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ABSTRACT

Adaptive Quantification and Subtyping of

Pulmonary Emphysema on Computed Tomography

Yrjö Häme

Pulmonary emphysema contributes to the chronic airflow limitation characteristic

of chronic obstructive pulmonary disease (COPD), which is a leading cause of

morbidity and mortality worldwide. Computed tomography (CT) has enabled in

vivo assessment of pulmonary emphysema at the macroscopic level, and is commonly

used to identify and assess the extent of the disease.

During the past decade, the availability of CT imaging data has increased rapidly,

while the image quality has continued to improve. High-resolution CT is extremely

valuable both for patient diagnosis and for studying diseases at the population level.

However, visual assessment of these large data sets is subjective, inefficient, and

expensive. This has increased the demand for objective, automatic, and reproducible

image analysis methods.

For the assessment of pulmonary emphysema on CT, computational models usually

aim either to give a measure of the extent of the disease, or to categorize the

emphysema subtypes apparent in a scan. The standard methods for quantitating

emphysema extent are widely used, but they remain sensitive to changes in imaging

protocols and patient inspiration level. For computational subtyping of emphysema,

the methods remain at a developmental stage, and one of the main challenges is

the lack of reliable label data. Furthermore, the classic emphysema subtypes were

defined on autopsy before the availability of CT and could be considered outdated.

There is also no consensus on how to match the subtypes on autopsy to the varying

emphysema patterns present on CT.



This work presents two methodological improvements for analyzing emphysema on

CT. For the assessment of emphysema extent, a novel probabilistic approach is intro-

duced and evaluated on a longitudinal data set with varying imaging protocols. The

presented model is shown to improve significantly compared to standard methods,

particularly at the presence of differing noise levels. The approach is also applied

on quantifying emphysema on a large data set of cardiac CT scans, and is shown to

improve the prediction of emphysema extent on subsequent full-lung CT scans.

The second major contribution of this work applies unsupervised learning to recog-

nizing patterns of emphysema on CT. Instead of trying to reproduce the classic

subtypes, the novel approach aims to capture the most dominant variations of lung

structure pertaining to emphysema. While removing the reliance on visually assig-

ned labels, the learned patterns are shown to represent different manifestations of

emphysema with distinct appearances and regular spatial distributions. The clinical

significance of the patterns is also demonstrated, along with high-level performance

in the application of content-based image retrieval.

The contributions of this work advance the analysis of emphysema on CT by applying

novel machine learning approaches to increase the value of the available imaging

data. Probabilistic methods improve from the crude standard methods that are

currently used to quantitate emphysema, and the value of learning disease pat-

terns directly from image data is demonstrated. The common framework relying on

replicating visually assigned labels of outdated subtypes has not achieved widespread

acceptance. The methodology presented in this work may have a substantial impact

on how emphysema subtypes on CT are recognized and defined in the future.
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Chapter 1

Introduction

1.1 Pulmonary emphysema

Emphysema is defined as a condition of the lung characterized by abnormal, perma-

nent enlargement of the air spaces distal to the terminal bronchiole, accompanied by

destruction of their walls (Fletcher and Pride, 1984; Thurlbeck and Müller, 1994).

Emphysematous lung destruction decreases the elastic recoil force that drives air

out of the lung, causing a reduction in the maximum expiratory flow (Hogg, 2004).

A mixture of emphysema and small airways disease contributes to chronic airflow

limitation, characteristic of chronic obstructive pulmonary disease (COPD) (Mets

et al., 2012; GOLD, 2014). COPD is a leading cause of morbidity and mortality

worldwide (Pauwels et al., 2001; GOLD, 2014), and together with emphysema, they

are currently the third leading cause of death in the United States, affecting an

estimated 15 million people (Hoyert and Xu, 2012; CDC, 2012).

A major contributor to emphysema is the inhalation of particles from smoking or
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other sources, causing an inflammatory response in the lungs (Vestbo et al., 2013).

A chronic inflammatory response may then induce parenchymal tissue destruction,

although the exact mechanism of the process remains unknown. Recent research

has associated changes in microvascular blood flow dynamics with structural and

physiological changes leading to emphysema (Hoffman et al., 2006). At autopsy,

pulmonary emphysema occurs in 30−50% of cigarette smokers, 8% of cigar smokers

and 3% of never-smokers (Thurlbeck, 1963; Auerbach et al., 1972; Leopold and

Gough, 1957). Genetics have been shown to affect the development of the disease.

Specifically, α1-antitrypsin deficiency has been associated with younger patients (<

45 yr) and lower lobe emphysema.

Since alveolar wall destruction is irreversible, emphysema cannot be cured. However,

its progression can be slowed down. Also, for patients with COPD (of which many

have emphysema), there are several ways to reduce symptoms. The therapeutic

options include smoking cessation, pharmacological therapy, rehabilitation, oxygen

therapy, ventilatory support, and surgical treatments. An example of a surgical

treatment is lung volume reduction surgery, where parts of the lung are resected to

reduce hyperinflation. This operation has been shown to improve survival in some

patients with severe upper-lobe emphysema, but it is not suitable for all types of

emphysema. (Vestbo et al., 2013)

1.2 Pulmonary function testing and COPD

The irreversible airflow limitation defining COPD is measured with spirometric pul-

monary function testing (PFT). The airflow limitation can be caused by either

increased resistance of the small conducting airways, increased compliance as a re-
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sult of emphysema, or both (Hogg, 2004). COPD is screened by measuring the

volume of air that can be expired in one second (FEV1), and its ratio to forced

vital capacity (FV C). FV C is measured as the total volume of air forcibly exhaled

from maximal inspiration. COPD is defined to be present when post-bronchodilator

FEV1/FV C < 0.70 (GOLD, 2014).

As suggested by a global initiative on obstructive lung disease (GOLD), the sever-

ity of airflow limitation in COPD is commonly assessed using threshold values on

FEV1 predicted (FEV1 normalized by average FEV1 in a corresponding population)

(GOLD, 2014). The thresholds define four grades, ranging from mild (GOLD 1) to

very severe COPD (GOLD 4). The risks of exacerbations, hospitalization and death

at different GOLD grades are well-known, but at the level of an individual patient,

FEV1 is an unreliable marker of COPD symptoms.

Even though emphysema and COPD have significant overlap, the overlap is smaller

than what has been thought previously (Manichaikul et al., 2014). There is extensive

research showing that COPD occurs in patients with no emphysema on computed

tomography (CT), and that emphysema can be present in patients with no COPD

(Hogg et al., 1994; Hogg, 2004; Omori et al., 2006; Hoffman et al., 2006).

Diagnosis of emphysema by PFT is imprecise, as the correlation of emphysema

on CT with lung function is only moderate, particularly in mild or moderate em-

physema (Hayhurst et al., 1984; Nakano et al., 2000; Hoesein et al., 2011; D’Anna

et al., 2011). Due to the varying levels of overlap between emphysema and COPD,

measurements of lung physiology cannot usually distinguish abnormalties caused by

emphysema from other causes of COPD (Hoffman et al., 2006).
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1.3. Computed tomography for the assessment of pulmonary emphysema

1.3 Computed tomography for the assessment of

pulmonary emphysema

The development of CT imaging provides clinicians with high-quality information

of the lung parenchyma and related pathologies. Since the introduction of the first

commercially available systems in the 1980s, CT has enabled in vivo assessment

of emphysema at the macroscopic level, and it is commonly used to identify and

quantify the extent of the disease (Hoffman et al., 2006; Mets et al., 2012).

Modern multidetector-row CT (MDCT) scanners enable fast imaging (< 12 s), so

that the entire lungs can be imaged in a single breath-hold (Hoffman et al., 2006).

However, the vast amounts of data in CT scans are currently under-utilized, as

manual reading of scans is expensive, labor-intensive, and has low reproducibility

(Barr et al., 2012).

Due to the destruction of alveolar walls leading to air trapping, emphysema appears

as lowered attenuation values in CT scans. In addition to the quantification of

emphysema extent, the appearance patterns and their spatial distributions provide

information on the subtypes of the disease.

Quantitative CT analysis has emerged as a natural solution to provide objective and

reproducible measures in an efficient manner (Hoffman et al., 2006). Quantitative

measures have been found to be preferable to visual scores (Cavigli et al., 2009),

but their downside is the sensitivity to the applied imaging protocol (Mets et al.,

2012). Since CT technology is rapidly evolving, there is no consensus on the optimal

imaging protocols, causing a lack of agreement between studies for the quantitative

measures of lung structure (Mets et al., 2012). However, the following guidelines
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have been proposed for the optimal quantitative assessment of the lungs on CT (see

detailed descriptions in Newell Jr. et al. (2013)):

• Scan at a known lung volume. For emphysema assessment, typically scans

at total lung capacity (TLC) are used, as they have been shown to be more

accurate than expiratory scans for emphysema quantification (Gevenois et al.,

1996).

• Use a short single breath-hold.

• Acquire a 3D scan with sub-millimeter near-isotropic resolution.

• Use an optimal reconstruction kernel. The image reconstruction is typically

performed with weighted filtered backprojection, but the reconstruction ker-

nels vary by manufacturer. For quantitative assessment, a kernel without

smoothing or edge enhancement is desired, and all the major CT manufactur-

ers currently provide such a kernel (e.g. Standard kernel for GE, and B35f

kernel for Siemens).

• Use the lowest possible radiation dose that meets the requirements of a given

study. The tube current exposure time products vary typically from 40 mAs in

low-dose scanning to 200 mAs in moderate-dose scans.

• The maximum voltage applied to the X-ray tube in lung CT is typically

120 keV.

• Other important considerations include scanner calibration, patient position-

ing and suitable field-of-view.

Since exposure to radiation is a major downside of CT scanning, it has motivated
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research on finding the minimum sufficient radiation dose for follow-up assessment

of emphysema (Mishima et al., 1999b).

1.4 Subtypes of emphysema

Pulmonary emphysema has been categorized at autopsy into three major subtypes,

which may be present simultaneously: centrilobular emphysema (CLE), panlobular

emphysema (PLE) (also panacinar emphysema), and paraseptal emphysema (PSE)

(Hogg, 2004; Smith et al., 2014). However, no universally accepted definitions for

these subtypes exist currently. The following descriptions have been used (see Hogg

(2004); Smith et al. (2014) and references therein):

• CLE is commonly described as abnormal enlargement of airspaces centered

on the respiratory bronchiole with coalescence of destroyed lobules in severe

cases. CLE is most often found in the upper lung lobes.

• PLE is often characterized as abnormal dilation distributed throughout the

pulmonary lobule, and is associated with α1 antitrypsin deficiency. PLE is

more common in the lower lobes than elsewhere in the lung.

• PSE refers to emphysematous change adjacent to a pleural surface.

Smith et al. (2014) performed a study where emphysema subtypes were assessed

visually on CT by multiple readers. The study found that on patients with any type

of emphysema, 57% had multiple subtypes present, with CLE and PSE appearing

together most frequently. Compared to controls, patients with CLE and PLE had

increased dyspnea, reduced walk distance, greater hyperinflation and lower diffusing
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capacity, but patients with PSE were similar to controls. CLE was associated with

an extensive smoking history, but the other two subtypes were not. Similarly, only

PLE was associated with reduced body mass index. In addition, 17% of smokers

without COPD on spirometry had emphysema.

Since the three subtypes have differing risk factors and clinical manifestations (Shapiro,

2000; Pauwels et al., 2001; Dahl et al., 2002), they therefore likely represent different

diseases. However, these subtypes were defined before availability of CT scanning

and pathologists have disagreed even on the existence of such pure subtypes (An-

derson et al., 1964).

1.5 Quantitation of emphysema extent

1.5.1 Standard approaches

An early study of 11 patients by Hayhurst et al. (1984) reported that patients with

emphysema on pathology had significantly more low density values on CT than the

group of patients without emphysema. This finding inspired the development of

objective and reproducible emphysema quantitation on CT.

The most widely used measure for assessing emphysema severity is obtained using

a densitometric measure, called percent emphysema (%emph) (also referred to as

emphysema index or percent low attenuation area), which quantifies the proportion

of voxels with intensity values below a fixed threshold within the lung region.

The %emph measure originated from the work of Müller et al. (1988), who used

a standard software in the GE 9800 CT/T scanner to highlight voxels at different
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density ranges. The software was called the density mask, and the produced density

masks (or emphysema masks) represented a binary labeling of voxels into emphy-

sematous and normal parenchyma. The study compared the relative area of the

density masks with pathological scores of emphysema. The study was performed

on 28 patients and concluded that measuring emphysema with density masks cor-

related with pathological findings at the same level as systematic visual assessment

averaged over four observations by two readers. The main contributions of their

approach were the removal of intra- and interobserver variability, efficiency, and ob-

jectivity. Still, the authors conceded the shortcomings of the approach related to

the sources of variation in CT intensity distributions.

The %emph measure is currently used commonly in clinical studies (Gevenois et al.,

1995; Galbán et al., 2012), and it has been shown to predict mortality in COPD

(Zulueta et al. 2012). However, there is no consensus on the intensity threshold

value that should be used (Mets et al., 2012). The threshold values typically range

from −950 to −910 Hounsfield Units (HU) (see review by Hoffman et al. (2006)).

In addition to enabling systematic quantitation of emphysema extent, density masks

also provide a way of assessing the spatial distribution of emphysema and its pro-

gression in longitudinal data sets. Density mask morphology has been used for

identifying emphysema subtypes (e.g. Blechschmidt et al. (2001), Mishima et al.

(1999a), Achenbach et al. (2004)).

Another commonly used measure, the percentile density (PD), was introduced by

Gould et al. (1988). PD quantifies a predefined percentile of the intensity distri-

bution within the lung area, and this measure has been found to perform well in

longitudinal studies (Parr et al., 2006; Newell et al., 2004).
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1.5.2 Challenges with standard approaches and proposed

alternatives

Overview

Several factors cause variations in the intensity distributions present in lung CT

images, observed as different levels of noise, and variable intensity levels and distri-

bution shapes. The influencing factors include the image reconstruction algorithm,

slice thickness, scanner type and calibration, radiation dose, gravity and inspiration

level (Mets et al., 2012). The variability strongly affects the standard %emph mea-

sure (Boedeker et al., 2004; Gierada et al., 2007; Yuan et al., 2007). This complicates

the comparison of emphysema scores between studies, in longitudinal data sets, and

on clinical scans with no standard imaging protocols.

Emphysema quantification methods that are robust to variations in image intensity

distributions are required for two purposes: (1) analysis of large cohorts of patients

from multiple databases for population-wide analysis of emphysema, and (2) longi-

tudinal analysis of emphysema progression, which has been recognized as an area

where more research is currently required (Mets et al., 2012).

Adaptive smoothing for normalizing low-dose CT density measurements

Adaptive smoothing for normalization of image data prior to thresholding has been

proposed as a solution for images with different noise levels (Schilham et al., 2006).

Relatively low intensity variations in local regions are assumed to represent mostly

imaging noise, while larger local intensity variations are assumed to represent edges

of structures. Using a local noise map, the smoothing is performed with a kernel
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1.5. Quantitation of emphysema extent

that aims to remove the imaging noise while retaining edges. The study showed

promise in obtaining similar %emph values between low-dose and regular CT scans.

This approach, however, still requires thresholding after the filtering operation, and

may be susceptible to variations in intensity levels.

Normalization of emphysema scores

Recent studies have proposed solutions for the normalization of %emph measures

to account for differences caused by changes in reconstruction algorithms and slice

thickness (Ceresa et al., 2011; Bartel et al., 2011). This requires learning a cor-

rection function by fitting a polynomial to the %emph distributions acquired with

differing imaging protocols. The training data required by such an approach is easy

to generate to equate scores between different image reconstructions. However, such

data is not as easily available when equating scores between scanners or studies,

since the learning procedure requires pairs of scans where the extent of emphysema

is equal. Due to concerns over X-ray radiation, repeated scans on multiple scanners

are not commonly performed.

Correction of %emph based on lung volume has also been recommended (Stoel et al.,

2008; Shaker et al., 2004) to adjust for variations in inspiration level.

These approaches have a common shortcoming in that they only consider a part of

the sources of variation. Also, since they only correct the final %emph value, they

do not provide equivalent emphysema masks between scans, which may be useful

when assessing the spatial distribution of emphysema.
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1.5. Quantitation of emphysema extent

Texture-based quantification of emphysema

Image texture analysis has been applied for supervised classification of emphysema

(Sørensen et al., 2012; Xu et al., 2006; Prasad et al., 2009). However, the texture-

based approaches to quantify emphysema have not been shown to be robust to

changes in imaging protocols.

The approach by Xu et al. (2006) requires manually labeled data to train the classi-

fier, limiting the objectivity of the resulting system (see further discussion in Section

1.6).

The more recent, purely data-driven model for recognition of COPD on CT by

Sørensen et al. (2012) aimed to remove the reliance on manually assigned labels.

Regions-of-interest (ROIs) extracted from each lung CT scan were given labels based

on the pulmonary function test (PFT) results, acquired at the same time point as

the CT scan. The classification model was trained on 400 CT scans and evaluated on

200 scans. The results showed that the model is superior to density-based measures

in predicting PFT results, although the accuracy was still limited. Even then, the

approach may not be effective for emphysema quantification, as PFT measurements

are known to be poor estimators of emphysema severity. Also, the overall usefulness

of the approach may be limited, as PFT measurements are cheap and easy to acquire,

whereas CT scans are not, and therefore there is no significant demand to predict

PFT measurements from CT.

Using a texture analysis framework originally proposed by Lee et al. (2007), Park

et al. (2008) classified texture patches into four classes: normal parenchyma, bron-

chiolitis obliterans (inflammatory obstruction of the small airways, bronchioles),

mild emphysema, and severe emphysema. The results showed that a multiple linear
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regression model with the texture variables slightly improved correlation with PFT

measurements compared to standard density-based measurements.

1.6 Quantitative subtyping of emphysema

1.6.1 Current methods

Several supervised learning approaches have been proposed to recognize emphysema

subtypes by replicating manually assigned texture labels (Ginsburg et al., 2012;

Sørensen et al., 2008; Castaldi et al., 2013; Sørensen et al., 2010; Park et al., 2008;

Gangeh et al., 2010) (also the work by Xu et al. (2006) is similar but the classifica-

tion focused more on the severity of emphysema rather than emphysema subtypes).

These approaches rely on ground truth labels of small image patches provided by

visual reads by radiologists. The studies typically include a few hundred labeled

samples for feature selection, training a classifier and testing the accuracy of the

automatic labeling.

A partially unsupervised approach has been proposed by Dy et al. (2003). Also their

methodology relied on supervised learning to classify between subtypes of emphy-

sema and manually annotated regions, and therefore it shares the disadvantages of

the fully supervised approaches.

In Xu et al. (2006), the aim was to learn visually assigned labels of emphysema

severity for patients with varying levels of COPD. Also normal samples were classi-

fied between smokers and non-smokers. The data set included approximately 400 3D

texture patches for each class, but only patches with agreement between radiologists

were included, potentially disregarding difficult cases. The patches were represented
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with 24 features. The first-order features consisted of the intensity distribution mea-

sures: mean, variance, kurtosis, entropy, proportion of voxels below −910 HU and

above −864 HU (assumed as a threshold for normal parenchyma), the ratio of these

two proportions, and finally the distribution mode. Additional features included

run-length and co-occurrence matrix measurements, and fractal features. The best

set of features was learned using a training set, and a naive Bayes classifier was

subsequently trained.

Castaldi et al. (2013) used soft histograms of intensity values to represent 2D patches

of normal tissue and the three emphysema subtypes. CLE was further divided into

3 levels of severity, bringing the total number of classes to 6. A kNN classifier was

trained using 1337 image patches extracted from 267 CT scans. The method per-

formed efficiently given the simple feature extraction stage, and the study showed

clinical significance of the texture classification on 9313 CT scans of smokers. How-

ever, the classification accuracy within the training set was limited (mean precision

was 0.66 in a leave-one-out test), possibly limiting the conclusions that can be made

regarding the clinical significance of the automatically classified subtypes. Further

algorithmic development of the feature learning approach seems necessary.

In their work, Sørensen and colleagues utilized local binary patterns to classify 2D

patches of lung CT scans (Sørensen et al. (2008), Sørensen et al. (2010)). Only

three classes were used, corresponding to normal parenchyma, CLE and PSE. PLE

was not included due to the fact that it was under-represented in the data set.

The approach received high accuracy for the 168 image patches used for leave-one-

subject-out evaluation.

Also Ginsburg et al. (2012) classified image patches in three classes. In their ap-

plication, the aim was to discriminate between normal parenchyma, CLE, and cen-

13



1.6. Quantitative subtyping of emphysema

trilobular nodularity, which is colloquially called smoker’s lung. Smoker’s lung is

not emphysematous but is thought to be an early manifestation of smoking-related

lung injury. The approach used features extracted on gray-level run-length and gap-

length matrices. The classification accuracy was decent in the training set, but was

only modest for the test data.

Dy et al. (2003) studied unsupervised feature selection to identify clusters within

emphysema subtypes. The overall methodology was based on two stages, where

the first stage includes a supervised classifier to discriminate between emphysema

subtypes, and the second stage used clustering with simultaneous feature selection

to identify groups of patients within the subtype categories. The data was sampled

from manually annotated pathological regions.

There is also an extensive body of closely related work by A. Depeursinge and

colleagues on supervised texture classification for discriminating between interstitial

lung diseases, e.g. Depeursinge et al. (2011), Depeursinge et al. (2012a). In these

studies, all types of emphysema are included in a single class. The other classes

are ground glass, fibrosis, micronodules, and healthy parenchyma. The authors also

have a sizable public data set available, see Depeursinge et al. (2012b) for details.

1.6.2 Challenges with current approaches

The current approaches relying on visually assessed labels for ground truth have

common shortcomings. They require large numbers of training samples that are ex-

pensive to produce and may be limited in accuracy and reproducibility, as evidenced

by considerable disagreement in visual assessment between clinicians (Barr et al.,

2012; Smith et al., 2014). The accuracy of the visually assigned labels comes to
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question particularly in samples that seem to represent a mixture of the predefined

classes. Furthermore, the labels are usually specific to a data set, and transfer-

ring them to new CT data with varying imaging protocols can be challenging, as

the intensity distributions and textural appearances are strongly dependent on the

applied protocol.

In addition to the challenges with assigning class labels to samples, supervised learn-

ing cannot be used to discover novel subtypes that may be apparent on CT, as

the approaches are restricted to existing emphysema subtype definitions defined on

pathology. Therefore, large amounts of imaging data acquired with each thoracic CT

are potentially wasted. As large CT data sets are becoming more widely available,

it would be important to have the image analysis capabilities available for learning

the different manifestations of emphysema on CT.

1.7 Aims and impact

1.7.1 Aims

Manual interpretation of emphysema on CT is slow, labor-intensive, and has poor

reproducibility. Current automated image analysis methods for emphysema quan-

tification and subtyping are either crude or simply aim to reproduce manual findings.

The lack of dedicated image analysis methods causes the field to rely on measures

that lack robustness, and on subjective labels based on outdated definitions of the

subcategories of emphysema. These limitations hinder the advancement in diagnos-

ing and understanding emphysema, and the vast amounts of data available in CT

scans are currently under-utilized.
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This work presents novel methods enabling the exploitation of large image data sets

for the use of robust quantification and image-based subtyping of emphysema. For

a given CT scan, the goal is to provide a measure of emphysema extent independent

of the imaging protocol, and to categorize the type of emphysema based on image

texture, using representations learned from prior imaging data. The following aims

are defined:

• Aim 1: Develop an adaptive and robust method to measure emphysema ex-

tent from CT scans.

Challenge: To quantify emphysema from full-lung CT scans with a measure

that is robust with respect to changes in imaging protocol and moderate dif-

ferences in inspiration level.

Approach: This work presents a novel approach for the quantification of em-

physema that applies a probabilistic Hidden Markov Measure Field (HMMF)

model (Marroquin et al., 2003). The approach involves the parameterization

of the intensity distributions within the lung, and the HMMF model will be

used to produce a segmentation of emphysematous regions within the lung.

• Aim 2: Develop an algorithm for unsupervised learning of image texture pat-

terns for emphysema subtype discovery.

Challenge: To detect common emphysema texture patterns in lung CT scans

and to group them in an unsupervised manner.

Approach: Advances in unsupervised image texture analysis and machine

learning provide a framework for discovering common texture patterns asso-

ciated with emphysema on lung CT, in an objective way that does not rely

on traditional sub-categorizations. This work presents a novel approach for

the unsupervised learning of lung texture patterns (LTPs) by applying sparse

16



1.7. Aims and impact

sampling and clustering on lung CT scans. After the training process, an LTP

histogram can be extracted for any new CT scan, providing a characterization

of the parenchymal structure and changes related to emphysema, based solely

on image texture. By applying this method on large thoracic CT data sets,

the goal is to identify image-based emphysema subtypes, and to improve the

accuracy and reliability of detecting traditional emphysema subtypes, thereby

facilitating future studies of emphysema pathogenesis and management. As

manual labels are not required, the method can be applied on new data sets

at lower cost with improved efficiency.

• Aim 3: Apply the developed emphysema quantification method on a large

longitudinal data set of cardiac CT (CAC) scans.

Challenge: Cardiac CT scans used for assessing coronary calcium scores in-

clude approximately 2/3 of the lungs, excluding apical regions. This imaging

study is relatively common, and since large data sets of CAC scans are read-

ily available, there has been increased interest in collateral findings from the

available scans (Malagò et al., 2012). The CAC field-of-view is sufficiently sim-

ilar to full-lung scans, so that CAC-based %emph measures have been shown

to correlate well with full-lung CT %emph measures, but only when the CT

scanner type was the same for both scans (Hoffman et al., 2009). However,

due to differences compared to full-lung imaging protocols, the use of cardiac

CT scans for emphysema quantification remains limited.

Approach: The method developed in Aim 1 will be adapted for cardiac CT

scans and applied on a longitudinal data set of approximately 3,000 subjects

and 10,000 scans.
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1.7.2 Impact

A single CT scan includes up to 25 million voxels within the lung region. Even

crude image analysis methods provide plenty of information for the purposes of

emphysema quantification. However, more sophisticated approaches would help to

solve some of the current challenges, such as the requirement of keeping imaging

protocols fixed in order to obtain comparable emphysema measures. Image analysis

methods for robust quantification of emphysema and for unsupervised discovery of

image texture -based subtypes can improve the analysis of emphysema in several

ways:

• Providing robust and reliable measures of emphysema extent (Aim

1). A measure of emphysema extent that is robust to changes in imaging

protocols and scanner properties is needed for studying emphysema between

scans from different sites, and within studies that include longitudinal data.

