
EBEX: A Balloon-Borne Telescope for Measuring

Cosmic Microwave Background Polarization

Daniel Chapman

Submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015

c© 2015

Daniel Chapman

All rights reserved

ABSTRACT

EBEX: A Balloon-Borne Telescope for Measuring

Cosmic Microwave Background Polarization

by

Daniel Chapman

EBEX is a long-duration balloon-borne (LDB) telescope designed to probe polarization

signals in the cosmic microwave background (CMB). It is designed to measure or place an

upper limit on the inflationary B-mode signal, a signal predicted by inflationary theories

to be imprinted on the CMB by gravitational waves, to detect the effects of gravitational

lensing on the polarization of the CMB, and to characterize polarized Galactic foreground

emission.

The payload consists of a pointed gondola that houses the optics, polarimetry, detectors

and detector readout systems, as well as the pointing sensors, control motors, telemetry

sytems, and data acquisition and flight control computers. Polarimetry is achieved with a

rotating half-wave plate and wire grid polarizer. The detectors are sensitive to frequency

bands centered on 150, 250, and 410 GHz. EBEX was flown in 2009 from New Mexico as a

full system test, and then flown again in December 2012 / January 2013 over Antarctica in

a long-duration flight to collect scientific data.

In the instrumentation part of this thesis we discuss the pointing sensors and attitude

determination algorithms. We also describe the real-time map making software, “Quick-

Look”, that was custom-designed for EBEX. We devote special attention to the design and

construction of the primary pointing sensors, the star cameras, and their custom-designed

flight software package, “STARS” (the Star Tracking Attitude Reconstruction Software).

In the analysis part of this thesis we describe the current status of the post-flight analysis

procedure. We discuss the data structures used in analysis and the pipeline stages related

to attitude determination and map making. We also discuss a custom-designed software

framework called “LEAP” (the LDB EBEX Analysis Pipeline) that supports most of the

analysis pipeline stages.

Contents

List of Figures v

List of Tables xxiv

1 CMB Polarization Science 1
1.1 ΛCDM - The Standard Cosmological Model 1
1.2 Cosmological Inflation . 1
1.3 The Cosmic Microwave Background . 2

1.3.1 Temperature Anisotropies . 3
1.3.2 Polarization Anisotropies . 6

2 EBEX Overview 10
2.1 Science Goals . 10
2.2 Observation Strategy . 10
2.3 Instrument . 12

2.3.1 Gondola and Attitude Control . 12
2.3.2 Optics and Receiver . 14
2.3.3 Polarimetry . 16
2.3.4 Detectors and Readout . 17
2.3.5 Telemetry . 18
2.3.6 Power . 19
2.3.7 Thermal . 19

3 Attitude Control System 21
3.1 Introduction . 21
3.2 Coordinate Systems . 22

3.2.1 Celestial Coordinate Systems . 22
3.2.2 Roll Angle . 25
3.2.3 Fair Measure Coordinates . 26

3.3 Pointing Requirements . 27
3.3.1 Real-Time . 27
3.3.2 Post-Flight . 28

3.4 Sensors . 28
3.4.1 Gyroscopes . 30

i

3.4.2 Star Cameras . 35
3.4.3 Coarse Sensors . 36

3.5 Control Algorithms . 39
3.5.1 Attitude Determination Loop . 39
3.5.2 Scan Control Loop . 41
3.5.3 Low Level Control Loops . 45

4 Star Cameras 46
4.1 Introduction . 46
4.2 Star Camera 1 . 52

4.2.1 Design . 52
4.2.2 Design Principles . 56
4.2.3 Construction . 58
4.2.4 Thermal Consideration . 58

4.3 Optical Baffles . 63
4.4 Pre-Flight Tests and Predictions . 68

4.4.1 Sensitivity . 68
4.4.2 Solution Uncertainty . 74
4.4.3 Vignetting . 77
4.4.4 Disk Space . 77
4.4.5 Pointing Offsets . 80

4.5 EBEX 2012 Performance . 82

5 Star Camera Software, “STARS” 84
5.1 STARS Design Requirements . 84
5.2 STARS Design Principles and Architecture 85

5.2.1 Architecture . 86
5.2.2 Standard Operation . 87
5.2.3 Shared Memory . 87
5.2.4 Settings Files . 89
5.2.5 Testing . 89

5.3 STARS Components . 90
5.3.1 Solving . 90
5.3.2 Solving - Statistics . 91
5.3.3 Solving - Source Finding . 92
5.3.4 Solving - Pattern Matching . 96
5.3.5 Star Catalog . 98
5.3.6 Displaying . 104
5.3.7 Imaging . 106
5.3.8 Networking . 111

5.4 STARS - Successful In-Flight Performance 112

ii

6 Real-Time Sky Maps with “QuickLook” 114
6.1 Description . 114
6.2 Back-End Server with Naive Map Maker . 115
6.3 Quicklook User Interface with Google Maps 116

6.3.1 Map Display . 117
6.3.2 User Options . 118

6.4 Testing . 120
6.5 In-Flight Performance . 121

7 2012 Antarctic Science Flight 122
7.1 Flight Details . 122
7.2 Data Extraction . 125

8 Data Structures for Post-Flight Analysis 127
8.1 Introduction . 127
8.2 Merging Data from Redundant Flight Computers 130

8.2.1 Aligning Dirfiles . 130
8.2.2 Resolving Conflicts . 133

8.3 Base Data Structures . 135
8.4 Derived Data Structures . 140

9 The “LEAP” Software Framework 142
9.1 Terminology . 142
9.2 Overview . 143
9.3 Libraries . 145

9.3.1 Parent App . 145
9.3.2 IO Management . 147
9.3.3 Other Libraries . 150

9.4 Resources . 151

10 Data Analysis 152
10.1 Overview . 152
10.2 Selected Pipeline Stages . 154

10.2.1 Flight Base Creation . 154
10.2.2 Star Camera Solving . 154
10.2.3 Pointing Reconstruction . 159
10.2.4 Map Making . 166

10.3 Preliminary Results and Next Steps . 171

11 Polar Mesospheric Clouds 176
11.1 Data Set Characterization . 178
11.2 Feature Tracking and Characterization . 180

11.2.1 Projection Onto the Cloud Layer . 181
11.2.2 Preliminary Results . 185

iii

Bibliography 186

Appendix A Gyro Orthogonalization Results 197

Appendix B Star Camera Assembly Procedure 199

Appendix C Star Camera 1 Electrical Documentation 201

Appendix D Leap IO Management Loading Parameters 206

iv

List of Figures

1.1 Model of the temperature, E-mode, and B-mode power spectra using the best-

fit Planck ΛCDM model and assuming a tensor-to-scalar ratio of 0.1. The

B-mode curve is separated into the lensing contribution and the inflationary

gravitational wave contribution. The blue shaded area represents possibilities

for ratios < 0.1. Figure adapted from [8]. 4

1.2 Measurements of the temperature, E-mode, and B-mode power spectra as

well as best-fit models and a model assuming a tensor-to-scalar ratio (r) of

0.1. The top figure shows the Planck CMB temperature (TT) power spectrum.

Figure from [9]. The middle and bottom figures show E-mode (EE) and B-

mode (BB) measured data points or upper limits. The B-mode model shown

in the bottom plot also shows the lensing contribution and the inflationary

gravitational wave contribution. For the gravitational wave contribution, a

tensor-to-scalar ratio (r) of 0.1 is used. Middle and bottom figures from [8] in

which it was adapted from [10] and [11]. 5

1.3 Net polarization resulting from Thomson scattering of photons originating

from a quadrupolar pattern. Cooler photons (red) originating from above

can only scatter towards the observer with horizontal polarization. Likewise,

warmer photons (blue) originating from the left can only scatter towards the

observer with vertical polarization. Figure from [17]. 7

v

2.1 A model of the gondola and the telescope components that it houses. Some of

the critical components from the attitude control, power, optics, and detector

systems are labeled. 13

2.2 A model of the warm optics. Light from the sky reflects off the primary mirror

onto the secondary mirror and then into the cryostat. Figure courtesy of Huan

Tran. 14

2.3 A model of the receiver, which contains the cold optics. The window is the

entry point for light into the cryostat. Filters help protect subsequent stages

from thermal load. A half-wave plate and polarizing grid are used for po-

larimetry. Lenses re-image the primary mirror onto an aperture stop and the

two focal planes. 15

2.4 (left) An example focal plane. Each focal plane has four 150 GHz wafers, two

250 GHz wafers, and one 410 GHz wafer. Detectors within 3◦ of the center

have a Strehl ratio greater than 0.9, as shown by the black circle. (center) An

example wafer. (right) An example TES bolometric detector. 16

2.5 (a) Conceptual diagram of a bolometer. An absorptive element with tem-

perature T and heat capacity C absorbs incoming power P, which is then

conducted to a thermal bath at temperature T bath through a weak ther-

mal link with conductance G. Diagram courtesy of Johannes Hubmayr. (b)

Superconducting transition shows a steep change in electrical resistance as a

function of temperature. 18

vi

3.1 Overview of the attitude control system. Filled blue boxes represent soft-

ware/firmware loops. Black bordered boxes represent physical components.

The physical components can be grouped into three categories represented

by red lines: sensors, control algorithms, and actuators. There are many

physical connections between components, but the arrows here represent the

relevant flow of data. Sensor data is used by the flight computers to compute

a real-time attitude solution (see Section 3.5.1) and run a scan control loop

(Section 3.5.2) to output a requested azimuth velocity and elevation position

for the low level control loops. The gyros and elevation encoder are also used

directly by the low level control loops, along with the requested azimuth veloc-

ity and elevation position, to output requested power for the motor controllers

(see Section 3.5.3). 23

vii

3.2 The performance in cross-elevation (left column) and elevation (right column)

of each absolute pointing sensor during the EBEX 2012 Antarctic flight. Each

plot shows a histogram of the differences between the “true” pointing and

the pointing measured in flight. The true pointing is taken to be the post-

flight reconstructed pointing stream. The measured pointing is the individual

pointing stream from each active axis of each absolute pointing sensor that

was calculated during flight by the flight control program. However, the cal-

ibration angles to the microwave boresight used here may differ from those

used in flight. The angles used here are those determined before flight on the

ground, and used during flight up until the coarse sensors were calibrated to

the star cameras. This gives a fair evaluation of how the sensors performed

individually, without the help of the star cameras. Note that not all sensors

had valid pointing streams throughout the flight, as indicated by the percent

coverage shown in each plot. Most notably the sun sensors had very limited

coverage because they did not cover the full azimuth range, and the ebex dgps

had no coverage at float for unknown reasons. 31

3.3 Example data from a gyro orthogonalization test. The box is placed on the

outer face that gy1 is orthogonal to, and then rotated at various velocities

for one minute. The angular velocities measured by gy2 and gy1 are plotted

against one another for every timestep. The slope of the resulting best-fit line

is used as an element in the inverse orthogonalization matrix. The results from

the final orthogonalization run before the 2012 flight are shown in Appendix A. 34

viii

3.4 Plot created during a clinometer calibration run in 2009. The clinometer ex-

hibits a significant (∼ 1.5◦) systematic error. The blue data points represent

the difference in elevation angles measured by the clinometer and the eleva-

tion encoder, as a function of elevation angle (as measured by the encoder).

The deviation from a line with slope zero is due to a systematic error in the

clinometer. This curve was fitted with a 5th order polynomial and corrected

for in FCP. After this correction was implemented, the test was repeated, and

the resulting data points in green show that the systematic error was removed

to less than 0.1◦. 38

3.5 A flow chart of the general EBEX scan. The scan can be in one of three states:

“snap” (the gondola remains stationary so that the star cameras can capture

images), “throw” (the gondola slews in azimuth at a fixed elevation), and

“step” (the gondola steps to the next elevation). The 3 different realizations

of the scan (“cmb”, “calibrator”, and “horizontal”) perform slightly different

actions in the “step” state. 42

3.6 Conceptual drawings of the coverage obtained by the horizontal scan (left),

cmb scan (center), and calibrator scan (right). The horizontal scan is fun-

damentally horizontal based (e.g. in azimuth and elevation). The cmb scan

is equatorial based, though the throws are still performed at a fixed eleva-

tion, resulting in a tilt. The calibrator scan is horizontal based except that it

follows a fixed equatorial location. 43

ix

3.7 Simulated coverage plots for the cmb scan. Subfigure (a) shows the resulting

coverage in equatorial coordinates from 1 day of flight, with red represent-

ing more coverage. The cross-linking that results from performing multiple

scans throughout the day can be seen, as well as the resulting rectangular

shape. Subfigure (b) shows the resulting coverage from 11 days of flight for

all 150 GHz detectors, with blue representing more coverage. Over the course

of an entire flight the coverage becomes more even. 44

4.1 Subfigure (a) shows a 3-D plot of a small region of an image centered on a star

captured by Star Camera 0. The image was captured on the ground, with a

near optimal focus position. As a star is effectively a point source, this is a

measure of the point spread function (PSF). We measure the width of a star

by finding the σ of a best-fit Gaussian. Subfigure (b) shows the width of this

star as a function of the camera’s focus position. A σ of ∼0.75 px is found at

the optimal focus position, and corresponds to an angular resolution of ∼20′′

by the Rayleigh criterion. 48

4.2 The quantum efficiency of the CCD and the transmission function of the red

filter used in the star cameras. Figure courtesy of Yury Vinokurov. 50

4.3 Star Camera 1 components and internal structure. 53

4.4 Side by side comparison of the actual and modeled XSC1 internal components,

structure, and back flange. 54

4.5 The front of XSC1 without the front flange. The front weld flange jets inward

about an inch to form four perpendicular edges, allowing the four rods of the

internal structure to be fastened directly to the front weld flange. 54

x

4.6 (a) Top, (b) side, and (c) bottom view photographs of the Star Camera 1

internals. In the bottom view, the wires converging near the bottom are

connected to four terminal blocks that are mounted on an aluminum shelf

that is mounted to the underside of the camera controller. A diagram of the

terminal blocks labeling the wires is shown in Appendix C. 57

4.7 Section view of Solidworks model of Star Camera 1 with optical baffle. . . . 59

4.8 Holes in the internal support structure’s rings enable heat convection from

the back of the star camera to the front of the star camera. 61

4.9 The star camera temperatures during the 2012 Antarctic flight. Each star

camera has four temperature sensors placed in different locations inside the

pressure vessel. The sensors are mounted near the computer (comp), lens

(lens), DC-to-DC converters (dcdc), front flange near the window (flange),

XSC1 electronics plate (plate), and/or the front of the vessel near the window

(vessel). Each star camera has four of these possibilities. Shown are the

temperatures for the entire flight (top) and a zoom of the temperatures during

ascent (bottom). 62

4.10 (a) Cross section of a 3-D model of the star camera baffle and (b) optical

drawing with specifications. In the drawing the black lines represent the baffle

itself, which is mounted to the front of the star camera vessel, flush with the

vessel window. The star camera lens sits a couple inches behind the window.

The position of the lens differs in the two subfigures because subfigure (a)

shows xsc1, while the baffle is designed for the more restrictive lens position

which is the lens position in xsc0. Linear distances are in inches. In the 3-D

model the vanes have finite thickness and are beveled at the inner edge. . . 64

4.11 Diagram showing how the positions and heights of the vanes are defined to

prevent light from reflecting off the tube directly into the vessel window. The

procedure is described in detail in Section 4.3. 65

xi

4.12 A 3-D model (a) of the star camera baffle compared with an actual constructed

baffle before painting (b). 67

4.13 Subfigure (a) shows how many stars were identified in 240 ms exposures in

an environment with 700 kepsa of sky brightness, as a function of apparent

magnitude. It shows the total number of stars identified along with the total

number of stars in the catalog (top), and then shows the fraction of catalog

stars identified (bottom). Subfigure (b) uses the results from (a) to estimate

how many stars will be identified in an arbitrarily selected star camera field

from the Antarctic science patch. It shows a cumulative histogram showing

the fraction of simulated fields of view (FOVs) that had at least N identified

stars, as a function of N. 73

4.14 Results of a simulation testing the error reported by the star camera software.

Each plots shows a comparison between the true errors (blue histogram) and

the reported errors from the software (green histogram). The green histogram

should be centered on the standard deviation of the blue histogram. There

are three plots, one for each attitude coordinate. 75

4.15 Subfigure (a) shows a 3d plot representing all the pixels in an image and

identifies those that are used to calculate the vignetting metric. The vignetting

metric is the mean value of some representative edge pixels divided by the

mean value of some representative center pixels. The raised pixels that in the

subfigure that are far from the center are the representative edge pixels, and

the raised pixels at the center of the image are the representative center pixels.

Subfigure (b) shows the result of this metric for multiple images plotted as a

function of aperture setting. Images taken with aperture settings 0 through

4 show vignetting. The test was done with and without the optical baffle

installed, which has no noticable effect. 76

xii

4.16 Histograms of the star camera solution uncertainties, as estimated by STARS

during post-flight analysis of the images. The histograms contain 15050 Star

Camera 0 solutions and 17175 Star Camera 1 solutions, which amount to

>90 % of the solvable images from flight. The uncertainties are 1.5′′ in cross-

declination, 1.5′′ in declination, and 48′′ in roll. These uncertainties are smaller

than the predicted uncertainties due to the fact that there are roughly 8 stars

per image instead of 4. This was possible because the brightness at float was

not as high as the conservative case for which the camera performance was

modeled. 83

5.1 Block diagrams of STARS running on a star camera computer. The shaded

boxes show the threads that belong to the STARS process. Arrows with

dotted lines indicate the flow of data. Data sent between threads is done

safely and efficiently with circular buffers. The top panel shows the standard

operation: image data and/or pointing solutions make their way from the

camera controller to the flight computers. The middle panel shows the path

that lens requests and results follow from the flight computers to the lens

controller and back. The bottom panel shows the paths of various objects for

display purposes. 88

xiii

5.2 The algorithm for determining the regional level around a pixel. This image

represents a 44 × 44 px region of an image, where each pixel is shown as a

small square with a gray outline. The STARS source finder compares a filtered

version of the image to a leveled version of the image, where the leveled version

is calculated by assigning the mean value of the 448 pixels shaded in light gray

to the 16 pixels in the center. The light gray pixels are chosen because they

are close enough to the dark gray pixels to be representative of the local level,

but are far enough away that a potential source centered on a dark gray pixel

itself does not bias the level. As an optimization, the operation is performed

on a coarse version of the image. The coarse version of the image is a factor

of 4 × 4 smaller. In this example the coarse pixels are represented by black

outlines. 93

5.3 Demonstration of the selective masking utility. This html/javascript utility

allows users to toggle blocks on or off using the mouse and provides them with

a command to send to STARS during flight. STARS then ignores the disabled

blocks during source finding. In this example the utility is configured to block

out the left 2
12

of the image, and the STARS screenshot shows that this area

is shaded out of the image, indicating that the source finder will not search

the left 2
12

of the image. 95

xiv

5.4 The process of determining the flux (and by extension magnitude) of a given

star. Subfigure (a) shows the responsivity of the CCD (in blue) and the

transfer function of the EBEX star camera (in red). The star camera’s transfer

function is the CCD responsivity function multiplied by the red filter’s transfer

function. Subfigure (b) shows the flux model of an example star in green, the

EBEX transfer function in red, and the multiplication of the two in cyan. The

integral of the cyan curve is the resulting flux of the star in the EBEX star

camera band. The flux model comes from fitting a blackbody to the flux data

points (shown as blue circles) at available band frequencies. Subfigure (c)

shows the measured flux vs catalog flux for the stars in a single image before

this procedure is applied (using the V-band), while subfigure (d) shows the

same thing for the computed flux of the same stars in the EBEX band. The

linear relationship in Subfigure (d) suggests an improvement for the stars in

this image. 100

5.5 The catalog stars before (a) and after (b) reduction. The sky is shown as an

equatorial Mollweide projection, and the blue dots are individual stars. It is

apparent in Subfigure (a) that the Galaxy presents an inhomogeneity in the

density of stars. Subfigure (b) plots an example list of stars that has been

reduced down to only include stars with global rank 1. Note the homogeneity

in this equal-area projection. 101

5.6 A zoom of part of the sky showing four adjacent circular catalog regions.

Overlayed on the plot is a black rectangle representing an example EBEX

star camera field of view. Given the size of the circular regions, and their

spacing, any possible placement and rotation of the field of view will always

be completely contained within the nearest region. 103

xv

5.7 All the regions in the STARS catalog. Each region is a circle of radius 10◦,

and the regions are spaced on a grid separated by 10◦ in angular distance

in both right ascension and declination. Given these paramaters, the regions

overlap. There is additional overlap at right ascension zero (an imaginary

vertical center line in the plot) due to the fact that the distance around the

sphere is not an integer multiple of the grid spacing at every declination. . . 103

5.8 A screenshot of the STARS display, running post-flight on a ground computer

on an image from the EBEX Antarctic flight. 104

5.9 The probability that an image is solvable given the level of sky brightness. 12

images were captured on a dark night with 120 ms exposure times. Different

levels of sky brightness were added to each image, using the brightness sim-

ulator discussed in Section 5.2.5, to test whether it was still solvable at that

level. Shown in this plot is the fraction of the 12 images that were able to solve

at that level of sky brightness (blue circles). The test was then repeated with

effective 240 ms exposures, which were actually sets of two co-added 120 ms

exposures (green circles). The longer effective exposure time produces better

results because of increased signal-to-noise. A 240 ms exposure would nor-

mally saturate at 417 kepsa, but with two separate co-added exposures the

saturation limit doubles to 833 kepsa, as indicated by the dotted blue vertical

line. 107

xvi

5.10 Capturing an image with multiple (triple) exposures while the gondola is in

motion. The top plot shows a strip chart of the Star Camera 0 trigger line,

which is the electronic line that drives the mechanical shutter in the camera.

When the line is 1 the shutter is open, and when it is 0 the shutter is closed.

Below the plot is the image captured. Each star shows the characteristic set of

three streaks with gaps in between that appear for each star due to the shutter

opening and closing three times. This may occur on smaller scales during the

flight, which is why the Motion PSF source finding method is equipped to

handle it. Note that the source finder was in motion PSF mode for this run,

and as a result only the top end of the 3 streaks is identified for each source,

even though the combined signal from all three streaks is used so that dimmer

sources can be identified than with a single exposure. 108

6.1 Example screenshot of the quicklook user interface. The map display is fea-

tured prominently in the screenshot. The screenshot was captured during

ground tests, when the gondola was performing a science scan and the detec-

tor data was simulated to create a non-uniform map. 117

6.2 The binning options as displayed on the Quicklook user interface. 119

6.3 The displaying options as displayed on the Quicklook user interface. 120

7.1 Altitude profile for the first 11 days of the EBEX 2012 Antarctic flight. . . 123

7.2 Geographic profile of EBEX in its 2012 Antarctic flight. The Antarctic con-

tinent is shown in white overlaid with a geographic grid with the lines of

longitude labeled. The EBEX flight path for the first 11 days, during which

time scientific data was collected, is shown in solid red. The flight path for

the remaining 14 days is shown in dotted red. 123

xvii

7.3 Sky coverage from the 2012 Antarctic flight, shown in galactic coordinates.

The patch is circular, centered on the equatorial South pole, covers 5735 square

degrees, and has a width of roughly 27◦ due to the telescope’s latitude being

10◦ from the South pole and the focal plane being 7◦ wide. The calibrator is

contained within this patch. 124

8.1 Diagram representing the union of ACS data from both flight computers. In

this diagram time increases to the right, and each filled box represents a dirfile

that contains multiple timestreams that are continuous for the length of the

box. The top two lines of data are drawn to demonstrate a situation in which

the flight computers stored some overlapping data and some unique data. The

bottom line represents the desired result, which is the union of the top two

lines. 130

8.2 Example data demonstrating the merging of FC1 and FC2 data. The figure

shows 12 hours of (ACS) altitude data. Gray lines represent data that is

stored redundantly by both flight computers, blue lines represent data points

that only existed on FC1, and red lines represent data that only existed on

FC2. Green circles represent the start of continuous sections of data, and are

at a y-value of 0 because the system has not yet initialized after powering

up. The union of FC1 and FC2 data results in longer continuous timestreams

than from a single flight computer. 132

8.3 The ACS timing channel, in Unix time, for the entire flight. The two subplots

show the same data at different y-ranges, calling out data that is valid (top)

and data that is invalid (bottom). The colors follow the same scheme as in

Figure 8.2. 134

xviii

8.4 Example of conflict resolution in an ACS data stream called “raw gy1” using

the “By Edge” method. In the top subplot gray data points are identical

on both flight computers, blue data points are unique to FC1, and red data

points are unique to FC2. Conflicts exist when the two flight computers have

two different data points at the same index. The bottom subplot shows the

resulting data stream after the conflict has been resolved in gray. The conflict

occurs at the end of an FC2 dirfile, as evidenced by the transition in the top

subplot from both red and blue data points to only blue data points. In this

case FC1 is prefered, and the resulting data stream in the bottom subplot

matches the blue data points. 136

8.5 Example of conflict resolution in an ACS data stream called “raw gy1” using

the “By Expectation” method. The plot layout is identical to that of Fig-

ure 8.4. In this case the conflicts are resolved by expectation, and it is evident

that the resolved time stream in the bottom subplot does not contain spikes

that would be due to the red outliers in the top subplot. 137

8.6 Diagram representing the union of ACS data from both flight computers, as

in Figure 8.1, but with the one of the segments and its subsegments labeled. 138

8.7 Examples of “derived” datasets (“pointing”, “acs etime”, and “hwp template

removed bolo”) and the base dirfiles with which they are aligned (“acs base”

and “bolo base”), in diagram form similar to that of Figure 8.6. Note that

each derived dataset has subsegments that are aligned with, synchronous with,

and of the same frame length as their respective base datasets. 140

8.8 Table of the four base datasets and some of their potential derived datasetes. 141

xix

10.1 Data flow diagram of the analysis pipepine from raw flight data to maps. The

rest of the pipeline (after maps) is not shown. Green ovals represent individual

programs (apps), and blue boxes represent data (input and output for the

apps). Every app shown here is part of the LEAP framework. The pointing

and signal calibration results are iteratively improved using the temperature

maps and therefore exist in a feedback loop with the map maker. 153

10.2 The fcp counters (top) and stars counters (bottom) for both star cameras

(left and right) for the entire flight. For each star camera, both FCP and

STARS keep a copy of both counters. The blue data points show FCP’s

copy of the counter from the numerical timestreams, and the red data points

show STARS’s copy of the counter from the image headers. When there

are only blue points, the flight computers were running and sending triggers,

but the star cameras were off. Most notably around December 31 the gondola

operators were debugging the pivot motor controller issue instead of collecting

scientific data. Each time the flight computers were powered on counter fcp

reset to zero. Each time the star cameras were powered on counter stars reset

to zero. 156

xx

10.3 These plots show, for each star camera, a data point for each image that has

been aligned to the dirfiles. The data points represent the difference between

the timestamp associated with the dirfile at that index (which comes from the

flight computer system clock) and the timestamp associated with the image

(which comes from the star camera system clock), plotted against time. A

non-zero slope represents a drift between the two machines’ system clocks.

A relative drift of this magnitude is not a problem for analysis because we

primarily use the “tigger line” timestream and a series of counters to align

the star camera images to the ACS timestreams. The fact that none of the

differences exceed 40 s indicates that the trigger alignment app did not make

any alignments that mistakenly cross resets. 157

10.4 The declination results from running the unscented Kalman filter forwards

and backwards on simulated data, as explained in detail in Section 10.2.3 and

in [60]. 162

10.5 The result from estimating the Gyro 2 bias in a simulation [60]. The black

curve shows the true simulated bias of Gyro 2. The red and orange curves

show the estimated bias from the forward and backward runs of the unscented

Kalman filter. 163

10.6 Binning the average filter error as a function of time since the last star camera

solution. 165

10.7 A preliminary temperature map of the EBEX calibration source, RCW 38,

created from EBEX 2012 Antarctic flight data using the LEAP map maker.

The map includes 2 hours of data from 91 150 GHz detectors. 172

xxi

10.8 Preliminary maps in I, Q, and U of part of the galactic plane, created from

EBEX 2012 Antarctic flight data using the LEAP map maker. The map

includes data from 91 250 GHz detectors from a 17 minute section of flight.

The I map is a map of total intensity. The Q and U maps represent different

alignments of polarization on the sky. 173

11.1 Example images containing polar mesospheric clouds. 177

11.2 Coverage plot of the star camera images over Antarctica. Each rectangle

represents the location of an image, and the color of the rectangle represents

the MAD value. Purple and dark blue represent little to no cloud activity, light

blue represents moderate cloud activity, and green, yellow, and red represent

significant cloud activity. The left plot shows all the images, and the right

plot shows a zoomed region that has significant cloud activity. 179

11.3 Visual explanation of the vectors involved in projecting the point of interest

(POI) onto the cloud layer (shown in white). The EBEX star camera, shown

in red, is suspended ∼35 km above the Earth. It observes polar mesospheric

clouds that are at an altitude of ∼82 km. Figure courtesy of Michael D’Anvers. 180

11.4 Example plot showing the projection of dozens of star camera images onto

the cloud layer. Cloud features that span multiple images can be seen. . . . 183

11.5 Example of feature tracking and evolution observation. Four plots are shown,

each plot containing four images taken in the same one minute window. The

four plots span 6 minutes, and a unique feature, identified by the green arrow,

can be seen to move downward over time. 184

xxii

A.1 The results of the gyro orthogonalization procedure discussed in Section 3.4.1

for gyro boxes A and B, shown respectively in Subfigures (a) and (b). The

slopes of the best fit lines provide the six off-diagonal elements of the inverse

orthogonalization matrix. In the plots, the center bulges are a result of ac-

cidental rotations when changing directions. We therefore grouped the data

into center points (green) and edge points (blue), and only used the edge

points to find the slope. 198

C.1 Diagram documenting Star Camera 1 terminal blocks wiring. The top left

terminal block labeling is deprecated, while the terminal block labeling shown

in the “Heater Wiring Diagram”, also in the appendix, is up to date. 202

C.2 XSC1 connector pinout. 203

C.3 Block wiring diagram of XSC1. 204

C.4 XSC1 Heater Wiring Diagram. (Left) Block diagram of the components in

the heating system. There are six 10 W heaters: two on the vessel window,

and four on the lens. They are activated by either software control (positive

line A) or bang-bang control (positive line C), implemented in parallel so as

to act as a logical OR. (Center) Wiring configuration on the heater terminal

block. (Right) Pinout of the two power lines in the 12-pin cable. 205

xxiii

List of Tables

3.1 Summary of the three coordinate systems used in this document. A more in

depth discussion of celestial coordinate systems can be found in [42]. 22

3.2 Table of absolute sensors. The different types of sensors are listed, as well as

their short names (used elsewhere in this document) and how many of each

type are flown (Num). In most cases EBEX flies two of each type of sensor

for redundancy. This table includes which axes the sensors are capable (C) or

not capable (N) of measuring, and - if an axis is cabable of being measured

- whether or not a real-time pointing stream is implemented (I) for that axis

in the flight computers. Not all capable axes are implemented due to limited

benefits and limited manpower. The table also lists each sensor’s measurement

precision, predicted sensor accuracy, and data acquisition rate. 30

4.1 Three methods of predicting the sky brightness for the EBEX Antarctic flight.

The second method predicts two numbers as a consequence of not knowing the

value of a parameter that could have been in two states during the BLASTPol

2010 flight. 71

xxiv

4.2 Comparison of lossless compression methods considered for the star camera

images. The compression algorithms were tested on noisy images from the

2009 test flight. The compression ratio is the uncompressed size divided by

the compressed size. Also listed is whether the compressed file is directly com-

patible with the GNU Image Manipulation Program (GIMP) or the cfitsio C

library, which is also used by the pyfits library for python. Compatibility with

each of these is highly convenient and increases productivity during star cam-

era development and testing. Not shown is the “ezip” compression (“EBEX

zip” - developed specifically for EBEX), which was comparable in compression

ratio, but unfortunately was 2.5 to 7.7 times slower than the standard options. 78

4.3 Disk usage calculations. 79

4.4 The angular offsets between each star camera and the EBEX telescope bore-

sight, as determined before flight and after flight. The offsets are added to

the star camera pointing to obtain the microwave telescope pointing. 82

5.1 List of key functionalities provided by STARS. 86

8.1 List of framefile streams. The timestreams within a framefile stream are syn-

chronous with each other, but each framefile stream is asynchronous with the

framefile streams. There are 59 total, as listed here. Some contain timestreams

stored at different samples per frame (SPF) rates, so the existing SPF rates

are listed. The Bolo and HWP frame rates are more precisely defined as

25.0× 106 Hz/218 . 129

xxv

Acknowledgements

First and foremost I would like to thank my advisor, Amber Miller, for her guidance and

support on this work. She has been everything one could hope for in an advisor, and I

consider myself fortunate to have been her student.

I would also like to acknowledge two others who have played a mentoring role for me in the

lab: Michele Limon and Britt Reichborn-Kjennerud. They have both been so generous with

their time and I’ve learned so much from them. I am thankful to have had the opportunity

to work on a hardware project with Michele. I have also been fortunate to work with and

learn from many other members of the Miller lab, including Joy Didier, Will Grainger, and

Seth Hillbrand.

I also thank all the members of the EBEX collaboration, many of whom I worked closely

with over the years and who have made my time on this experiment rewarding. I would

especially like to thank our PI, Shaul Hanany.

I thank my mom for always being so incredibly kind, helpful, and supportive. I thank

my sister, Dara, for also being supportive and generous. My parents always tried to push

me to do my best, and I appreciate that. Thanks Dad, I like to think you would be so happy

with this accomplishment.

Finally I would like to thank my girlfriend, Joy Didier. I would be a very different person

without her. To make the telescope flight-ready we suffered through endless cold nights in

North America and endless cold days at the bottom of the world, and her emotional support

is what kept me sane.

xxvi

Chapter 1

CMB Polarization Science

1.1 ΛCDM - The Standard Cosmological Model

The Big Bang theory describes a Universe expanding from an initial hot, compact phase to

the state in which we observe it today. The “standard” model of Big Bang cosmology is a

parameterization known as the ΛCDM model. In this model the Universe is spatially flat,

expanding, and is predominantly comprised of dark energy in the form of a cosmological

constant (Λ) and cold dark matter (CDM). The current parameters hold that the Universe

is 13.8 billion years old and that the make-up of the Universe is roughly 68% dark energy,

27% dark matter, 5% ordinary matter, and a small fraction of radiation and neutrinos. This

model has been successful in describing a wide range of cosmological data [1] from a host of

experiments, however it does not include a well-defined description of the first fraction of a

second of the Universe.

1.2 Cosmological Inflation

Inflation is an extension to the standard cosmological model, and describes a Universe that

underwent rapid exponential expansion in the first fraction of a second after the Big Bang [2].

1

Such an expansion would stretch quantum fluctuations to classical scales, seeding the inhomo-

geneities that evolved into the large scale cosmological structures that exist today. Inflation

solves three problems in the current cosmological model [3][4]:

• Horizon Problem - The observable Universe is found to be statistically homogeneous

and isotropic on large scales despite the fact that in the standard Big Bang scenario,

currently observable parts of the Universe would not have been in causal contact, and

thus able to equilibriate, given the age of the Universe. An exponential expansion

solves this problem by bringing the observable Universe together in the first fraction

of a second after the Big Bang.

• Flatness Problem - The Universe is measured to be spatially flat, or have a spatial

curvature of zero, to less than 1%. This implies that in the past the spatial curvature

must have been many orders of magnitude closer to zero, which presents a fine-tuning

problem. Inflationary expansion would serve to dilute the curvature of space, removing

the sensitive dependence of the flatness of the Universe on its initial conditions.

• Missing Relics - Grand unification theories predict that at high temperatures in the

very early Universe symmetry breaking would produce a number of relic particles that

have not been observed to date, including magnetic monopoles. If these particles did

exist, inflationary expansion could serve to dilute them below the densities at which

experiments have placed limits.

1.3 The Cosmic Microwave Background

The cosmic microwave background (CMB) is radiation that was emitted 380,000 years after

the Big Bang. Prior to this event, the Universe contained an opaque plasma in which photons

continually ionized any neutral hydrogen that formed into constituent protons and electrons.

In this plasma, photons could not travel far without Thomson scattering off of free electrons.

As the Universe cooled the number of photons at or above the ionization energy of Hydrogen

2

decreased and at one point electrons became able to bind to protons [5]. Shortly thereafter

the mean free path of photons exceeded that of the horizon scale at the time, resulting in a

transparent Universe and a number of last-scattered photons that we can observe today as

the cosmic microwave background. The expansion of the Universe has redshifted the CMB

photons to a temperature of 2.73 K today.

The CMB was first discovered by Penzias and Wilson in 1965 [6], and has since been

measured ever more precisely. The CMB is found to be a blackbody that is isotropic to a

level of 10−5 when accounting for the motion of the observer relative to the rest frame of the

CMB [7].

In the following subsections we will discuss the anisotropies that exist in the CMB in

both temperature and polarization. Figures 1.1 and 1.2 respectively show models and mea-

surements of these anisotropies, and in the following sections we will refer back to these

figures and explain them.

