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ABSTRACT

Resource Allocation for Energy Harvesting
Communications

Zhe Wang

With the rapid development of energy harvesting technologies, a new paradigm of wireless commu-

nications that employs energy harvesting transmitters has become a reality. The renewable energy

source enables the flexible deployment of the transmitters and prolongs their lifetimes. To make

the best use of the harvested energy, many challenging research issues arise from the new paradigm

of communications. In particular, optimal resource (energy, bandwidth, etc.) allocation is key to

the design of an efficient wireless system powered by renewable energy sources.

In this thesis, we focus on several resource allocation problems for energy harvesting com-

munications, including the energy allocation for a single energy harvesting transmitter, and the

joint energy and spectral resource allocation for energy harvesting networks. More specifically, the

resource allocation problems discussed in this thesis are summarized as follows.

• We solve the problem of designing an affordable optimal energy allocation strategy for the

system of energy harvesting active networked tags (EnHANTs), that is adapted to the identi-

fication request and the energy harvesting dynamic. We formulate a Markov decision process

(MDP) problem to optimize the overall system performance which takes into consideration of

both the system activity-time and the communication reliability. To solve the problem, both

a static exhaustive search method and a modified policy iteration algorithm are employed to

obtain the optimal energy allocation policy.

• We develop an energy allocation algorithm to maximize the achievable rate for an access-

controlled energy harvesting transmitter based on causal observations of the channel fading

states. We formulate the stochastic optimization problem as a Markov decision process (MDP)

with continuous states and define an approximate value function based on a piecewise linear



fit in terms of the battery state. We show that with the approximate value function, the

update in each iteration consists of a group of convex problems with a continuous parameter

and we derive the optimal solution to these convex problems in closed-form. Specifically, the

computational complexity of the proposed algorithm is significantly lower than that of the

standard discrete MDP method.

• We propose an efficient iterative algorithm to obtain the optimal energy-bandwidth allocation

for multiple flat-fading point-to-point channels, maximizing the weighted sum-rate given the

predictions of the energy and channel state. For the special case that each transmitter only

communicates with one receiver and the objective is to maximize the total throughput, we

develop efficient algorithms for optimally solving the subproblems involved in the iterative

algorithm. Moreover, a heuristic algorithm is also proposed for energy-bandwidth allocation

based on the causal energy and channel observations.

• We consider the energy-bandwidth allocation problem in multiple orthogonal and non-orthogonal

flat-fading broadcast channels to maximize the weighted sum-rate given the predictions of en-

ergy and channel states. To efficiently obtain the optimal allocation, we extend the iterative

algorithm originally proposed for multiple flat-fading point-to-point channels and further de-

velop the optimal algorithms to solve the corresponding subproblems. For the orthogonal

broadcast channel, the proportionally-fair (PF) throughput maximization problem is formu-

lated and we derive the equivalence conditions such that the optimal solution can be obtained

by solving a weighted throughput maximization problem. The algorithm to obtain the proper

weights is also proposed.

• We consider the energy-subchannel allocation problem for energy harvesting networks in

frequency-selective fading channels. We first assume that the harvested energy and sub-

channel gains can be predicted and propose an algorithm to efficiently obtain the energy-

subchannel allocations for all links over the scheduling period based on controlled water-

filling. The proposed algorithm is shown to be asymptotically optimal when the bandwidth

of the subchannel goes to zero. A causal algorithm is also proposed based on the Q-learning

technique that makes use of the statistics of the energy harvesting and channel fading pro-

cesses.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

With the rapid development of energy harvesting technologies, information transmission powered

by energy harvesting devices has became a new paradigm of communications [1][2]. The renewable

energy source enables the flexible deployment of the transmitters and prolongs their lifetimes. With

a stochastic energy supply, resource scheduling is key to efficient and reliable energy-harvesting

communications. To make the best use of the harvested energy for wireless communications, many

challenging research issues arise and the energy scheduling is key to the design of an efficient wireless

system powered by renewable energy sources [3]. Moreover, traditionally, with constant power

sources, transmitter-end resource allocation for wireless communications involves the allocation of

transmission power, MIMO precoders, and frequency bands to different users, to maximize the

system rate. With energy harvesting transmitters, scheduling transmission energy together with

other resource, e.g., frequency band, over time, becomes an important problem [4][5].

1.1 Background

Motivated by the growing concern on power consumption, green communications is a new concept

proposed in recent years, which aims to reduce the consumption of the traditional fossil energy.

To convert green communications from concept to reality, green communication techniques have

been intensively investigated in the past years, including the research perspectives on energy-

efficient devices (e.g., energy-efficient RF module), employment of renewable energy sources, energy-

minimizing adaptive transmission, interference management and mitigation, energy-efficient routing
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Figure 1.1: Research perspectives on green wireless communications.

and multhop, and so on [3–12], as illustrated in Fig. 1.1. Specifically, the green communication

techniques have the common objective of improving the energy efficiency.

In addition to the use of energy-efficient devices, energy-efficient adaptive transmission is an

effective technique to improve the energy efficiency for a single transmitter. By adapting the

transmitter’s parameters (e.g., the constellation signaling, the number of diversity branches, etc.)

to the channel condition, the adaptive transmission can trade off between the energy efficiency

and spectral efficiency under the performance constraints [6][7][13]. For a network with multiple

transmitters, the interference management and mitigation technique can be used to mitigate the

interference level at the receivers so that the transmission energy at the transmitters can be reduced

accordingly without compromising the SINR of the wireless link [3][7]. Moreover, on network level,

using the energy-efficient routing and multhop techniques, information exchanges between two

transceivers (e.g., the base station and mobile terminal) can be realized by multiple relays with

better channel conditions. Since the information is transmitted over better channels, the same rate

can be achieved with lower transmission energy [3][14].

Employing the renewable energy is a novel way to realize green communications, which is mo-

tivated by the rapid development of the energy harvesting techniques in recent years. For energy
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harvesting communications, the employment of the energy harvesting transmitters can not only

avoid the use of the traditional fossil energy but also provide the flexible deployment and perpet-

ual operation [15][16]. Due to the limited capability of the energy harvesting and storage, energy

harvesting communications require the best use of the harvested energy, balancing the communi-

cation performance and the potential energy outage and overflow caused by the energy harvesting

dynamics [8], which is different from some traditional techniques that realize the improvement on

energy efficiency by solely reducing the energy consumption.

Battery Processor

Radio

Sensor

Energy 

Harvesting 

Device

Energy Harvesting Module Energy Storage Module Transmitter Module

RF Signal

Environment Information

Ambient Energy

Figure 1.2: The block diagram of a typical energy harvesting transmitter.

Energy harvesting transmitter is the fundamental unit of the energy harvesting communication

system, typically consisting of the energy harvesting module, energy storage module, and transmit-

ter module [8][15], as shown in Fig. 1.2. The energy harvesting module harvests ambient energy

from the surrounding environment and stores it in the energy storage module, which could be a

rechargeable battery or supper capacitor. The storage module powers the transmitter, which con-

tains the processor, sensing and radio blocks. Specifically, the sensing block performs the sensing

functionality, e.g., collecting the environment information, depending on the application, and the
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Figure 1.3: The energy expenditure curve and its feasible region.

radio block transmits the information processed by the processor and receives the data from the

control center or another transmitters. In particular, in addition to processing the information, the

processor is also the control unit of the energy harvesting transmitter, controlling the transmitter’s

working status, e.g., the transmitting or receiving status, the modulation and code scheme, and

the transmission power.