In addition, a robust quantification method will enable measuring emphysema

reliably even when using low radiation doses. Robustness to inspiration level

will provide a better patient-specific measure.

• Unsupervised learning will be used to identify novel emphysema tex-

ture patterns that are indicative of symptoms and common between

subjects (Aim 2). With hundreds or thousands of CT scans, repeating

texture patterns can be learned to fully leverage the structural information

in the images. The recognition of emphysema texture patterns will provide

an objective image-based sub-categorization of the disease. Texture pattern

learning will enable image-based descriptors of emphysema that can be used

to identify similar cases and to group scans. The found texture patterns may
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have clinical significance and can therefore lead to more accurate diagnosis of

emphysema subtypes and advance the currently limited understanding of the

heterogeneity of disorders causing emphysema.

• Enabling accurate quantification of emphysema on cardiac CT scans

(Aim 3). While including plenty of data for lung analysis, CAC scans are

not routinely used for the purpose, partially due to the lack of suitable image

analysis methods. A robust quantification method improves the applicability

of CAC scans for lung analysis, and advances the usability of existing data

sets for studying emphysema progression. The performance and reliability of

the emphysema quantification method developed in Aim 1 will be evaluated

on a large data set of CAC scans.

• Enabling the extraction of high-quality information from CT scans

for emphysema diagnosis. Overall, the proposed work will advance the field

of image-based emphysema analysis by providing adaptivity to the quantifica-

tion process and by learning common texture patterns for a novel, image-based

subtyping of the disease.

The proposed work aims to significantly advance the currently available image analy-

sis methods for the diagnosis and study of emphysema on CT. Successful application

would potentially have a tremendous impact in the field, for a disease that affects

millions of people around the world.

19



1.8. Related publications

1.8 Related publications

Based on previous work on liver tumor segmentation (Häme and Pollari, 2012), the

proposed emphysema quantification approach was initially published in a prelimi-

nary form (Häme et al., 2013). This initial study demonstrated the ability of the

method to provide equal emphysema scores across image reconstructions. A subse-

quent study focused on the quality of the generated emphysema masks and compared

the performance to alternative approaches. These results will be included in a con-

tribution to the International Symposium on Biomedical Imaging 2015 (ISBI’15)

(Häme et al., 2015a). The largest study was published in IEEE Transactions on

Medical Imaging (Häme et al., 2014), where the method was applied on a longitu-

dinal data set. The contents of these studies are included in Chapter 3.

A manuscript on unsupervised learning of lung texture patterns presented in Chapter

6 has been submitted for review in August 2014. A shortened version of the study

will be included as a contribution at ISBI’15 (Häme et al., 2015b).
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Chapter 2

Image data and preprocessing

2.1 Available CT data

This work includes CT scans (full-lung CT and cardiac CT) and related clinical

measures from three studies: 1) the Emphysema and Cancer Action Project (EM-

CAP) (Mesia-Vela et al., 2008), 2) Multi-ethnic Study of Atherosclerosis (MESA)

(Bild et al., 2002) and 3) MESA COPD (Smith et al., 2014). The participants in

the studies and the imaging protocols used to acquire the CT scans are described

in the sections below. The subsequent Chapters describing the performed studies

include additional information that was specific to each experiment.

ITK-SNAP (Yushkevich et al., 2006) was used extensively during this work for

visualizing image data.
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2.1.1 EMCAP

The EMCAP study recruited smokers who enrolled into a lung cancer screening

program, the New York Early Lung Cancer Action Project (ELCAP) (Henschke

et al., 2006). Inclusion criteria were 10 or more pack years, age 60 and over and

willingness to undergo baseline and 1-year follow-up screening for lung cancer with

low-dose chest CT. Individuals with a history of cancer (other than non-melanoma

skin cancer) were excluded (Mesia-Vela et al., 2008).

All subjects underwent non-contrast, full-lung CT scanning at full inspiration, full

breath-hold on a Siemens Sensation 16 scanner, with 120 kVp, a current between

169 mA and 253 mA, and speed 0.5 s. The scans were reconstructed with one of

the following kernels: B31f (smooth), B46f, or B60 (sharp).

2.1.2 MESA

MESA is a large prospective cohort study including approximately 6800 men and

women in equal numbers as participants. The participants were recruited from

six US communities in 2000 − 2002. The participants were aged 45 − 84 years,

free of clinical cardiovascular disease and body mass < 300 lbs at baseline. Other

major exclusion criteria included a CT in the prior year and other serious medical

conditions. The cohort includes four racial/ethnic groups from six US communities.

Approximately 38 percent are White, 28 percent are African-American, 23 percent

are Hispanic, and 11 percent are Asian, predominantly of Chinese descent. More

details are available in Bild et al. (2002).

The MESA data set includes a longitudinal set of cardiac CT (CAC) scans, ac-
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quired between 2000 and 2012. In addition, full-lung scans were acquired for 3188

participants in 2010− 2012.

Cardiac CT scans acquired between 2000 and 2008 are used in this study. These

scans were acquired with either electron beam CT (EBCT) (Imatron C-150) or

multi-detector CT (MDCT) (GE LightSpeed Plus or Siemens S4+ Volume Zoom).

Scans were performed under a standardized protocol by designated, MESA-certified,

experienced radiology technologists under the supervision of the reading center co-

investigator. The protocol for Imatron C-150 was: 130 kVp, 630 mA, at 0.1 s. The

protocol for LightSpeed Plus was: 120 kVp, 320 − 400 mA (depending on patient

weight), at 0.33 s. The protocol for Volume Zoom was: 140 kVp, 139 − 174 mA

(depending on patient weight), at 0.36 s. Axial images were reconstructed with

an isotropic pixel size of 0.68 mm and a slice thickness of 2.5 (MDCT) or 3 mm

(EBCT). More details are available in Carr et al. (2005).

The full-lung scans were acquired with either a GE Lightspeed Pro 16, or a Siemens

Sensation 64 scanner. The protocol was 120 kVp, 75 mAs (GE) or 50 mAs (Siemens),

at 0.5 s speed. The slice thickness was 0.75 mm, with approximately isotropic voxel

size. (Hoffman et al., 2009)

2.1.3 MESA COPD

The MESA COPD data set includes subjects who are 50− 79 years old, with 10 or

more pack-year smoking history and who did not have clinical cardiovascular disease,

stage IIIb-V kidney disease, asthma prior to age 45 years, other lung disease, prior

lung resection, cancer, allergy to gadolinium, claustrophobia, metal in the body,

pregnancy or weight > 300 lbs (Smith et al., 2014). 48% of the participants had
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COPD, predominantly of mild-to-moderate severity. 127 of the participants were

recruited from EMCAP and the community, while the remaining 192 were recruited

from MESA.

Thoracic CT scans were acquired at full inspiration with either a GE LightSpeed

VCT 64 or a Siemens Sensation 64-slice scanner, at 120 kVp, 0.984 pitch, and speed of

0.5 s, with 200 mA for the EMCAP recruited patients, and 145− 270 mA according

to body mass index for the MESA recruited patients, following the SPIROMICS

inspiratory CT protocol (Couper et al., 2014). Images were reconstructed with the

Standard (lung) convolution kernel (GE) or the B35f kernel (Siemens).

The axial resolutions of the CT scans were within the range [0.58, 0.88] mm, and the

slice thickness was 0.625 mm. A more detailed description of the participants and

the imaging protocol is available in Smith et al. (2014). This protocol is the same

as the SPIROMICS/MESA Lung protocol (Sieren et al., 2011), except that the mA

was held fixed for the EMCAP recruited patients. The total number of CT scans is

321, of which 2 had excessive movement artifacts and were removed.

2.2 Preprocessing

For the MESA data set, lung and airway masks were available from the VIDA Apollo

software (VIDA Diagnostics, Inc., Coralville, IA, USA), for both cardiac CT and

full lung CT scans. The data set also included masks of axial thirds for the full lung

CT scans. Figure 2.1 displays an example of a CT scan from the MESA data set,

together with the corresponding VIDA Apollo mask.

In MESA COPD and EMCAP, lungs and large airways were segmented from the
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Figure 2.1 Example of a coronal slice of a full-lung CT scan from the MESA
data set (a), and the corresponding lung mask with airways separated and axial
thirds indicated by mask values (b).

background using an approach similar to (Hu et al., 2001), by applying an intensity

threshold of−400 HU and then locating the largest connected objects in the resulting

binary mask. Then, the trachea and some of the large airways were removed from

the lung mask by closed space dilation (Masutani et al., 1996).

The airway segmentation removed on average 0.9% (with standard deviation of

0.2%) of the initial mask volume. Since most of the volume of the airway segmen-

tation corresponded to the trachea, it is expected that any variability in the extent

of the removed airways would have had only a minor effect on the resulting image

analysis. In the experiments included in this work, all analysis for a given scan was

performed using a single lung mask.
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Chapter 3

Adaptive quantitation of emphysema

extent

3.1 Methods

3.1.1 Overview

In a probabilistic framework, the standard %emph measure can be considered as a

maximum likelihood classification of voxel intensity values into two classes. Even

though the likelihood functions are not defined, assigning a threshold value is equiv-

alent to defining the intensity level where the two likelihood functions intersect, with

the assumption that there is only one intersection. Thresholding at the intersection

value then minimizes the classification error for these likelihood functions. For

example, two normal distributions with equal standard deviations and respective

means at −1000 HU and −900 HU could be an implementation of %emph at

−950 HU. However, since CT intensity distributions have subject- and imaging
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protocol-specific variations, no single optimal threshold value for quantifying em-

physema has been found.

A Hidden Markov Measure Field (HMMF) model (Marroquin et al., 2003) for em-

physema segmentation and quantitation is presented here. The HMMF model adds

an intermediate continuous-valued labeling, called the measure field, to the standard

Markov Random Field (MRF) models (Geman and Geman, 1984; Besag, 1986).

MRF models have been used extensively for many problems in image analysis (see

Li (2009)), as they provide a convenient probabilistic framework for modeling local

interactions of image pixels and including prior spatial constraints to a segmentation

process.

The proposed HMMF model includes the following components intended to improve

the quantitation of emphysema over the standard %emph measure:

1. Likelihood functions are defined by modeling intensity distributions observed

in the data. This approach accounts for the variability in intensity distribution

shapes, caused by changes in imaging protocol, such as slice thickness, scanner

type and calibration, radiation dose, and reconstruction algorithm.

2. The locations of the likelihood functions are allowed to vary, to account for

patient- and scan-specific variations, due to differences in the inspiration level

and average parenchymal density.

3. An image voxel is assumed to belong more likely to the same class as its

neighboring voxels than to a different class. This assumption takes the image

structure into consideration, an aspect that is entirely ignored in standard

histogram-based emphysema measures. The aim is to reduce classification

errors due to overlapping likelihood functions, i.e. when there is a high level
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of uncertainty in the classification due to noise or poor contrast. Therefore,

this improvement also accounts for changes in imaging protocol.

The HMMF model for emphysema segmentation is presented below, with experi-

ments that demonstrate the performance of the model on scans reconstructed with

different kernels, and a large longitudinal data set of lung CT scans.

3.1.2 Description of the performed study

The longitudinal data set includes repeated full-lung scans among participants in

the Emphysema and Cancer Action Project (EMCAP) (Mesia-Vela et al., 2008)

who were later recruited into the Multi-Ethnic Study of Atherosclerosis (MESA)

COPD Study (Smith et al., 2014). The full-lung scans in the two studies were

acquired with differing imaging protocols (see Chapter 2). The performance of the

HMMF emphysema quantification method was compared to the standard %emph at

−950 HU (%emph−950) and the 15th percentile density measure (denoted PD15). In

addition, %emph at −950 HU was evaluated with prior Gaussian filtering of images

(%emphG−950).

3.1.3 Hidden Markov measure field models for image

segmentation

Let I denote the input image, Ω represents the image domain, and r ∈ Ω is an

image voxel. The segmentation process involves two steps. The first step computes

a continuous-valued Markov random vector field q = [q1, ..., qk, ..., qn], where each qk

corresponds to the value for class k, and the total number of classes is n. The vector
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field q is constrained by
∑

k qk(r) = 1, qk ≥ 0, where qk(r) is the value at voxel r, for

class k. The second step then generates a binary label field f from q, so that each

value f(r) is an independent sample from q(r):

P (f |q) =
∏
r∈Ω

qf(r)(r). (3.1)

The vector field q represents an intermediate labeling and is assigned a prior distri-

bution that enforces spatial regularity

Pq(q) =
1

K
exp

[
−
∑
C

WC(q)

]
, (3.2)

where C are spatial cliques of a selected neighborhood system, WC are potential

functions associated with C, and K is a positive normalizing constant. The pre-

sented work involves 3D images, and therefore 3D pairwise cliques in 26-connected

neighborhoods were used.

The potential functions WC are designed to measure the smoothness of q within the

neighborhood defined by the clique C = [r1, r2], at voxels r1 and r2. In this work,

the potential Wr1r2 between two values q(r1) and q(r2) was defined as:

Wr1r2(q) =
λ

Z
exp

[
−d(r1, r2)2

2σ2
W

] n∑
k=1

(qk(r1)− qk(r2))2, (3.3)

where d(r1, r2) is the Euclidean distance between r1 and r2, which takes voxel spacing

into account, σW and λ are scalar constants, and Z is a normalization term that

scales the exponentials to sum to one within the 26-connected neighborhood Erj of

29



3.1. Methods

any voxel rj (the value is constant for a given image):

Z =
∑
ri∈Erj

exp
[
−d(ri, rj)

2/2σ2
W

]
. (3.4)

The parameter σW controls how fast the Markov weight decreases as a function of

voxel distance. This parameter is important for 3D neighborhoods in anisotropic

volumes where the slice thickness is large compared to the in-plane resolution.

The value of λ controls the weight of the Markovian prior with respect to the

likelihood function (described below), and should be adapted to the image content

and the targeted segmentation task. With noisy image data, individual likelihood

values are less reliable than for a less noisy case, and therefore the model should be

forced towards the prior by increasing the value of λ.

For the image segmentation process, the intensity distributions in an image I were

modeled with parametric distributions vθk (detailed in Section 3.1.6) where θk is

the mean of the distribution for class k. The values θk have to be estimated

simultaneously with q, and are assigned a prior distribution Pθ(θ), defined in Section

3.1.8.

For a given image I, the posterior distribution for q and the associated parameter

vector θ = [θ1, ..., θk, ..., θn] is obtained from the Bayes rule:

P (q, θ|I) =
1

R
P (I|q, θ)Pq(q)Pθ(θ), (3.5)

where R is a positive normalizing constant.

Following the derivation presented by Marroquin et al. (2003), the conditional
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distribution in (3.5) can be expressed as:

P (I|q, θ) =
∏
r∈Ω

P (I(r)|q, θ). (3.6)

To solve for P (I(r)|q, θ), first consider the joint distribution

P (I(r), f(r)|q, θ) = P (I(r)|f(r), q, θ)P (f(r)|q, θ), (3.7)

which yields the following when marginalizing over f(r):

P (I(r)|q, θ) =
n∑
k=1

P (I(r)|f(r) = k, q, θ)P (f(r) = k|q, θ). (3.8)

Due to the way the label field f is defined from q in (3.1), the following hold true:

P (I(r)|f(r) = k, q, θ) = P (I(r)|f(r) = k, θ) = vθk (3.9)

and

P (f(r) = k|q, θ) = qk(r). (3.10)

This way, the likelihood term P (I(r)|q, θ) can be expressed as:

P (I(r)|q, θ) =
n∑
k=1

vθk(r)qk(r). (3.11)

Combining (3.2), (3.5), (3.6), and (3.11), the respective maximum a posteriori

(MAP) estimates q∗ and θ∗ for q and θ are found by maximizing
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P (q, θ|I) = 1
KR

exp [−U(q, θ)], where

U(q, θ) = −
∑
r∈Ω

log

(
n∑
k=1

[vθk(r)qk(r)]

)
+
∑
C

WC(q)− log(Pθ(θ)). (3.12)

Since the normalization term KR is constant and positive, the MAP estimate is

found by minimizing U(q, θ).

The optimization can be efficiently performed with the gradient projection New-

tonian descent method. The method moves at each iteration to a direction d, so

that 5U · d < 0, with the proper constraints applied to values of q (see above).

After iteration t, the next value t+ h is obtained by the following, as formulated in

Marroquin et al. (2003):

θ(t+h) =
2

αh+ 1
θ(t) +

αh− 1

αh+ 1
θ(t−h) − h2

αh+ 1
5θ U(q(t), θ(t)) (3.13)

and

q̃ =
2

αh+ 1
q(t) +

αh− 1

αh+ 1
q(t−h) − h2

αh+ 1
5q U(q(t), θ(t)), (3.14)

with q(t+h) = 0 if q̃ < 0, q(t+h) = 1 if q̃ > 1, and q(t+h) = q̃ otherwise (note: this

formulation has been adapted to the 2-class case). The h parameter represents the

step size and α is a friction coefficient that affects the convergence speed. The

parameter values were empirically set to h = 1.0 and α = 1.5 in this work.

Finally in the second step of the segmentation, a binary label field f ∗ is found by

maximizing P (f |q = q∗, θ = θ∗, I), which is simply done by finding the mode of

each q∗(r) (see Marroquin et al. (2003)). For example, in a two-class case this would

yield: f ∗(r) = 1, if q∗1(r) > q∗2(r), and f ∗(r) = 2, otherwise.
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3.1.4 Application of the Hidden Markov measure field model

for CT image segmentation

In prior work, the HMMF model was successfully applied on liver tumor segmenta-

tion from CT images (Häme and Pollari, 2012). The tumor segmentation method

was designed to be semi-automatic, so that the user initially provided two points

across the tumor. The user input was then used to compute an automatic segmen-

tation of the tumor. A short description of this study is included here, and the

method is summarized in Fig. 3.1.

Based on the two user-defined coordinates, a region of interest (ROI) was defined

to establish an outer bound for the extent of the tumor. Further utilizing the

input information from the user, non-parametric observation likelihood functions

P (I|f = k) for the two classes k = 1, 2 were defined with the Parzen windows

method (Parzen, 1962). The Parzen windows estimate was obtained by sampling

along the edge of the ROI (k = 2) and from an ellipsoidal region at the center of

the ROI (k = 1).

As the observation likelihood functions were non-parametric, the equation (3.5) was

simplified to

P (q|I) =
1

R
P (I|q)Pq(q), (3.15)

where

P (I|q) =
∏
r∈Ω

∑
k=1

P (I(r)|f(r) = k)qk(r). (3.16)

The optimization was performed with the cost function similar to (3.12), but with

the difference that the prior term for θ was ignored.

The method was able to produce accurate segmentations on a public data set of liver
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(a) (b) (c)

(d) (e) (f)

Figure 3.1 Main stages of the HMMF-based tumor segmentation method: a) User
input and ROI construction, with the following markers: outer ring for ROI border,
ellipsoid for sampling area of tumor training data, x-markers for input points, small
circle for rc, b) observation likelihood function P (I|f = 1), c) observation likelihood
function P (I|f = 2), d) Markov measure field MAP estimate q∗1, e) axial slice
visualization of the segmentation result, f) 3D visualization of the segmentation
result.

tumors as well as an in-house data set of preoperative liver tumors. The contribution

remains a state-of-the-art approach in the field.
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3.1.5 Hidden Markov measure field model for segmentation

of emphysematous regions in lung CT

Given a lung CT volume, the lungs were segmented in the preprocessing step, as

described in Section 2.2. Within the delineated lung region, a two-class HMMF

model was used to automatically segment emphysematous regions from the healthy

parenchyma. The segmentation was subsequently used to measure the extent of

emphysema, by quantifying the proportional volume of emphysematous regions with

respect to the entire lungs. An example of the HMMF segmentation process is shown

in Fig. 3.2.

The application of the HMMF model to segment emphysematous regions requires

parameterizing intensity distributions within the lung to provide observation likeli-

hood functions. No manually labeled training data is needed, and the approach is

fully automatic when the parametric distributions have been defined.

The imaging protocol-dependent distribution parameter values were learned from

the CT image data, as explained in Section 3.1.8. Also, a spatial regularization

weight λ (3.3) needs to be defined. In this study, the value of λ was assigned based

on the image reconstruction algorithm, as explained in Section 3.1.8.

3.1.6 Parametric functions for intensity distribution

modeling

To obtain the likelihood values P (I|q, θ) in (3.11), we need to define the parametric

functions vθk that represent the intensity distributions for the two classes k = 1, 2.
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Figure 3.2 Example of the HMMF emphysema segmentation process with corre-
sponding coronal views of: (a) original CT data in the range [−1024,−700] HU, (b)
segmented lung region, (c) continuous-valued MAP estimate of the Markov measure
field q1, which represents the emphysema class, and (d) final binary segmentation
result f , with red corresponding to the emphysema class, found by maximizing
P (f |q = q∗, θ = θ∗, I), where q∗ and θ∗ represent respective MAP estimates of q
and θ, given image I.

36



3.1. Methods

Ideally, these parametric distributions would have the same shape as the intensity

distribution histograms for the two classes in the image data.

The intensity distributions within the lung were parameterized with skew-normal

distributions:

vθk ≡ p(zk, αk),

where αk is a skew parameter. The auxiliary variable zk is defined as:

zk =
I(r)− θk

σk
,

where θk and σk represent the distribution location and scale, respectively.

The probability density function (pdf) for class k is defined as (Azzalini, 1985):

p(zk, αk) = 2φ(zk)Φ(αkzk), (3.17)

where φ and Φ are the standard normal density and distribution function, respec-

tively:

φ(z) =
1√
2π

exp

[
−z

2

2

]
and

Φ(z) =
1

2

[
1 + erf

(
z√
2

)]
.

The notation erf refers to the error function:

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

The values for the parameters αk and σk were estimated from training data. To make
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the model adaptive, as explained in Section 3.1.5, the parameter θk was allowed to

vary for each individual image, while controlled by Pθ(θ), as in (3.12).

3.1.7 Database of CT scans

The evaluation data set consisted of 365 inspiratory chest CT scans from 87 subjects.

The scans were collected in two different studies: in the EMCAP study (Mesia-Vela

et al., 2008) (see Section 2.1.1 for CT study description), between 2004 − 2009,

and subsequently in the MESA COPD study (see Section 2.1.3) (Thomashow et al.,

2013), between 2009−2011. The number of scans for each year is listed in Table 3.1.

From all the available scans in the EMCAP study, we included all full-lung scans

with a slice thickness of 0.75 mm. The EMCAP data in this study included 1 − 5

scans per patient, with at least 12 months between repeated scans. In the subsequent

MESA COPD study, a single scan was acquired for each subject, bringing the total

to 2 to 6 scans per subject.

Of the total 278 scans from EMCAP in the evaluation data set, 259 were recon-

structed with the B60f (sharp) convolution kernel, and 19 with the B31f (smooth)

kernel.

In addition to the evaluation data set, a parameter training set included 44 CT scans

of 22 subjects from the EMCAP study. The 44 scans were acquired by reconstructing

each of the 22 CT acquisitions with two different kernels, with both B31f and B60f,

bringing the total number of training images to 44. Three subjects in the parameter

training data set overlapped with the evaluation data set, but their scans were not

used when tuning parameter values between imaging protocols.
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Table 3.1 Number of scans for each year for the 87 subjects in the evaluation data
set. Each subject had no more than one scan each year. Of the last EMCAP scans
(2008-2009), 6 were acquired in early 2009, with the remainder in 2008. Of the 87
MESA COPD scans, 55 were acquired in 2009, 27 in 2010 and 5 in 2011. The total
number of scans was 365.

Siemens Siemens

Year B60f B31f GE

Total 2004− 2011 259 19 87

MESA COPD 2009− 2011 87

EMCAP

2008− 2009 49 19

2007 73

2006 72

2005 42

2004 23

The axial resolutions of the images used from the EMCAP data set were in the

range [0.49, 0.87] mm and the slice thickness was 0.75 mm. For the MESA COPD

data set, the axial resolution range was [0.58, 0.88] mm, and all scans had a slice

thickness of 0.625 mm.

Fig. 3.3 illustrates the image appearance in the lung for the different imaging

protocols, with detailed views of coronal slices from three scans of a single subject.

3.1.8 Model implementation and estimation of parameter val-

ues

Intensity distribution priors

For each class k, the locations θk of the parametric distributions p(zk, αk) (3.17)

are controlled by a prior distribution Pθ(θ), which assigns probabilities for different
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Figure 3.3 Coronal views of a small lung region for a single subject on three
CT scans acquired with different imaging protocols: (a) EMCAP B60f (sharp) from
2007, (b) EMCAP B31f (smooth) from 2008, and (c) MESA COPD from 2009.

values of θ. The prior distribution affects the computation of the MAP estimate in

(3.5) and (3.12). Using a uniform distribution for Pθ(θ) means that the values of

θ are driven entirely by the data, whereas a non-uniform distribution injects prior

knowledge to their values, biasing the resulting MAP estimate θ∗.

In our segmentation task, the volume of emphysematous tissue in a given CT scan is

unknown prior to the segmentation process. It is therefore important to ensure that

θ1, the distribution location of the emphysema class, does not receive unreasonably

high values for healthier subjects due to a lack of samples in the emphysematous

intensity range. On the other hand, there is always some healthy parenchyma

present, and θ2, which corresponds to the location of the distribution representing

lung parenchyma and small vessels, can be allowed to vary more freely to fit the

data.

The prior distribution Pθ(θ) was assigned a delta function δ(θ1−µ∗θ1) for θ1, so that
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Table 3.2 Estimated imaging protocol-dependent parameter values used in the
evaluation study, and descriptions of the training data used for their estimation
(details of the data are presented in the text): mean values and standard deviations of
σ∗2 and α∗2 of skew-normal distributions for class 2 (parenchyma), location µ∗θ1(= θ0

1)
for class 1 (emphysema) prior distribution and the associated tracheal air intensity
I∗tr, initial value θ0

2, and the Markov field weight λ.

σ∗2 (HU) α∗2 µ∗θ1(= θ0
1) (HU) θ0

2 (HU) λ

CT scans used

for parameter Low Low Multiple

value estimation %emph−950 %emph−950 Any Any reconst.

