in a similar 

fashion to   , that the current cycle disturbance can be neglected. This is done by 

imposing the following condition 

        (4.12) 

The better the training matrix is able to estimate the disturbance environment, the better 

the   matrix can compensate for the unknown disturbances and the more accurate the 

overall conversion process becomes. Exactly how this can be done will be discussed in 

detail in a subsequent section. In learning control applications, Eq. (4.11) is 

recommended for the conversion of   and   from   and    , along with the appropriately 

designed training matrix. It is reiterated that for this conversion, Eq. (4.11) supplants Eq. 

(4.3) because the latter is generally a unidirectional definition when a learning signal is 

present. Therefore, the use of Eq. (4.3) to find   and   directly from   is generally 

invalid if the desired linearization effects of using the   matrix are to be maintained. 

Next, the primary objective of how to obtain the necessary optimal combination of   

matrix and learning signal     will be discussed. 
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4.1.2: Optimal Static Q Based Finite-Time FBC and ILC Design 

The finite-time FBC and ILC combination controller implementation considered in Eq. 

(4.5) assumes that the   matrix is static in the repetition-domain. If the FBC is static, that 

means that only the ILC would exhibit repetition dynamics 

        (4.13) 

Based on Eq. (4.13), the following cost function is proposed to optimize the finite-time 

feedback and learning combination controller 

       
 
          

 
                      

               
 
        (4.14) 

This cost function penalizes the current cycle error, iterative updates to the overall plant 

input, the matching criteria of the static inverse matrix   based on Eq. (4.12), and the 

feedback control effort.  Here, notice that the aforementioned training matrix    is used 

for designing   versus a single desired trajectory. In order to optimize the cost function 

presented in Eq. (4.14), it must first be modified into the correct format that explicitly 

shows the implicit relationships between the control variables to be optimized. In this 

case, the control variables to be optimized are the   matrix and iterative updates to the 

learning signal    , and so once again the stack operator and the Kronecker product are 

utilized 

       
 
          

 
                    

 
                 

           
 
            

(4.15) 

Notice that one of the two Kronecker products is the same as in Eq. (4.5), the other can 

be similarly represented with a static matrix, and     can be replaced using        

     to get 
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(4.16) 

Now, Eqs. (1.7) and (4.13) are used to explicitly show the underlying relations to the 

control variables of interest 

                   
 
                        

 
     

          
 
                  

 
       

(4.17) 

The cost function given in Eq. (4.17) can now be optimized by taking the partial 

derivative with respect to   and     and setting to zero as follows 

   
        

         
            

     
     (4.18) 

   
    

                                      (4.19) 

Finding the optimal combination of finite-time FBC and ILC using a static   matrix in this 

manner leads to a naturally uncoupled solution that enables the independent design of 

the feedback and learning controllers. This suggests that the problem of finding an 

optimal combination of iteration invariant feedback and learning control can be viewed 

as a mutually exclusive problem that can first be solved separately and then 

implemented together in an optimal fashion. Here the independent designs are optimal 

for the cost function given in Eq. (4.17) if 

     
         

       
  

  
     

   (4.20) 

              
                 (4.21) 
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It should be noted that Eq. (4.20) can generally be ill-conditioned and it is often 

necessary to condition the matrix summation to be inverted before solving for the   

matrix. Popular conditioning techniques like truncation of bad singular values or 

Tikhonov regularization can be used to achieve more desirable results. Also, since     is 

generally unknown and difficult, if not impossible, to accurately model and predict, it can 

be neglected for the learning signal update 

              
           

        

(4.22) 

Here,    is introduced purely for mathematical convenience to represent        

   
       in numerous subsequent derivations. If an accurate model or estimate of     

is available, Eq. (4.21) can be used with the appropriate replacement of the unknown     

variable as desired. However, Eq. (4.22) is generally the more applicable rule to be used 

for updating the learning signal. 

4.1.3: Error Propagation of Optimal Static Q Based Finite-Time FBC and ILC 
Design 

In order to predict the error performance of the static   matrix based feedback and 

learning combination controller, start with Eq. (4.10) and apply the difference operator    

as shown 

                  (4.23) 

Now, using Eq. (1.7), it is possible to rewrite Eq. (4.23) by substituting in for the unknown 

iterative changes to the error, which are to be determined 

                         (4.24) 

After some standard arithmetic to collect like terms and simplify the equation, it is 

apparent that Eq. (4.24) can be rewritten as 
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                                 (4.25) 

Notice that the definitions established in Eq. (4.3) for   and   naturally appear in Eq. 

(4.25), so applying the appropriate substitution produces the following equation 

              (4.26) 

Next, by using Eqs. (1.6) and (1.8), or Eq. (1.7) directly, along with Eq. (4.26), the error 

propagation for this optimization is found in terms of     ,    , and     as seen 

                         (4.27) 

To get it into its final form, one more substitution must be made with Eq. (4.22) and this 

leads to the result 

                            (4.28) 

Some additional standard arithmetic to collect like terms and simplify the equation further 

gives the final expression for error performance of the static   matrix based feedback 

and learning combination controller  

                          (4.29) 

Here, it should be evident that the error performance will be limited by the magnitude of 

the randomness from iteration to iteration, even if the plant is fully controllable and 

observable. However, through the use of a properly designed static   matrix based 

finite-time feedback, substantial improvement can be achieved, particularly if the plant is 

well-conditioned. Consequently, if no feedback was incorporated, which can be 

evaluated by setting   as well as the corresponding feedback gain matrices to zero and 

  to the appropriately dimensioned identity matrix, it can be seen from Eq. (4.29) that 

there is no way to mitigate the performance limitations caused by random disturbances. 
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4.1.4: Optimal Dynamic Q Based Finite-Time FBC and ILC Design 

Now consider a finite-time FBC and ILC combination controller implementation in 

which the feedback could also be updated in response to interactions with its operating 

environment in the same manner as the learning control. This can be done with a slight 

modification to the original combination controller proposed in Eq. (4.5) as shown 

 
       

      

          
      

           

(4.30) 

Here the    matrix is now dynamic in the repetition-domain. Therefore, the 

corresponding updates to the plant input would now involve both FBC and ILC repetition 

dynamics 

              (4.31) 

Based on Eq. (4.31), the following cost function is proposed to optimize the finite-time 

feedback and learning combination controller 

       
 
          

 
         

       
  

  
       

       
  

 
      

 
     

      
  

 
       

  

(4.32) 

This cost function is similar to Eq. (4.14) in that it also penalizes the current cycle error, 

iterative updates to the overall plant input, the matching criteria of the inverse matrix    

based on the dynamic version of Eq. (4.12), and the feedback control effort. However, 

unlike that cost function, Eq. (4.32) also penalizes iterative updates to the gains of the 

dynamic inverse matrix, which should be kept minimal in magnitude unless the overall 

design dictates otherwise. Notice that Eq. (4.32) allows the training matrix   
  to be 
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updated in an iterative fashion, which gives the designer full control over how updates to 

the    matrix are made. Following similar steps, as was done for the static   matrix 

design, this cost function is modified into a more suitable form for optimization 

       
 
          

 
         

      
         

 
      

      
         

      
 
                  

 
              

           
 
                  

 
     

    
          

 
       

                
 
     

        
 
         

(4.33) 

Here the control variables to be optimized will be     and    , so the proper substitutions 

are made using Eqs. (1.7), (4.31), and the difference operator    where appropriate 

                          
 
                         

            
 
             

    
                 

 
       

                 

      
 
                    

 
                

(4.34) 

As done before, the cost function given in Eq. (4.34) can now be optimized by taking the 

partial derivative with respect to     and     and setting to zero as follows 

   
    

      
                         

              
       

       
                      

       
     

(4.35) 
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                                           (4.36) 

Here,          
          

       and              and these two optimization 

equations can be conveniently solved simultaneously 

 
   

                  
    

        

  
   

   
 

  
           

   

     

  
    

    
   

      
      

     

      
  

   

  
    

   
   

   
     

    

    
     

   

  
    

(4.37) 

It should be noted that unlike Eq. (4.20), Eq. (4.37) is generally well-conditioned, except 

when    is very small, and conditioning techniques are often not necessary. However, in 

cases where it is necessary to condition the    matrix before finding the desired optimal 

updates, the same conditioning techniques used for Eq. (4.20) are again recommended 

here. 

The optimal updates     and     can be obtained by solving Eq. (4.37) as given 

above or by determining the update laws directly through algebraic manipulation. If Eq. 

(4.35) is rearranged and the appropriate substitution is made using Eq. (4.36), it can be 

shown that 

  
                               

                 
                

       
   

(4.38) 

Cancelling like terms, applying the desired conditioning if necessary in Eq. (4.38), and 

then taking the appropriate inverses will produce the optimal dynamic    matrix based 

combination controller update laws 
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(4.39) 

              
                       (4.40) 

Again, applying the same definition for    used in Eq. (4.22) and following the same 

reasoning for neglecting     established there, the general learning signal update 

becomes 

                 (4.41) 

By comparing Eqs. (4.39) and (4.41) with the analogous optimal static   matrix update 

laws given in Eqs. (4.20) and (4.22), it should be clear that the primary design agent for 

both controllers is   , the training matrix. The two main differences between the static   

matrix and dynamic    matrix based designs are that for the dynamic controller, the 

optimization equations are generally well-conditioned and the training matrix is allowed 

to vary in the repetition-domain.  A well-conditioned solution is always preferred and 

does not require additional explanation. While the advantages of having a variable 

training matrix are less obvious, the main improvement is that the design can now be 

truly optimal both in-repetition and in-run, or in time over the course of each individual 

run. The static controller, on the other hand, is truly optimal only in repetition, and can be 

considered suboptimal in-run when compared to the dynamic design. This is due to the 

general nature of both the system and operating environment which can be considered 

dynamic when the iteration number   becomes large. There are a myriad of practical 

reasons for this, such as fluctuations in the daily operational temperature and even the 

natural heating, cooling, and eventual deterioration of system hardware. While the 

dynamic design can optimally adapt to such changes with both its feedback and learning 
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control actions, the static design can only compensate for these changes in repetition 

through learning control actions alone. 

4.1.5: Error Propagation of Optimal Dynamic Q Based Finite-Time FBC and ILC 
Design 

In order to predict the error performance of the dynamic    matrix based feedback 

and learning combination controller, start with the general, dynamic equivalent of Eq. 

(4.10) as shown 

      
                  (4.42) 

Next, make the appropriate substitutions using Eq. (1.3) and the definition            

for error 

                           (4.43) 

Expanding out the substitutions and collecting like terms will result in the following 

expression 

                          (4.44) 

Now, solving for the overall current cycle plant input and applying the general definition 

given in Eq. (4.3) produces the result 

             
  

             
  

          

                

(4.45) 

Here,    and    are the dynamic equivalents to the definitions given in Eq. (4.3) and, as 

observed in Eq. (4.25), these terms also naturally appear in Eq. (4.45) as seen above. 

The next steps are to permute    
  as done before and apply the difference operator    

appropriately as shown 



   

92 

 

                                  (4.46) 

Some basic steps involving algebraic manipulation to expand and rearrange terms, 

along with further applications of the difference operator where appropriate, results in the 

following 

                                 

                                              

                                                 

(4.47) 

Using the corresponding iteration of Eq. (4.45) allows for a necessary substitution in the 

derivation and subsequent algebraic steps, similar to those above, will lead to another 

desired expression 

                                                    

                    
                             

                                               

                                   

(4.48) 

Notice that the final line of Eq. (4.48) is the dynamic    matrix version of Eq. (4.26) and 

can similarly be used, along with Eq. (1.7), to determine the error propagation for this 

optimization 

                                                 

                                                 

(4.49) 

In order to arrive at the ultimate expression for error performance of the dynamic    

matrix based design, one more substitution must be made using Eq. (4.41) before the 

remaining algebraic steps can be performed 
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(4.50) 

Finally, a few more simple steps to collect like terms and rearrange others produces the 

desired final expression for error propagation of the optimal dynamic    matrix based 

feedback and learning combination controller 

          
                                                  (4.51) 

Upon inspection of Eq. (4.51), it should be apparent why it was suggested in the 

previous section, when the cost function was first proposed, that iterative updates to the 

gains of the dynamic    matrix should be kept minimal in magnitude unless the overall 

design dictates otherwise. This can be precisely controlled using the weighting matrix    

in Eq. (4.32) as desired. In general, if the magnitude of those iterative updates is allowed 

to be large, the terms    ,    , and     can become large and potentially make the 

current cycle error worse. If the magnitude of the iterative updates is effectively 

minimized or sufficient iterations are allowed to pass such that the dynamic    matrix 

settles to an optimal in-repetition and in-run state, then those terms become negligible 

and the error propagation can be approximated with 

          
                  (4.52) 

A simple comparison to the error propagation of the static   matrix based feedback and 

learning combination controller given in Eq. (4.29) shows a strikingly similar expression. 