Using the renewable energy is the most important feature of the energy harvesting transmitter

and we can characterize the transmitter’s operation (e.g., use specific transmission policy) in terms

of the energy consumption by the energy expenditure curve (i.e., the integration of the energy

expenditure over time) along with its feasible region [17], as shown in Fig. 1.3. Specifically, each

energy expenditure curve corresponds to a particular communication performance and must be in

the feasible region constrained by the energy harvesting process and the battery capacity. It is easy

to understand that the feasible region is upper-bounded by the accumulative energy harvesting

curve (i.e., the integration of the harvested energy over time) such that the accumulated energy

expenditure cannot exceed the accumulated energy harvesting for all time otherwise the battery

level would be negative. Also, the energy expenditure curve cannot be below the curve formed

by subtracting the battery capacity from the accumulated energy harvesting (or zero, whichever is

larger) since the battery level cannot exceed its capacity [17].

For traditional grid- and battery-powered transmitters, we can also use the similar way to char-
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acterize their energy expenditure curves along with the feasible regions; however, we will see that

their curves and feasible regions are quite different from those of the energy harvesting transmit-

ter. Specifically, for the grid-powered transmitter subject to the maximum transmission power,

its energy expenditure curve is continuous and the derivative (both left- and right-derivatives at

the non-differentiable point) cannot exceed the value of the maximum transmission power; for the

battery-powered transmitter, since the energy is not replenishable, its energy expenditure curve

must stay below a constant horizon line (e.g., the dashed line in Fig. 1.3) that represents the

energy initially charged in the battery. Note that, since the different energy expenditure curves

represent different operation schemes and correspond to the different communication performances,

the energy harvesting transmitters operate significantly differently as compared to the grid- and

battery-powered transmitters. Therefore, lots of interesting and changeling research issues arise for

the energy harvesting transmitters, including the architecture design of energy harvesting transmit-

ter, channel capacity of energy harvesting communications, resource allocation, routing and relay

selection for energy harvesting networks, and so on, as illustrated in Fig. 1.4.

Architecture Design

Channel Capacity

(Joint) Resource 

Allocation

Relay Selection and 

Routing

… ...

Single Transmitter

Network

Energy Harvesting 

Communications

(Using Renewable Energy Sources)

Figure 1.4: Research perspectives on energy harvesting communications.

For energy harvesting transmitters, the architecture design is the most essential issue, i.e., how

to design the energy harvesting transmitter based on the specific application. Since the energy



CHAPTER 1. INTRODUCTION 6

harvesting transmitter is ideally expected to work perpetually, we need to design and adapt the

energy harvesting, modulation, and sensing techniques to strike a balance between the communi-

cation performance required by the specific application and the system reliability affected by the

potential energy outage. The architecture design was addressed by lots of works [1][15][18]. Specif-

ically, the energy-harvesting active networked tags (EnHANTs) were developed in [19] and [20] as

small devices that can be attached to small objects that are not traditionally networked.

Channel capacity is an interesting and challenging theoretical topic for energy harvesting com-

munications, which provides the theoretical bounds on the performance. Unlike the traditional

battery-powered systems, energy arrival of the energy harvesting transmitter is a random process

over the symbol durations and the harvested energy is not necessarily consumed up immediately.

On the other hand, when the battery is empty, the transmission has to be interrupted. Thus energy

harvesting communications require a major shift in terms of the energy constraint imposed on the

channel input compared to those in the existing literature. Specifically, the channel capacities for

energy harvesting communications were discussed in [21], [22], [23], and [24] with various energy

conditions for various channels.

At the transmitter-end, the resource allocation is key to make the best use of the harvested

energy, ensuring the quality, long-term, and uninterrupted communications. With the battery, the

harvested energy can be used immediately or stored for future transmission. Therefore, by properly

choosing the energy allocation policy, the transmitter may use the energy to receive its maximum

marginal utility, e.g., sum-rate. Moreover, in energy harvesting networks, joint resource allocation,

e.g., the joint energy and spectral resource allocation, can provide additional degrees of freedom

for optimization, thus the harvested energy may be better utilized for achieving an outperformed

performance. The resource allocation for energy harvesting communications is widely investigated

in the past years, which is also the subject of this thesis. We will provide a detailed literature

review for the existing resource allocation techniques in the next section.

On network level, the studies of the relay selection and routing are also interesting for energy

harvesting communications, which aim to effectively schedule the data transmissions in the energy

harvesting networks. Specifically, in energy harvesting networks, the energy consumed by the

transmitter is mostly harvested from the surrounding environment rather than the energy initially

charged in the battery. Thus, the traditional relaying and routing policies have to be revised in
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order to decide how to deliver packets using the harvested energy efficiently for perpetual operation.

This requires a paradigm shift in the design of relaying and routing algorithms. For example, a few

works, e.g., [25], [26], [27], [28], and [29], investigate the relaying and routing policies for energy

harvesting communications.

Moreover, some new research topics emerged for energy harvesting communications recently. For

example, incorporating the energy harvesting transmitter with the cellular network, [30] discussed

the availability of the energy harvesting base station in multi-tier heterogeneous cellular networks.

The topology planing problem was considered in [31] for the cellular networks enhanced by energy

harvesting. Instead of passively harvesting the ambient energy, an interesting and challenging

scenario arises when the transmitter performs simultaneous wireless information and power transfer

[32][33]. It leads to the open problem for joint power control and user scheduling, energy and

information scheduling, and interference management [16].

1.2 Literature Review

The system of energy-harvesting active networked tags (EnHANTs) has been proposed as small

devices that can be attached to small objects that are not traditionally networked, e.g., books,

clothes, and keys [19][20], representing a futuristic transition from the radio frequency identification

(RFID) technology to a novel one with two main features [34]. Traditionally, the problems of

activity-time maximization and reliability maximization have been treated independently in the

contexts of RFID and WSN, respectively. For example, [35] and [36] considered maximizing the

activity-time and coverage range (readability) of the RFID tags, respectively. Specifically, [35]

proposed a mechanism for jointly energy harvesting and energy saving and [36] introduced a passive

RFID system whose tags are equipped with power amplifiers and energy storage devices. Both

systems are designed for typical application of tag identification information reading and do not

support state information exchange among the tags. On the other hand, [37], [38], and [39] discussed

energy optimization for the WSNs, where the optimal transmission schemes subject to the battery

state and delay constraints are developed.

For general energy harvesting transmitters, a number of works addressed energy scheduling for

a single transmitter. In particular, when the harvested energy and channel gains can be predicted, a
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shortest-path-based algorithm was proposed in [17] for optimal energy scheduling in static channels,

and the optimality properties of the energy schedule were studied in [40] based on the energy

causality. For fading channels, with infinite battery capacity, [41] proposed a staircase water-

filling algorithm for optimal energy scheduling; by analyzing the energy flow behaviors with finite

battery capacity, the directional water-filling algorithm was further proposed in [42]. Taking the

maximum transmission power into account, [43] proposed a dynamic water-filling algorithm to

efficiently obtain the energy schedule to maximize the achievable rate. On the other hand, when the

prediction of the harvested energy is not available, an algorithm was proposed in [44] to maximize

the average throughput by allocating the discrete transmission power with causal energy arrival

information. Moreover, when the statistics of the energy harvesting and channel fading processes are

not available, a learning approach was used in [45] to maximize the number of packet transmissions

by controlling the binary package sending status in each time slot.

Energy scheduling for multiuser energy harvesting networks has also been investigated. [46]

characterized the general capacity region for a static multiple-access channel (MAC) without the

constraints on the battery capacity and maximum transmission power. For two-user Gaussian

interference channels, the optimal energy scheduling policy was discussed in [47] for the energy

harvesting transmitters; and for static broadcast channels, the optimal energy scheduling algorithm

was proposed in [48]. A causal algorithm was also proposed in [49] without using the predictions

based on the Lyapunov optimization technique to optimize the utility of network. Incorporating

the energy cooperation, [50] studied the transmission and energy transfer policies for various relay

channels with one-way energy transfer; and with two-way energy transfer, the energy cooperation

was studied in [51] for two-hop communication networks where the transmitters harvest their energy

in an intermittent fashion.