EMCAP B60f 124.4(±6.3) 1.25(±0.26) −1000 (I∗tr = −954) −982 5.0

EMCAP B31f 76.9(±10.5) 3.01(±0.42) −1028 (I∗tr = −983) −949 1.0

MESA COPD 79.5(±17.7) 3.74(±0.51) −1000 (I∗tr = −931) −931 1.0

the value of θ1 was fixed at µ∗θ1 . The value was set as: µ∗θ1 = Iair + min(I∗tr − Itr, 0),

where Iair = −1000 HU corresponds to the standard intensity of air outside the body

in CT images, Itr = −955 HU is a reference value of the tracheal air intensity, and I∗tr

is an imaging protocol-dependent tracheal air intensity estimate. I∗tr was obtained by

averaging over the intensity values within the airway segmentations generated in the

preprocessing stage. For EMCAP, this was done with the parameter training set, and

for MESA COPD using 20 randomly selected scans. This formula lowers the prior

mean for class k = 1, if the intensity of tracheal air is lower than the calibration

value. Wiemker et al. (2009) used tracheal air intensities similarly to adjust the

intensity threshold for emphysema quantification. The values µ∗θ1 , estimated for

individual imaging protocols, are reported in Table 3.2.

For θ2, Pθ(θ) was assigned a uniform distribution in the range [−995,−750] HU,

to provide adaptivity. Due to the positive skewness (α2 > 0) of the distribution

p(z2, α2) (see Section 3.1.8), the distribution peak is always located at a higher
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intensity than θ2, and therefore the range of Pθ(θ) cannot be directly interpreted as

the range of possible mean intensities of the lung parenchyma.

Distribution parameter values

The parameterization of intensity distributions with the pdfs p(zk, αk), as defined

in (3.17), involves defining values for σk and αk for the two classes, with k = 1 and

k = 2 representing the emphysematous tissue and healthy parenchyma, respectively.

To find the parameter values for class k = 2, subjects with the mildest cases of

emphysema in the parameter training set were selected for each imaging protocol.

For these subjects, the observed intensity values within the lung were assumed to

correspond almost entirely to healthy lung parenchyma, with the highest intensity

values caused by the partial volume effect from small vessels.

The scans representing mildest cases of emphysema within the parameter training

set of each imaging protocol were selected as follows:

• EMCAP B31f: 10 subjects in the parameter training set with the lowest values

of the standard %emph at −950 HU (%emph−950) for B31f reconstructions,

with all %emph−950 < 5.0.

• EMCAP B60f: B60f reconstructions of the same 10 acquisitions as used for

EMCAP B31f.

• MESA COPD: Randomly selected 10 subjects, which all had %emph−950 <

1.0.

Skew-normal pdfs (3.17) were fitted to each of the normalized lung intensity his-

tograms of the training scans within the range [−1000,−750] HU, as illustrated in
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Fig. 3.4. From the fitted skew-normal pdf, the estimated values α∗2 and σ∗2, for the

respective parameters α2 and σ2, were collected for each scan. For each imaging

protocol, the average values of the parameter estimates over the training set (listed

in Table 3.2) were then used for the evaluation data set. The skew-normal pdfs using

the respective averages of the estimated α∗2 and σ∗2 are illustrated in Fig. 3.4(d) for

the three imaging protocols.

The fit accuracy was measured by computing the histogram intersection dH (Cha,

2007) between each intensity histogram H(I) and the estimated skew-normal pdf v.

The histogram intersection is defined as: dH = 1 − 1
2

∑
j=1 |H(I)j − v(Ij)|, where

j denotes histogram bins, and Ij is the center intensity of bin j. The range of dH

is from 0, corresponding to entirely non-overlapping histograms, to 1, for identical

histograms.

For each imaging protocol, the average values of dH over individual fits were (mean

± standard deviation): EMCAP B60f: 0.99 ± 0.01; EMCAP B31f: 0.97 ± 0.01;

MESA COPD: 0.97±0.02. With dH evaluated between the histograms and the pdfs

using the mean estimates α∗2 and σ∗2, the average values over the training scans were:

EMCAP B60f: 0.98± 0.02; EMCAP B31f: 0.95± 0.02; MESA COPD: 0.92± 0.04.

The histogram intersection values show that individual fits were very accurate, and

the accuracy was fairly well retained when using the mean estimates α∗2 and σ∗2. The

larger variability in the MESA COPD intensity distribution shapes may be due to

variable breath-hold levels or conditions that affect the density of the lungs.

The parameter values for class k = 1 (emphysema class) could not be estimated

in the same manner as for class k = 2, since the intensity distributions of emphy-

sematous voxels overlap with parenchymal intensity distributions. Also, since CT

image intensities were limited to be higher than −1024 HU, finding a proper pa-
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Figure 3.4 (a)-(c) Fitting of skew-normal distributions to normalized intensity
histograms of 10 training scans for each imaging protocol. The vertical line
indicates the −950 HU threshold used for standard emphysema quantification. (d)
Skew-normal distributions with estimated parameter values σ∗2, α∗2, and θ0

2 for the
three imaging protocols (see Table 3.2).

rameterization of the distribution from data could prove challenging even if reliable

delineations were available.

Since the appropriate values of σk are affected mostly by image noise, it seems

reasonable to assume that σ1 ∼ σ2. The exact correspondence was not investigated

in this study, and the parameter was assigned as σ1 = σ2. The shape of the class
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k = 1 intensity distribution is also unknown, and the skew parameter was set to

α1 = 0, making the parametric distribution p(z1, α1) a standard normal distribution.

Model initialization

To minimize computational cost and to simplify the optimization process, the initial

values θ0 = [θ0
1, θ

0
2] for θ were chosen with the aim that they would be close to their

final values, on average, for each imaging protocol. For class k = 1, the value was

assigned simply as the location of the prior distribution: θ0
1 = µ∗θ1 . The values θ

0
2 were

determined by fitting a skew-normal distribution in the range [−1000,−750] HU on

a training data set, using the estimated parameters σ∗2 and α∗2 (see Table 3.2), and

taking the median value of the resulting locations. For EMCAP, this estimation was

performed using the 22 images in the parameter training data set, and for MESA

COPD, the 20 randomly selected scans used for tracheal air intensity estimation

(see above) were used. The resulting values of θ0 are reported in Table 3.2.

The initial values q0 = [q0
1, q

0
2] for q were assigned at each voxel r using the initial

values θ0:

q0
1(r) =

vθ01(r)

vθ01(r) + vθ02(r)
,

and q0
2(r) = 1− q0

1(r).

Markov field regularization parameters

The value of the Markov field weight λ should be assigned based on the level of noise

in the image. The value of λ was tuned between the EMCAP B31f and B60f scans.

For MESA COPD scans, λ was assigned to be same as for EMCAP B31f, due to

similar noise levels. Of the 22 subjects in the EMCAP parameter training set, the
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Figure 3.5 Mean absolute differences (MAD) and standard deviations of
%emphG−950 and %emphMF in the parameter training set, as a function of σG and
λ, respectively.

3 subjects included in the evaluation data set were removed when optimizing the λ

parameter, to separate training and evaluation sets.

First, the CT scans reconstructed with the smooth kernel (B31f) were segmented

with a low value for λ, namely λ = 1.0. This provided reference emphysema

measures, denoted %emph31
MF. Then, for the sharp reconstructions (B60f) of the

same CT acquisitions, λ was varied and the absolute differences between the re-

sulting %emph60
MF and the corresponding %emph31

MF were computed. Finally, the

B60f reconstructions were assigned a value for λ that minimized the mean absolute

difference (MAD) over the training data set.

The MAD values and their standard deviations for different values of λ are shown in

Fig. 3.5. The minimum MAD was 0.5, with a standard deviation of 0.4. This value

46



3.1. Methods

B31f B60f
im

ag
e

 

 

−1000

−950

−900

−850

−800

−750

−700

 

 

−1000

−950

−900

−850

−800

−750

−700

λ
=

0.
1

λ
=

1.
0

 

 

−1000

−950

−900

−850

−800

−750

−700

λ
=

2.
0

λ
=

3.
0

λ
=

5.
0

Figure 3.6 Illustration of the HMMF segmentation results for different values
of the Markov field weight λ. The images represent a cropped coronal view of a
scan reconstructed with the two different kernels, with B31f reconstruction in the left
column and B60f reconstruction in the right side column. The red color represents
regions classified as emphysema.
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was obtained using λ = 5.0 for the B60f images, and the other parameter values as

presented in Table 3.2. Fig. 3.6 illustrates the effects of varying the value of λ, on

two image reconstructions.

Related to the λ parameter, the parameter σW in eq. (3.3) controls the decrease

of the Markov weight with respect to distance. Since the slice thicknesses in the

scans used in this study were close to the in-plane resolutions, σW had only a minor

influence on the results. Nonetheless, it has the desired effect of reducing the weight

at the corners of the neighborhood. The same value σW = 1.5 mm as in Häme and

Pollari (2012) was used.

3.1.9 Instructions for model employment

This Section provides step-by-step instructions to employ the presented model on a

new full-lung CT data set. The steps should be applied sequentially and separately

for each imaging protocol in the data set.

1. Apply preprocessing on all the CT scans to generate segmentations of the

lungs and the main airways.

2. Select scans with the least emphysema (for example by choosing the 10 subjects

with the lowest %emph−950). Fit a parametric distribution to each of the

histograms of the selected scans and collect the parameter values to model

the likelihood function for the parenchyma class. In this study, skew-normal

distributions were used, so this step produced estimates for the scale (σ∗2) and

skew (α∗2) parameters. The distributions learned from mild cases in this step

are expected to provide accurate likelihood values for the parenchyma class.
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3. Select scans randomly from the data set. Fit the parametric distribution

obtained in the previous step on the intensity histograms and find an estimate

of the median of the parenchymal distribution location θ2, and use this as

the initialization value θ0
2. Choosing an initialization value near the data set

average provides more reliable results and faster optimization than using a

predefined initial value.

4. Estimate the mean tracheal intensities using the airway segmentations of the

scans in the previous step. Use the tracheal intensity mean to define the

intensity distribution location θ1 for the emphysema class. Airway intensity

values provide an indication of average emphysema intensity values, and this

information is used to provide accurate likelihood values for the emphysema

class.

5. Assign a value for the Markov field weight λ. If multiple reconstructions of

CT acquisitions are available, the approach used in the present study can

be replicated. This requires defining a low λ value for the smoothest scans

and adjusting the value for noisier scans, by minimizing the mean absolute

difference of %emphMF between the reconstructions. Alternatively, the weight

value can be inferred from results in previous studies, based on the parametric

distribution scale or some measure of image noise, such as the local noise

estimation in Schilham et al. (2006). The Markov weight is intended to

improve the segmentation results by reducing uncertainty caused by image

noise. Here, the Markov field is implemented with a 3D neighborhood to

enforce segmentation regularity between image slices, as well as within them.

For scans with thicker slices, 2D neighborhoods may suffice (i.e. not enforcing

regularity across slices).

49



3.2. Results

6. Finally, using the parameter values learned in the previous steps, initialize the

HMMF model and apply the segmentation method. The values of %emphMF

are obtained by computing the volume classified as emphysema, divided by

the total lung volume.

3.2 Results

3.2.1 Average emphysema scores over the evaluation database

In the following, %emphMF refers to the %emphmeasure obtained with the presented

HMMF model. %emph−950 represents the standard %emph using a threshold of

−950 HU, which is commonly used in clinical studies (Galbán et al., 2012; Gevenois

et al., 1995), and PD15 is the 15th percentile density.

The %emph measure obtained by thresholding at −950 HU after 3D Gaussian

filtering is denoted as %emphG−950. The filter scale σG was optimized in the same way

as the value of λ, by minimizing the MAD on the parameter training data set (see

Section 3.1.8 for details). For Gaussian filtering, MAD was minimized at 1.1± 1.3,

using σG = 0.74 (see Fig. 3.5).

The values provided by these four emphysema measures are generally referred to

as emphysema scores. All %emph scores are reported in the range [0, 100], cor-

responding to percentages of total lung volume, and PD15 scores are reported in

HU.

A general overview of the emphysema scores over the evaluation data set of 87

subjects is provided in Table 3.3, with mean values, standard deviations, and min-
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Table 3.3 Means, standard deviations, and minimum and maximum values of the
emphysema scores over the entire data set. 1) EMCAP B60f, all (2004− 2009); 2)
EMCAP B60f, most recent (2006−2009); 3) EMCAP B31f (2008−2009); 4) MESA
COPD, subjects in EMCAP B31f (2009−2011); 5) MESA COPD, all (2009−2011)

Data N N %emphMF %emph−950

set subjects scans mean± std., [min,max] mean± std., [min,max]

1 87 259 3.4± 4.4, [0.2, 36.4] 30.1± 7.2, [10.3, 54.1]

2 87 87 3.8± 4.5, [0.4, 36.4] 32.4± 6.3, [18.5, 54.1]

3 19 19 4.7± 3.0, [1.4, 12.4] 8.5± 6.1, [1.0, 26.6]

4 19 19 5.5± 4.1, [1.8, 17.2] 2.6± 2.8, [0.3, 11.7]

5 87 87 5.5± 5.9, [0.7, 45.3] 2.8± 4.7, [0.1, 38.3]

Data N N %emphG−950 PD15

set subjects scans mean± std., [min,max] mean± std., [min,max]

1 87 259 6.0± 7.6, [0.0, 51.1] −998± 19, [−1024,−922]
2 87 87 6.2± 7.7, [0.0, 51.1] −1007± 15, [−1024,−967]

3 19 19 - −934± 16, [−965,−901]

4 19 19 - −914± 16, [−945,−876]
5 87 87 - −912± 21, [−976,−841]

imum and maximum values reported using the four emphysema measures, for each

imaging protocol. In addition, the values are reported using the most recently

acquired EMCAP B60f scan for each subject. For 49 subjects, the most recent B60f

scan was acquired in 2008−09, for 35 in 2007 and for the remaining 3 in 2006. This

scan grouping enables a comparison to the same population of 87 subjects that was

available in MESA COPD.

Based on the assumption that emphysema is irreversible, %emph should theoret-

ically not decrease with time. Since the majority of the population in this study

represented mild cases of emphysema, only a minor increase in the mean of %emph
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values was expected. The PD15 measure should decrease slightly for the same

reasons.

The overall statistics show that the average %emphMF remained fairly stable, while

the average %emph−950 varied greatly depending on the imaging protocol. Indeed,

between imaging protocols the mean of %emphMF increased by 1.7 from the most

recent EMCAP B60f scans to the MESA COPD scans, while the mean of %emph−950

decreased by 29.6 for the same data. With prior Gaussian smoothing (%emphG−950)

on B60f scans, the mean decreased by 3.4. The PD15 measure increased by 95 HU.

In a paired t-test, all these changes were different from 0 at the 5% significance level.

As the EMCAP B31f and MESA COPD scans were reconstructed with smooth ker-

nels and acquired 1 or 2 years apart, they were expected to give similar emphysema

scores. However, the mean values of %emph−950 declined significantly, from 8.5

to 2.6, and the mean PD15 values increased by 22 HU. In comparison, %emphMF

showed only a slight increase for the same data set, from 4.7 to 5.5. Also these

changes were different from 0 at the 5% significance level.

3.2.2 Pairwise intra-measure correlations between

longitudinal scans

Pairwise correlations between emphysema scores from longitudinal scans of indi-

vidual subjects were computed. The results are reported in Table 3.4 (evaluations

with fewer than 17 cases were omitted for space considerations). In the following,

comparisons of correlations were performed using Fisher’s r-to-z transformation

(see Appendix B) and a two-tailed test of the resulting z-score. Fig. 3.7 shows

scatterplots of the emphysema scores from EMCAP 2008− 09 and MESA COPD.

52



3.2. Results

Table 3.4 Pairwise correlations and 95% confidence intervals of emphysema
measures between longitudinal scans. Reported values are statistically significant
(p < 0.0001), except when marked with ‘n’. Highest correlation of each comparison
is shown in bold. t1 and t2 indicate the set of data being used, and N refers to
the number of scans in each comparison. For space considerations, comparisons
with less than 17 cases were omitted, and the following shorthand expressions were
used: MESA COPD (MC), EMCAP B31f (B31f), EMCAP B60f 2008-09 (’08)
and other B60f years accordingly, %emphMF (%MF) and other %emph measures
similarly, PD15 (PD).

t1 / t2 MC / B31f MC / ’08 MC / ’07 MC / ’06 MC / ’05

N 19 49 73 72 42

%MF 0.96[0.89, 0.98] 0.98[0.96, 0.99] 0.95[0.92, 0.97] 0.97[0.95, 0.98] 0.99[0.97, 0.99]

%-950 0.86[0.66, 0.94] 0.70[0.52, 0.82] 0.52[0.33, 0.67] 0.65[0.50, 0.77] 0.67[0.47, 0.81]

%G
-950 − 0.91[0.85, 0.95] 0.86[0.78, 0.91] 0.90[0.85, 0.94] 0.93[0.87, 0.96]

PD 0.87[0.70, 0.95] 0.26n[−0.02, 0.51] 0.38n[0.17, 0.56] 0.56[0.38, 0.70] 0.60[0.37, 0.77]

t1 / t2 MC / ’04 B31f / ’06 ’08 / ’07 ’08 / ’06 ’07 / ’06

N 23 18 42 39 61

%MF 0.96[0.90, 0.98] 0.88[0.69, 0.95] 0.96[0.93, 0.98] 0.98[0.96, 0.99] 0.96[0.93, 0.97]

%-950 0.61n[0.27, 0.82] 0.69n[0.33, 0.87] 0.73[0.55, 0.85] 0.84[0.71, 0.91] 0.76[0.63, 0.85]

%G
-950 0.88[0.73, 0.95] 0.85[0.63, 0.94] 0.88[0.79, 0.93] 0.91[0.84, 0.95] 0.89[0.82, 0.93]

PD 0.63[0.45, 0.76] 0.62n[0.28, 0.82] 0.58n[0.16, 0.83] 0.50n[0.24, 0.70] 0.74[0.55, 0.85]

t1 / t2 ’07 / ’05 ’07 / ’04 ’06 / ’05 ’06 / ’04 ’05 / ’04

N 37 18 36 17 17

%MF 0.98[0.97, 0.99] 0.85[0.63, 0.94] 0.98[0.96, 0.99] 0.95[0.88, 0.98] 0.99[0.96, 1.00]

%-950 0.78[0.61, 0.88] 0.84[0.60, 0.94] 0.86[0.74, 0.93] 0.89[0.72, 0.96] 0.87[0.68, 0.95]

%G
-950 0.91[0.83, 0.95] 0.72n[0.39, 0.89] 0.95[0.91, 0.98] 0.94[0.84, 0.98] 0.95[0.87, 0.98]

PD 0.68[0.46, 0.82] 0.86[0.65, 0.95] 0.83[0.68, 0.91] 0.88[0.70, 0.96] 0.90[0.75, 0.96]

The results show that %emphMF achieved very high correlations between longitu-

dinal scans regardless of the imaging protocol. All 10 comparisons with more than

20 scans had correlations of 0.95 or higher, whereas the overall minimum was 0.85.
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Figure 3.7 Scatterplots of emphysema scores between EMCAP scans acquired in
2008-09 and MESA COPD scans. The total number of scans was 68, of which
19 were reconstructed with the B31f kernel in EMCAP. Diagonal line represents
one-to-one correspondence.

In only one comparison (18 scans between 2004 and 2007, B60f reconstruction)

the correlation for %emphMF was lower than for another measure (PD15), but the

difference was not statistically significant (p = 0.92).

While the correlation values for %emph−950 were relatively high when comparing

scores between EMCAP B60f scans, in the range [0.73, 0.89], their values declined

significantly when comparing scores from B60f scans to scores from EMCAP B31f

scans [0.64, 0.69], or to scores from MESA COPD scans [0.52, 0.70]. Gaussian filter-
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ing of B60f scans before thresholding increased the correlation values, particularly

for comparisons to MESA COPD scans. Interestingly, correlations between B60f

scans were also higher for %emphG−950 than for %emph−950. Correlations of PD15

were similar to or lower than correlations of %emph−950.

When comparing EMCAP B60f scores to MESA COPD scores, all correlation values

were higher for %emphMF than for any other measure. This difference was significant

(p < 0.01) for all comparisons, except for EMCAP B60f 2004 (p = 0.07), where the

sample size was the smallest (N = 23). Between EMCAP B31f and MESA COPD,

%emphMF also had the highest correlation (0.96), but the difference to the PD15

value (0.87) was not statistically significant (p = 0.08) due to the small sample size

(N = 19).

3.2.3 Correlations between emphysema measures

To study the correspondence between %emphMF and %emph−950, pairwise correla-

tions were computed. The results are reported in Table 3.5.

The correlation values show that there was a good agreement between %emphMF

and %emph−950 for the MESA COPD scans. For the EMCAP scans, the correlation

values were significantly lower. When taking into account the high intra-subject

correlations of %emphMF in Table 3.4, the high correlation for the MESA COPD

data indicates that %emphMF values from the EMCAP scans are also comparable

to the MESA COPD %emph−950 values.
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Table 3.5 Pairwise correlations between %emphMF and %emph−950, with all p-
values < 0.0001, except for the year 2004 (p < 0.01).

Year Correlation Number of scans

MESA COPD 2009− 11 0.98 n = 87

EMCAP B31f 2008− 09 0.79 n = 19

EMCAP B60f

2008− 09 0.74 n = 49

2007 0.60 n = 73

2006 0.70 n = 72

2005 0.64 n = 42

2004 (0.57) n = 23

3.2.4 Progression of emphysema measures

Subject-specific differential %emph scores (δ%emph(tE)) were generated by sub-

tracting the MESA COPD %emph value (%emph(tMC)) from all preceding (EM-

CAP) %emph values (%emph(tE)) of the same subject:

δ%emph(tE) = %emph(tE)−%emph(tMC).

This way, negative values of δ%emph(tE) indicate growth over time.

The mean values and standard deviations of δ%emph(tE) for the three %emph

measures are shown in Fig. 3.8. The annual progression rate of %emph−950 has been

previously estimated as 0.63 (SE 0.03) (Coxson et al., 2013), albeit for a different

patient population. This estimate is used as a reference progression rate in Fig. 3.8.

The figure shows that on average, %emphMF increased steadily and the differential

scores had a relatively low standard deviation throughout the studied data set. Also,

the average progression rate of %emphMF seems to agree well with the progression
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Figure 3.8 Means and standard deviations of differential emphysema measures
δ%emph between EMCAP (2004− 2008) and MESA COPD (2009− 2011). Number
of scans for each year is reported in Table 3.1. A reference annual progression rate
of 0.63 for %emph−950 (Coxson et al., 2013) is plotted in blue, by assigning a value
of −0.63 · (2009− Y ) for each year Y .

rate reported in Coxson et al. (2013). For the standard measure %emph−950, the

values of δ%emph−950(tE) were large and had high variability. With prior Gaussian

filtering of B60f scans, %emphG−950 had better agreement with the MESA COPD

values than %emph−950, but the differential scores still had high variability. More-

over, the %emph−950 values from MESA COPD were clearly lower than %emphG−950

values from EMCAP, suggesting a decrease of %emph in time (see also Table 3.3).

To evaluate annual changes ∆a%emph in the emphysema measures, the changes

in %emph between consecutive scans were computed and divided by the number

of years between the scans at time points t1 and t2 (equivalently for ∆aPD15):
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Figure 3.9 Histograms of 278 evaluations of annual changes for the four emphy-
sema measures. Please note the different x-axis for the PD15 measure in (d).

∆a%emph = (%emph(t2)−%emph(t1))/(t2− t1). Histograms of the annual changes

are shown in Fig. 3.9.

The histograms show that the values of ∆a%emphMF were centered close to 0, with

more instances in the positive values, indicating an increase in %emphMF. Out of

278 evaluations of ∆a%emphMF, 81% were in the range [−1, 2]. On the other hand,

the values of ∆a%emph−950 and ∆aPD15 had very wide and irregular distributions.

The annual progression rates were computed by taking the mean of ∆a%emph for
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each subject. First, the annual progression rate was evaluated using only the EM-

CAP B60f data set. The means and standard deviations of the annual progression

rates over the 87 subjects for the four emphysema measures in EMCAP B60f were:

%emphMF : 0.54 ± 0.91, %emph−950 : 2.15 ± 2.60, %emphG−950 : 0.51 ± 2.67, and

PD15 : −16.3 ± 13.1. The results show very similar progression rates between

%emphMF and %emphG−950, but the latter suffers from higher variability.

The overall annual progression rate of %emphMF was computed over the entire

evaluation data set. The mean and standard deviation were 0.56 ± 1.37. The

progression rate depended on the degree of emphysema. Out of the 87 subjects,

32 had %emphMF above 5.0 for the MESA COPD scan, and for these subjects the

mean and standard deviation of ∆a%emphMF were 1.3± 1.0. For the remaining 55

milder cases, the corresponding values were 0.4± 0.3.

For reference, a study by Parr et al. (2006) estimated the annual progression rate of

%emph−950 within a range [0.1, 2.0], and the annual progression rate of PD15 within

[−1.2,−1.9]. The progression rate depended on disease status, so that more severe

disease progressed faster. The presented results for the annual progression rate of

%emphMF agree with these estimates, as well as with the reference value in Fig. 3.8.

3.2.5 Example case

Fig. 3.10 presents an example of emphysema masks and the associated emphysema

scores from six scans for a single subject. The figure illustrates how %emphMF

increased gradually with time, while %emph−950 depended largely on the image

acquisition protocol. The figure also exemplifies the quality of the emphysema mask
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Figure 3.10 Example of emphysema masks and %emph values for six scans for a
single subject, between the years 2004 and 2010. The top row shows original image
slices, and the three bottom rows show emphysema masks generated by the HMMF
method (%emphMF), thresholding at −950 HU (%emph−950), and thresholding at
−950 HU with prior Gaussian smoothing (%emphG−950). Scans from 2004 to 2008
were from the EMCAP study, and the latest scan was from MESA COPD. Scans
between 2004 and 2007 were reconstructed with the B60f kernel and the last EMCAP
scan with the B31f kernel.

produced by the HMMF segmentation, as the emphysema regions are seemingly

consistent across the different scans.
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3.2.6 Sensitivity to parameter value estimation

The sensitivity of the HMMF model with respect to the σ2, α2 and θ0
2 parameter

values was evaluated with 22 B60f and B31f scans in the EMCAP training set,

and a randomly selected subset of 20 scans from the MESA COPD data set, where

mean ± standard deviation of %emphMF were 5.4± 5.2. The changes in %emphMF

were quantified when adjusting each parameter value, while keeping other values

unchanged. The changes ∆σ2 for σ2 and ∆α2 for α2 were given values of ±1,±2

times the standard deviations of the respective estimates σ∗2 and α∗2 for each imaging

protocol, as listed in Table 3.2. Since θ0
2 was estimated by taking median over

randomly selected scans, the range of values ∆θ0
2 was defined by estimating θ0

2 25

times (see Section 3.1.8) on EMCAP B60f and on MESA COPD, each time with a

different randomly selected set of 20 scans (for EMCAP B31f, not enough scans were

available for repeating the estimation). The standard deviation of the resulting θ0
2

estimates was 4.1 HU for EMCAP B60f and 4.5 HU for MESA COPD (the respective

means were −981 HU and −933 HU). Therefore, ∆θ0
2 was assigned values between

−10 and 10 HU, to approximate the range of the first two multiples of the estimate

standard deviation.