The advantage of the dynamic matrix design should become clear when considering Eq. 

(4.52), since    and    can now be optimized each iteration based on recent interactions 

with its operating environment. This means that the dynamic    matrix based feedback 
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and learning combination controller has the potential to be optimal both in-repetition and 

in-run, unlike the static   matrix based design. 

4.2: Optimal Q Based Finite-Time FBC and ILC Design Considerations 

The previous section established two different design approaches for optimal   matrix 

based finite-time FBC and ILC combination controllers. These approaches are 

developed sufficiently for direct implementation. However, in order to most efficiently 

harness the tremendous potential of these approaches, some important design 

considerations should be discussed in detail. Significant general information about how 

to design the training matrix to meet various design objectives and how to use finite-time 

sensitivity transfer matrices as a general evaluation tool, analogous to conventional 

frequency response analysis, for the finite-time FBC only case was presented in a 

previous study.
[69]

 Here, the focus is to leverage the understanding gained from that 

work and apply it directly to take full advantage of the inherent flexibility of the   matrix 

based design for learning control applications. 

4.2.1: The Training Matrix for Learning Control Applications 

The primary design agent for both the static and dynamic feedback and learning 

combination controllers is   , as stated in the prior section. For simplicity, assume for 

now that the current cycle disturbance, expressed in Eq. (1.4), is bounded and known for 

every repetition. In this context, bounded implies that the overall magnitude of the 

disturbance is sufficiently small relative to the desired signal such that effective control is 

possible. If this assumption was valid, then a training matrix could, in theory, utilize that 

information to generate a finite-time FBC to suppress the disturbances each repetition 

and output the desired signal with nearly negligible error. Such a training matrix would 

take the form 
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                        (4.53) 

This theoretical training matrix could be used for either the static   or dynamic    matrix 

based design. However, if such a training matrix existed, then there would be no real 

advantage to using the dynamic design. Unfortunately, the current cycle disturbance and 

all future cycle disturbances, though can be assumed to be bounded, are generally 

unknown in practice.  

It is still possible, however, to allow for a sufficient number of calibration trials in an 

attempt to acquire useful information about the disturbance environment to aid the 

design of the training matrix. For the static   matrix design, that calibration period could 

result in a training matrix of the form 

                     (4.54) 

This practically feasible training matrix is composed of the desired reference signal, the 

estimate    of any repeating disturbance term   that is identified during calibration, and a 

sinusoidal disturbance rejection matrix. The sinusoidal disturbance rejection matrix is 

composed of appropriately selected frequencies to reject disturbances with content in 

the band surrounding those frequencies 

               (4.55) 

                                   (4.56) 

The number of sinusoidal disturbance rejection frequencies that should be used is 

design-specific and any variety may be considered, but the goal is to reject random 

disturbances over a desired band of frequencies. The calibration period will typically be 

integral to the overall performance in static   matrix designs. This is because the finite-

time FBC is unable to adjust for current or future inaccuracies in the training matrix 
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without routine calibration, which is not always feasible. The dynamic    matrix based 

design is far less susceptible to calibration errors since it can be designed to iteratively 

adjust to maintain optimal performance in-repetition and in-run, with no need for routine 

calibration. The brute force way to do this is to use a training matrix of the form 

                                 (4.57) 

While this design is feasible and practically implementable, the computational demand 

will again be a significant limiting factor as the number of iterations grows. A more 

computationally efficient training matrix which can be used to achieve the expected 

optimal performance is 

                           (4.58) 

Here the estimate    of the repeating disturbance  , estimate      of the iterative change 

    in the current cycle disturbance, and estimate    to cover the random disturbance 

spectrum, can be obtained using any estimation technique, such as basic least squares 

or Kalman filters for example. The estimation process can utilize all of the previous 

repetition information in a numerically and computationally efficient manner to produce 

optimal results. The more accurately these estimates represent the operating 

environment, the better the overall controller will perform. However, even with initial 

inaccuracies in the training matrix, it should be reiterated that the dynamic    based 

design can still improve the overall performance. 

4.2.2: Finite-Time Sensitivity Transfer Matrices for Q Matrix Based FBC and ILC 
Combinations 

Before discussing the implementation of more conventional, steady state response 

based FBC designs through the   matrix approach, it is important to establish a method 
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for comparison. The use of finite-time sensitivity transfer matrices to support such a 

comparison, in addition to general evaluation, is now established for use in learning 

control applications. The primary focus here is sensitivity of the overall system to signals 

of varying frequency, in terms of impact to tracking error. This can be assessed using 

the error propagation equations derived for each design presented in Eqs. (4.29) and 

(4.52) previously. For both designs, the current cycle tracking error is a function of the 

previous cycle tracking error      and iterative change     in the current cycle 

disturbance. If these two terms are thought of as inputs and the tracking error as the 

output, then it is possible to drive the tracking error output using a variable signal input 

that is frequency dependent and normalized to be a unit vector. For the purpose of error 

analysis, the norm of this frequency dependent tracking error output is of most interest. 

Following this approach, two general finite-time sensitivity transfer matrices are 

proposed 

              
                      

     (4.59) 

                                     (4.60) 

Here, Eq. (4.59) is the previous cycle error finite-time sensitivity transfer matrix and Eq. 

(4.60) is the disturbance difference finite-time sensitivity transfer matrix. The three 

common variables in Eqs. (4.59) and (4.60), the input transfer frequency  , input time 

vector  , and normalizing scale factor  , must all be appropriately defined by the 

designer when driving these finite-time sensitivity transfer matrices. The following is 

some guidance on the proper way to define these variables, in an attempt to reliably and 

efficiently bridge the gap between the finite-time design approaches and more 

conventional control design approaches. The input time vector   is simply defined using 
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Eq. (4.56) above. The input transfer frequency   should span the full operational 

spectrum, from zero to Nyquist frequency   , for the controller implementation and with 

sufficient granularity to ensure adequate frequency resolution.  This can be 

accomplished by using a predefined set of input transfer frequencies        , which 

are a function of the fundamental frequency resolution 

   
 

   
 

  
  

 
  
 

 (4.61) 

It should be evident that as the sampling frequency    is increased, the total number of 

time steps   would need to be proportionally increased to maintain    and, consequently, 

the desired overall frequency resolution. The set of input transfer frequencies can now 

be defined as 

                               (4.62) 

Notice here that the largest transfer frequency in the input set    approaches    as   

approaches infinity, but for finite-time applications it will always be less than the Nyquist 

frequency. Finally, the normalizing scale factor must be calculated for each frequency   

in the set of input transfer frequencies   , such that the norm of the driving vector is 

unity 

  
 

         
 (4.63) 

When using Eq. (4.63), care must be taken to avoid a divide by zero. Some interesting 

conclusions can be made by recognizing that Eqs. (4.59) and (4.60) are subordinate 

matrix norms, so by definition 

        
                

                           (4.64) 

                                               (4.65) 
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If the Euclidean norm is used for this error analysis, these definitions can be utilized to 

arrive at a very important result 

        
    

 
         

   
 
   

 
    

     
   (4.66) 

           
           

   
 
    

     
   (4.67) 

The significance of Eqs. (4.66) and (4.67) is that they prove that the error gains shown 

by the previous cycle error and disturbance difference finite-time sensitivity transfer 

matrices will always be bounded by the largest singular value   of the respective transfer 

matrix. Furthermore, it turns out that for monotonically increasing finite-time sensitivity 

transfer matrices, the entire plot is bounded by a corresponding plot of monotonically 

increasing singular values. This observation suggests that the overall performance of the 

controller is generally bounded by the singular values of the transfer matrix. Therefore, 

singular value decomposition can be used as another very useful analysis tool for finite-

time applications. It is, however, recommended that the sensitivity transfer matrix be 

utilized as the primary evaluation tool for finite-time design, just as frequency response is 

utilized for steady state design. 

4.2.3: Implementation of Conventional FBC Using Q Matrix Based Designs 

Consider the case now where the implementation of more conventional FBC using 

frequency response based techniques is desired. Even though such steady state 

frequency response based design approaches are not best suited for finite-time 

applications, like learning control, it is insightful to demonstrate that   matrix based 

implementations are flexible enough to accommodate this. Automatic FBC designs used 

in various industrial applications include P, PI, PD, and PID controllers, with PID being 
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the most common. Here, implementation is restricted to the PID because the same 

approach can easily be applied to other conventional FBC designs 

             
 

  
       

 

 

   

 

  
                

 

 
      (4.68) 

Before use, the controller parameters   , the proportional gain,   , the reset time, and 

  , the rate time, must be tuned. There are numerous industrially established 

approaches to tuning a PID. The most noteworthy approach may likely be a closed-loop 

method first proposed by Ziegler and Nichols in 1942, also referred to as the continuous 

cycling or ultimate gain tuning method.
[100-101]

 This frequency response tuning approach 

was once considered ideal and has been used extensively to tune loops for over half a 

century. For current standards, it may no longer be considered ideal, but a PID designed 

using this method is a good basis for comparison with the novel finite-time FBC designs 

presented in this work. In order to replicate such a controller using the   matrix design, 

the corresponding   and   gain matrices must be found. To do this, the z-transform of 

Eq. (4.68) is derived using the bilinear transformation to approximate the integral action 

and the backward difference to approximate the derivative action 

               

 

 

   

   
   

   

  
  

     
    

   
  

  
      

   
     

   
    

  
 

      
 

     
      

      
  

     
 

(4.69) 

It should be clear that    and    are defined through the tuned parameters. The time-

domain version of Eq. (4.69) can be obtained by taking the inverse z-transform 
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                                     (4.70) 

In order to properly convert Eq. (4.70) to the desired   and   gain matrices, the 

appropriate time indexing for the input and error vectors must be maintained. Recall that 

practical digital controllers typically require a one-step delay from input to output and, 

since the error is a function of the output, that one-step delay will exist in the error 

vector. With this fact in mind, the FBC gain matrices for the PID controller expressed in 

Eq. (4.70) are defined as follows 

  

 
 
 
 
 
     
     
     
     
      

 
 
 
 

            

 
 
 
 
 
 
 
       
        
         
          
          
       
           

 
 
 
 
 
 

 (4.71) 

Now, it is possible to generate the corresponding   matrix based finite-time FBC in two 

steps. First,   must be calculated using Eq. (4.3) and then,   and   must be 

recalculated using Eq. (4.11) prior to implementation. Since Eq. (4.3) defines a   matrix 

independent of a signal vector    or training matrix   , either can be used in Eq. (4.11) 

without impacting the result. However, some care must be taken when recalculating   

and   because sufficient freedom is necessary to ensure a reliable solution. For 

example, if the total number of unique gains used in the finite-time FBC matrices is 

limited to the same number of gains as the original PID, then the recalculated   and   

will match the original matrices of Eq. (4.71) above for the first iteration, where the 

learning signal is zero. However, future finite-time FBC gain matrices may not be able to 

accurately reproduce the control actions predicted by the   matrix with this limited 

freedom because the learning signal will no longer be zero. So, it is generally 
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recommended that full freedom be given by using all available gains for either time 

varying or time-invariant control matrices. However, as stated earlier, use of time-

invariant FBC will result in a lower-dimensional problem because the resulting gain 

matrices would be Toeplitz. 