The study of the joint resource allocation in multiuser energy harvesting networks emerges

recently. In [52], heuristic algorithms were proposed to find the joint time-power allocation subject

to the proportional fairness with the unbounded battery capacity; and [53] proposed an iterative

algorithm for computing the optimal joint energy-bandwidth allocation in flat-fading point-to-point

channels. Moreover, without energy harvesting, the resource allocation techniques were intensively

investigated in frequency-selective channels. In [54], a low-complexity heuristic algorithm was

proposed to allocate the subcarrier and power in an uplink OFDMA system under the constraint
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of maximum transmission power in each slot. [55] grouped a number of adjacent subchannels into

a chunk and treated the joint chunk, power and bit allocation for OFDMA systems. For the uplink

of multi-carrier system with multiple modulation and code schemes, [56] proposed a distributed

algorithms based on the message-passing approach to assign the subchannels and modulation/code

schemes with the objective of minimizing the power consumption. For uplink DFT-spread-OFDMA

systems, in [57], a polynomial-time message-passing-based algorithm was proposed for subcarrier

allocation that is asymptotically optimal as the number of subcarriers goes to infinity. Also, [58]

showed that the strong duality holds for the nonconvex spectrum optimization in multicarrier

systems when the number of subcarriers goes to infinity.

1.3 Outline and Contributions

In this thesis, we will discuss the resource allocation for energy harvesting (EH) communications,

consisting of the following two parts: in the first part, we focus on the energy allocation for a

single energy harvesting transmitter; and in the other part, the joint energy and spectral resource

allocation is discussed for energy harvesting networks.

1.3.1 Energy Allocation for Single EH Transmitter

In the first part, we first consider the problem of designing an affordable optimal energy allocation

strategy for the newly emerged system of energy-harvesting active networked tags (EnHANTs),

that is adapted to the identification request and the energy harvesting dynamics. Specifically,

we propose an energy allocation strategy for EnHANTs that optimizes a long-term average of

the communication reliability. The reliability part of this objective reflects the impact of energy

management on communications and the long-term average implicitly incorporates the activity-

time maximization goal. We show that the energy-spending policy associated with the information

transmission can be cast as a Markov decision process (MDP), and we use a modified policy iteration

algorithm to obtain the optimal energy allocation policy. This problem is addressed in detail in

Chapter 2.

Next, we focus on the energy allocation for an access-controlled energy harvesting transmitter

based on causal observations of the channel fading state. We assume that the system operates in
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a time-slotted fashion and the channel gain in each slot is a random variable which is independent

across slots. With the additional access control for the transmitter and the maximum power

constraint, we formulate the stochastic optimization problem of maximizing the achievable rate as

a Markov decision process (MDP) with continuous state. To efficiently solve the problem, we define

an approximate value function based on a piecewise linear fit in terms of the battery state. We

show that with the approximate value function, the update in each iteration consists of a group

of convex problems with a continuous parameter. Moreover, we derive the optimal solution to

these convex problems in closed-form. Further, we propose energy allocation algorithms for both

the finite- and infinite-horizon cases, whose computational complexities are significantly lower than

that of the standard discrete MDP method but with improved performance. Extension to the case

of a general payoff function and imperfect energy prediction is also considered. Finally, simulation

results demonstrate that the proposed algorithms closely approach the optimal performance. This

problem is addressed in detail in Chapter 3.

1.3.2 Joint Energy-Bandwidth Allocation for EH Networks

In the second part, we focus on the energy harvesting networks and first consider the joint energy-

bandwidth allocation in various flat-fading channels. We assume that the side information of

both the channel states and the energy harvesting states is known for K time slots a priori.

Then an optimal energy-bandwidth allocation algorithm is developed for multiple energy harvesting

transmitters, each may communicate with multiple receivers via orthogonal point-to-point channels

with the finite battery capacity and the maximum transmission energy in each time slot. We aim

to maximize the weighted sum-rate of all transmitters over the K time slots by assigning the

transmission energy and bandwidth for each transmitter in each slot and the problem is formulated

as a convex optimization problem with O(MK) constraints, where M is the number of the receivers,

making it hard to solve with a generic convex solver. An iterative algorithm is proposed that

alternatively solves the energy allocation and bandwidth allocation subproblems in each iteration.

The convergence and the optimality of this algorithm are also shown. We then consider the special

case that each transmitter only communicates with one receiver and the objective is to maximize

the total throughput. For this case, we develop the efficient algorithms to solve the two energy

allocation and bandwidth allocation subproblems involved in the iterative algorithm optimally. A
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heuristic algorithm is also proposed for energy-bandwidth allocation based on causal information of

channel and energy harvesting states in multiple point-to-point channels with equal weights. This

problem is addressed in detail in Chapter 4.

We next consider the energy-bandwidth allocation in multiple flat-fading orthogonal and non-

orthogonal broadcast channels. To efficiently solve this problem, we extend the iterative algorithm

in Chapter 4 and develop algorithms for solving the corresponding two subproblems in flat-fading

orthogonal and non-orthogonal broadcast channels, respectively. For the orthogonal broadcast

channel, we further formulate a proportionally-fair (PF) throughput maximization problem and

derive the equivalence conditions such that the optimal solution can be obtained by solving a

weighted throughput maximization problem. Further, the algorithm to obtain the proper weights

is proposed. Simulation results show that the proposed algorithm can make efficient use of the

harvested energy and the available bandwidth, and achieve significantly better performance than

some heuristic policies for energy and bandwidth allocation. Moreover, it is seen that with energy-

harvesting transmitters, non-orthogonal broadcast offers limited gain over orthogonal broadcast.

This extension is made in Chapter 5.

In frequency-selective fading channels, we split the frequency band into multiple flat fading sub-

channels with equal bandwidth and consider the energy-subchannel allocation problem for energy

harvesting networks. Specifically, we first assume that the harvested energy and subchannel gains

can be predicted and propose an algorithm to obtain the energy-subchannel allocation based on

controlled water-filling, with the objective of maximizing the sum-rate in a scheduling period. The

proposed algorithm is shown to be asymptotically optimal when the bandwidth of the subchannel

goes to zero. A causal algorithm is also proposed based on the Q-learning method without using

the predictions of the harvested energy and channel gain. This problem is addressed in detail in

Chapter 6.

In summary, this thesis is organized as follows. In Chapter 2, we focus on the optimal energy

allocation for the enhanced energy harvesting tags to improve the service reliability and quality.

In Chapter 3, we consider the energy allocation problem for energy harvesting transmitters to

maximize the achievable rate based on the observation of the channel gains and harvested energy.

The optimal energy-bandwidth allocations in various flat-fading channels are discussed in Chapters

4 and 5, where Chapter 4 focuses on the optimal iterative algorithm and the efficient algorithms
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for multiple point-to-point channels, and Chapter 5 focuses on the multiple orthogonal and non-

orthogonal broadcast channels and the proportional fairness issue. In frequency-selective fading

channels, the energy-subchannel allocation problem is considered in Chapter 6. Finally, Chapter 7

concludes the thesis.
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Chapter 2

Energy Allocation for Enhanced

Energy Harvesting Communication

Tags

The system of energy-harvesting active networked tags (EnHANTs) has been recently proposed

as small devices that can be attached to small objects that are not traditionally networked, e.g.,

books, clothes, and keys [19][20]. The EnHANTs system represents a futuristic transition from the

radio frequency identification (RFID) technology [34] to a novel one with two main features. First,

it enables communications among tag-equipped objects and secondly, the objects are autonomous

and self-sufficient from an energy consumption perspective as they harvest and store energy from

ambient light, motion, and temperature gradients.