1.3.1 Temperature Anisotropies

The temperature of the CMB is anisotropic to roughly 1 part in 105 as a consequence of

the inhomogeneity of matter when the CMB was emitted. As mentioned in Section 1.2,

according to inflationary theories these inhomogeneities were the result of quantum fluctu-

ations being driven to macroscopic scales by inflation. Prior to the decoupling of photons

and charged particles, pertrubations in the plama density evolved over time. Gravity acted

to compress dense regions, while photon pressure provided a restoring force, resulting in

acoustic oscillations of the photon-baryon fluid until decoupling. At the time of decoupling

photons leaving hot, dense regions of space had higher energy, though the energy lost in

escaping a deeper gravitational well overcompensated for this and resulted in cooler photons

leaving overdense regions, while warmer photons left underdense regions. The pattern of

density perturbations in the plasma left signatures in the CMB that reflect the dynamics of

3

Figure 1.1: Model of the temperature, E-mode, and B-mode power spectra using the best-fit
Planck ΛCDM model and assuming a tensor-to-scalar ratio of 0.1. The B-mode curve is
separated into the lensing contribution and the inflationary gravitational wave contribution.
The blue shaded area represents possibilities for ratios < 0.1. Figure adapted from [8].

4

Figure 1.2: Measurements of the temperature, E-mode, and B-mode power spectra as well
as best-fit models and a model assuming a tensor-to-scalar ratio (r) of 0.1. The top figure
shows the Planck CMB temperature (TT) power spectrum. Figure from [9]. The middle
and bottom figures show E-mode (EE) and B-mode (BB) measured data points or upper
limits. The B-mode model shown in the bottom plot also shows the lensing contribution and
the inflationary gravitational wave contribution. For the gravitational wave contribution, a
tensor-to-scalar ratio (r) of 0.1 is used. Middle and bottom figures from [8] in which it was
adapted from [10] and [11].

5

these inhomogeneities [12].

To quantify the anisotropy at different length scales, it is useful to decompose the tem-

perature pattern into spherical harmonics:

∆T

T
=
∑
l,m

almYlm(θ, φ)

where measurements of the coefficients alm yields a sampling of their distribution. Under

the assumption that the Universe is isotropic we can average together the modes at a given

angular frequency l. We can then quantify the variance, given by Cl, at an angular frequency

l with:

Cl =
1

2l + 1

∑
m

〈a∗lmalm〉

Plotting Cl as a function of l reveals a power specturum like that of the temperature line in

Figure 1.1 and the top plot of Figure 1.2. The shape of the power spectrum encodes the 6

parameters of the ΛCDM model. Temperature anisotropies in the CMB were first discovered

by COBE in 1992, and subsequent experiments have better characterized the shape of the

power spectrum [13][14][15][16].

1.3.2 Polarization Anisotropies

Polarization anisotropies in the CMB are imprinted at the surface of last scattering as a re-

sult of quadrupole anisotropies in the plasma density. As shown in Figure 1.3, hot and cold

photons originating from a quadrupolar pattern create a net polarization after being Thom-

son scattered toward the observer. Three physical effects may have created quadrupolar

anisotropies in the surface of last scattering [18]:

• Density Fluctuations - Density fluctuations in the plasma form a scalar perturba-

tion that contains quadrupoles.

6

Figure 1.3: Net polarization resulting from Thomson scattering of photons originating from
a quadrupolar pattern. Cooler photons (red) originating from above can only scatter towards
the observer with horizontal polarization. Likewise, warmer photons (blue) originating from
the left can only scatter towards the observer with vertical polarization. Figure from [17].

• Vorticity - Vorticity in the plasma can lead to vector perturbations that result in

quadrupoles. In most inflationary models these modes are expected to be negligible

when compared with the scalar and tensor perturbations resulting from the other two

effects.

• Gravitational Waves - Gravitational waves remnant from inflation would be tensor

perturbations that create quadrupole variations.

These three types of perturbations result in different polarization patterns in the CMB [17].

To distinguish between the sources of polarization it is useful to decompose the polarization

field in the CMB into curl-free (“E-mode”) and divergence-free (“B-mode”) components.

Due to the symmetries involved in each type of perturbation, only scalar and tensor pertur-

bations contribute to E-mode patterns, and only vector and tensor perturbations contribute

to B-mode patterns. Given the expected magnitude of the effects, scalar perturbations are

expected to dominate the E-modes and tensor perturbations are expected to dominate the

7

B-modes at the surface of last scattering. This makes the primordial B-mode, if it exists, a

significant piece of evidence for the theory of inflation. Furthermore, in the simplest infla-

tionary models, the ratio of the amplitudes of the tensor and scalar modes, often referred to

as the “tensor-to-scalar ratio” or just “r”, would allow us to constrain the energy scale at

which inflation took place by [19]:

V 1/4 ∝ 1016r 1/4 (1.1)

Although the B-modes at the surface of last scattering can originate from gravitational

waves, there are two significant additional sources of B-mode patterns that the CMB collects

on its journey from the surface of last scattering to our telescopes:

• Gravitational lensing - Gravitational lensing of the CMB by intervening galaxies mixes

E-modes and B-modes into each other [16]. The B-mode signal is expected to be much

smaller than the E-mode signal, therefore this mixing contributes relatively little to

the E-mode pattern but contributes largely to the B-mode pattern. The B-modes in-

troduced by gravitational lensing will occur at smaller angular scales than those of

the primordial B-modes, which allows us to distinguish between the two as shown in

Figure 1.1. In addition, the magnitude of the lensing signal can be estimated using cur-

rent measurements of the matter density in the Universe to integrate the gravitational

potential along the line of sight.

• Galactic dust - Polarized dust emission from our Galaxy contributes B-modes at the

same angular scales as the primordial B-modes [20]. However, B-modes from Galactic

foregrounds will have a different frequency response than those from gravitational

waves. We can therefore subtract foreground contaminents by characterizing them at

different frequencies.

Polarization anisotropies were first detected by DASI in 2002 [21]. To date the E-mode

spectrum has been characterized by many experiments [22][23][24][10][25][26], and an indirect

8

measurement of lensing B-modes was made by SPTPol in 2013 [11]. The data points from

many of these experiments are shown in the middle and bottom plots of Figure 1.2. Fur-

thermore, in 2014 BICEP2 announced a discovery of the inflationary B-modes [27], though

subsequent papers have cast doubt on the origin of BICEP2’s B-mode measurements, in-

cluding recent dust measurements by Planck [28].

∗

∗ ∗

In this thesis we describe the E and B Experiment (EBEX), a balloon-borne CMB po-

larimeter. EBEX is designed to measure or place an upper limit on the inflationary gravita-

tional wave B-modes and to detect the lensing B-modes. In addition to detectors sensitive to

radiation at 150 GHz and 250 GHz, EBEX employs detectors sensitive to the relatively high

frequency of 410 GHz. This enables EBEX to characterize the polarized dust foregrounds so

that they can be removed.

9

Chapter 2

EBEX Overview

2.1 Science Goals

EBEX is a balloon-borne telescope designed to achieve the following three science goals by

measuring the polarization of the CMB between 20 . l . 1000:

• To detect or place an unprecedented upper limit on the primordial gravitational wave

B-mode signal [29].

• To characterize the polarized dust emission and to determine its angular power spectra

in both E-mode and B-mode polarizations.

• To achieve a high signal-to-noise detection of both the lensing induced B-modes and

the power spectrum of the lensing deflection angle.

EBEX was flown in 2009 as a full system test, and then flown again in December 2012 / Jan-

uary 2013 to collect scientific data (which we will refer to as simply the 2012 flight).

2.2 Observation Strategy

EBEX is designed to climb into the stratosphere above Antarctica on a large helium balloon

and float at about 120 000 ft (37 km) for two weeks while pointing at specific patches of the

10

southern celestial sky.

The thin atmosphere at float altitude allows EBEX to measure the CMB with high signal-

to-noise when compared with ground based experiments, especially at higher frequencies, due

to a number of reasons:

• Lower fluctuations in atmospheric emission result in a smaller noise contribution.

• Lower absolute level of atmospheric emission results in lower optical loading which

allows for higher instantaneous detector sensitivity.

• Lower atmospheric absorption at 410 GHz allows more CMB photons to reach the

telescope (this effect is less significant at 150 GHz and 250 GHz).

EBEX is supported as a long duration balloon project by NASA’s Columbia Scientific

Balloon Falicity (CSBF) and so it is designed to be launched from Willy Field near McMurdo

Station in Antarctica and travel westward around the continent with the polar vortex winds.

The altitude that the payload reaches is a function of, among other things, the weight of the

payload, and in 2012 EBEX flew between 110 500 ft and 120 500 ft. The duration that the

payload can remain at float is generally longer than two weeks, and so is not the bottleneck

for how long EBEX can collect scientific data. Instead the flight is limited by the capacity of

the cryogenic system that keeps the detectors cold. During the 2012 Antarctic flight EBEX

collected scientific data for ∼11 days.

EBEX is designed to scan a 400 square degree patch of the sky centered on right ascension

4.8 h and declination −45.5◦ to extract scientific parameters from the CMB. We call this the

“science” patch. The location of this patch was chosen for its low foreground contribution,

and the size was chosen to be maximally sensitive to IGB B-modes. In addition, EBEX is

designed to scan the embedded star cluster RCW 38 for pointing and signal calibration, in

what we call a “calibrator” scan patch. It is also designed to take occasional elevation dips

to calibrate for atmospheric loading.

11

2.3 Instrument

2.3.1 Gondola and Attitude Control

The components that constitute the EBEX payload are mounted to an aluminum structure

called a gondola. The gondola is designed in such a way that it can support all of the

necessary components while having the freedom to actuate the desired attitude control, all

the while keeping the entire telescope within the geometric constraints required for launch

and under the weight limit for flight. A model of the gondola is shown in Figure 2.1.

The gondola is composed of two large sections, an outer frame and an inner frame. The

optics and receiver are mounted to the inner frame, which can move in elevation (up and

down) relative to the outer frame. A linear actuator attached to both frames controls this

motion. The outer frame hangs from a triangular support structure, which effectively hangs

from the balloon. In between the support structure and the connection to the balloon system

is a motor (referred to as the pivot motor) that controls the azimuth motion of the gondola.

In addition, a reaction wheel, driven by another motor, is mounted to the outer frame and

contributes to azimuth control.

The attitude control system (ACS) collects pointing information and controls the gondola

during flight. Pointing information is used in post-flight analysis to place detector samples

into the correct pixels on a sky map, and is used during flight for real-time attitude control.

Real-time attitude control is necessary to realize the desired scan patterns, which have been

designed to maximize the scientific output from the flight, and to support subsystems that

have special pointing requirements. These subsysems include the star cameras, which require

stationary pointing, the power system, which requires sun coverage on the solar panels, and

various other subsystems that have sun shielding requirements for thermal reasons.

The ACS’s sensors and control loops will be discussed in more detail in Chapter 3.

The ACS’s actuators, along with the gondola in general, are discussed in more detail else-

where [30][31].

12

Figure 2.1: A model of the gondola and the telescope components that it houses. Some of
the critical components from the attitude control, power, optics, and detector systems are
labeled.

13

Figure 2.2: A model of the warm optics. Light from the sky reflects off the primary mirror
onto the secondary mirror and then into the cryostat. Figure courtesy of Huan Tran.

2.3.2 Optics and Receiver

The EBEX receiver is located inside a cryostat. As a result, it is convenient to group the

optical components of the telescope into two categories: warm and cold, which respectively

sit outside and inside the cryostat.

The warm optics consist of two mirrors that sit in an off-axis Gregorian Mizuguchi-

Dragone configuration as shown in Figure 2.2. Light from the sky first encounters the

primary mirror, which is a 1.5 m section of a paraboloid, then reflects off the secondary

mirror, which is a 110 cm by 98 cm section of an ellipsoid, before making its way into the

cryostat. The Gregorian Mizuguchi-Dragone configuration is chosen to minimize polarized

systematics [32].

After reflecting off the warm mirrors, radiation from the sky enters the cryostat through

a 0.02 in thick 30 cm diameter vacuum sealing window. Until the payload reaches float

an additional 0.5 in thick window helps maintain the more significant pressure differential

between the cryostat and the atmosphere. The cryostat contains five progressively cooler

stages: 300 (ambient), 77, 4, 1, and finally 0.25 K where the detectors are located. Low-pass

14

Figure 2.3: A model of the receiver, which contains the cold optics. The window is the entry
point for light into the cryostat. Filters help protect subsequent stages from thermal load.
A half-wave plate and polarizing grid are used for polarimetry. Lenses re-image the primary
mirror onto an aperture stop and the two focal planes.

filters are installed at each of the first three stages to reduce thermal loading on subsequent

stages [33]. Lenses re-image the primary mirror onto a 22 cm (cold) aperture stop and then

again onto the focal planes. An achromatic half-wave plate (HWP) is located at the cold

aperture stop, which modulates the polarization of the light before it encounters a wire grid

polarizer. The polarizing grid is mounted at 45◦ to the optical path and splits the light into

two polarizations, sending each polarization to one of two separate focal planes. On each

focal plane conical feed horns couple the light to the detectors. The frequency bands for the

detectors are defined by high-passing wave guides and low-passing metal mesh filters. The

receiver is discussed in more detail elsewhere [34][35].

15

Figure 2.4: (left) An example focal plane. Each focal plane has four 150 GHz wafers, two
250 GHz wafers, and one 410 GHz wafer. Detectors within 3◦ of the center have a Strehl
ratio greater than 0.9, as shown by the black circle. (center) An example wafer. (right) An
example TES bolometric detector.

The EBEX optical design results in an 8′ beam and Strehl ratio greater than 0.9 across

6◦ of field of view for all three frequency bands (see Figure 2.4).

2.3.3 Polarimetry

The half-wave plate rotates continuously in order to rotate the polarization of the incoming

light at twice the HWP rotation rate (f). This modulates the signal at 2f before the wire

grid polarizer separates it into horizontal and vertical states and sends each state to one

of the two focal planes. Since the detectors are phase insensitive, they measure a given

polarization signal at 4f . Combined with the non-zero scan speed of the telescope, this

puts the sky signal into sidebands of 4f , which greatly mitigates errors for two reasons.

The first is that it moves the signal away from low frequency noise. The second is that it

distinguishes polarized sky signal from polarized emissions originating from the telescope

itself. For example:

• constant polarized emission originating from telescope components behind the HWP

are found at 0 Hz (i.e. unmodulated)

16

• constant polarized emission originating from telescope components in front of the HWP

are found at exactly 4f

• polarized signal from the sky is found in the sidebands of 4f because it is additionally

modulated by the scanning motion of the telescope

The HWP rotates on a superconducting magnetic bearing in order to reduce friction,

which would otherwise be a significant source of thermal noise [36]. A tensioned kevlar belt

drives the HWP. Slots in the HWP mechanism, combined with an LED and a cryogenic

photodiode detector, allow us to measure the angular position of the HWP as an optical

encoder. The EBEX polarimetry system is discussed in more detail elsewhere [37][35].

2.3.4 Detectors and Readout

The EBEX detectors are transition edge sensor (TES) bolometers. A bolometer is a device

that allows one to measure the power of incident light on it by detecting a change in its elec-

trical resistance. It consists of an absorber connected to a thermal bath with a weak thermal

link so that it warms due to incident light, and a thermometer to measure the temperature

of the absorber (see Figure 2.5a) TES bolometers are superconductors that are highly sensi-

tive to changes in temperature because of their narrow superconducting transition, as shown

in Figure 2.5b. The EBEX bolometer signals are amplified with superconducting quantum

interference devices (SQUIDs) [38].

The bolometers are fabricated onto silicon wafers using thin film deposition and optical

lithography. Each wafer holds 139 bolometers, and each focal plane holds 7 wafers. On each

focal plane there are four 150 GHz wafers, two 250 GHz wafers, and one 410 GHz wafer, as

shown in Figure 2.4. Although these numbers suggest that there could be 1946 detectors in

operation, for various reasons (primarily limitations on fabrication yield) there were 1107 in

operation during the 2012 Antarctic flight [39].

Voltage biasing and read out is controlled by 28 electronics boards with preprogrammed

17

(a) (b)

Figure 2.5: (a) Conceptual diagram of a bolometer. An absorptive element with temperature
T and heat capacity C absorbs incoming power P, which is then conducted to a thermal bath
at temperature T bath through a weak thermal link with conductance G. Diagram courtesy
of Johannes Hubmayr. (b) Superconducting transition shows a steep change in electrical
resistance as a function of temperature.

field-programmable gate array (FPGA) processors that we call digital frequency domain

multiplexing (DfMUX) boards. The DfMUX boards have digital-to-analog converters and

analog-to-digital converters to generate analog carrier signals and read analog bolometer

signals. To reduce thermal load on the cryostat by limiting the number of wires between

stages, the readout system frequency multiplexes the signals by a factor of 16 [38][39].

2.3.5 Telemetry

CSBF supports the payload with telemetry to allow ground operators to communicate with

the telescope during flight. During the first day of flight, the payload is within line-of-sight

and can use high rate communication. After that we rely on the TDRSS and Iridium satellite

systems for communication so data rates and delays worsen.

The ground operators do not require the ability to send large commands (in terms of

data size), so during satellite communication the commanding delay is the primary concern

18

for uplink. The primary concern for downlink is data rate, as the ground operators require

significant amounts of data to monitor the telescope and perform diagnostics. During line-

of-sight communication the downlink data rate is 1 Mbps. Outside of line-of-sight the data

rate depends on whether the pointed high gain antenna is operational at 70 kbps, or if the

system has to fall back on the omnidirectional antenna at 6 kbps. Data prioritization and

compression schemes are employed to make the most of the limited bandwidth [40].

2.3.6 Power

The gondola is powered by lithium ion batteries that store enough energy to support the

experiment for several hours. The batteries are recharged at float by solar panels. The solar

panels face backwards, since the EBEX scan strategy involves pointing roughly anti-sun, and

are tilted upward to maximize exposure to the sun. The power system is discussed in more

detail elsewhere [31].

2.3.7 Thermal

Most of the payload components are shielded from solar radiation by a large baffle structure

called the sun shield. Another baffle structure, called the ground shield, protects the mirrors

and surrounding area from ground radiation. These baffle structures are composed of foam

pieces lined with aluminized mylar and mounted to an aluminum skeleton.

Being shielded from the sun, most of the electronics do not overheat as their excess power

is transfered to the gondola or directly radiated away. The 28 DfMUX boards discussed

in Section 2.3.4, however, consume approximately 600 W of power combined. They are

distributed across four crates mounted on the sides of the gondola, which do not have enough

surface area to dissipate this heat through conduction to the gondola and radiation to space.

To solve this problem, EBEX has a liquid cooling system that pumps Dynalene HC-40 to

transfer heat from the readout crates to large aluminum radiator panels located at the front

19

of the gondola. The thermal design is discussed in more detail elsewhere [31].

20

Chapter 3

Attitude Control System

3.1 Introduction

The attitude control system (ACS) can be broken down conceptually into three categories:

1. Sensors - Data from seven types of pointing sensors, discussed in Section 3.4, are

stored on disk for post-flight processing and fed into the flight computers for real-time

processing.

2. Control Algorithms - Real-time attitude determination algorithms on the flight

computers calculate a telescope boresight attitude solution at every timestep. Flight

computer and digital signal processor (DSP) control loops combine this attitude solu-

tion with desired scan patterns to output signals for the motor controllers.

3. Actuators - Three motors drive the telescope in azimuth and elevation.

Two redundant flight computers run high level control alrogithms, and are located inside

a crate known as the flight computer crate. DPSs run low level control loops and are located

on custom electronics boards that we refer to as “ACS cards”, which are located inside a crate

known as the ACS crate. There are four ACS cards inside the ACS crate, and in addition to

the low level control loops they also handle input/output (I/O) for the sensors and actuators.

The ACS crate also routes power and signal lines to and from ACS components. In addition

21

to the two flight computers, the flight computer crate also houses two redundant network

switches and custom boards that handle timing and watchdogging. Two pressure vessels

protect the hard disks from the space-like environment.

The ACS data flow is shown in more detail in Figure 3.1. Much of the attitude control

system is adopted and expanded upon from the Balloon-borne Large Aperture Submillimeter

Telescope (BLAST) [41].

In this chapter we begin by reviewing coordinate systems and discussing the pointing

requirements. We then discuss the sensors and control algorithms in detail.

3.2 Coordinate Systems

3.2.1 Celestial Coordinate Systems

Table 3.1: Summary of the three coordinate systems used in this document. A more in depth
discussion of celestial coordinate systems can be found in [42].

Coordinate Fundamental Reference Azimuth Elevation
System Plane Point Coordinate Coordinate
horizontal horizon true north azimuth elevation
equatorial celestial equator vernal equinox right ascension declination
galactic galactic plane galactic center galactic longitude galactic latitude

There are three coordinate systems that we will use in this document to define the

direction that the telescope is pointing at an instant in time: the horizontal, equatorial,

and galactic systems. In each system there is an azimuth coordinate and an elevation co-

ordinate, which are the equivalent of longitude and latitude in the geographic coordinate

system used to describe locations on Earth. These coordinate systems describe a direction

in space, as if the telescope is pointing at a celestial object, but do not include a distance

coordinate (which would be akin to altitude in geographic coordinates), and so the two co-

ordinates can be thought of as defining a point on a unit sphere that is sometimes called the

22

reaction wheel motor elevation motorpivot motor

pivot motor
controller

reaction wheel motor
controller

elevation motor
controller

ACS Card 1

low-level azimuth
velocity PID loop

In-Charge Flight Computer

scan control loop

scheduler

uplink
receive

callbacks

attitude
determination

loop

ACS Card 2

low-level elevation
position PID loop

gyroscopes

star camerassun sensors

magnetometersDGPSs

elevation encoder

clinometer

ground stationSensors

Control Algorithms

Actuators

Figure 3.1: Overview of the attitude control system. Filled blue boxes represent soft-
ware/firmware loops. Black bordered boxes represent physical components. The physical
components can be grouped into three categories represented by red lines: sensors, control
algorithms, and actuators. There are many physical connections between components, but
the arrows here represent the relevant flow of data. Sensor data is used by the flight com-
puters to compute a real-time attitude solution (see Section 3.5.1) and run a scan control
loop (Section 3.5.2) to output a requested azimuth velocity and elevation position for the low
level control loops. The gyros and elevation encoder are also used directly by the low level
control loops, along with the requested azimuth velocity and elevation position, to output
requested power for the motor controllers (see Section 3.5.3).

23

spacecraft-centered celestial sphere [42]. The two coordinates must be defined in relation

to a fundamental plane, which is the equivalent of the equator in geographic coordinates,

as well as a reference point or reference meridian to define the zero-point of the azimuth

coordinate, which is the equivalent of the Prime meridian that passes through Greenwhich

in geographic coordinates. The two coordinates also take on different names in each coor-

dinate systems. We will describe the three coordinate systems below and summarize their

definitions in Table 3.1.

• Horizontal Coordinate System - The fundamental plane of the horizontal coordi-

nate system is the horizon as viewed from the telescope’s local vantage point on Earth,

and the reference point is true North. A more strict definition of the fundamental plane

is that it divides the celestial sphere in half and is normal to the line that runs through

the telescope and the center of the Earth. This more strict definition accomodates the

fact that the actual horizon cannot be used as the fundamental plane on high altitude

payloads, as the horizon at those altitudes is approximately 6◦ lower in elevation than

the plane that divides the celestial sphere in half.

In this system the azimuth and elevation coordinates are simply named azimuth and

elevation.

We use this coordinate system for real-time control of the telescope, because its

axes are conveniently aligned with the motors of the telescope. This fact is evident

when you consider that the line passing through the center of the Earth, which defines

the horizontal coordinate system, is aligned with the gravity vector that keeps the

telescope upright when hanging from a balloon. The pivot and reaction wheel motors

which rotate the gondola left and right are in fact controlling azimuth, while the motor

that drives the inner frame up and down is controlling elevation. FCP performs its

real-time attitude determination in this coordinate system.

• Equatorial Coordinate System - The fundamental plane in this system is the ce-

24

lestial equator, which is the Earth’s equator projected onto the celestial sphere, and

the reference point is the vernal equinox. The two relevant angles are called right

ascension and declination. This system is fixed with respect to the stars1. We can

convert between this system and the horizontal system if the geographic location of

the telescope and the time of the observation are known.

This is the system that the star cameras fundamentally operate in, since they find

pointing solutions based on catalog star positions that are defined in this coordinate

system (see Chapter 4). In real-time, however, the star camera solutions are converted

to angles in the horizontal coordinate system for the flight computers. This system is

also convenient for map making and scientific analysis, as the maps are independent of

the telescope’s location and the times of the observations, so maps created by different

observations should be similar. We use this system for pointing reconstruction.

• Galactic Coordinate System - In this system the fundamental plane is defined

to be approximately aligned with the galactic plane, and the reference point is in

the approximate direction of the center of our galaxy. The two relevant angles are

called galactic longitude and galactic latitude. This system is useful for the same

reasons that the equatorial system is useful, though the equatorial system can be

more intuitive when thinking about scan patterns for an Earth-bound or suborbital

telescope. However, the galactic coordinate system is more convient for analysis that

requires making special accomodations for the galaxy. We primarily use this coordinate

system when constructing maps during post-flight analysis.

3.2.2 Roll Angle

When describing the orientation of the telescope, we are also concerned with a third angle.

This angle is the rotation of the telecope about its pointing vector, or the “roll” angle. Note

1Whether this is entirely accurate depends on whether one includes the Earth’s precession and nutation
in their definition.

25

that this is not identical to the third angle commonly used in spherical coordinates, e.g.

altitude in geographic coordinates or ρ in a mathematical (φ, θ, ρ) system. Instead this

third angle completes a set of angles that are known as Euler angles. Euler angles describe

the rotation of one basis with respect to another. In our case, we often define the rotation

of the gondola body frame, which is a basis that is fixed to the telesope optics, with respect

to the equatorial reference frame or the galactic reference frame.

The roll must be included in the reconstructed pointing solution for two reasons. The

first is that the pointing solution of the microwave boresight must be rotated into a pointing

solution for each individual detector and this rotation depends on the roll of the boresight.

The second reason reason is that the angle of the half-wave plate axis with respect to the

celestial coordinate system must be preserved for polarization analysis.

3.2.3 Fair Measure Coordinates

When discussing pointing errors we will often use an angle called cross-elevation as a replace-

ment for azimuth. The reason is that an azimuth differential does not represent a consistent

angular distance2 at different elevations due to the nature of spherical coordinates. As an

example, consider two points separated by 10◦ in azimuth. If they are both located at 0◦

elevation then they are separated by an angular distance of 10◦. However if they are located

at 60◦ elevation, then they are only separated by an angular distance of 5◦ due to the fact

that the meridian lines close in on each other as they approach the poles.

A cross-elevation differential is defined as an azimuth differential multiplied by cos(elevation).

We use it as as the “x-coordinate” when discussing pointing errors because it provides a mea-

sure of angular distance under a flat sky approximation with small angles. Similarly, we use

cross-declination instead of right ascension when discussing pointing errors in the equatorial

coordinate system.

2When using the term “angular distance” we are referring to the arc length of a great circle arc connecting
two points.

26

3.3 Pointing Requirements

The attitude control system determines the pointing of the telescope for two distinct pur-

poses: as part of a feedback loop to control the telescope in real time, and as part of the

post-flight data analysis procedure for map making. The real-time and post-flight pointing

requirements are different, and are discussed here.

3.3.1 Real-Time

The real-time pointing requirement is roughly 0.5◦ in cross-elevation and in elevation, and

is related to the size of the calibrator patch. The calibrator scan, discussed in Section 3.5.2,

is a raster scan designed to be just large enough so that every pixel in the ∼7◦ focal plane

scans past the relatively small calibration source RCW 38.

The consequence of a real-time pointing error is that the calibrator patch must be ex-

panded to contain a buffer on each edge to ensure that every detector will still scan past the

calibrator source. Increasing the calibrator scan size results in more time spent performing

calibrator scans, and thus less time spent performing science scans. Buffers of more than

∼10 % of the focal plane width, or ∼0.7◦, consume a significant fraction of the flight time

given the number of calibrator scans we must perform. We therefore set the requirement at

0.5◦, safely under 10%.

The real-time pointing algorithms assume that the telescope has zero horizontal roll,

i.e. it is balanced left-right. A left-right imbalance, multiplied by the lever arm from the

telescope boresight to an off-axis detector, also results in a pointing error. However, given

the pre-flight balancing procedure and the magnitude of roll pendulations at float, this effect

is subdominant.

27

3.3.2 Post-Flight

In post-flight data analysis, the pointing at every timestep is used to place detector samples

in the correct pixel on a map. A power spectrum of the map reveals scientific results, and

pointing errors have the effect of biasing these results. Therefore, the post-flight pointing

requirement is much more stringent than the real-time requirement, and it happens to be

much more strict. The requirement is specified in the map domain, and requires that the

average of all the pointing errors inside a given pixel of size 2′ be less than ∼ 10′′ [43]. It

is calculated by requiring that the most dominant effect caused by pointing errors, which is

the mixing of E-modes into B-modes at small angular scales [44], be negligible.

3.4 Sensors

EBEX employs six different types of absolute sensors to measure angular position and high

precision optical gyroscopes to measure angular velocity. The flight control program (FCP)

acquires measurements from each sensor and records them to disk. FCP also holds a con-

tinuous real-time pointing stream for each active axis of each absolute pointing sensor. This

means that at every timestep of the real-time attitude determination loop FCP has an esti-

mate of the current azimuth and/or elevation of each pointing sensor that is active for those

coordinates. Each of these pointing streams is the result of combining the absolute sensor

data whenever it is available with gyroscope data, which is assumed to always be available

at the rate of the attitude determination loop. The attitude determination loop, which runs

at 100.16 Hz, runs synchronously with the ACS sensor data acquisition loop.

The different types of absolute pointing sensors have varying degrees of precision, accu-

racy, reliability, and rates. For example, the star cameras are more precise and more accurate

than the magnetometers, but are more complex and therefore less reliable, and only provide

new measurements every 40 seconds. For the absolute sensors it is important to distinguish

between their measurement precision, sensor accuracy, and boresight accuracy:

28

• Measurement Precision - Each sensor has an inherent limitation on the precision

with which it can measure its own orientation with respect to some physical reference.

For example, the EBEX differential GPS (DGPS) can measure its azimuth with respect

to the GPS satellite constellation with a precision of 24′.

• Sensor Accuracy - Most of the absolute sensors are not limited by their inherent

precision, rather they are limited in the accuracy with which they can convert their

orientations into an azimuth or elevation measurement that is fixed with respect to

the inner frame of the gondola. For example, the DGPS antenna system is mounted

to a structure that has some azimuthal torsion with respect to the gondola’s inner and

outer frames, limiting its accuracy to 1◦.

• Boresight Accuracy - A sensor’s accuracy is also limited by the accuracy of a cal-

ibration angle that aligns its measurement of azimuth or elevation with that of the

microwave boresight of the telescope (i.e. the center of the focal plane). For example,

the DGPS antenna system is installed in rough azimuthal alignment with the telescope

boresight, but not exactly, so a correction is applied that is only accurate to 0.5◦. Any

time a calibration angle is determined for an individual sensor, it is used to calculate

the calibration angles for all the absolute sensors, because the relative angles between

all the absolute sensors are known. Therefore all the absolute sensors suffer from the

exact same error in caibration angle.

All of the absolute pointing sensors are listed in Table 3.2, along with their measurement

precision, predicted sensor accuracy, and data acquisition rate. The boresight accuracy is

not included because it is the same for all sensors. The measured real-time performance of

each sensor is shown in Figure 3.2, which includes the limitations on boresight calibration,

and also notably includes the limitation on the star camera pointing streams that results

from their low measurement rate (this limitation will be explained in Section 3.5.1).

The gyroscopes and star cameras form the core of the pointing system given their accu-

29

Table 3.2: Table of absolute sensors. The different types of sensors are listed, as well as their
short names (used elsewhere in this document) and how many of each type are flown (Num).
In most cases EBEX flies two of each type of sensor for redundancy. This table includes
which axes the sensors are capable (C) or not capable (N) of measuring, and - if an axis is
cabable of being measured - whether or not a real-time pointing stream is implemented (I)
for that axis in the flight computers. Not all capable axes are implemented due to limited
benefits and limited manpower. The table also lists each sensor’s measurement precision,
predicted sensor accuracy, and data acquisition rate.

Short Meas. Predicted Data
Sensor Type Name Num Az El Roll Precision Accuracy Acq. Rate
star camera xsc 2 I I C 1.8′′ 1.8′′ 0.025 Hz
sun sensor pss 2 I C N 1′ 1◦ 100.16 Hz
magnetometer mag 2 I C C 12′ 4◦ 100.16 Hz
dgps dgps 2 I N N 24′ 1◦ 5 Hz
elevation encoder enc 1 N I N 20′′ 30′ 100.16 Hz
clinometer clin 1 N I C 3′ 30′ 100.16 Hz

racy, while the remaining absolute pointing sensors are considered coarse sensors due to their

limited accuracy. We will discuss the gyroscopes and star cameras in detail in the following

sections and chapters, and briefly review each of the coarse sensors.

3.4.1 Gyroscopes

EBEX uses six KVH DSP-3000 fiber optic gyroscopes (gyros). We mount three gyros or-

thogonally inside an aluminum box to create a 3-axis gyro box, and then fly two of these

gyro boxes for redundancy.

These gyros have an angle random walk (noise) of 4 ◦/h/
√

Hz, which as discussed below

largely determines how well we can reconstruct the pointing post-flight. There are also two

significant systematic errors that need to be accounted for in this gyro system:

• Bias instability. The bias drifts over time. This is accounted for in the real-time

and post-flight pointing construction filters by comparing integrated gyro readings to

differential measurements from the absolute sensors.

30

Figure 3.2: The performance in cross-elevation (left column) and elevation (right column)
of each absolute pointing sensor during the EBEX 2012 Antarctic flight. Each plot shows
a histogram of the differences between the “true” pointing and the pointing measured in
flight. The true pointing is taken to be the post-flight reconstructed pointing stream. The
measured pointing is the individual pointing stream from each active axis of each absolute
pointing sensor that was calculated during flight by the flight control program. However, the
calibration angles to the microwave boresight used here may differ from those used in flight.
The angles used here are those determined before flight on the ground, and used during flight
up until the coarse sensors were calibrated to the star cameras. This gives a fair evaluation
of how the sensors performed individually, without the help of the star cameras. Note that
not all sensors had valid pointing streams throughout the flight, as indicated by the percent
coverage shown in each plot. Most notably the sun sensors had very limited coverage because
they did not cover the full azimuth range, and the ebex dgps had no coverage at float for
unknown reasons.

31

• Non-orthogonality. The three gyros in each box are not mounted exactly orthogonal

to each other. The magnitude of the misalignments can be determined by performing

the procedure described below, which is used to calculate an “orthogonalization” ma-

trix that can be applied to the gyro measurements to correct for these misalignments.

Gyro Orthogonalization Procedure

The procedure for determining the orthogonalization matrix involves rotating the gyro box

about each of three axes. To understand how it works we must first distinguish between two

bases that are close to each other but not identical:

• The three axes defined by the orientation of the three physical gyros (1̂, 2̂, 3̂)

• An ideal, imaginary orthogonal basis (x̂, ŷ, ẑ) that is close to the other basis

The matrix we are looking to create transforms angular velocity measurements along

(1̂, 2̂, 3̂) into measurements along (x̂, ŷ, ẑ):

ωx

ωy

ωz

 = O

ω1

ω2

ω3

An arbitrary rotation can be written as

~ω = ωxx̂+ ωyŷ + ωz ẑ

so the angular velocity that gyro1 (oriented along 1̂) will pick up from an arbitrary

rotation ~ω is

ω1 = ~ω · 1̂ = ωxx̂ · 1̂ + ωyŷ · 1̂ + ωz ẑ · 1̂ =

[
1̂ · x̂ 1̂ · ŷ 1̂ · ẑ

]
ωx

ωy

ωz

32

Doing the same for ω2 and ω3 gives

ω1

ω2

ω3

 =

1̂ · x̂ 1̂ · ŷ 1̂ · ẑ

2̂ · x̂ 2̂ · ŷ 2̂ · ẑ

3̂ · x̂ 3̂ · ŷ 3̂ · ẑ

ωx

ωy

ωz

 =⇒ O−1 =

1̂ · x̂ 1̂ · ŷ 1̂ · ẑ

2̂ · x̂ 2̂ · ŷ 2̂ · ẑ

3̂ · x̂ 3̂ · ŷ 3̂ · ẑ

which is simply the inverse of what we’re looking for.