4.3: Numerical Simulation 

Numerical simulations were conducted on MATLAB 7.7 to illustrate the effectiveness 

of the optimal static and dynamic   based finite-time feedback and learning controller. 

Three different types of system models, one well-conditioned, one moderately damped 

ill-conditioned, and one extremely lightly damped ill-conditioned spine, were utilized in an 

attempt to cover the full spectrum of practical problems a control designer may 

encounter. The well-conditioned system model effectively considers the scenario in 

which inversion of the plant does not result in unstable control actions and the desired 

trajectory is sufficiently long to allow most of the transient response to decay to zero. 

The step response of the well-conditioned plant is given in Figure 4-1, which shows that 

the transient response decays to zero after approximately 0.4 seconds. The first ill-

conditioned system model, which will simply be referred to as the ill-conditioned model 

from here forth, effectively considers control problems where inversion of the plant 

results in unstable control actions and the reference trajectory is comparable to the 

settling time of the system. The step response of the ill-conditioned plant is given in 

Figure 4-2, which shows that the transient response decays to zero after approximately 

0.8 seconds. The second ill-conditioned system model, which will simply be referred to 

as the spine model from here forth, was specifically chosen to demonstrate that   matrix 

based designs can reliably improve performance even for extremely lightly damped, 

multi-modal plants where conventional controls fail. The step response of the spine 
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model is given in Figure 4-3, which shows that the system has not completely settled 

even after 20 seconds. For all three models, causal and time-invariant finite-time FBC 

designs were utilized solely due to ease of implementation. Simulations are conducted 

using all three systems in the ideal case with no disturbances present, and then in more 

practical situations that involve a repeating disturbance, non-repeating disturbances, and 

both repeating and non-repeating disturbances present simultaneously. The random 

disturbance is simply bandlimited white noise, appropriately scaled such that effective 

control is possible. There are also simulations attempting to use conventional feedback 

designs for comparison purposes. 

4.3.1: Implementation Using Well-Conditioned and Ill-Conditioned Plant 

The first setup to be simulated is the most ideal case where the plant is well-

conditioned and there is no disturbance affecting the control process. For this setup, a 

third order system model with the following transfer function is considered 

               
          

   
  

 

   
  

  
 

           
 
      (4.72) 

For the numerical simulations      ,      ,       , and the continuous time model 

was discretized using a ZOH, as first described in the learning formulation section of 

Chapter 1, using a 100 Hz sample rate. Notice that the continuous time transfer function 

has a pole excess of one. Therefore, no zeros are introduced by the discretization 

process that can potentially be outside the unit circle. 

The ill-conditioned plant considered is also represented using a third order system 

model, but with a transfer function with a pole excess of three as follows 
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           
 
      (4.73) 

As before, for the numerical simulations      ,      ,       , and the continuous 

time model was again discretized using a ZOH at a 100 Hz sample rate. When the pole 

excess is three or more and the sample time is fast enough, a zero is introduced outside 

the unit circle by the discretization process.  This means that the inverse problem that is 

addressed by learning control, of finding the input needed to produce the desired output, 

is working with the inverse of a discrete transfer function which is unstable. Therefore, 

this plant is considered ill-conditioned in this context and inverse control is not possible. 

Furthermore, with an ill-conditioned plant, perfect tracking is not possible even in the 

ideal case where there is no disturbance present. 

The training matrix used for the static   based finite-time FBC and ILC controller is 

defined using Eq. (4.54) with         to cover the expected random disturbance 

spectrum. For the dynamic   matrix based finite-time FBC and ILC controller, Eq. (4.58) 

is used to define the training matrix with    and      estimated using a simple running 

average of the previous 10 iterations and         , similar to the static design. Clearly, 

no specialized estimation techniques are employed here and it can be assumed that 

more intricate methods to generate the training matrix would likely improve performance 

to some extent. 

4.3.2: Implementation Using OKID Specified Spine Model 

The spine model represents an experimental system consisting of a set of parallel 

steel rods held together at the centers by a thin steel wire. It was obtained using the 

Observer/Kalman Filter Identification (OKID) method, where a discrete-time state-space 
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model of the system was constructed using data from experiments.
[38]

 As stated 

previously, the system is extremely lightly damped and once it is perturbed even slightly, 

it takes more than 30 seconds for the vibrations to completely subside. In this chapter, 

the very aggressive control objective of following a 0.5 second trajectory is pursued for 

the ideal case with no disturbances present and then for more practical situations with 

various realistic disturbances present. Though perfect tracking is not possible even in 

the ideal case, as with the ill-conditioned plant, the true advantages of optimal static and 

dynamic   based finite-time feedback and learning controllers are most clearly seen with 

numerical simulations using this spine model. 

As with the well-conditioned and ill-conditioned plants, the spine model training matrix 

used for the static   based finite-time FBC and ILC controller is also defined following 

Eq. (4.54), but with additional frequencies,               , to cover the expected 

random disturbance spectrum. For the dynamic   matrix based finite-time FBC and ILC 

controller, Eq. (4.58) is used to define the training matrix with    and      estimated using 

a simple running average of the previous 10 iterations and                , again similar 

to the static design. As with the well-conditioned and ill-conditioned plants, no 

specialized estimation techniques are employed for the spine model either. Thus, there 

is potential for improved performance if more intricate estimation techniques are used. 

4.3.3: Results 

For the well-conditioned plant modeled by Eq. (4.72) and the ill-conditioned plant 

modeled by Eq. (4.73), numerical simulations were conducted to determine the 

effectiveness of the combination controllers at following a polynomial command signal 

based on 
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 (4.74) 

A plot of the desired trajectory followed by those two plants is given in Figure 4-4 with a 

fundamental frequency of 2 Hz. The equation used to generate the first half of this 

command is Eq. (4.74) and the second half is merely a reflection of the first half. This 

trajectory is unique in that it has continuous position, velocity, and acceleration starting 

from rest and along the segment boundaries described above, which implies that it will 

induce relatively smooth operation.  Also, the fundamental frequency of this command is 

set by specifying   , its period.  For the OKID specified spine model, Figure 4-5 shows 

the desired 0.5 second trajectory. For the simulations involving repeating disturbances, 

Figure 4-6 shows the first repeating disturbance to be used with the well-conditioned and 

ill-conditioned plants and Figure 4-7 shows the second repeating disturbance to be used 

with the spine model. The first spectrum for bandlimited white noise random 

disturbances is presented in Figure 4-8 for the well-conditioned and ill-conditioned 

plants, while Figure 4-9 presents the second spectrum of random disturbances to be 

used with the spine model. Finally, for the most practically applicable disturbance 

environment, Figure 4-10 gives one example of the combined disturbance, presented in 

Eq. (1.4), which must be handled by the well-conditioned and ill-conditioned plants and 

Figure 4-11 gives the second example of the combined disturbance which must be 

handled by the spine model.  

The first series of simulations conducted was for the well-conditioned plant. The 

results of these simulations for the ideal case with no disturbances are shown in Figures 

4-12a and 4-13a for the static and dynamic   matrix based finite-time FBC and ILC 
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controllers, respectively. Figure 4-14a presents the static   matrix based conventional PI 

FBC and ILC controller, also for the ideal case. Here the PI controller can be specified 

using Eq. (4.71) with        ,        , and      to seed the   matrix using Eq. 

(4.3), before recalculating   and   using Eq. (4.11) with full freedom. Figures 4-12b, 

4-13b, and 4-14b show how the controllers performed in the presence of a repeating 

disturbance, in the same order as the no disturbance case. The performance of these 

same controllers in the presence of random disturbances is depicted in Figures 4-12c, 

4-13c, and 4-14c, again in the same order. Similarly, Figures 4-12d, 4-13d, and 4-14d 

provide the simulations in the presence of combined disturbances. Finally, the 

corresponding previous cycle error finite-time sensitivity transfer matrix is presented in 

Figures 4-12e, 4-13e, and 4-14e, followed by the disturbance difference finite-time 

sensitivity transfer matrix in Figures 4-12f, 4-13f, and 4-14f.  

The second series of simulations were for the ill-conditioned plant. As before, the 

performances of the static and dynamic   matrix based finite-time FBC and ILC 

controllers and the static   matrix based conventional PID FBC and ILC controller are 

presented in Figures 4-15, 4-16, and 4-17, respectively. Here, the PID controller is tuned 

using the Ziegler and Nichols ultimate gain method and the gain matrices can be 

specified using Eq. (4.71) with       ,         , and        to initially seed the   

matrix. This is again done using Eq. (4.3), before recalculating   and   using Eq. (4.11) 

to obtain full freedom. The four distinct disturbance environments used for the well-

conditioned plant are again simulated in the same order and the previous cycle error and 

disturbance difference finite-time sensitivity transfer matrices are similarly given for the 

combined disturbance environment.  
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The final series of simulations involved the spine model and the results of those 

simulations, for the same types of controllers and disturbance environments, are given in 

Figures 4-18, 4-19, and 4-20, as before. The PID controller was again tuned using the 

Ziegler and Nichols ultimate gain method, resulting in        ,         , and 

        to initialize the   matrix. This PID controller is unable to effectively reject 

random disturbances, as illustrated by Figure 4-20f, which indicates that there is no 

attenuation of disturbances at any frequency. Even if the gain values are significantly 

increased, performance is not notably improved.  

From inspection of Figures 4-13, 4-16, and 4-19, it can be seen that the 

approximation of Eq. (4.51) using Eq. (4.52) is valid if the magnitudes of the iterative 

updates present in Eq. (4.51) are effectively minimized or sufficient iterations are allowed 

to pass, such that the dynamic    matrix settles to an optimal in-repetition and in-run 

state. A general comparison of all these numerical simulations confirms that the most 

optimal design, which guarantees optimal performance in all situations, is the dynamic   

matrix based finite-time FBC and ILC controller. It can be argued that the static   matrix 

based finite-time FBC and ILC controller provides optimal performance in the majority of 

simulations. In fact, it is reasonable to propose that the static   matrix based finite-time 

FBC and ILC design is the best performing controller for the well-conditioned plant when 

comparing Figures 4-12a and 4-12b to Figures 4-13a, 4-13b and 4-14a, 4-14b at first 

glance. However, it is important to remember that the ultimate indicators of performance 

are the final error, as the repetition number   approaches infinity, and the finite-time 

sensitivity transfer matrices. If the performance of the controllers are compared based on 

those ultimate indicators, it can be seen that the final error, for all three controllers, in the 

no disturbance and repeating disturbance environment is zero. For the random 
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disturbance and combination disturbance environment, the static and dynamic   matrix 

based finite-time FBC and ILC controllers give equivalent performance and obtain the 

same final error, which is about an order of magnitude better when compared to the PI 

FBC implementation. This discrepancy in performance can be explained by comparing 

the finite-time sensitivity transfer matrices shown in Figures 4-12e, 4-13e, 4-14e with 

those in 4-12f, 4-13f, 4-14f, and looking at the attenuation over the random disturbance 

spectrum. Keep in mind that the waterbed effect in feedback control will limit the 

frequencies over which the controller is able to effectively reject disturbances. So, the 

goal is to have the feedback controller attenuate as much as possible over the 

frequencies of interest. Since the static and dynamic   matrix based finite-time FBC and 

ILC controllers attenuate disturbances over the random disturbance spectrum to a 

greater level than the PI FBC, they perform better in such a disturbance environment. 

However, the waterbed effect results in much greater amplification over the other 

frequencies, so care must be taken to ensure that disturbances in those frequencies do 

not enter the control loop. For the ill-conditioned plant and spine model, the dynamic   

matrix based finite-time FBC and ILC controller is notably superior when compared to 

the other controllers and is truly optimal both in-repetition and in-run. For some 

disturbance environments, the static   matrix based finite-time FBC and ILC controller is 

clearly not more optimal than even the basic ILC, which can be realized by setting the   

matrix to zero. Figures 4-15a, 4-15b, 4-15d, and 4-18a illustrate this claim.  However, the 

static   matrix based combination controller is still better than the PID FBC 

implementation. 
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4.4: Summary of Findings  

Optimal cost function based combination controllers, incorporating both finite-time 

FBC and ILC, have been developed for learning controller applications in linear systems. 