The EnHANTs system mainly facilitates object tracking applications that are not viable through

the existing technologies that either lack networking capability (e.g., RFID) or do not satisfy the

size or energy autonomy constraints (e.g., Bluetooth). Examples of such tracking applications by

energy autonomous networked objects include disaster recovery, emergency alert, and collecting

temporal and spatial proximity information. This system enjoys the main features of both the

RFID and wireless sensor network (WSN) technologies. In particular, the tags are designed to

provide a timely response to any request for their identification information, as done by RFIDs,

and also to report their functioning states and surrounding environment information, as done in a
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WSN.

The major challenge in designing the communication protocols for EnHANTs pertains to man-

aging the energy resources. For such energy management, there exists a tension between maximizing

the activity-time1 of the tags on one hand, which necessitates a conservative consumption of the

energy resources, and increasing the communication reliability on the other hand, which suggests

consuming more energy. The optimal consumption of the energy resources, therefore, requires strik-

ing a balance between maximizing the activity-time and communication reliability. Maintaining

such a balance becomes more complicated due to the fact that the tags harvest energy on an ad-hoc

basis, depending on the physical conditions of the environment (e.g., light, temperature, or motion).

Therefore, an object might not have adequate energy for responding to any communication request

it receives, and more importantly, even if it does, it might not be necessarily optimal to respond

to such a request as preserving the energy for subsequent communications might bring about more

overall communication reliability and activity-time.

In this chapter, we propose an energy allocation for EnHANTs that optimizes a long-term

average of the communication reliability. The reliability part of this objective reflects the impact

of energy management on communications and the long-term average implicitly incorporates the

activity-time maximization goal. We show that the energy-spending policy associated with the

information transmission can be cast as a Markov decision process (MDP), and we provide an

efficient algorithm for computing the optimal policy.

2.1 System Descriptions

2.1.1 Communication Model

Consider a network of objects equipped with EnHANTs that communicate with a tag reader. Upon

the request of the reader, the objects provide it with their identity and state information about

their surrounding conditions. The communications occur in a time-slotted fashion with slots of

1The meaning of lifetime for energy-harvesting tags is slightly different from that of more conventional tags. For

this reason we have adopted the term “activity-time”, which similar to the traditional definitions of lifetime, refers

to the time spans during which the tag has enough energy to respond to the inquiries. Its difference, nevertheless, is

that activity-time is not of finite-horizon and can potentially extend for a long duration given that the tag is capable

of harvesting adequate energy.
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equal durations. The beginning of a time slot is reserved for the reader to broadcast its inquiries

for collecting identification and information. Upon receiving the inquiries, the objects promptly

respond to the reader, where they are allowed to use the remaining portion of the time slot for

transmitting their information to the reader. A communication error occurs when either the objects

fail to respond to the reader’s inquires, or the reader fails to correctly decode the data from the

objects.

To ensure low energy consumption, we assume that the ultra wideband (UWB)-based the pulse-

position modulation (PPM) [59] is employed at each tag for sending information to the reader.

Specifically, the information is encoded to the different positions of a single pulse (or a group of

pulses) within a given time interval T . Given an encoded PPM symbol

s = [s1, s2, . . . , sJ ], si ∈ {0, 1} ,

and a pulse p(t) of duration Tp, where Tp < T/J , the received signal corresponding to s is given by

x(t) =

J∑

i=1

sip(t− iT/J) + v(t), 0 ≤ t ≤ T , (2.1)

where v(t) is the ambient Gaussian noise. We assume that all encoded symbols are mutually

orthogonal. Assuming that the pulses in a symbol are all unit pulses, i.e.,
∫
p2(t)dt = 1, then we

define the weight w of the symbol as the number of non-zero pulses in the symbol, which is also

the energy of the symbol.

In order for the reader to process the received PPM signal from the tagged object, conventionally

a front-end A/D converter is employed which requires a very high-sampling rate for the UWB PPM

signal. In particular, the sampling rate is the inverse of the pulse width Tp, e.g., 1/Tp = 5GHz, which

is prohibitively high. Alternatively, given the sparsity of the PPM signal, the compressive sensing

technique [60] together with the signal detection method with compressive measurements [61] can

be employed at the reader to significantly reduce the sampling rate. The basic idea is to project the

received UWB PPM signal to some (random) basis waveforms at the analog front-end. The resulting

projections constitute the compressive measurements based on which the original transmitted PPM

signal can be detected. Mathematically the projection operation is characterized by a (random)

projection matrix Φ ∈ RM×N [60]. After projection, the original received PPM signal x ∈ RN ,

corresponding to the samples of the received PPM waveform x(t) at the 1/Tp sampling rate, is
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converted to the compressed samples x̃ = Φx ∈ RM with a compression ratio of M/N . Note that

no sampling at rate 1/Tp is needed; instead, we obtain the compressed samples x̃ directly by the

analog projection operation.

Assume that there are totally K PPM symbols s1, s2, . . . , sK . Denote their corresponding

projections as x̃i = Φxi, i = 1, 2, . . . ,K. Then the receiver implements the following decision rule

on the compressed signal to decide the PPM symbol that was transmitted:

î = arg min
1≤i≤K

(x̃− x̃i)TΨ(x̃− x̃i) , (2.2)

where Ψ = (ΦΦT )−1. Under this classification method, the probability of mis-detecting a symbol

of weight w, denoted by Pmd(w), is well-approximated by [61]

Pmd(w) = 1−Q
(
−
√
M

N

w

σ2

)K−1

, (2.3)

where σ2 is the variance the additive white Gaussian noise, and Q(x) = 1√
2π

∫ x
−∞ e

−t2/2dt.

A good timer synchronization is necessary for the EnHANTs as they work on a time-slot basis.

Designing the appropriate synchronizers follow the same principles as those needed in the more

conventional RFID systems. The system architectures provided in [19] and [20] employ a simple

schemes in which the tags and readers use an analog circuit to detect the reader’s inquiries and the

tag’s responses. These inquires and responses occur in the forms of a single pulse or a train of pulses.

By locating the positions of the pulses, the system can obtain the underlying time reference, which

in turn serves as the basis for synchronized communication. More information on implementing

these synchronization methods is available in [62] and [63].

2.1.2 Energy Harvesting Model

We assume that the reader has a passive and continuous power source and has no power constraint.

For the tags, we assume that they are equipped with rechargeable batteries and light energy har-

vesting devices. Due to the size constraints, the batteries must be small and consequently, have low

capacity. Therefore, a considerable portion of the energy consumed by the tags should be harvested

from the environment and the battery essentially functions as an energy buffer.

We consider probabilistic models for inquiries made by the reader as well as the energy harvest-

ing dynamics of the devices. We aim to optimize the energy allocation policy from the perspective of
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each object and therefore restrict the analysis to the case of one reader and one EnHANT equipped

object. To model the identification request state of the reader at the beginning of the k-th time

slot, for k ∈ N, we define the random variable

ak ∼ Bernoulli(r) ,

where ak = 1, occurring with probability r, indicates that the reader inquires about the tag’s

information at the beginning of the k-th time-slot and ak = 0, that occurs with probability (1− r),
indicates otherwise. We also define the indicator bk to reflect whether the tag is harvesting energy

in the k-th time slot (bk = 1) or it is not harvesting energy (bk = 0). Moreover, we model the

energy harvesting process as a correlated, two-state process [64]. If the tag harvests energy in a

time slot, it will continue to harvest energy in the subsequent time slot with probability p and if no

energy is harvested in a time slot, the probability of not harvesting any energy in the subsequent

time slot either is q.

We denote the energy level that a tag can harvest and consume in the subsequent time slots by

Eh. We also denote the capacity of the battery by Bmax and denote the energy level restored in the

battery of the object at the beginning of the k-th time slot by Bk, with Bk ≤ Bmax. By defining

Wk as the weight of the symbol transmitted in the k-th time slots, we get the following recursive

relationship between the energy levels at the beginning of two consecutive time slots

Bk+1 = min
{
Bk − ak ·Wk · 1{Bk·≥Wk} + bk · Eh , Bmax

}
, (2.4)

where the indicator function 1{A} is defined as 1{A} = 1 if A is true, and 0 otherwise. We remark

that Wk, for all k ∈ N, take discrete values fromW = {0, w1, . . . , wm} which are determined by the

design of the hardware.