Rotating the gyro box about the ideal axes (x̂, ŷ, ẑ) allows us to measure the terms in

O−1. To see why, imagine rotating the gyro box about x̂, recording the velocities measured

by gyros 1 and 2, and dividing them:

ω2

ω1

=
2̂ · (ωxx̂)

1̂ · (ωxx̂)
=

2̂ · x̂
1̂ · x̂

The key to making use of this measurement is to recognize that under a small angle

approximation to first order, we can approximate the denominator as being 1, thus giving

us a direct measurement of one of the off-diagonal terms in the inverse orthogonalization

matrix O−1:

2̂ · x̂
1̂ · x̂

=
cos θ2x
cos θ1x

=
sin θ2y
cos θ1x

≈ θ2y
1− 1

2
θ21x
≈ θ2y

1
≈ 2̂ · x̂

where θ1x is the angle between 1̂ and x̂, θ2x is the angle between 2̂ and x̂, and so on. The

small angle approximations can be made for angles between corresponding axes, namely θ1x,

θ2y, and θ3z (but not, for example, θ2x). The conceptual interpretation of this approximation

is that when rotating about x̂, gyro1 can accurately (to second order) be used as a measure

of the true angular velocity ω, while the pickup in gyro2 is a measure of its own misalignment

(to first order) from the ideal basis. By the same logic, the diagonal terms are approximated

as unity.

When rotating about a given axis, continuous streams of data are taken, then the data

for the two gyros are plotted against each other (as shown in Figure 3.3 and in Appendix A),

33

Figure 3.3: Example data from a gyro orthogonalization test. The box is placed on the outer
face that gy1 is orthogonal to, and then rotated at various velocities for one minute. The an-
gular velocities measured by gy2 and gy1 are plotted against one another for every timestep.
The slope of the resulting best-fit line is used as an element in the inverse orthogonalization
matrix. The results from the final orthogonalization run before the 2012 flight are shown in
Appendix A.

34

and the slope of the best-fit line is used as the inverse orthogonalization matrix element. The

reason for this is two-fold. First, including multiple data points results in a more precise

measurement. Second, the slope of the best-fit line is not affected by any constant gyro

biases, whereas a simple division would be. To ensure that the biases are roughly constant

we only collect data for up to about one minute.

A final complication is that it is difficult to rotate the gyro box about the axes of an

idealized orthogonal basis. Instead we placed three external faces of the gyro box onto a

smooth (kapton tape lined) flat surface for the rotations. This method adds an error term

to each element of the matrix that is limited by the machine tolerance of the box surfaces,

which in our case is 5 mils and results in an error of ∼4.9′. The final values for the inverse

orthogonalization matrix are shown in Appendix A without this additional 4.9′ error.

Ultimately, the individual orthogonalization matrix values were not input into the post-

flight pointing reconstruction pipeline and applied directly. Instead the filter was allowed to

find its own angles through a least-squares optimization. However, the maximum orthogo-

nalization angle of ∼21′ determined by the procedure described here was used as a necessary

upper bound for the parameter search space. The results of the pointing reconstruction

procedure will be discussed in Section 10.2.3.

3.4.2 Star Cameras

The star cameras are the most precise pointing sensors. They capture images of the sky,

identify the stars in the images by comparing observed stellar patterns to those in an on-

board star catalog, and use these identifications to determine the pointing coordinates of

the images. These coordinates are then served to the flight computers. They also store

the images to disk for post-flight processing. The solutions are precise to 1.8′′ in cross-

declination, 1.8′′ in declination, and 67′′ in roll for four-star patterns. If more than four

stars are identified in an image the precision increases. However, the EBEX star cameras are

35

limited to only capturing images when the gondola is stationary (rotating less than 0.03 ◦/s),

which happens roughly once every 40 s, in order to minimize motion blur during the ∼ 300 ms

exposure time necessary to achieve the required sensitivity. The star cameras are discussed

in detail in Chapters 4 and 5.

3.4.3 Coarse Sensors

The suite of coarse sensors are less precise and less accurate, but are used to obtain pointing

information when the star cameras are not operating. In flight they are used to give a pointing

estimate to the star cameras, before the star cameras have found a pointing solution in order

to reduce the search parameter space. During ground tests, they are used to control the

gondola when stars are not available, most commonly during the day or when indoors. In

that case most often the magnetometers are used for azimuth and the elevation encoder

is used for elevation. In addition, the elevation encoder is used directly by the low level

elevation control loop due to its reliability. These coarse sensors are:

Sun Sensors - The sun sensors are custom built and employ Hamamatsu S5991-01

position sensitive diodes (PSD) as their sensors. Each PSD is contained in a housing with a

single pinhole so that the Sun illuminates one spot on the PSD. The position of the incident

light can be estimated by measuring the currents in four electrodes. From the mount angle

of the sun sensors, the current location of the sun, and an assumed roll (of zero), the azimuth

and elevation of the gondola can be determined. The sun sensors are calibrated before flight,

though calibration on the ground is difficult because of reflections and because the Sun

positions measured by the PSDs are biased by more sky brightness than the float conditions

for which the sensors are designed. Although the sun sensor is capable of measuring the

location of a bright spot to an accuracy of 1′, the pre-flight calibration limitations were

expected to degrade its in-flight accuracy to ∼1◦.

Note that the sun sensor is technically also a star tracker. However, since it is only

36

sensitive to one star - the Sun - it can only measure two angles (x and y on the PSD) and

thus it can only solve for two coordinates (azimuth and elevation, in our case) while having

to assume the third (roll).

Magnetometers - The magnetometers are TFS100 three axis magnetometers from

MEDA, inc. They measure the Earth’s magnetic field and, when compared with a mag-

netic model of the Earth, can be used to determine gondola attitude. Before flight and

during ascent we attempt to measure the gondola’s contribution to the magnetic field so

that it can be corrected for in flight. Although the magnetometer can measure its orien-

tation inside a magnetic field to ∼12′, limitations of the magnetic model near the Earth’s

magnetic poles and due to the gondola itself were expected to limit its in-flight accuracy to

∼4◦.

DGPSs - The Differential GPS (DGPS) unit is an ADU5 from Thales Navigation. Four

antennae are mounted in a fixed planar configuration, separated from each other by a few

feet. The DGPS unit provides the mount’s attitude solutions at 5 Hz. CSBF also flies their

own DGPS unit to control the attitude of their telemetric system. In the EBEX 2012 flight,

one of the flight computers had access to one DGPS unit, while the other flight computer had

access to the other DGPS unit. The antenna systems are not mounted on the inner frame so

they cannot be used to measure telescope elevation, though they are used for azimuth. They

are mounted on top of a gondola structure that primarily exists to support the triangle at the

top of the payload. The accuracy of the DGPS systems in predicting their own orientations,

given our configurations in which the antennae are mounted 1 m apart, is 24′. However, given

that the antennae are mounted on a support structure that can twist by approximately 0.5 in

at a lever arm of 4 ft, each system’s ability to measure telescope azimuth was predicted to

degrade to ∼1◦.

Elevation Encoder - The elevation encoder is a Gurley Model A25S optical encoder that

measures the angle between the gondola’s inner and outer frames. This can be considered

a measure of the elevation angle of the telescope where the sensor accuracy depends on the

37

Figure 3.4: Plot created during a clinometer calibration run in 2009. The clinometer exhibits
a significant (∼ 1.5◦) systematic error. The blue data points represent the difference in
elevation angles measured by the clinometer and the elevation encoder, as a function of
elevation angle (as measured by the encoder). The deviation from a line with slope zero is
due to a systematic error in the clinometer. This curve was fitted with a 5th order polynomial
and corrected for in FCP. After this correction was implemented, the test was repeated, and
the resulting data points in green show that the systematic error was removed to less than
0.1◦.

magnitude of gondola pendulations. Although the precision of a stationary reading is 20′′,

gondola pendulations in flight were expected to degrade the accuracy of the encoder as an

absolute pointing sensor to ∼30′.

Clinometer - The clinometer is a Model 904-T from Applied Geomechanics. It uses a

liquid-filled electrolytic transducer to measure two tilt angles that can be used to determine

elevation and roll. The clinometer has a significant systematic error that we measured and

accounted for in FCP, as shown in Figure 3.4. The accuracy of the clinometer, with this

38

systematic error corrected for, is roughly 3′ when the gondola is stationary. Sloshing of the

electrolytic fuild under gondola acceleration was expected to degrade this accuracy to ∼30′

in flight.

3.5 Control Algorithms

3.5.1 Attitude Determination Loop

FCP (the Flight Control Program) maintains a running pointing solution for each selected

axis of each absolute pointing sensor. A running pointing solution consists of an estimate

of the current angle of the sensor θ (either azimuth or elevation3) and an estimate of the

variance σ2. These individual pointing solutions are part of the larger attitude determination

loop, and so they are also calculated at 100.16 Hz. An individual pointing solution is the

output of a 1-D modified Kalman filter [45] that uses gyroscope data to interpolate between

absolute sensor readings when they are available.

At every time step FCP has a gyro measurement, ∆θg. with uncertainty σg, of how much

the gondola rotated since the last timestep:

∆θg = ωg∆t

σg = 40 ′′ s−1∆t

where ωg is the angular velocity of the gondola about the relevant axis, ∆t is the time

since the previous timestep, and the number 40 ′′ s−1 comes from the specifications of the

gyroscopes. We can then use this measurement along with the angle from the previous time

step (θi−1) to predict the angle for the current time step (θi), but in doing so the error also

increases:

3FCP does not maintain any roll solutions.

39

θi ← θi−1 + ∆θg

σ2
i ← σ2

i−1 + σ2
g

This is known as the prediction step.

If the absolute sensor has a new reading for this time step then the pointing solution is

corrected with the new reading θ′ (which has uncertainty σ′) by taking the weighted average

of the new reading and the existing angle from the prediction step. The weighted average is

calculated as:

θ ←
θ 1
σ2 + θ′ 1

σ′2

1
σ2 + 1

σ′2

1

σ2
← 1

σ2
+

1

σ′2

The consequence of this algorithm is that when no absolute sensor data is available the

uncertainty on the solution angle increases with time, and then the uncertainty drops back

down when an absolute measurement becomes available. For most of the sensors the measure-

ment rate is the same as the rate of this attitude determination loop, and so the uncertainty

converges to a fixed value. In the star camera pointing stream, however, the measurements

are only available every 40 seconds and so the uncertainty increases significantly between

measurements. This is why the error histograms for the real-time star camera streams in

Figure 3.2 are much wider than the star camera accuracy of 1.8′.

Each individual pointing stream also maintains an estimate of the corresponding gyro’s

bias. Between two timesteps when absolute sensor readings are available, the discrepancy

is calculated between how much rotation the absolute sensor detected and how much ro-

tation the gyro detected. This discrepancy is a single measurement of the gyro bias, and

each individual pointing stream maintains a running estimate of the gyro bias by passing

the individual measurements into 8 stage FIR filters. When the general pointing solution

40

is calculated, a general estimate of the gyro bias is also calculated. This bias is in turn ac-

counted for when using gyro measurements for the prediction step of each individual pointing

solution. In other words, it is accounted for in ∆θg above.

For each axis (azimuth and elevation), a general pointing solution is computed by taking

the weighted average of every absolute sensor’s individual pointing solution if the sensor is

enabled4. Before the averaging takes place a calibration angle for each sensor is included

so that the general pointing solution represents the pointing of the microwave telescope

boresight. The weight for each sensor is the inverse of its pointing stream’s variance.

3.5.2 Scan Control Loop

The scan control loop (also running at 100.16 Hz) takes the current attitude solution and

a desired scan command as inputs, along with any parameters associated with the scan

command. It outputs a requested azimuth velocity and elevation position for every timestep,

which it stores in variables that get communicated to the low level control loops discussed

in Section 3.5.3.

There are three primary scan commands that EBEX uses: the “cmb”, “calibrator”,

and “horizontal” scans. These three scans are essentially different realizations of a single

generalized raster scan, and are implemented as such in FCP. The flow of this algorithm is

shown in Figure 3.5.

The general raster scan starts at one corner of a rectangle, slews back and forth in

azimuth (at a fixed elevation), and then takes a step in elevation. It repeats this process

until it reaches the opposite edge of the rectangle. At each end point of an azimuth slew,

the gondola pauses long enough5 for the star cameras to capture images that do not contain

significant motion blur.

The general scan takes seven input parameters:

4During flight, gondola operators have the ability to manually disable sensors.
5The pause time is commandable, though a reasonable pause time is 1 s.

41

throw

snap

stepthrow_countdown == 0
truefalse

decrement
throw_countdown

reset
throw_countdown

Figure 3.5: A flow chart of the general EBEX scan. The scan can be in one of three
states: “snap” (the gondola remains stationary so that the star cameras can capture images),
“throw” (the gondola slews in azimuth at a fixed elevation), and “step” (the gondola steps
to the next elevation). The 3 different realizations of the scan (“cmb”, “calibrator”, and
“horizontal”) perform slightly different actions in the “step” state.

• x-coordinate center (azimuth or right ascention)

• y-coordinate center (elevation or declination)

• azimuth scan speed

• azimuth throw width

• y-coordinate width

• number of elevation steps

• number of azimuth throws in between elevation steps

These seven parameters either come from commands sent from the ground, or from sched-

ule files that are pre-loaded onto the flight computer disks. These are shown in Figure 3.1

as the “uplink receive callbacks” and the “scheduler” boxes, respectively. The scan control

loop knows when it is time to move from one state to another based on the current pointing

solution, which it receives from the attitude determination loop.

The three different realizations of the generalized scan do slightly different calculations

with the input parameters in the “step” state of the scan. This is because the “step” state

is where the gondola readjusts itself for the next series of azimuth throws. It is worth noting

here that except for the “step” state, all the differences between the three realizations are

attributed to the seven input parameters (e.g. “cmb” commands are called with a larger

42

Figure 3.6: Conceptual drawings of the coverage obtained by the horizontal scan (left), cmb
scan (center), and calibrator scan (right). The horizontal scan is fundamentally horizontal
based (e.g. in azimuth and elevation). The cmb scan is equatorial based, though the throws
are still performed at a fixed elevation, resulting in a tilt. The calibrator scan is horizontal
based except that it follows a fixed equatorial location.

argument for the azimuth throw width parameter than in a “calibrator” scan call). The

differences in the “step” state between the three realizations can be seen in the conceptual

drawings of their coverages in Figure 3.6, and are explained in detail here:

• horizontal scan - This is the most straightforward scan, though it is not used in flight.

It is typically used during ground testing. The steps are evenly spaced in elevation and

centered on a fixed azimuth.

• cmb scan - This is the scan used to collect scientific data during flight. The steps are

evenly spaced in declination and centered on a fixed right ascension. However, as in all

scans, the throws are still azimuth based, so the resulting coverage is more similar to a

parallelogram than a rectangle. During flight multiple cmb scans are used throughout

the day, and at different times of day the horizontal frame crosses the equatorial frame

at different angles. This results in approximately rectangular net coverage, and has

the added benefit of creating cross-linking within the patch, as shown in Figure 3.7.

The cross-linked coverage pattern is important in minimizing systematic errors.

• calibrator scan - The calibrator scan can functionally be thought of as a combination

of the horizontal and cmb scans. The purpose of the calibrator scan is to scan across a

43

(a)
(b)

Figure 3.7: Simulated coverage plots for the cmb scan. Subfigure (a) shows the resulting
coverage in equatorial coordinates from 1 day of flight, with red representing more coverage.
The cross-linking that results from performing multiple scans throughout the day can be
seen, as well as the resulting rectangular shape. Subfigure (b) shows the resulting coverage
from 11 days of flight for all 150 GHz detectors, with blue representing more coverage. Over
the course of an entire flight the coverage becomes more even.

point source in the sky (e.g. RCW 38) so that the entire EBEX focal plane is exposed

to it. As a result the center of the scan must follow a fixed set of equatorial coordinates

(right ascension and declination). However, the purpose is to raster scan a projection of

the EBEX focal plane on the sky, which is ultimately horizontal based (cross-elevation

and elevation) rather than equatorial based like the cmb scan. As a result, except

for the fact that the center follows a fixed equatorial point, the steps would be evenly

spaced in elevation and centered on a fixed azimuth.

44

3.5.3 Low Level Control Loops

Digital signal processors (DSPs) on the ACS cards translate the requested azimuth velocity

and elevation position from the flight computer into power level requests for the motor

controllers.

The DSP on ACS card 2 converts the requested elevation position, which it receives from

FCP, into a requested power level for the elevation motor. This requested power level is sent

as a pulse-width modulated (PWM) signal to the elvation motor’s controller. The DSP uses

a proportional-integral-derivative (PID) feedback loop to calculate the output signal, though

the derivative term is not implemented. The error term in the PID loop is the difference

between the requested position and the actual position reported by the elevation encoder,

to which ACS card 2 has direct access, as shown in Figure 3.1.

The DSP on ACS card 1 is responsible for the reaction wheel and pivot motors. The error

term for the reaction wheel motor is the difference between the requested azimuth velocity

and the actual velocity as measured by the gyros. The error term for the pivot motor is

the difference between the reaction wheel velocity and a set point, which is close to zero. In

this manner the reaction wheel attempts to accelerate the gondola to the requested azimuth

velocity through conservation of angular momentum, and the pivot prevents the reaction

wheel from saturating by acting to keep it at the set point, which the pivot achieves by

torquing against the flight train.

∗

∗ ∗

In the next two chapters we will dive into the details of the star cameras, the primary

absolute pointing sensors, because I was responsible for ensuring their success.

45

Chapter 4

Star Cameras

4.1 Introduction

The star cameras operate by capturing images of the sky and identifying stellar patterns that

can be associated with known stars in the field of view. We refer to the process of finding a

pointing solution with the star cameras as “solving”. The precision of a star camera solution

is primarily determined by the specifications of the physical camera. The EBEX star cameras

are designed to have a precision of 1.8′′ in cross-declination, 1.8′′ in declination, and 67′′ in

roll1. The two star cameras are named Star Camera 0 and Star Camera 1, with short names

XSC0 and XSC1.

Each star camera consists of a pressurized vessel that contains a digital camera, an em-

bedded computer, a hard disk, and various supporting electronics. The front of the vessel

contains a window, and an optical baffle is mounted to the vessel in front of the window

to limit stray light, reducing image noise. The EBEX flight computers control the cam-

era triggering so that the timing of each image can be precisely linked with other sensor

data recorded by the flight computers. The Star Tracking Attitude Reconstruction Software

(STARS) is a software package custom-designed for EBEX that runs on the embedded com-

1This is the precision for solutions that contain 4 stars. Solutions that contain more than 4 stars will
have higher precision.

46

puters. STARS downloads images from the camera controller when they become available

and stores them to disk, then processes the images to find pointing solutions, and serves these

solutions to the EBEX flight computers. STARS is described in more detail in Chapter 5.

The star cameras use two forms of downlink telemetry available in flight so that ground

operators can monitor their states and make corrections when appropriate. First, making

use of line-of-sight communications available during the first day of flight, the star cam-

eras transmit their computers’ VGA (Video Graphics Array) outputs over NTSC (National

Television System Committee) video downlinks. To make use of this capability, STARS is

designed to display visual state information to the VGA display. Secondly, the star cameras

share 44 status variables with the EBEX Flight Control Program (FCP), which FCP may

then downlink with other numerical data streams. FCP decides whether to downlink each

of these data streams at any given time throughout the flight depending on the bandwidth

available and the priority of each data stream as defined by the ground operators.

The two star cameras share nearly identical hardware components:

• Lens - The lenses are Canon EF 200 mm F/1.8 L USM lenses, which have 11.1 cm

diameter apertures. A larger aperture, though more expensive, allows the camera to

collect more light, and thus obtain higher signal-to-noise sources (stars) for a given

exposure time. This is used to decrease the exposure time and corresponding motion

blur. A larger aperture can also produce images with higher angular resolution. The

angular resolution of the EBEX star cameras have been measured to be ≤20′′ (Rayleigh

criterion) by observing stars from the ground, which is an upper limit as the test may

have been limited by astronomical seeing (see Figure 4.1). The diffraction limit for

these specifications is ∼1.6′′.

• Camera - The cameras are Redlake Megaplus II 1603 cameras which contain Kodak

KAF-1603E CCD image sensors and support IEEE 1394 readout. The CCDs contain

1536 × 1024 square pixels that are 9µm on a side. The pixels have well depths of

47

(a)

(b)

Figure 4.1: Subfigure (a) shows a 3-D plot of a small region of an image centered on a star
captured by Star Camera 0. The image was captured on the ground, with a near optimal
focus position. As a star is effectively a point source, this is a measure of the point spread
function (PSF). We measure the width of a star by finding the σ of a best-fit Gaussian.
Subfigure (b) shows the width of this star as a function of the camera’s focus position. A σ
of ∼0.75 px is found at the optimal focus position, and corresponds to an angular resolution
of ∼20′′ by the Rayleigh criterion.

48

100 000 e- and are read out with 12 bits of dynamic range. A deeper well, though more

expensive, allows the camera to collect more light before saturating and thus obtain

higher signal-to-noise sources. The pixel size coupled with the lens focal length results

in a platescale of 1 px/9.5′′. The CCD dimensions coupled with the lens focal length

results in a field of view of 4.05◦ × 2.70◦. A larger field of view allows the camera to

find more stars, which increases the probability of finding a solution and can decrease

the uncertainties associated with the solution angles. The trade-off, however, is that

with a larger field of view each pixel covers a larger area of the sky, and therefore

reduces the precision with which the software can measure the locations of stars. The

CCD is primarily sensitive to visible frequencies of light. The quantum efficiency

of the CCD is shown in Figure 4.2. The cameras support four buffers that can be

stored before being flushed through the readout, which allows the star cameras to

capture multiple exposures in rapid succession. Each camera consists of two physical

components connected by a tether cable: a camera head, which houses the CCD, and

a controller, which stores the buffers for readout.

• Red Filter - A Hoya 25A red color filter is placed between the lens and the camera

to block out light with wavelengths shorter than 600 nm. This blocks out a significant

amount of the atmosphere (blue sky), which is the dominant source of noise in the

images, while blocking out proportionally less star light, which tends to be redder

than the atmosphere [46]. The transmission function of this red filter is also shown in

Figure 4.2.

• Lens Controller Interface - The lenses use Birger2 Canon EF 115.0 lens mounts to

control the focus and aperture positions electronically with STARS via USB.

• Computer - The star cameras contain PC/104 computers from Advanced Digital

Logic. Star Camera 1 contains a more recent model (ADL855PC-373C-G5) than Star

Camera 0’s (MSM855-C373). Both computers have single threaded 1 GHz processors,

2Birger Engineering is located in Boston, Massachusetts 02111.

49

Figure 4.2: The quantum efficiency of the CCD and the transmission function of the red
filter used in the star cameras. Figure courtesy of Yury Vinokurov.

1 GB of RAM, and two-piece heat sinks with fans, and are rated to 70 ◦F. There is

a trade-off between power consumption and processor speed, and we chose the most

powerful processor that our thermal environment can tolerate.

• IEEE 1394 Board - The computers mate with MSMW104+ PC/104 firewire boards

for camera readout.

• Hard Drives - The star cameras contain hard drives to store the operating system,

flight software (including a 3.6 GB star catalog), and the images collected during flight.

All the images captured in flight are stored to disk in case additional information needs

to be extract from them after the flight. We predicted before flight that each star

camera may require up to 418 GB of space for storing the images (see Section 4.4.4).

Star Camera 0 flew a 500 GB Seagate ST9500325AS and Star Camera 1 flew a 750 GB

Western Digital Scorpio Blue WD7500BPVT. Both star cameras contain ADSAIDE44

SATA-IDE converters to allow the computers to communicate with the modern high

50

volume SATA drives.

• VGA to NTSC Converters - The star cameras contain converter boards (QVGA2TV

Videosecu PC to TV Converter) to convert the VGA output of the computers into

NTSC signals for video downlink during line-of-sight communication. STARS displays

the images it captures along with an abundance of debugging information to the screen

at 640× 480 resolution so that it can be viewed clearly by the ground operators.

• Environmental Sensors - The star cameras contain AD590 temperature sensors,

MPX4250A pressure sensors, and Measurement Computing USB-1208LS digital-to-

analog converters in order to monitor the environment inside the star camera vessels.

• DC-to-DC Converters - The star cameras contain DC-to-DC converters to convert

the +28 V input voltage, supplied from the gondola’s power crate, into +5 V and +12 V

output to meet the power needs of all the electrical components. The converters are

Calex 24S5.20HEW and 24S12.8HEW converters for 5 V and 12 V, respectively.

The mechanical shutters in the digital cameras are opened and closed by separate elec-

tronic trigger lines, which are controlled by the Flight Control Program (FCP) on the flight

computers and fed directly into the star cameras. FCP records this trigger line in an ACS

data stream, and STARS reads out new images from the camera controller buffers as soon as

they become available. This arrangement allows the timing between the star camera images

and the rest of the pointing sensor data to be determined precisely, assuming that the image

recorded by the star camera software can be linked to a pulse in the trigger line. Linking an

image to a trigger pulse is non-trivial because STARS runs asynchronously from FCP. Both

FCP and STARS keep a running counter of how many images they have triggered/captured,

and they each share their counter with the other system over the network so that each pro-

gram has access to both counters. FCP tags each pulse with the two counters, and STARS

tags each image with the two counters. If there is enough time for both systems to increment

and share their counters after an exposure3, then for the following exposure the image tags

3This requries about 1 second.

51

will match the pulse tags.

The first star camera, Star Camera 0, was built at Brown University and flown in the

EBEX 2009 test flight. Details about the design and construction of this star camera are

discussed elsewhere [47]. The second star camera, Star Camera 1, was designed and built at

Columbia University. Both star cameras were flown in the EBEX 2012 Antarctic flight. We

discuss the design and construction of Star Camera 1 here.

4.2 Star Camera 1

Star Camera 1 uses the same components as Star Camera 0 and therefore has nearly identical

specifications, but the vessel, internal structure, and internal layout were designed differently

in an effort to improve upon the original design. In particular the redesign focused on

robustness and on making the internal components more accessible upon partial disassembly.

Photographs and 3-D models of XSC1 are shown in Figures 4.3, 4.4, 4.5, 4.6, and 4.7.

4.2.1 Design

Figures 4.3 and 4.4 show a model of the design along with photographs of the internal

structure that supports all of the components inside the star camera. This structure consists

of four G-10 rods connected by four circular flanges placed at various positions along the

rods. The lens is mounted near the front of this structure, and the camera head is mounted

to the lens and also to one of the flanges. An aluminum plate, named the “electronics plate”,

is mounted to the back of the structure. Mounted to the top of the electronics plate are the

computer, hard drive, DAQ, and housekeeping breakout board. Mounted underneath the

plate is the camera controller, and attached to the bottom of the camera controller is an

aluminum plate that houses four terminal blocks for distributing power to all the electrical

components (see Figure 4.6c).

The internal structure fits inside of a pressure vessel. The pressure vessel essentially

52

Figure 4.3: Star Camera 1 components and internal structure.

53

Figure 4.4: Side by side comparison of the actual and modeled XSC1 internal components,
structure, and back flange.

Figure 4.5: The front of XSC1 without the front flange. The front weld flange jets in-
ward about an inch to form four perpendicular edges, allowing the four rods of the internal
structure to be fastened directly to the front weld flange.

54

consist of a hollow aluminum tube with open flanges welded to each end, known as the

“weld flanges”, and is secured closed with O-rings and a closed flange on each end: a “front

flange” and “back flange”. The front flange contains the window. The internal support

structures is placed inside the pressure vessel and fixed to it4. The internal structure and

some of the components of Star Camera 1 are shown in Figure 4.3. The part of the internal

structure to which the digital camera (lens and camera head) is mounted is screwed directly

into the front of the pressure vessel. This design helps prevent the pointing angle of the digital

camera from shifting with respect to the vessel during flight. The front of Star Camera 1

is shown in Figure 4.5. The vessel is pressurized to roughly 1 atm to protect the computer,

lens, and hard drive from the low stratospheric pressure, and dry nitrogen is selected for this

pressurization to help prevent condensation on optical components when traveling through

the coldest regions in the tropopause.

The window in the front flange is partially inset on the inner side of the front flange.

An O-ring sits in a groove in the front flange between the front flange and the window. An

aluminum ring is screwed into the front flange around the window to press it onto the O-ring.

Placing the window on the inside of the front flange is favorable given the direction of the

pressure differential at float, and allows the ring that holds it in place to be relatively thin.

Two DC-to-DC converters are mounted to the back flange. The back flange contains

three hermetic electrical connectors for communications between the star camera and the

rest of the gondola. An MS3114H-14-12P 12 pin and an MS 3114H-14-19P 19 pin connector

pass power for the DC-to-DC converters, power for the heaters, ethernet lines, the trigger

line that drives the camera shutter, Video Graphics Array (VGA) lines, USB lines, and

keyboard lines. A TNC connector passes the NTSC video signal. Documentation for the

connector pinouts is found in Appendix C.

4The DC-to-DC converters are mounted directly to the back flange.

55

4.2.2 Design Principles

The principles that guided the design are:

• Vessel - The camera needs to be contained in a pressurized vessel to maintain atmo-

spheric pressure while in a space-like environment. Maintaining pressure is necessary

for the hard drives to work, for the computer to work (though that the computer

would fail under vacuum or rapid depressurization was not clear to us until it was de-

termined empirically), and may or may not be necessary for the lens to work correctly.

Atmospheric pressure also allows for thermal convection, which carries heat from the

electronic components to the vessel wall.

• Single Internal Structure - All the internal components should be mounted to a

single fixed structure, as shown in Figure 4.6. The motivation for using a single struc-

ture design is that the dual design of XSC0 is more difficult to disassemble, primarily

because it requires frequently disconnecting and reconnecting multiple hard-to-reach

electrical cables, including the camera head tether cable which is particularly sensitive.

• Fixed Camera - A design requirement stemming directly from the pointing require-

ments is that the lens and camera head combination be fixed relative to the vessel so

that the pointing angle of the camera does not vary by more than ∼ 1′′. In order to

simultaneously meet this requirement and the single structure requirement, the front

of the internal structure, the part closest to the lens and camera head, is designed to

screw directly into the front of the vessel. To not overconstrain the design, the back

of the internal structure sits freely inside of gaps in the back of the vessel. This is

important given the different coefficients of thermal expansion between the G-10 rods

and the aluminum vessel. A photograph of the front attachment is shown in Figure 4.5.

• Identical Electrical Interface to XSC0 - The two star cameras are intended to

be functionally equivalent in order to minimize confusion and minimize the number

of spare parts required in the field. This includes having nearly identical electrical

56

(a) (b) (c)

Figure 4.6: (a) Top, (b) side, and (c) bottom view photographs of the Star Camera 1
internals. In the bottom view, the wires converging near the bottom are connected to four
terminal blocks that are mounted on an aluminum shelf that is mounted to the underside
of the camera controller. A diagram of the terminal blocks labeling the wires is shown in
Appendix C.

57

interfaces.

With the resulting design, XSC1 can be disassembled by unscrewing the screws on the

back flange and front flange, and then sliding the vessel off the top. This leaves the internals

standing upright on the back flange in a single piece. The full assembly procedures for both

star cameras are listed in Appendix B.

4.2.3 Construction

XSC1 was constructed at Columbia University. Most metallic parts were machined elsewhere

and shipped to Columbia. The G-10 rods were glued to the circular support flanges, and

the electronics plate was screwed to the support flanges, completing the support structure.

The electronic components were then mounted to it, completing the internal structure. Once

the internal structure was assembled and attached to the back flange, all the internal wires

were connected. A block wiring diagram is available in Appendix C. Special care is taken

with the camera tether cable, which connects the camera head to the camera controller. To

allow this cable to maintain a large turning radius, a section was designed to be cut out of

the otherwise rectangular electronics plate. The vessel was then installed according to the

assembly procedure.

Figure 4.7 shows a section view of a 3-D model of XSC1 in its entirety (save the wiring,

which was not included in the 3-D model), including its optical baffle which will be discussed

in the Section 4.3.

4.2.4 Thermal Consideration

On a high altitude balloon platform one is often concerned with both extremes of the thermal

environment. In order to reach a float altitude of ∼ 120 000 ft, the payload ascends through

the troposhere and tropopause, and into the stratosphere. The tropopause presents the

cold extreme, in which temperatures tend to be around −60 ◦C and the atmosphere is dense

58

Figure 4.7: Section view of Solidworks model of Star Camera 1 with optical baffle.

59

enough to convect heat away efficiently. Once the payload reaches float altitude, however,

the atmosphere is too thin for efficient convection, and electronic components that generate

heat must dissipate their heat solely through radiation and conduction to the gondola, which

presents a challenge in the hot extreme.

Following the conclusions of thermal analysis, we painted the star cameras white to

prevent overheating at float altitudes, and outfitted each star camera with heaters capable

of providing 60 W of additional power so they would remain sufficiently warm during ascent.

XSC1 contains six 10 W heaters: two on the front flange of the vessel (near the window),

and four on the lens. Without the heaters, the lens and window are at risk of becoming too

cold. The concern is that condensation may form on the window and that the mechanical lens

components that drive the focus and aperture may freeze. In addition, these components are

near the front of the vessel, whereas the electronic components that continuously generate

heat are all located near the back.

The six heaters are powered directly from the power crates on the gondola, bypassing the

DC-to-DC converters in the star cameras. As shown in the XSC1 Heater Wiring Diagram in

Appendix C, there are two distinct 24 V lines provided to the star cameras for this purpose:

• One of the power lines can be switched on and off in software by FCP. We implemented

two software modes to control this switch: manual and automatic. In manual mode,

ground operators can manually command the heaters to turn on or off. In automatic

mode, the heaters are activated on a commandable set point. FCP compares the set

point to the actual star camera temperatures that are recorded by temperature sensors

inside the vessels, low pass filtered by STARS, and communicated by STARS to FCP.

• The other power line is always on, however inside the star camera vessels it passes

through a bang-bang controller that activates at −20 ◦C and deactivates at −10 ◦C.

This serves as a parallel backup system to the software control.

The gas inside the vessel enables the redistribution of heat throughout the star camera,

60

Figure 4.8: Holes in the internal support structure’s rings enable heat convection from the
back of the star camera to the front of the star camera.

and special care was given to the components most susceptible to temperature extremes. The

lens is supported by G-10 rods in order to take advantage of G-10’s low thermal conductivity5

to insulate it from the vessel so that it would not freeze during ascent. A heat sink with a

fan is installed on the computer to transfer heat away from the computer at float altitudes.

In order to improve the convection of heat from the back of the star camera, where most of

the electronics are located, to the front, where the lens and window are located, there are

numerous holes in the aluminum rings that would otherwise impede this flow. These holes

are shown in Figure 4.8.

Both star cameras were tested in a thermal vacuum chamber provided by CSBF to

simulate ascent and float conditions. The star cameras were successful in the 2012 Antarctic

flight, and did not underheat or overheat. The heaters were set to activate based on a

commandable set point, and did so repeatedly during ascent. The star camera temperatures

5G-10’s thermal conductivity is approximately 1 W m−1 K−1 vs aluminum’s 237 W m−1 K−1.

61

Figure 4.9: The star camera temperatures during the 2012 Antarctic flight. Each star camera
has four temperature sensors placed in different locations inside the pressure vessel. The
sensors are mounted near the computer (comp), lens (lens), DC-to-DC converters (dcdc),
front flange near the window (flange), XSC1 electronics plate (plate), and/or the front of the
vessel near the window (vessel). Each star camera has four of these possibilities. Shown are
the temperatures for the entire flight (top) and a zoom of the temperatures during ascent
(bottom).

62

during flight, including ascent, are shown in Figure 4.9.

4.3 Optical Baffles

In order to minimize the optical loading in the star camera images, an optical baffle is

mounted to the front of each star camera to block out stray light. Each baffle is a hollow

tube that is painted flat matte black on the inside to reduce reflections. It contains a series

of vanes, which are knife-edge circular components that protrude inwards to help block

reflections. The placement and inner radii of the vanes are chosen in such a way that no

part of the vessel window can directly see the inner surface of the tube6.

The optical design drawing and a cross-section of the 3-D model of the EBEX baffle are

shown in Figure 4.10. The optical design drawing labels the length of the tube and the

position and heights of each vane, and also shows the edges of the star camera field of view

(expanding at 2.4◦) and the baffle’s rejection angle of 11.7◦. The rejection angle is the largest

angle by which light can enter directly into the vessel window, and is larger than the field

angle (the angle that the field of view expands at) because it can cross diagonally from one

side of the baffle to the other side of the window. Note in this figure that the heights of the

vanes are defined so that they do not interfere with the field angle.

The longer the baffle, the smaller the rejection angle, so a longer baffle is prefered7. In

the EBEX case the length of the baffle is limited to 34.5 in by its mount location on the

gondola. Given a specified length, the baffle must be wide enough to at least accomodate

the field angle, though wider is better. As we will explain in this section, a wider baffle allows

for deeper wells between vanes, and therefore fewer vanes, and fewer vanes are preferred. In

the EBEX case the inner radius of the baffle is limited to 4.755 in by the distance between

the star cameras and the gondola.

Figure 4.11 shows the logic behind the placements of the vanes. The vanes are placed so

6For more information about baffle design, see [48].
7Note that in the limiting case of an infinitely long baffle, the rejection angle approaches the field angle.

63

(a)

(b)

Figure 4.10: (a) Cross section of a 3-D model of the star camera baffle and (b) optical
drawing with specifications. In the drawing the black lines represent the baffle itself, which
is mounted to the front of the star camera vessel, flush with the vessel window. The star
camera lens sits a couple inches behind the window. The position of the lens differs in the
two subfigures because subfigure (a) shows xsc1, while the baffle is designed for the more
restrictive lens position which is the lens position in xsc0. Linear distances are in inches. In
the 3-D model the vanes have finite thickness and are beveled at the inner edge.