These controllers are dependent on the   matrix to implement the finite-time feedback 

controller. Two separate designs, based on a static or dynamic   matrix, have been 

developed. The   matrix is found simultaneously with the learning controller by 

specifying a few gains in the most basic case. Specific design considerations are 

evaluated to take full advantage of the inherent flexibility of the   matrix based design 

for learning control applications. These considerations cover the fundamental aspects of 

this design approach including appropriate generation of the primary design agent, the 

training matrix, as well as the use of finite-time sensitivity transfer matrices as an 

evaluation tool. It has been demonstrated that finite-time sensitivity transfer matrices can 

be used to reliably bridge the gap between finite-time control design approaches and 

more conventional, steady-state, control design approaches. Numerical simulations 

confirm that these combination controllers significantly improve both tracking 

performance and learning behavior when compared to conventional feedback control 

only methods. It has been further demonstrated that the most optimal design, which 

guarantees optimal performance in all situations, is the dynamic   matrix based finite-

time FBC and ILC controller. 
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General Setup for Numerical Simulations 
 

  
 

Figure 4-1. Well-Conditioned Plant Step Response 
 

Figure 4-2. Ill-Conditioned Plant Step Response 

  

  
 

Figure 4-3. Spine Model Step Response 
  

  
 

Figure 4-4. Desired Trajectory One 
 

Figure 4-5. Desired Trajectory Two 
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Figure 4-6. Repeating Disturbance One 
 

Figure 4-7. Repeating Disturbance Two 

  

  
 

Figure 4-8. Random Disturbance Spectrum One 
 

Figure 4-9. Random Disturbance Spectrum Two 

  

  
 

Figure 4-10. Combined Disturbance Example One 
 

Figure 4-11. Combined Disturbance Example Two 
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Well-Conditioned Plant Model 
 

  
 

a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-12. Static Q Based Finite-Time FBC and ILC for Well-Conditioned Model 



   

114 

 

 

  
 

a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-13. Dynamic Q Based Finite-Time FBC and ILC for Well-Conditioned Model 
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a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-14. Static Q Based Conventional PI FBC and ILC for Well-Conditioned Model 
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Ill-Conditioned Plant Model 
 

  
 

a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-15. Static Q Based Finite-Time FBC and ILC for Ill-Conditioned Model 
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a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-16. Dynamic Q Based Finite-Time FBC and ILC for Ill-Conditioned Model 
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a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-17. Static Q Based Conventional PID FBC and ILC for Ill-Conditioned Model 
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Spine Model 
 

  
 

a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-18. Static Q Based Finite-Time FBC and ILC for Spine Model 
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a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-19. Dynamic Q Based Finite-Time FBC and ILC for Spine Model 
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a. Ideal Case with No Disturbance 
 

b. Repeating Disturbance 

  

  
 

c. Random Disturbance 
 

d. Combined Disturbance 

  

  
 

e. Previous Cycle Error Sensitivity TM 
 

f. Disturbance Difference Sensitivity TM 

 
Figure 4-20. Static Q Based Conventional PID FBC and ILC for Spine Model 
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CHAPTER FIVE: Configurations for Feedback and Iterative Learning 

Combination Controllers 

 
It should be clear from Chapter 4 that for practical applications in which ILC can be 

considered, use of complementary FBC will be advantageous. Simultaneously designed 

combination controllers have been shown to provide additional tracking and disturbance 

rejection capabilities over ILC alone. Optimal combinations controllers for learning 

control applications have been explored in prior studies, however, an exhaustive 

investigation of various configuration options is lacking in the literature. As stated in 

Chapter 1, detailed evaluations of possible block diagrams for RC and the effects of 

placing the repetitive controller inside or outside the feedback loop are available.
[70-72]

 A 

similar comprehensive assessment is performed in this chapter for ILC by taking a 

detailed look at different configuration options for feedback and learning control 

combinations. Some novel designs for the controller implementation are also presented. 

This chapter is organized in the following manner. In the first section, the learning 

control problem is formulated to support time-domain analysis for the FBC portion, and 

repetition-domain analysis for the ILC portion, of the combination controller. Assessment 

of the various configurations begins in the second section with the most basic control 

scheme, the open-loop ILC configuration. The first sub-section of section two presents 

the corresponding optimal controllers for this basic configuration, followed by a 

derivation of the expected error propagation for each of the associated optimal 

controllers in the second sub-section. Section three continues the assessment by 

considering the first of two closed-loop FBC and ILC configurations. Closed-loop FBC 
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and ILC configuration one considers controller types where the learning signal 

supplements the FBC signal to improve the overall input to the plant. The first sub-

section of section three presents the optimal controllers for closed-loop configuration 

one. Next, the expected error propagation is similarly established for the corresponding 

optimal controllers in the second sub-section. Section four furthers the assessment by 

investigating closed-loop FBC and ILC configuration two, which considers controller 

types where the learning signal supplements the desired signal or the command, 

effectively modifying the command to the existing feedback control system. Again, the 

two sub-sections of this section establish the optimal controllers and expected error 

performance specific to this type of control configuration. The assessment is concluded 

in the remaining sections by performing an analytical comparison of the configurations 

starting with an ideal setup using an inverse feedback controller, then a more practical 

setup using a classic PI controller, and finally conducting numerical simulations to 

demonstrate the findings. 

5.1: Basic Open-Loop ILC Configuration 

In order to rigorously assess the extent to which the incorporation of feedback control 

can improve performance in learning control applications, it is necessary to first establish 

how the basic open-loop ILC configuration performs. A block diagram of this elementary 

configuration is given in Figure 5-1 and it should be clear that there is no distinction 

between the plant input    and the learning control signal    in this setup.  

5.1.1: Optimal Open-Loop Learning Controller Design 

The input to output relationship is described entirely by Eq. (1.3) in the time-domain 

for any single iteration and by Eq. (1.8) in the repetition-domain for the duration of the 
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application. With this setup, the designer has the option to minimize one of two cost 

functions to optimize performance 

       
 
         

 
     (5.1) 

       
 
          

 
      (5.2) 

Here, from a simple comparison of Eq. (5.1) and Eq. (5.2), it should be clear that the 

only difference between the two cost functions is that    aims to minimize the current 

cycle control actions and    aims to minimize the change in the control actions in 

repetition. Relative to each other, only    can truly be minimized to zero in an optimal 

fashion, since minimizing    to zero requires that the plant input    to be heavily 

penalized or removed entirely, which is undesirable. For both cost functions, the aim is 

to determine the optimal updates to the control actions. To do this, the cost functions 

must first be modified into the correct format which explicitly shows the implicit 

relationships between the control variable to be optimized. That control variable will be 

   , or updates to the learning signal, for the optimizations conducted in this work. For 

the basic open-loop ILC configuration, the fundamental relationship between the control 

variable     and the other critical parameters of interest,     and    , in    and    are 

    
    

    (5.3) 

    
    

     (5.4) 

The critical relation given in Eq. (5.3) can be verified using the simple fact that      , 

so         for this configuration. The other critical relation, given in Eq. (5.4), can be 

concluded using Eqs. (5.3) and (1.7), presented in the problem formulation section. Both 

of these fundamental results will be necessary to simplify and complete the optimization 
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process. It is useful to explicitly show the critical parameters of interest, so the difference 

operator is used to replace the current cycle error    according to the relationship 

            and the current cycle input    according to the relationship        

     as follows 

             
 
                       

 
             (5.5) 

             
 
                  

 
      (5.6) 

Now, the cost functions given in Eqs. (5.5) and (5.6) are ready to be optimized by taking 

the partial derivative with respect to    , through appropriate use of both Eqs. (5.3) and 

(5.4), and setting to zero 

   
    

                                       (5.7) 

   
    

                               (5.8) 

It is worthwhile to note that     is not present in Eqs. (5.7) and (5.8), since the 

fundamental relationship given in Eq. (5.4) was used. This is advantageous since     is 

generally unknown and difficult, if not impossible, to accurately model and predict. If a 

reliable estimate of     is available, it can be utilized by redoing the optimization, starting 

from Eqs. (5.5) and (5.6), and using Eq. (1.7) to explicitly introduce     into the 

derivation. If such a derivation was done, the resultant partial derivatives would be 

   
    

                                              (5.9) 

   
    

                                      (5.10) 

It is important to note in the majority of practical applications,     is typically neglected in 

such update equations without consequence. In fact these results, allowing for the use of 
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a reliable estimate of    , are included only for completeness. The more generally 

applicable minimizations in the vast majority of implementations are not a function of 

unknown disturbances. Therefore, only the results obtained in Eqs. (5.7) and (5.8) are 

considered further. These two minimizations are identical except for the last term in Eq. 

(5.7), which is a direct result of using a cost function that penalizes the current cycle 

control actions, as opposed to the iterative updates to the control actions. Here the basic 

open-loop ILC configuration will produce optimal control with respect to    if 

              
                    

                  
                     

         

(5.11) 

The term           
       will reappear in numerous subsequent derivations, so    

will be used to represent it purely for mathematical convenience 

              
                     

         

                  
         

(5.12) 

This is the recommended optimal rule, with respect to   , for updating the learning signal. 

With respect to   , the basic open-loop ILC configuration will produce optimal control if 

              
           

        

(5.13) 

Both of these optimal control designs only apply previous cycle feedback, so current 

cycle control is not possible. This means that optimal performance can only be expected 

in repetition and not in run, or individual iterations, which is clearly limiting. However, 

these designs alone are not sufficient to adequately predict the overall performance 

limitations when implemented, since they only describe how the control actions should 

be updated and not the resulting error. 
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5.1.2: Error Propagation of Optimal Open-Loop Learning Controller Designs 

In order to thoroughly assess how the incorporation of current cycle feedback into the 

control scheme improves performance, it is necessary to determine the error 

performance of the basic open-loop ILC configuration using an optimized controller. To 

do this for the optimal controller resulting from   , start with Eq. (1.7) and plug in for the 

optimal updates to the plant input using Eq. (5.12), and recalling         in this 

configuration, as shown 

                        
               (5.14) 

After expansion of the difference operator on error and some expansion of terms, it is 

clear to see that Eq. (5.14) can be rewritten as 

                              
              (5.15) 

Some additional arithmetic to collect like terms will produce the desired result 

                          
              (5.16) 

It should be clear, from Eq. (5.16), that the optimal controller produced by minimizing    

can never result in error free control. Even if inverse control was attempted, by setting 

      , zero error is not attainable because      and     are non-zero in general. 

Now, the same derivation is done for the optimal controller resulting from   , starting 

again with Eq. (1.7) and plugging in the optimal update rule Eq. (5.13), once more 

recalling        , as follows 

                   (5.17) 

Following some simple standard arithmetic to collect like terms and rearrange the 

equation, it is apparent that Eq. (5.17) simplifies to 
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                   (5.18) 

The error performance predicted by Eq. (5.18) shows that the basic open-loop learning 

controller optimized with respect to    also does not generally have the potential to 

produce perfect, error free control. Even using inverse control, which is generally not 

recommended,     imposes a strict limit on attainable performance. If the disturbance 

environment is such that only repeating disturbances are present, or     , then 

          and zero error is possible if, and only if, 

                           (5.19) 

Here, Eq. (5.19) states that all possible tracking errors will converge if all of the 

eigenvalues of the corresponding propagation matrix are less than one in magnitude. 

Similarly, the transient behavior of the controller, in the same disturbance environment, 

is determined by the singular values of the propagation matrix. In order to ensure well 

behaved transients 

                         (5.20) 

It is important to reiterate that Eqs. (5.19) and (5.20) describe the overall stability and 

transient behavior for disturbance environments consisting of a repeating disturbance 

only. The more general disturbance environment represented by Eq. (1.4) is the one that 

will be generally used in this chapter. In this disturbance environment, Eqs. (5.16) and 

(5.18) show that the true limitations of the basic open-loop ILC configuration, regardless 

of optimization, stem from its inability to compensate for non-repeating, stochastic 

disturbances. It should be clear that when      , it can be considered a non-zero 

forcing function for current cycle error. When such a driver is present, the incorporation 

of feedback control can considerably improve the overall performance. 
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5.2: Closed-Loop FBC and ILC Configuration One 

There are essentially two fundamentally distinct ways in which a feedback and 

learning combination controller can be configured, one with the learning signal 

incorporated inside the feedback loop and one with the learning signal incorporated 

outside the feedback loop. In this section, the configuration with the learning signal 

incorporated inside the loop will be evaluated. Though there are different ways to input 

the learning signal in this manner, Figure 5-2 shows the recommended configuration for 

evaluation purposes. This is because the other ways can usually be considered special 

cases of this configuration. Therefore, the results of this investigation can be 

appropriately modified for use in such cases as desired. 