The resulting changes in %emphMF are shown in Fig. 3.11. The model was more

sensitive with respect to θ0
2 than the other two parameters. When the change in σ2 or

α2 was within one standard deviation of the parameter value estimate, the absolute

mean change in %emphMF was less than 1.0, for all imaging protocols. Adjusting θ0
2

by ±5 HU also changed the mean %emphMF by less than 1.0, except for EMCAP

B60f, where increasing θ0
2 by 5 HU resulted in a mean change of 1.1.

Of the three data sets, MESA COPD showed the most sensitivity with respect to σ2,
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although this is at least partially caused by the high standard deviation associated

with the σ2 estimates. EMCAP B31f scans displayed the least sensitivity with

respect to θ0
2, while the most sensitive were EMCAP B60f scans, which is assumed

to be due to the high Markov field weight λ used for this imaging protocol. With a

high value of λ, spatial regularity is strongly enforced, causing the initialization to

have more influence on the result than with a lower value of λ.

These results show that the presented model is somewhat sensitive to the parenchyma

class location initialization (θ0
2), although this value can be estimated fairly consis-

tently for a given imaging protocol. Decreasing the value of θ0
2 resulted in a smaller

absolute change in %emphMF than increasing its value. The resulting %emphMF

always increased with an increase in θ0
2, indicating that changes in θ0

2 alter %emphMF

in a consistent direction. The value of θ0
2 could therefore be used to adjust the

sensitivity of %emphMF, and provide lower and upper bounds for the extent of

emphysema, as proposed for tumoral growth estimates by Angelini et al. (2012).

3.2.7 Computational expense

The computational expense of the HMMF model depends on the number of voxels

within the lung segmentation and the convergence speed of the optimization process.

A typical lung region in this study included between 10·106 and 25·106 voxels. With

the current C programming language implementation, the HMMF segmentation was

computed for 100 images in 407 minutes using four computing cores, corresponding

to an average computation time of 16.3 min/N per image, where N is the number of

cores used. We expect code optimization to reduce the required computation time.

62



3.2. Results

−2 x std −1 x std 0 1 x std 2 x std

−4

−3

−2

−1

0

1

2

3

4

∆σ
2

D

 

 

EMCAP B60f

EMCAP B31f

MESA COPD

−2 x std −1 x std 0 1 x std 2 x std

−4

−3

−2

−1

0

1

2

3

4

∆α
2

D
 

 

EMCAP B60f

EMCAP B31f

MESA COPD

(a) (b)

−10 −5 0 5 10

−4

−3

−2

−1

0

1

2

3

4

∆θ
2

0
 (HU)

D

 

 

EMCAP B60f

EMCAP B31f

MESA COPD

(c)

Figure 3.11 Differences (D) in the %emphMF scores, resulting from modifying
the values of the parameters (a) σ2 by ∆σ2, (b) α2 by ∆α2, and (c) θ0

2 by ∆θ0
2. The

notation ‘std’ refers to the standard deviations of the estimated parameter values
in Table 3.2. Mean values of D are shown with errorbars representing standard
deviations, evaluated over the 22 EMCAP B60f and B31f training scans, and a
randomly selected set of 20 scans from MESA COPD.
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3.3 Discussion

This study presented a novel method for the quantification of emphysema from lung

CT images. The method is based on a segmentation of emphysematous regions

from the lung parenchyma with a HMMF model. This approach is analogous to the

original density mask (Müller et al., 1988), which has become popular in clinical

studies. The presented segmentation model introduces a parameterization of the

intensity distributions and a probabilistic labeling of voxels that enforces spatial

coherence of the resulting label regions. These qualities were shown to provide

segmentations that were robust to changes in imaging protocols, and subsequently

enabled consistent and robust quantification of emphysema with the %emphMF

measure.

The presented method was shown to be valuable for quantifying emphysema in a

longitudinal data set where imaging protocols and CT scanners changed over time.

Using CT scans from the EMCAP and the MESA COPD studies, the results showed

that thresholding-based %emph−950 values were not comparable between the two

studies, whereas %emphMF values showed good agreement. Prior Gaussian filtering

improved the thresholding-based measure on noisy scans, but the correlation values

were still lower than for %emphMF. Interestingly, %emphMF also resulted in higher

intra-subject correlations than %emph−950 for longitudinal scans acquired with a

single imaging protocol.

For the MESA COPD scans, the %emphMF values were on average higher than the

values for %emph−950. This means that %emphMF would correspond on average to

a standard thresholding-based %emph measure using a higher threshold value than

−950 HU. However, this does not mean that a higher threshold would replicate
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the HMMF masks, or that the %emphMF values could be replicated by simply

identifying an intensity threshold value for each imaging protocol. The presented

HMMF model adapts to the intensity distribution of each individual scan to provide

a unique separation of the emphysematous regions from the lung parenchyma, while

imposing a spatial regularization that goes beyond labeling by pure intensity-based

analysis.

Even though the values of %emphMF were higher than %emph−950 on average for the

MESA COPD data, the correlation between the two measures was high, indicating

a good agreement for this imaging protocol. Most subjects in this data set were

mild cases of emphysema, as the average %emph values from MESA COPD scans

for the studied population were relatively low. While this study showed that the

HMMF segmentations are able to provide consistent %emph values between imaging

protocols, a future study should be performed on a population with more severe cases

of emphysema.

The annual progression rate of %emphMF in this study was similar to what has been

found previously for %emph−950 in other studies (Parr et al., 2006; Coxson et al.,

2013). In comparison, the estimated annual progression rate of %emph−950 in the

present study was significantly affected by changes in imaging protocols, and did

therefore not correspond to the estimates found in studies using data acquired with

a single imaging protocol. Also, for %emphMF the progression rate in mild cases of

emphysema was found to be slower than for severe cases.

For the EMCAP scans, the mean of %emph−950 showed a relatively large aver-

age annual increase. However, this change might not be indicative of emphysema

progression, as the mean of %emph−950 for the latest scans in MESA COPD was

relatively low. Still, the intra-subject correlations for %emph−950 in the EMCAP
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data remained relatively high. These qualities suggest that the %emph−950 values

for the EMCAP scans hold patient-specific information, but their absolute values

should be used with caution, and the differences between longitudinal scans may be

mostly due to changes in image acquisition protocols.

Generating emphysema masks using a robust and consistent segmentation method

may have significant value beyond merely extracting a single estimate of emphysema

extent. The masks provide information needed to assess the spatial distribution and

regional progression of emphysema. The presented model enforces smoothness of

the emphysema masks, which is particularly important for scans with high levels

of noise. This may prove very valuable for morphological analysis of segmentation

masks, used for emphysema quantification and subtyping (Mishima et al., 1999a;

Blechschmidt et al., 2001; Achenbach et al., 2004). Visually, the generated HMMF-

based emphysema masks seemed to correspond to each other between longitudinal

scans. Our future work will include intra-subject registration of scans to quantify

the overlap of the generated emphysema masks, and their regional evolution on

longitudinal data.

One of the shortcomings of the HMMF model is the requirement to learn parameter

values for each CT imaging protocol. Estimation of the parenchymal intensity

distribution parameters requires either normal subjects or mild cases of emphysema.

In our preliminary work (Häme et al., 2013), the intensity distributions were modeled

as normal distributions. However, normal distributions were not able to account for

the typical heavy tails of the intensity distributions towards higher parenchymal in-

tensities. This led to poor fits that often affected the final location of the parametric

distribution, and caused unreliable estimates of emphysema. By adding the skew

parameter that is fairly simple to estimate, the skew-normal distribution improves
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the fit to the data. The method was shown to be somewhat sensitive to the initial

value of the parenchymal likelihood function location, but with a predictable effect

on the resulting emphysema estimate. This issue will be investigated in future work,

by studying the effect of the initial value on the intermediate measure field. Also,

sensitivity might be reduced by adopting a re-initialization scheme after the initial

optimization of the distribution location for a given scan. Another drawback of the

method is the computational cost of generating the HMMF segmentation, which is

obviously higher than for simple thresholding. However, with currently available

computational resources this should not be a critical issue, even though real-time

processing does not seem achievable.

Further development is still possible to improve the segmentation of emphysematous

regions from lung CT scans. In particular, gravity often causes the average intensity

within the lung parenchyma to vary spatially. Sometimes this unevenness can affect

the thresholding-based %emph values as the intensity values may decrease below the

set threshold and cause an over-estimation of emphysema. The presented version of

the HMMF model does not fully alleviate this problem, as the intensity distribution

is modeled globally over the whole lung region. Future development will focus on

regional intensity distribution modeling, to adjust the lung parenchyma intensity

mean estimate according to the effect of gravity. Alternatively, the CT intensity

values could be adjusted for the effect of gravity in the preprocessing stage, as

proposed in Wiemker et al. (2007).

The lack of ground truth is a shortcoming of the evaluation performed in this study.

Establishing ground truth would require repeated pathological sections, which is not

feasible in humans. However, this study showed that the proposed method can be
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used to obtain robust and replicable estimates of emphysema extent across imaging

protocols, which is a prerequisite for further study of their clinical relevance.

While providing extraordinary data for diagnostic purposes, the increase in repeated

CT scans for patient monitoring has raised concerns about imaging-based health

risks caused by radiation. The presented emphysema quantification method may

prove valuable for accurately quantifying emphysema even as image noise levels are

elevated when reducing scanner radiation doses. The method was already shown

to improve the quantification of emphysema on existing heterogeneous image data,

enabling better understanding of the disease.
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Chapter 4

Equating emphysema scores and

density masks

4.1 Methods

4.1.1 Description of the performed study

This Chapter compares the replicability of emphysema scores and masks from two

series of CT scans generated with different reconstruction kernels. The performance

of the HMMF model is compared to a segmentation method based on noise variance

(NOVA) filtering (Schilham et al., 2006) and thresholding, which was proposed for

normalizing emphysema scores between low-dose and high-dose CT scans. The

method has been shown to provide more consistent emphysema scores than simple

moving average filtering. In addition, normalization of the standard %emph is

evaluated using a polynomial correction function (Bartel et al., 2011). The NOVA
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filtering and emphysema score equalization are briefly presented in the Sections

below, while relying on the respective publications for details.

4.1.2 NOVA filtering for emphysema quantification

In Schilham et al. (2006), a nonlinear NOVA filtering of lung CT images was

proposed. NOVA filtering involves the estimation of a local noise map σ, used

to determine whether local intensity variations in a given image I are due to noise

or if they represent edges of structures. First, an estimate σ′(x) is computed as

the standard deviation of the intensity values within a spherical neighborhood xH

with a diameter of N voxels around each voxel x. Then, a histogram of the σ′(x)

values within the lung is generated, and the location of the histogram peak σpeak

is identified. The final noise map is defined using a scalar parameter α to clip the

local noise values as: σ(x) = σ′(x) if σ′(x) < ασpeak, and σ(x) = ασpeak, otherwise.

The filtering of I is performed as:

If (x) =

∑
y∈xH Wp,d (I(y)− I(x), σ(x)) I(y)∑

y∈xH Wp,d (I(y)− I(x), σ(x))
, (4.1)

where xH is the same neighborhood that was used to compute the noise map, andW

is the filtering kernel. As in Schilham et al. (2006),W was defined as a ramp function

restricted within the range 〈0, 1〉, and parameterized by p and d, with 0 ≤ p ≤ d.

Formally:

Wp,d (∆I(x), σ(x)) =



a |∆I(x)|
σ(x)

+ b, if p < |∆I(x)|
σ(x)

< d

1, if |∆I(x)|
σ(x)

≤ p,

0, if |∆I(x)|
σ(x)

≥ d,

(4.2)
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where
{
a = 1

p
− d

p(d−p) , b = d
d−p

}
, if p > 0, and

{
a = −1

d
, b = 1

}
, otherwise. Finally,

emphysema extent is measured by thresholding the filtered image If .

4.1.3 HMMF model for emphysema score equalization

The performed study for equalizing emphysema scores requires defining from each

scan pair one as the reference, and processing the other scan to equalize the scores.

For emphysema score equalization, an additional bias parameter β is therefore

introduced to adjust the sensitivity of the final binary label field f (see Section

3.1.3): f(r) = 1, if q∗1(r) + β > q∗2(r), and f(r) = 2, otherwise.

4.1.4 Normalization of emphysema scores with polynomial

fitting

As proposed in Bartel et al. (2011), a power function was used to normalize %emph

scores: %emphPOLY = m(%emph)n. The parameters m,n were obtained by finding

the least squares fit to equate %emph measures on pairs of scans with different

reconstructions. Since the score normalization only modifies the resulting scores

and not the image, it does not produce an emphysema mask.
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4.2 Results

4.2.1 Data and Evaluation

The data set for evaluating methods for equating emphysema scores included 22

full-lung CT scans acquired in the EMCAP study (Mesia-Vela et al., 2008) (see CT

study description in Section 2.1.1), which was used as a parameter training set in the

longitudinal study (see Section 3.1.7). For these CT scans, two reconstructions were

available for each acquisition, one with the smooth convolution kernel B31f that was

used as the reference reconstruction, and another with the sharp kernel B60f. The

reconstructions had perfect alignment, so that there was an exact correspondence

between voxels in the scans.

The %emph measure was quantified at −950 HU for both the B31f scans (denoted as

%emphB31f
−950 ) and the B60f scans (%emphB60f

−950 ). This thresholding also provided the

respective spatial emphysema masks. For the B60f scans, emphysema extent was

additionally quantified with NOVA filtering and thresholding (%emphB60f
NOV A), and

with the HMMF model (%emphB60f
MF ). Also, the %emphB60f

−950 scores were corrected

via polynomial fitting (%emphB60f
POLY ). In the following, %emph is used to refer to

all four emphysema scores in general.

The four extracted %emph scores for the B60f scans were compared to %emphB31f
−950 ,

for the 22 pairs of reconstructions. The following four measures were used for the

comparison: mean absolute difference (MAD), mean signed difference, root mean

square error (RMSE), and maximum absolute difference (MaxAD).

The testing was done using a leave-one-out process. For each CT scan, the parameter

values were found by using the other 21 CT scans to minimize the MAD, and
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then using these parameter values to compute the emphysema score and to extract

the emphysema mask of the single CT scan. The tested sets of values for the

NOVA filtering parameters were similar to the ones in Schilham et al. (2006): N =

{3, 5, 7, 9}, p = {0, 1, 2, 3, 4} , d = {2, 3, 4, 5} , α = {0.8, 1.0, 1.2}. Filtering was

performed with all combinations where p ≤ d, for a total of 204 evaluations. For

the HMMF segmentation, the tested parameter values were: λ = {3.5, 4.0, 4.5, 5.0},

and β = {0.00, 0.02, 0.04, 0.06, 0.08}, for a total of 20 evaluations. The leave-one-out

evaluation was also performed for the polynomial fit, by finding the parameter values

as a minimum of the least squares fit for each evaluation.

The overlap D between two masks M1,M2 was quantified with the Dice coefficient:

D(M1,M2) =
2 (M1 ∩M2)

S(M1) + S(M2)
, (4.3)

where M1 ∩M2 is the number of voxels overlapping between the masks, and S(M)

is the number of voxels within a mask. The maximum value D = 1 is obtained only

if M1 ∩M2 = S(M1) = S(M2).

4.2.2 Emphysema score equalization

The results of the leave-one-out testing are reported in Table 4.1. The following

parameter values most commonly minimized the MAD of %emph measures on the

tested data set: 1) NOVA: N = 5, p = 3, d = 4, α = 1.2; 2) HMMF: λ = 4.0, β =

0.06. For NOVA, increasing any of the parameter values decreased the resulting

%emphB60f
NOV A. For HMMF, %emphB60f

MF increased with β and decreased with λ. The

signed differences for the three equated %emph measures for the B60f scans are

plotted in Fig. 4.1(a).
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Table 4.1 Differences between standard %emph−950 on B31f images and %emph
scores generated on the corresponding B60f reconstructions, reported as mean and
standard deviation of absolute difference (AD), signed difference (SD), root mean
square error (RMSE), maximum absolute difference (MaxAD), and the Dice mask
overlap over the data set of 22 pairs of scans. For NOVA and HMMF, parameters
were optimized to minimize MAD. The best value for each measure is in bold.

AD SD RMSE MaxAD Dice

%emph−950 mean 23.6 23.6 23.7 28.0 0.30

st.d. 2.6 2.6 − − 0.15

NOVA mean 1.5 0.6 1.9 4.7 0.46

st.d. 1.2 1.9 − − 0.16

HMMF mean 1.1 −0.1 1.4 3.3 0.62

st.d. 0.9 1.4 − − 0.11

Polynomial fit mean 1.3 0.0 1.7 4.1 −
st.d. 1.1 1.7 − − −

The results show that the %emphB60f
MF resulted in the smallest MAD, RMSE and

MaxAD with respect to %emphB31f
−950 . The %emphB60f

POLY achieved the smallest mean

signed difference, although %emphB60f
MF had a smaller standard deviation. The

%emphB60f
NOV A performed slightly poorer in %emph normalization than the other two

methods, while all three quantification methods improved drastically compared to

the standard %emphB60f
−950 .

The Dice coefficient values are plotted in Fig. 4.1(b). The coefficients were higher

for HMMF than for NOVA, for all scans in the data set. The figure shows that the

Dice coefficient values increased with %emphB31f
−950 for both methods. This is assumed

to be due to the fact that the average size of emphysematous regions grows with

emphysema extent, and masks with larger regions have better overlap than small

regions that are more common in milder emphysema.
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Figure 4.1 (a) Signed differences between standard %emph−950 on B31f reconstructions
and %emph scores from the corresponding B60f reconstructions, and (b) Dice coefficients
for emphysema masks on B60f scans using different methods.
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Figure 4.2 Cropped views of a pair of coronal slices from B60f (a) and B31f
(b) reconstructions of a single CT acquisition, the output of NOVA filtering (c),
the HMMF MAP estimate q∗2 (e), and the corresponding emphysema mask overlaps
(d),(f) using %emphB31f

−950 as reference. The masks use the following color code:
green: true positive, yellow: false negative, red: false positive. For visualization, the
MAP estimate in (e) is windowed to resemble the intensity range of (b).
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Figure 4.2 shows an example of the processing results and the corresponding em-

physema masks, overlaid with the reference mask on a pair of B31f and B60f CT

scans from a single subject. Qualitatively, the figure illustrates how NOVA filtering

preserves the sharp edges well in the filtered image, but seems to generate a smoother

appearance in the parenchyma than what is present in the B31f reference scan. The

original intensity range is retained in the NOVA filtering, whereas the HMMF model

maps the intensity values to a range of 〈0, 1〉.

4.3 Discussion

This study presented a comparative evaluation of state-of-the-art methods used

to equate emphysema scores and to extract emphysema masks from pairs of CT

scans generated with two different reconstruction kernels. Standard thresholding on

smooth reconstructions provided the reference data. The pairs of CT scans used

in this study were perfectly aligned, thereby circumventing any inaccuracies due to

registration when comparing emphysema masks.

The HMMF method performed on average better than NOVA filtering in providing

more accurate emphysema scores on sharp reconstructions. Also, the Dice co-

efficients of the emphysema masks were higher for the HMMF method than for

NOVA. Polynomial correction of the thresholding scores performed slightly worse

than HMMF and slightly better than NOVA filtering, but the lack of a corresponding

emphysema mask is a limitation of this approach.

One drawback of the NOVA filtering is the number of required parameters that

cannot be estimated from data. Finding proper parameter values therefore involves

exhaustive testing of different combinations. While the HMMF model also involves
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several parameters, the ones related to intensity distribution parameterization can

be estimated without specific training data, and therefore they do not require

optimization.

One advantage of NOVA filtering is that the method can be implemented more easily

than the HMMF model. The computational expense of the two image processing

methods was not tested here, but previous publications report computation times

of a few minutes for a full-lung CT scan, for both methods. Emphysema score

normalization through polynomial fitting is obviously by far the easiest solution to

implement, and the fastest to compute.

NOVA filtering was designed solely for noise filtering, while the HMMF model has

been designed to adapt to intensity distributions in a more general way. The

input data and the application should therefore determine which method to use

for extracting emphysema masks. If the only goal is to filter moderate levels of

noise, NOVA seems well suited for the purpose. The probabilistic modeling of the

HMMF approach is valuable if the noise level is high or if there are other sources of

variation in the intensity distributions. Also, NOVA filtering was found to improve

visual assessment of emphysema by Schilham et al. (2006). This property was not

evaluated in this study, and remains to be investigated for the HMMF method.

Applying standard thresholding to obtain emphysema masks and %emph scores on

smooth CT scans is commonly used as reference for evaluating emphysema score nor-

malization. However, since the reference scans are also products of a specific imaging

protocol, they cannot be considered ground truth. Differences in CT reconstructions

are only one source of variability for emphysema quantification. Further studies are

required to evaluate the replicability of emphysema quantification with respect to
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other sources of variation, such as inspiration level, gravity, scanner calibration, and

various clinical imaging protocols.
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Chapter 5

Quantitation of non-apical

emphysema extent on cardiac CT

5.1 Methods

5.1.1 Overview

The emphysema quantitation method developed in this work and presented in

Chapter 3 is applied on a longitudinal data set of cardiac CT (CAC) scans and

subsequent full lung CT scans for the same subjects. The CAC scans include

approximately 2/3 of the lungs, excluding the apical regions, and therefore have

potential value for the analysis of non-apical pulmonary parenchyma. However, in

addition to the differences in the field-of-view and the imaging protocol, CAC scans

are acquired with different coaching of the patient to full inspiration and with cardiac

gating (Hoffman et al., 2009).
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Using CAC scans for emphysema quantification has previously been studied by

Hoffman et al. (2009). Their study analyzed three qualities of standard emphysema

measures, namely the reproducibility of lung density measures on pairs of CAC

scans, the comparability of density measures between different CAC scanners, and

the validity of lung density measures when comparing CAC measures to full-lung

CT measures. They found that the CAC measures were well reproducible, and

the comparability was good between different scanners. While the sample size was

limited, the validation study concluded that the emphysema scores between CAC

and full-lung CT correlate fairly well when the scanner type is the same (MDCT)

for both scans (Spearman’s correlation coefficient 0.93 with N = 24 scans). The

correlation decreased when the measures of EBT CAC scans were compared to

MDCT full-lung CT (Spearman’s correlation coefficient 0.70 with N = 18 scans).

In the present study, the emphysema scores on CAC scans are compared to the

corresponding scores obtained from subsequent full lung CT scans using a large

data set including thousands of patients with multiple scans each. As in the work of

Hoffman et al. (2009), the CAC field-of-view is simulated on the full lung CT scans

by excluding the apical regions, and including only the bottom 2/3 in the analysis.

5.1.2 Database of CT scans

The CT scans available for this study were acquired during five MESA Exams. All

scans with available lung masks generated with the VIDA software were included in

this study. The evaluation data set includes all subjects with at least 1 CAC scan

and 1 full lung scan, as the goal was to compare emphysema quantification between

CAC and full-lung CT. CAC scans of subjects that did not have a full-lung CT
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Table 5.1 Summary of the scans used for training (train.) and evaluation (eval.)
in non-apical emphysema quantitation. Only subjects with at least 1 cardiac CT
(CAC) scan and 1 full lung CT scan were included in the evaluation set (the number
of subjects is the same as the number of full lung CT scans). Each subject had no
more than 1 scan in each Exam. Year started and Year ended: Years when each
Exam started and ended. Main year: The year when most of the scans in the Exam
were acquired, with the percentage of the total scans in the Exam in parenthesis.

Exam 1 2 3 4 5

Type CAC CAC CAC CAC Full lung

N eval. 2812 847 1517 708 2854

N train. 1234 363 753 307 −

Year started 2000 2002 2004 2005 2010

Year ended 2002 2004 2005 2008 2012

Main year 2001(55%) 2003(82%) 2004(65%) 2006(84%) 2011(61%)

scan available are used for parameter training. The technical details of the scans

are reported in Section 2.1.2.

With the currently available scans, a total of 2854 subjects fulfilled the criteria for

the evaluation data set. Of them, 448 had 1 CAC scan available, 1782 had 2 CAC

scans, and the remaining 624 had 3 CAC scans available. The numbers of scans

for each Exam in the evaluation and parameter training sets are summarized in

Table 5.1. Most commonly, subjects in the evaluation set have the first CAC scan in

Exam 1 and a single additional CAC scan in one of the subsequent Exams. Figure

5.1 shows an example of a subject with 3 CAC scans and a full-lung scan, and the

corresponding masks used in this study.
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Figure 5.1 CT scans for a subject with 3 CAC scans acquired on an Imatron
C-150 scanner, and a full-lung scan acquired on a Siemens Sensation 64 scanner.
The first column shows a coronal slice of each CT scan, and the second column shows
the lung mask used in extracting the emphysema scores. In the CAC lung masks,
white corresponds to the lung and black to the background. In the full-lung mask, the
black is for the background and the axial thirds are shown with different shadings.
The airway tree has been removed from the full-lung mask.

5.1.3 Estimation of parameter values

The HMMF model parameter value estimation for CAC scans is performed using

the approach explained in Section 3.1.9. The parameter training set includes all
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Table 5.2 Estimated parameter values: mean values and standard deviations of
σ∗2 and α∗2 of skew-normal distributions for class 2 (parenchyma), location µ∗θ1(= θ0

1)
for class 1 (emphysema) prior distribution and the associated tracheal air intensity
I∗tr, initial value θ0

2, and the Markov field weight λ.