2.2 Problem Statement

2.2.1 Performance Measure

We define Sk , (Bk, ak, bk), as the state of the tag in the k-th time slot. Since all components

of Sk, i.e., Bk, ak, and bk, take discrete values and are all bounded, there are a finite number of

possible states. We denote the number of such possible states by |S| and the set of possible states
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by S , {s1, . . . , s|S|}. Due to the structure of PPM that encodes the data in the positions of

the non-zero pulses, the data to be transmitted govern the positions of the pulses, and the state

of the tag determines the energy of the pulse. As a result, irrespective of the data content to be

conveyed to the reader, the energy of the tag in the k-th time interval is uniquely determined by Sk.

Therefore, identical states Sk = Sl for k 6= l will give rise to identical symbol weights, consuming

identical energy. We denote an energy allocation policy φ as a mapping from the set of states S to

the set of weightsW, so that φ(sk) is the symbol weight corresponding to the state sk, which is also

the energy consumption in time slot k. Our objective is to determine the optimal design of φ(·)
such that a performance measure, that incorporates both the tag activity-time and communication

reliability, is optimized.

Erroneous communication has two origins, namely no-response errors and mis-detection errors.

The no-response error in the k-th time slot occurs when the battery cannot afford the energy

required for sending a response to the reader, i.e., Bk < Wk, or when the tag operates under a

certain policy that may voluntarily give up responding to the reader’s request. For this reason,

in order to allow for the possibility of letting φ(sk) = 0, we must have 0 ∈ W. For any given

energy allocation policy φ, these two factors combined give rise to the following long-term average

no-response error, where the average is taken over all time-slots,

P̂nr(φ) = lim
N→∞

∑N
k=1 1{Wk=0} · ak∑N

k=1 ak
, (2.5)

where Wk = φ(Sk). The mis-detection errors take place when the reader cannot successfully decode

the data transmitted by the object and its pertinent infinite-horizon average error for the given

energy allocation policy φ is

P̂md(φ) = lim
N→∞

∑N
k=1 Pmd(Wk) · 1{Wk>0} · ak∑N

k=1 ak
, (2.6)

where Wk = φ(Sk). Finally, in order to incorporate the no-response and mis-detection error prob-

abilities under the same performance measure, we define a weighed average of the two error prob-

abilities as

Perr(φ) = βP̂nr(φ) + (1− β)P̂md(φ) , (2.7)

where β ∈ [0, 1] is the weighting factor. By changing β one can adjust the error probability Perr(φ)

based on the application of interest depending on whether the no-response or mis-detection error



CHAPTER 2. ENERGY ALLOCATION FOR ENHANCED ENERGY HARVESTING
COMMUNICATION TAGS 19

is more important. Equations (2.5)-(2.7) provide

Perr(φ) = lim
N→∞

∑N
k=1

(
β · 1{Wk=0} + (1− β) · Pmd(Wk) · 1{Wk>0}

)
· ak

∑N
k=1 ak

. (2.8)

Therefore, the optimization problem that we strive to solve can be formalized as follows:

P =





minφ Perr(φ)

s.t. the battery states satisfy (2.4)
. (2.9)

2.2.2 Markov Decision Process

The optimization problem as formulated in (2.9) designs the optimal policy φ, which is valid

throughout the activity-time of the tag. In other words, the solution we have is stationary in the

sense that it does not change over time. This means that we can solve (2.9) offline and provide the

tags with the corresponding look-up tables, without requiring them to spend their energy resources

on computations. We next show that the optimization problem that finds a stationary policy, which

is the mapping from the states in S to the weights in W, can be modeled as a standard Markov

decision process (MDP) problem.

A standard MDP, which provides a framework for decision-making in situations where outcomes

are partly random, can be defined via a quadruplet
(
S,W, pwi(si, sj), Rwi(si, sj)

)
, where in our

settings S denotes the set of states S; W is the set of actions taken based on the states, i.e., the

set of weights assigned to the states; pwi(si, sj) denotes the probability of transition from state si

to state sj when action wi ∈ W is taken. Note that the transition probabilities satisfy

∀wi ∈ W,∀i ∈ {1, 2, . . . ,M} :
∑

j=1

pwi(si, sj) = 1 .

Finally, Rwi(si, sj) denotes the penalty (or reward) associated with the transition from si to

sj under action wi. The objective of an MDP is to choose a policy φ : S → W that assigns an

action to each state such that the average penalty is minimized. Specifically, the policy of interest

minimizes the infinite horizon penalty

Rih(φ) , lim
N→∞

1

N

N∑

k=1

RWk
(Sk, Sk+1) , (2.10)

where Wk = φ(Sk).
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Figure 2.1: The state transition diagram.

2.2.3 The MDP Formulation

As described in Section 2.1, the reader operates in a time-slotted fashion with slots of equal dura-

tions. During the k-th time slot, the tag selects the symbol weight Wk = φ(Sk) for the signal to be

sent to the reader. Under the choice of Wk the tag’s state changes from Sk to Sk+1, as shown in

Fig. 2.1. Therefore, the penalty associated with this transition is RWk
(Sk, Sk+1).

A natural choice for the penalty term RWk
(Sk, Sk+1) is the probability that such a transition

is sensed by the reader erroneously. In particular, we aim to associate RWk
(Sk, Sk+1) with the

communication error probability given by

RWk
(Sk, Sk+1) =

(
β · 1{Wk=0} + (1− β) · Pmd(Wk) · 1{Wk>0}

)
· ak . (2.11)

By invoking (2.10), the infinite-horizon penalty becomes

Rih(φ) = lim
N→∞

1

N

N∑

k=1

(
β · 1{Wk=0} + (1− β) · Pmd(Wk) · 1{Wk>0}

)
· ak . (2.12)
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By comparing (2.12) and Perr(φ) in (2.8), we find that Rih(φ) and Perr(φ) are identical up to a

scaling factor. This scaling factor is limN→∞
∑N

K=1 ak/N , which by considering the distribution of

ai and the law of large numbers is equal to Nr. Therefore, the optimal weight assignment policy φ,

which is the solution to (2.9) can be equivalently found by solving the following the MDP problem

P̂ =





minφ Rih(φ)

s.t. the battery states satisfy (2.4)
. (2.13)

This statement is formalized in the following proposition.

Proposition 1. The solution to the optimization problem in (2.9) can be obtained by solving the

MDP problem in (2.13).

2.3 Computing the Optimal Energy Allocation Policy

In this section we discuss how to solve (2.9). We denote the set of all possible energy allocation

policies as Φ = {φ : S → W}. Then we have |Φ| = |W||S|.
We first consider a naive exhaustive search method. Assuming the MDP process starts form the

0-th time slot and is continuously observed for N time slots, we can simulate the {a0, a1, . . . , aN},
which is the sequence of the identification request state of each time slot, and {b0, b1, . . . , bN},
which is the sequence of the energy harvesting state of each time slot, based on their respective

underlying statistical models. Based on the battery state transition process in (2.4), a finite-horizon

state sequence S(φ) = {S0, S1, . . . , SN} can then be generated under each possible policy φ ∈ Φ.

Using (2.8) for finite N , we can calculate the average penalty associated with the state-sequence

S(φ), which we denote as Perr(φ). The optimal policy is then

φ∗ = arg min
φ∈Φ

Perr(φ) . (2.14)

Obviously if we choose the sequence length N to be large enough, φ∗ can be considered as a close

approximation to the solution to the original problem in (2.9).

2.3.1 Modified Policy Iteration Algorithm

The complexity of the exhaustive search method becomes prohibitive when |W| or |S| is large.

We next apply the modified policy iteration (MPI) algorithm [65] to compute the optimal energy
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Table 2.1: State transition probabilities pwk(Sk, Sk+1).