5.2.1: Optimal Closed-Loop Combination Controller Design for Configuration One 

As with the basic open-loop configuration, cost functions will once again be utilized to 

optimize performance of the control implementation. However, before the cost functions 

are introduced, it is necessary to properly formulate the input signal to be optimized. 

Unlike in Figure 5-1, the plant input    and learning control signal    in Figure 5-2 are 

clearly not the same. For closed-loop FBC and ILC configuration one, hereafter referred 

to simply as closed-loop configuration one, the plant input is 

            (5.21) 

Here,      is the output of the feedback controller, which is defined with respect to the 

configuration as 

                 (5.22) 

Using Eq. (5.21) to solve for      and then plugging that result into Eq. (5.22) will give 

                       
(5.23) 
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Some additional arithmetic, to expand Eq. (5.23), collect like terms, and simplify the 

resultant, produces the desired final expression 

                 

        

(5.24) 

Note that matrix   is introduced to represent         , the overall time-domain FBC 

gain matrix, for the same reason    was introduced in Eq. (5.12), ease of use in 

subsequent derivations. It is also worth noting that there is an underlying assumption in 

Eq. (5.24) that         exists, which is generally valid since   is part of the FBC and 

can typically be designed to ensure the assumption is valid. It can be seen from Eq. 

(5.24) that with this type of configuration, the ILC signal can be thought to supplement 

the FBC signal to improve the overall input to the plant. Before introducing the various 

cost functions which are considered to optimize this control implementation, the 

fundamental relationships between the control variable     and the other critical 

parameters of interest,     and    , must be established for close-loop configuration one. 

These relationships will be analogous to those specified in Eqs. (5.3) and (5.4) for the 

basic open-loop ILC configuration. In order to derive these essential relations, start with 

Eq. (5.24) and apply the difference operator    as shown 

             (5.25) 

Now, using Eq. (1.7), it is possible to rewrite Eq. (5.25) by substituting in for the unknown 

iterative changes to the error, which are to be determined 

                     (5.26) 

After some standard arithmetic to collect like terms and simplify the equation, it can be 

seen that Eq. (5.26) can be rewritten as 
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(5.27) 

Here, matrix   is introduced for two reasons, mathematical convenience and also 

because it turns out to be a key parameter in the overall investigation of the control 

configurations considered. The reason   is key to this investigation is that it can be 

thought of as the single parameter used to describe the overall repetition-domain 

feedback control (RFBC) actions. It should be highlighted that   is assumed to exist, and 

this is generally valid for the same reasons as with Eq. (5.24), since   represents the 

FBC and can similarly be designed to ensure the assumption is valid. This equation 

gives the relation between     and    , which is necessary to establish the first 

fundamental relationship for optimization of the control actions produced by closed-loop 

configuration one. Before deriving the second essential relation, a useful proof is 

presented which will allow Eq. (5.27) to be rewritten in another equivalent form. Let 

          , where   is selected to ensure          and          both exist, then 

                     

                 

             

(5.28) 

Now, to derive the second essential relation, start with Eqs. (1.6) and (1.8), or Eq. (1.7) 

directly, along with Eq. (5.27) to show 

                       (5.29) 

Again, following some standard arithmetic to expand the product, collecting like terms, 

and then plug in for the second instance of  , it can be seen that Eq. (5.29) can be 

rewritten as 
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                             (5.30) 

In order to simplify Eq. (5.30) further, another proof is necessary. This proof will make 

use of the prior proof, given in Eq. (5.28) with substitutions     and    , to 

demonstrate that the last term of Eq. (5.30) can be expressed as 

                        

                        

                          

             

          

(5.31) 

Through the use of Eq. (5.31), it should be clear that Eq. (5.30) can be further simplified 

into its final desired form 

                       (5.32) 

This equation gives the relation between     and    , which is necessary to establish the 

second fundamental relationship for optimization of the control actions produced by 

closed-loop configuration one. The two fundamental relationships, analogous to Eqs. 

(5.3) and (5.4), can now be found using Eqs. (5.27) and (5.32) as follows 

    
    

    (5.33) 

    
    

          (5.34) 

The matrix    in Eq. (5.34) can be considered the effective repetition-domain plant for 

this configuration, which is closely related to the general plant as given in Eq. (5.4) from 

the previous section. From a comparison of Eqs. (5.33) and (5.34) to Eqs. (5.3) and 

(5.4), it is apparent that the only difference between these two sets of fundamental 



   

133 

 

relationships is  , which explicitly reflects the influence of the feedback controller in the 

repetition-domain. 

With the formulation of the input signal and fundamental relationships, it is now 

appropriate to introduce the various cost functions which can be used for optimization. 

The first two cost functions which can be considered are the same ones used for the 

basic configuration,    and     as presented in Eq. (5.1) and Eq. (5.2) respectively. The 

final two cost functions are 

       
 
         

 
     (5.35) 

       
 
          

 
      (5.36) 

By comparing    to    and    to   , it can be seen that the only difference between these 

cost functions is use of the plant input or learning signal as the control variable. 

However, when trying to find the optimal controller, the variable used to minimize all of 

these cost functions should be    , the update to the learning signal. So, as with the 

basic open-loop configuration,    will also be the first cost function optimized here. To do 

this, start with Eqs. (5.5) and take the partial derivative with respect to    , through 

appropriate use of Eqs. (5.33) and (5.34), then set to zero 

   
    

     
            

                              (5.37) 

Through use of the definition given in Eq. (5.34) for effective plant   , it is possible to 

simplify Eq. (5.37) into a more suitable form for comparison with the other designs 

                                                   

                                                

                                         

(5.38) 
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Now to determine the optimal update to the learning signal with respect to    for closed-

loop configuration one, some additional arithmetic is required to eliminate common 

terms, collect like terms, and solve 

                                     

                               

                 
                    

(5.39) 

By using the same representation given in Eqs. (5.12) and (5.13), the final result of Eq. 

(5.39) can be rewritten in an analogous form 

                 
                        

         

                        
         

(5.40) 

This is the recommended optimal rule, with respect to   , for updating the learning signal. 

The optimal updates to the learning signal for closed-loop configuration one, with respect 

to   , can be found by taking the partial derivative of Eq. (5.6) with respect to     as 

shown 

   
    

     
            

                    (5.41) 

Once again, these partial derivatives make proper use of Eqs. (5.33) and (5.34) as 

required. From a comparison of Eqs. (5.37) and (5.41), it should be clear that the only 

difference between the final results will be the effect of     , which is present in the 

former equation but absent in the latter. Given this, the final form of Eq. (5.41) can be 

written as 

                 
           

           

(5.42) 
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Both optimal control designs given in Eqs. (5.40) and (5.42) made use of cost functions 

where the control variable was related to the plant input directly. Now, the other two cost 

functions, where the control variable is directly related to the learning signal, are 

considered. As with    and   , it is useful to rewrite    and    to explicitly show the critical 

parameters of interest. So the difference operator is again used, as in Eqs. (5.5) and 

(5.6), to replace the current cycle error    and the current cycle learning signal    in Eqs. 

(5.35) and (5.36) as follows 

             
 
                       

 
             (5.43) 

             
 
                  

 
      (5.44) 

Now, the cost functions given in Eqs. (5.43) and (5.44) are ready to be optimized by 

taking the partial derivative with respect to    , through appropriate use of Eq. (5.34), 

and setting to zero 

   
    

     
            

                         (5.45) 

   
    

     
            

                 (5.46) 

Similar to    and   , the minimizations of    and    are also identical except for the last 

term in Eq. (5.45), which is a direct result of penalizing the current cycle learning signal, 

as opposed to the iterative updates to the learning signal. Here, closed-loop 

configuration one will produce optimal control with respect to    if 

       
         

  
  

           
         

  
       (5.47) 

With respect to   , Eq. (5.47) is the optimal update rule for the learning signal. Now, for 

  , the closed-loop configuration one will produce optimal control if the solution to Eq. 

(5.46) is used 
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        (5.48) 

All of the optimal control designs for this configuration, given in Eqs. (5.40), (5.42), 

(5.47), and (5.48), apply both current and previous cycle feedback. Before trying to 

predict the overall performance, some notable connections between the first set of cost 

functions,    and   , and the second set,    and   , should be stated. By comparing Eqs. 

(5.40) and (5.47), it should be apparent that the main difference between these two 

designs is Eq. (5.40) operates on the original plant   and Eq. (5.47) operates on the 

effective plant    to generate learning signal updates. This can also be seen when 

comparing Eqs. (5.42) and (5.48), where the results would be identical if the   term in 

Eq. (5.42) was neglected and the original plant and effect plant were equivalent. This is 

useful to know when trying to decide which cost function to use and predict overall 

performance. However, these designs alone do not provide the necessary insight into 

the overall performance limitations to make educated design decisions, since they do not 

formulate the resulting error propagation. 

5.2.2: Error Propagation of Optimal Closed-Loop Configuration One Controller 
Designs 

To thoroughly assess how the incorporation of current cycle feedback into the control 

scheme using closed-loop configuration one, it is necessary to determine the error 

performance using an optimized controller. To do this for the optimal controller resulting 

from   , start with Eq. (5.32) and plug in for the optimal updates to the learning signal 

using Eq. (5.40) as shown 

                               
                       (5.49) 

After expansion of the difference operator on error and some expansion of terms, it is 

clear to see that Eq. (5.49) can be rewritten as 
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                      (5.50) 

Some additional arithmetic to collect like terms will produce the desired result 

                          
                      (5.51) 

Based on Eq. (5.51), the optimal controller produced by minimizing    can never result in 

error free control. Even if inverse control using previous cycle feedback, by setting 

      ,  and high gain current cycle feedback, by setting             , was 

attempted, zero error is not attainable because      is non-zero in general. Now, the 

same derivation is done for the optimal controller resulting from   , starting again with 

Eq. (5.32) and plugging in Eq. (5.42) as follows 

                               (5.52) 

Following some simple standard arithmetic to collect like terms and rearrange the 

equation, it is apparent that Eq. (5.52) simplifies to 

                           (5.53) 

The performance predicted by Eq. (5.53) shows that closed-loop configuration one 

optimized with respect to    does theoretically have the potential to produce perfect, 

error free control. However, in order to achieve this potential, high gain control using 

current cycle feedback is necessary, which is not recommended in general. Next, the 

same steps are followed for the optimal controller resulting from   , similarly starting with 

Eq. (5.32) and plugging in Eq. (5.47) in this derivation 

           
         

  
  

           
         

  
       

             

(5.54) 

Again some simple standard arithmetic must be done to collect like terms and rearrange 

the equation. Following this, Eq. (5.54) can be rewritten in its final form 
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(5.55) 

Similar to Eq. (5.51), here Eq. (5.55) shows the optimal controller produced by 

minimizing    can never result in error free control. This is true even if     
      

   
    

        and              because      is non-zero in general. The final 

error performance analyzed for close-loop configuration one is for the optimal controller 

resulting from minimizing    and this is done starting, once again, with Eq. (5.32) and 

then plugging in Eq. (5.48) as shown 

           
         

  
  

                     (5.56) 

Following the same simple standard arithmetic to collect like terms and rearrange the 

equation, it can be shown that Eq. (5.56) simplifies to 

           
         

  
  

                     (5.57) 

As with Eq. (5.53), it should be apparent from Eq. (5.57) that the error performance of 

the optimal controller with respect to    has the potential to be perfect. However, to 

realize this possibility, high gain current cycle feedback with              is 

necessary, but is typically not recommended for practice. Before moving on to consider 

another configuration, it is worthwhile to provide an example of how the preceding 

results using closed-loop configuration one can be modified and applied to a variant 

setup incorporating the learning signal inside the feedback loop. Consider a 

configuration where the pickoff point for the input feedback matrix  , as shown in Figure 

5-2, was moved such that the plant input    was feedback instead of     , as Eq. (5.22) 

requires. This setup can easily be evaluated using the same results as obtained above 
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and simply replacing    with            as appropriate. Though other such variant 

setups to input the learning signal inside the feedback loop exist, Figure 5-2 shows the 

recommended configuration for evaluation purposes, since the other setups can usually 

just be considered special cases of this configuration.  