64

Figure 4.11: Diagram showing how the positions and heights of the vanes are defined to
prevent light from reflecting off the tube directly into the vessel window. The procedure is
described in detail in Section 4.3.

65

that no light can reflect off the inside of the tube directly into the vessel window. As the

vanes have a finite thickness, however, light can reflect off them directly into the window.

We therefore bevel the inner edges of the vanes to limit their surface area, and we minimize

the number of vanes by placing them as far apart as possible. In Figure 4.11, the optical

drawing is shown where light enters the baffle from the left and the vessel is located on the

right. The first vane is placed at the left edge of the baffle. The second vane is placed in

such a way that it blocks light that reflects from just inside the baffle behind the first vane,

as shown in the top figure. The third vane blocks light that enters in such a way that it

barely misses the second vane, as shown in the second figure from the top. This procedure is

repeated until the next vane would be placed beyond the baffle. Note that since the position

of a vane depends on its height, and the height depends on its position, the position and

height must be solved for simultaneously.

The 3-D model of the optical baffle is shown in Figures 4.10a and 4.7 and 4.12a. The

EBEX baffles are made of carbon fiber rods, thin sheets of G-10 fiberglass, and thin black

anodized aluminum vanes. The vanes are held together by the carbon fiber rods to form

an internal structure. The internal structure is wrapped in a G-10 fiberglass sheet to form

the tube. The inside of the sheet is painted with Krylon Ultra-Flat Black spray paint. The

outside of the sheet is painted white for thermal reasons. Layers of paint were repeatedly

added until no sunlight would be visible to the human eye when placing the sheet between

the viewer and the Sun. Figure 4.12b shows one of the baffles after it is assembled but before

the G-10 sheet is painted.

The constructed baffle weighs 3.7 lbs, and is estimated to deflect by ∼ 1 mils under its

own weight and buckle under > 400 lbs of force (or > 100 g)8. The deflection specification

ensures that the baffle will not obstruct the star camera fields of view, and the buckling

specification ensures that the baffle will not buckle on launch or when the parachute opens

upon descent, or during average landing conditions. In the EBEX 2012 Antarctic flight, both

8Calculations are courtesy of Asad Aboobaker.

66

(a) (b)

Figure 4.12: A 3-D model (a) of the star camera baffle compared with an actual constructed
baffle before painting (b).

67

baffles survived the accelerations of launch, parachute shock, and landing.

4.4 Pre-Flight Tests and Predictions

A number of tests were performed before flight in order to predict how well the star cameras

would perform. In some cases we used these predictions to assess whether the star cameras

were equipped with the hardware and software features necessary for successful in-flight

performance. In other cases the tests simply provided us with ranges of values required

for in-flight commandable parameters. Here we will discuss the notable pre-flight tests and

predictions.

4.4.1 Sensitivity

At LDB float altitudes between roughly 32 km and 40 km the star cameras are still exposed

to significant sky brightness that varies with altitude and viewing angle relative to the Sun.

The optical baffles and red filters help limit this noise contribution. However, even with these

features, it was important to predict the set of LDB conditions under which the cameras

would be capable of solving.

We therefore set out to estimate the number of stars we would expect to find in images

captured inside the EBEX science patch. In order to achieve this goal there were several

steps. We first predicted the level of noise expected in an image of a given EBEX field based

on predictions of sky brightness. Then, given this noise level, we determined the probability

of identifying a given star based on its catalog magnitude. We then used these probabilities

to predict how many stars would be identified in a random field of view in the EBEX science

patch.

68

Predicting the Noise

Given the levels of sky brightness the star cameras detect at float, photon noise is the

dominant expected source9, so we model the level of sky brightness and use Poisson statistics

to compute the level of noise. If the star camera detects a sky brightness signal level that

corresponds to N photoelectrons per pixel, then the variation between pixels will be of

magnitude
√
N .

In order to model the sky intensity we used MODerate resolution atmospheric TRANs-

mission (MODTRAN), a computer program that models atmospheric radiative transfer.

We used this program with the caveat that we were not confident in the absolute value of

the predictions because the optical transmission fraction along our star cameras’ full opti-

cal paths is insufficiently well constrained. We did, however, trust the relative intensities

between two different configurations for the same camera. A given configuration is a set of

parameters that define the camera altitude, camera azimuth, camera elevation, Sun azimuth,

Sun elevation, and Earth’s surface albedo.

In order to obtain an absolute calibration of sky intensity, we turned to two recent

flights: the EBEX 2009 test flight out of New Mexico, and the 2010 Antarctic flight of

another experiment called BLASTPol [49]. In the EBEX 2009 flight we had flight data

for XSC0 (XSC1 had not yet existed at that time). In the BLASTPol 2010 flight, we had

access to data from one of their two star cameras: the “Other Star Camera” (OSC). In both

cases we had access not only to multiple data points of measured sky intensity, but also the

configurations associated with each measurement. For each of these data points we were

able to use MODTRAN to calibrate the sky brightness to a fiducial EBEX 2012 Antarctic

flight configuration using the procedure described below.

To define this fiducial Antarctic configuration, we conservatively used the value for each

parameter that results in the largest sky brightness while still being plausible (within the

9We were not aware before flight that polar mesospheric clouds existed and would pollute some of the
images.

69

99th percentile of possible outcomes). These parameters are:

• Altitude of 32.3 km. This prediction came from the flight profile of a previous ex-

periment (CREST) flown on a similar balloon, lowered by 1000 ft to account for an

expected higher EBEX weight.

• Star camera elevation of 35◦. This is the lowest elevation scanned in a science or

calibrator patch.

• Sun elevation of 5◦, and a difference of 180◦ between the star camera azimuth and

the Sun azimuth. The gondola was designed to never scan within 90◦ of the Sun.

The brightest point within 90◦ of anti-Sun is anti-Sun itself10. We would always be

pointing above the horizon, and the lowest elevation the Sun might reach during our

flight window is 5◦. For azimuth, we planned to scan nearly anti-Sun.

• Earth’s albedo of 72%. This is the 99th percentile hottest case calculated from satellite

observations by CSBF11 (S. Cannon, personal communication, January 23, 2012).

To determine an absolute calibration using our EBEX 2009 data, we used MODTRAN to

simulate the expected sky brightness for the EBEX camera using both the EBEX 2009 and

the EBEX 2012 configurations. The ratio of those two intensities is used as the calibration

scale factor.

In order to calibrate using BLASTPol 2010 data, we need an additional scale factor to

account for the difference in cameras. We used two methods to determine this scale factor.

The first method was to calculate the ratio from camera specifications. The second method

was to determine the ratio empirically by putting the cameras side by side in a dark room

and pointing them at the same diffuse light source. We list both of these methods in the

table that summarizes the results. For the side by side method, there was a complication in

that we found two different results depending on a parameter for which the value was not

10A consequence of Rayleigh scattering, which is the dominant source of sky brightness, is that the
anti-Sun direction is a local maximum of sky brightness.

11CSBF stands for the Columbia Scientific Balloon Facility. It is the NASA facility responsible for flying
the payload.

70

Table 4.1: Three methods of predicting the sky brightness for the EBEX Antarctic flight.
The second method predicts two numbers as a consequence of not knowing the value of a
parameter that could have been in two states during the BLASTPol 2010 flight.

Absolute Sky Scaling Method for Scaling Method for
Brightness Reference Different Flight Profile Different Cameras Result (kepsa)

BLAST 2010 OSC modtran camera specifications 681
BLAST 2010 OSC modtran measured 595 or 666
EBEX 2009 XSC0 modtran N/A 673

known and could have been in two states during the BLASTPol 2010 flight. We therefore

include two separate predictions for the side by side test in the summary table.

When computing a predicted sky brightness it is useful to define a unit corresponding

to the quantity of kilo electrons per second per fully open aperture, or “kepsa” for short.

This unit accounts for all the fixed specifications of the EBEX star cameras, but does not

account for the three commandable parameters: the gain12, exposure time, and aperture

size. Multiplying by the gain, the exposure time, and the fraction of the aperture in use

converts a “kepsa” quantity into digital counts (or ADU, analog-to-digital units) in a pixel.

The resulting sky brightness estimates are listed in Table 4.1. The predictions are con-

sistent to within 15%, and are generally between 600 and 700 kepsa. We conclude that to

be safe, the star cameras must be capable of operating in 700 kepsa of sky brightness.

Individual Star Identification Probabilities

We then determined the probability that a star would be identified in an environment with

700 kepsa of sky brightness, as a function of the star’s apparent magnitude. We choose

nominal camera settings for flight:

• The minimum gain available, which is 0.040 95 ADU/e-.

• The aperture fully open, which has a diameter of 11.1 cm.

12The gain is the conversion factor in the CCD readout from photoelectrons to digital counts.

71

• A 240 ms exposure time. Note: a 240 ms exposure with 700 kepsa of sky brightness

would saturated the CCD. Instead we capture two 120 ms exposures back to back,

using the camera’s capability ability to store four buffers at a time, and a corresponding

software feature called “multiple exposures” to co-add them, which will be discussed

in Chapter 5.

We captured 12 images on a night sky from the ground with these parameters and added

700 kepsa of simulated sky brightness. The results are shown in Figure 4.13, in which we

plot the fraction of stars successfully identified as a function of their apparent magnitude.

There is a steep drop-off in identifiable stars between apparent magnitudes 6 and 8. These

fractions are used in the next section.

EBEX Science Patch Probabilities

We use the identification probabilities from the previous section to predict how many iden-

tifiable stars would be in the images captured while the gondola is pointing at the EBEX

Antarctic science patch. To do this we simulated 10,000 measurements. For each measure-

ment we select a random star camera field of view from inside the EBEX science patch, and

then calculate the expected number of identifiable stars based on the probabilities measured

in the previous section. A cumulative histogram of these results are shown in Figure 4.13.

For these parameters at 700 kepsa, the probability of identifying at least 4 stars is 93.1%,

while the probability of finding at least 3 stars is 97.8%.

Actions Required

We concluded that we would be well positioned to use the star cameras at float altitudes,

but that if the brightness was as high as expected in the fiducial case, the double exposure

feature would be critical.

An additional complication of increasing the exposure time, especially via multiple expo-

72

(a)

(b)

Figure 4.13: Subfigure (a) shows how many stars were identified in 240 ms exposures in an
environment with 700 kepsa of sky brightness, as a function of apparent magnitude. It shows
the total number of stars identified along with the total number of stars in the catalog (top),
and then shows the fraction of catalog stars identified (bottom). Subfigure (b) uses the
results from (a) to estimate how many stars will be identified in an arbitrarily selected star
camera field from the Antarctic science patch. It shows a cumulative histogram showing the
fraction of simulated fields of view (FOVs) that had at least N identified stars, as a function
of N.

73

sures, is that the images may become susceptible to motion blur given the angular velocity

of the gondola throughout the duration of the exposure. In order to accommodate potential

motion blur, we also implented a feature in STARS called “motion PSF”, where PSF refers

to the point spread function. When enabled, STARS will collect gyroscope data from the

flight computer that describes the rotation of the gondola for the duration of the exposure,

and construct a corresponding kernel to imitate the streaked sources. This kernel is then

convolved with the images to help pick out the otherwise low signal-to-noise sources. This

feature is discussed in more detail in Chapter 5.

4.4.2 Solution Uncertainty

When a star camera processes an image and finds a pointing solution, it also returns as-

sociated errors. We performed a test to determine whether the errors reported by the star

camera software were correct, assuming no optical distortion.

To perform this test we simulated 1000 fields of view from the EBEX science patch. For

each field of view we found its 5 brightest catalog stars, and determined their pixel locations

within the field of view. From those five pixel locations, we used the star camera software

to determine the attitude and associated errors. For each of the three attitude coordinates

we could compare the recovered angle to the true angle to obtain the true error. We could

then compare this true error to the error reported by the filter. With many iterations, we

should find that the reported errors are consistently equal to the standard deviation of the

true errors. Figure 4.14 shows this visually. For each attitude coordinate, a histogram of all

the true errors are plotted in blue, and a histogram of the reported errors are plotting in

green. The histogram of reported errors are centered at the standard deviations of the true

errors to within roughly 4%.

74

F
ig

u
re

4.
14

:
R

es
u
lt

s
of

a
si

m
u
la

ti
on

te
st

in
g

th
e

er
ro

r
re

p
or

te
d

b
y

th
e

st
ar

ca
m

er
a

so
ft

w
ar

e.
E

ac
h

p
lo

ts
sh

ow
s

a
co

m
p
ar

is
on

b
et

w
ee

n
th

e
tr

u
e

er
ro

rs
(b

lu
e

h
is

to
gr

am
)

an
d

th
e

re
p

or
te

d
er

ro
rs

fr
om

th
e

so
ft

w
ar

e
(g

re
en

h
is

to
gr

am
).

T
h
e

gr
ee

n
h
is

to
gr

am
sh

ou
ld

b
e

ce
n
te

re
d

on
th

e
st

an
d
ar

d
d
ev

ia
ti

on
of

th
e

b
lu

e
h
is

to
gr

am
.

T
h
er

e
ar

e
th

re
e

p
lo

ts
,

on
e

fo
r

ea
ch

at
ti

tu
d
e

co
or

d
in

at
e.

75

(a)

(b)

Figure 4.15: Subfigure (a) shows a 3d plot representing all the pixels in an image and
identifies those that are used to calculate the vignetting metric. The vignetting metric
is the mean value of some representative edge pixels divided by the mean value of some
representative center pixels. The raised pixels that in the subfigure that are far from the
center are the representative edge pixels, and the raised pixels at the center of the image are
the representative center pixels. Subfigure (b) shows the result of this metric for multiple
images plotted as a function of aperture setting. Images taken with aperture settings 0
through 4 show vignetting. The test was done with and without the optical baffle installed,
which has no noticable effect.

76

4.4.3 Vignetting

We noticed that many of the star camera images contained vignetting, which is a reduction

in brightness near the edges of an image. We determined that the vignetting only occurs

when the aperture is fully open or close to fully open. Figure 4.15b shows the results of a

test in which we demonstrate that large apertures on XSC1 result in images where the edges

of images are reduced in brightness by up to 15%.

To perform this test we captured images at various aperture settings. Aperture setting 0

corresponds to fully open, while higher numbered aperture settings correspond to smaller

diameter apertures. Aperture setting 6, for example, only has 60% the diameter of aperture

setting 0. For each image we calculated a metric that represents the level of vignetting by

dividing the mean level of pixels near the edge of the image by the mean level of pixels in

the center of the image. The pixels chosen to represent the edge and represent the center are

shown in Figure 4.15a. Figure 4.15b shows this metric as a function of aperture position for

multiple images, some taken with and some taken without the optical baffle. Any effects from

the optical baffle were found to be insignificant. The plot shows that at aperture setting 0

the edges only capture 85% as much light as the center does. It also show that by aperture

setting 5 or 6 the vignetting is eliminated. Due to the results of this test we used aperture

setting 6 during the EBEX 2012 Antarctic flight.

4.4.4 Disk Space

The star cameras are designed to record all the images captured for post-flight processing.

This is because each image might not be solved during flight, and if it were solved during

flight there might be refinements worth making post-flight that are not necessary in real-

time attitude determination. As an aside, the star camera images captured during the 2012

Antarctic flight turned out to be of scientific interest outside of the field of cosmology (see

Chapter 11).

77

Table 4.2: Comparison of lossless compression methods considered for the star camera im-
ages. The compression algorithms were tested on noisy images from the 2009 test flight.
The compression ratio is the uncompressed size divided by the compressed size. Also listed
is whether the compressed file is directly compatible with the GNU Image Manipulation
Program (GIMP) or the cfitsio C library, which is also used by the pyfits library for python.
Compatibility with each of these is highly convenient and increases productivity during star
camera development and testing. Not shown is the “ezip” compression (“EBEX zip” - devel-
oped specifically for EBEX), which was comparable in compression ratio, but unfortunately
was 2.5 to 7.7 times slower than the standard options.

Compatibility
Method Compression Ratio GIMP cfitsio/pyfits
zip -1 1.54 no no
zip -9 1.59 no no

bzip2 -9 2.08 yes no
cfitsio gz 1.59 yes yes

The first step in predicting the in-flight disk space usage is to measure the size of the

individual images, which depends on what kind of compression is used:

• Lossy compression algorithms were considered but rejected, due to the fact it is

difficult to assess before flight whether a particular algorithm will negatively influence

the images. As an example, an algorithm that discards high frequency noise (which is

the least compressible part of an image) but maintains the large-scale structures would

end up discarding the stars themselves. A notable lossy compression algorithm, which

was used in another experiment, involved discarding parts of the images that did not

contain stars, as determined by the real-time software [50]. This algorithm obviously

results in a very high compression ratio, but unfortunately it relies on the real-time

software application to correctly identify the stars, which is one of the primary failure

modes we are trying to protect against by storing the images to disk.

• Lossless compression algorithms were also considered, some of which could reduce

the disk space usage by a factor of ∼2, as shown in Table 4.2. The embedded gz

compression in the cfitsio library, listed as “cfitsio gz” in the table, was implemented as

78

Table 4.3: Disk usage calculations.

Num Images Per Day Log File Disk Space
Exposure Mode cmb calibration confusion total Space Required

single 2880 655 720 4255 0.324 GB 228 GB
double 5760 1309 720 7789 0.324 GB 418 GB

optional in STARS given its compatibility with the GNU Image Manipulation Library

(GIMP) and pyfits. Futher testing, however, showed that even the fastest compression

algorithm (zip -1) cost too much CPU time to be used with double exposures during

a calibrator scan. As a result, no compression algorithms were used during flight.

Each uncompressed image occupies ∼ 3.15 MB of disk space. Images are captured on

each scan turnaround throughout flight. The star cameras can operate in single or double

exposure modes, capturing either one or two images on each turnaround. A number of

conservative assumptions are made in order to determine the amount of disk space required:

• 20 hours of cmb scans per day, with 50 s period throws

• 3 hours of calibrator scans per day, with 33 s period throws

• 1 hour of focusing / autofocusing / confusion per day, with an image every 5 s

• 17 day flight

• A log file of 20 MB per day

The resulting disk space calculations are shown in Table 4.3 and show that the drives must

store at least 500 GB if double exposures are used. In order to use hard drives larger than

320 GB with the star camera computers, the maximum size available with IDE connections,

we purchased and installed SATA to 44-pin IDE Converters from Addonics Technologies.

We purchased four disks that held at least 500 GB (two as spares), and consciously chose

to fly a different brand in each star camera in order to guard against failure of one of them

due to cosmic ray hits. Both disks operated successfully in during flight, though the caution

79

was well justified: star camera disk failures cut a flight of a different experiment short in the

same season.

4.4.5 Pointing Offsets

In this section we discuss the pre-flight procedure to estimate the pointing offsets between

the star cameras and the microwave telescope boresight, which is necessary because the star

cameras and the telescope do not point in the exact same direction. In the Flight Control

Program (FCP), the pointing offsets for a given star camera consist of a cross-elevation and

an elevation angle that are added to the star camera pointing stream to obtain the boresight

pointing stream. In post-flight analysis, the pointing offsets consist of three rotations (delta-

x, delta-y, and delta-roll) that are applied (in that order) to the star camera pointing stream.

The FCP pointing offsets are flat sky approximations of delta-x and delta-y, and by not

applying a delta-roll FCP assumes that the focal plane has zero roll.

The star cameras are mounted to aluminum blocks that are mounted to the gondola

through slotted holes, allowing for a variable elevation angle. In addition, there are multiple

structures located between the internal lenses of the cryostat and the internal lenses of the

star cameras, all of which were constructed to some finite machine tolerances. As a result,

upon assembling the gondola in Antarctica, we do not know the relative pointing between

the star camera boresights and the microwave telescope boresight to better than a couple

degrees.

As discussed in Section 3.3, the real-time pointing requirement is roughly 0.5◦ in cross-

elevation and in elevation. This includes systematic errors, such as a pointing misalignment

between the star cameras and the telescope. We therefore attempted to measure the angular

offsets, in cross-elevation and elevation, between each star camera and the telescope boresight

to an accuracy of ≤0.5◦. We performed this test three weeks before flight, which was after

the telescope was assembled and the star cameras were mounted in their final locations.

80

The challenge inherent in performing this measurement is that there are no astronomical

sources that the EBEX telescope can map from the ground in Antarctica in the austral

summer. Instead we must use our own millimeter-wave source, which is challenging because

the telescope cannot point below 15◦ in elevation. Consequently, finding a location suitably

far away to minimize near-field effects requires a high mounting platform. Given the height

of the structures and vehicles available to us, this limits the distance that we can place

the source to within the near-field region of the pointing system. The structure we used in

Antarctica was an aerial work platform (also known as a “man lift”), placed only a couple

dozen meters away.

If the telescope and star cameras were observing the same source, and if this source

was infinitely far away, then the calibration procedure would be quite simple. We would

point the telescope at the source, then point the star camera at the source, and record the

amount that we rotated the gondola in between. When the source is in the pointing system’s

near field, however, there is an additional complication. As the gondola rotates about its

center of mass, the star cameras translate on their own lever arms, and the star cameras find

themselves pointing directly at the source either sooner or later than they would have had

the source been infinitely far away. To overcome this challenge we measured the distances

from the center of rotation of the gondola to the microwave telescope’s primary mirror, the

star camera’s lens, and the source. We then calculated and corrected for this near-field effect.

We performed this measurement to obtain the pointing offsets for each star camera.

The error in the offsets measured before flight can be seen in Figure 3.2, which shows the

difference between each sensor’s pointing solution and the reconstructed pointing solution

from post-flight analysis. The errors reveal themselves as the overall displacement of each

distribution from zero.

In post-flight analysis we determine the star camera offsets by comparing the location

of the calibrator13 in EBEX sky maps to its known location. The offsets obtained during

13The astronomical calibrator used by EBEX is an embedded star cluster named RCW 38

81

Table 4.4: The angular offsets between each star camera and the EBEX telescope boresight,
as determined before flight and after flight. The offsets are added to the star camera pointing
to obtain the microwave telescope pointing.

pre-flight post-flight
measurement (degrees) measurement (degrees)

XSC0 cross-elevation 0.83 0.37
XSC0 elevation 2.51 2.71
XSC1 cross-elevation 0.72 0.34
XSC1 elevation -1.49 -1.24

pre-flight testing and the pointing offsets obtained during post-flight analysis are shown in

Table 4.4. The pre-flight measurements are shown to be accurate to within roughly 0.5◦.

4.5 EBEX 2012 Performance

The star cameras performed successfully in the EBEX 2012 Antarctic flight despite a number

of challenges that presented themselves during the flight. The star cameras captured viable

images that were solved after the flight to a precision of 1.5′′ in cross-declination, 1.5′′ in

declination, and 48′′in roll as shown in Figure 4.16. Roughly 40000 images were captured

throughout the flight at scan end-points, which were generally 40 seconds apart, and we have

valid pointing solutions at 92% of the end-points for which the telescope was pointed at least

90◦ away from the sun. The role of these images in the success of the post-flight pointing

reconstruction is discussed in Section 10.2.3. During flight the star cameras solved with the

same precision but less frequently, with solutions roughly every 40 to 100 seconds. These

regular solutions were frequent enough to meet the real-time pointing requirement of 0.5◦

for the vast majority of flight, and to confirm that the star cameras were collecting viable

images for post-flight analysis. The challenges that the star cameras faced in flight will be

discussed in detail in Section 5.4, which describes the performance of the software package,

STARS, in particular.

82

Figure 4.16: Histograms of the star camera solution uncertainties, as estimated by STARS
during post-flight analysis of the images. The histograms contain 15050 Star Camera 0
solutions and 17175 Star Camera 1 solutions, which amount to >90 % of the solvable images
from flight. The uncertainties are 1.5′′ in cross-declination, 1.5′′ in declination, and 48′′ in
roll. These uncertainties are smaller than the predicted uncertainties due to the fact that
there are roughly 8 stars per image instead of 4. This was possible because the brightness
at float was not as high as the conservative case for which the camera performance was
modeled.

83

Chapter 5

Star Camera Software, “STARS”

5.1 STARS Design Requirements

When designing the Star Tracking Attitude Reconstruction Software, or STARS, we strove

to satisfy a number of requirements as follows.

• Frequent in-flight solutions. The EBEX star cameras were designed to capture

images roughly once every ∼40 s at turnarounds in the scan. Therefore, STARS must

solve an appreciable fraction of these images in flight because the error on the star cam-

era pointing stream increases with the amount of time that passes from the most recent

solution, and because it is the only way that ground operators can have confidence that

the star cameras are collecting viable data for post-flight analysis.

• Robust solving operation in daylight conditions. EBEX is designed to fly over

Antarctica during the austral summer when the Sun is always above the horizon.

Sky brightness, even at 120,000 ft, adds considerable noise to the images, making the

signal-to-noise ratios of the sources a primary concern. Other unpredictable features

may also pollute the images, including mesospheric clouds, satellites, cosmic ray hits,

optical vignetting, and internal reflections. Therefore STARS must be able to process

images with substantial noise and unpredictable features.

84

• Autonomous operation. STARS must be able to operate with limited manual in-

tervention due to the low communication bandwidth between the ground station and

the payload during most of the flight.

• Minimal dependencies on other subsystems. The star cameras depend on other

components of the attitude control system for operation. They were designed to work

in concert with the scan control algorithms in FCP, to use coarse attitude information

from the other pointing sensors, to use commands from pre-defined observing schedules,

and to use commands from ground operators using the telemetry system. However,

issues can arise in flight with any number of subsystems1, so STARS must be robust

to changes in other subsystems: it must continue to collect viable data and provide

pointing solutions to FCP in instances where the inputs to the star camera systems

are abnormal.

• General robustness. Any solving related functionality cannot be tested within four

months of launch due to 24-hour daylight conditions in Antarctica, despite the fact that

alterations are made to the flight computer program, with which STARS interfaces,

and that the experiment is disassembled and reassembled for shipping. The software

must therefore be robust enough to work with modifications in FCP and changes in

the hardware without being re-tested before flight.

5.2 STARS Design Principles and Architecture

STARS is equipped with a number of features and functionalities that are designed to make

it more robust (see Table 5.1). An increase in features and functionalities often leads to

an increase in code complexity that can lead to a decrease in software reliability. For that

reason, special attention was paid to good programming practices. We emphasized code

readability, used logical abstractions and modularity, and enforced thread-safety. We also

1See Section 5.4 for examples from the EBEX Antarctic flight.

85

Table 5.1: List of key functionalities provided by STARS.

Notable In-Flight Feature Discussed In

robust pattern matching Section 5.3.4

robust source finding Section 5.3.3

accurate and abundant video display Section 5.3.6

accurate and abundant downlink Section 5.3.8

selective masking Section 5.3.3

multiple exposures Section 5.3.7

motion PSF source finding Section 5.3.3

non-stationary autofocus Section 5.3.7

implemented extensive testing and performance verifications. As a result of these measures,

throughout the 11 day flight of EBEX STARS reliably provided pointing solutions and never

crashed.

5.2.1 Architecture

STARS is an object-oriented multi-threaded cross-platform application written in C++.

During flight it runs on Windows due to lack of camera driver support in Linux. During

development, testing, and post-flight analysis the software is primarily used in Linux.

STARS has multiple threads that can be grouped into four primary categories:

• Imaging, which handles lens control, camera control, and image capture either from the

camera controller during flight or from a pre-captured image file during development,

testing, and post-flight analysis.

• Solving, which handles the image processing and search algorithm for finding a pointing

solution from an image.

• Networking, which receives commands from the flight computers and returns pointing

solutions, debugging information, and optionally raw images for redundant storage.

86

• A main thread, which handles display, housekeeping, and shared memory.

5.2.2 Standard Operation

The top subfigure in Figure 5.1 shows the flow of data under normal operation. A camera

object, running in its own thread, captures an image from the physical camera controller as

soon as it becomes available, stores it to disk, and shares it with the solving object. The

camera object also handles control of the camera gain, and lens objects control the focus

and aperture of the lens. The solving object, also running in its own thread, will load the

image when it is done working on the previous image (either because a solution is found

or it timed out). Any information the solver extracts from the image, including statistics,

the locations of the star sources, and a possible pointing solution, is shared with the main

thread and passed on to the networking thread. The main thread displays this information

for video downlink. The networking thread shares this information with the flight computer

so that it can be used in the real-time pointing solution, stored to disk, and downlinked with

the other EBEX numerical data streams.

5.2.3 Shared Memory

All data-sharing between threads is done using circular buffers in a thread-safe manner.

Each circular buffer passes data in one direction between exactly two threads. Since different

permutations of threads want to share different kinds of data, there are many possible data

objects that can be created from a generalized circular buffer class for a given path2. This

includes raw image objects, lens request objects, pointing solution objects, and many others.

Examples of shared data being passed between threads can be seen in Figure 5.1.

2Technically, these data objects are instantiations of a template circular buffer class, where the template
argument is a class that contains the type of data to be passed. Multiple data-sharing paths might use the
same class as their template argument.

87

lens

camera
solver

main

network send

network receive

fc1 image client

fc2 image client

STARS

Star Camera Computer

IEEE 1394
Ethernet

VGAIDE

USB

Flight
Computer 1

Flight
Computer 2

Camera
Controller

Lens
Controller

Hard
Drive

Video
Tx

lens

camera
solver

main

network send

network receive

fc1 image client

fc2 image client

STARS

Star Camera Computer

IEEE 1394
Ethernet

VGAIDE

USB

Flight
Computer 1

Flight
Computer 2

Camera
Controller

Lens
Controller

Hard
Drive

Video
Tx

lens

camera
solver

main

network send

network receive

fc1 image client

fc2 image client

STARS

Star Camera Computer

IEEE 1394
Ethernet

VGAIDE

USB

Flight
Computer 1

Flight
Computer 2

Camera
Controller

Lens
Controller

Hard
Drive

Video
Tx

Figure 5.1: Block diagrams of STARS running on a star camera computer. The shaded boxes
show the threads that belong to the STARS process. Arrows with dotted lines indicate the
flow of data. Data sent between threads is done safely and efficiently with circular buffers.
The top panel shows the standard operation: image data and/or pointing solutions make
their way from the camera controller to the flight computers. The middle panel shows the
path that lens requests and results follow from the flight computers to the lens controller
and back. The bottom panel shows the paths of various objects for display purposes.

88

5.2.4 Settings Files

Settings files allow the user to adjust parameters without recompiling. Having many config-

urable settings is useful for development, testing, and post-flight image processing. However,

too many configurable settings can be difficult to keep track of, especially when preparing

for launch. To remedy this, STARS accepts two settings files, one called “flight.txt” and one

called “custom.txt”.

The “flight.txt” settings file contains all 93 possible configurable parameters, with their

default values for flight, and is committed to the repository. The “custom.txt” file is not

committed to the repository, and any parameters in the custom.txt settings file override

those in flight.txt. The custom file only contains 8 parameters that must be specified for

flight because they are different between the two star cameras. These parameters are due to

hardware differences, e.g. mounted roll, predicted focus position, and platescale. This helps

curtail user error by reducing the number of parameters that must be reviewed during the

pre-flight checklist from 93 down to 8. During testing and post-flight analysis, additional

parameters are added to custom.txt for additional customization.

5.2.5 Testing

STARS was developed between 2010 to 2012, and all of its functionality was independently

tested as features were implemented. However, the majority of its testing was done during

integrated testing of other flight systems. Many telescope calibration tests, star camera

hardware tests, and tests for other subsystems required fully functional star cameras. Some

of these tests are discussed in other sections, including 4.4.1. During these tests aberrant

software behavior on the part of the star cameras was not tolerated, in that any unexpected

behavior was immediately fixed.

There are two notable features that were implemented to aid in the testing process: a

sky brightness simulator and a log file parsing utility.

89

Brightness Simulator

The sky brightness simulator is a feature in STARS that injects random Poisson noise into

the images to simulate conditions at float. In the settings file one can specify the photon

flux, the camera gain, and the exposure time to inject noise real-time into images during

ground tests. This is particularly useful for making fully integrated ground tests as realistic

as possible, and for performing the sensitivity test described in Section 4.4.1.

Log Parsing Utility

The log parsing utility is a python module that, given a STARS log file path, returns to the

user a list of python solution objects. This expedites development and testing, and is used

in post-flight analysis of the images.

5.3 STARS Components

5.3.1 Solving

The solver operates in three parts. It first measures a number of image statistics: the mean,

noise, gain, and number of pixels saturated. It then searches the image for sources, which

are bright spots that could potentially be stars. To do that, the source finder convolves the

image with potential point spread functions (PSFs) and selects the most significant sources by

finding pixels that stand out above the average value of a set of neighboring pixels, defined

in such a way that they are between 13 and 24 pixels distant from the potential source

pixel. Once the sources in an image are located, they are passed to the pattern matcher.

The pattern matcher builds tiplet permutations of sources and compares them against pre-

computed lists of triplets in the star catalog. When a catalog triplet potentially matches a

source triplet, it then tries to match all the other sources in the image to catalog stars. If a

list of conditions are met, then the set of source-to-catalog-star matches is accepted as the

90

solution. The star catalog is optimized for the EBEX star camera field of view and frequency

response. The next three subsections discuss the three parts of the solver in detail (statistics,

source finding, and pattern matching), and then the following subsection describes the star

catalog in detail. The remaining subsections describe other STARS components.

5.3.2 Solving - Statistics

When the solver receives an image, it first calculates statistics on the image to be used in

later steps of image processing, to be made available to the user, and to auto-level the image

for displaying. Auto-leveling is necessary because the interesting features in the images only

occupy a small fraction of the full image depth, due to the background sky brightness adding

a constant level to the images. It is performed by building a histogram of the pixel values

and defining the boundaries as the middle 98 % of the data. As an optimization, only 1

in every 16 pixels are sampled - evenly spaced on a grid - when building the histogram.

With this procedure the stars in the image have little influence on the auto-leveling, which

is acceptable as the stars will show up as white circles.

The statistics measured from the image are the mean, noise, gain, and the number of

pixels saturated. The image is broken up into 16x16 pixel cells, and these values are measured

for each cell. The mean of the image is the mean of all the cell means. The noise of the

image is the median of the cell noises; the median is used here to prevent structure within

cells (e.g. stars and sharp gradients) or saturated cells from influencing this measurement.

The gain of the image is the mean of the bottom one-sixth of the cell gains for all the “clean”

cells - cells in which the mean is high enough to be considered significant and in which there

are no saturated pixels. The gain of an individual cell is its variance divided by its mean.

91

5.3.3 Solving - Source Finding

The next step in solving an image is to find the bright spots that may be stars. Any object

identified in an image that could potentially be a star is referred to simply as a “source”,

because it may or may not correspond to an actual star, while objects loaded from the

catalog of known stars are referred to as “stars”. This distinction is important for the next

section in which we discuss the pattern matching algorithm, which attempts to match source

objects to star objects.

The source finder primarily operates in two modes: normal and robust, though it also

has a third mode called “motion PSF” that is also discussed here. Robust mode differs from

normal mode in that it can also find sources that are quite out of focus (∼30 px diameter)

but at a significant computational cost (3.8 s on the EBEX star camera computers).

The source finder picks out sources that surpass some tunable threshold above the local

level in that region of the image. To account for the fact that sources span multiple pixels,

the source finder picks out sources from a filtered image (smoothed with a Gaussian kernel),

and care is taken when calculating the local level in that region of the image. Thus a pixel

is of interest when the following condition is met:

smoothed pixel > leveled pixel + threshold ∗ noise (5.1)

To calculate the local level for a particular pixel, the source finder takes the mean of

a subset of pixels that are between 13 and 24 pixels away from the target pixel. This is

akin to a low-pass filter, but it is performed in position space and excludes pixels that may

be biased by the source. The specifics of this operation are shown in Figure 5.2, where

each dark gray pixel in the leveled image takes the value of the mean of all the light gray

pixels. This operation is performed coarsely on a 4 × 4 downsampled copy of the image as

an optimization: instead of making n × 449 pixel visits, where n is the number of pixels in

the full-size image, it only makes n× 3.8125 pixel visits (ignoring boundary cases).

92

Figure 5.2: The algorithm for determining the regional level around a pixel. This image
represents a 44× 44 px region of an image, where each pixel is shown as a small square with
a gray outline. The STARS source finder compares a filtered version of the image to a leveled
version of the image, where the leveled version is calculated by assigning the mean value of
the 448 pixels shaded in light gray to the 16 pixels in the center. The light gray pixels are
chosen because they are close enough to the dark gray pixels to be representative of the local
level, but are far enough away that a potential source centered on a dark gray pixel itself
does not bias the level. As an optimization, the operation is performed on a coarse version
of the image. The coarse version of the image is a factor of 4 × 4 smaller. In this example
the coarse pixels are represented by black outlines.

93

The image is then smoothed with a 3×3 px Gaussian kernel with σ = 1 px and the source

finder uses this smoothed copy to search for sources. The smoothing is a 2-D correlation

with the Gaussian kernel over the image, and it serves to give weight to sources that extend

beyond a single pixel. The image is broken up into 128×128 px cells3, and up to two sources

can be selected per cell according to equation 5.1.