σ∗2 (HU) α∗2 µ∗θ1(= θ0
1) (HU) θ0

2 (HU) λ

CAC 87.6(±29.0) 2.70(±0.90) −1029 (I∗tr = −984) −932 2.0

Full-lung 79.5(±17.7) 3.74(±0.51) −1000 (I∗tr = −931) −931 1.0

available 2657 CAC scans that are not part of the evaluation set. Of these, 1371

have %emph−950 < 2.0, and are used to initially learn the parametric distribution

scale (σ∗2) and skew α∗2 to represent the parenchyma. The learned parameter values

are shown in Table 5.2.

Learning the Markov field weight λ is not possible using the same approach as in the

previous study, as no directly corresponding CAC and full-lung scans were available

at the same time point. For this reason, the estimated values for scale σ∗2 are used

as a measure of image noise, and the proper λ parameter value is assumed to be

dependent on σ∗2. The λ value for CAC scans is assigned by interpolating using the

σ∗2 values in the longitudinal study in Chapter 3.

A linear relationship between σ∗2 and λ is assumed: λ = σ∗2a + b. The values for a

and b are solved by using the parameter values for EMCAP B60f and EMCAP B31f

in Section 3.1.8. The resulting Markov field weight estimate for the CAC scans is

rounded to λ = 2.0.

For the full-lung scans, the parameter values from the previous study are used (see

Section 3.1.8). These parameter values are repeated in Table 5.2 for convenience.

Airway segmentations were not available for the CAC scans, and initializing the

airway segmentation is challenging due to the different field-of-view compared to the

84



5.2. Results

full-lung scans. Due to this, the tracheal air intensities are estimated by manually

indicating the location of the largest airway visible on the first axial slice of the CAC

scan, for 20 randomly selected scans. The mean tracheal intensity was −984 HU.

5.2 Results

5.2.1 Median emphysema scores over the evaluation data set

The medians, interquartile ranges, means and standard deviations of %emph−950

and %emphMF for each Exam are shown in Table 5.3. There was a slight increase

in the median emphysema scores for the CAC scans, for both measures. Also for

both measures, the median for Exam 2 was approximately equal to the median of

Exam 1, but it should be noted that the populations of these two Exams were very

different (see Table 5.1).

The median %emph−950 for Exam 5 was notably much lower than for any of the

preceding Exams with CAC scans, while %emphMF had a slight increase. The

interquartile ranges of %emph−950 were slightly larger than those of %emphMF for

the CAC scans, and lower for the full-lung scans. Both %emph−950 and %emphMF

had a lower mean for the full-lung CT scans compared to the mean values for the

MESA COPD scans in the longitudinal study (see Table 3.3).
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Table 5.3 Median, interquartile range, mean and standard deviation (st.d.) for
%emph−950 and %emphMF for each Exam.

Exam 1 2 3 4 5

Median %emphMF 1.4 1.4 1.7 2.1 3.0

IQR %emphMF 1.9 1.8 2.3 2.6 3.9

Mean ± st.d. %emphMF 1.9± 1.8 1.9± 1.7 2.3± 2.2 2.7± 2.4 4.0± 4.0

Median %emph−950 1.6 1.6 2.0 2.4 1.1

IQR %emph−950 2.7 2.6 3.2 3.8 2.3

Mean ± st.d. %emph−950 2.5± 2.6 2.5± 2.5 2.9± 3.1 3.5± 3.6 2.1± 3.0

5.2.2 Correlations between CAC and full lung emphysema

scores

Pairwise Pearson’s correlations of %emph scores were evaluated between non-apical

Exam 5 full lung scores and groups of CAC scans by MESA Exam. The correlation

values are presented in Table 5.4. Scatterplots of the scores are shown in Fig. 5.2.

The correlation values were compared with Fisher’s r-to-z transformation (see Ap-

pendix B). The correlation values in Exams 2 and 3 were higher for %emphMF than

the corresponding values for %emph−950 at the 5% significance level. Exams 1 and

4 did not have statistically significant differences. Overall, the correlations for the

two measures had similar ranges, and the 95% confidence intervals overlap in all

Exams.

5.2.3 Progression of non-apical emphysema measures

Similarly to Section 3.2.4, this Section analyzes the progression of the non-apical

emphysema measures. The definitions of the differential %emph scores and annual
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Table 5.4 Pairwise Pearson’s correlations and 95% confidence intervals between
non-apical emphysema scores acquired from full lung scans in Exam 5 and each
of the groups of CAC scans by Exam. Two methods were used for emphysema
quantification: %emph−950 (%−950), and %emphMF (%MF). Numbers of scans
included in each evaluation are listed in Table 5.1. For all correlations p <
0.0001. The correlations were compared between the two quantification methods using
Fisher’s r-to-z transformation, and the p-values are listed on the bottom row. For
statistically significant (p < 0.05) differences, the higher correlation value is in bold.

Exam 1 2 3 4

%MF 0.735[0.717, 0.751] 0.759[0.729, 0.787] 0.677[0.649, 0.703] 0.565[0.5130.613]

%−950 0.715[0.697, 0.733] 0.707[0.671, 0.739] 0.634[0.603, 0.663] 0.522[0.466, 0.574]

p-value 0.11 0.023 0.038 0.26

progression rates are summarized here for convenience, with minor differences in

notation.

For each subject j, differential %emph scores (δ%emphCi,j) were generated, one

for each CAC scan i, by subtracting the full-lung %emph score (%emphFLj ) from

the preceding CAC %emph scores (%emphCACi,j ). Therefore, negative values of

δ%emphCi,j represented increase of emphysema over time.

The mean values and standard deviations of δ%emphCi,j were calculated by Exam.

To simplify analysis, the differential scores and full-lung scores associated with each

Exam were assigned to the Main year of the Exam (see Table 5.1). The results

are shown in Fig. 5.3, again with the previously estimated progression rate for

%emph−950 of 0.63 (Coxson et al., 2013).

The figure shows how both %emph−950 and %emphMF increased steadily for the

CAC scans, but %emph−950 decreased for the full-lung scans, while %emphMF

continued to increase steadily. The progression of %emphMF was much slower than

the reference annual progression rate of 0.63. The population used in this analysis
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Figure 5.2 Scatterplots displaying %emphMF and %emph−950 scores from CAC
scans in Exams 1-4 on the x-axis, and the corresponding scores of the same patient
from full-lung CT on the y-axis.
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Figure 5.3 Means and standard deviations of differential emphysema measures
δ%emph between CAC scans (2000 − 2008) and full-lung CT scans (2010 − 2012).
Number of scans for each year is reported in Table 5.1. A reference annual
progression rate of 0.63 for %emph−950 (Coxson et al., 2013) is plotted in blue,
by assigning a value of −0.63 · (2011− Y ) for each year Y .

had less emphysema on average than the EMCAP/MESA COPD data set in Section

3.2.4, which likely contributed to the slower progression rate. Also the exclusion of

apical regions may have contributed to this.

As in Section 3.2.4, the annual changes ∆a%emph were evaluated by computing

the difference in %emph between consecutive scans and dividing by the number of

years between them. The annual progression rates were then computed by taking

the mean of ∆a%emph for each subject, and calculating the mean and standard

deviation over the scan-specific measures. The results are presented in Table 5.5

(note that positive values of ∆a%emph correspond to increase in time).
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Table 5.5 Annual progression rates for %emphMF and %emph−950 , for all scans
in the data set, and divided in two groups based on their full-lung HMMF emphysema
score %emphFLMF.

All %emphFLMF > 5 %emphFLMF ≤ 5

N 2854 787 2067

%emphMF 0.20± 0.31 0.48± 0.40 0.09± 0.17

%emph−950 0.01± 0.33 0.12± 0.49 −0.03± 0.23

When analyzing all the scans in the data set, %emphMF had a small positive annual

progression rate. On the other hand, the annual progression rate for %emph−950 was

close to 0, which is assumed to be caused by the overall lower mean of %emph−950

on the full-lung scans compared to the CAC scans. The annual progression rates

increased with the amount of emphysema, for both %emphMF and %emph−950 . The

annual progression rate of %emphMF for subjects with %emphFLMF > 5 was closer to

the reference annual progression rate of 0.63 than the overall annual progression rate

for the entire population.

5.2.4 Prediction of full lung emphysema scores

Let nCj be the number of available CAC scans for each subject j. Each scan is

associated with a time point ti,j, i = 1, .., nCj , where the values t are computed from

the years Y at which the scans were acquired: ti,j = Yi,j−Y1,j. This way, t1,j = 0,∀j,

and the values of t represent the number of years from the initial CAC scan.

For all subjects j for which nCj ≥ 2, a constrained linear least-squares model was
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fitted to the CAC %emph measurements (%emphCi,j, i = 1, .., nCj ):

min
xj

1

2

∥∥∥∥∥∥∥∥∥∥∥∥


t1,j 1

...
...

tnC
j ,j

1


x1,j

x2,j

−


%emphC1,j

...

%emphC
nC
j ,j



∥∥∥∥∥∥∥∥∥∥∥∥

2

2

, (5.1)

where xTj = [x1,j x2,j] with xj ≥ 0,∀j. The values of x represent the slope and

intercept of the linear model. x is restricted to be non-negative, since the extent of

emphysema is assumed to be increasing in time and negative values are not possible

within the studied time frame (note that t1,j = 0,∀j).

Each xj is then used to generate a prediction %emph∗FLj for the full lung emphysema

score %emphFLj :

%emph∗FLj = [tFL,j 1]xj, (5.2)

and each prediction is associated with an error εj:

εj = %emph∗FLj −%emphFLj . (5.3)

For evaluating the quality of the predictions, the mean of the error terms (µε)

represents bias (measure of accuracy), and the error variance (σ2
ε) evaluates the

precision.

The fit of the linear model to the CAC emphysema scores for individual subjects is

not analyzed here, since many subjects had only 2 CAC scans available. For these

subjects, if %emphC1 < %emphC2 , which was often the case, there was no error in

the fit of the model.
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Table 5.6 Evaluation results of prediction of full lung CT emphysema scores
with CAC emphysema scores %emphC−950 and %emphCMF. The evaluation measures
include error median (medε), mean (µε) ± standard deviation (σε), and variance
(σ2

ε). The error variances were compared with the Brown-Forsythe test between the
%emphCMF and %emphC−950 prediction errors, and the resulting p-values are listed in
the last column.

Model input Reference medε µε ± σε σ2
ε B-F p-value

%emphC−950 %emphFL−950 1.7 3.3± 5.5 29.9 −

%emphCMF %emphFLMF −0.1 0.0± 3.9 15.3∗ < 0.0001

%emphCMF %emphFL−950 1.2 1.9± 3.7 13.7∗ < 0.0001

Table 5.6 presents the evaluation results on 2406 subjects that fulfilled the re-

quirement nCj ≥ 2. The results show that predicting values of %emphFLMF with

%emphCMF provides a higher precision (lower σ2
ε) than when predicting %emphFL−950

with %emphC−950. Also, an important and interesting quality is that predicting

%emphFL−950 with %emphCMF results in a higher precision than when using %emphC−950

for the prediction. These two differences in σ2
ε are statistically significant (p <

0.0001) when compared with the Brown-Forsythe test (Brown and Forsythe, 1974),

which has been shown to provide a robust test of the equality of variances for

non-normal distributions. The bias for the %emphFL−950 predictions obtained with

%emphC−950 was also larger (lower accuracy) than the bias for the predicted %emphFLMF.

5.3 Discussion

This evaluation showed that it is possible to provide reasonable estimates and predic-

tions of non-apical emphysema extent on cardiac CT. The correlations between the

CAC emphysema measures and non-apical full lung estimates had large differences

between the CAC Exams. The exact reason for this variability remains unknown,
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although the differences in populations between the Exams might have played a role.

The correlations for the two emphysema quantification methods were approximately

at the same level, although the correlations for %emphMF were higher than for

%emph−950 in Exams 2 and 3. The limitation of the correlation analysis is that it

does not take differing rates of emphysema progression into account.

The standard deviations in the parameter estimates for CAC scans are notably

higher than for the corresponding values in the EMCAP/MESA COPD evaluation,

see Section 3.1.8. This may due to the higher heterogeneity in the CAC imaging

protocols and the number of sites where the scans were acquired. To keep the

analysis simple and to reduce concerns on sensitivity to parameter training, a single

parameterization was used here for all CAC scans. Also, a single parameterization

was used for the full lung scans from two different scanners. A more granular ap-

proach might yield more accurate parameterizations, and result in better emphysema

score correspondence between studies. This should be a topic of future study.

In predicting the non-apical emphysema scores from CAC emphysema scores, %emphMF

was superior with a smaller bias and error variance compared to %emph−950. The

evaluation also showed how %emphMF can be used to improve predicted full lung

%emph−950 scores.

This study showed that %emphMF is capable of providing improved quantification

of emphysema from sub-optimal image data compared to the standard method.

In longitudinal image data sets where patients are scanned with varying protocols,

sometimes for other purposes, the proposed method may prove valuable by providing

more robust estimates of emphysema.
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Chapter 6

Unsupervised learning of texture

patterns associated with emphysema

6.1 Methods

6.1.1 Background

Each lung region in a CT scan is assumed to be a combination of multiple lung

texture patterns (LTPs) that have gradual variations within each scan. The LTPs

have different degrees of intra-class variability that are unknown a priori. Also, as

evidenced by typically low agreement in visual assessment of emphysema subtypes

(Barr et al., 2012), the transitions between LTPs are assumed to be ambiguous. For

unsupervised learning, these properties present challenges:

• Without training data, it is difficult to design features that are invariant to

intra-class variability.
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• Finding well-defined clusters from the population of feature vectors is challeng-

ing, since the resulting clusters are typically not well separable in the feature

space and they have different levels of intra-class variability.

Since the aim is to recognize patterns of emphysema, the implementation and

parameter value selections are geared towards learning patterns at low intensities,

where emphysema is presumed to be present. Less importance is given to pattern

variations at higher intensities. In a preliminary stage of this work, the following

qualities and requirements were deemed important for an approach that learns lung

texture patterns from CT scans:

1. Ability to handle large texture patch dimensionality associated with

3D neighborhoods. Image texture analysis commonly relies on using small

image patches, i.e. local samples of a larger image. In medical images with

3D structure, the dimensionality of the patch grows in the third power with

respect to the patch diameter, causing the patches to have significantly higher

dimensionality than when using regular 2D images.

2. Sparse sampling. A lung CT scan can include 25 million voxels within the

lung. Extracting a texture patch simultaneously for every single image point

would require enormous computational capabilities, as the patch dimensional-

ity can rise to tens of thousands. A good approach will take advantage of the

natural redundancy present in lung CT images and sample texture patches in

a sparse manner.

3. Invariance to rotation. Emphysema patterns are assumed not to have a

directional component. Learning directionality of 3D patterns would result
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in highly inefficient representations, but assuming rotation invariance enables

compact texture descriptors and better generalizability.

4. Computationally efficient clustering. The learning process cannot be

prohibitively expensive, and the clustering method has to be able to perform

with a large number of high-dimensional feature vectors.

5. Ability to handle ambiguous texture patterns. In contrast to natural

image processing where texture patterns have a discrete label (e.g. wood, sand,

etc.), lung CT image texture patterns may have very subtle and ambiguous

differences. This poses challenges for the clustering method, as directly finding

well-defined clusters in feature space is difficult, especially if the number of

clusters is not known a priori.

While rotation-invariant features are important for lung analysis, plenty of effort

has been dedicated in the computer vision community to also achieve invariance

to intensity and scale, e.g. Lowe (2004). However, these invariances may not be

suitable for CT image analysis, as the intensity values have been calibrated to

correspond to physical attenuation properties (Hounsfield Units), and image scale

is also normalized and is also an important feature in emphysema patterns.

In preliminary experiments, an approach using unsupervised dictionary learning for

sparse coding (Sprechmann and Sapiro, 2010) was tested for the purpose of texture

learning from lung CT data. A preliminary study is documented in Appendix C. The

implementation was performed use the software library SPAMS (Mairal et al., 2009a)

(Mairal et al., 2010) for the standard functions. However, the implemented version of

dictionary learning was computationally expensive, was not rotation-invariant, and

the dimensionality of the raw image patches was prohibitively large for the dictionary
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learning approach. Also, preliminary experiments showed that learning separate

dictionaries for ambiguous texture patterns was very difficult, as the dictionaries

tended to converge towards a common mean instead of finding unique clusters. This

is assumed to be a result of the lack of direct clusterability of emphysema patterns.

The requirements listed above for an unsupervised lung texture learning approach

were observed largely based on these preliminary experiments with unsupervised

texture learning.

6.1.2 Overview

The presented approach extracts feature vectors from local patches of CT scans, and

then learns the LTPs in two steps. The first step quantizes the feature vectors, by

clustering them to find a large number of texture prototypes. Each feature vector is

given a prototype label, and the texture prototypes then represent a very granular

categorization of local texture patterns. The second step of the learning then groups

the prototypes into LTPs based on the spatial occurrence of prototype labels. This

step assumes that texture prototypes that are often found near each other represent

the same pattern and therefore should be grouped together to capture the intra-class

variations in each LTP. Finally, the LTP labels are assigned to all image voxels in all

CT scans, and LTP histograms are used as scan signatures to represent the overall

textural content in the scan. The learning process is illustrated in Fig. 6.1, and the

steps are detailed below.

The proposed learning has been adapted from previous work (Leung and Malik,

1999, 2001; Lazebnik et al., 2005), where the studies have shown that the methods

provide good results for texture pattern learning in natural images. Similarly to

Leung and Malik (1999), the proposed approach aims to learn universal texture
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(a) (b) (c) (d)

Figure 6.1 Schematic illustration of the proposed unsupervised learning process.
First, a large number (∼ 106..107) of feature vectors are collected from the training
set scans (a). Within the feature space, a clustering method then finds texture
prototypes (∼ 102), illustrated as red squares in (b). A fully connected undirected
weighted graph (c) is constructed where each node represents a texture prototype
and each edge is assigned a weight that depends on the spatial co-occurrence of the
samples represented by the connected texture prototypes. The final LTPs are found
by grouping the texture prototypes using graph partitioning (d).

libraries. Due to large image volumes, sparse sampling was applied as in Lazebnik

et al. (2005). The learning model and the scan signature representation are closely

related to the bag of keypoints framework (Csurka et al., 2004), where an image is

represented by a collection of local patterns. To meet the requirements presented

in Section 6.1.1, existing approaches had to be adapted to lung texture learning.

One of the main differences is the goal of learning a compact set of texture classes,

to enable studying their properties across CT data sets. Also, since the present

work deals with unsupervised learning and no prior knowledge exists of the spatial

distribution of patterns, each local sample from a single keypoint was treated as

being independent, in contrast to most approaches dealing with natural images,

where all local samples from a given image patch are known to represent the same

texture pattern.
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6.1.3 Extraction of feature vectors

Preprocessing and intensity rescaling

To restrict the analysis to the lungs, external regions are excluded by segmenting the

lungs in a preprocessing step, see Section 2.2. Parenchymal intensity values appear

only at a small band of the total CT intensity range. The vasculature exhibits a

very high contrast to the parenchyma, and may interfere with learning parenchymal

texture patterns if CT attenuation values are used directly. In particular, differential

measures used here for keypoint extraction and as features (see below) are dominated

by highly contrasted structures.

To focus the texture learning approach on the intensity range of interest, image

intensities are rescaled, so that the highest contrast is assigned to a range where

textural changes due to emphysema are presumed to be present. A sigmoidal

function is used for the purpose:

S(y) =
1

1 + exp [−s (y − b)]
, (6.1)

where s is the slope and b the center of the distribution. The rescaled values I(x)

in the range [0, 1] are obtained by:

I(x) =
S(I0(x))− S(min[I0(x)])

1− S(min[I0(x)])
, (6.2)

where Io(x) represents the original intensity value at voxel x, and S(min[I0(x)]) is

used to ensure that the rescaled values use the full range [0, 1] (CT intensity values

are restricted to be equal to or higher than −1024 HU, and the minimum of the

resulting range would otherwise be S(−1024), rather than 0).
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The parameter values of the rescaling function S are chosen so that most of the

resulting contrast is within the range [−1000,−900] HU. The value for b is chosen

at the middle of the range, b = −950 HU, and the slope parameter s = 0.035 is

chosen so that the rescaled values have an almost linear relationship to the original

intensities within this range. The resulting function and the effect of the intensity

rescaling on a CT scan are shown in Fig. 6.2. Note how high intensities are mapped

to a narrow band close to the maximum of the rescaled range (e.g. values higher

than −850 HU are mapped to ∼ 1).

Extraction of keypoints

A sparsely sampled set of keypoints V is collected over all the images. Sparse

sampling is done to reduce computational expense at subsequent stages, and also

to ensure that the sampling rate is higher at locations that have a large amount of

textural information present. Sparse sampling has been previously used for learning

texture representations in the work of Lazebnik et al. (2005).

As emphysematous regions represent overall a far smaller proportion of lung volume

than healthy parenchyma, sparse sampling ensures that more samples are extracted

at regions with pathology than at healthy regions. This facilitates the unsupervised

learning of these relatively uncommon patterns. Sparse sampling contrasts with the

uniform sampling commonly used in other studies, e.g. Castaldi et al. (2013); Xu

et al. (2006), where image patches are extracted at arbitrary step sizes, regardless

of the image information content.

Each keypoint vk ∈ V, k = 1, ...nv, is found as a scale-space maximum of the

3D Difference-of-Gaussian (DoG) function, which is also the basis of the widely
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Figure 6.2 Illustration of the CT intensity rescaling and Difference of Gaussian
(DoG) maps. The sigmoidal rescaling function (a) is applied to the CT scan (b),
resulting in the rescaled image (c). The DoG responses computed on the rescaled
image are shown at three scales (d-f).

101



6.1. Methods

used Scale-Invariant Feature Transform (SIFT) (Lowe, 2004). A multi-dimensional

version of the used keypoint extraction procedure was introduced in Cheung and

Hamarneh (2007) and Cheung and Hamarneh (2009). Details are available in these

publications; a brief overview is included here.

The DoG function at scale σ is defined as: D(σ) = (G(kσ) − G(σ)) ∗ I, where G

is the Gaussian kernel, I is the (rescaled) input image and k =
√

2 is a constant

factor that defines the sampling frequency in scale. DoG provides a computationally

efficient close approximation to the scale-normalized Laplacian of Gaussian σ252G,

which has been used extensively for feature detection (Lindeberg, 1993; Gårding and

Lindeberg, 1996; Lindeberg, 1998).

The DoG response is evaluated in 3D at three octaves of the scale space (i.e.

doubling of σ) for the entire scans, beginning with the original scale of the image

and subsampling by a factor of 2 to reach the next octave. The scale-space extrema

of the DoG responses within the lung masks are extracted and selected as keypoint

candidates. To remove weak responses, the final keypoints are chosen from the

candidates by selecting ones for which the absolute value of the DoG response is

above 0.03, similarly to Lowe (2004). Figure 6.2(d-f) illustrates the DoG response

map on an axial slice of a CT scan. Small structures cause the strongest responses at

the initial scale (Fig. 6.2(d)), and large structures result in the strongest responses

at subsequent scales (Fig. 6.2(e,f)). The resulting keypoints extracted from the

same axial slice are shown in Fig. 6.3.
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Figure 6.3 Illustration of all the extracted keypoints, shown as red circles on the
axial slice from Fig. 6.2.

Extraction of feature vectors

Around each keypoint vk, a feature vector qk ∈ Q, k = 1, ..., nv is extracted from

a (3D) spherical neighborhood with a diameter of 14 mm, forming pairs [vk, qk].

The diameter was chosen as an approximation of the average diameter of the sec-

ondary pulmonary lobule (Osborne et al., 1983), which is the smallest lung structure

marginated by connective tissue septa (Webb, 2006). Other studies have assumed

larger diameters for the secondary pulmonary nodule, and have used larger im-

age patches (e.g. squares with 24.18 mm sides for 2D patches (Castaldi et al.,

2013)). The initial experiments in this study showed that it is advantageous to

keep the neighborhood size relatively small, as the 3D spherical neighborhoods of

high-resolution CT already include ∼ 3000 voxels within a 14 mm diameter. Larger

neighborhoods tend to average out small structures, making the method less sensitive
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to local changes. However, a larger neighborhood size is later used when assessing

the spatial co-occurrence of the texture prototypes (see Section 6.1.4).

Each feature vector qk consists of the following four normalized soft histograms,

with 10 bins each: one histogram of rescaled intensity values, over the entire range of

values [0, 1], and three histograms of DoG responses at the three octaves used for key-

point extraction (see above). The range of the DoG histograms was [−0.075, 0.075],

which covered over 99% of the observed values in the training set. Soft histograms are

less sensitive to quantization errors than regular histograms, and were also used to

generate feature vectors in Lazebnik et al. (2005). They are analogous to the kernel

density estimations in Castaldi et al. (2013). To compute the soft histogram, each

value of a parameter map P (x) (intensity or DoG response), affects all histogram

bins with a weight w at each bin i, defined as (Lazebnik et al., 2005):

w(i) = exp

(
|P (x)− i|2

2β2

)
, (6.3)

where β is the kernel width, chosen as one half of the histogram bin width. Finally,

the feature vectors are normalized to unit norm, so that one half the weight is in

the intensity histogram and the other half in the three DoG response histograms.

The extracted feature vectors have the advantage of being invariant to rotation, and

they are simple to compute, as the intensity and DoG maps are readily available.
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6.1.4 Learning of lung texture patterns (LTPs)

Defining texture prototypes

After the extraction of feature vectors Q at keypoints V , clustering is performed on

all feature vectors QT collected from training scans. Feature vectors qk ∈ QT , k =

1..nT , are clustered using the fuzzy c-means (FCM) algorithm (Bezdek, 1981), by

minimizing the objective function:

Jc,m(U, y) =
c∑
i=1

nT∑
k=1

Um
ik ||qk − yi||22, (6.4)

where U is a partition matrix, c is the number of centroids and m is a fuzzification

parameter. The selection of the values for c and m is presented in Section 6.2.2. The

centroids yi, i = 1, .., c produced by FCM are used as texture prototypes, and each

keypoint vk is assigned a prototype label Ly(vk) = arg mini d(qk, yi), where d is the

Euclidean distance. The prototypes provide a quantization of the feature vectors in

the training set, and ideally for each feature vector there is at least one prototype

at a small distance.