5.3: Closed-loop FBC and ILC Configuration Two 

The second fundamentally distinct way in which a feedback and learning combination 

controller can be configured is with the learning signal incorporated outside the feedback 

loop. In this section, a general configuration of this type will be evaluated. Though there 

are different ways to input the learning signal in this manner, Figure 5-3 shows the 

configuration evaluated in this investigation. Similar to closed-loop configuration one, the 

results established in this section can also be appropriately modified and applied to a 

variant setup incorporating the learning signal outside the feedback loop, if desired. 

5.3.1: Optimal Closed-Loop Combination Controller Design for Configuration Two 

As with the basic open-loop configuration and closed-loop configuration one, cost 

functions will similarly be utilized here to optimize performance of the control 

implementation. However, before the cost functions are introduced, the input signal to be 

optimized for this configuration must be properly formulated. Similar to closed-loop 

configuration one in Figure 5-2, the plant input    and learning control signal    in Figure 

5-3 are also not the same. For closed-loop FBC and ILC configuration two, which will be 

referred to simply as closed-loop configuration two henceforth, the plant input is 

          
   (5.58) 

Here,   
  is the input to the feedback controller, which can be defined with respect to the 

configuration as 
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(5.59) 

Using Eq. (5.59) it is possible to define the plant input given in Eq. (5.58) in terms of the 

current cycle tracking error   , which is desired since that is what the controller aims to 

minimize 

                 (5.60) 

Following some standard arithmetic, to expand Eq. (5.60), collect like terms, and 

simplify, the final expression is obtained 

                         

         

(5.61) 

Note the same matrix   introduced in Eq. (5.24) is similarly used in place of          

purely for mathematical convenience in subsequent derivations. It is also reiterated that 

the underlying assumption of the existence of         is repeated here, which is again 

valid since   is part of the FBC and can typically be designed to validate the assumption. 

It should be apparent from inspection of Eqs. (5.59) and (5.61) that with this type of 

configuration, the ILC signal can be thought to supplement the reference signal   , 

effectively modifying the command to the existing feedback control system. As with 

closed-loop configuration one, before considering the same cost functions for controller 

optimization, analogous fundamental relationships relating     to     and     must be 

established for close-loop configuration two. These relationships will parallel those 

specified in Eqs. (5.33) and (5.34) for closed-loop configuration one. In order to derive 

these essential relations, start with Eq. (5.61) and apply the difference operator    as 

shown 
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              (5.62) 

As with closed-loop configuration one, using Eq. (1.7), it is possible to rewrite Eq. (5.62) 

by substituting in for the unknown iterative changes to the error 

                      (5.63) 

Again, after some simple arithmetic to collect like terms and rearrange the equation, it 

can be seen that Eq. (5.63) can be written as 

                              

             

(5.64) 

The same matrix   first used in Eq. (5.27) is similarly utilized here to represent    

      for the same reasons it was initially introduced. Also,   is again assumed to exist 

here, which is acceptable since   equally represents the FBC in this derivation and can 

be designed to satisfy the assumption. The equation given in Eq. (5.64) defines the 

relation between     and    , which is necessary to establish the first fundamental 

relationship for optimization of the control actions produced by closed-loop configuration 

two. Now, to derive the second essential relation, start with Eqs. (1.6) and (1.8), or Eq. 

(1.7) directly, along with Eq. (5.64) to show 

                        (5.65) 

Through some arithmetic manipulation to expand the product, collecting like terms, and 

then plug in for the second instance of  , as done in Eq. (5.30), it is clear that Eq. (5.65) 

can be rewritten as 

                              (5.66) 

Through use of the proof presented in Eq. (5.31), it can be shown that Eq. (5.66) also 

simplifies, just like Eq. (5.30), into the following concise form 
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                        (5.67) 

This equation gives the relation between     and    , analogous to Eq. (5.32), which is 

necessary to establish the second fundamental relationship for optimization of the 

control actions produced by closed-loop configuration two. The two fundamental 

relationships, parallel to Eqs. (5.33) and (5.34), can now be found using Eqs. (5.64) and 

(5.67) as shown 

    
    

        (5.68) 

    
    

            (5.69) 

The matrix    in Eqs. (5.68) and (5.69) can be considered the effective RFBC 

implementation for this configuration, closely related to the analogous feedback 

controller given in Eq. (5.33) from the previous section. A quick comparison of Eqs. 

(5.33) and (5.34) to Eqs. (5.68) and (5.69) shows that the only difference between these 

two sets of fundamental relationships is that   is explicitly present in the latter set. This 

directly reflects the effect of using a configuration that incorporates the learning signal 

outside the feedback loop, because now the feedback controller   has direct influence 

on reception dynamics. 

With the formulation of the fundamental relationships for the control variable and the 

general input signal, the same cost functions considered for closed-loop configuration 

one can again be used for optimization here. When trying to find the optimal controller, 

as done previously, the variable used to minimize the cost functions is    , the update to 

the learning signal. Once again    will be the first cost function optimized here. To do 

this, start with Eqs. (5.5) and take the partial derivative with respect to    , in the same 
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way as for closed-loop configuration one but this time through appropriate use of Eqs. 

(5.68) and (5.69), as shown 

   
    

        
                  

           
            

        (5.70) 

Through use of the definition given in Eq. (5.68) for effective feedback   , it is possible 

to simplify Eq. (5.70) to facilitate comparison with the other designs 

      
                  

           
            

          

   
                                          

                                           

(5.71) 

In order determine the optimal update to the learning signal with respect to    for closed-

loop configuration two, some additional restrictions must first be placed on the structure 

of  , which represents          or the overall time-domain FBC gain matrix. Recall 

that   is already restricted by  , where   is used to represent          or the overall 

RFBC gain matrix, because it was originally assumed that   was designed to ensure   

existed. From inspection of Eq. (5.71), it should be apparent that     must also exist in 

order to simplify the equation further. This necessitates the existence of    , which 

restricts the structure of  , and consequently  , to be of lower triangular form and also 

requires both matrices to be non-singular. If the desired error feedback is time-invariant, 

this means that   must be a lower triangular Toeplitz matrix. Similarly, if the input 

feedback is also time-invariant, this implies   can be a lower triangular or lower sub-

triangular Toeplitz matrix. In both cases,   is restricted to be a lower triangular Toeplitz 

matrix. Such a restriction results in an overall time-domain FBC implementation that is 

non-causal by one time-step. While strict causality must be followed for FBC, since it 

utilizes real-time current cycle feedback, earlier work established design approaches to 
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transform FBC that is non-causal by one-time step into strictly causal, implementable 

feedback and learning combination controllers. It can therefore be assumed that 

restricting  , and by association  , to be of lower triangular structure is acceptable. It is 

further assumed that these gain matrices were both designed to be non-singular when 

used in closed-loop configuration two. Now with some additional arithmetic to eliminate 

common terms, collect like terms, and solve, the following is obtained 

                                    

                                

                      
                    

(5.72) 

By using the same representation given in Eqs. (5.12) and (5.40), the final result of Eq. 

(5.72) can be rewritten in a similar form to facilitate comparison 

                      
                             

         

                                  
         

   
           

            
         

(5.73) 

Notice       was substituted back into the final expression. This is the recommended 

optimal rule, with respect to   , for updating the learning signal. The optimal updates to 

the learning signal for closed-loop configuration two, with respect to   , can be found by 

taking the partial derivative of Eq. (5.6) with respect to    , again through appropriate 

use of Eqs. (5.68) and (5.69), as follows 

   
    

        
                  

           
           (5.74) 

The final version of Eq. (5.74) should resemble Eqs. (5.13) and (5.42) closely, in that all 

three minimizations should depend only on      and    should be explicitly present. So, 

Eq. (5.74) can be modified accordingly 
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(5.75) 

Next, the optimal controller for closed-loop configuration two with respect to    is 

developed. This is done using the same steps followed for    and   , but starting with Eq. 

(5.43) to take the partial derivative with respect to     and setting to zero 

   
    

        
                  

                         (5.76) 

It should be noted that the partial derivative to obtain Eq. (5.76) made use of Eq. (5.69) 

as appropriate. For closed-loop configuration two, optimal control with respect to    will 

result if 

          
            

       
              

            
         (5.77) 

With respect to   , Eq. (5.77) is the optimal update rule for the learning signal. From 

inspection of this update rule and comparison to Eq. (5.47), it is apparent that the 

difference between these two rules is the overall RFBC implementation. For Eq. (5.47), 

the update depends on the general RFBC gain matrix   through effective plant   , while 

in Eq. (5.77) the update depends on   , the effective RFBC gain matrix. Finally, for   , 

the closed-loop configuration two optimal controller is found starting with Eq. (5.44) and 

going through the same steps as before 

   
    

        
                  

                 (5.78) 

Again following some standard arithmetic, to eliminate common terms, collect like terms, 

and rearrange the equation into a form consistent with previous results, yields 

          
            

       
        (5.79) 
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This is the optimal update rule, with respect to   , for the learning signal when 

implementing closed-loop configuration two. From a comparison of Eq. (5.48) to Eq. 

(5.79), it should be clear that the differences between these two rules again come down 

to the repetition-domain feedback controller. So for    and   , an understanding of the 

differences between   and    can provide some insight into the expected differences in 

performance between closed-loop configurations one and two. This is useful to know 

when trying to decide which cost function, and configuration, to use and quickly attempt 

to predict overall performance. However, as with closed-loop configuration one, these 

designs alone are insufficient to fully predict the overall performance limitations, since 

they do not directly describe the expected error. 

5.3.2: Error Propagation of Optimal Closed-Loop Configuration Two Controller 
Designs 

To facilitate the evaluation of closed-loop configuration two and the overall impact of 

incorporating the learning signal with such a setup, outside the feedback loop, the error 

performance using optimized controllers must be established. For the optimal controller 

resulting from   , this is done starting with Eq. (5.67) and plugging in for the optimal 

updates to the learning signal using Eq. (5.73) as shown 

           
           

            
                       (5.80) 

It should be noted that       was substituted into Eq. (5.67) when used here. After 

expansion of the difference operator on error and multiplying through to cancel like 

terms, it can be seen that Eq. (5.80) can be rewritten as 

                              
                      (5.81) 

Following some simple arithmetic manipulation to collect like terms and rearrange the 

equation, the final result is obtained 
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                      (5.82) 

A quick comparison of Eq. (5.82) to Eq. (5.51) reveals the error performance using    is 

identical for both closed-loop configurations. This means the optimal controller produced 

by minimizing    can never result in error free control with either configuration, due to the 

presence of      in both error propagation expressions. It also suggests that the 

optimization process, using    in the manner done here, is independent of the 

configurations. Now, following the same steps for the optimal controller obtained by 

minimizing   , similarly starting with Eq. (5.67) and this time plugging in Eq. (5.75), 

results in 

           
                      (5.83) 

After going through similar arithmetic to collect like terms, it can be seen that Eq. (5.83) 

will simplify to 

                           (5.84) 

As with the performance using   , the error performance achieved using    for closed-

loop configuration one, as described by Eq. (5.53), is identical to the error performance 

predicted here by Eq. (5.84) for closed-loop configuration two. This shows that both 

closed-loop configurations, when optimized with respect to   , have the theoretical 

potential to produce error free control. It also similarly suggests that the optimization 

process, using    in the manner done here, is independent of the configurations. Next, 

the same derivation is done for the optimal controller resulting from   , starting again with 

Eq. (5.67) and plugging in Eq. (5.77) as follows 

               
            

       
       

       
            

                       
(5.85) 
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Following some necessary simple arithmetic to collect like terms and rearrange the 

equation, it is apparent that Eq. (5.85) simplifies to 

               
            

       
        

          
            

                     

(5.86) 

It can be seen by comparing Eq. (5.55) to Eq. (5.86) that the difference between these 

two error propagation expressions is again related to the repetition-domain feedback 

controller. Recall that      , as defined in Eq. (5.34), and      , as originally 

defined in Eq. (5.68), so it is clear that if not for the difference between   and   , these 

error performance expressions would be identical. Therefore, as with   , the optimal 

controller produced by minimizing    is also not capable of producing error free control 

with either configuration, due to the presence of      in both error propagation 

expressions. Finally, the last error performance analysis remaining for close-loop 

configuration two is using the optimal controller resulting from minimizing    and this, as 

before, starts with Eq. (5.67) and then plugging in Eq. (5.79) as shown 

               
            

       
                     (5.87) 

As with all the prior error propagation derivations, additional arithmetic must be done to 

collect like terms and rearrange the equation. Following this, Eq. (5.87) is finalized as 

               
            

       
                     (5.88) 

As with Eq. (5.57), it should be apparent from Eq. (5.88) that the error performance of 

the optimal controller with respect to    has the potential to produce zero error control. In 

fact, just like the controllers optimized with respect to   , these two error performance 

expressions would be identical if not for the differences in the RFBC implementation. 