If robust mode is enabled, this smoothing and searching procedure is repeated twice

more, once with an 11× 11 px kernel with σ = 3.5 px and once with a 61× 61 px kernel with

σ = 15 px. As an optimization, each correlation with an l × l kernel is broken up into two

operations: first a correlation with an l×1 kernel, then a 1× l kernel. This is mathematically

identical if the kernel is Gaussian, and reduces the correlation from Θ (nl2) to Θ (nl).

Finally, the sources are sorted by their estimated significance (integrated flux / noise)

and the vector of sources is cropped to 103.

Note that we chose to develop robust algorithms for dealing with general artifacts rather

than performing a pre-flight flat-fielding procedure. This is because the image structures

seen in flight may not match those seen during controlled tests before flight, which was the

case in the 2012 Antarctic flight (see Section 5.4).

Selective Masking Utility

To be better prepared for image artifacts that could disrupt the source finder, STARS has

the ability to disable 128 × 128 px blocks of an image. This is demonstrated in Figure 5.3

and was used in flight (see Section 5.4).

Motion PSF

The motion PSF mode is an alternate source finding mode, and is meant to aid in finding

sources when the exposure time is too long for the gondola to remain still to within a few

pixels. This is especially common when using multiple exposures (see Section 5.3.7). In this

3Many of the numbers used in this section are the default flight values of tunable parameters.

94

Figure 5.3: Demonstration of the selective masking utility. This html/javascript utility allows
users to toggle blocks on or off using the mouse and provides them with a command to send
to STARS during flight. STARS then ignores the disabled blocks during source finding. In
this example the utility is configured to block out the left 2

12
of the image, and the STARS

screenshot shows that this area is shaded out of the image, indicating that the source finder
will not search the left 2

12
of the image.

95

mode, FCP sends arrays of gyroscope readings to STARS for the duration of the exposures.

STARS then reconstructs the motion blurred source shape for each exposure, and uses these

shapes as smoothing kernels instead of Gaussian kernels. Note that individual exposures

belonging to a set of multiple exposures must be smoothed separately, but they use kernels

that originate from the same starting point so that the streaks for a given star from each

exposure contribute to the same source. This is demonstrated in Figure 5.10.

5.3.4 Solving - Pattern Matching

The pattern matcher tries to match the sources in an image to corresponding catalog stars

given a particular platescale and set of angles describing the orientation of the image frame

using the following procedure:

1. It picks the brightest three sources in the image. These three sources form a triangle

with known leg lengths (angular distances on the sky).

2. It selects all the triplets of catalog stars that have similar leg lengths. For each of these

triplets:

(a) It performs a least-squares fit to find the pointing solution for the image that

would align the selected sources with the selected stars.

(b) Using this pointing solution, it tries to match all the sources in the image to stars

from the catalog. As an optimization it only checks stars in the region of the

pointing solution.

(c) With all the possible source-star matches it fits a new pointing solution.

(d) If this tentative pointing solution satisfies all the requirements, it is accepted as

the pointing solution.

3. If a pointing solution is not accepted, a new triplet or pair of stars is chosen. This is

repeated until every unique triplet combination of the brightest 7 sources is exhausted,

and then until every pair combination of two sources is exhausted.

96

User-specified parameters that may be tuned in order to define whether a solution is

acceptable include:

• a limit on angular distance from a specified horizontal pointing location (azimuth and

elevation)

• limits on horizontal roll

• limits on elevation range, which is convenient for placing constraints based on telescope

hardware

• a limit on angular distance from a specified equatorial pointing location (right ascension

and declination)

• limits on equatorial roll

• a limit on the pointing solution error

• a lower limit on the number of sources matched to stars

During flight the limits on pointing coordinates come from estimates of the pointing from

the other absolute sensors, which are less accurate. Generally speaking they will provide an

estimate to within 5 or 10 degrees, and in this case the code is set to require 4 or 5 source-

to-star matches. However, STARS can operate in a lost-in-space mode in which it has no

pointing estimate to limit the region of the sky that it searches. This “mode” is activated

by disabling all the coordinate-based limits. Without these limits, we must require 7 or 8

source-to-star matches to be confident in a solution.

As will be discussed in the following section, the star catalog maintains a preprocessed

list of star pairs and triplets in order to facilitate a fast search through the catalog. In this

manner the STARS pattern matcher is highly influenced by the Pyramid algorithm described

in [51].

The pattern matching step (2b), in which the solution from a triplet match is extended

to try to match all the source in an image, allows the user to set a strict requirement on the

number of sources matched. Allowing the requirement on the number of matches to be as

97

high as 20 allows the user to relax other constraints in the images, such as the platescale limits

and the match tolerances that may become too strict under systematic optical distortions.

The STARS pattern matcher is fast enough to run lost-in-space in flight (see Section 5.4).

5.3.5 Star Catalog

The EBEX star catalog is a list of stars, originally copied from an online database, that has

been reduced to contain only as many stars as is useful for EBEX, and then compiled into

different forms for the pattern matcher. We first discuss the process of reducing the size of

the catalog for EBEX, and then the structure of the catalog itself.

Reducing the Number of Stars

Full sky catalogs often provide lists of all stars down to a given apparent magnitude (dim-

ness). For the purposes of the EBEX star catalog, however, we prefer to have a roughly fixed

number of stars per field of view. This distinction allows for an important optimization. We

require at least 10 stars per field of view for even the most sparse regions of the sky. If we

were to simply set a magnitude limit on our catalog, then we would have to go fairly deep

(to high magnitudes, which are very dim stars) to support the sparse regions of sky, which

would result in large numbers of stars in dense regions near the galactic plane.

The process of reducing the number of stars from a magnitude-limited catalog involves

two steps. The first is to determine the magnitude of each star in the EBEX star camera

frequency band. The second is to perform the reduction, picking only the brightest stars in

a given field of view according to the EBEX band magnitude. Here are the details of the

two steps:

1. Determining the flux or the magnitude of each star in the band specific to the EBEX

star cameras is helpful because the next step performs comparisons between star bright-

nesses, so determining the EBEX band magnitude for each star allows the comparisons

98

to be more accurate. The available generic star catalogs tend to provide star magni-

tudes (and fluxes, by extension) in a number of common frequency bands. By fitting

a blackbody function to the fluxes at each of the available frequency bands, we can

construct a model of a star’s flux as a function of frequency. We then multiply this

function by the transfer function of the EBEX star camera (which is the CCD respon-

sivity multiplied by the transmission of the red filter) and integrate it to find the flux

of each star in the EBEX star camera frequency band. The result of this process is

shown in Figure 5.4. We perform this operation for every star in the original catalog.

2. A simple and conservative approach is taken to reducing the number of stars down

to a constant number per field of view. We developed a method that guarantees that

every possible star camera field of view contains at least the N brightest stars (where

N is tunable). We divide the sky into a many overlapping circular bins. We choose

the bins to be small enough and overlapped enough so that any possible field of view

contains at least one bin and every part of the sky is covered by at least one bin4. We

then rank the stars in each bin so that the brightest star in a bin has a local ranking

of 1. A star’s global rank, then, is the highest rank that it has in any bin. The catalog

is then reducuced to contain only stars down to a given global rank. This results in

roughly homogeneous star density across the sky, while guaranteeing that any possible

field of view has at least N stars in it. An example showing a resulting list of stars is

shown in Figure 5.5.

Catalog Structure

The list of stars is then organized into four different forms as an optimization for the pattern

matching procedure: a flat list, pairs, triplets, and regions. We will now discuss these four

forms.

4For the EBEX star camera we use bins of radii 1.003◦ and spacing 0.472◦ for the star camera FOVs of
size 4.05◦ x 2.70◦.

99

(a) (b)

(c) (d)

Figure 5.4: The process of determining the flux (and by extension magnitude) of a given
star. Subfigure (a) shows the responsivity of the CCD (in blue) and the transfer function of
the EBEX star camera (in red). The star camera’s transfer function is the CCD responsivity
function multiplied by the red filter’s transfer function. Subfigure (b) shows the flux model
of an example star in green, the EBEX transfer function in red, and the multiplication of
the two in cyan. The integral of the cyan curve is the resulting flux of the star in the EBEX
star camera band. The flux model comes from fitting a blackbody to the flux data points
(shown as blue circles) at available band frequencies. Subfigure (c) shows the measured flux
vs catalog flux for the stars in a single image before this procedure is applied (using the
V-band), while subfigure (d) shows the same thing for the computed flux of the same stars
in the EBEX band. The linear relationship in Subfigure (d) suggests an improvement for
the stars in this image.

100

(a) (b)

Figure 5.5: The catalog stars before (a) and after (b) reduction. The sky is shown as an
equatorial Mollweide projection, and the blue dots are individual stars. It is apparent in
Subfigure (a) that the Galaxy presents an inhomogeneity in the density of stars. Subfigure
(b) plots an example list of stars that has been reduced down to only include stars with
global rank 1. Note the homogeneity in this equal-area projection.

Flat List - All the stars in the catalog are stored in a simple text-based list. The list

includes each star’s unique ID, right ascension, declination, flux, and name. This list is only

actively used by STARS to display the name of identified stars, but it is also an intermediate

step in producing a catalog, as it is the output of the reduction procedure described above.

Triplets and Pairs - The second step of the pattern matching algorithm, which involves

loading triplet or pair permutations of stars from the catalog, would be slow if catalog per-

mutations were generated dynamically. Instead the catalog pre-compiles every permutation

that fits within a star camera field of view and stores it to disk.

Although there are more permutations of triplets than pairs, there are statistically fewer

catalog triplets that can match a given source triplet than there are catalog pairs to match

a given source pair. As a result, the pattern matcher can search for a given triplet faster

than it can search for a pair, but the triplet section of the catalog takes significantly more

disk space (and more time to compile during development) than the pair section.

This part of the catalog benefits the most from having a homogeneous star catalog since

the number of triplets in a potential field of view is proportional to the cube of the number

of stars in that field of view.

The pairs and triplets are binned into separate files for faster loading. Pairs are binned

101

by the distance in between the two stars, and the bins are stored as separate files, where the

filename represents the bin’s lower bound in arcminutes. Triplets are binned on two levels,

first by the longest leg length and then by the second longest leg length of the triangle.

The first level of binning forms a set of directories, where the directory names represent the

bin lower bounds in arcminutes. Inside each directory the files represent the second level

of binning, again with each filename represnting the bin’s lower bound in arcminutes. This

binning allows the pattern matcher to quickly load all catalog permutations whose angular

distances fall within specified ranges.

The triplets and pairs are stored sequentially in binary in each file. Each triplet permu-

tation is stored as three angular distances and three parameters for each of the three stars.

Likewise, each pair consists of a single angular distance and two stars.

Regions - Lastly, the catalog groups the individual stars into regions for step (2b) of

the pattern matcher. This is an optimization so that in step (2b) the pattern matcher can

quickly retrieve all the stars that may be nearby, without retrieving all the stars in the sky.

The regions are defined to be large enough so that for any FOV in the sky, the nearest

region can be loaded and it will contain all the stars located in that FOV. For the EBEX

field of view of 4.05◦ × 2.70◦, we generate regions on a grid that is spaced by 10 degrees in

declination, and spaced in right ascension by 10◦/ cos(dec), and each region has a radius of

10◦. The logic behind this spacing is shown visually in Figure 5.6, where any EBEX field of

view is fully contained within the nearest circular region. The resulting pattern of regions is

shown in Figure 5.7.

Each region is a file that begins with two binary float32 numbers: the right ascension and

declination of the center of the region. It then contains a list of stars stored sequentially in

binary, where each star consists of four parameters: an ID, ra, dec, and apparent magnitude.

STARS loads all the regions into memory at runtime for fast access.

102

Figure 5.6: A zoom of part of the sky showing four adjacent circular catalog regions. Over-
layed on the plot is a black rectangle representing an example EBEX star camera field of
view. Given the size of the circular regions, and their spacing, any possible placement and
rotation of the field of view will always be completely contained within the nearest region.

Figure 5.7: All the regions in the STARS catalog. Each region is a circle of radius 10◦, and
the regions are spaced on a grid separated by 10◦ in angular distance in both right ascension
and declination. Given these paramaters, the regions overlap. There is additional overlap at
right ascension zero (an imaginary vertical center line in the plot) due to the fact that the
distance around the sphere is not an integer multiple of the grid spacing at every declination.

103

Figure 5.8: A screenshot of the STARS display, running post-flight on a ground computer
on an image from the EBEX Antarctic flight.

5.3.6 Displaying

During the first day of flight when the gondola is in range for line-of-sight communication,

and during pre-flight testing, the user can watch the display output of the star camera

computer as captured from the VGA port. This video display can be crucial for debugging

when the experiment first reaches float altitude. It is also useful during testing.

Figure 5.8 is an example screenshot taken during post-flight processing that shows much

of the communication that the display provides. On the image itself, the sources are initially

identified with rotating blue squares. When a solution is found, the squares around matched

104

sources change to fixed red squares, while the brightest of the matched sources is identified

by name and a fixed yellow square. As the pattern matcher searches the catalog for matches

from a set of source triplets, the outline of a green triangle is traced out as a progress

bar connecting the three sources in the triplet. In this case, the solution was found just

before making it half way through the list of potential catalog triplets for the three sources

marked by the incomplete green triangle. If multiple source triplets are tested, old triangles

fade away over time in order to not obstruct the image. To the right of the image various

housekeeping, lens, and network connection information is displayed, though not in this

post-flight run because it is not being executed on a star camera computer. Below is the

status information for the image. Administrative information is displayed in green, statistics

are displayed in blue, and information about the solution found is displayed in yellow.

The star camera image shown in Figure 5.8 contains 11 sources matched to catalog stars.

The image also contains many of the undesirable features seen in flight: the dark circles

primarily located in the bottom left of the image are dust spots in the optics; there is a large

gradient due to internal reflections in the optics; there is a vertical slab of sharp reflections

from the CCD itself on the left side; there is either a satellite streaking past the image

or a cosmic ray CCD hit just above one of the dust spots; and lastly, this image contains

mesospheric clouds. The blue square represents a source that was not matched; in this case

it is a false positive picked out from a piece of cloud.

Not shown in Figure 5.8 is additional information that the display can also be commanded

to show:

• A zoomed region of the image.

• The status of the autofocus routine, which includes a plot of the focus metrics5 versus

the focus position.

• The state of all the solution requirements.

5See Section 5.3.7

105

5.3.7 Imaging

Camera

STARS has a camera object that reads images from the camera controller over IEEE 1394,

saves them to disk, and then shares them with the solver thread. The camera object runs

this functionality in its own thread because downloading an image from the camera controller

requires a blocking I/O call, and because the camera controller buffers should be flushed into

STARS quickly, before the next set of triggers occurs.

STARS also has a camera object that loads images from disk to be used during testing

and post-flight processing. Only one of the two camera objects is created when STARS runs,

as determined by one of the parameters in the settings file.

Multiple Exposures

STARS has the ability to capture and process multiple exposures taken consecutively. The

hardware in the EBEX star cameras allows for up to four exposures separated by gaps as

short as 190 ms. Multiple exposures are employed when the user would like to capture

more light for improved signal-to-noise, but is running up against the saturation limit of the

CCD. STARS reads multiple exposures and effectively co-adds them for image processing.

Figure 5.9 shows the results of a test in which multiple exposures were used to increase the

statistical likelihood of solving an image.

When co-added multiple exposures are used on EBEX, they tend be to captured over a

relatively large amount of time (∼800 to 1300 ms) compared to a normal exposure (∼300 ms),

so the motion PSF feature discussed in Section 5.3.3 is more important in this situation.

Figure 5.10 shows the pattern obtained when capturing multiple exposures while the gondola

is rotating.

106

Figure 5.9: The probability that an image is solvable given the level of sky brightness.
12 images were captured on a dark night with 120 ms exposure times. Different levels of
sky brightness were added to each image, using the brightness simulator discussed in Sec-
tion 5.2.5, to test whether it was still solvable at that level. Shown in this plot is the fraction
of the 12 images that were able to solve at that level of sky brightness (blue circles). The
test was then repeated with effective 240 ms exposures, which were actually sets of two co-
added 120 ms exposures (green circles). The longer effective exposure time produces better
results because of increased signal-to-noise. A 240 ms exposure would normally saturate at
417 kepsa, but with two separate co-added exposures the saturation limit doubles to 833
kepsa, as indicated by the dotted blue vertical line.

107

Figure 5.10: Capturing an image with multiple (triple) exposures while the gondola is in
motion. The top plot shows a strip chart of the Star Camera 0 trigger line, which is the
electronic line that drives the mechanical shutter in the camera. When the line is 1 the
shutter is open, and when it is 0 the shutter is closed. Below the plot is the image captured.
Each star shows the characteristic set of three streaks with gaps in between that appear for
each star due to the shutter opening and closing three times. This may occur on smaller
scales during the flight, which is why the Motion PSF source finding method is equipped to
handle it. Note that the source finder was in motion PSF mode for this run, and as a result
only the top end of the 3 streaks is identified for each source, even though the combined
signal from all three streaks is used so that dimmer sources can be identified than with a
single exposure.

108

Lens Control

The lens thread controls the focus and aperture by communicating with a physical lens

controller over a serial port. Lens requests typically originate in the networking thread - as

ground commands are passed through the flight computers - and terminate in the lens thread.

Once the lens thread has completed the request, the result is sent back to the networking

thread to be sent back to the flight computers and ultimately downlinked.

However, the main thread should also know the state of the lens in order to display it to

the user, and the camera thread should also know the state of the lens in order to store it in

the saved image headers. The issue to be overcome is that these threads are asynchronous

with the lens thread, and in fact the lens thread may not even know the state of the lens

between when it sends a command over serial to the physical lens controller and when it

receives a confirmation, which can be up to a couple seconds. The solution involves counters

and passing lens requests/results sequentially.

When the flight computers make a lens request, they also assign it a count. This request

(with a specific count) gets passed into the STARS networking thread, which passes it to

the main thread, then the camera thread, and finally the lens thread which takes action.

Once the action is complete, a result with a corresponding counter gets passed back to the

flight computers via the same path. In this way, for example, if the main thread sees a

focus request go to the lens, but has not yet seen the corresponding focus result come back

from the lens (i.e. the counters differ), then it considers the focus value to be unknown,

and displays it as such to the user. This does not allow every thread to immediately know

the state of the lens, but it does allow every thread to know when action is being taken on

the lens and therefore its state may be invalid, which is all that is necessary. This flow of

requests and results can be seen in Figure 5.1.

This is an example of the way memory is shared between processes, and the emphasis

placed on sharing accurate information with the user. The same method is used for the

109

camera gain, which is controlled by the camera thread, and the status of the autofocus

routine, which both originates and terminates in the lens thread but takes a round-about

path through the other threads for this reason.

Autofocus

The autofocus works by stepping the lens through a range of focus positions and calculating

metrics on an image taken at each step. STARS employs two separate metrics, described

below, but will prefer the focus position found by the second metric if it is available.

The first metric is the peak value of the brightest source in the image, whether or not the

solver finds a solution. The peak value of a source that represents an actual star is a good

metric because, as the focus moves away from the optimal position, the peak value decreases

with the square of the width of the source. If the gondola can point at a fixed patch of sky,

such that over the course of an autofocus routine (minutes) the brightest star remains in the

frame and another brighter star does not enter the frame, this is an effective metric.

The second metric relies on the solver finding a solution, and is the peak value of every

source that corresponds to a matched star. This may appear to cause a circular dependency,

in that the autofocus is run to obtain solvable images but solvable images are required for

the autofocus to work. However it does not create a circular dependency because the STARS

solver can find solutions when the focus is relatively far from the optimal position, and even

when STARS is finding solutions we may still want to improve the focus (e.g. if we want

more frequent solutions, or if in the future we will be pointing at a more challenging patch

of sky that has more noise and artifacts). When a solution is found, the metric for each star

identified is stored. Over the course of many focus steps, STARS actually builds multiple

second metrics, one for each star, and it does so regardless of whether the stars are the

brightest objects in the frame or whether the frame moves around. This metric has the

advantage that it does not require a highly stationary gondola to determine the best focus,

though it does require the gondola to remain in the same region, or revisit part of the same

110

region, as the focus steps past the optimal point.

5.3.8 Networking

STARS accepts network connections from both flight computers. Each flight computer

attempts to establish a connection to each star camera every 9 seconds if it is not already

connected. Once connected, FCP and STARS send updates to each other once every 0.5 s.

When a gondola operator sends a command from the ground, FCP receives the command

and passes it on to STARS over the network connection. STARS shares solution and other

information with both flight computers, but only accepts commands from the flight computer

that is in-charge, which is a designation assigned by a watchdog timer as the less-recently

rebooted flight computer.

Counters are also used to protect STARS from spurious state changes in FCP. Sometimes

FCP will change the value of a parameter even if the ground operators did not command

such a change. These state changes have been observed many times, but would require

significant changes in FCP to eliminate. To decrease the probability that STARS accepts

a spurious command from FCP that did not originate from a ground command, it checks

a timer to ensure that any particular state change from FCP coincides temporally with the

corresponding ground command. With this safety mechanism, no spurious commands have

been observed.

To help with potential in-flight debugging, STARS shares 44 variables with FCP to

be downlinked to the ground operator. These variables include administrative counters,

housekeeping measurements, the status of camera and lens parameters, and statistics and

solving information about the current image.

111

5.4 STARS - Successful In-Flight Performance

Throughout the 11-day EBEX Antarctic flight STARS never crashed, and it reliably served

pointing solutions to the flight computers with minimal intervention despite considerable

challenges, which we will discuss in the following paragraphs. The fact that STARS required

minimal intervention was especially important during sparse downlink times on the EBEX

flight.

One of the challenges that STARS handled involved misinformation from other subsys-

tems. A system clock failure on one of the flight computers and eventual failures or faulty

readings from all three GPS systems caused FCP to share incorrect pointing information

with STARS for various reasons and at various times throughout the flight. Nevertheless,

STARS continued to provide pointing solutions due to the fast lost-in-space pattern matching

capabilities discussed in Section 5.3.4.

Due to an issue with an azimuth motor controller the gondola was unable to remain

stationary for more than one second at a time. A stationary gondola for at least three

minutes is necessary to perform safe re-focusing procedures, in which we manually change

the focus by small amounts to find the best focus position.6 With no regular autofocus,

due to thermal variations in the optics, the point spread function expanded and contracted

from 2 px to 12 px in diameter over the course of hours and days. Nevertheless, STARS

continued to solve on these out-of-focus sources due to the source finder’s smoothing and

leveling procedure discussed in Section 5.3.3, and because the resulting loss in signal-to-noise

was recovered by the multiple exposures feature discussed in Section 5.3.7.

Another consequence of the azimuth motor controller issue was that the acceleration at

scan end-points and the state variables in the scan control loop was different than in the orig-

inal scan design. STARS continued to operate in these new conditions due to the architecture

6This is preferred over the autofocus routine which incurs more risk because it changes the mechanical
focus by larger amounts. Considering this risk, and that the source finder continued to work on the out-of-
focus sources, we opted not to test the non-stationary autofocus feature in flight.

112

described in Section 5.2 in which the camera and solver threads operate asynchronously on

data whenever it becomes available, independent of the gondola’s scan state.

Finally, STARS prevailed against various image artifacts: dust spots, mesospheric clouds,

satellites and/or cosmic ray hits, optical vignetting, external reflections from the Sun, sharp

internal reflections of the CCD, and broad gradients from internal reflections. The leveling

and flux sorting procedures discussed in Section 5.3.3, along with the selective masking

feature (Section 5.3.3), helped limit the number of false positives extracted by the source

finder. The false positive sources that did get through did not prevent the pattern matcher

from finding a solution due to the fast search algorithm, which allowed for many triplets to

be tested in a matter of seconds, and due to the ability of the pattern matcher to identify all

the sources in an image, rather than just those in the triplet. The multiple exposures feature

enabled the source finder to find enough sources to meet this stringent matching criteria due

to the increase in signal-to-noise.

113

Chapter 6

Real-Time Sky Maps with

“QuickLook”

6.1 Description

Quicklook is a software package that processes a subset of the data that has been downlinked

during flight into a map. The map serves two primary purposes. The first is to measure

the sensitivity of the detectors to astronomical sources as a diagnostic tool. The second is

to compare the location of the calibrator in the map to its true position in the sky in order

to fine tune the pointing offsets between the pointing sensors and the microwave telescope

boresight.

The quicklook software package consists of a front-end user interface and a back-end

server. The user interface is a web page that shows a map created from the flight data and

presents various options that specify what data to use in the map and how to use it. The

map is displayed using the Google Maps library, which works by stitching together a number

of “tiles”, or square images that constitute the map when placed side by side. The back-end

server contains a map maker that is responsible for creating these tiles.

In this chapter we will discuss the back-end server, the user interface, and the testing and

114

performance of quicklook. In Chapter 10 we will discuss how the map maker was extracted

from quicklook and used as the primary map maker for EBEX analysis purposes at least up

until the time this document was written.

6.2 Back-End Server with Naive Map Maker

The back-end server is primarily responsible for delivering tiles, which are small square

images, to the front-end interface, which assembles them into a cohesive view of the map.

A Python program called “get tile.py” contains the core of the map making functionality.

Based on the URL parameters passed by the user interface, this program loads detector

timestreams and all relevant pointing timestreams from the selected section of flight. It then

performs the necessary pointing conversions, first to the desired celestial coordinate system,

and then through a Mollweide projection onto the requested tile. It then filters the detector

timestream data to remove low frequency drifts (with a filter that we call a “destriper”) and

high frequency noise (with a “smoother”). The destriping filter is a moving median removal

filter that acts as a high pass, with a default window size of 2.10 s. The smoothing filter

is a moving mean filter that acts as a low pass, with a default window size of 0.32 s. The

default filter parameters were chosen before flight based on predictions of the scan strategy

and detector noise frequency profiles. Finally, the tile program adds detector samples to

tile pixels, normalizes each pixel by dividing by the number of detector samples added, and

serves the tile back to the map in the user interface.

Depending on the user options, it can take many seconds for the map maker to generate

a single tile out of hours of flight data. The longer it takes to generate tiles, the slower the

user experience is, which can waste time during flight. We therefore implemented two im-

portant optimizations to speed up get tile.py. First, the program saves the tiles to disk when

they are generated so that if the user happens to request the same tile again in the future,

it can be loaded from disk instead of being dynamically generated (this is called memoiza-

115

tion). Second, various numerical functions are moved from Python to C++, including the

timestream filters and the binning algorithm.

The server also has three other responsiblities outside of hosting get tile.py:

• Color Bar - The map that is displayed is colored based on the intensity of the signal in

each pixel. For the user to quantitatively know the level of signal in a pixel, they must

also have access to a color bar. A Python program called “get color bar.py” creates the

color bar as an image and serves it back to the user interface to be displayed alongside

the map.

• Logging - The map making program get tile.py writes log files to disk. When devel-

oping and testing the quicklook software, it is useful to be able to view these log files.

A separate Python program called “get info.py” loads these log files and serves them

to the user interface, so that the user interface can display the logs. This speeds up

development and testing of quicklook itself.

• Focal Plane Visualization - One of the options that the user can specify is a list

of detectors that they would like to include in a map. In some cases the user chooses

the detectors based on their location on the focal plane. For example, when scanning

the calibrator, the user might want to view maps produced by a detector on the edge

of the focal plane to ensure that it is scanning past the calibration source. When

the user enters a list of detectors into the user interface, they can click on a link to

view where the detectors are located on the focal plane. We therefore have a Python

program called “get detector visualization.py” that produces a plot of the focal plane,

highlights the specified detectors, and serves it back to the interface.

6.3 Quicklook User Interface with Google Maps

The user interface displays the map and allows the user to specify parameters that control

how the map is built. It is written in HTML, JavaScript, and CSS.

116

Figure 6.1: Example screenshot of the quicklook user interface. The map display is featured
prominently in the screenshot. The screenshot was captured during ground tests, when the
gondola was performing a science scan and the detector data was simulated to create a
non-uniform map.

6.3.1 Map Display

The map display uses the Google Maps API (Application Program Interface) [52] to display

the map data as a Google Maps object. Although most people are familiar with Google

Maps as a way of displaying a map of the Earth in a Mercator projection, the library can be

used to display any tile-based visualization, which in our case is a Mollweide projection of

the sky. The Google Maps scrolling and zooming support is natural for navigating around

large coverage areas and zooming in on small sections. When the map is initialized or the

user interacts with the map via the standard methods (scrolling, swiping, zooming, pinching,

etc), the map requests tiles from the back-end server to display.

In order to display an EBEX sky map, the Google Maps object is instantiated with a

117

custom ebexMapType object, whose URL callback defines a URL for map tiles that points

to an address on a ground station that hosts the back-end server (as opposed to, for example,

a URL that returns tiles of the Earth). The URL contains parameters that define the tile

dimensions along with various user options on how to produce and display the map. These

parameters come from the user options discussed in the next subsection, and are accessed

by the URL callback with jQuery1. Figure 6.1 shows the map display.

6.3.2 User Options

The user options are divided into two categories: binning options that control how the map

maker should bin detector samples on the map, and displaying options that control how the

map is viewed.

The part of the interface that contains the binning options is shown in Figure 6.2. The

“Coordinate System” radio buttons select which celestial coordinate system should be used.

The “Solution Source” selects which source the pointing information should come from,

whether it be the primary pointing stream or one of the individual star camera pointing

streams. Selecting a star camera pointing stream here can simplify the process of calculating

the pointing offsets between the star camera and the microwave telescope boresight. The

“Dirfile Unix Time” and “Wrangler Time” boxes are two different methods of selecting

which subset of data to include based on time in flight. The “Bin With” option provides

“alternating colors” as an alternative to normal Dirfile map making for the purposes of

testing the Google Maps API component, and the “healpix nside” parameter allows the

user to specify the pixel sizes in the map via the standard HEALPix binning scheme2. The

“Bolos” box allows the user to specify the detectors that they would like to include in the

map, and the “where?” link allows the user to see a visual focal plane layout indicating where

their selected detectors are located on the focal plane. The “Filtering” options are to specify

1jQuery is a javascript library that simplifies development [53].
2HEALPix is an algorithm to pixelize a sphere into equal area pixels, and stands for Hierarchical Equal

Area isoLatitude Pixelization [54].

118

Figure 6.2: The binning options as displayed on the Quicklook user interface.

window sizes for high- and low-pass filters that are applied to the detector timestreams before

binning.

The displaying options are shown in Figure 6.3. A redraw button allows the user to

force the map to redraw, which may be useful if more data has become available in the time

range specified. The grid related options control the overlay of grid lines on the map. The

“pixel skip” option is an optimization that reduces the resolution in the maps to speed up

tile delivery from the server. The “Positioning” options are for manually defining the center

of the map and the zoom level. Specifying the positioning options is often less intuitive than

119

Figure 6.3: The displaying options as displayed on the Quicklook user interface.

scrolling and zooming on the map with the mouse, but it can be useful if the user needs to

revisit the exact same view after navigating away.

6.4 Testing

The quicklook software package was tested before flight on both simulated data and real

data. Though the real data did not contain interesting signals, we tested it anyway to ensure

that the software would work with realistic scan parameters and detector timestreams. To

simulate flight data, a simulation of the FCP scan function was written and then run to

produce pointing timestreams from a science scan. We then used the pointing timestreams

to create detector timestreams by sampling a Gaussian function at each timestep, using

the pointing datapoints as parameters. We also simulated other functional forms, such as

gradients, to see how the map maker would handle them.

120

6.5 In-Flight Performance

The quicklook software performed correctly during flight, and the gondola operators used it

to check sky coverage. It correctly combined the detector data with the pointing data to make

maps according to the user preferences. The ground operators used it to check sky coverage,

in particular to see how many times the focal plane passed through the calibrator and to

check on the science scan pattern. The ground operators also tried to use it to see signals

from the calibration source (RCW 38) and the Galaxy, but unfortunately a bug in the FCP

telemetry functions corrupted all the usable detector timestreams that were downlinked.

121

Chapter 7

2012 Antarctic Science Flight

7.1 Flight Details

EBEX was launched on 2012-12-29 at 00:30 UTC from Williams Field, an air field near

McMurdo Station in Antarctica. It rose to an altitude of 120 500 ft and remained between

110 500 ft and 120 500 ft (between 33.7 km and 36.7 km) for the next 11 days, during which

time it collected scientific data. After 11 days the receiver exhausted its cryogens and the

scientific portion of the flight ended on schedule. For the next 14 days the telescope remained

afloat with most systems powered down until it drifted over an acceptable landing site, at

which point the flight was terminated. The altitude profile for the first 11 days of flight is

shown in Figure 7.1, and the geographic profile for the entire flight is shown in Figure 7.2.

The telescope was terminated over a plateau a few hundred miles from McMurdo station.

The hard drives were recovered in the following weeks, along with some of the more expensive

and accessible components. The remainder of the telescope was recovered one year later.

For the most part the 2012 Antarctic flight was successful. Many aspects of the flight went

as planned, though some did not, as is often the case in ballooning. There were several issues

with various subsystems, some of which have been discussed in Chapter 5. Two subsystems

had issues in flight that had notable effects on the data:

122

Figure 7.1: Altitude profile for the first 11 days of the EBEX 2012 Antarctic flight.

Figure 7.2: Geographic profile of EBEX in its 2012 Antarctic flight. The Antarctic continent
is shown in white overlaid with a geographic grid with the lines of longitude labeled. The
EBEX flight path for the first 11 days, during which time scientific data was collected, is
shown in solid red. The flight path for the remaining 14 days is shown in dotted red.

123

Figure 7.3: Sky coverage from the 2012 Antarctic flight, shown in galactic coordinates. The
patch is circular, centered on the equatorial South pole, covers 5735 square degrees, and has
a width of roughly 27◦ due to the telescope’s latitude being 10◦ from the South pole and the
focal plane being 7◦ wide. The calibrator is contained within this patch.

• Pivot Motor Controller - The pivot motor controller overheated due to a flawed

thermal design, which limited azimuth control. The telescope therefore rotated freely

in azimuth for the majority of the flight, which resulted azimuth motion with two

components. First, the telescope underwent full 360◦ rotations every 15 to 60 minutes.

Second, oscillations of 15◦ to 90◦ with 80 s periods were superimposed on the rotations.

To perform science scans, we drove the telescope to a fixed 54◦ elevation. To perform

calibrator scans, we followed the calibrator’s elevation when the telescope crossed the

calibrator in azimuth, and targeted parts of the focal plane that had active detectors

to make the most out of the limited number of crossings. The resulting sky coverage

is shown in Figure 7.3. Another consequence of the 360◦ rotations is that the flight

computers were occasionally exposed to direct sunlight, and had to be shutdown for

one or two hours a day to cool.

124

• FCP Downlink - There were two issues with the downlink functionality in FCP (the

Flight Control Program). First, an issue with data prioritization prevented continuous

downlink of timestreams outside of line-of-sight communication (though they could

be downlinked intermittently). The second issue affected the detector timestreams

specifically. As discussed in Chapter 6, the Quicklook software was meant to be used

in flight to confirm that the detectors were sensitive to astronomical sources and to

refine the calibration offsets between the pointing sensors and the microwave boresight.

To downlink enough detector and pointing data over the limited bandwidth to make

maps during flight, the detector timestreams need to be downsampled. The FCP

functions that downsampled these timestreams contained a bug that corrupted the

data, making them unusable for map making. Both of these issues had an impact on

the total observing time and resulted in limited coverage of the calibrator.

7.2 Data Extraction

All 18 hard drives (16 flight computer drives and 2 star camera drives) were recovered

from the payload at its termination site. The data consists of numerical timestreams, flight

computer log files, star camera images, and star camera log files. The timestreams contain

pointing sensor data, detector data, half-wave plate data, and general gondola and receiver

housekeeping data.

The timestreams and flight computer log files are stored on 16 disks that were accessed by

the flight computers. These disks were divided into two separate pressure vessels, each with

8 disks and accessed by only one of the flight computers. The two vessels were intended to

be redundant and store identical data, however due to a bug in FCP coupled with a system

clock failure, 43% of the data in one of the vessels was overwritten during flight. One of the

vessels contained 704 GB of data, while the other contained 402 GB of data that is mostly

redundant with the first.

125

The star camera images and log files were recorded to the two star camera hard drives.

The two star cameras are redundant in terms of function, however the two star cameras were

pointed at different elevations by design and therefore collected non-identical data. Each star

camera hard drive contained 62 GB of flight data.

In total the hard drives contained to 826 GB of unique (non-redundant) data. The 18

hard drives were imaged twice onto other hard drives, and these three identical sets of flight

data were carried off-continent by three separate EBEX collaborators. The carriers also

brought the hard drives from the ground station computers, which contain data that was

downlinked during flight and pre-flight testing data. All of the recovered flight data made

it safely back to collaborating institutions in North America and onto RAID arrays1 for

safekeeping.

1RAID stands for Redundant Array of Inexpensive Disks [55], and is a storage technology that is com-
monly used for the purposes of redundancy.