Defining a texture prototype similarity matrix

The texture prototypes are combined to form LTP classes using graph partitioning of

a similarity matrixW . The similarity between a pair of texture prototypes (yi, yj) is

defined to depend on the frequencies of pairs of keypoint labels (Ly(vk) = i, Ly(vl) =

j) appearing at each other’s proximity in the scans. The purpose is to capture spatial

variations of textures by assuming that neighboring keypoints usually belong to the

same texture pattern.

105



6.1. Methods

For this purpose, first a co-occurrence matrix is constructed:

H(i, j) =
∑
vk∈VT

∑
vl∈vNk

= δ(Ly(vk)− i, Ly(vl)− j); i, j = 1, 2, .., c, (6.5)

where δ(0, 0) = 1, and 0 otherwise, vNk is a spherical neighborhood around vk,

with a diameter of 25 mm, which is approximately the size of the largest secondary

pulmonary lobules, and VT is the set of keypoints in the training set.

The symmetric similarity matrix W representing a weighted undirected graph is

then obtained as:

W (i, j) =
H(i, j) +H(j, i)∑

kH(i, k) +
∑

lH(j, l)
(6.6)

when i 6= j, and W (i, i) = 0, ∀i, j.

Grouping texture prototypes into LTPs

In the last step of the learning process, texture prototypes are combined to form

LTPs. This is done as a graph partitioning Gr(W ) that minimizes the graph cut of

the similarity matrix W , for a given number of partitions r.

Graph partitioning is an NP-complete problem. A multilevel k-way partitioning

(Karypis and Kumar, 1998b), (Karypis and Kumar, 1999) algorithm was used to

partition the graph, using an implementation provided in the open-source METIS

(Karypis and Kumar, 1998a) software. This algorithm has been shown to generate

partitions of better quality than alternatives, such as multilevel recursive bisection

or multilevel spectral bisection partitioning. Also, the computational complexity of

the multilevel k-way partitioning is only O(|E|), i.e. linear to the number of edges

in the graph |E|.
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The multilevel k-way partitioning includes three stages (see details in Karypis and

Kumar (1998b)):

1. Graph coarsening. This stage iteratively combines vertices to generate a

coarser graph. The connectivity of the original graph is retained, and weights

of edges are summed between combined vertices.

2. Initial partitioning. The coarsened graph is partitioned using the multilevel

bisection algorithm, which is fast to compute for a small graph and provides

a good initialization for finding the final partitioning.

3. Uncoarsening. The coarse graph is iteratively uncoarsened, by expanding

the groups of vertices until the predefined number of partitions is reached, or

no vertex groups exist, i.e. the vertices in the graph are the original vertices.

At each iteration, the partitioning is refined by switching vertices between

partitions if the operation decreases the edge cut of the graph (see below).

The partitioning was performed with different values of r to find the optimal value

rf and to produce the final partitioning Grf . To determine the validity of each

partitioning Gr into clusters C1, C2, .., Cc, the intra-cluster density ρint, the inter-

cluster density ρext, and the total graph density ρtot are used Schaeffer (2007):

ρint (G|C1, C2, ..., Cc) =
1

c

c∑
k=1

ρint(Ck), (6.7)

where

ρint(Ck) =

∑
i∈Ck

∑
j∈Ck

W (i, j)

|Ck|(|Ck| − 1)
, (6.8)

and

ρext (G|C1, C2, ..., Cc) =

∑
i∈Cl

∑
j∈Cm

(W (i, j)|l 6= m)

c(c− 1)−
∑c

k=1 (|Ck|(|Ck| − 1))
, (6.9)
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ρtot(G) =

∑
i

∑
jW (i, j)

c(c− 1)
. (6.10)

The notation |Ck| refers to the size of cluster k. Preferably, when comparing to ρtot,

ρint should be much higher and ρext should be smaller. To fulfill these criteria, a

partitioning validity measure R is defined:

R(Gr) = (ρint(Gr)− ρtot(Gr)) · (ρtot(Gr)− ρext(Gr))
2 , (6.11)

and the final number of partitions rf is selected as:

rf = arg max
r

[R(Gr)] . (6.12)

The graph partitioning defines the LTP labels LP (yi) for prototypes yi. Each key-

point vk is also assigned an LTP label through its prototype assignment: LP (vk) =

LP (yLy(vk)). Finally, LTP label masks are generated for the lung region by assigning

the LTP label of the nearest keypoint to each voxel. The LTP label maps are

extracted from all training and test scans and normalized histograms of the voxel

LTP labels are extracted for all CT scans. These LTP histograms are used as scan

signatures.

6.2 Results

6.2.1 Data

CT scans from the Multi-Ethnic Study of Atherosclerosis (MESA) COPD Study

(Smith et al., 2014) (see CT study description in Section 2.1.3) were used for training
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and evaluation. Participants recruited from the cohort study of smokers and from

the community (NE = 127) were used for training, and those recruited from MESA

(NM = 192) were used for testing.

The extent of emphysema was quantified with the standard percent emphysema mea-

sure at −950 HU (%emph−950). The median and interquartile range of %emph−950

were 1.5% and 4.3% for the training set, and 1.8% and 3.4% for the test set.

The following clinical characteristics were available for subsets of the MESA COPD

data set (see evaluation results in Section 6.2.6) and used here for evaluating the

clinical significance of the found LTPs (details available in Smith et al. (2014);

Thomashow et al. (2013)):

• Height, weight, age, gender, race

• Forced expiratory volume in 1 second (FEV1), COPD status, COPD severity

• Pulmonary blood flow and blood volume

• Single-breath diffusing capacity of carbon monoxide (DLCO)

• DLCO/V A ratio (DLCO corrected for alveolar volume)

• Residual lung volume (RLV)

• RV/TLC ratio (RLV corrected by total lung capacity (TLC))

• Base oxygenation

• 6-minute walking distance and %Predicted 6-minute walking distance

• MRC dyspnea measure (5-level scale)
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In addition, emphysema subtypes and severity have previously been assessed visually

in the MESA COPD Study, with details available in Smith et al. (2014). The raters

included four chest radiologists from two academic medical centers. They assessed

the emphysema subtypes on CT independently without clinical information, by

assigning a percentage of the lung volume affected by the following three emphy-

sema subtypes: centrilobular (CLE), panlobular (PLE), and paraseptal emphysema

(PSE). Multiple raters assessed the training set, and a single rater assessed the

test set. The visual assessments were used in this study for evaluating the texture

learning results (see Sections 6.2.7 and 6.2.8).

6.2.2 Selection of parameter values and training results

From the entire data set of 319 CT scans, approximately 16.4 · 106 keypoints were

extracted for a mean of 51, 468 keypoints per scan. The standard deviation was

48, 234, indicating that there was a large variability between scans in the number of

extracted keypoints. From the training set, a total of nT ≈ 5.4 · 106 keypoints VT

(and feature vectors QT ) were extracted.

To select the valuemf form (6.4), the clustering was performed with c = 50, 100, 150,

and m = 1.1, 1.2, ..., 2.0, 2.5, 3.0, 4.0, 5.0 on a randomly selected subset of feature

vectors in the training set. The number of feature vectors in this subset was 54, 134,

representing 1% of the training set size.

The value of m that minimized the median distance between the feature vectors and

their nearest centroids was collected for each tested value of c. The median distance

was minimized at m = 1.5 when c = 50, 100, and at m = 1.4 when c = 150. The

differences in the median distances were very small when m < 1.7, and therefore
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any of these values should yield similar results. In our experiments, mf = 1.5 was

used.

The value for c should be large enough to provide good approximations of the feature

vectors, but small enough so that the similarity W matrix does not become too

sparse. Increasing c always decreases the average distance between feature vectors

and the centroids, but a large value also entails a large computational expense. FCM

clustering requires storing the membership matrix U , with dimensions nv× c, which

may become restrictive if c is very large.

To find a suitable value cs for c, FCM clustering was performed withmf = 1.5, using

the same training subset as above for choosing mf . Again, the median distance

between the feature vectors and their nearest centroids were recorded for each value

of c. The final value cf for c was chosen by iteratively increasing c and stopping when

the decrease in the median distance was less than ε. The value for ε was empirically

set to ε = 5× 10−5, which resulted in cf = 120. Even though the stopping criterion

is somewhat arbitrary, the value cf does not determine the number of the resulting

LTPs, but only the number of texture prototypes, i.e. the feature vector quantization

accuracy.

The FCM clustering was then performed on the entire training set of nT samples.

The mean Euclidean distance between the feature vectors and the assigned proto-

types was 0.030 (the median was 0.028). The resulting texture prototype vectors

are visualized in Fig. 6.4.

The similarity matrix W was constructed based on the spatial co-occurrence of

prototype labels, and the graph partitioning was performed with r = 4, 5, ..., 20.

The partitioning validity measures R for all tested values of r are shown in Fig.
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Figure 6.4 Illustration of 120 texture prototype vectors resulting from the fuzzy c-
means clustering. Dimensions 1−10 correspond to the DoG histogram at the smallest
scale, and dimensions 11− 20 and 21− 30 correspond to the two subsequent scales.
Dimensions 31− 40 correspond to the scaled intensity histogram. For visualization,
the y-axis has been restricted to a maximum of 0.2.

6.5. The maximum of R occurred at r = 8, and this value was used for the final

partitioning Grf . Figure 6.6 visualizes the input matrixW and the final partitioning

result Grf . The prototypes assigned to each texture pattern class are plotted in Fig.

6.7.
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Figure 6.5 Graph partitioning validity R (for visualization, rescaled linearly to
a similar range with the graph density measures), intra-cluster density ρint, inter-
cluster density ρext, and total graph density ρtot for different numbers of partitions
r.

6.2.3 Examples of LTP assignments, label masks, and LTP

histograms

The characteristics of LTPs are illustrated in this Section by examples. The next

Section evaluates the average intensities and presence of emphysema in the LTPs,

followed by an analysis of the spatial co-occurrence of LTPs. Section 6.2.6 evaluates

the associations of LTPs with clinical characteristics, and correspondences of LTPs

to visually assessed classic emphysema subtypes are presented in Section 6.2.7. The

visually assessed severity values are further used to demonstrate how well LTP
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Figure 6.6 (a) Similarity matrix W, (b) graph partitioning result for r = 8, (c)
intra-cluster weights, and (d) inter-cluster weights.

histograms can be used to find similar scans in the database, which is important

for grouping scans and identifying homogeneous patient populations. Finally, the

reproducibility of the LTP histograms is evaluated by modifying the training set.

Examples of image patches from different scans assigned to LTPs are shown in

Fig. 6.8. The figure illustrates that the LTPs represent different texture classes

with distinct visual patterns and high intra-class similarities. Figure 6.9 shows two

examples of LTP labeling of CT scans that have the same %emph−950, but are
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Figure 6.7 Feature vectors of lung texture prototypes grouped into 8 LTPs by graph
partitioning.

LTP1 LTP2 LTP3 LTP4 LTP5 LTP6 LTP7 LTP8

Figure 6.8 Examples of axial image patches around keypoints assigned to each
LTP. The axial slices show a part of the 3D neighborhood used to compute the feature
vectors that represent each keypoint.

composed of very different sets of LTPs that also differ in spatial distributions, as

shown on the LTP label masks and the LTP histograms.
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Figure 6.9 Labeling of CT scans with LTPs. From left to right: coronal slices,
LTP label masks and normalized LTP histograms of two test subjects (S1, S2), with
both having %emph−950 = 11.9.

Figures 6.10 and 6.11 show coronal slices of representative scans with the highest

proportions for each LTP in the entire data set. The figures also show the corre-

sponding LTP label masks at the same coronal slices, and their LTP histograms and

%emph−950 values. The figure illustrates how CT scans with similar %emph−950 can

have very different LTP histograms, as is the case for the representative scans of

LTP 3 and LTP 5, as well as the scans representing LTP 6 and LTP 7.

6.2.4 Extent of emphysema in LTPs

The scan-specific mean intensity (using original HU values) and mean %emph−950

were evaluated separately within each LTP region, individually for each scan in the

data set. Table 6.1 reports the means and standard deviations of the scan-wise

measures for each LTP. These results show that LTP 1 seems to correspond to non-
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Figure 6.10 Representative CT scans for LTPs 1− 4, selected as the scans with
the highest proportion of each LTP in the data set. The first column shows coronal
slices from the CT scans, with the associated %emph−950 below each image. The
second column shows the corresponding LTP label masks, and the normalized LTP
histograms are shown in the third column.
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Figure 6.11 Representative CT scans for LTPs 5− 8, selected as the scans with
the highest proportion of each LTP in the data set. The first column shows coronal
slices from the CT scans, with the associated %emph−950 below each image. The
second column shows the corresponding LTP label masks, and the normalized LTP
histograms are shown in the third column.
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emphysematous parenchyma, as the average %emph−950 is very low. On the other

hand, LTP 7 and LTP 8 represent moderate to severe emphysema, with high average

%emph−950 and low average intensities. The other LTPs have significant overlap

in the mean %emph−950 and intensity values. There seems to be no systematic

correspondence between average intensity and %emph−950 values within the LTPs.

Table 6.1 also reports the average proportion of lung volume assigned to each LTP.

The results show large disparities on the occurrence of LTPs. On average, over half

of the total lung volume is assigned to LTP 1, while LTP 3 and LTPs 5-8 are fairly

uncommon.

Additionally, to inspect most common LTPs within emphysematous regions, the

normalized LTP histograms were extracted within regions defined by Io < −950 HU,

and referred to as the emphysema LTP histograms, or ELTP histograms. Only

scans with %emph−950 > 2.0% were included (N = 149) to ensure a sufficiently

large sample size of LTP labels for each scan. The maxima of the individual ELTP

histograms occurred most commonly at LTP 5 (20%), LTP 2 (19%), and LTP 7

(17%).

6.2.5 Spatial regularity and co-occurrence of LTP labeling

The spatial regularity of the LTP labels was evaluated by studying their co-occurrence

within spherical neighborhoods with a diameter of 25 mm around each keypoint. A

co-occurrence matrix of LTP labels using all keypoints was constructed separately

for the test and training sets. The rows of the matrices were normalized to 100%,

and the results are shown in Table 6.2.
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Table 6.1 Mean and standard deviation (st.d.) values of scan-wise average
measures of %emph−950 (%−950) and intensity (Int.) of voxels within the eight LTP
classes. The values are computed over the N scans with at least 1% of the lung
volume included in the LTP. The weighted mean (w. mean) values are computed
by weighting scan-wise means by the amount of LTP present, over the entire data
set (319 scans). The bottom row shows the average proportions of lung volume (Av.
Vol(%)) assigned to each LTP in the test/training sets.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

%−950 w. mean 0.4 1.9 7.3 3.7 12.4 18.1 33.3 59.7

mean 0.6 2.1 6.3 3.9 12.2 16.7 31.6 55.6

st.d. 0.4 1.3 1.9 1.8 2.2 2.5 5.3 7.2

Int. (HU) w. mean −880 −908 −840 −920 −926 −908 −941 −963

mean −870 −896 −829 −906 −914 −897 −927 −944

st.d. 46.7 27.7 15.5 22.1 16.7 14.0 17.6 22.5

N 317 293 225 240 146 163 83 40

Av. Vol(%) 52/51 23/22 3/5 11/10 4/3 3/4 2/2 1/3

Table 6.2 LTP spatial co-occurrence matrices for the test/training set (N =
192/127). Values are reported in percentages on all keypoints. Each row sums up to
100% (differences due to rounding) and values higher than 1

8
= 12.5% are in bold.

Surrounding LTP

1 2 3 4 5 6 7 8

C
en
te
r
LT

P

1 51/45 35/31 10/17 2/2 0/0 2/4 0/0 0/0

2 5/6 59/52 4/6 24/24 2/3 6/10 0/1 0/0

3 5/4 12/7 48/52 4/2 1/1 23/24 1/1 7/8

4 0/0 15/13 1/1 62/59 14/16 7/8 1/2 0/0

5 0/0 2/2 0/0 20/21 58/56 8/7 12/12 0/0

6 0/0 6/5 7/9 11/7 9/5 51/54 11/11 5/9

7 0/0 0/0 0/1 2/3 17/12 13/17 62/54 6/13
8 0/0 0/0 6/4 0/0 0/0 15/12 15/11 63/72
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The following properties of the LTPs can be inferred from the spatial occurrence

matrices:

1. The differences between the training and test data were mostly small. Some

of the larger differences are presumably due to differences in the patient

populations between the test and training sets. For example, LTP 3 and

LTP 8 were less common in the test set (see Table 6.1), and therefore they are

less frequent as surrounding LTPs.

2. Surrounding LTPs are most likely of the same LTP as the center one. This

shows that the LTPs have spatial regularity within each class.

3. All LTPs, with the exception of LTP 6, have one or two other LTPs that are

noticeably more likely than others to occur in their neighborhood.

4. Even though LTP 3 and LTP 4 regions have similar average %emph−950 (see

Table 6.1), they do not occur commonly at each other’s vicinity. Furthermore,

in the neighborhoods of LTP 2 and LTP 5, LTP 4 is fairly common, but LTP 3

is very rare or even absent. The roles of LTP 3 and LTP 4 are switched in the

neighborhoods of LTP 1 and LTP 8.

5. LTP 8, which has the highest %emph−950 on average, is found in the vicinity

of LTP 3 but not of LTP 5, even though %emph−950 is on average higher in

LTP 5 than in LTP 3.

6.2.6 Clinical characteristics of LTPs

To study the clinical significance of the LTP assignments, the partial correlations of

LTP histogram values with clinical characteristics (see Section 6.2.1) were computed
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over the sub-populations of scans with such data available. This analysis will focus

on five clinical variables: COPD status, %predicted 6-minute walking distance, MRC

dyspnea measure, base oxygenation, and DLCO. The full results for all available

clinical variables are included in Appendix A.

The partial correlations were computed after adjusting for age, race, gender, height

and weight in the base model (Model 1), adjusting additionally for %emph−950 in

Model 2, and adjusting additionally for %emph−950 and FEV1 in Model 3. The

partial correlation values are visualized in Fig. 6.12 (values for COPD status and

MRC are flipped in the figure for visualization purposes, so that a decrease in the

values always corresponds to more symptoms for all five variables).

With Model 1 in Fig. 6.12(a), partial correlations of the five clinical variables

show consistent directionality for each LTP. The strongest partial correlations were

present for COPD status, DLCO, and the MRC dyspnea measure, and for each tested

clinical characteristic the partial correlations were statistically significant for at least

5 of the total 8 LTPs (see Appendix A). These qualities show that each LTP has

a clear profile in terms of clinical characteristics, and that several LTPs capture

features in CT scans that have clinical relevance. While LTP 1 and LTP 2 seem

to be associated with healthier subjects (positive values), LTPs 3,6,7,8 are present

often together with symptoms (negative values). Between the LTPs associated with

disease, the results indicate differences in clinical characteristics. For example, LTPs

3 and 8 are associated with increased dyspnea and only a slight reduction in base

oxygenation. The associations to these variables are switched for LTP 7.

Even though adjusting additionally for %emph−950 in Model 2 resulted in a slight

decrease in the absolute values of the partial correlations, most of the associations
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Figure 6.12 Partial correlation values of the 8 LTPs with five clinical characteris-
tics: COPD status (COPDst), %predicted 6-minute walking distance (%pred6MW),
MRC dyspnea measure, base oxygenation (Baseoxy), and DLCO. The signs of COPD
status and MRC have been flipped for visualization purposes. Three models were
used: (a) Model 1 is adjusted for age, race, gender, height and weight, (b) Model 2
is adjusted additionally for %emph−950, and (c) Model 3 is adjusted additionally for
%emph−950 and FEV1.
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of Model 1 are still present. These results indicate that the clinically relevant infor-

mation captured by the LTPs would not be available when using only %emph−950.

With Model 3, the number of statistically significant partial correlations is smaller

than with the other two models. This is expected particularly for COPD status,

as it is defined using the FEV1 measurements. Nonetheless, 6 of the 8 LTPs have

a significant partial correlation for at least one clinical characteristic. The LTPs

with the highest numbers of statistically significant correlations in Model 3 are LTP

3 (DLCO, %pred6MW, and MRC) and LTP 8 (COPD status, %pred6MW, and

MRC). Based on these results, LTP 3 seems particularly important in identifying

novel features associated with increased dyspnea and decreased DLCO.

6.2.7 Associations of LTPs with visually assessed emphysema

subtypes

This experiment studies the correspondence of visually assessed classic emphysema

subtypes (Smith et al., 2014) with the extracted LTPs. Correlations of individual

LTP histogram values with visually assessed subtype severity values are reported in

Table 6.3.

The highest correlations for Total severity are found for LTP 3 and LTP 8, which

are also moderately correlated with each of the subtypes. LTP 6 and LTP 7 are

correlated with CLE and PLE, but less with PSE. The correlations of LTP 3 and

LTP 6 with CLE are stronger than with PLE or PSE. LTP 4 and LTP 5 are not

strongly correlated with any visually assessed emphysema subtype.

The distributions of LTP assignments for participants with no visually assessed
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Table 6.3 Pearson’s correlation coefficients of LTPs with visually assessed emphy-
sema subtype severity (CLE, PLE, PSE, and Total Severity), over the entire data
set. Statistically significant (p < 0.05) correlations are in bold.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

CLE
corr. −0.28 −0.26 0.67 −0.16 −0.05 0.69 0.34 0.63

p < 0.0001 < 0.0001 < 0.0001 0.005 0.36 < 0.0001 < 0.0001 < 0.0001

PLE
corr. −0.22 −0.19 0.41 −0.10 −0.00 0.37 0.30 0.69

p 0.0001 0.0009 < 0.0001 0.08 0.98 < 0.0001 < 0.0001 < 0.0001

PSE
corr. −0.09 −0.17 0.41 −0.11 −0.04 0.12 0.07 0.48

p 0.11 0.003 < 0.0001 0.06 0.49 0.04 0.21 < 0.0001

Total
corr. −0.30 −0.30 0.73 −0.18 −0.05 0.65 0.36 0.84

p < 0.0001 < 0.0001 < 0.0001 0.001 0.40 < 0.0001 < 0.0001 < 0.0001

emphysema (total severity < 1%) and subjects with visually assessed emphysema

are shown in Figure 6.13. In this analysis it should be noted that while the non-

emphysematous scans include mostly healthy parenchyma, also the emphysematous

scans usually have a majority of healthy parenchyma. The mean visually assessed

total emphysema severity of the entire data set was 4.7%, and 12.3% for the scans

with emphysema present.

The LTP distributions were compared between these two groups using the Mann-

Whitney U-test. The results are shown in Table 6.4. The results show that most

LTPs have a statistically significant difference between the emphysematous and

non-emphysematous scans, even though emphysematous regions commonly affect
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Figure 6.13 Boxplots of LTP distributions for participants with no visually
assessed emphysema (n = 205, total severity < 1%) (left), and participants with
visually assessed emphysema (n = 114) (right).

Table 6.4 Medians of LTP distributions of scans with no visually assessed
emphysema (no em.) and scans with emphysema (em.). The p-values of the Mann
Whitney U-test are shown on the bottom row.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

no em. 0.547 0.270 0.013 0.092 0.005 0.006 0.000 0.000

em. 0.389 0.212 0.055 0.060 0.016 0.032 0.006 0.003

p-value 0.005 0.0002 < 0.0001 0.14 0.19 < 0.0001 < 0.0001 < 0.0001

only a part of the lungs. The distributions of LTP 5 did not differ between the

populations, even though the average %emph−950 within these regions was 12.4 (see

Table 6.1).
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Table 6.5 P-values of the two-sided Mann-Whitney U-test for LTP histogram
values between two groups (P1 and P2) of predominant subtypes: no emphysema
(Abs), CLE, PLE, and PSE.

Lung texture pattern (LTP)

P1 P2 1 2 3 4 5 6 7 8

Abs CLE 0.004 < 0.001 < 0.001 0.23 0.12 < 0.001 < 0.001 < 0.001

Abs PLE 0.005 0.28 < 0.001 > 0.99 0.03 < 0.001 < 0.001 < 0.001

Abs PSE 0.81 0.05 < 0.001 0.19 0.59 0.70 0.48 0.002

CLE PLE 0.22 0.53 0.20 0.40 0.16 0.69 0.24 0.34

CLE PSE 0.03 0.58 < 0.001 0.46 0.16 < 0.001 0.01 0.07

PLE PSE 0.008 0.71 0.28 0.24 0.04 0.003 0.002 0.05

Distributions of LTPs were compared between the visually assessed predominant

subtypes (subtype with the highest severity) using the Mann-Whitney U-test for

each pairwise combination. The results are shown in Table 6.5. When comparing

subjects with no emphysema to subjects with any type of predominant emphysema,

the distributions of LTP 3 and LTP 8 were significantly different. In addition,

distributions of LTP 1, LTP 6, and LTP 7 were different between subjects with no

emphysema and either predominant CLE or PLE, but not for predominant PSE.

For subjects with emphysema present, distributions of four LTPs differed when com-

paring predominant PSE to either CLE or PLE. The LTPs that best discriminated

PSE from the other two subtypes were LTP 1, LTP 6 and LTP 7. On the other

hand, no LTP distributions differed between CLE and PLE, which may be due by

the small number of subjects with predominant PLE (15), and the presence of CLE

in predominantly PLE subjects (11 of the 15 predominantly PLE subjects had CLE

present, and the mean proportion of the total emphysema severity attributed to

CLE was 27% for these 15 subjects).
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6.2.8 Content-based image retrieval

As an application of the learned LTPs, the ability of the extracted textural informa-

tion to retrieve similar CT scans within the data set was examined, i.e. content-based

retrieval of scans. For this purpose, three different scan signatures were considered

to represent the CT scans: 1) the LTP histograms (HL), 2) the ELTP (emphysema

LTP) histograms (HE), and 3) 16-dimensional signatures obtained by combining the

LTP and ELTP histograms (HL+E). The dissimilarity between each pair of scans

was determined by the χ2 distance between their texture signatures (see Rubner

et al. (2000)):

dχ2(Hi, Hj) =
1

2

∑
k

(Hi,k −Hj,k)
2

Hi,k +Hj,k

, (6.13)

where Hi,k represents the kth element of the texture signature Hi. For comparing

histograms, dχ2 has the desirable quality of weighing differences with the absolute

values of the corresponding histogram elements. In other words, a difference between

histogram elements has a larger effect when the absolute values of the elements are

small than when the same difference occurs with large values.