Now that the expected error has been fully described and performance limitations have 
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been established for all the different combinations, a detailed analytical comparison is 

conducted to complete the overall assessment of the three configurations considered. 

5.4: Analytical Comparison of the Configurations 

To begin the analytical comparison, assume that the physical plant to be controlled 

can be modeled using a   matrix, which is known to perfectly model the physical plant. 

Through use of this   model, it is additionally assumed that the output and output error 

of the physical plant, and as necessary its operating environment, can be fully described 

using Eqs. (1.2) - Eq. (1.8) with complete accuracy. This is clearly not very realistic or 

practical, but for the purposes of a hypothetical comparison, such an ideal situation can 

be assumed. Using the error propagation given in Eq. (5.16), for the basic open-loop 

configuration in this ideal scenario, the following transfer matrices result if equal 

weighting, or           , is applied 

                        
       

                

(5.89) 

                
     

            

(5.90) 

To evaluate the closed-loop configurations for the ideal situation, the following current 

cycle feedback control implementation can be considered 

  
    

 
  (5.91) 

      (5.92) 

To consider this type of theoretical controller,   must be non-singular and well-

conditioned with a stable inverse. The current cycle input gain matrix defined in Eq. 
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(5.91) and current cycle error feedback gain matrix defined in Eq. (5.92) can now be 

used to generate 

           
 

   
    (5.93) 

                  (5.94) 

                  (5.95) 

Here,   in Eq. (5.93) is the overall time-domain FBC gain matrix,   in Eq. (5.94) is the 

RFBC gain matrix, and    in Eq. (5.95) is the effective RFBC gain matrix. In addition to 

these three key closed-loop configuration parameters, it is useful to define two additional 

parameters 

             (5.96) 

       (5.97) 

The parameter    can be considered the effective repetition-domain plant for closed-

loop configuration one, and     can additionally be considered the effective repetition-

domain plant for closed-loop configuration two. For closed-loop configuration one, using 

the error propagation given in Eq. (5.55) and effective repetition-domain plant defined in 

Eq. (5.96), the following transfer matrices results if the same weighting, or       

    , is again applied 

            
         

  
  

    

                            

(5.98) 

          
         

  
   

                       

(5.99) 
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(5.100) 

For configuration two, using Eq. (5.86) along with the effective repetition-domain plant 

defined in Eq. (5.97), and the same weighting once more, will result in the following 

                
            

       
    

 
 

    
  

(5.101) 

              
            

     

 
 

    
  

(5.102) 

              

        
(5.103) 

These transfer matrices, based on the ideal controller implementation, enable some 

general comparisons to be made and additional insight to be gained about the 

configurations considered. In terms of previous cycle error contributions to the current 

cycle error, it can be seen from a comparison of Eqs. (5.98) and (5.101) that only closed-

loop configuration two has the potential to completely eliminate the influence of plant 

dynamics in the error propagation. In terms of previous cycle learning signal input 

contributions to current cycle error, a quick comparison of Eqs. (5.99) and (5.102) 

similarly shows that only closed-loop configuration two has the potential to completely 

eliminate the influence of plant dynamics in the error propagation. Neither of these 

observations means that closed-loop configuration two is superior to closed-loop 

configuration one in general. However, for situations where similar inverse time-domain 

feedback controllers are considered for implementation, the observations do suggest 

closed-loop configuration two provides more direct control. This is because the error 
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propagation becomes solely a function of the designer specified gain  , as defined in Eq. 

(5.91), only for closed-loop configuration two. Now, in terms of random disturbance     

rejection capability, both closed-loop configurations provide identical control. This can be 

seen from Eqs. (5.100) and (5.103). However, there is a clear tradeoff between random 

disturbance rejection capability and previous cycle error contribution for closed-loop 

configuration one, but not for closed-loop configuration two. The disturbance rejection 

capability improves for both configurations as    , however this reduces the ability of 

the repetition-domain feedback controller to suppress previous cycle error contributions 

only for closed-loop configuration one. Another inspection of Eqs. (5.98) and (5.101) is 

sufficient to verify this.  

Now, if a more practical situation is considered, where the   model does not perfectly 

represent the physical plant, a more classic current cycle feedback control 

implementation should be considered. The designer can choose from a variety of FBC 

implementations, like the well-known and commonly used proportional-integral (PI) 

controller. Such a controller can be implemented using the following 

                            (5.104) 

  

 
 
 
 
 
     
     
     
     
      

 
 
 
 

            

 
 
 
 
 
 
      
       
        
        
      
         

 
 
 
 
 

 (5.105) 

With this more traditional controller,  ,  ,   ,   , and     must all be redefined using   

and    as defined following Eqs. (5.104) and (5.105) above. As a result, the analytical 

comparison is more involved and requires the aid of numerical simulation software to 

generate plots of the corresponding transfer functions. The transfer matrices for such an 
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implementation will be much closer to the original forms given in Eqs. (5.55) and (5.86), 

even when equal weighting, or           , is used in the cost functions. For closed-

loop configuration one 

            
         

  
  

    

          
              

  

(5.106) 

          
         

  
   

        
           

(5.107) 

              (5.108) 

Similarly, for closed-loop configuration two 

                
            

       
    

            
                

  

(5.109) 

              
            

     

          
            

(5.110) 

              (5.111) 

Using the first pair of transfer matrices Eqs. (5.89) and (5.90), the second set of transfer 

matrices Eqs. (5.98) – (5.103), and the final set of transfer matrices Eqs. (5.106) – 

(5.111), the analytical comparison can be completed using numerical simulation. 

5.5: Numerical Simulation 

Numerical simulations were conducted on MATLAB 7.7 to complete the comparison 

of the basic open-loop configuration and two closed-loop configurations considered. A 

well-conditioned system model is used to effectively consider control problems in which 

a designer has the option to consider both the ideal inverse controller and traditional PI 

feedback controller discussed above. It is very important to remember that in order to be 
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able to use an inverse controller in practice, a relatively accurate system model is 

generally required. The necessary   model is generated using a third order system with 

the following continuous time transfer function 

               
          

   
  

 

   
  

  
 

           
 
      (5.112) 

For the numerical simulations      ,      ,       , and the continuous time model 

was discretized with a ZOH using a 100 Hz sample rate for 2 seconds. This means that 

      as defined in Eq. (1.2) in the introductory chapter. Three different values for   

were simulated,      ,      , and      , for the inverse controller comparisons of 

the configurations. The basic open-loop configuration can be evaluated using Eqs. (5.3), 

(5.4), (5.89), and (5.90) to generate sensitivity transfer matrix plots and singular value 

plots. Next, closed-loop configuration one can be assessed using Eqs. (5.94), (5.96), 

(5.98) – (5.100), and (5.106) – (5.108) to similarly generate sensitivity transfer matrix 

and singular value plots. Finally, Eqs. (5.95), (5.97), (5.101) – (5.103), and (5.109) – 

(5.111) can be used to generate the sensitivity transfer matrix and singular value plots 

for closed-loop configuration two. Using these formulations, plots are presented in two 

separate groups. The first group shows a performance comparison based on sensitivity 

transfer matrix plots and the second group shows a performance comparison based on 

plots of singular values. For the sensitivity transfer matrix plots, Figures 5-4, 5-5, and 5-6 

show the results for all three configurations using the inverse controller with      , 

     , and       respectively. The sensitivity transfer matrix plot for the classic PI 

controller, with         and        , is given in Figure 5-7 for the more practical 

situation. Next, the singular value plots are similarly given in Figures 5-8, 5-9, and 5-10 
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for the inverse controller simulations, again with      ,      , and       

respectively. Finally, the singular value plot for the classic PI controller is provided in 

Figure 5-11 to complete the comparison of the configurations. It is worthwhile to mention 

that while the sensitivity transfer matrix and singular value plots are closely related, the 

sensitivity transfer matrix is the recommended tool for evaluation and comparison 

purposes. This is because it offers the designer a sense of the frequency response for 

the various parameters and transfer functions analyzed that the singular value plots do 

not convey, since they are not frequency dependent. The singular value plots are 

nevertheless important because they are simpler to create and provide some quick 

insight into the upper bounds of the sensitivity transfer matrix. In fact, several basic 

design decisions can easily be made using Figures 5-8 through 5-11, especially in 

situations where the plots of interest depict all singular values being less than one. Much 

of the required information necessary to make combination controller design decisions 

can be obtained from the (a) and (b) plots of each figure, since these contain the 

effective RFBC and the effective plant gains. Ideally, the effective plant will have high 

gain over the frequencies which make up the signal to be followed and low gains outside 

of those frequencies. This can be done through the appropriate design of the effective 

RFBC, as suggested in the various given figures. The error performance information, 

another critical factor to consider when designing the combination controller, is 

contained most explicitly in the (c), (d), and (e) plots of every figure. For the ideal 

implementation, unlike with the (a) and (b) plots, these plots would be zero for every 

frequency from zero up to Nyquist frequency. This is not possible using time-domain 

FBC due to the well know waterbed effect, which essentially states rejection over all 

frequencies is not possible. If a design targets a specific band of frequencies to reject, it 
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consequently results in amplification of frequencies outside that band. Since the random 

disturbance rejection capability completely relies on time-domain FBC, most practical 

controllers will produce plots similar to Figure 5-7c, where disturbance rejection only 

occurs over a small band, in this case from 0 to about 16.5 Hz. This is still far better than 

the basic open-loop configuration where all frequencies are passed and the controller 

has no ability to handle random disturbances. When comparing closed-loop 

configuration one and two for the more practical situation, it appears the most favorable 

design will be application specific based on Figure 5-7, with plot (d) providing the 

strongest case for this. If the application uses a desired trajectory with all frequency 

content above 16.5 Hz, it appears closed-loop configuration one is most favorable. On 

the other hand, if a desired trajectory with primarily low frequency content below 16.5 Hz 

is utilized, then closed-loop configuration two should be used. Either way, these types of 

plots and their corresponding parameters and transfer matrices provide very useful 

insight. This information can be paramount in making good design decisions with 

regards to which configuration, cost function, and overall time-domain and repetition-

domain feedback control schemes to implement. 