126

Chapter 8

Data Structures for Post-Flight

Analysis

8.1 Introduction

During flight the Flight Control Program (FCP) receives timestreams of data from 31 different

electronics components (described below) and writes the timestreams to disk in what we call

“framefile streams”. A framefile stream is a set of files called “framefiles” that are sequential

in time, with each framefile containing 30 minutes to an hour of data. A framefile is a file

that contains a series of “data frames” that are sequential in time, each containing between

10 ms and 1 s of data. Each data frame contains samples from multiple timestreams, and

may contain more than one sample of a given timestream. The number of samples of a

timestream that a data frame contains is known as the SPF, or samples per frame. Not

every timestream has the same SPF in a given data frame, but the timestreams inside a data

frame are synchronous in that they each contain an integer multiple number of samples. We

store many timestreams at a low SPF to limit the size of the data when a high sample rate

is not necessary.

As an example consider two timestreams, “longitude” and “azimuth”, that belong to the

127

same framefile stream, which we will call “ACS” for now. These data frames are written to

disk at a rate of 5.008 Hz, so we say that the ACS frame rate is 5.008 Hz. Each ACS data

frame contains one sample of longitude data and 20 samples of azimuth data. Therefore

the sample rate of the longitude timestream is 5.008 Hz and the sample rate of the azimuth

timestream is 100.16 Hz.

The 31 electronic components that provide data to FCP are:

• 1 ACS bus - A bus inside the Attitude Control System (ACS) crate contains data

related to the attitude control system along with some housekeeping data from other

subsystems.

• 2 HWP readout boards - Two boards are responsible for reading half-wave plate

(HWP) data.

• 28 bolometer readout boards - Each of 28 bolometer readout boards sends two

types of data to the flight computers: bolometer signal timestreams and bolometer

settings timestreams. The settings timestreams are generated asynchronously from

the bolometer signal timestreams.

FCP therefore stores 59 framefile streams to disk: 1 “ACS” framefile stream, 2 “HWP”

streams, 28 “Bolo” streams that contain the bolometer signal timestreams, and 28 “Slow

Streamer” (or “SS”) streams that contain the bolometer settings timestreams. These frame-

file streams are all generated asynchronously with respect to each other. The 59 framefile

streams are listed in Table 8.1, along with each streams’s data frame rate and the SPF rates

of the timestreams inside them.

The timestreams in the raw framefiles need to be processed for post-flight data anylsis

for three reasons:

1. The framefile format described above is convenient for storing data, because for a given

framefile stream FCP receives samples from multiple timestreams simultaneously and

can write them all to a single file instead of having a separate file open for each

128

Table 8.1: List of framefile streams. The timestreams within a framefile stream are syn-
chronous with each other, but each framefile stream is asynchronous with the framefile
streams. There are 59 total, as listed here. Some contain timestreams stored at different
samples per frame (SPF) rates, so the existing SPF rates are listed. The Bolo and HWP
frame rates are more precisely defined as 25.0× 106 Hz/218 .

Data Stream Frame Rate SPF rates
ACS 5.008 Hz 1, 20

Bolo Board 50 95.367 Hz 2
Bolo Board 51 95.367 Hz 2
...
Bolo Board 77 95.367 Hz 2

HWP Board 78 95.367 Hz 1, 32
HWP Board 79 95.367 Hz 1, 32

SS Board 50 0.990 Hz 1
SS Board 51 0.990 Hz 1
...
SS Board 77 0.990 Hz 1

timestream. For data analysis, however, the user generally wants to work with only a

few timestreams at a time, without having to load all the timestreams in a framefile.

Therefore for analysis it is more preferrable to have each timestream be stored in its

own file, as it is in the Dirfile structure defined in [56].

2. FCP stores each framefile stream across multiple sequential framefiles so that an indi-

vidual framefile does not become too large. In many cases, two sequential framefiles

are meant to be adjacent in time, and therefore it is preferrable that the timestreams

from the framefiles be merged together.

3. The data is stored on two separate sets of disks, one for each flight computer, and

although much of the data is redundant between the two, neither set contains all the

data because the computers may be shutdown or rebooted at different times during

the flight. Therefore the two datasets must be merged into complete datasets.

129

FC1 raw ACS

(union)

FC2 raw ACS

Figure 8.1: Diagram representing the union of ACS data from both flight computers. In
this diagram time increases to the right, and each filled box represents a dirfile that contains
multiple timestreams that are continuous for the length of the box. The top two lines of data
are drawn to demonstrate a situation in which the flight computers stored some overlapping
data and some unique data. The bottom line represents the desired result, which is the
union of the top two lines.

The first step in converting this data into a convenient form for analysis is to parse

the individual framefiles into Dirfiles, using a simple parsing program. The parsing program

loads a framefile from disk, and then writes each timestream to a separate file in a new Dirfile.

Then the Dirfiles from both flight computers are merged so that there is no redundant data,

as we will discuss in the next section (Section 8.2), and the resulting merged data is written

to disk in an organized structure which is described in Section 8.3. In the last section of this

chapter, Section 8.4, we will describe how data products that are created during the analysis

process fit into the organized data structure.

8.2 Merging Data from Redundant Flight Computers

8.2.1 Aligning Dirfiles

The two flight computers are named Flight Computer 1 (FC1) and Flight Computer 2

(FC2). The two flight computers are designed to obtain the exact same data and write all of

it to disk, which would make the data completely redundant. However, this redundancy is

designed into the system precisely because we anticipate the likelihood of issues in flight that

prevent the flight computers from recording data the entire time. For example, if one flight

computer overheats it may be shut down for a short period of time to cool off, or if there is a

130

memory leak the computer may need to be rebooted. As a consequence, each flight computer

writes some unique data, so to re-create complete timestreams it is necessary to merge the

timestreams from the two flight computers. Figure 8.1 shows a conceptual example of this,

where the flight computers have written some overlapping ACS data and some unique ACS

data for which the other flight computer was off, and the resulting product should be the

union of the two.

Each flight computer begins writing framefiles to disk at different times, and assigns them

timestamped filenames using its own system clock. In general this means that the parsed

Dirfiles from the two flight computers will have filename timestamps that are consistent to

within a few dozen seconds, given the magnitude of the system clock drifts, which is not

sufficiently precise to know which frame in an FC2 Dirfile corresponds to a given frame in the

corresponding FC1 Dirfile, a task that we refer to as “alignment”. Furthermore, in the 2012

Antarctic flight, a system clock failure led to most of FC2’s framefiles being given nearly

the same filename timestamp, a timestamp that corresponds to the system’s factory default

start time of January 1, 2002.

The solution to this problem is to use the timestreams themselves to determine how the

Dirfiles from FC1 and FC2 should be aligned with each other. Every Dirfile has a timing

channel, so we can look at the timing datapoints inside an FC2 Dirfile and try to find the

same timing datapoints inside one of the FC1 Dirfiles. If we find an FC1 Dirfile that has the

same timing datapoints, then we know that the two Dirfiles overlap as long as the timing

timestreams never repeat the same value, and we know the offset from one Dirfile’s starting

index to the other’s. If one of the Dirfiles is not completely contained within the other, then

the union of the two Dirfiles results in a Dirfile that is longer than each of the individual

Dirfiles. We can create a new Dirfile that is the union, and then continue the process of

searching for overlapping data. By repeating this process until no new overlaps are found,

we can chain together multiple Dirfiles into the largest continuous sections of data possible.

We call these sections “subsegments”.

131

Figure 8.2: Example data demonstrating the merging of FC1 and FC2 data. The figure
shows 12 hours of (ACS) altitude data. Gray lines represent data that is stored redundantly
by both flight computers, blue lines represent data points that only existed on FC1, and red
lines represent data that only existed on FC2. Green circles represent the start of continuous
sections of data, and are at a y-value of 0 because the system has not yet initialized after
powering up. The union of FC1 and FC2 data results in longer continuous timestreams than
from a single flight computer.

Figure 8.2 shows an example of how this procedure results in long subsegments of con-

tinuous data. The figure shows 12 hours of altitude data from the ACS dataset. Gray lines

represent data that is stored redundantly by both flight computers, blue lines represent data

points that only existed on FC1, and red lines represent data that only existed on FC2.

Green circles represent the start of continuous sections of data. In the figure, both FC1 and

FC2 have data until 02:50, at which point the red section shows that only FC2 has recorded

data. FC1 began recording data again 5 minutes later at 02:55. At 03:25 FC2 began miss-

ing data, but FC1 continued to record data as shown by the blue section. By alternating

between FC1 and FC2, we can reconstruct continuous timestreams all the way up until the

large gap at 04:20.

The large gaps in data beginning at 04:20 and 06:45 represent intentional system power

downs that were done to allow the flight computers to cool. We refer to the collection of

subsegments between intentional power cycling cool downs as “segments”. In total there are

35 segments in the EBEX 2012 Antarctic flight.

When the system is powered on at 09:35, only FC1 has recorded data for the first 50

minutes. Therefore, for the 4 minutes starting at 9:52 when FC1 rebooted, we have no FC2

data to fill in the gap. As this was not an intentional system power down, this gap delineates

132

subsegments instead of segments.

Note that the procedure for aligning Dirfiles from the two flight computers relies on the

fact that the timing channels have non-repeating, or unique, data. If the timing channels only

contain valid data, then this is the case because time increases monotonically. Unfortunately,

the timing channels do not always contain valid data and are sometimes repetitive. An

example of this data is shown in Figure 8.3, which shows the ACS timing channel, in Unix

time (with 1970 epoch), for the entire flight. For most of the flight the time is valid, and

therefore around 1.357e9, or 2013-01-01. However for periods near the second half of the

flight the timing channel takes on the value of the FC2 system clock, and reverts to values

around 1.0099e9, or 2002-01-01. In these cases the timing channel does not contain unique

data, and cannot be used alone to align FC1 and FC2 data. Instead we require that both the

timing channel and another channel have identical data. For the ACS dataset, for example,

we used the altitude channel. By requiring that both channels have identical data points for

a proposed alignment, we greatly decrease the probability of finding an incorrect alignment.

All of the timing data in the different datasets suffer from non-uniqueness, and in each case

a secondary channel is used to confirm alignment.

8.2.2 Resolving Conflicts

When FC1 and FC2 have overlapping data, the data points are for the most part identical

because they are read from a digital bus. However there are some cases where the data points

are not identical, either due to software bugs due to race conditions or hardware glitches due

to cosmic rays. In these cases we have a conflict, and we attempt to choose from the flight

computer that has the correct data. For a given conflict, to decide which flight computer has

the valid data points and which has the invalid data points, we employ a two step resolution

scheme:

1. By Edge - In many cases we find conflicts when one flight computer is beginning or

133

F
ig

u
re

8.
3:

T
h
e

A
C

S
ti

m
in

g
ch

an
n
el

,
in

U
n
ix

ti
m

e,
fo

r
th

e
en

ti
re

fl
ig

h
t.

T
h
e

tw
o

su
b
p
lo

ts
sh

ow
th

e
sa

m
e

d
at

a
at

d
iff

er
en

t
y
-r

an
ge

s,
ca

ll
in

g
ou

t
d
at

a
th

at
is

va
li
d

(t
op

)
an

d
d
at

a
th

at
is

in
va

li
d

(b
ot

to
m

).
T

h
e

co
lo

rs
fo

ll
ow

th
e

sa
m

e
sc

h
em

e
as

in
F

ig
u
re

8.
2.

134

ending a Dirfile, but the other flight computer is in the middle of a Dirfile. In these

cases we assume that the flight computer that is just beginning or ending a Dirfile

contains erroneous data, and prefer the data points from the flight computer that

is in the middle of recording data. We assume this because a flight computer that

is just beginning to write a Dirfile may still be in the process of initializing, and a

flight computer that is just ending a Dirfile may be terminating FCP without correctly

closing the framefile. An example of this is shown in Figure 8.4.

2. By Expectation - If both flight computers have data on both sides of the conflicting

region, then it is not an edge case. For each section of conflicting data points, we build

a temporary array of data points that represent our expectation of what values the data

should take. These expectation data points are simply a linear interpolation between

the data points on either side of the conflict. We then resolve the conflict by selecting

the flight computer whose data points most closely match the expected data points.

Specifically, we choose the flight computer for which the RMS between the actual

data points and the expected data points is smallest. An example of this is shown

in Figure 8.5. In the cases that have we have inspected manually the rejected data

points have clearly stood out as spikes given the variation in the data, indicating that

this method chooses the correct data point rather than biasing the data by choosing

between two reasonable data points.

No conflicts were found that could not be resolved by these two cases.

8.3 Base Data Structures

As discussed in the previous section, continuous sections of data are referred to as sub-

segments, and collections of subsegments between intentional power cycling cool downs are

referred to as segments. Segments are named with the time of the start of the segment in

UTC, in the format “YYYY-MM-DD--hh-mm-ss”. The date part of the filename follows the

135

Figure 8.4: Example of conflict resolution in an ACS data stream called “raw gy1” using
the “By Edge” method. In the top subplot gray data points are identical on both flight
computers, blue data points are unique to FC1, and red data points are unique to FC2.
Conflicts exist when the two flight computers have two different data points at the same
index. The bottom subplot shows the resulting data stream after the conflict has been
resolved in gray. The conflict occurs at the end of an FC2 dirfile, as evidenced by the
transition in the top subplot from both red and blue data points to only blue data points.
In this case FC1 is prefered, and the resulting data stream in the bottom subplot matches
the blue data points.

136

Figure 8.5: Example of conflict resolution in an ACS data stream called “raw gy1” using the
“By Expectation” method. The plot layout is identical to that of Figure 8.4. In this case
the conflicts are resolved by expectation, and it is evident that the resolved time stream in
the bottom subplot does not contain spikes that would be due to the red outliers in the top
subplot.

137

FC1 raw ACS

segment
2013-01-06--18-21-48

ACS base

FC2 raw ACS

subsegment0 subsegment1 subsegment2

Figure 8.6: Diagram representing the union of ACS data from both flight computers, as in
Figure 8.1, but with the one of the segments and its subsegments labeled.

ISO 8601 date standard, but the full filename does not follow the combined date and time

standard because the standard contains the colon character which cannot be used in a file or

directory name in Windows, and can cause problems in file or directory names in Unix-like

operating systems (Linux and Mac OS). Subsegments are named “subsegmentN”, where N

is an index that starts at 0 within each segment. Figure 8.6 revisits the diagram representing

the union of FC1 and FC2 data, but labels it with example segment and subsegment names.

As described in Section 8.1, the 59 framefile streams can be categorized into four datasets

(“ACS”, “Bolo”, “HWP”, and “SS”). We refer to these four datasets as flight “base” datasets.

The word “base” draws a distinction between the datasets that contain unaltered flight data1

and the “derived” datasets, which we have not yet discussed, that contain data that is derived

from the flight data during analysis. The directory name of each dataset is the name of the

category of data, along with a major revision number (X) and a minor revision number (Y),

for example “acs v3-0”.

The ACS base dataset has the following directory structure:

1with the exception of merging the data from the two flight computers

138

acs_vX-Y/
2012-12-28--09-40-15/

subsegment0/
[Dirfile content]

subsegment1/
[Dirfile content]

subsegment2/
[Dirfile content]

2012-12-30--01-21-11/
subsegment0/

[Dirfile content]
...

The Bolo base dataset has the following directory structure:

bolo_vX-Y/
2012-12-28--09-40-15/

board50/
subsegment0/

[Dirfile content]
subsegment1/

[Dirfile content]
board51/

subsegment0/
[Dirfile content]

subsegment1/
[Dirfile content]

...
...

The HWP base data set has the following directory structure:

hwp_vX-Y/
2012-12-28--09-40-15/

board78/
subsegment0/

[Dirfile content]
...

board79/
subsegment0/

[Dirfile content]
...

...

The SS (slow streamer) base data set has the same structure as the Bolo base dataset.

Note that the any of the dirfile content in acs vX-Y will not be synchronous with any

of the data in bolo vX-Y. In addition, the data in bolo vX-Y’s board50 directory is not

139

acs base

pointing

segment
2013-01-06--18-21-48

acs etime

bolo base

hwp template
removed bolo

Figure 8.7: Examples of “derived” datasets (“pointing”, “acs etime”, and “hwp template
removed bolo”) and the base dirfiles with which they are aligned (“acs base” and “bolo
base”), in diagram form similar to that of Figure 8.6. Note that each derived dataset has
subsegments that are aligned with, synchronous with, and of the same frame length as their
respective base datasets.

synchronous with data in the board51 directory since the two boards are from different

framefile streams (see Table 8.1).

8.4 Derived Data Structures

The four base datasets are not meant to be altered once they are created. During analysis

users will need to write timestreams to disk after various pipeline stages. This is an opti-

mization so that at a given pipeline stage a user can load input data directory from disk,

instead of taking the time to generate it in memory by running all the previous pipeline

stages up until that point. When writing timestreams to disk, the users will create new

datasets called “derived” datasets. A derived dataset has an identical directory structure to

one of the four base datasets, and its Dirfiles are the same length and aligned with those of

the base dataset.

An example of a derived dataset is the pointing dataset, which is the result of the pointing

reconstruction analysis. It contains pointing angles (e.g. right ascension, declination, etc),

140

acs base bolo base hwp base ss base

acs flags bolo flags hwp flags ss flags

acs etime bolo etime hwp etime ss etime

pointing hwp template removed bolo

base

derived

... ...

... ...

Figure 8.8: Table of the four base datasets and some of their potential derived datasetes.

and it is aligned with the ACS base dataset. Another example is that the timing channels in

each of the four base datasets have various types of glitches that need to be fixed. Therefore,

for each base dataset, a new dataset must be created that contains a clean timing channel,

which we call “etime”. Another example is that new bolometer timestreams must be created,

for which a half-wave plate signal must be removed. This derived dataset is called the “hwp

template removed bolo” dataset, and is aligned with the Bolo base dataset. Another example

is a derived dataset that exists only to hold flag fields describing the states of the timestreams

in its base dataset. Some of these examples are shown in Figure 8.7.

The base datasets, and all of the derived datasets described in the paragraph above, are

shown in table form in Figure 8.8. The four base sets are shown on the bottom, and their

corresponding derived datasets (color coded appropriately) are shown to rest on top. As of

the time of this document, all of the datasets described here, except for some of the “flags”

datasets which were not necessary, have been created and are actively used for map making.

141

Chapter 9

The “LEAP” Software Framework

The post-flight analysis procedure is discussed in Chapter 10. In this chapter we describe

a software framework called “LEAP”, which is used to support the software applications

written for many of the analysis pipeline stages discussed in Chapter 10.

9.1 Terminology

We first review some programming terminology that is used in this chapter and the next:

• object - In object-oriented programming, an object is a data structure that contains

both variables and functions.

• classes and instantiation - A class is the description of a type of object. When a

new object is created, it contains the functions and variables described by the class.

When an object is created from a class definition it is called instantiation. Multiple

objects may be instantiated from a class.

• method - A function that belongs to an object is called a method.

• module - In Python, a file containing code is called a module.

• dictionary - In Python, a dictionary is a data structure that holds key and value

pairs, where the value can be retrieved by specifying the key.

142

• multiprocessing or multithreading pool - A pool in this context is one paradigm

for executing code in parallel. If there are many “jobs” to be performed (e.g. functions

to be executed), the pool queues jobs and feeds them to the processors in the computer

that can take on work (called “workers”). When a job finishes, the processor becomes

underutilized and the pool passes it the next job.

• repository - A repository is a storage location for software. Sometimes when multiple

programmers work on a single project they share code by storing it in a repository.

• svn - Subversion [57], or “svn”, is a program that is sometimes used to manage a

repository and use it for version control.

• framework - A software framework is an environment that provides functionality to

make it easier to write programs, such as a suite of libraries and support programs.

9.2 Overview

Each stage in the analysis pipeline can be executed through an individual program or a

set of programs. Multiple collaborators from multiple institutions contribute their expertise

in the form of one or more pipeline stages. Most pipeline stages, however, share a consid-

erable amount of functionality, such as the capability to read and write the EBEX LDB

(long duration balloon)-specific flight data structures discussed in Chapter 8, or to trans-

form between celestial coordinate systems, or to deglitch timestreams. I therefore created a

software framework in Python, along with another graduate student, Joy Didier, for collab-

orators to write programs in that share functionality1. We call it LEAP, or the LDB EBEX

Analysis Pipeline. The framework primarily consists of an “apps” directory, which contains

the programs that generally correspond to individual pipeline stages, and a libraries (“lib”)

directory, which contains the functions that are shared between apps. LEAP is stored in a

Subversion (svn) repository at Columbia. At the time of this document, LEAP has been

1Kevin MacDermid also contributed significantly to the early stages of LEAP.

143

used by over a dozen collaborating scientists from five different institutions.

The top level of LEAP contains these directories:

• apps - This directory contains the apps. The apps are discussed in more detail in

Chapter 10, in which we discuss the post-flight analysis process. In that chapter

we describe the first phase of the analysis pipeline, which involves processing raw

flight data into temperature and polarization sky maps. Every pipeline stage in that

description, which is shown graphically in Figure 10.1, is currently part of the LEAP

framework as a series of apps.

• lib - This directory contains the libraries, which are Python modules that contain

functions that are useful for multiple apps. The libraries are discussed in more detail

Section 9.3.

• resources - This directory contains Python modules that contain data, rather than

functions, that are useful for multiple apps. For example, it contains the hard-coded

coordinates of some astronomical sources and a table of detector locations on the focal

plane. The resources are discussed in Section 9.4

• documentation - This directory contains documentation files. It includes, for ex-

ample, documentation on how to convert between different bolometer units, a block

diagram of how all the EBEX detectors are wired, documentation on coordinate system

conventions, and documentation on the orientation of sensors axes with respect to the

gondola.

• ldb data - This directory contains links to all the flight data structures that will be

loaded by the apps. Different users store the flight data structures in different locations

on their computers, so the links must be created manually by each user, and nothing

in this directory is committed to the repository.

• output - As will be discussed in Section 9.3.1, any time an app writes data to disk, that

data is written somewhere inside this directory. Specifically, any app that writes data

144

to disk will first create a directory with a unique name inside the output directory, and

write data there. The unique name will consist of the app name and the timestamp

of the app’s execution. Users generally run their apps thousands of times during

development and testing, so they do not want to keep the output of every execution,

only a select few for presentations or as final products. Therefore the output directory

is not meant to store data long term, instead it is meant to be occasionally cleared out

manually by the user. Nothing in this directory is committed to the repository.

• long term output - This directory is where users should manually copy the output

directories that they would like to keep long term. The user is not meant to delete the

contents of this directory. Nothing in this directory is committed to the repository.

9.3 Libraries

9.3.1 Parent App

LEAP apps are written as classes that inherit from a parent leap app class. The parent class

endows each LEAP app with a suite of functionality that is useful for development. The

functionality that the parent class provides is:

Run Time

When a LEAP app is initialized it prints the name of the app to the screen and the start

time of execution. When the app is finished it prints the run time of the app.

Settings

Every LEAP app is meant to have two settings files in its directory. A “default settings.py”

file contains the default settings. This shows the user what settings are meant to be available.

It is also intended to be left in a clean state, so that a user with an untouched copy of the

145

app from the repository can run it and see the output one would expect from such an app.

For example, the default settings for the map making app configure it to show a plot of

the calibrator using a select few detectors. A “custom settings.py” file must also exist, and

any settings in this file overwrite those in default settings.py. The custom settings.py file is

not committed to the repository. The LEAP app automatically has access to the settings

parameters through an object that is accessed as “self.settings”.

Output

The parent class provides a method called create output(). When this method is called, a

new directory is created inside leap/output/. The name of the directory is the name of the

app (extracted from the name of the class and re-formatted) appended with a timestamp of

the execution time.

This method also creates a directory, inside of this new app directory, named “admin”,

and writes a number of files to it:

• It copies both settings files into the admin directory. It also writes a file that contains

the contents of the settings object. These allow the user to easily recreate the settings

files in case they need to re-run the app some time in the future and cannot remember

the state of the settings.

• It also records the output of an “svn diff’ command. This command outputs any local

changes that have been made to any of the code with respect to the version on the

repository. The output of “svn diff” is stored in a file whose filename contains the

repository version number that it was compared against. This, combined with the

settings file, gives the user the ability to recreate the state of the code. This can be

useful to recreate a plot, recreate a data product, or investigating data that was created

at any time in the past.

• It automatically records any log files to the admin directory. When the multiprocessing

pool is used, a different log file is recorded for each pool worker.

146

After an app calls create output(), it has access to a variable that it can access as

“self.out path”, which points to the newly created directory. Any data written to disk

thereafter is meant to be written to the app’s directory using out path.

Logging

The parent app provides a logger that the LEAP app can access as “self.logger”. All content

that is passed to the logger is written to file, and if the content is marked as having high

enough priority it is also printed to the screen.

Style Checking

The LEAP framework also encourages the use of the standard Python style guide, which

is called “PEP8”. When any LEAP app runs, its code is automatically checked for PEP8

compliance, and if non-compliance is found a warning message is printed to the screen. This

encourages users to adhere to a single style guide, which promotes consistency throughout

LEAP and therefore increases productivity.

Profiling

The parent app provides a method called “profile”, which runs the app wrapped in a profiler.

The profiler is a program that measures how much time is spent inside the various methods

of the LEAP app and prints the results to the screen. It is useful for finding the bottleneck

in a program when it is time to optimize.

9.3.2 IO Management

The io management library is tailored to the EBEX data structure. With this library the

user can load any combination of ACS data, pointing data, bolometer (Bolo) data, half-wave

plate (HWP) data, and slow streamer (SS) data, and it will be arranged in a meaningful

147

way and interpolated when necessary.

To load data the user instantiates the “Params” class, which contains a set of default

parameters. The user then overwrites the parameters that they would like to customize.

The most important parameters relate to the location of the data on disk, selecting sections

of time that should be loaded, and selecting timestreams that should be loaded. The full list

of parameters is shown in Appendix D.

As an example, consider loading the ACS altitude timestream, called “alt”, for the entire

flight. The user will customize a Params object, and pass it to the dirfile loading function:

segments = dirfile_loading.load(params)

The load function returns a list of segment objects, that the user should call segments.

Each segment object contains a number of dataset objects, which are named for the type of

data they hold, such as “acs”, “pointing”, or “bolo”. These datasets contain the timestreams.

For example:

• segment.acs.times is a timestream (an array) of timestamps that the dataset object

obtained from the “etime” dirfiles.

• segment.acs.channels is a dictionary of channels, or timestreams, where the key is

the name of the channel and the value is the timestream as an array.

Therefore if the user wants to plot altitude vs time for the entire flight, they simply write:

segments = dirfile_loading.load(params)
for segment in segments:

pylab.plot(segment.times, segment.channels["alt"])

The io management library also contains the information required to automatically con-

vert many of the channels in the ACS timestreams to standard units, e.g. radians, meters,

and seconds. The library also converts the pointing timestreams from equatorial coordinates

into galactic coordinates, if desired.

148

Similarly, the user can load a particular detector, or bolometer, channel. The bolometer

timestream is accessed as “bolo.signals”. Note that the bolometer timestreams are not syn-

chronous with the ACS or the pointing timestreams, so the following code to plot bolometer

0’s timestream against declination would likely produce an error:

segments = dirfile_loading.load(params)
for segment in segments:

pylab.plot(segment.pointing.channels["dec"],
segment.bolos[0].signals)

Instead, the library provides the user with a second copy of any ACS or pointing data

that is interpolated onto the bolometer time base, so the user can write:

segments = dirfile_loading.load(params)
for segment in segments:

pylab.plot(segment.bolos[0].pointing.channels["dec"],
segment.bolos[0].signals)

noting that segment.pointing is different from segment.bolo.pointing. Every non-bolo

dataset can be accessed either directly from the segment object, in which case its timestreams

are on their native time base, or from the bolo object, in which case their timestreams are

interpolated to the bolometer time base. With this in mind, the general structure of a

segment object is:

* segment
* name
* acs
* pointing
* hwp
* bolo[i]

* name
* times
* signals
* acs <--- interpolated to bolo.times
* pointing <--- interpolated to bolo.times
* hwp <--- interpolated to bolo.times
* ss <--- interpolated to bolo.times

An important optimization is that the list of segments returned by the load function is

actually a special kind of list called a “generator”. Without explaining the distinction, this

149

is important because it prevents memory from being accumulated when multiple segments

are loaded. Instead, only the segments that are actively being used are kept in memory.

This is also true for the list of bolo objects that belong to the segment object.

9.3.3 Other Libraries

LEAP also contains other libraries that simplify the process of developing apps. All of the

libraries are grouped into directories, which contain multiple files with various functions.

Some of the directories are:

• Mapping - The functions that bin timestreams into sky maps are located in this

directory. Different apps may want to create their own maps, such as the pointing

calibration app or the signal calibration app.

• Numerical - This directory contains various mathematical functionalities, including

gaussian fitting, fourier analysis, resampling, and wrapping.

• Physics - This directory contains functions to model blackbody spectra and scale

galactic dust models.

• Plotting - This directory supplements the standard plotting libraries in python with

functions that plot large arrays efficiently and format plots in ways that are common

for working with EBEX data.

• Time Domain Processing - This directory contains various filters for modifying

time domain data (as opposed to map domain data). This includes moving mean and

median filters, butterworth low- and high- pass filters, and deglitching functions. These

are commonly applied to detector timestreams or gyroscope timestreams.

• Timing - This library includes a progress indicator that helps the user estimate run-

times, and a timer class.

• Tools - This directory contains assorted tools. Examples include:

– A module for listing bolometers given a focal plane, wafer, or board

150

– A module with functions to help merge flag channels together (e.g. find overlap-

ping flags or continuous unflagged sections)

– A function to group objects together by a given attribute or unravel groups of

objects into a list

– A multiprocessing pool class that has more features than the standard multipro-

cessing pool class

– A module that aids in loading tables from text files and arranging them into lists

of objects

• Units - These modules contain functions that convert between different units of time,

different units of angle, and different units of detector signal (e.g. between raw bolome-

ter ADC units, noise equivalent power, noise equivalent temperature, kelvin CMB, etc).

9.4 Resources

The resources directory in LEAP contains any kind of information that is not part of the

flight datasets or documentation. Some examples include:

• tables defining the frequency bands of the EBEX detectors

• tables listing when the detectors were active in flight

• coordinates of astronomical objects of interest

• sample rates of various EBEX subsystems

• tables defining angular offsets between the star cameras, the microwave telescope bore-

sight, and individual detectors

• tables of star camera solutions

151

Chapter 10

Data Analysis

10.1 Overview

In this chapter we describe the post-flight analysis procedure. Broadly speaking, the analsis

procedure consists of two phases: processing raw flight data into maps and then extracting

scientific parameters from the maps. Here we describe the first phase of the pipeline and

discuss in detail some of the pipeline stages with which I was heavily involved. We then

show preliminary results and discuss the next steps that will lead to scientific results.

Figure 10.1 is a data flow diagram that gives an overview of the EBEX analysis pipeline

from the raw data through to map making. Green ovals represent individual pipeline stages,

which generally correspond to apps, and blue boxes represent the data that is input to or

output from the app. The “flight base construction” stage converts the raw flight data

into a useful format. The “star camera solving” and “pointing reconstruction” stages are

used to produce pointing timestreams. The “etime reconstruction” stage cleans up the

timestamps that allow us to align asynchronous timestreams to each other. The “hwp”-

related stages and the “timestream cleaning” stages produce timestreams that are necessary

for polarization analysis and prepare the detector timestreams for map making. The “map

making” stage produces temperature and polarization maps from the timestreams. The

152

ra
w

n
um

er
ic

al
tim

e
st

re
am

s

fli
g

ht
b

as
e

co
ns

tr
uc

tio
n

st
ar

 c
a

m
e

ra
im

ag
es

st
ar

 c
a

m
e

ra
so

lu
tio

n
s

st
ar

 c
a

m
e

ra
so

lv
in

g

po
in

tin
g

re
co

ns
tr

u
ct

io
n

et
im

e
re

co
ns

tr
u

ct
io

n

hw
p

an
gl

e
co

ns
tr

uc
tio

n

tim
e

st
re

am
cl

ea
ni

ng
hw

p
te

m
p

la
te

re
m

ov
al

hw
p

an
gl

e

h
w

p
te

m
pl

at
e

re
m

ov
e

d
bo

lo

po
in

tin
g

et
im

e

ss
 b

as
e

hw
p

b
as

e

bo
lo

 b
as

e

ac
s

ba
se

m
ap

 m
ak

er
cl

e
an

bo
lo

te
m

pe
ra

tu
re

m
ap

s

po
la

riz
at

io
n

m
ap

s

po
in

tin
g

ca
lib

ra
tio

n
po

in
tin

g
of

fs
et

s

si
gn

a
l

ca
lib

ra
tio

n
si

g
na

l
ca

lib
ra

tio
ns

F
ig

u
re

10
.1

:
D

at
a

fl
ow

d
ia

gr
am

of
th

e
an

al
y
si

s
p
ip

ep
in

e
fr

om
ra

w
fl
ig

h
t

d
at

a
to

m
ap

s.
T

h
e

re
st

of
th

e
p
ip

el
in

e
(a

ft
er

m
ap

s)
is

n
ot

sh
ow

n
.

G
re

en
ov

al
s

re
p
re

se
n
t

in
d
iv

id
u
al

p
ro

gr
am

s
(a

p
p
s)

,
an

d
b
lu

e
b

ox
es

re
p
re

se
n
t

d
at

a
(i

n
p
u
t

an
d

ou
tp

u
t

fo
r

th
e

ap
p
s)

.
E

ve
ry

ap
p

sh
ow

n
h
er

e
is

p
ar

t
of

th
e

L
E

A
P

fr
am

ew
or

k
.

T
h
e

p
oi

n
ti

n
g

an
d

si
gn

al
ca

li
b
ra

ti
on

re
su

lt
s

ar
e

it
er

at
iv

el
y

im
p
ro

ve
d

u
si

n
g

th
e

te
m

p
er

at
u
re

m
ap

s
an

d
th

er
ef

or
e

ex
is

t
in

a
fe

ed
b
ac

k
lo

op
w

it
h

th
e

m
ap

m
ak

er
.

153

“pointing calibration” stage uses the maps to determine the angular offsets between the star

cameras and the detectors, and the “signal calibration” stage uses the temperature maps to

calibrate detector responsivities.

10.2 Selected Pipeline Stages

Every pipeline stage discussed in this chapter has been implemented, either by myself or

another collaborator. In this section we review some of the pipeline stages with which I was

heavily involved.

10.2.1 Flight Base Creation

The first step in the data analysis pipeline is to convert the raw numerical timestreams into

the data structures described in Chapter 8 using the procedure discussed there.

10.2.2 Star Camera Solving

The star camera solving app converts star camera images into pointing solutions that can

be aligned with the ACS dirfiles. The app therefore has two separate tasks. The first is to

determine with what index in the ACS dirfiles each image aligns. The next step is to find a

pointing solution for each image, and record this solution along with the timestream index.

As discussed in Chapter 4, the flight computers control the star camera trigger lines

that open and close the camera shutters in flight. They record the status of the star cam-

era shutters (open or closed) into numerical timestreams with the other ACS data. These

timestreams are called trigger lines. When the value is 1 the shutter is open, and when it is 0

the shutter is closed. An event where the trigger line rises to 1 and falls back to 0 is called a

“trigger”. When a trigger event occurs, the digital camera in the star camera automatically

captures an image and stores it into a buffer, and shortly thereafter STARS finds that the

154

buffer has a new image, downloads it, and writes it to disk.

FCP keeps a counter called “counter fcp” that it increments after each trigger event

(excluding multiple exposures). STARS keeps a counter called “counter stars” that it incre-

ments after each new image is found (also excluding multiple exposures). Both programs

share their counters with each other. FCP stores both counters in numerical timestreams

that are synchronous with the trigger line, and STARS stores both counters in the headers of

the image files. After a trigger event roughly 0.5 s is required for both programs to increment

their counters and share the new values with each other. If this happens, then when the

following trigger event occurs, the counters written to the dirfile will correctly correspond to

the counters written in the image headers. If there is a problem with the network connection

then counter stars will be incorrect in the dirfiles and counter fcp will be incorrect in the

image header, and we will know that the images require investigation. Figure 10.2 shows

the FCP and STARS counters for both star cameras. Since the entire EBEX system was

shut down twice a day during flight for thermal reasons, the FCP counters and the STARS

counters reset to 0 multiple times throughout the flight.

The star camera solving directory inside the LEAP apps directory actually contains 4

separate apps:

1. Header Listing - This app loads every image header to extract the counters for each

image, and stores them in a table.

2. Trigger Listing - This app loads the numerical timestreams and finds the trigger

events by looking for rising and falling edges in trigger line. It records the start and

end index of each trigger event to a table, along with the values of the counters in the

timestreams at the time of the events.

3. Trigger Alignment - This app takes the two tables produced by the first two apps

and matches the trigger events to the images. Since the counters resets to 0 multiple

times throughout the flight, this app also relies upon the timestamp of each image to

155

F
ig

u
re

10
.2

:
T

h
e

fc
p

co
u
n
te

rs
(t

op
)

an
d

st
ar

s
co

u
n
te

rs
(b

ot
to

m
)

fo
r

b
ot

h
st

ar
ca

m
er

as
(l

ef
t

an
d

ri
gh

t)
fo

r
th

e
en

ti
re

fl
ig

h
t.