Sk = (Bk, 0, 0) Sk = (Bk, 0, 1) Sk = (Bk, 1, 0) Sk = (Bk, 1, 1)

S1
k+1 = (Bk+1, 0, 0) (1− r)q (1− r)(1− p) (1− r)q (1− r)(1− p)
S2
k+1 = (Bk+1, 0, 1) (1− r)(1− q) (1− r)p (1− r)(1− q) (1− r)p
S3
k+1 = (Bk+1, 1, 0) rq r(1− p) rq r(1− p)
S4
k+1 = (Bk+1, 1, 1) r(1− q) rp r(1− q) rp

allocation policy. The basic idea is to iterate the policy search process until an iteration variable

converges. This variable is calculated in each iteration by another value iteration process.

All iterations in the MPI algorithm are based on the state transition probabilities. According

to the state definition and the battery state transition process in (2.4), at any state Sk an action

wk leads to a transition to the following four possible next state Sk+1, S1
k+1 = (Bk+1, 0, 0), S2

k+1 =

(Bk+1, 0, 1), S3
k+1 = (Bk+1, 1, 0), and S4

k+1 = (Bk+1, 1, 1), where

Bk+1 = min{Bk + Ehbk − wkak, Bmax} . (2.15)

The transition probabilities from Sk to Sjk+1, j = 1, 2, 3, 4, depend on the state Sk and the system

parameters r, p and q. Assuming that the current state is Sk = (Bk, ak, bk) and the next state is

Sk+1 = (Bk+1, ak+1, bk+1), when the action wk = φ(Sk) is taken, we have

pwk(Sk, Sk+1) = p(ak+1)p(bk+1 | bk) . (2.16)

The transition probabilities are summarized in Table 2.1.

The MPI algorithm consists of two phases, policy improvement and partial policy evaluation. In

the policy improvement phase, the algorithm searches for a policy based on the iteration variable,

the current penalty iteration value. Specifically, at the n-th iteration, we have the iteration variables

v(n−1)(si), si ∈ S, which are the penalty iteration values corresponding to different states calculated

in the previous iteration (We set v(0)(si) = 0, si ∈ S). Denote

v(n) ,
[
v(n)(s1), v(n)(s2), . . . .v(n)(s|S|)

]
,

and

f(Sk, w,v
(n−1)) =

4∑

j=1

pw(Sk, S
j
k+1)

(
Rw(Sk, S

j
k+1) + v(n−1)(Sjk+1)

)
, Sk ∈ S, w ∈ W . (2.17)
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Then the policy φ(n) at this iteration is computed as

φ(n)(s) = arg min
w∈W

f(s, w,v(n−1)), s ∈ S . (2.18)

And the penalty iteration value is updated as

v(n)(s) = f(s, φ(n)(s),v(n−1)), s ∈ S . (2.19)

In the partial policy evaluation phase, the algorithm determines whether φ(n) found in the policy

improvement phase is the overall optimal policy. If not, the algorithm starts a sub-iteration process

to update the penalty iteration values v(n)(si) and then goes back to the policy improvement phase

for another iteration. In order to determine whether φ(n) is the optimal policy, we compute

u(1)(s) , f(s, φ(n)(s),v(n)), s ∈ S . (2.20)

Denote u(n) = [u(n)(s1), u(n)(s2), . . . , u(n)(s|S|)]. Given a small value ε, if

‖u(1) − v(n)‖ < ε , (2.21)

then we consider φ(n) as the overall optimal policy φ∗. Otherwise, we perform the following iteration

to update the penalty iteration value,

u(m)(s) = f(s, φ(n)(s),u(m−1)), s ∈ S, m = 1, 2, . . . ,M . (2.22)

Finally we set v(n)(si) = u(M)(si), si ∈ S and go back to the policy improvement phase for another

iteration.

The MPI algorithm for solving the MDP problem in (2.13) is summarized as follows.
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Algorithm - Modified Policy Iteration Algorithm for Solving (2.13)

1: Initialization

v(0) = 0

n = 1

2: Policy Improvement

FOR s ∈ S
φ(n)(s) = arg minw∈W f(s, w,v(n−1))

v(n)(s) = f(s, φ(n)(s),v(n−1))

ENDFOR

3: Partial Policy Evaluation

FOR s ∈ S
u(1)(s) = f(Sk, φ

(n)(s),v(n))

IF ‖(u(1) − v(n+1)‖ < ε, GOTO STEP 4

ELSE FOR m = 1, 2, . . . ,M

FOR s ∈ S
u(m)(s) = f(s, φ(n)(s),u(m−1))

ENDFOR

ENDFOR, ENDIF

v(n) = u(M)

n← n+ 1, GOTO STEP 2

4: Choose Policy

φ∗ = φ(n)

This algorithm combines the features of both policy iteration and value iteration. The most

significant feature is its low computational complexity, compared to the exhaustive search. On the

other hand, as will be shown in Section 2.4, its performance is similar to that of the exhaustive

search.

2.3.2 Convergence of the MPI Algorithm

The MPI algorithm is designed for solving a class of MDP problems that has finite state space,

finite decision space, non-discount average reward, and infinite-horizon [65]. Obviously, the MDP

problem in (2.13) belongs to this class.
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A sufficient condition for the MPI algorithm to converge is given in [65]. In particular, if

min
φ1,φ2∈Φ

min
(u,v)∈S×S

∑

j∈S
min

{
pJφ1(j | u), pJφ2(j | v)

}
> 0 , (2.23)

where pJφ(j | u) is the transition probability from u ∈ S to j ∈ S after J state transitions under

the policy φ, then the optimal policy can be found by the MPI algorithm within a finite number

of iterations. For our problem, we make the reasonable assumption that the rates of both energy

harvesting and identification request are positive, i.e., 0 < p, q < 1 and 0 < r < 1, and the tag will

be silent if there is no request, i.e., ak = 0. Then we have the following convergence result.

Proposition 2. The ε-optimal solution to the MDP problem in (2.13) can be obtained by performing

the MPI algorithm within a finite number of iterations.

Proof. According to (2.4) and the system state definition S, if 0 < p, q < 1 and 0 < r < 1, and

the tag consumes no energy when there is no request, for any stationary policy ∀s ∈ S can transit

to s′ = (Bmax, 0, 1) within a finite number of transitions, i.e., pjφ(s′ | s) > 0. Therefore, (2.23) is

satisfied and the MDP problem in (2.13) can be solved by the MPI algorithm.

2.4 Simulation Results

We assume that each response message from the tag is encoded using 15 bits, transmitted in 3

PPM symbols with the symbol modulation order of K = 32. Each symbol may contain 1, 2 or 4

non-zero pulses, i.e., W = {0, 1, 2, 4}. The durations of the pulse and the symbol are Tp = 5ns and

T = 6.4µs respectively. Assuming a compression ratio of M/N = 0.1, we obtain the compressed

signal samples at the affordable rate of 200MHz. The symbol mis-detection probabilities Pmd(w)

corresponding to different symbol weights are calculated using (2.3) and given in Table 2.2, for the

pulse SNR 1
σ2 = 6dB. Furthermore, we set the battery capacity Bmax = 10 and the error weight

parameter β = 0.5.

Table 2.2: Symbol mis-detection probabilities for different symbol weights.

w 0 1 2 4

Pmd(w) 1.0000 0.6874 0.1625 0.0054
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For the purpose of performance comparison, we consider two simple energy allocation strategies,

a conservative policy and a greedy policy. The conservative policy always chooses the minimum

available energy w ∈ W to transmit the response, such that the probability of no-response is

minimized. On the other hand, the greedy policy targets for the best detection performance and

always chooses the maximum available w ∈ W for responding to the reader’s inquiry. For each

simulation, the number of simulated time slots is N = 106. The convergence threshold of the MPI

algorithm is ε = 10−5.