Also another histogram measure, the Earth Mover’s Distance (EMD) (Rubner et al.,

2000), is commonly used to define distances between histograms. In this application

however, EMD is not applicable as there is no natural ordering for the histogram

elements, and distances across histogram elements would be difficult to define.

In addition to the texture signatures, scans were matched using %emph−950 , to eval-

uate the ability of the standard measure of emphysema extent to perform content-

based image retrieval. Content-based image retrieval for lung scans has been pre-

viously proposed by Dy et al. (2003), although their learning approach relied on

manually annotated regions rather than full-lung scans.
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Each MESA COPD scan was used once as the query image, and the two signatures

with the smallest χ2 distances in the database were collected. As the total number

of scans with at least moderate emphysema was relatively low, only two matches for

each query were collected, but a higher number of matches would be suitable for a

larger data set with more cases of moderate to severe emphysema.

To evaluate the quality of the retrieved matches, the visually assessed emphysema

subtype (CLE, PLE, PSE, Total) severity values (Smith et al., 2014) were collected

for the query scans and their best matches. Intraclass correlation (ICC) coefficients

between the severity values of the query scan and the best matches were computed

(retrieval ICC), and are reported in Table 6.6. For reference, the inter-reader ICC

values for the visually assessed subtypes have been reported originally in Smith et al.

(2014) as (training/validation): CLE: 0.74/0.72, PLE: 0.59/0.42, PSE: 0.67/0.93,

and Total severity: 0.76/0.77. It should be noted that while the inter-reader ICC

coefficient measures the agreement of readers on the same scans, the retrieval ICC

measures the similarity of visually assessed severity on separate scans.

The results in Table 6.6 show that the retrieval ICC coefficients for the single best

matching scans using any of the texture signatures are at the level of the inter-reader

ICC for CLE, PLE and Total severity. For PSE, the retrieval ICC values were

slightly lower than the inter-reader ICC (for PSE, the inter-reader ICC values were

very different for the training and validation sets).

When retrieving the two best matches instead of only the single best match, the

retrieval ICC values for CLE and Total severity remained approximately the same,

while retrieval ICC coefficients for PLE and PSE declined slightly.

There was no significant difference in the retrieval ICC values between the different
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texture signatures. Therefore, restricting the extraction of texture histograms to

the emphysematous regions is not necessary for this application.

Retrieval of scans with %emph−950 resulted in clearly lower correlation values than

when using texture signatures, for the three subtypes and for the Total severity of

emphysema.

Figure 6.14 displays three examples of the query results for CT scans where each of

the classic emphysema subtypes was dominant based on visually assessed severity,

and an example for a scan with a high level of both CLE and PLE. The figure

illustrates that the retrieved scans share strong visual similarities with the query

scan. Visually assessed subtype severity measures are reported below each scan in

the figure. In these examples, the severity measures of the first best match were

more similar to the query values than the values of the second best match, which is

a desirable property in the results.

6.2.9 Repeatability of the learning process

The repeatability of the LTP learning process was studied by randomly switching 5%

of the CT scans used for training with the same number of test scans, and repeating

the entire LTP learning pipeline. To ensure that the reproduced LTPs were in the

same order as the original ones, the two sets were matched using the average of the

texture prototypes assigned to each LTP, so that each reproduced LTP was paired

with one of the original LTPs.

The correlations between the bins of the reproduced and the original LTP histograms

were computed for the 319 scans and are listed in Table 6.7. The correlations were
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Table 6.6 Intraclass correlation coefficients and 95% confidence intervals (CI)
of visually assessed emphysema subtype severity values (CLE/PLE/PSE/Total),
between query scans and their single best matches (B1), or their best two matches
(B2). Scans were matched using LTP histograms (HL), ELTP histograms (HE),
combined LTP and ELTP histograms (HL+E), or %emph−950 (%emph). Results are
shown for the entire data set, using each scan once as the query object.

Classic emphysema subtype
ICC (95% CI) CLE PLE PSE Total

HL (B1) 0.69(0.62, 0.74) 0.50(0.41, 0.58) 0.52(0.43, 0.60) 0.85(0.81, 0.88)

HE (B1) 0.71(0.65, 0.76) 0.52(0.43, 0.59) 0.57(0.49, 0.64) 0.86(0.82, 0.88)

HL+E (B1) 0.70(0.64, 0.76) 0.52(0.43, 0.59) 0.58(0.50, 0.65) 0.85(0.82, 0.88)

%emph (B1) 0.34(0.24, 0.44) 0.40(0.31, 0.49) 0.02(−0.09, 0.13) 0.54(0.45, 0.61)

HL (B2) 0.68(0.63, 0.72) 0.31(0.23, 0.38) 0.40(0.33, 0.46) 0.82(0.79, 0.85)

HE (B2) 0.68(0.63, 0.73) 0.37(0.30, 0.44) 0.48(0.41, 0.54) 0.85(0.82, 0.87)

HL+E (B2) 0.65(0.60, 0.70) 0.37(0.30, 0.44) 0.43(0.36, 0.50) 0.82(0.78, 0.84)

%emph (B2) 0.32(0.24, 0.39) 0.21(0.14, 0.29) 0.05(−0.02, 0.12) 0.59(0.53, 0.64)

Table 6.7 Pearson’s correlation coefficients between the original and reproduced
LTP histogram bins for 319 scans, learned on two different sets of 127 scans. All
correlation coefficients are statistically significant (p < 0.0001).

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

Corr 0.998 0.995 0.970 0.997 0.992 0.992 0.987 0.999

very high (0.970 or above) for all 8 LTPs, indicating excellent reproducibility of the

LTP signatures.

Differences between the original LTP histograms and the corresponding reproduced

ones were further quantified for each scan with the histogram intersection measure

(Cha, 2007):

dH = 1− 1

2

∑
j=1

|Ho(I)j −Hr(I)j|, (6.14)
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Figure 6.14 Examples of content-based image retrieval results using HL+E as
scan signatures. The four query scans have different dominant subtypes, from top to
bottom: CLE, PLE, PSE, mixture of CLE and PLE. From left to right, the columns
show coronal slices of: query scans, best matches, second best matches. Visually as-
sessed severity values reported in percentages below each scan: CLE/PLE/PSE/Total
(’Total’ is the sum of the subtype values, differences due to rounding).
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where Ho(I) refers to the original LTP histogram for scan I, and Hr refers to the

reproduced LTP histogram. The index j = 1, .., 8 denotes histogram bins. The range

of the dH measure is from 0, corresponding to entirely non-overlapping histograms,

to 1 for identical histograms. The mean±standard deviation of dH for the original

training set, the original test set, and the full data set of 319 scans were respectively:

0.95±0.02, 0.95±0.03, 0.95±0.03. These results confirm the very high reproducibility

of the LTP labeling when 5% of the training data is switched.

6.3 Discussion

This work presented a novel unsupervised method for discovering local lung texture

patterns, or LTPs on CT scans. The application of unsupervised learning removes

the requirement of collecting manually annotated labels that are subjective, ineffi-

cient, often poorly reproducible, specific to a data set, and that rely on predefined

emphysema subtypes that have limited agreement. On the other hand, the validation

of the learned LTPs is challenging, as no ground truth is available.

The overall method was designed to handle large 3D volumes of images, large

dynamic ranges of intensity values, and complex texture patterns, taking advantage

of sparse spatial sampling and scale-space features. The LTPs were used to label CT

scans and to extract LTP label histograms that were used as scan-specific texture

signatures. The resulting LTP labels were shown to have spatial regularity and a

pronounced co-occurrence structure. Importantly, the LTP learning process proved

to be reproducible when modifying the training data set.

The extracted LTP signatures were shown to have clinical significance beyond that of

the standard %emph−950 measure, and the LTPs were shown to have clear profiles
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of clinical characteristics. While the contribution of FEV1 reduced the potential

added diagnostic value of the LTPs, the textural information can still be used to

discover the underlying reasons for changes in FEV1, and potentially increase the

understanding of the disease process. It should be taken into account that the

goal of our work was not to obtain an improved diagnosis of COPD, but rather to

demonstrate how the textural properties in the images are associated with clinical

characteristics. Several of the clinical characteristics were available for only a small

portion of the total data set. Expanding the evaluation data set would likely affect

the results, and could potentially increase the number of statistically significant

partial correlations.

The learned LTPs were shown to have a correspondence to the classic emphysema

subtypes, showed by the significant correlations of LTPs with visually assessed

subtypes. Finally, the study showed that the generated LTP label histograms can be

used for retrieving similar scans within the database. The retrieval performed at a

level comparable to the inter-rater variability of visual emphysema subtype severity

assessment.

The evaluation in this work did not include comparisons to previously developed

lung texture learning methods, as they are based on supervised learning. Even if the

image patch labels required for learning were readily available, the comparison would

not be easily justifiable. The outcome of the supervised methods is a reproduction

of the classic emphysema subtypes or other labels used for training, and such

approaches are not aimed at discovering novel structural information as in our

approach.

While the presented approach learns local texture patterns, analyzing emphysema

requires considering the entire scan and the spatial distribution of local patterns.
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Taking the spatial distributions of LTPs into account would likely reveal important

structural patterns, and this will be considered in a future study.

The LTP histograms extracted in this study provide texture signatures that can be

used to characterize and to group CT scans. This in turn enables finding common

clinical profiles within the resulting patient groups. Clustering scans and studying

the clinical significance and genetic associations of the cluster assignments is the

focus of an ongoing study, using data sets with thousands of full-lung CT scans.
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Chapter 7

Conclusions

CT imaging continues to be the most important tool for assessing parenchymal

structure within the lungs. This work presented novel methods for quantitative

analysis of emphysema on CT, with two major methodological contributions for

adaptive quantification and subtyping of the disease. Even though the aims of these

two tasks are naturally linked, the methodologies to extract these complementary

pieces of information remain in different stages of development.

While automated emphysema quantification has been possible for decades and the

standard methods have achieved widespread acceptance for research purposes, sub-

typing of emphysema remains at a developmental stage. The reasons causing this

difference are quite obvious: the extent of emphysema can be assessed fairly well

with a binary classification of individual intensity values, while determining em-

physema subtypes requires considering high-order features and recognizing spatial

distributions of patterns, as well as dealing with unreliable or missing label data.

As the the standard emphysema quantitation methods have their known weaknesses,
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recently there has been an effort for increased standardization of imaging protocols

between manufacturers to ensure comparable measures of emphysema extent. How-

ever, the work presented in this dissertation shows that the value of heterogeneous

image data can be increased by applying image analysis methods with the ability to

take image data variability into consideration. The development of image analysis

methodology is fairly inexpensive, and may remove some of the obstacles caused

by variable imaging protocols. This makes the extraction of reliable measures of

emphysema possible from an increasing large population of CT scans, including new

scans acquired with developing imaging protocols, and large existing data sets that

have been acquired over long periods of time.

For emphysema subtyping on the other hand, the research in the field relies on

relatively small sets of manually labeled data that are usually not publicly available.

The process of labeling data by a human observer has several weaknesses, made

all the more challenging and expensive by the required expertise of the observer.

Compared to collecting labels of object in natural images, as done commonly in

the computer vision community, the acquisition of training data of emphysema

patterns is an entirely different process. To learn from the data in an objective way,

the subtyping methodology presented in this work proposed a novel unsupervised

approach for recognizing common emphysema patterns on CT. The reliance on

subjective labels is therefore removed, possibly providing a major improvement to

how CT scans can be used to recognize different manifestations of emphysema.

The novel probabilistic emphysema quantitation method was shown to enable the

extraction of robust emphysema scores across imaging protocols. It also provides

emphysema masks between CT reconstructions that have higher overlap than masks

extracted by alternative methods. Compared to the standard percent emphysema
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measure, the presented method was shown to improve the prediction of full-lung

emphysema scores from prior cardiac CT scans.

For emphysema subtyping, this work included the first effort of learning the vari-

ability of emphysema patterns from data. Without any manual labels used for

learning, the extracted texture patterns were shown to have clinical significance

and a pronounced co-occurrence structure, and the learning process was shown

to be repeatable. As a concrete example of an application of the learning result,

content-based image retrieval performed at the level of inter-observer variability.

While the value of the contributions in this work has been discussed in length, it

is important to note that the development of these methods can and should be

continued to fully leverage the available image data for the analysis of emphysema.

With the continuing growth of available CT data sets, the demand for analysis

methods that learn from data will continue to increase. Adaptive computational

models may also help in reducing the required number of scans and the associated

radiation exposure for reliable diagnosis of patients.
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Appendix A

Partial correlations of clinical

variables with lung texture patterns

(LTPs)

The following tables present the full partial correlation results of the learned lung

texture patterns (LTPs) with all available clinical variables. Please see Section 6.2.6

for details of the evaluation.
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Table A.1 Partial correlations (p.corr.) of LTPs with the following clinical
characteristics: COPD status, COPD severity, %emph−950. Three models were used:
Model 1 is adjusted for age, race, gender, height and weight, Model 2 is adjusted
additionally for %emph−950, and Model 3 is adjusted additionally for %emph−950

and FEV1. The associated p-values are reported below each line of partial correlation
values, and statistically significant (p < 0.05) partial correlations are in bold.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

COPD status N = 319

Model 1 p. corr. −0.23 −0.12 0.35 −0.05 0.15 0.36 0.29 0.23

p-value < .0001 0.042 < .0001 0.39 0.009 < .0001 < .0001 < .0001

Model 2 p. corr. −0.22 0.06 0.18 0.14 0.23 0.17 0.14 −0.023
p-value < .0001 0.32 0.002 0.012 < .0001 0.003 0.013 0.69

Model 3 p. corr. 0.00 −0.03 0.07 0.01 0.12 −0.02 0.01 −0.15
p-value > 0.99 0.65 0.25 0.82 0.042 0.75 0.90 0.010

COPD severity N = 319

Model 1 p. corr. −0.24 −0.16 0.41 −0.14 0.06 0.48 0.37 0.41

p-value < .0001 0.004 < .0001 0.014 0.33 < .0001 < .0001 < .0001

Model 2 p. corr. −0.29 0.10 0.18 0.14 0.17 0.26 0.22 0.11

p-value < .0001 0.079 0.001 0.016 0.002 < .0001 < .0001 0.060

Model 3 p. corr. −0.01 −0.00 0.04 −0.04 0.01 0.05 0.06 −0.03
p-value 0.85 0.96 0.54 0.48 0.87 0.39 0.33 0.57

%emph−950 N = 319

Model 1 p. corr. −0.86 0.22 0.52 0.41 0.47 0.74 0.57 0.48

p-value < .0001 0.0001 < .0001 < .0001 < .0001 < .0001 < .0001 < .0001
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Table A.2 Partial correlations (p.corr.) of LTPs with the following clinical
characteristics: pulmonary blood flow (PBF), and pulmonary blood volume (PBV),
base oxygenation (Base oxy.). Three models were used: Model 1 is adjusted for age,
race, gender, height and weight, Model 2 is adjusted additionally for %emph−950, and
Model 3 is adjusted additionally for %emph−950 and FEV1. The associated p-values
are reported below each line of partial correlation values, and statistically significant
(p < 0.05) partial correlations are in bold.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

PBF N = 139

Model 1 p. corr. 0.38 −0.07 −0.23 −0.15 −0.20 −0.39 −0.32 −0.23
p-value < .0001 0.40 0.009 0.088 0.023 < .0001 0.0002 0.009

Model 2 p. corr. 0.37 −0.14 −0.15 −0.23 −0.22 −0.33 −0.26 −0.16
p-value < .0001 0.12 0.095 0.008 0.012 < .0001 0.003 0.078

Model 3 p. corr. 0.08 −0.04 0.05 −0.05 −0.04 −0.09 −0.05 0.03

p-value 0.37 0.68 0.55 0.56 0.63 0.32 0.54 0.74

PBV N = 139

Model 1 p. corr. 0.37 −0.16 −0.14 −0.18 −0.20 −0.31 −0.27 −0.16
p-value < .0001 0.071 0.10 0.039 0.025 0.000 0.002 0.073

Model 2 p. corr. 0.36 −0.20 −0.09 −0.23 −0.20 −0.28 −0.24 −0.11
p-value < .0001 0.024 0.29 0.010 0.021 0.001 0.005 0.21

Model 3 p. corr. 0.13 −0.12 0.09 −0.07 −0.05 −0.06 −0.06 0.06

p-value 0.14 0.19 0.31 0.43 0.59 0.51 0.47 0.52

Base oxy. N = 299

Model 1 p. corr. 0.16 0.08 −0.13 −0.01 −0.19 −0.29 −0.29 −0.05
p-value 0.006 0.17 0.030 0.91 0.001 < .0001 < .0001 0.44

Model 2 p. corr. 0.16 0.06 −0.10 −0.05 −0.21 −0.27 −0.28 −0.01
p-value 0.005 0.34 0.094 0.43 0.004 < .0001 < .0001 0.93

Model 3 p. corr. −0.09 0.14 0.01 0.10 −0.10 −0.16 −0.19 0.10

p-value 0.12 0.014 0.84 0.093 0.091 0.007 0.001 0.091
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Table A.3 Partial correlations (p.corr.) of LTPs with the following clinical
characteristics: DLCO, DLCO/V A ratio, RLV , RLV/TLC ratio. Three models were
used: Model 1 is adjusted for age, race, gender, height and weight, Model 2 is adjusted
additionally for %emph−950, and Model 3 is adjusted additionally for %emph−950 and
FEV1. The associated p-values are reported below each line of partial correlation
values, and statistically significant (p < 0.05) partial correlations are in bold.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

DLCO N = 119

Model 1 p. corr. 0.40 0.28 −0.63 0.15 −0.08 −0.61 −0.54 −0.48
p-value < .0001 0.003 < .0001 0.11 0.43 < .0001 < .0001 < .0001

Model 2 p. corr. 0.36 0.11 −0.51 −0.09 −0.14 −0.42 −0.31 −0.28
p-value < .0001 0.23 < .0001 0.35 0.15 < .0001 0.001 0.003

Model 3 p. corr. −0.01 0.20 −0.36 0.12 0.07 −0.17 −0.10 −0.10
p-value 0.90 0.036 < 0.0001 0.20 0.45 0.079 0.28 0.31

DLCO/VA N = 119

Model 1 p. corr. 0.60 −0.03 −0.46 −0.22 −0.32 −0.60 −0.56 −0.35
p-value < .0001 0.73 < .0001 0.017 0.001 < .0001 < .0001 < .0001

Model 2 p. corr. 0.59 −0.12 −0.41 −0.33 −0.35 −0.57 −0.52 −0.28
p-value < .0001 0.19 < .0001 < .0001 < .0001 < .0001 < .0001 0.003

Model 3 p. corr. 0.19 0.02 −0.14 −0.06 −0.07 −0.25 −0.26 0.01

p-value 0.040 0.81 0.13 0.56 0.48 0.008 0.006 0.91

RLV N = 119

Model 1 p. corr. −0.36 −0.20 0.36 −0.11 0.12 0.54 0.50 0.46

p-value < .0001 0.034 < .0001 0.26 0.20 < .0001 < .0001 < .0001

Model 2 p. corr. −0.31 −0.01 0.12 0.14 0.20 0.32 0.27 0.25

p-value 0.001 0.93 0.20 0.13 0.038 0.001 0.005 0.009

Model 3 p. corr. −0.08 −0.06 −0.06 0.01 0.06 0.14 0.12 0.12

p-value 0.42 0.54 0.51 0.95 0.51 0.14 0.22 0.22

RLV/TLC N = 119

Model 1 p. corr. −0.21 −0.23 0.40 −0.21 −0.01 0.49 0.38 0.43

p-value 0.027 0.013 < .0001 0.025 0.89 < .0001 < .0001 < .0001

Model 2 p. corr. −0.15 0.00 0.12 0.04 0.06 0.18 0.06 0.18

p-value 0.12 0.97 0.19 0.66 0.51 0.052 0.55 0.054

Model 3 p. corr. −0.02 −0.04 0.05 −0.05 −0.02 0.09 −0.05 0.12

p-value 0.85 0.70 0.63 0.63 0.81 0.33 0.60 0.22
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Table A.4 Partial correlations (p.corr.) of LTPs with the following clinical
characteristics: %predicted 6-minute walking distance (%pred6MW), 6-minute
walking distance (6MW), and MRC dyspnea measure (MRC). Three models were
used: Model 1 is adjusted for age, race, gender, height and weight, Model 2 is adjusted
additionally for %emph−950, and Model 3 is adjusted additionally for %emph−950 and
FEV1. The associated p-values are reported below each line of partial correlation
values, and statistically significant (p < 0.05) partial correlations are in bold.

Lung texture pattern (LTP)

1 2 3 4 5 6 7 8

%pred6MW N = 288

Model 1 p. corr. 0.01 0.17 −0.21 0.14 0.07 −0.20 −0.13 −0.25
p-value 0.92 0.004 0.0003 0.016 0.26 0.001 0.027 < .0001

Model 2 p. corr. 0.00 0.09 −0.12 0.04 0.05 −0.08 −0.04 −0.14
p-value 0.97 0.12 0.047 0.51 0.44 0.18 0.54 0.018

Model 3 p. corr. −0.03 0.10 −0.13 0.06 0.07 −0.10 −0.03 −0.15
p-value 0.67 0.085 0.037 0.34 0.28 0.10 0.58 0.014

6MW N = 288

Model 1 p. corr. 0.00 0.19 −0.23 0.15 0.08 −0.21 −0.13 −0.27
p-value 0.96 0.002 0.001 0.013 0.18 0.001 0.024 < .0001

Model 2 p. corr. −0.00 0.10 −0.13 0.04 0.06 −0.08 −0.03 −0.16
p-value 0.97 0.084 0.030 0.51 0.32 0.19 0.57 0.009

Model 3 p. corr. −0.04 0.12 −0.14 0.06 0.08 −0.09 −0.03 −0.16
p-value 0.53 0.054 0.023 0.33 0.17 0.12 0.63 0.007

MRC N = 298

Model 1 p. corr. −0.16 −0.11 0.40 −0.12 −0.05 0.31 0.16 0.36

p-value 0.006 0.072 < .0001 0.039 0.35 < .0001 0.007 < .0001

Model 2 p. corr. −0.14 0.04 0.26 0.01 −0.03 0.13 0.02 0.21

p-value 0.017 0.55 < .0001 0.86 0.60 0.026 0.77 0.001

Model 3 p. corr. −0.03 −0.01 0.22 −0.08 −0.12 0.04 −0.07 0.16

p-value 0.61 0.86 < .0001 0.19 0.037 0.51 0.23 0.007
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Fisher’s r-to-z transformation

Fisher’s r-to-z transformation (or simply Fisher’s z transformation) can be used

to convert Pearson’s correlation coefficients (r) to a variable z that has an ap-

proximately normal distribution (Upton and Cook, 2014). While the sampling

distribution of Pearson’s r has a negative skew, Fisher’s z transformation enables

computing confidence intervals on r, as well as confidence intervals on the differences

between values of r.

Fisher’s r-to-z transformation is defined as:

z =
1

2
ln

(
1 + r

1− r

)
. (B.1)

The variable z has a known variance of

σ2
z =

1

N − 3
, (B.2)

where N is the sample size.
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Dictionary learning for lung texture

pattern recognition

C.1 Introduction

The following presents a summary of a preliminary study applying supervised dic-

tionary learning (Peyré, 2009; Mairal et al., 2009b) to learn texture patterns of

emphysema on computed tomography. The goal was to use the learned textural rep-

resentations to quantify and characterize subtypes of emphysema. The preliminary

study was performed to evaluate the feasibility of simple, 2D supervised learning for

a binary emphysema classification task. Subsequently, the approach would have been

applied using the more complicated, unsupervised dictionary learning (Sprechmann

and Sapiro, 2010) on 3D samples. As the dictionary learning approach was replaced

after these preliminary experiments, this is not a comprehensive study and included

here only for completeness.
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C.2 Methods

C.2.1 Dictionary learning

This Section summarizes the technical background of sparse coding and dictionary

learning of texture patterns. More detailed descriptions are available in e.g. Mairal

et al. (2008); Peyré (2009).

In dictionary learning, a signal x ∈ <n is represented as a sparse approximation over

a dictionary D ∈ <nxk. D is composed of k elements, and a linear combination of

the elements is assumed to approximate x sufficiently accurately.

Let N be the number of available (texture) samples xl, l = 1, .., N . A common

formulation of dictionary learning aims to solve:

min
α,D

N∑
l=1

||xl −Dαl||22, s.t. ||αl||0 ≤ L, (C.1)

where the integer L is a sparsity constraint, and αl ∈ <k is a sparse representation

for patch l for dictionary D.

For a given dictionary D, the minimal representation errors R∗ are defined as:

R∗(x,D) = ||x−Dα∗(x,D)||22, (C.2)

where α∗(x,D) is the matrix of sparse coefficients that solves:

min
α
||x−Dα||22, s.t. ||αl||0 ≤ L. (C.3)
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When a total of M dictionaries are present, a sample x can be classified by:

î0 = arg min
i=1...M

R∗(x,Di). (C.4)

In dictionary learning for classification, one dictionary is learned for each class.

When classifying image patches, sparse representations are learned for all the dif-

ferent dictionaries. Each patch is then assigned to the most suitable class, i.e. the

dictionary that minimizes the sparse representation error. In these experiments,

the number of classes is limited to two, corresponding to healthy and emphy-

sematous parenchyma, respectively. The plan was to subsequently increase the

number of classes to represent different subtypes of emphysema, or alternatively

different subtypes could possibly be identified by their sparse representations in the

emphysematous basis using a clustering approach.

C.3 Preprocessing and selection of training samples

In the preprocessing stage, the lungs were segmented from the background by

thresholding at −400 HU.

The training CT scans were segmented into emphysematous and healthy parenchyma

using intensity thresholding, to find regions where training samples for the dictionary

learning could be extracted. The image patches used for training were collected

by thresholding the CT scan at −910 HU, so that voxels below this value were

considered emphysematous, and above the threshold were considered healthy.

As emphysematous regions often appear as small regions within healthy parenchyma,

morphological eroding was applied on the thresholded regions, so that training
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(a) (b)

Figure C.1 (a) An example of an axial slice of an input image. (b) The image
thresholded at −910 HU, with morphological erosion applied to create separation
between the classes. The resulting region classified as healthy parenchyma is colored
in white, and the emphysematous region is in blue. Regions classified either as being
at the edge of the region or as background are colored in red.

patches would not be selected at the edges of the regions. The radius of the

structuring element was 0.75 mm, as larger structuring elements had a tendency to

entirely remove a majority of emphysematous regions. This operation was assumed

to reduce the overlap in sampling regions for the two classes. Figure C.1 illustrates

the sampling regions.