F
or

ea
ch

st
ar

ca
m

er
a,

b
ot

h
F

C
P

an
d

S
T

A
R

S
ke

ep
a

co
p
y

of
b

ot
h

co
u
n
te

rs
.

T
h
e

b
lu

e
d
at

a
p

oi
n
ts

sh
ow

F
C

P
’s

co
p
y

of
th

e
co

u
n
te

r
fr

om
th

e
n
u
m

er
ic

al
ti

m
es

tr
ea

m
s,

an
d

th
e

re
d

d
at

a
p

oi
n
ts

sh
ow

S
T

A
R

S
’s

co
p
y

of
th

e
co

u
n
te

r
fr

om
th

e
im

ag
e

h
ea

d
er

s.
W

h
en

th
er

e
ar

e
on

ly
b
lu

e
p

oi
n
ts

,
th

e
fl
ig

h
t

co
m

p
u
te

rs
w

er
e

ru
n
n
in

g
an

d
se

n
d
in

g
tr

ig
ge

rs
,

b
u
t

th
e

st
ar

ca
m

er
as

w
er

e
off

.
M

os
t

n
ot

ab
ly

ar
ou

n
d

D
ec

em
b

er
31

th
e

go
n
d
ol

a
op

er
at

or
s

w
er

e
d
eb

u
gg

in
g

th
e

p
iv

ot
m

ot
or

co
n
tr

ol
le

r
is

su
e

in
st

ea
d

of
co

ll
ec

ti
n
g

sc
ie

n
ti

fi
c

d
at

a.
E

ac
h

ti
m

e
th

e
fl
ig

h
t

co
m

p
u
te

rs
w

er
e

p
ow

er
ed

on
co

u
n
te

r
fc

p
re

se
t

to
ze

ro
.

E
ac

h
ti

m
e

th
e

st
ar

ca
m

er
as

w
er

e
p

ow
er

ed
on

co
u
n
te

r
st

ar
s

re
se

t
to

ze
ro

.

156

Figure 10.3: These plots show, for each star camera, a data point for each image that has
been aligned to the dirfiles. The data points represent the difference between the timestamp
associated with the dirfile at that index (which comes from the flight computer system clock)
and the timestamp associated with the image (which comes from the star camera system
clock), plotted against time. A non-zero slope represents a drift between the two machines’
system clocks. A relative drift of this magnitude is not a problem for analysis because we
primarily use the “tigger line” timestream and a series of counters to align the star camera
images to the ACS timestreams. The fact that none of the differences exceed 40 s indicates
that the trigger alignment app did not make any alignments that mistakenly cross resets.

157

ensure that an alignment isn’t made that crosses resets. The output of this app is a

table that contains the filename and corresponding timestream index for each image.

The app also outputs a metric, shown in Figure 10.3, to demonstrate that no false

alignments were produced.

4. Solving - This app iterates through every image and passes it to STARS to be solved,

along with the configuration parameters that STARS requires. The output of this

app is a table that contains each image’s filename, dirfile index, and pointing solution.

The pointing solution consists of the right ascension, declination, and roll coordinates,

along with an uncertainty for each coordinate.

The first time that the solving app runs, no information from the coarse sensors is used

and each image must solve entirely lost-in-space. We choose to disregard the coarse sensor

data because the geographic GPS data that is necessary to convert it into the equatorial

frame is faulty, whereas the method described here is quite simple. The solving app therefore

requires that STARS match 8 stars to find a solution. The output of the solving app is then

fed into the pointing reconstruction app, which will be discussed in the next section. The

pointing reconstruction app combines these star camera solutions with the gyro data to

find a pointing solution at every index, not just when there is a star camera solution. The

output of the pointing reconstruction app can be fed back into the solving app, and this

time the solving app will use the the pointing solution stream as a guess for STARS. If the

uncertainty on the pointing solution stream at the index of the image is less than 0.5◦, then

the solving app tells STARS to include a 2◦ search radius and match 5 stars. Otherwise, if

the uncertainty is less than 3◦ then the solving app tells STARS to use a 12◦ search radius

and match 6 stars. Otherwise, STARS runs lost-in-space. This iteration between the solving

app and the pointing reconstruction app can be repeated until no new solutions are found.

158

Preliminary Results

At this point we have only performed 3 iterations because we are satisfied with the number

of solutions. After the first iteration, which was lost-in-space, we solved 92.6% of the images.

This statistic excludes images that are saturated or are pointed within 30◦ of the Sun. After

the next iteration we solved 92.8%, and after the third iteration 92.9%. If we were to tune

the solving parameters more carefully, we would expect to be able to solve at least 99% of

the images that are not saturated or close to the Sun based on visual inspections of the

images. However, with 93% of the images solved the average error in the reconstructed

pointing streams is sufficiently low for our purposes.

10.2.3 Pointing Reconstruction

Overview of the Filter

Most of the flight data consists of 40 s azimuth throws, which are azimuth rotations at a

fixed elevation. At the end of an azimuth throw the gondola velocity is zero and there is

a star camera solution. The pointing reconstruction app estimates the pointing solution

at every time step. The pointing solution that it estimates represents the pointing of one

of the star cameras, as opposed to the microwave telescope boresight as one might expect.

At the moment we use Star Camera 0, though in the future we may decide to incorporate

solutions from both star cameras. To obtain the pointing solution for Star Camera 0 at every

100.16 Hz time step we use the Star Camera 0 solutions whenever they are available, and

the gyroscopes (gyros), which are available at every time step. We combine the star camera

solutions, which we call observations, with the gyro measurements in an unscented Kalman

filter (UKF) [58].

A Kalman filter iterates through every time step and holds an estimate of the state in a

vector x̂ and an estimate of the errors in a covariance matrix P. In our case the state consists

of the three equatorial angles - right ascention (φ), declination (θ), and roll (ψ) - along with

159

three gyro bias values b1, b2, and b3. The bias values are angular velocities that are added to

the gyroscope measurements to compensate for a systematic error in the gyroscopes, which

we discuss below. By including them as part of the state in the Kalman filter we allow the

filter to estimate their values along with the pointing angles. The estimate of the state x̂, at

time step k, when it includes all the observations up to and including time step k, is written:

x̂k|k =

θ
ψ
φ
b1
b2
b3

 (10.1)

At each time step the Kalman filter estimates x̂ and P with two phases, a prediction

phase and an update phase. The prediction phase uses the state from the previous step

k − 1 to predict the state at the current step k. In our case, this means integrating the

gyro measurements to evolve the pointing angles. As we do this at points increasingly far

from star camera measurements, the error on the pointing stream increases. In the update

phase, the state is corrected with a new observation, decreasing the error on the pointing

solution. In our case, the new observation is a star camera solution that is not available at

every timestep, so the update phase is note executed at every time step. This is similar to

FCP’s real-time attitude determination filter, described in Chapter 3.5.1, which itself is a

modified Kalman filter.

We predict the state at time step k using the previous state x̂k−1|k−1 and the equatorial

rates φ̇, θ̇, and ψ̇:

x̂k|k−1 = x̂k−1|k−1 +

θ̇∆t
ψ̇∆t
φ̇∆t

0
0
0

 (10.2)

where ∆t is the time between time steps, or 1/(100.16 Hz). Note that since this does not

include the update step, we have not yet incorporated a possible observation from time step

160

k, so this estimates the state x̂k|k−1 instead of x̂k|k. We calculate the equatorial rates from

the measured gyroscope rates ω1, ω2, and ω3 using this equation:

 θ̇ψ̇
φ̇

 =

(
cosψ 0 sinψ

sinψ tan θ 1 − cosψ tan θ
− sinψ

cos θ
0 cosψ

cos θ

)
RO

(
ω1 + b1
ω2 + b2
ω3 + b3

)
(10.3)

were φ, θ, and ψ are the current state estimates of the pointing solution, O is a matrix

that orthogonalizes the gyroscopes into an orthogonal frame, and R is a matrix that rotates

the orthogonal gyro frame into the star camera frame. The matrices O and R we discuss

below. The left-most matrix rotates the star camera frame into the equatorial frame.

We use an unscented Kalman filter (UKF) instead of a standard Kalman filter because

this system of equations is non-linear. The unscented Kalman filter picks a set of sampling

points around the current attitude state to propagate throught the non-linear equations.

The sampling points are chosen with a technique called the unscented transform [59]. The

state at the next time step is the mean of the propagated sampling points.

We adapted a generalized unscented Kalman filter from Python to C++. Writing the

filter in C++ sped it up by an order of magnitude. Reconstructing the pointing for the entire

11 day flight, which contains almost 100 million time steps, takes 80 minutes on a single

2.1 GHz processor. The filter runs each segment of flight separately, so we multiprocessed

the app to run multiple segments in parallel as an additional optimization.

Kalman filters only use the data leading up to time step k to estimate the state at k.

Therefore if we run the filter forwards, at step k we have only used the information in

the range [0, k], and if we run the filter backwards then at step k we have only used the

information in the range [k,N] where N is the total number of time steps. Thus if we want

to use all information available at every time step, we can run the filter in both directions

and take a weighted average - a procedure known as Kalman smoothing.

Figure 10.4 shows the results of this process for about 200 seconds of simulated data.

Simulated pointing streams were generated that mimic the data we have from flight. Star

161

Figure 10.4: The declination results from running the unscented Kalman filter forwards and
backwards on simulated data, as explained in detail in Section 10.2.3 and in [60].

camera and gyro measurements were created from the simulated pointing streams, and run

through the UKF. The black dots represent star camera solutions, which occur every 40 s.

The red curve shows the error in the declination coordinate estimated by the forward run

of the UKF. The error is the true (“parent”) declination minus the output of the filter.

Note that the red curve increases in magnitude as time progresses and then snaps back to

near-zero at each star camera reading. The orange curve shows the same thing but for the

backwards run. The blue curve shows the error for the average of both runs. This error is

smaller than for the forward or backward runs individually. The figure also shows the error

as estimated by the filter itself, namely the declination-declination term in the covariance

matrix.

After the filter is run in either direction (or in both directions) on real data, we can

calculate a metric for how well the filter performed. At the end of an azimuth throw we

calculate the difference between filter’s estimated pointing solution and the new star camera

solution before it is incorporated into the filter. This provides an estimate of the filter’s error

after integrating the gyros for the length of time of the throw. If we choose, we can combine

the metric from all the throws into a single metric. We discuss the use of this metric below.

162

Figure 10.5: The result from estimating the Gyro 2 bias in a simulation [60]. The black curve
shows the true simulated bias of Gyro 2. The red and orange curves show the estimated bias
from the forward and backward runs of the unscented Kalman filter.

Systematic Errors

There are two systematic errors that we will detail in this section. The first is the gyro bias,

and the second is the gyro alignment angles.

Gyro Bias - For our application it is useful to consider the frequency profile of the gyro

noise as two separate components: a white noise component and a 1/f component. The 1/f

component can be thought of as a slow-drifting bias, which is constant for timescales shorter

than 200 seconds. Considering these two noise sources, a gyro measurement consists of three

components:

gyro measurement = true angular velocity + white noise + bias

The white noise is accounted for by the Kalman filter. The bias, however, is not. Since

we know from measurements that it is a good approximation to take the bias as a constant

value for the timescales of 40 s throws [60], we model the bias as part of the filter state as

shown in Equation 11.5. Since we do not alter the bias in the prediction phase, the filter

will estimate the bias as a constant value for each 40 s throw.

Figure 10.5 shows the bias estimates for about an hour of the simulation described pre-

viously for Figure 10.4. The black curve shows the true, or “parent”, bias of Gyroscope 2.

163

The red and orange curves show the estimated bias from the forward and backward runs of

the filter. Simulations show that the filter estimates follow the true bias sufficiently well to

meet the pointing requirement.

Gyro Alignment Angles - As shown in Equation 10.3, we must rotate the three gyro

measurements into the star camera reference frame. The equation writes the orthogonal-

ization and rotation matrix separately: the orthogonalization matrix adjusts the gyros so

that they are in an orthogonal frame, while the rotation matrix rotates this frame to align it

with the star camera frame. These two matrices can also be multiplied together into a single

matrix. In either case, there are only 6 degrees of freedom. As separate matrices, there are

only 3 angles required to create an orthogonal gyro frame1, and 3 angles required to rotate

that frame into the star camera frame (as for any frame rotation). As a single matrix, it can

simply be thought of as 2 angles for each of the 3 gyros, where the 2 angles rotate a gyro

axis to align it with one of the axes of the star camera frame.

In the pointing reconstruction app, we run the unscented Kalman filter through a least-

squares optimizer to find the 6 angles. Each time the Kalman filter is run, it automatically

calculates the metric described above, and returns this metric to the optimizer. The opti-

mizer runs a standard Levenberg-Marquardt algorithm to minimize the metric by altering

the 6 angles. On our data the optimizer generally runs the full Kalman filter 90 times before

converging on the 6 parameters. Simulations show that the optimizer finds the 6 angles to

within ∼0.001 rad [60].

Performance

The pointing reconstruction app has been run on the data from the EBEX 2012 Antarctic

flight to produce timestreams that are currently being used for map making. To evaluate the

output we wish to report an estimate of the RMS pointing error for a standard 40 s azimuth

1Only 3 angles are required to orthogonalize a gyro basis because one axis of the frame can be chosen so
that it is already aligned with one of the gyros, and another axis can be chosen to be in the same plane as
another gyro.

164

Figure 10.6: Binning the average filter error as a function of time since the last star camera
solution.

throw, and to compare it to the RMS requirement of 54′′.

In order to estimate the error at each point in the throw given that we have a direct

estimate only at endpoints, we make use of the fact that we have variable-length throws. We

therefore calculate the metric described above for each throw, and then bin the metrics by

time length of throw. This is shown in Figure 10.6, which plots the average error in a bin

as a function of throw length. This yields an estimate of the filter error as a function of the

time into a throw, when integrating the filter in a single direction. Given this information

we can calculate what the RMS error would be on a 40 s throw that averages forward and

backward runs together. The result is 25′′, considerably less than the requirement of 54′′.

In Section 3.3 we listed the pointing requirement differently as 10′′ in the map domain. If

we convert the RMS error on a throw into the map domain using the sky coverage from

flight, we find a map-domain error of 4.6′′. See [60] for more information about the pointing

reconstruction app.

165

10.2.4 Map Making

Here we discuss the details of the map maker. The map maker is extracted and expanded

upon from the Quicklook software package described in Chapter 6. It is also integrated into

LEAP. We first describe the procedure for generating temperature maps, then we discuss

how it is implemented in LEAP, and finally we we discuss how the map maker is altered to

also produce polarization maps.

Procedure

There are several steps involved in producing maps from timestreams:

1. The map maker loads template removed, deglitched detector timestreams, pointing

timestreams, and half-wave plate timestreams if polarization maps are being generated.

The pointing and half-wave plate timestreams are interpolated to the time base of the

detector timestreams.

2. For each detector, the pointing timestreams are rotated so that they represent the

pointing of the detector rather than the star camera. This is done in two steps: the

first step rotates the pointing solution from the star camera frame into the microwave

boresight frame, while the second step rotates the boresight frame into the frame of

the specific detector.

3. The timestreams are then reduced to only include valid data by merging a set of

flags that indicate when samples should be excluded from map making. The flags are

generated from various methods such as:

• Samples are flagged when the detector noise is found to be above a certain thresh-

old. The noise level is measured by analyzing detector timestream power spectra.

• Samples are flagged when the detectors are found to be non-responsive, as deter-

mined by analysis in the time domain.

166

• Samples are flagged when the pointing timestreams are invalid and, if producing

polarization maps, when the half-wave plate angle timestreams are invalid.

• Samples are flagged when the timestreams contain glitches, determined by time

domain analysis.

• Samples are flagged when the pointing timestreams indicate that the gondola

velocity was too high.

• Samples are flagged when the pointing timestreams indicate that the pointing

uncertainty is above a certain threshold.

4. The timestreams are then high-passed to remove low frequency drifts. It should be

noted here that the DC offset and other low frequency components of a detector

timestream are not scientifically meaningful, and must be removed from the data.

Indeed, the map generated by EBEX is not intended to measure the DC level of the

CMB or signals at low angular scales. If the data were not high-passed, then the low

frequency drift in the detector timestreams would cause a striping pattern on the map.

The high-pass is performed by removing the result of a moving median filter from the

data. The default window size for this filter is 15 s, though this is a preliminary value

that may change as we refine the analysis procedure.

5. The detector timestreams are then low-passed. This eliminates residual half-wave plate

template at high frequencies, and for temperature maps eliminates sky synchronous po-

larization signal. The low-pass filter is a butterworth filter with a default (preliminary)

cutoff frequency of 1 s.

6. If producing a polarization map, the timestreams are then modulated according to the

orientation of the selected polarization on the sky. This is explained below.

7. The timestreams for each detector are then binned into a map according to the pointing

associated with each detector. The final map is normalized by the total number of hits.

8. A noise covariance matrix is estimated for the map. This is discussed in Section 10.3.

167

In the next section we explain the implementation of these steps in software.

Implementation in LEAP

In the settings file of the map making app the user specifies which detectors and which

sections of time they would like to incorporate into the map. They also specify a number of

parameters associated with filtering the detector timestreams (e.g. filter cutoff frequencies),

and map parameters (e.g. pixel size and which regions of the map to plot).

The map making app uses a multiprocessing pool as an optimization2. The map making

app loops through every detector in every section of flight specified by the settings file, and

adds each section of each detector to the pool queue as a job.

When a job runs, it uses the LEAP io management library to load the detector data, the

pointing data, and any flags that need to be used. These timestreams are loaded as part of

a single object that we call a “dataset”. As discussed in Section 9.3.2, the io management

library takes care of a number of tasks that are useful for map making. It interpolates

the pointing timestreams to the time base of the detector timestreams. It also rotates the

pointing angles so that they represent the pointing of the detector rather than the star

camera. It also converts the pointing from equatorial coordinates into galactic coordinates

if desired.

The job then combines all the relevant flags (described above) to identify continuous

sections of valid data that should be included in the map. Some of the flags are loaded from

disk, and some are generated dynamically based on the data. For example, a timestream

representing the angular velocity of the telescope is loaded, and a flag is generated to cut

data that was taken when the gondola was moving too fast. The dataset is then divided into

multiple smaller datasets, called “chunks”, that are usually between 1 minute long and 30

minutes long and only contain timestreams of continuous valid data. The job then iterates

2We use a multiprocessing pool instead of a multithreading pool because Python threads cannot take
advantage of parallel computing.

168

through each of the chunks.

For each chunk, the job then filters the detector timestream. It first high-passes, then

low-passes, then, if building a polarization map, modulates the detector timestreams. Once

the detector timestream for a chunk is filtered and modulated if necessary, it is added to a

map. Each job creates two maps: a hit map and an unnormalized signal map. The hit map

records the number of times that samples are added to each pixel. The signal map holds the

sum of the detector samples that belong to each pixel (based on the pointing). Ultimately

we want the signal map to contain the average of all the detector samples that belong to

each pixel, but at this stage we do not yet divide by the number of samples - we simply

record them in the hit map. Once the job has added the detector timestreams from all the

chunks, it returns the hit map and the unnormalized signal map.

The map making app creates a “total” hit map and “total” unnormalized signal map.

Any time a job returns, the app simply co-adds the returned hit map to the total hit map,

and co-adds the returned unnormalized signal map to the total unnormalized signal map.

Once all the jobs are finished, the app can co-divide the total unnormalized signal map by the

total hit map to obtain a normalized signal map containing the data from all the detectors.

After that the map can be plotted or written to disk. In its current state the map maker

does not estimate a noise covariance matrix of the map, though we will discuss this point

in Section 10.3. It also does not weight the detector samples by their noise, it only rejects

sections of timestreams for which detector noise is high.

The map making app employs a number of optimization strategies to help it run fast.

The first optimization has already been described: individual sections of individual detectors

are processed in parallel using a multiprocessing pool. With a 24 core machine that is being

used at Columbia this can result in a 24× speedup. Another optimization is that the loop

that bins detector samples into the signal map is performed in C++ instead of Python. This

results in a 45× speedup due to the fact that the numerical computations compile to native

machine code when using C++. The final optimization is that some of the processing done

169

to the pointing timestreams is preprocessed and included directly in the pointing dataset.

Specifically, the pointing reconstruction app was modified to store the pointing timestreams

in an additional mathematical form, called “quaternions”, rather than just in Euler angles.

The io management library used by the map maker now loads the quaternion values directly

instead of calculating them, bypassing a time consuming step.

Polarization

In order to study the polarization of the CMB, we produce two polarization maps in addition

to a temperature map. The two polarization maps are called “Q” and “U”, where Q and U

are Stokes paramaters that describe polarization states of the light entering the telescope.

Here we review the Q and U Stokes parameters and discuss the polarization capabilities of

the map maker.

In the general case an electromagnetic wave has elliptical polarization. It can be defined

as having an intensity E0, an ellipticity angle β, and a semi-major axis that is oriented at

an angle χ from the x-axis. The Stokes parameters for a general electromagnetic wave are

then defined as:

I = E2
0

Q = E2
0 cos(2β) cos(2χ)

U = E2
0 cos(2β) sin(2χ)

V = E2
0 sin(2β)

(10.4)

The I parameter corresponds to the total intensity. The I map is often referred to as

the T map where T is the temperature of the CMB. The Q and U parameters describe the

linear polarization intensity. The Q parameter represents linear polarizations aligned with

the axes of the map, while the U parameter represents linear polarizations offset by 45◦ from

the axes. The V parameter describes circular polarization, which we do not include in this

analysis as it does not correspond to any of the physical mechanisms described in Chapter 1.

170

We explain above how the core of the map maker adds samples from detector timestreams

into an I map. The core of the map maker has been modified to produce three separate

maps - I, Q, and U - and return all three to the main loop of the map making app. The

main loop then co-adds and normalizes each of the three maps independently.

To produce the two polarization maps, the detector timestreams are modulated before

being added to the map. Before being modulated, the signal in a detector s(t) depends on

the total intensity (Isky) and the Q and U components on the sky (Qsky and Usky):

s(t) =
1

2

[
Isky +Qsky cos(4ω + 2ψ) + Usky sin(4ω + 2ψ)

]
(10.5)

where ω is the half-wave plate angle with respect to the telescope frame, and ψ is the roll

angle of the telescope with respect to the galactic frame. To produce a Q map we modulate

the detector timestream with cos(4ω + 2ψ), which produces:

s(t) cos(4ω + 2ψ) =
1

2

[
Isky cos(4ω + 2ψ) +Qsky cos2(4ω + 2ψ)

+ Usky sin(4ω + 2ψ) cos(4ω + 2ψ)
]

=
1

2
Isky cos(4ω + 2ψ) +

1

4
Qsky +

1

4
Qsky cos(8ω + 4ψ)

+
1

4
Usky sin(8ω + 4ψ)

in which 1
4
Qsky is the only term without a sin or cos function, meaning that after averaging

many samples with random half-wave plate angles, the pixel will only contain the Qsky term.

Similarly, we modulate the timestream with sin(4ω + 2ψ) to produce a U map.

10.3 Preliminary Results and Next Steps

Figure 10.7 shows a preliminary temperature map of the EBEX calibration source, RCW 38.

Using this map we have refined the star camera pointing offsets to an accuracy of 5′. The

171

Figure 10.7: A preliminary temperature map of the EBEX calibration source, RCW 38,
created from EBEX 2012 Antarctic flight data using the LEAP map maker. The map
includes 2 hours of data from 91 150 GHz detectors.

current limitation on the accuracy of the pointing offsets is due to inaccuracies in the focal

plane model. The consequence of this limitation is that calibrator maps made by different

detectors show the calibrator source in different locations on the sky. We are currently

integrating a more sophisticated model of the focal plane into the map maker, which will

allow us to further refine the pointing offsets.

Figure 10.8 shows a preliminary map of part of the galactic plane in I, Q, and U . The

majority of the polarized signal from the galactic plane is expected to be found in Q because

the sources of the polarized signal, dust grains, are aligned with the galactic magnetic field.

We are in the process of calibrating a polarization angle offset from the telescope axis for

each detector using pre-flight ground tests. In the meantime, however, to demonstate our

polarization sensitivity we produced these maps by calibrating the polarization offset angle

for each detector using WMAP data. When the polarization angle offsets from pre-flight

measurements become available we will integrate them into the map maker. In addition, the

172

F
ig

u
re

10
.8

:
P

re
li
m

in
ar

y
m

ap
s

in
I
,
Q

,
an

d
U

of
p
ar

t
of

th
e

ga
la

ct
ic

p
la

n
e,

cr
ea

te
d

fr
om

E
B

E
X

20
12

A
n
ta

rc
ti

c
fl
ig

h
t

d
at

a
u
si

n
g

th
e

L
E

A
P

m
ap

m
ak

er
.

T
h
e

m
ap

in
cl

u
d
es

d
at

a
fr

om
91

25
0

G
H

z
d
et

ec
to

rs
fr

om
a

17
m

in
u
te

se
ct

io
n

of
fl
ig

h
t.

T
h
e
I

m
ap

is
a

m
ap

of
to

ta
l

in
te

n
si

ty
.

T
h
e
Q

an
d
U

m
ap

s
re

p
re

se
n
t

d
iff

er
en

t
al

ig
n
m

en
ts

of
p

ol
ar

iz
at

io
n

on
th

e
sk

y.

173

intensity map is currently being used for calibrating the absolute signal of the detectors by

determing the conversion factor between raw detector counts and intensity using the Planck

temperature data.

With improved calibrations of the pointing offsets, signal conversion factors, and polar-

ization angles, we will proceed with generating polarization maps and extracting scientific

parameters. We might create maps using a more sophisticated map maker that better ac-

counts for the correlated detector noise (i.e. the unknown slow-drifting detector bias). We

will estimate the noise covariance matrix either with monte carlo simulations or, depending

on the map maker, simultaneously while calculating the map. The noise covariance matrix

is necessary for evaluating the error on the extracted parameters.

We will combine the Q and U maps as Q + iU and Q − iU , and decompose the results

into spherical harmonics using ladder operators [61]:

Q± iU =
∑
l,m

a±2lm [Ylm(θ, φ)]

similar to what we did for the temperature spectrum in Equation 1.3.1. We can then quantify

the E-mode and B-mode patterns that correspond to the physical phenomena described in

Chapter 1 with:

E ≡
∑
l,m

(
−1

2
(a

(2)
lm + a

(−2)
lm)

)
Ylm(θ, φ)

B ≡
∑
l,m

(
− 1

2i
(a

(2)
lm − a

(−2)
lm)

)
Ylm(θ, φ)

We will produce separate polarization maps at the three frequencies that EBEX is sensi-

tive to, in regions of the sky selected for their limited foreground contribution, and produce

E-mode and B-mode power spectra. We will use the power spectra to characterize the fre-

quency dependence of the remaining foreground contaminants and remove them. Finally,

174

we will use the two-point correlation functions (Equation 1.3.1) of the E and B coefficients

to measure or place an upper limit on r, the tensor-to-scalar ratio.

175

Chapter 11

Polar Mesospheric Clouds

In this chapter we describe the preliminary analysis of a non-cosmological data set that was

obtained serendipitously in the EBEX 2012 Antarctic flight. As discussed in Chapters 4

and 5, the star cameras were designed to save every image captured and to continue finding

solutions when faced with certain types of unanticipated challenges. In the 2012 Antarctic

flight, polar mesospheric clouds (PMCs) emerged in roughly half of the star camera images.

From the perspective of the EBEX pointing system, the clouds are a source of noise that

must be and has been overcome. From the perspective of atmospheric science, however, the

clouds in the images may ultimately provide an unprecedented look at small scale dynamics

in the mesopause region of the atmosphere. Given that we stored every image to disk and

were successful at identifying stars through the cloud layers, we now have roughly 20000

images of polar mesospheric clouds, from a vantage point not yet exploited by atmospheric

scientists1, for which we have attitude solutions and geographic coordinates. Example images

containing PMCs are shown in Figure 11.1.

Polar mesospheric clouds are clouds that form at an altitude of ∼82 km near the Earth’s

poles in the summer time. Given the brightness of the lower atmosphere, it is difficult to

observe these clouds from the ground unless they are viewed at a shallow angle, resulting in

1to our knowledge, after research and expert consultation

176

(a) (b)

(c) (d)

Figure 11.1: Example images containing polar mesospheric clouds.

177

distortion [62][63]2. The vantage point of an LDB (long duration balloon) payload provided

the high resolution EBEX star cameras with a non-shallow view of the clouds from close

proximity that was above the bright lower atmosphere.

Polar mesospheric clouds are of scientific interest because their observable features trace

atmospheric gravity wave dynamics in the mesosphere and lower thermosphere [64][62][63].

Atmospheric gravity waves transfer momentum between the layers of the atmosphere, and

characterizing the dynamics of these waves on the small scales at which we have observed

them may help complete models of large-scale dynamics used by meteorologists and climatol-

ogists. The analysis of the PMC images therefore involves idenifying morphological features

in the clouds, measuring their characteristics, and tracking their evolution. Note that the

gravity waves discussed in this chapter are different from the gravitational waves discussed in

the EBEX science chapter. “Gravity waves” are waves at the interface of two media in which

gravity provides the restoring force, whereas “gravitational waves” are waves in spacetime.

In this chapter we discuss the first two steps taken in the PMC analysis process: char-

acterizing the existing data set and processing the images to enable feature tracking and

characterization across multiple images.

11.1 Data Set Characterization

To characterize the ∼40,000 star camera images from flight based on their PMC content, we

first developed an automated metric to find the sections of flight that had significant cloud

activity, then reviewed the images in those sections manually.

To find sections of flight that have significant cloud activity we calculated a metric for each

star camera image. The metric employed is the median absolute deviation about the median

(MAD) of all the pixels in each image, after the image has been flat-fielded to eliminate dust

spots and internal camera reflections. After reviewing the MAD of roughly 100 randomly

2PMCs are sometimes referred to as noctilucent clouds, given that they can be seen when the Sun is
below the horizon but the clouds are high enough to still be illuminated.

178

Figure 11.2: Coverage plot of the star camera images over Antarctica. Each rectangle
represents the location of an image, and the color of the rectangle represents the MAD value.
Purple and dark blue represent little to no cloud activity, light blue represents moderate cloud
activity, and green, yellow, and red represent significant cloud activity. The left plot shows
all the images, and the right plot shows a zoomed region that has significant cloud activity.

selected images, we determined that images whose MAD exceeded 3 or 4 counts had at

least some cloud activity, and images whose MAD exceeded roughly 7 counts had high cloud

activity. We find that roughly half of the images have at least some cloud activity.

We found the regions of flight that have significant cloud activity by plotting the geo-

graphic locations of the images along with their MAD values. Figure 11.2 shows the resulting

coverage, where each rectangle represents the location of an image over Antarctica and the

color of a rectangle represents the image’s MAD value. It is evident that there are a several

regions that contain at least some cloud activity, but a select few that contain high cloud

activity.

We then manually reviewed the images from the sections of flight that contain high

cloud activity, and identified features in the clouds that correspond to physical phenomena

179

Figure 11.3: Visual explanation of the vectors involved in projecting the point of interest
(POI) onto the cloud layer (shown in white). The EBEX star camera, shown in red, is
suspended ∼35 km above the Earth. It observes polar mesospheric clouds that are at an
altitude of ∼82 km. Figure courtesy of Michael D’Anvers.

associated with gravity waves. We find that, of the images with high cloud activity, roughly

5-10% show wave-like structures while the remaining images show turbulence. Figure 11.1

shows four example images. The top left image likely represents a gravity wave breaking. The

top right image likely represents a vortex ring, which is a dynamic effect that accompanies

gravity wave breaking. The bottom left image shows instabilities in the gravity waves, and

the bottom right image shows the transition between wave instabilities and trubulent flow.

11.2 Feature Tracking and Characterization

In order to identify features that span multiple images, and to track cloud evolution over

time, it is necessary to display the images in such a way that the cloud features appear in

their geographic locations and orientations. We therefore produce plots in which we project

selected star camera images onto the 82 km cloud layer. In this section we explain the

projection and then discuss the preliminary results.

180

11.2.1 Projection Onto the Cloud Layer

For each pixel in an image, or “point of interest” (POI), we want to determine the geographic

coordinates (longitude and latitude) at which the line of sight of the pixel intercepts the

cloud layer at 82 km. To find where the POI intercepts the cloud layer it is useful to define

a reference frame and three vectors. The reference frame is the equatorial celestial reference

frame, whose origin is at the center of the Earth. The three vectors, shown visually in

Figure 11.3, are:

• ~xstar camera location - This vector defines the position of the star camera with respect to

the origin of the reference frame. This vector depends on the payload’s longitude,

latitude, and altitude, as well as the time (due to the rotation of the Earth).

• x̂poi pointing - This unit vector defines the pointing direction of the point of interest

(POI) in an image. It depends on the star camera pointing solution (ra, dec, and roll),

the pixel coordinates of the POI within the image (x and y), and the platescale of the

image (p).

• ~xpoi - This vector defines the position of the POI at which it intesects the cloud layer,

with respect to the origin of the reference frame.

The relationship between these vectors is:

~xpoi = ~xstar camera location + αx̂poi pointing (11.1)

where α can be solved given the following constraint:

|~xpoi| = radius of Earth + 82 km (11.2)

To use Equation 11.1 we must transform the information we have about each image from

its natural form into cartesian equatorial coordinates. The information we have about each

image is:

181

• the geographic coordinates (latitude, longitude, and altitude) of the payload

• the time at which the image was taken

• the pointing solution of the center of the image, which consists of three euler angles in

the equatorial celestial frame (right ascension, declination, and roll)

• the platescale of the star cameras

The transformations are described here:

Geographic Coordinates ←→ Equatorial Cartesian Coordinates

To transform ~xstar camera location and ~xpoi between geographic and equatorial coordinates we

use the following relationships between spherical parameters:

ρ = radius of Earth + altitude

φ = longitude−Greenwich sidereal time

θ = π
2
− latitude

(11.3)

We can then convert between spherical quantities and cartesian quantities using the

standard forumalae.

Image Coordinates ←→ Equatorial Cartesian Coordinates

Here we define the relationship between three quantities:

• (x, y) - The pixel coordinates of a POI in an image

• (φ1, θ1) - The equatorial pointing coordinates of the POI

• (φ0, θ0, ψ0) - The equatorial star camera solution that represents the attitude of the

center of the image

We first recognize that the star camera optics project an image of the sky onto the flat

surface of the CCD through a gnomonic projection, which allows us to define the CCD

position (u, v) of the POI as:

182

Figure 11.4: Example plot showing the projection of dozens of star camera images onto the
cloud layer. Cloud features that span multiple images can be seen.

u =
cos θ1 sin (φ1 − φ0)

sin θ0 sin θ1 + cos θ0 cos θ1 cos (φ1 − φ0)

v =
cos θ0 sin θ1 + sin θ0 cos θ1 cos (φ1 − φ0)

sin θ0 sin θ1 + cos θ0 cos θ1 cos (φ1 − φ0)

(11.4)

We then multiple by the camera’s platescale, p, to convert from radians to pixels, and

we account for the roll of the image by rotating the POI about the center of the image:

(
x
y

)
=

(
cosψ0 − sinψ0

sinψ0 cosψ0

)(
−up
vp

)
(11.5)

The minus sign in the term−up accounts for a parity inconsistency between the equatorial

reference frame and the CCD frame.

183

F
ig

u
re

11
.5

:
E

x
am

p
le

of
fe

at
u
re

tr
ac

k
in

g
an

d
ev

ol
u
ti

on
ob

se
rv

at
io

n
.

F
ou

r
p
lo

ts
ar

e
sh

ow
n
,

ea
ch

p
lo

t
co

n
ta

in
in

g
fo

u
r

im
ag

es
ta

ke
n

in
th

e
sa

m
e

on
e

m
in

u
te

w
in

d
ow

.
T

h
e

fo
u
r

p
lo

ts
sp

an
6

m
in

u
te

s,
an

d
a

u
n
iq

u
e

fe
at

u
re

,
id

en
ti

fi
ed

b
y

th
e

gr
ee

n
ar

ro
w

,
ca

n
b

e
se

en
to

m
ov

e
d
ow

n
w

ar
d

ov
er

ti
m

e.

184

11.2.2 Preliminary Results

We have written a program to implement these transformations in order to project images

onto the cloud layer so that the morphological features in the clouds are placed in their

correct geographic location and orientation. Figure 11.4 shows an example plot in which

dozens of images are projected onto the cloud layer. In this plot, features that span multiple

images can be identified. Figure 11.5 shows an example in which 16 images are captured over

the course of 6 minutes, and a unique feature within the images can be identified, tracked,

and observed for morphological evolution.

185

Bibliography

[1] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,

M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al.

Planck 2013 results. XVI. Cosmological parameters. ArXiv e-prints, March 2013.