We first consider an energy-balanced scenario where the energy harvesting parameters are p =

q = 0.5 and Eh = 3. Under such a condition, the battery is neither empty nor full in most time

slots. The battery acts as an energy buffer and the scheduling algorithm pursues the best trade-off

between the mis-detection errors and the no-response errors. The simulation results for this scenario

are shown in Fig. 2.2. For the second scenario, we consider an energy-deficient environment, where

p = 0.3, q = 0.7 and Eh = 3, corresponding to the case that a tag has a small probability to

obtain energy from its environment at any time slot. In this case, the battery is empty in most

time slots and the scheduling algorithm is apt to trade the detection performance for the activity-

time. The simulation results for this scenario are shown in Fig. 2.3. In the last scenario, we

simulate the policies in the energy-overflow environment, where p = 0.7, q = 0.3 and Eh = 6. This

environment ensures that the tags are strongly capable of being over-charged in most time slots.

So the scheduling algorithm is apt to spend more energy to reduce the mis-detection errors. The

simulation results for this scenario are shown in Fig. 2.4. The optimality of the proposed scheme

relies on the knowledge about p and q, which in practice might not be known accurately. Further

simulations on the sensitivity of the performance on the design values p and q are demonstrated in

Fig. 2.5. This figures shows that perturbations the values of p and q by as much as 30% imposes

only negligible performance losses.

It is seen from Fig. 2.2–2.4 that the optimal polices based on the MPI algorithm and exhaustive

search give the best performance for all three scenarios. And the conservative policy gives the worst

performance. Moreover, the greedy policy performs worse than the optimal policy because it fails

to balance the mis-detection errors and the no-response errors by simply ignoring the latter. On

the other hand, as the identification request rate increases, the performances of both the optimal

policy and the greedy policy degrade due to the energy constraints. Another observation is that
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Figure 2.2: Performance comparisons for the energy-balanced scenario.

when the tag’s energy harvesting capability becomes stronger, the performances of all these policies

improve, since the tag can use more energy to reduce the no-response errors and to improve the

detection performance. In addition, by comparing the optimal energy allocation policies found

by the MPI algorithm and the exhaustive search method, it is observed that their performance

conform precisely in most simulation scenarios and there exist slight discrepancy in rare situations.

Fig. 2.6 shows the MPI algorithm’s convergence under the energy-balanced scenario. The

number of iterations for the partial policy evaluation phase is M = 200. It is seen that the

optimal policies are obtained at the 4-th and 5-th policy improvement iterations for r = 0.7 and

r = 0.3, respectively. At each policy improvement iteration, the policy is updated based on the

current penalty values, which are converged in the previous evaluation phase. Then, the penalty

values are updated for the updated policy. Also, at the last policy improvement iteration, the total

error is below the threshold ε and the algorithm stops.
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Figure 2.3: Performance comparisons for the energy-deficient scenario.

2.5 Conclusions

We have formed a system model for the system of energy-harvesting active networked tags (En-

HANTs), including the communication model and the energy harvesting model, where the events

of identification request and energy harvesting are assumed to follow simple Markov processes. A

typical application of the EnHANTs system is for the tags to respond to the request by sending

some simple information about their own identifications and their surrounding environment. For

such an application, we formulate the problem of optimizing the energy allocation policy to max-

imize both the reliability and activity-time of the system. We have shown that the optimization

problem has an inherent MDP structure and therefore can be solved using the modified policy

iteration method. Finally simulation studies have demonstrated the effectiveness of the proposed

optimal energy allocation policy in terms of making efficient use of the limited energy to improve

the system reliability.
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Figure 2.4: Performance comparisons for the energy-overflow scenario.
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Figure 2.5: Performance comparisons for inaccurate p and q.



CHAPTER 2. ENERGY ALLOCATION FOR ENHANCED ENERGY HARVESTING
COMMUNICATION TAGS 30

100 200 300 400 500 600 700 800
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

Iteration Number

T
o

ta
l 
E

rr
o

r

 

 

r=0.3

r=0.7

Figure 2.6: The convergence of the MPI algorithm under the energy-balanced scenario.
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Chapter 3

Energy Allocation for Energy

Harvesting Transmitters

In this chapter, we consider the continuous energy allocation for maximizing the throughput (or

network utilities) with causal information on the energy harvesting state and the channel fading

state, and under the maximum power constraint. We will formulate it as a continuous MDP

problem and develop algorithms to solve it in a computationally efficient manner.

Specifically, we first consider the energy allocation for an access-controlled transmitter, which

is powered by a renewable energy source and equipped with a finite-capacity battery and has a

maximum power constraint. The channel fading is assumed to be a random variable in a slot and is

independent across different slots. For energy harvesting, we first assume that it can be predicted

accurately for the scheduling period, which is practically feasible [66][67], and then later introduce

the prediction error variables. Furthermore, we assume that a control center can temporarily

suspend the transmitter’s access due to channel congestion. Such channel access control for the

transmitter is modeled as a first-order Markov process. Under the above setting, this chapter finds

the approximately optimal energy allocation for both the finite- and infinite-horizon cases.

To obtain the energy allocation, we formulate the stochastic optimization problem as a discrete-

time and continuous-state Markov decision process (MDP), with the objective of maximizing the

sum of the payoff in the current slot and the discounted expected payoffs in the future slots, where

a particular payoff function is the achievable channel rate. Since the state variables including the
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battery state and the channel state in the MDP problem are continuous, to avoid the prohibitively

high complexity for updating the value function caused by the continuous states, this chapter

introduces an approximate value function. We show that the approximate value function is concave

and non-decreasing in the variable corresponding to the energy stored in the battery, which further

enables the approximate value function to be updated in closed-form. This is then used to find the

approximately optimal energy allocation for both the finite- and infinite-horizon cases.

The proposed algorithms provide approximate solutions, whose performances are lower bounded

by that of the standard discrete MDP method. Also, to obtain the solution, we solve at most

O(Bmax/δ ·C) convex optimization problems where Bmax is the battery capacity, δ is the approxi-

mation precision, and C is the length of horizon for the finite-horizon case or the maximum number

of iterations for the infinite-horizon case. In particular, for the infinite-horizon case, given a con-

vergence tolerance α, the α-converged solution can be obtained within O(logγ α) iterations, where

γ is the discount factor.

3.1 Problem Formulation

3.1.1 System Model

We consider a point-to-point communication system with one transmitter and one receiver, as

shown in Fig. 3.1. We assume a slow fading channel model where the channel gain is constant

for a coherence time of Tc (corresponding to a time slot) and changes independently across slots.

Assuming that each time slot consists of T time instants, we denote Xki as the symbol sent to

the receiver at instant i in time slot k. Then, the corresponding received signal is given by Yki =

XkiHk +Zki, where Hk represents the complex channel gain in slot k, and Zki ∼ CN(0, 1/T ) is the

i.i.d. complex Gaussian noise (i.e., the power spectral density of the noise is 1/Tc). Therefore, the

energy consumption in a slot is the sum of the symbols’ energy (in the time slot), which is denoted

by pk ,
∑T

i=1 |Xki|2.

We assume that the control center performs channel access control and may block the channel

access for the transmitter in some slots, e.g., congestion. At the beginning of each slot, the trans-

mitter is informed of the channel access status Ak ∈ {0, 1} for the current slot from the control

center, where Ak = 0 indicates that the channel access is not permitted for slot k while Ak = 1 indi-
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Figure 3.1: The system block diagram.

cates otherwise. To strike the balance between the scheduling complexity and the model accuracy,

we assume that Ak follows a stationary first-order Markov process, whose transition probabilities

are given as Pr(Ak+1 = 0 | Ak = 1) = qk and Pr(Ak+1 = 0 | Ak = 0) = q̃k. Note that, if there is no

channel access control, we simply have Ak = 1 for all k. Moreover, if Ak = 0, then the transmission

energy in slot k is pk = 0. On the other hand, if Ak = 1, then the transmitter needs to decide its

transmit energy pk.