The training patches were extracted by randomly selecting center points of image

patches within the resulting regions. The radius of each spherical patch was 3.2 mm.

When the image patches were extracted, their intensity values were rescaled linearly

to a range of [0...1], so that −1024 HU was rescaled to 0, and values of −700 HU

and above were rescaled to 1. From each training scan, 50000 randomly located

image patches were extracted, 25000 for each class. The samples were normalized to

have zero mean and unit norm, following the examples included in the open-source

SPAMS (Mairal et al., 2009a,0) software library.
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C.4 Results

C.4.1 Data and parameter values

The study included 9 high-resolution full-lung CT scans that were randomly selected

from the MESA COPD study (see 2.1.3 for details on the imaging protocol). A

total of 450000 training samples were extracted from these scans. While different

parameter values were experimented on, the presented results were acquired with

the following parameter values: k = 100 (tested range 50...400), L = 4 (tested

range 1...6). The implementation applied functionality from the open-source SPAMS

(Mairal et al., 2009a,0) software library.

C.4.2 Dictionary learning

The learning process converged quickly, as shown in the line plot of the mean

error values in Fig. C.2. The figure also highlights one of the main challenges

of the model: the emphysematous samples are represented relatively accurately by

both dictionaries, whereas the patches from the healthy parenchyma have higher

representation errors for both dictionaries. This is an indication that the textural

variability in the healthy class is higher than in the emphysematous class. Also,

the differences in the average errors for the two dictionaries were relatively small for

samples from either class.

The learning resulted in the dictionaries visualized in Fig. C.3. Visually, the

dictionary elements appear very smooth for both classes. This is assumed to be

due to the large number of samples in the training set compared to the size of
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Figure C.2 x-axis: training iterations. y-axis: representation error. Average
reconstruction errors for emphysematous samples (blue) and samples from healthy
parenchyma (red) for 15 iterations. Error of correct dictionary shown with solid
line, error for other dictionary shown with dashed line.

the dictionaries. Several dictionary elements seem to represent rotations of similar

patterns, highlighting the fact that the learning is not rotation invariant.

C.4.3 Classification

After learning of the dictionaries, all points in the scans were assigned two error

values, one for each class. This was done by extracting a local patch around each

image point, computing the optimal representations for the patch with both learned

dictionaries, and then extracting the representation errors eq. (C.2). The center

point of the image patch was finally classified to the class with the smaller error.

This process was extremely slow, requiring up to several minutes per image slice, so

that processing a full scan could take up to 10 hours.
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(a) (b)

Figure C.3 Elements of a dictionary of size 100 for (a) emphysematous regions,
and (b) healthy parenchyma.

The classification accuracy was tested for the training set samples, to test the ability

of the method to learn differences between the classes, and to establish an upper

bound for the classifier. The samples were classified as either diseased or healthy

using the learned dictionaries and the associated reconstruction errors. Classification

accuracy for the training set samples was 74% (this proportion of the total number

of training samples was classified to the correct class), which is relatively low for

a binary classification task (with different parameters, the training classification

accuracy varied approximately in the range 70− 80%).

Figure C.4 shows an example of reconstruction errors for the two classes. It should

be noted that the reconstruction errors are fairly similar, the error values between

the two dictionaries are highly correlated. Most of the high error values occur around

vessels, i.e. at strong edges.

Finally, Fig. C.5 shows an example of the classification results on an example CT
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(a) (b)

Figure C.4 An example of reconstruction errors on an axial CT slice for (a)
healthy dictionary and (b) disease dictionary. In both figures, intensity of the color
scheme increases with the local reconstruction error. Areas outside the lungs have
been assigned a value of 0. The figures highlight how the reconstruction errors are
highly dependent on vessels rather than differences in parenchymal structure.

slice. The classification result is notably noisy and strong edges seem to have a

strong effect on the resulting class.

C.5 Discussion

Several challenges of the dictionary learning approach were recognized during the

study. First, dictionary learning learns edge information that characterizes a given

texture (Kavukcuoglu et al., 2009), and in emphysema analysis on CT, edge in-

formation within the lung parenchyma is weak compared to edges between lung

structures. Especially vessels causing strong edges exist practically everywhere in

the lung. Removing vessels from the image would most likely improve the results.

However, it could be challenging to replace the removed values in the samples.

Second, there is uncertainty in the training data, caused by overlapping samples

and variability in tissues across the images. While there is a difference in the
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(a) (b)

Figure C.5 Example of classification results on an axial CT slice, with yellow
color indicating regions classified as emphysema (here, the large airways have not
been removed prior to the analysis).

textures between healthy and diseased tissue, a large portion of the diseased tissue

is characterized rather by the lack of texture rather than some clear, complicated

texture separable from healthy tissue. This causes additional challenges to the

classification task, since the reconstruction errors at ’flat’ locations are very low

for both dictionaries. This means that the dictionaries have no discrimination

power at such locations, since the discrimination is based on having a difference

in reconstruction error for one of the dictionaries. In an unsupervised framework,

initializing the framework could prove extremely difficult, as the non-linear sparse

basis could learn representations across overlapping textures.

Third, the process is not invariant to rotation, which causes a large number of the

dictionary elements to correspond to shifts, rather than different textures. The

problem was present here with 2D patches, and is assumed to be worse with 3D

patches.

Fourth, the processing was extremely slow when classifying image points. Classifying
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every single image point separately this way does not seem feasible for a large data

set. The processing is further slowed down by larger dictionaries.

Fifth, the vectorized samples already had very high dimensionality when using

relatively small 2D patches. Using vectorized patches directly as feature vectors

might not be the most suitable approach as the dimensionality becomes prohibitively

large for effective learning when using 3D patches, and processing slows down even

further.

Sixth, the irregularity of the lung texture patterns seem to ’average out’ any high-

frequency variability in the textures that could be interesting for disease subtyping.

The sparse representations then seem to be accurate for all smooth regions, and

inaccurate for all high-frequency regions.

Even though there is variability in intensity values between scans, removing intensity

information entirely from the analysis and using only texture information does not

seem to be the correct solution for recognizing and localizing diseased regions. The

intensity values should be used for diseased region localization by an adaptive

approach. The texture analysis could possibly be restricted only to regions that

have been recognized as emphysematous in a preceding analysis.

It should be noted that while the texture-based analysis is independent of image

intensity, the data used to learn the basis has been selected based on an arbitrary

intensity threshold. This approach inevitably causes overlap in the two classes and

could be considered a shortfall of the used approach. Moreover, while the texture

patches that are extracted are centered within the regions defined by intensity, the

texture patches are so large that they extend outside of these regions.

While dictionary learning has been shown to be a powerful tool for texture analysis,
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it seems difficult to apply on the lung images directly, for several reasons. The

issues listed above should be addressed before another attempt with the presented

framework.
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Program code summary

D.1 Introduction

The following Sections provide an overview of the most important program code files

used in this work. This Section is intended to facilitate application of the methods

on new data sets, as well as further development of the algorithms.

For details on input variables and return values, the reader is referred to the program

code provided separately. In the descriptions of output files, ’FILEID’ refers to a

variable identifier that depends on the input file name and is used to distinguish

between CT scans. The main level functions are presented first, and the remaining

functions are presented in alphabetical order. Descriptions of possible output files

are included only in the function that writes the output on the disk (higher level

functions may call subfunctions to write output). Subfunction listings do not include

functions in Matlab distributions or the Tools for NIfTI and ANALYZE image

toolbox.
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D.2 Program code for HMMF emphysema quantifi-

cation

External libraries or software: The code uses the Matlab toolbox Tools for NIfTI and

ANALYZE image (http://www.mathworks.com/matlabcentral/fileexchange/8797-

tools-for-nifti-and-analyze-image) for input and output of image files. The toolbox

has to be included in the Matlab path.

The ’raw’ file format used internally in the implementation for storing temporary

files is a simple binary format with no header information. The dimensions and data

type of the stored matrix have to be provided separately from the calling function

when reading these files.

The C++ code can be compiled for example using the following commands:

g++ -c importMatlab20141001.cpp

g++ -c mainHMMF20141001.cpp

g++ -o hmmf_emphysema importMatlab20141001.o mainHMMF20141001.o

• mainExtractHMMFyh.m

Type: Matlab script

Description: Main function for extracting the HMMF emphysema score for a

given scan. As input, requires 1) a CT scan filename (including path), 2) lung

mask filename (including path), 3) HMMF model parameters (see function

initializeDefaultHMMFparamsyh.m for default values).

Subfunctions: cropScanAndMaskyh.m, outputVolumeForHMMFextyh.m,

readHMMFResultCompIndicesyh.m, calls executable of mainHMMF20141001.cpp
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Returns: 1x4 vector of emphysema indices (-980,-950,-910,HMMF).

Output on disk: -

• mainFitSkewNormalOnImageHistogramyh.m

Type: Matlab script

Description: Fits a parametric skew-normal distribution on the intensity

histogram of the input image and a mask file indicating the region-of-interest.

Subfunctions: compParametricDistributionErroryh.m,

compParametricDistributionError2yh.m,

compSkewNormalProbabilityyh.m

Returns: Optimal distribution parameters and histogram intersection in a

1x4 vector (location, scale, skew, histogram intersection).

Output on disk: -

• compEmphysemaIndicesyh.m

Type: Matlab script

Description: Computes standard %emph indices at−980, −950, and−910 HU.

Subfunctions: -

Returns: 3x1 vector of 3 emphysema indices.

Output on disk: -

• compParametricDistributionErroryh.m

Type: Matlab script

Description: Function computes RMS error between parametric distribution

and histogram (similar to compParametricDistributionError2yh.m). Used for
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optimizing all parameters of parametric distribution.

Subfunctions: compSkewNormalProbabilityyh.m

Returns: 1000x root mean square error between parametric distribution and

histogram.

Output on disk: -

• compParametricDistributionError2yh.m

Type: Matlab script

Description: Function computes RMS error between parametric distribution

and histogram (similar to compParametricDistributionErroryh.m). Used for

optimizing the location of the parametric distribution.

Subfunctions: compSkewNormalProbabilityyh.m

Returns: 1000x root mean square error between parametric distribution and

histogram.

Output on disk: -

• compSkewNormalProbabilityyh.m

Type: Matlab script

Description: Function for computing skew normal probabilities.

Subfunctions: -

Returns: Probability at input value.

Output on disk: -

• cropScanAndMaskyh.m

Type: Matlab script
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Description: Function crops 2 volumes of same size, based on the input mask.

Subfunctions: findBoundingBoxyh.m

Returns: 1) cropped image, 2) cropped mask, 3) locations of the cropped

volumes in the original space.

Output on disk: -

• findBoundingBoxyh.m

Type: Matlab script

Description: Function finds bounding box for binary volume.

Subfunctions: -

Returns: Bounding box coordinates.

Output on disk: -

• hmmf.h

Type: C header

Description: Header file for mainHMMF20141001.cpp

Subfunctions: -

Returns: -

Output on disk: -

• importMatlab.h

Type: C header

Description: Header file for importMatlab20141001.cpp

Subfunctions: -

Returns: -
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Output on disk: -

• importMatlab20141001.cpp

Type: C++ code

Description: Includes functions for input, output and initialization of vol-

umes in different formats.

Subfunctions: -

Returns: -

Output on disk: -

• initializeDefaultHMMFparamsyh.m

Type: Matlab script

Description: Initializes default parameters for HMMF model. The hard-

coded parameter values were used for MESA COPD scans in Häme et al.

(2014).

Subfunctions: -

Returns: Struct with default parameter values.

Output on disk: -

• mainHMMF20141001.cpp

Type: C++ code

Description: Implementation of the HMMF model for emphysema quantifi-

cation. Reads raw volumes from disk and saves computed measure field on

disk as output.

Subfunctions: Calls functions from importMatlab20141001.cpp.
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Returns: -

Output on disk: hmmf_measure_fieldFILEID.raw (measure field).

• openRawSaveOutputNiiyh.m

Type: Matlab script

Description: Function opens output from HMMF C code (mainHMMF20141001.cpp)

in raw volume format, and saves HMMF measure field in Nifti format.

Subfunctions: openRAWyh.m

Returns: HMMF measure field as a matrix.

Output on disk: FILEID_HMMF.nii (measure field).

• openRAWyh.m

Type: Matlab script

Description: Opens raw format matrix.

Subfunctions: -

Returns: Matrix that was read from the disk.

Output on disk: -

• outputVolumeForHMMFextyh.m

Type: Matlab script

Description: Function outputs image matrices for HMMF C code.

Subfunctions: -

Returns: -

Output on disk: FILEID_ROI.raw (mask), FILEID_I.raw (image).

179



Appendix D

• readHMMFResultCompIndicesyh.m

Type: Matlab script

Description: Function reads the output matrix of the HMMF processing by

mainHMMF20141001.cpp and computes emphysema indices.

Subfunctions: compEmphysemaIndicesyh.m, openRawSaveOutputNiiyh.m

Returns: 1x4 vector, with emphysema indices at (-980HU, -950HU, -910HU,

HMMF).

Output on disk: -

D.3 Program code for lung texture pattern learning

and processing

External libraries or software: The code uses the Matlab toolbox Tools for NIfTI and

ANALYZE image (http://www.mathworks.com/matlabcentral/fileexchange/8797-

tools-for-nifti-and-analyze-image) for input and output of image files. The toolbox

has to be included in the Matlab path. The METIS software (Karypis and Kumar,

1998b) is used for graph partitioning. The path of gpmetis is required as an input

variable.

Scan-specific outputs are written on the disk at a predefined location ./output/.

Outputs from prior stages are assumed to be present at this location. See

exampleLTPScriptyh.m for details regarding the expected processing sequence.

• exampleLTPScriptyh.m

Type: Matlab script
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Description: Example of LTP pipeline, including feature extraction, LTP

learning, and LTP mask extraction.

Subfunctions: initializeDefaultScaleParametersyh.m,

mainExtractKeypointsAndFeatureVectorsyh.m,

mainClusterFeatureVectorsyh.m,

mainExtractHistogramsyh.m,

mainCompSpatialWeightsyh.m,

mainPartitionPrototypesForLTPsyh.m,

mainMakeTextureClassMaskyh.m

Returns: -

Output on disk: -

• mainClusterFeatureVectorsyh.m

Type: Matlab script

Description: Function clusters feature vectors and returns centroids.

Subfunctions: fcmModyh.m,

orderFeatureVectorsyh.m.

Returns: Cluster centroids reordered according to average intensity.

Output on disk: Corder.mat (cluster centroids)

• mainCompSpatialWeightsyh.m

Type: Matlab script

Description: Function computes spatial co-occurrence matrices. Reads key-

points (FILEID_Fp.mat) and prototype labels (FILEID_Plabel.mat) from the

disk.
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Subfunctions: compSpatialWeightsHelperyh.m

Returns: -

Output on disk: -

• mainExtractHistogramsyh.m

Type: Matlab script

Description: Function extracts cluster membership histograms for all sub-

jects with precomputed feature vectors. Reads feature vectors (FILEID_SP.mat)

from the disk.

Subfunctions: extractHistogramsHelperyh.m

Returns: -

Output on disk: -

• mainExtractKeypointsAndFeatureVectorsyh.m

Type: Matlab script

Description: Function extracts keypoints and feature vectors for given input

filenames.

Subfunctions: extractKeypointsFromInputVolumeyh.m,

extractFeatureVectorsPARALLELyh.m

Returns: 1) Feature vectors, 2) keypoints, 3) file identifier used for distin-

guishing outputs.

Output on disk:

• mainMakeTextureClassMaskyh.m

Type: Matlab script
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Description: Function extracts the LTP mask and the corresponding LTP

histogram for a scan. Reads keypoints (FILEID_Fp.mat) and prototype labels

(FILEID_Plabel.mat) from the disk.

Subfunctions: -

Returns: 1) LTP mask, with same dimensionality as input lung mask, 2)

LTP histogram.

Output on disk: FILEID_TM.nii (LTP mask)

• mainPartitionPrototypesForLTPsyh.m

Type: Matlab script

Description: Function for partitioning texture prototypes into LTPs. Reads

co-occurrence matrices from disk (FILEID_NW.mat) and performs partitionings

with different numbers of partitions.

Subfunctions: modifyWeightMatrixCorderyh.m,

clusterGraphCutsWeightsInputyh.m,

remapClustersyh.m

Returns: Partitioning result as a label vector.

Output on disk: -

• clusterGraphCutsWeightsInputyh.m

Type: Matlab script

Description: This function partitions the input weight matrix into different

numbers of partitions, and returns the best partition according to a predefined

criterion.

Subfunctions: outputDataForMetisyh.m, compEdgeCutyh.m, calls gpmetis.
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Returns: Partitioning as a vector consisting of integer labels.

Output on disk: -

• compEdgeCutyh.m

Type: Matlab script

Description: Function computes the edge cut, the intraclass weights and the

total graph density of a given weight matrix and partitioning.

Subfunctions: -

Returns: 1) Edge cut, 2) intraclass weights, 3) total graph density.

Output on disk: -

• compEucDistyh.m

Type: Matlab script

Description: Computes Euclidean distance between input vectors.

Subfunctions: -

Returns: Euclidean distance.

Output on disk: -

• compGaussianKernelyh.m

Type: Matlab script

Description: Function generates 3D Gaussian kernel.

Subfunctions: -

Returns: Kernel

Output on disk: -

184



Appendix D

• compSpatialWeightsHelperyh.m

Type: Matlab script

Description: Function computes spatial neighbor co-occurrence matrix from

keypoint cluster memberships and saves result on disk.

Subfunctions: -

Returns: Neighbor weight matrix.

Output on disk: FILEID_NW.mat (co-occurrence matrix)

• computeDoG3Dyh.m

Type: Matlab script

Description: Function extract keypoints as scale-space maxima from input

volume.

Subfunctions: compGaussianKernelyh.m, findScaleSpaceMaximayh.m.

Returns: Keypoint locations.

Output on disk: -

• constructDoGSoftHistogramsyh.m

Type: Matlab script

Description: Function computes soft histograms of DoG volumes.

Subfunctions: compGaussianKernelyh.m,

constructSoftHistogramInputBinsyh.m

Returns: Soft histograms of DoG.

Output on disk: -

• constructSoftHistogramInputBinsyh.m
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Type: Matlab script

Description: Function computes soft histogram with predefined bins.

Subfunctions: -

Returns: Soft histogram.

Output on disk: -

• constructSoftHistogramyh.m

Type: Matlab script

Description: Function computes normalized soft histogram for image with

number of bins given.

Subfunctions: -

Returns: Normalized soft histogram.

Output on disk: -

• extractFeaturePointsFromVolumeyh.m

Type: Matlab script

Description: Function extract keypoints from input volume, used as helper

function to process large volumes in parts.

Subfunctions: compGaussianKernelyh.m,

computeDoG3Dyh.m.

Returns: Keypoint locations.

Output on disk: -

• extractFeatureVectorsHelperPARALLELyh.m

Type: Matlab script
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Description: Function extracts feature vectors at keypoints. Recommended

to run with parallel processing enabled.

Subfunctions: makeStructuringElementAnisotropicyh.m,

constructSoftHistogramyh.m, constructDoGSoftHistogramsyh.m

Returns: Feature vectors.

Output on disk: -

• extractFeatureVectorsPARALLELyh.m

Type: Matlab script

Description: Function computes feature vectors for images at precomputed

keypoints, and saves results on disk.

Subfunctions: sigmoidalMappingyh.m,

extractFeatureVectorsHelperPARALLELyh.m,

removeEmptySIyh.m.

Returns: 1) Feature vectors, 2) updated keypoints.

Output on disk: FILEID_SP.mat (feature vectors), FILEID_Fp.mat (updated

keypoints).

• extractHistogramsHelperyh.m

Type: Matlab script

Description: Function extracts cluster membership histograms for feature

vectors, used as helper function for mainExtractHistogramsyh.m. Reads

feature vectors (FILEID_SP.mat) from the disk.

Subfunctions: -

Returns: -
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Output on disk: FILEID_H.mat (prototype histogram), FILEID_Plabel.mat

(prototype labels of keypoints)

• extractKeypointsFromInputVolumeyh.m

Type: Matlab script

Description: Function extracts keypoints from input volume and saves them

on disk.

Subfunctions: sigmoidalMappingyh.m,

extractFeaturePointsFromVolumeyh.m,

pruneKeyPointsyh.m.

Returns: Keypoints.

Output on disk: FILEID_Fpruned.mat (keypoints)

• fcmModyh.m

Type: Matlab script

Description: Fuzzy c-means clustering.

Subfunctions: -

Returns: 1) Centroids, 2) partitioning matrix, 3) objective function.

Output on disk: -

• findScaleSpaceMaximayh.m

Type: Matlab script

Description: Function finds scale-space maxima in difference of Gaussian

(DoG) volume.

Subfunctions: -
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Returns: Scale-space maxima locations.

Output on disk: -

• initializeDefaultScaleParametersyh.m

Type: Matlab script

Description: Function defines default parameters for intensity rescaling.

Subfunctions: -

Returns: Parameters in a struct.

Output on disk: -

• makeStructuringElementAnisotropicyh.m

Type: Matlab script

Description: Function creates structuring element that takes different slice

thicknesses into consideration.

Subfunctions: compEucDistyh.m.

Returns: Structuring element.

Output on disk: -

• makeStructuringElementyh.m

Type: Matlab script

Description: Function creates binary structuring element.

Subfunctions: compEucDistyh.m

Returns: Structuring element.

Output on disk: -
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• orderFeatureVectorsyh.m

Type: Matlab script

Description: function reorders feature vectors based on average intensity

(feature vector dimensions 1-10)

Subfunctions: -

Returns: Reordered feature vectors.

Output on disk: -

• outputDataForMetisyh.m

Type: Matlab script

Description: Function outputs weight matrix into text file for Metis for

partitioning.

Subfunctions: -

Returns: -

Output on disk: metis_input.txt

• pruneKeyPointsyh.m

Type: Matlab script

Description: Function removes keypoints outside mask.

Subfunctions: -

Returns: Pruned keypoints.

Output on disk: -

• remapClustersyh.m

Type: Matlab script
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Description: Function orders graph partitioning result according to original

prototype ordering

Subfunctions: -

Returns: Remapped graph partitioning result.

Output on disk: -

• removeEmptySIyh.m

Type: Matlab script

Description: Function removes empty feature vectors and corresponding

keypoints.

Subfunctions: -

Returns: 1) Feature vectors, 2) keypoints.

Output on disk: -

• sigmoidalMappingyh.m

Type: Matlab script

Description: Function rescales values in input vector or matrix using sig-

moidal function.

Subfunctions: -

Returns: Rescaled values.

Output on disk: -
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D.4 Program code for preprocessing lung scans

External libraries or software: The code uses the Matlab toolbox Tools for NIfTI and

ANALYZE image (http://www.mathworks.com/matlabcentral/fileexchange/8797-

tools-for-nifti-and-analyze-image) for input and output of image files. The toolbox

has to be included in the Matlab path. Functions that are already listed in previous

Sections are not repeated here.

• mainPreprocessLungImageSaveResultsMESAyh.m

Type: Matlab script

Description: Function extracts the lung and airway masks from an input CT

scan and saves the resulting masks on the disk. Requires input file path, file-

name and a parameter struct (see initializePreprocessingParametersyh.m)

as input.

Subfunctions: extractLungMaskyh.m, saveNewNiiyh.m,

findBoundingBoxyh.m, segmentAirwaysyh.m

Returns: -

Output on disk: FILEID_Mfull.nii (lung mask in original image space),

FILEID_M_m400.nii (lung mask with airways included), FILEID_AW.nii (air-

way mask), FILEID_MmAW.nii (lung mask with airway mask removed).

• closeSpaceDilationyh.m

Type: Matlab script

Description: Function applies closed space dilation to extract the airway tree

from a lung CT scan.

Subfunctions: findBoundingBoxyh.m, dilateSegmentyh.m
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Returns: Airway mask.

Output on disk: -

• dilateSegmentyh.m

Type: Matlab script

Description: Function dilates single segment in airway tree extraction

Subfunctions: -

Returns: Dilated mask.

Output on disk: -

• extractLungMaskyh.m

Type: Matlab script

Description: Function extracts lung mask from CT scan, by applying thresh-

olding and locating the largest central objects in the thresholding result.

Subfunctions: makeStructuringElementyh.m, compGaussianKernelyh.m

Returns: Lung mask.

Output on disk: -

• initializePreprocessingParametersyh.m

Type: Matlab script

Description: Function initializes preprocessing parameters.

Subfunctions: -

Returns: Struct with default parameters.

Output on disk: -
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• saveNewNiiyh.m

Type: Matlab script

Description: Function saves on disk, the input matrix with input header

information.

Subfunctions: -

Returns: -

Output on disk: FILEID.nii

• segmentAirwaysyh.m

Type: Matlab script

Description: Function segments airways from input image, using input lung

mask with airways included.

Subfunctions: compGaussianKernelyh.m, compEucDistyh.m

makeStructuringElementyh.m, closeSpaceDilationyh.m,

makeStructuringElementyh.m

Returns: Airway mask.

Output on disk: -

D.5 Program code for visualization

External libraries or software: The visualization code uses the open-source library

VLFeat (available at http://www.vlfeat.org, 10/22/2014). The code also uses the

Matlab toolbox Tools for NIfTI and ANALYZE image (http://www.mathworks.com/
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matlabcentral/fileexchange/8797-tools-for-nifti-and-analyze-image) for input and out-

put of image files. The toolboxes have to be included in the Matlab path.

• mainPlotExamplesOfClusterLoadData2yh.m

Type: Matlab script

Description: Function for plotting examples of image patches from 2 scans.

Uses the VLFeat library for low-level plotting of images.

Subfunctions: plotExamplesOfClusteryh.m

Returns: -

• mainReadImageAndPlotTrueDimensionsWithTextureLabelsyh.m

Type: Matlab script

Description: Function for plotting an image slice with an overlaid mask.

Subfunctions: plotImageWithOverlayTrueDimensionsyh.m

Returns: -

• plotExamplesOfClusteryh.m

Type: Matlab script

Description: Function for plotting examples of image patches at random

keypoints.

Subfunctions: -

Returns: -

• plotImageWithOverlayTrueDimensionsyh.m

Type: Matlab script
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Description: Function for plotting image slice with overlaid mask, writes

figures on disk.

Subfunctions: -

Returns: -

196