[2] D. Baumann, M. G. Jackson, P. Adshead, A. Amblard, A. Ashoorioon, N. Bartolo,

R. Bean, M. Beltrán, F. de Bernardis, S. Bird, X. Chen, D. J. H. Chung, L. Colombo,

A. Cooray, P. Creminelli, S. Dodelson, J. Dunkley, C. Dvorkin, R. Easther, F. Finelli,

R. Flauger, M. P. Hertzberg, K. Jones-Smith, S. Kachru, K. Kadota, J. Khoury, W. H.

Kinney, E. Komatsu, L. M. Krauss, J. Lesgourgues, A. Liddle, M. Liguori, E. Lim,

A. Linde, S. Matarrese, H. Mathur, L. McAllister, A. Melchiorri, A. Nicolis, L. Pagano,

H. V. Peiris, M. Peloso, L. Pogosian, E. Pierpaoli, A. Riotto, U. Seljak, L. Senatore,

S. Shandera, E. Silverstein, T. Smith, P. Vaudrevange, L. Verde, B. Wandelt, D. Wands,

S. Watson, M. Wyman, A. Yadav, W. Valkenburg, and M. Zaldarriaga. Probing Inflation

with CMB Polarization. In S. Dodelson, D. Baumann, A. Cooray, J. Dunkley, A. Fraisse,

M. G. Jackson, A. Kogut, L. Krauss, M. Zaldarriaga, and K. Smith, editors, American

Institute of Physics Conference Series, volume 1141 of American Institute of Physics

Conference Series, pages 10–120, June 2009.

[3] S. Dodelson. Modern cosmology. 2003.

[4] A. R. Liddle and D. H. Lyth. Cosmological Inflation and Large-Scale Structure. June

2000.

186

[5] S. Seager, D. D. Sasselov, and D. Scott. How Exactly Did the Universe Become Neutral?

Ap. J. Suppl., 128:407–430, June 2000.

[6] A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at

4080 Mc/s. Ap. J., 142:419–421, July 1965.

[7] G. F. Smoot, C. L. Bennet, A. Kogut, E. L. Wright, J. Aymon, N. W. Boggess, E. S.

Cheng, G. De Amici, S. Gulkis, M. G. Hauser, G. Hinshaw, P. D. Jackson, M. Janssen,

E. Kaita, T. Kelsall, P. Keegstra, C. Lineweaver, K. Lowenstein, P. Lubin, J. Mather,

S. S. Meyer, S. H. Moseley, T. Murdock, L. Rokke, R. F. Silverberg, L. Tenorio, R. Weiss,

and D. T. Wilkinson. Structure in the COBE Differential Microwave Radiometer First-

Year Maps. Ap. J., 396:L1–L5, 1992.

[8] S. Hillbrand. The E and B EXperiment: A balloon-borne cosmic microwave background

anisotropy probe. PhD thesis, Columbia University, 2014.

[9] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,

M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al.

Planck 2013 results. XV. CMB power spectra and likelihood. Astron. Astrophys.,

571:A15, November 2014.

[10] QUIET Collaboration, D. Araujo, C. Bischoff, A. Brizius, I. Buder, Y. Chinone,

K. Cleary, R. N. Dumoulin, A. Kusaka, R. Monsalve, S. K. Næss, L. B. Newburgh,

R. Reeves, I. K. Wehus, J. T. L. Zwart, L. Bronfman, R. Bustos, S. E. Church, C. Dick-

inson, H. K. Eriksen, T. Gaier, J. O. Gundersen, M. Hasegawa, M. Hazumi, K. M. Huf-

fenberger, K. Ishidoshiro, M. E. Jones, P. Kangaslahti, D. J. Kapner, D. Kubik, C. R.

Lawrence, M. Limon, J. J. McMahon, A. D. Miller, M. Nagai, H. Nguyen, G. Nixon, T. J.

Pearson, L. Piccirillo, S. J. E. Radford, A. C. S. Readhead, J. L. Richards, D. Samtleben,

M. Seiffert, M. C. Shepherd, K. M. Smith, S. T. Staggs, O. Tajima, K. L. Thompson,

K. Vanderlinde, and R. Williamson. Second Season QUIET Observations: Measure-

187

ments of the Cosmic Microwave Background Polarization Power Spectrum at 95 GHz.

Ap. J., 760:145, December 2012.

[11] D. Hanson, S. Hoover, A. Crites, P. A. R. Ade, K. A. Aird, J. E. Austermann, J. A. Beall,

A. N. Bender, B. A. Benson, L. E. Bleem, J. J. Bock, J. E. Carlstrom, C. L. Chang,

H. C. Chiang, H.-M. Cho, A. Conley, T. M. Crawford, T. de Haan, M. A. Dobbs,

W. Everett, J. Gallicchio, J. Gao, E. M. George, N. W. Halverson, N. Harrington,

J. W. Henning, G. C. Hilton, G. P. Holder, W. L. Holzapfel, J. D. Hrubes, N. Huang,

J. Hubmayr, K. D. Irwin, R. Keisler, L. Knox, A. T. Lee, E. Leitch, D. Li, C. Liang,

D. Luong-Van, G. Marsden, J. J. McMahon, J. Mehl, S. S. Meyer, L. Mocanu, T. E.

Montroy, T. Natoli, J. P. Nibarger, V. Novosad, S. Padin, C. Pryke, C. L. Reichardt,

J. E. Ruhl, B. R. Saliwanchik, J. T. Sayre, K. K. Schaffer, B. Schulz, G. Smecher, A. A.

Stark, K. T. Story, C. Tucker, K. Vanderlinde, J. D. Vieira, M. P. Viero, G. Wang,

V. Yefremenko, O. Zahn, and M. Zemcov. Detection of B-Mode Polarization in the

Cosmic Microwave Background with Data from the South Pole Telescope. Physical

Review Letters, 111(14):141301, October 2013.

[12] R. K. Sachs and A. M. Wolfe. Perturbations of a Cosmological Model and Angular

Variations of the Microwave Background. Ap. J., 147:73, January 1967.

[13] D. Larson, J. Dunkley, G. Hinshaw, E. Komatsu, M. R. Nolta, C. L. Bennett, B. Gold,

M. Halpern, R. S. Hill, N. Jarosik, A. Kogut, M. Limon, S. S. Meyer, N. Odegard,

L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L.

Wright. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:

Power Spectra and WMAP-derived Parameters. Ap. J. Suppl., 192:16–+, February

2011.

[14] R. B. Friedman, P. Ade, J. Bock, M. Bowden, M. L. Brown, G. Cahill, P. G. Castro,

S. Church, T. Culverhouse, K. Ganga, W. K. Gear, S. Gupta, J. Hinderks, J. Ko-

188

vac, A. E. Lange, E. Leitch, S. J. Melhuish, Y. Memari, J. A. Murphy, A. Orlando,

C. O’Sullivan, L. Piccirillo, C. Pryke, N. Rajguru, B. Rusholme, R. Schwarz, A. N. Tay-

lor, K. L. Thompson, A. H. Turner, E. Y. S. Wu, M. Zemcov, and QUa D Collaboration.

Small Angular Scale Measurements of the Cosmic Microwave Background Temperature

Power Spectrum From QUaD. Ap. J. Lett., 700:L187–L191, August 2009.

[15] M. Lueker, C. L. Reichardt, K. K. Schaffer, O. Zahn, P. A. R. Ade, K. A. Aird, B. A.

Benson, L. E. Bleem, J. E. Carlstrom, C. L. Chang, H.-M. Cho, T. M. Crawford, A. T.

Crites, T. de Haan, M. A. Dobbs, E. M. George, N. R. Hall, N. W. Halverson, G. P.

Holder, W. L. Holzapfel, J. D. Hrubes, M. Joy, R. Keisler, L. Knox, A. T. Lee, E. M.

Leitch, J. J. McMahon, J. Mehl, S. S. Meyer, J. J. Mohr, T. E. Montroy, S. Padin,

T. Plagge, C. Pryke, J. E. Ruhl, L. Shaw, E. Shirokoff, H. G. Spieler, B. Stalder,

Z. Staniszewski, A. A. Stark, K. Vanderlinde, J. D. Vieira, and R. Williamson. Mea-

surements of Secondary Cosmic Microwave Background Anisotropies with the South

Pole Telescope. Ap. J., 719:1045–1066, August 2010.

[16] J. W. Fowler, V. Acquaviva, P. A. R. Ade, P. Aguirre, M. Amiri, J. W. Appel, L. F.

Barrientos, E. S. Battistelli, J. R. Bond, B. Brown, B. Burger, J. Chervenak, S. Das,

M. J. Devlin, S. R. Dicker, W. B. Doriese, J. Dunkley, R. Dünner, T. Essinger-Hileman,

R. P. Fisher, A. Hajian, M. Halpern, M. Hasselfield, C. Hernández-Monteagudo, G. C.

Hilton, M. Hilton, A. D. Hincks, R. Hlozek, K. M. Huffenberger, D. H. Hughes, J. P.

Hughes, L. Infante, K. D. Irwin, R. Jimenez, J. B. Juin, M. Kaul, J. Klein, A. Kosowsky,

J. M. Lau, M. Limon, Y.-T. Lin, R. H. Lupton, T. A. Marriage, D. Marsden, K. Mar-

tocci, P. Mauskopf, F. Menanteau, K. Moodley, H. Moseley, C. B. Netterfield, M. D.

Niemack, M. R. Nolta, L. A. Page, L. Parker, B. Partridge, H. Quintana, B. Reid, N. Se-

hgal, J. Sievers, D. N. Spergel, S. T. Staggs, D. S. Swetz, E. R. Switzer, R. Thornton,

H. Trac, C. Tucker, L. Verde, R. Warne, G. Wilson, E. Wollack, and Y. Zhao. The Ata-

189

cama Cosmology Telescope: A Measurement of the 600 <ell <8000 Cosmic Microwave

Background Power Spectrum at 148 GHz. Ap. J., 722:1148–1161, October 2010.

[17] W. Hu and M. White. A CMB polarization primer. New Astronomy, 2:323–344, 1997.

astro-ph/9706147.

[18] W. Hu. CMB temperature and polarization anisotropy fundamentals. Annals of Physics,

303:203–225, January 2003.

[19] S. M. Carroll. Spacetime and geometry. An introduction to general relativity. 2004.

[20] B. Gold, N. Odegard, J. L. Weiland, R. S. Hill, A. Kogut, C. L. Bennett, G. Hinshaw,

X. Chen, J. Dunkley, M. Halpern, N. Jarosik, E. Komatsu, D. Larson, M. Limon, S. S.

Meyer, M. R. Nolta, L. Page, K. M. Smith, D. N. Spergel, G. S. Tucker, E. Wollack,

and E. L. Wright. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Obser-

vations: Galactic Foreground Emission. Ap. J. Suppl., 192:15–+, February 2011.

[21] J. M. Kovac, E. M. Leitch, C. Pryke, J. E. Carlstrom, N. W. Halverson, and W. L.

Holzapfel. Detection of polarization in the cosmic microwave background using DASI.

Nature, 420:772, December 2002. astro-ph/0209478.

[22] H. C. Chiang, P. A. R. Ade, D. Barkats, J. O. Battle, E. M. Bierman, J. J. Bock, C. D.

Dowell, L. Duband, E. F. Hivon, W. L. Holzapfel, V. V. Hristov, W. C. Jones, B. G.

Keating, J. M. Kovac, C. L. Kuo, A. E. Lange, E. M. Leitch, P. V. Mason, T. Mat-

sumura, H. T. Nguyen, N. Ponthieu, C. Pryke, S. Richter, G. Rocha, C. Sheehy, Y. D.

Takahashi, J. E. Tolan, and K. W. Yoon. Measurement of Cosmic Microwave Back-

ground Polarization Power Spectra from Two Years of BICEP Data. Ap. J., 711:1123–

1140, March 2010.

[23] M. L. Brown, P. Ade, J. Bock, M. Bowden, G. Cahill, P. G. Castro, S. Church, T. Cul-

verhouse, R. B. Friedman, K. Ganga, W. K. Gear, S. Gupta, J. Hinderks, J. Kovac, A. E.

190

Lange, E. Leitch, S. J. Melhuish, Y. Memari, J. A. Murphy, A. Orlando, C. O’Sullivan,

L. Piccirillo, C. Pryke, N. Rajguru, B. Rusholme, R. Schwarz, A. N. Taylor, K. L.

Thompson, A. H. Turner, E. Y. S. Wu, M. Zemcov, and The QUa D collaboration.

Improved Measurements of the Temperature and Polarization of the Cosmic Microwave

Background from QUaD. Ap. J., 705:978–999, November 2009.

[24] C. Bischoff, L. Hyatt, J. J. McMahon, G. W. Nixon, D. Samtleben, K. M. Smith,

K. Vanderlinde, D. Barkats, P. Farese, T. Gaier, J. O. Gundersen, M. M. Hedman,

S. T. Staggs, B. Winstein, and CAPMAP Collaboration. New Measurements of Fine-

Scale CMB Polarization Power Spectra from CAPMAP at Both 40 and 90 GHz. Ap. J.,

684:771–789, September 2008.

[25] J. L. Sievers, C. Achermann, J. R. Bond, L. Bronfman, R. Bustos, C. R. Contaldi,

C. Dickinson, P. G. Ferreira, M. E. Jones, A. M. Lewis, B. S. Mason, J. May, S. T. Myers,

N. Oyarce, S. Padin, T. J. Pearson, M. Pospieszalski, A. C. S. Readhead, R. Reeves,

A. C. Taylor, and S. Torres. Implications of the Cosmic Background Imager Polarization

Data. Ap. J., 660:976–987, May 2007.

[26] T. E. Montroy, P. A. R. Ade, J. J. Bock, J. R. Bond, J. Borrill, A. Boscaleri, P. Cabella,

C. R. Contaldi, B. P. Crill, P. de Bernardis, G. De Gasperis, A. de Oliveira-Costa, G. De

Troia, G. di Stefano, E. Hivon, A. H. Jaffe, T. S. Kisner, W. C. Jones, A. E. Lange,

S. Masi, P. D. Mauskopf, C. J. MacTavish, A. Melchiorri, P. Natoli, C. B. Netterfield,

E. Pascale, F. Piacentini, D. Pogosyan, G. Polenta, S. Prunet, S. Ricciardi, G. Romeo,

J. E. Ruhl, P. Santini, M. Tegmark, M. Veneziani, and N. Vittorio. A Measurement of

the CMB <EE>Spectrum from the 2003 Flight of BOOMERANG. Ap. J., 647:813–822,

August 2006.

[27] BICEP2 Collaboration, P. A. R Ade, R. W. Aikin, D. Barkats, S. J. Benton, C. A.

Bischoff, J. J. Bock, J. A. Brevik, I. Buder, E. Bullock, C. D. Dowell, L. Duband, J. P.

191

Filippini, S. Fliescher, S. R. Golwala, M. Halpern, M. Hasselfield, S. R. Hildebrandt,

G. C. Hilton, V. V. Hristov, K. D. Irwin, K. S. Karkare, J. P. Kaufman, B. G. Keating,

S. A. Kernasovskiy, J. M. Kovac, C. L. Kuo, E. M. Leitch, M. Lueker, P. Mason, C. B.

Netterfield, H. T. Nguyen, R. O’Brient, R. W. Ogburn, IV, A. Orlando, C. Pryke, C. D.

Reintsema, S. Richter, R. Schwarz, C. D. Sheehy, Z. K. Staniszewski, R. V. Sudiwala,

G. P. Teply, J. E. Tolan, A. D. Turner, A. G. Vieregg, C. L. Wong, and K. W. Yoon.

BICEP2 I: Detection Of B-mode Polarization at Degree Angular Scales. ArXiv e-prints,

March 2014.

[28] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, M. Arnaud, J. Aumont,

C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck in-

termediate results. XXX. The angular power spectrum of polarized dust emission at

intermediate and high Galactic latitudes. ArXiv e-prints, September 2014.

[29] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik,

D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut,

M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L.

Wright. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations:

Cosmological Interpretation. Ap. J. Suppl., 192:18–+, February 2011.

[30] Britt Reichborn-Kjennerud et al. EBEX: A balloon-borne CMB polarization experi-

ment. Millimeter, Submillimeter, and Far-Infrared Detectors and Instrumentation for

Astronomy V, 7741, 2010.

[31] B. Reichborn-Kjennerud. Building and Flying the E and B Experiment to Measure the

Polarization of the Cosmic Microwave Background. PhD thesis, Columbia University,

2010.

192

[32] S. Hanany and D. P. Marrone. Comparison of Designs of Off-Axis Gregorian Telescopes

for Millimeter-Wave Large Focal-Plane Arrays. Applied Optics, 41:4666–4670, August

2002.

[33] C. E. Tucker and P. A. R. Ade. Thermal filtering for large aperture cryogenic detector

arrays. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

6275, July 2006.

[34] K. Zilic. Calibration and Design of the E and B EXperiment (EBEX) Cryogenic Re-

ceiver. PhD thesis, University of Minnesota, 2014.

[35] I. Sagiv et al. The ebex cryostat and supporting electronics.

[36] S. Hanany, H. Hubmayr, B. R. Johnson, T. Matsumura, P. Oxley, and Thibodeau

M. Millimeter-wave achromatic half-wave plate. Applied Optics, 44:4666–4670, August

2005.

[37] J. Klein et al. A cryogenic half-wave plate polarimeter using a superconducting magnetic

bearing. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series,

8150, September 2011.

[38] F. Aubin, A. M. Aboobaker, P. Ade, C. Baccigalupi, C. Bao, J. Borrill, C. Cantalupo,

D. Chapman, J. Didier, M. Dobbs, W. Grainger, S. Hanany, J. Hubmayr, P. Hyland,

S. Hillbrand, A. Jaffe, B. Johnson, T. Jones, T. Kisner, J. Klein, A. Korotkov, S. Leach,

A. Lee, M. Limon, K. MacDermid, T. Matsumura, X. Meng, A. Miller, M. Milligan,

D. Polsgrove, N. Ponthieu, K. Raach, B. Reichborn-Kjennerud, I. Sagiv, G. Smecher,

H. Tran, G. S. Tucker, Y. Vinokurov, A. Yadav, M. Zaldarriaga, and K. Zilic. First

implementation of TES bolometer arrays with SQUID-based multiplexed readout on a

balloon-borne platform. In Society of Photo-Optical Instrumentation Engineers (SPIE)

Conference Series, volume 7741 of Presented at the Society of Photo-Optical Instrumen-

tation Engineers (SPIE) Conference, July 2010.

193

[39] Kevin D. MacDermid et al. The performance of the bolometer array and readout system

during the recent flight of the e and b experiment (EBEX). Millimeter, Submillimeter,

and Far-Infrared Detectors and Instrumentation for Astronomy VII, 9153, 2014.

[40] M. Milligan. The E and B EXperiment: Implementation and Analysis of the 2009

Engineering Flight. PhD thesis, University of Minnesota, 2011.

[41] N. N. Gandilo et al. Attitude determination for balloon-borne experiments. In Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, volume 9145

of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, July

2014.

[42] James R. Wertz. Spacecraft Attitude Determination and Control. D. Reidel, 1980.

[43] J. Didier et al. A High-resolution Pointing System for Fast Scanning Platforms: the

EBEX Example. Manuscript submitted for publication., 2015.

[44] W. Hu, M. M. Hedman, and M. Zaldarriaga. Benchmark parameters for CMB polar-

ization experiments. Phys. Rev. D., 67:043004–+, February 2003. astro-ph/0210096.

[45] rudolph emil kalman. a new approach to linear filtering and prediction problems. trans-

actions of the asme–journal of basic engineering, 82(series d):35–45, 1960.

[46] C. D. Alexander, W. R. Swift, K. Ghosh, and B. D. Ramsey. Design of a day/night star

camera system. In R. E. Fischer and W. J. Smith, editors, Current Developments in

Optical Design and Optical Engineering VIII, volume 3779 of Society of Photo-Optical

Instrumentation Engineers (SPIE) Conference Series, pages 47–54, October 1999.

[47] Yury Vinokurov. EBEX, a balloon-borne telescope for observing the polarization of the

cosmic microwave background. PhD thesis, Brown University, 2010.

194

[48] Y. S. Lee, Y. H. Kim, Y. Yi, and J. Kim. A Baffle Design for an Airglow Photome-

ter onboard the Korea Sounding Rocket-III. Journal of Korean Astronomical Society,

33:165–172, December 2000.

[49] B. J. Dober et al. The next-generation BLASTPol experiment. In Society of Photo-

Optical Instrumentation Engineers (SPIE) Conference Series, volume 9153 of Society

of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, July 2014.

[50] m. rex. the balloon-borne large aperture submillimeter telescope (blast). PhD thesis,

university of pennsylvania, 2007.

[51] Daniele Mortari, Malak A. Samaan, Christian Bruccoleri, and John L. Junkins. The

pyramid star identification technique. Navigation, 51:171–184, Fall 2004.

[52] Google Maps API. https://developers.google.com/maps.

[53] jQuery Team. jQuery. http://jquery.com/.

[54] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke, and

M. Bartelmann. HEALPix: A Framework for High-Resolution Discretization and Fast

Analysis of Data Distributed on the Sphere. Ap. J., 622:759–771, April 2005.

[55] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A case for redundant arrays

of inexpensive disks (raid). Technical Report UCB/CSD-87-391, EECS Department,

University of California, Berkeley, Dec 1987.

[56] Donald Victor Wiebe. Dirfile Standards. http://getdata.sourceforge.net.

[57] Apache. Subversion. https://subversion.apache.org/.

[58] Eric A. Wan and Rudolph van der Merwe. The unscented kalman filter for nonlinear

estimation. In Proceedings of Symposium 2000 on Adaptive Systems for Signal Process-

195

https://developers.google.com/maps
http://jquery.com/
http://getdata.sourceforge.net
https://subversion.apache.org/

ing, Communication and Control (AS-SPCC), Lake Louise, Alberta, Canada, October

2000. IEEE.

[59] Simon J. Julier, Jeffrey, and K. Uhlmann. Unscented filtering and nonlinear estimation.

In Proceedings of the IEEE, pages 401–422, 2004.

[60] J. Didier et al. A High-resolution Pointing System for Fast Scanning Platforms: the

EBEX Example. Manuscript submitted for publication.

[61] M. Kamionkowski, A. Kosowsky, and A. Stebbins. Statistics of Cosmic Microwave

Background Polarization. Phys. Rev. D., 55:7368–7388, June 1997.

[62] E. J. Jensen and G. E. Thomas. Numerical simulations of the effects of gravity waves

on noctilucent clouds. Journal of Geophysical Research, 99:3421–3430, 1994.

[63] G. Baumgarten and D. C. Fritts. Quantifying Kelvin-Helmholtz instability dynamics

observed in noctilucent clouds: 1. Methods and observations. Journal of Geophysical

Research (Atmospheres), 119:9324–9337, August 2014.

[64] D. C. Fritts, J. R. Isler, G. E. Thomas, and Ø. Andreassen. Wave breaking signatures

in noctilucent clouds. Geophysics Research Letters, 20:2039–2042, 1993.

196

Appendix A

Gyro Orthogonalization Results

In August 2012, before shipping the telescope to Antarctica, we performed the gyro orthog-

onalization procedure discussed in Section 3.4.1 on both gyro boxes. Gyro box A contains

gyros labeled “1”, “2”, and “3”. Gyro box B contains gyros labeled “4”, “5”, and “6”. As

discussed in Section 3.4.1, the intermediate results of the orthogonalization procedure are

the slopes of the best fit lines shown in Figure A.1, which are used as approximations for

the elements in the inverse orthogonalization matrix. The inverse orthogonalization matrix

is then inverted to give the final matrix.

197

(a)

(b)

Figure A.1: The results of the gyro orthogonalization procedure discussed in Section 3.4.1
for gyro boxes A and B, shown respectively in Subfigures (a) and (b). The slopes of the best
fit lines provide the six off-diagonal elements of the inverse orthogonalization matrix. In the
plots, the center bulges are a result of accidental rotations when changing directions. We
therefore grouped the data into center points (green) and edge points (blue), and only used
the edge points to find the slope.

198

Appendix B

Star Camera Assembly Procedure

Star Camera 0 disassembly procedure (reverse for assembly):

1. Lay camera on its side

2. Unscrew back flange screws (5/16” allen/hex)

3. Slide out back structure (back half)

4. Disconnect cables connecting front and back halves

(a) Lens AD590 (BOB slot 5 of 6; 1 being power slot)

(b) Flange AD590 (BOB slot 6 of 6)

(c) Birger power

(d) 4-wire white connector

(e) Birger USB

(f) TDP from camera head

5. Unscrew front flange screws (special thin 9/16” drive socket)

6. Slide out front structure

Star Camera 1 disassembly procedure (reverse for assembly):

1. Stand camera on its head

199

2. Unscrew back-flange screws (3/16” allen / hex)

3. Stand camera on its bottom

4. Unscrew front-flange screws (3/16” allen / hex)

5. Remove front flange

6. Unscrew front-weld-flange screws (9/64” allen / hex)

7. Disconnect front flange heater and AD590

8. Put front flange back on if desired

9. Slide vessel off

10. Remove o-ring from back-weld-flange

200

Appendix C

Star Camera 1 Electrical

Documentation

201

fr
o
m

+
2
8

fr
o
m

+
2
8

fr
o
m

G
n
d

to +
D

C
D

C
5

to -D
C
D

C
5

to +
D

C
D

C
1
2

to -D
C
D

C
1
2

to -c
o
m

p
to +

co
m

p

D
IS

C
O

N
to +

b
an

g
b
an

g

fr
o
m

-D
C
D

C
5

fr
o
m

+
D

C
D

C
5

fr
o
m

se
n
se

-D
C
D

C
5

fr
o
m

se
n
se

+
D

C
D

C
5

to +
B
O

B

to -B
O

B

to +
B
O

B

to -B
O

B

to +
N

T
S
C

to -N
T
S
C

to +
b
ir
g
er

to -b
ir
g
er

fr
o
m

-D
C
D

C
1
2

fr
o
m

se
n
se

-D
C
D

C
1
2

fr
o
m

se
n
se

+
D

C
D

C
1
2

fr
o
m

+
D

C
D

C
1
2

to +
co

n
tr

o
lle

r

to -c
o
n
tr

o
lle

r

D
IS

C
O

N

D
IS

C
O

N
to +

w
in

d
o
w

h
ea

te
r

D
IS

C
O

N
to -w

in
d
o
w

h
ea

te
r

D
IS

C
O

N
to +

le
n
s

h
ea

te
r

D
IS

C
O

N
to -l

en
s

h
ea

te
r

D
IS

C
O

N
fr

o
m

+
sw

it
ch

ab
le

B

D
IS

C
O

N
fr

o
m

-s
w

it
ch

ab
le

B

D
IS

C
O

N
fr

o
m

+
sw

it
ch

ab
le

A

D
IS

C
O

N
fr

o
m

-s
w

it
ch

ab
le

A

E
S
C
1

T
er

m
in

al
 B

lo
ck

 D
ia

g
ra

m

F
ig

u
re

C
.1

:
D

ia
gr

am
d
o
cu

m
en

ti
n
g

S
ta

r
C

am
er

a
1

te
rm

in
al

b
lo

ck
s

w
ir

in
g.

T
h
e

to
p

le
ft

te
rm

in
al

b
lo

ck
la

b
el

in
g

is
d
ep

re
ca

te
d
,

w
h
il
e

th
e

te
rm

in
al

b
lo

ck
la

b
el

in
g

sh
ow

n
in

th
e

“H
ea

te
r

W
ir

in
g

D
ia

gr
am

”,
al

so
in

th
e

ap
p

en
d
ix

,
is

u
p

to
d
at

e.

202

Sheet1

Page 1

PIN (PT) on SC end WIRE FUNCTION DEVICE PIN (JT) on ACS end

MS3114H-14-12P A red +28 V DC heater A A
B black heater A B
C red +28 V DC heater B D
D black heater B E
E white trigger+ trigger H
F gray trigger- trigger F
G blue J
H purple K
J red (thick) +28 V DC power A G
K black (thick) power A C
L red (thick) +28 V DC power B L
M black (thick) power B M

MS 3114H-14-19P A yellow
B orange
C blue
D purple
E red
F gray data-
G white data+
H black
J blue ? keyboard
K green ? keyboard
L yellow ? keyboard
M purple ? keyboard
N brown red
P gray green
R white blue
S orange
T yellow
U blue empty empty
V green empty empty

TNC pin video+ NTSC
shield video- NTSC

ret

ret

hsync vga
gnd-hsync vga

ret

ret

tx+ ethernet
tx- ethernet
rx+ ethernet
rx- ethernet
vcc usb

usb
usb

gnd usb

vga
vga
vga

gnd-vsync vga
vysnc vga

Figure C.2: XSC1 connector pinout.

203

co
m

p
u
te

r
h
d

d
aq

b
re

ak
 o

u
t

b
o
ar

d

et
h
er

n
et

u
sb

p
s/

2

co
n
tr

o
lle

r

vg
a-

n
ts

c

1
9
-p

in
co

n
n
ec

to
r

1
2
-p

in
co

n
n
ec

to
r

5
 V

d
cd

c

1
2
 V

d
cd

c

S
A
T
A

u
sb

b
ir
g
er

u
sb

7
?

A
D

5
9
0

A
D

5
9
0

A
D

5
9
0

A
D

5
9
0

8

2

h
ea

d
td

p
td

p

fi
re

w
ir
e

fi
re

w
ir
e

vg
a

tn
c

rc
a

tn
c

le
n
s

h
ea

te
r

b
an

g
b
an

g

w
in

d
o
w

h
ea

te
r

w
in

d
o
w

h
ea

te
r

te
rm

in
al

b
lo

ck

lit
tl
e

te
rm

in
al

b
lo

ck

lit
tl
e

te
rm

in
al

b
lo

ck

2

lit
tl
e

te
rm

in
al

b
lo

ck

F
ig

u
re

C
.3

:
B

lo
ck

w
ir

in
g

d
ia

gr
am

of
X

S
C

1.

204

F
ig

u
re

C
.4

:
X

S
C

1
H

ea
te

r
W

ir
in

g
D

ia
gr

am
.

(L
ef

t)
B

lo
ck

d
ia

gr
am

of
th

e
co

m
p

on
en

ts
in

th
e

h
ea

ti
n
g

sy
st

em
.

T
h
er

e
ar

e
si

x
10

W
h
ea

te
rs

:
tw

o
on

th
e

ve
ss

el
w

in
d
ow

,
an

d
fo

u
r

on
th

e
le

n
s.

T
h
ey

ar
e

ac
ti

va
te

d
b
y

ei
th

er
so

ft
w

ar
e

co
n
tr

ol
(p

os
it

iv
e

li
n
e

A
)

or
b
an

g-
b
an

g
co

n
tr

ol
(p

os
it

iv
e

li
n
e

C
),

im
p
le

m
en

te
d

in
p
ar

al
le

l
so

as
to

ac
t

as
a

lo
gi

ca
l

O
R

.
(C

en
te

r)
W

ir
in

g
co

n
fi
gu

ra
ti

on
on

th
e

h
ea

te
r

te
rm

in
al

b
lo

ck
.

(R
ig

h
t)

P
in

ou
t

of
th

e
tw

o
p

ow
er

li
n
es

in
th

e
12

-p
in

ca
b
le

.

205

Appendix D

Leap IO Management Loading

Parameters

The LEAP I/O (input/output) management library discussed in Section 9.3.2 provides a

Params class that can be instantiated and customized for specifying which data to load and

how to load it. The full list of customizable parameters is listed and explained here (taken

from a comment string in the Params module):

MANDATORY VARIABLES: path to data

@ data_path (str): /path/to/data. This should either lead to

* a leap_aligned directory containing all the segments or

* a seth_aligned directory containing all the segments or

* a flight_base directory with the following structure:

acs/

acs [link to acs vector base]

pointing [link to latest pointing release]

timing [link to timing release for acs/pointing]

bolo/

bolo [link to bolo vector base]

timing [link to timing release for bolo]

hwp/

hwp [link to hwp vector base]

timing [link to timing release for hwp]

ss/

ss [link to ss vector base]

timing [link to timing release for ss]

206

TIME SELECTION: Method 1:

@ segment_list (list): list of segments you want to load. If None, all

segments are loaded

@ time_range (list): beginning and end time (etime) for loading the data.

this range will apply to all datasets (acs, hwp, bolo, ss)

@ frame_range[dataset_name] (list): [start, end]: frames to load for a

particular dataset. this parameter cannot be specified if

time_range is specified also. dataset_name can ONLY be

in ["acs", "bolo", "hwp", "ss"]

Note: you can specify time_range OR frame_range, not both

TIME SELECTION: Method 2: specify one of the following:

@ segment_and_time_list (dict): dictionnary with desired segments as keys,

and etime list for each segment.

Ex: segment_and_time_list =

{"2012-12-31--13-17-57":[[etime1, etime2],[etime3, etime4]],

"2013-01-06--18-21-48:[[etime5, etim6]]}

@ segment_and_frame_list (dict): dictionnary with desired segments as keys,

and frame_range dictionnary for each segment. Ex:

segment_and_frame_list =

{"2012-12-31--13-17-57": {"acs": [[0, 100], [200, 400]],

"bolo":[[0, 20]]}}

segment_and_frame_list[segment] is a dictionnary with

possible dataset_name that can ONLY be

in ["acs", "bolo", "hwp", "ss"]

CHANNEL SELECTION

@ channels[dataset_name] (list): list of all the channel names you want to

load for a particular dataset. this includes usual channels,

time channels and flags.

@ bolo_names (list): list of the bolos you want to load. Ex: ["64-1-3"]

@ bolo_load_signals (bool): when bolo_datset.load() is called

LESS COMMON VARIABLES

@ progress_indicator_enabled (bool): do you want to see a progress

indicator as you are iterating through segment?

@ progress_indicator_allow_printing (bool): progress_indicator output

includes line feeds to allow for printing in between

status lines

@ interpolate_acs (bool): when loading bolo_dataset, do you want to load

the acs channels, interpolate to the bolo rate, as

bolo_dataset.acs? True by default.

@ interpolate_hwp (bool): same as for acs. False by default.

207

@ interpolate_ss (bool): same as for acs

RARE VARIABLES

@ print_frames_from_time_range (bool): print the frames loaded for a given

time range

@ xsc_solutions_path (str): /path/to/xsc/solution/txtfile

@ bolo_delay (float): time in seconds the bolometer signal should be

delayed compared to acs/poinitng data

@ rollover (bool): do you want the bolo signal to be unwrapped

@ galactic_xsc_pointing (bool): generate galactic lon/lat for pointing

dataset from pointing.channels ra/dec

@ print_warnings (bool)

208

	List of Figures
	List of Tables
	CMB Polarization Science
	CDM - The Standard Cosmological Model
	Cosmological Inflation
	The Cosmic Microwave Background
	Temperature Anisotropies
	Polarization Anisotropies

	EBEX Overview
	Science Goals
	Observation Strategy
	Instrument
	Gondola and Attitude Control
	Optics and Receiver
	Polarimetry
	Detectors and Readout
	Telemetry
	Power
	Thermal

	Attitude Control System
	Introduction
	Coordinate Systems
	Celestial Coordinate Systems
	Roll Angle
	Fair Measure Coordinates

	Pointing Requirements
	Real-Time
	Post-Flight

	Sensors
	Gyroscopes
	Star Cameras
	Coarse Sensors

	Control Algorithms
	Attitude Determination Loop
	Scan Control Loop
	Low Level Control Loops

	Star Cameras
	Introduction
	Star Camera 1
	Design
	Design Principles
	Construction
	Thermal Consideration

	Optical Baffles
	Pre-Flight Tests and Predictions
	Sensitivity
	Solution Uncertainty
	Vignetting
	Disk Space
	Pointing Offsets

	EBEX 2012 Performance

	Star Camera Software, ``STARS''
	STARS Design Requirements
	STARS Design Principles and Architecture
	Architecture
	Standard Operation
	Shared Memory
	Settings Files
	Testing

	STARS Components
	Solving
	Solving - Statistics
	Solving - Source Finding
	Solving - Pattern Matching
	Star Catalog
	Displaying
	Imaging
	Networking

	STARS - Successful In-Flight Performance

	Real-Time Sky Maps with ``QuickLook''
	Description
	Back-End Server with Naive Map Maker
	Quicklook User Interface with Google Maps
	Map Display
	User Options

	Testing
	In-Flight Performance

	2012 Antarctic Science Flight
	Flight Details
	Data Extraction

	Data Structures for Post-Flight Analysis
	Introduction
	Merging Data from Redundant Flight Computers
	Aligning Dirfiles
	Resolving Conflicts

	Base Data Structures
	Derived Data Structures

	The ``LEAP'' Software Framework
	Terminology
	Overview
	Libraries
	Parent App
	IO Management
	Other Libraries

	Resources

	Data Analysis
	Overview
	Selected Pipeline Stages
	Flight Base Creation
	Star Camera Solving
	Pointing Reconstruction
	Map Making

	Preliminary Results and Next Steps

	Polar Mesospheric Clouds
	Data Set Characterization
	Feature Tracking and Characterization
	Projection Onto the Cloud Layer
	Preliminary Results

	Bibliography
	Appendix Gyro Orthogonalization Results
	Appendix Star Camera Assembly Procedure
	Appendix Star Camera 1 Electrical Documentation
	Appendix Leap IO Management Loading Parameters