5.6: Summary of Findings 

Three controller configurations have been thoroughly investigated in this work 

specifically to facilitate implementation in any iterative learning control application. The 

first configuration considered was the basic open-loop ILC scheme which is an open-

loop implementation in time, but a closed-loop controller in repetition. This type of open-

loop approach can be considered straightforward to setup in practice and relatively easy 

to optimize through the use of a simple cost function, since there is no distinction 

between the plant input and learning signal. The main weakness of controller 
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configurations of this type is that they are ill-equipped to handle stochastic, non-

repeating disturbances. To address this limitation, two configurations which attempt to 

merge FBC and ILC into an optimal combination controller were evaluated. There are 

two fundamentally distinct ways in which a feedback and learning combination controller 

can be configured, one with the learning signal incorporated inside the feedback loop 

and one with the learning signal incorporated outside the feedback loop. Closed-loop 

FBC and ILC configuration one examines combination controllers that integrate the 

learning signal inside the feedback loop. Closed-loop FBC and ILC configuration two 

examines combination controllers that integrate the learning signal outside the feedback 

loop. For both of these configurations, the learning signal and plant input are distinct. 

When optimizing these types of controllers using cost functions, the variable used to 

minimize the costs was the update to the learning signal. There were four cost functions 

available for consideration when attempting to optimize the two closed-loop 

configurations. For the basic open-loop configuration, only two cost functions were 

considered due to the redundancy that exists when the plant input and learning signal 

are the same. It turned out that the optimal controllers for these different configurations 

are closely related and similar in structure, with the differences being attributed to a few 

key parameters. The error performance between the developed optimal controllers was 

found to be comparable, and the selection of configuration, cost function, and overall 

control scheme was application-dependent. However, detailed formulation is provided 

for each configuration to support the overall design and implementation process. 

  



   

158 

 

Feedback and Learning Controller Configurations 

 

Figure 5-1. Basic Open-Loop ILC Configuration 

 

Figure 5-2. Closed-Loop FBC and ILC Configuration One 

 

Figure 5-3. Closed-Loop FBC and ILC Configuration Two 
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Performance Comparison Using Sensitivity Transfer Matrix 

  

a. Effective RFBC Sensitivity TM b. Effective Plant Sensitivity TM 

 

c. Disturbance Difference Sensitivity TM 

  

d. Previous Cycle Error Sensitivity TM e. Previous Cycle Input Sensitivity TM 

Figure 5-4. Inverse Time-Domain FBC with        Transfer Matrices 
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a. Effective RFBC Sensitivity TM b. Effective Plant Sensitivity TM 

 

c. Disturbance Difference Sensitivity TM 

  

d. Previous Cycle Error Sensitivity TM e. Previous Cycle Input Sensitivity TM 

Figure 5-5. Inverse Time-Domain FBC with        Transfer Matrices 
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a. Effective RFBC Sensitivity TM b. Effective Plant Sensitivity TM 

 

c. Disturbance Difference Sensitivity TM 

  

d. Previous Cycle Error Sensitivity TM e. Previous Cycle Input Sensitivity TM 

Figure 5-6. Inverse Time-Domain FBC with        Transfer Matrices 
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a. Effective RFBC Sensitivity TM b. Effective Plant Sensitivity TM 

 

c. Disturbance Difference Sensitivity TM 

  

d. Previous Cycle Error Sensitivity TM e. Previous Cycle Input Sensitivity TM 

Figure 5-7. Classic PI FBC Transfer Matrices 
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Performance Comparison Using Singular Values 

  

a. Effective RFBC Singular Values b. Effective Plant Singular Values 

 

c. Disturbance Difference Singular Values 

  

d. Previous Cycle Error Singular Values e. Previous Cycle Input Singular Values 

Figure 5-8. Inverse Time-Domain FBC with        Singular Values 

 



   

164 

 

 

  

a. Effective RFBC Singular Values b. Effective Plant Singular Values 

 

c. Disturbance Difference Singular Values 

  

d. Previous Cycle Error Singular Values e. Previous Cycle Input Singular Values 

Figure 5-9. Inverse Time-Domain FBC with        Singular Values 
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a. Effective RFBC Singular Values b. Effective Plant Singular Values 

 

c. Disturbance Difference Singular Values 

  

d. Previous Cycle Error Singular Values e. Previous Cycle Input Singular Values 

Figure 5-10. Inverse Time-Domain FBC with        Singular Values 
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a. Effective RFBC Singular Values b. Effective Plant Singular Values 

 

c. Disturbance Difference Singular Values 

  

d. Previous Cycle Error Singular Values e. Previous Cycle Input Singular Values 

Figure 5-11. Classic PI FBC Singular Values 
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CHAPTER SIX: Conclusion 

 
Various effective methods have been developed to design iterative learning 

controllers for linear systems. These control laws make use of a Toeplitz matrix 

containing a number of system Markov parameters, or the unit pulse samples associated 

with the duration of the desired trajectory. For a long trajectory with a large number of 

time steps, it can be difficult to accurately determine these Markov parameters.  In 

Chapter 2, two practical methods were investigated, OKID and DFT, to determine the 

pulse response of any linear system using input-output data.  Methods were developed 

to address the issue when the number of accurately obtainable Markov parameters is 

limited. The effects of inaccurate or noisy Markov parameters were also examined and 

evaluated in use with the control laws. In this manner, some simple expansion methods 

were established that aim to produce stable and well-behaved control laws which can be 

used to control a large number of time steps even when only a small number of Markov 

parameters of limited accuracy is available. 

Improved combination controllers, incorporating both FBC and ILC, have been 

developed for learning control applications in linear systems. These controllers improve 

previously developed combination controllers, by allowing FBC designs that are non-

causal by one time step. The controllers are then further improved by the use of 

disturbance estimators both in the time-domain and in the repetition-domain. As 

described in Chapter 3, numerical simulations confirmed that these combination 

controllers, with disturbance estimation, significantly improve both tracking performance 

and learning behavior. 
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Optimal cost function based combination controllers, incorporating both finite-time 

FBC and ILC, have been developed in linear systems. These controllers are dependent 

on the   matrix to implement the finite-time feedback controller. Two separate designs, 

based on a static or dynamic   matrix, were provided for implementation in Chapter 4. 

The   matrix was found simultaneously with the learning controller by specifying a few 

gains in the most basic case. Specific design considerations take full advantage of the 

inherent flexibility of the   matrix based design for learning control applications. These 

considerations covered the fundamental aspects of this design approach including 

appropriate generation of the primary design agent, the training matrix, as well as the 

use of finite-time sensitivity transfer matrices as an evaluation tool. It has been 

demonstrated that finite-time sensitivity transfer matrices can be used to reliably bridge 

the gap between finite-time control design approaches and more conventional, steady-

state, control design approaches. Numerical simulations confirmed that these 

combination controllers significantly improve both the tracking performance and the 

learning behavior when compared to conventional feedback only control. It was further 

demonstrated that the most optimal design, which guarantees optimal performance in all 

situations, is the dynamic   matrix based finite-time FBC and ILC controller. 

Three controller configurations were thoroughly investigated in Chapter 5, specifically 

to facilitate implementation in any iterative learning control application. The first 

configuration considered was the basic open-loop ILC scheme, which is open-loop in 

time, but closed-loop in repetition. This type of open-loop approach can be considered 

straightforward to setup in practice and relatively easy to optimize through the use of a 

simple cost function since there is no distinction between the plant input and learning 

signal. A configuration of this type is ill-equipped to handle stochastic, non-repeating 
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disturbances. To address this limitation, two configurations are considered: one with the 

learning signal incorporated inside the feedback loop and one with the learning signal 

incorporated outside the feedback loop.  

Closed-loop FBC and ILC configuration one was used to explore combination 

controllers that integrate the learning signal inside the feedback loop. Closed-loop FBC 

and ILC configuration two was used to explore combination controllers that integrate the 

learning signal outside the feedback loop. For both of these configurations, the learning 

signal and plant input were distinct. When optimizing these types of controllers using 

cost functions, the variable used to minimize the costs was the update to the learning 

signal. There were four cost functions available for consideration when attempting to 

optimize the two closed-loop configurations. For the basic open-loop configuration, only 

two cost functions were considered due to the redundancy that exists when the plant 

input and learning signal are the same. It turns out that the optimal controllers for these 

different configurations are closely related and similar in structure, with the differences 

being attributed to a few key parameters, such as the effective repetition-domain plant 

and effective repetition-domain feedback control matrix. The error performance of these 

controllers is also similar, and therefore design decisions regarding which overall control 

strategy to implement should be carefully considered for each individual application. As 

stated in the introduction, the main goal of this research is to establish an end-to-end 

simultaneous design approach that is adaptable for use in all practical ILC applications. 

This is precisely what has been developed in this thesis and the results provided in the 

previous chapters can be used to facilitate a thorough application-specific assessment 

on a case by case basis. 
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APPENDIX 
 

In this appendix detailed derivations intentionally omitted from the main body of the 

thesis are presented. These derivations were not included in the appropriate chapters 

due to their lengthy nature, but are provided here for those that may be interested. 

A: Mathematical Proof of Combination Controller Equivalence 

This section mathematically proves the combination controller presented in Eq. (3.13) 

can be equivalently designed to learn through only current cycle error feedback or only 

previous cycle error feedback, in learning control applications where Eq. (2.3) can be 

assumed.  
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B: Derivations of Causal Controllers 

This section presents step-by-step derivations for the various causal controllers 

proposed in Chapter 3. Controllers without disturbance estimation, with one-repetition 

behind disturbance estimation, and with full disturbance estimation are derived. 
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B.1: Non-Causal to Causal Controller Without Disturbance Estimation 
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B.2: Controller With One-Repetition Behind Disturbance Estimation 
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B.3: Controller With Full Disturbance Estimation 

1 1

1 1

*

1 1

*

1 1

*

1 1

( ) ( )

( )

( ( ) )

( ) ( )

j j j j j

j j j jS D S D

j j j j jS D S D j

jj j j j j jS D S D S D

jj j j j j j jS D S D S D D D

S

u Ru Su Ge Le

R R u Su G G e Le

R u R u Su G e G y y Le

R u R u Su G e G y P P u Le

R u R u Su G e G P P u G D Le G y

R



 

 

 

 

 

   

     

      

           

          


*

1 1( )j j j j j j j j jD S D S D D D D Dj
u R u Su G e G P u G P u G D y Pu G Le G y          

 

 
*

1

*

1

1

*

1 1 1

1

1 11 1

( ) ( )
( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )

j j j jS D S D S D

jD D D

j jD D

j j jS D S D S D

j j jD D D

j j jS D S D S D

j jD Dj j

R G P G DP u Su G e G D y e
I R G P u

G Le G y

R G P G DP u Su G G D e

G D Le G G D y

R G P G DP u Su G G D e

G y Pu G D y Pu









  



  

     
  

  

    


      

    

    

*

1

1

* * *

1 1 1

1

* *

1

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

j D D

j j jS D S D D D S D

j j jD D D D

j j jS D S D D D S D

jD D D D D D

Le G G D y

R G P G DP u S G P G DP u G G D e

G y e G D y e Le G G D y

R G P G DP u S G P G DP u G G D e

L G G D e G G D y G G D y





  





 

      


      

      


      

 

 

])()(

)()[()(

1

1
1











jDDjDS

jDDjDSDSDDD

j
eDGGLeDGG

uDPGPGSuDPGPGRPGRI
u  

 



   

183 

 

11   jjjjj eLeGuSuRu  

 

)()(

)()(

)()(

)()(

1

1

1

1

DGGLPGRIL

DGGPGRIG

DPGPGSPGRIS

DPGPGRPGRIR

DDDDD

DSDDD

DDDDD

DSDSDDD

















 

 

C: Derivations of Tracking Error Propagation for Causal Controllers 

This section provides step-by-step derivations of the tracking error propagation, in the 

repetition-domain, for the various causal controllers proposed in Chapter 3. The tracking 

error propagation is derived for the basic ILC law and combination controllers without 

disturbance estimation, with one-repetition behind disturbance estimation, and with full 

disturbance estimation. 

C.1: Basic ILC Law Error Propagation 

                  

            

              

                 

                 

                  

                  

 
                     

C.2: Error Propagation Without Disturbance Estimation 
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C.3: Error Propagation With One-Repetition Behind Disturbance Estimation 

                            

                                                           

                                                             

                                               

                                                             

                                                                 

                                                                 

                                                                

                                                            

                                                                

                                                

                                  

                                  

                                           

                                               

                                     

 

                                    

C.4: Error Propagation With Full Disturbance Estimation 
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