The transmitter is powered by an energy harvesting device, e.g., a solar panel, and a battery.

The battery, which buffers the harvested energy, has a finite capacity, denoted by bmax. Since the

energy harvesting process is steady or can be well predicted, we assume that the energy harvested

over the next K slots can be non-causally known, denoted as ek. We assume hk , |Hk|2 is

independent across slots (i.i.d. when K =∞).

In slot k, the transmitter transmits at a power level of pk/Tc (pk = 0 if Ak = 0), which is

constrained by the maximum transmission power pmax/Tc and the available energy bk, i.e.,

0 ≤ pk ≤ min
{
pmax, bk

}
. (3.1)

The battery level at the beginning of slot k + 1 is given as

bk+1 = min
{
bmax, bk + ek − pk

}
, (3.2)
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with the constraint that the battery level is non-negative for all slots, i.e.,

bk ≥ 0 . (3.3)

Further, the transmitter receives a payoff r(pk, hk) based on the transmission energy pk and channel

power gain hk. In Sections 3.2-3.3, we use the upper bound on the achievable rate in each slot as

the payoff, i.e., r(p, h) = log(1 + ph). Then, in Section 3.4, we consider a general payoff function

r(p, h) which is continuous, non-decreasing, and concave with respect to p given h.

3.1.2 Problem Formulation

We assume that ek can be predicted non-causally while all other variables are only known causally

to the transmitter. Denote H , [h1, h2, . . . , hK ], A , [A1, A2, . . . , AK ] and a discount factor

γ ∈ [0, 1]. Note that, γ < 1 discounts the payoff received in the future slots and γ = 1 means that

the payoff received in every slot has the same importance. We assume that all the side information,

e.g., the distributions of all random variables and the predictions of the harvested energy, is known

before the first slot. Then the energy allocation policy P , {pk(Γk) | k = 1, 2, . . . ,K} needs to

be calculated to maximize the expected total payoff in the next K slots, where Γk , (bk, hk, Ak)

consists of the observations available at the beginning of slot k. Since bk and hk are continuous

variables, it is not possible to store P in a look-up table. Instead, we only store some of the

intermediate results, i.e., the approximate value function introduced in Section 3.2, in an efficient

way, and then calculate the energy allocation when Γk is observed. Specifically, at the beginning

of slot k, given Γk, if channel access is permitted, i.e., Ak = 1, the transmitter calculates the

transmission energy pk. And if the channel access is not permitted, i.e., Ak = 0, then pk = 0. To

that end, we formulate the following optimization problem for defining the optimal policy

P∗ , arg max
pk(·)

{
EH,A

[ K∑

k=1

γk−1 log(1 + pk(Γk)hk)
]}

, (3.4)

subject to the constraints in (3.1), (3.2), and (3.3) for k = 1, 2, . . . ,K.

Note that by (3.2), the battery level bk forms a continuous-state first-order Markov chain,

whereas the channel access state Ak is a discrete-state Markov chain by assumption. Then, we

can convert the problem in (3.4) to its equivalent MDP recursive form [65] in terms of the value

function, which represents the total payoff received in the current slot and expected to be received

in the future slots.
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Specifically, in the MDP model we treat the battery level b and the channel access state A, i.e.,

(b, A), as the state, the channel h as the observation, and the transmission energy p as the decision.

Then, the state space becomes {0 ≤ b ≤ bmax} × {0, 1}; and the corresponding decision space is

D1(b) = {0 ≤ p ≤ min{b, pmax}} and D0 = {0}, corresponding to A = 1 and A = 0, respectively.

The value function is then recursively defined as

vk(bk, Ak) ,Ehk
[

max
pk(Γk)∈DAk (bk)

{
log(1 + pk(Γk)hk) + γuk(bk, pk(Γk), Ak)

}]
, k = 1, 2, . . . ,K ,

(3.5)

where

uk(bk, pk, Ak) , EAk+1|Ak
[
vk+1(min{bmax, bk + ek − pk}, Ak+1)

]
, (3.6)

and

vK+1(b, A) = 0, for all b ∈ [0, bmax], A ∈ {0, 1} . (3.7)

Note that, vk(bk, Ak) represents the expected maximum discounted payoff between slots k and

K given the side information bk and Ak. Due to the causality and the backward recursion, the

observation Γk in slot k does not affect the value function for slot k+ 1. Also, when Ak = 1, given

the value function for slot k + 1, the optimal energy allocation for slot k can be obtained by

p∗k(Γk) = arg max
p∈DAk (bk)

{
log(1 + phk) + γuk(bk, p, 1)

}
, (3.8)

where uk(b, p, A) is calculated using (3.6). Moreover, when Ak = 0, we always have

p∗k(Γk) = 0 . (3.9)

3.2 Approximate Value Function

By recursively computing the value function vk(b, A) defined in (3.5), in theory we can obtain the

optimal solution to (3.8) for each k ∈ {1, 2, . . . ,K}. However, a closed-form expression for vk(b, A)

is hard to obtain when K is large, e.g., K ≥ 3. A typical approach is to quantize the continuous

variables (b, p, h) to a finite number of discrete levels, i.e., to convert the original problem to a

discrete MDP problem [65]. However, with such discretization, solving the corresponding discrete
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MDP problem involves an exhaustive search on D1(b) for all discretized h, and we can only obtain

discrete transmission energy levels.

In order to efficiently solve the MDP problem and obtain the continuous energy allocation, in

this section, we will define an approximate value function by using a piecewise linear approximation

based on some discrete samples of {vk(B,A) | B ∈ {0, δ, 2δ, . . . , bmax}, A ∈ {0, 1}} where δ is an

approximation precision. Note that, the piecewise linear approximation is a standard technique

to reconstruct a concave function from a set of the discrete points sampled from another concave

function [68]. In this section, we first employ the piecewise linear approximation to obtain an

approximate value function, and then show the concavity (and non-decreasing property) of the

approximate value function by proving that the set of points used for reconstruction is sampled

from a concave (and non-decreasing) function.Finally, we have that the problem in (3.17) a convex

optimization problem.

3.2.1 Value Function Approximation

With an approximation precision parameter δ, we define a piecewise linear approximation operator:

L
[
vk(b, A), δ

]
,vk(bb/δcδ, A) +

b− bb/δcδ
δ

(
vk(db/δeδ, A)− vk(bb/δcδ, A)

)
, b ∈ [0, bmax] , (3.10)

and L
[
vK(b, A), δ

]
, v(bmax, A) for any b > bmax, as shown in Fig. 3.3.

Initially, we define

WK
δ (b, A) , L

[
vK(b, A), δ

]
, (3.11)

which is a linear approximation to vK(b, A). Then, recursively from k = K−1 to k = 1, we use the

approximate value function to replace the original value function in (3.6), i.e., vk(b, A)←W k
δ (b, A),

and define

Uk(bk, pk, Ak) , EAk+1|Ak
[
W k+1
δ (min{bmax, bk + ek − pk}, Ak+1)

]
. (3.12)

By setting uk(bk, pk, Ak)← Uk(bk, pk, Ak) in (3.5), we further define

V k(bk, Ak) , Ehk
[

max
pk(Γk)∈DAk (bk)

{
log(1 + pk(Γk)hk) + γUk(bk, pk(Γk), Ak)

}]
. (3.13)

Finally, we write the approximate value function as

W k
δ (b, A) , L

[
V k(b, A), δ

]
. (3.14)
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Note that, in (3.12)-(3.14), we made the substitutions vk(b, A) ← W k
δ (b, A) and uk(bk, pk, Ak) ←

Uk(bk, pk, Ak) in (3.6) and (3.5), respectively. Thus we can treat the approximate value function

W k
δ (b, A) , L

[
V k(b, A), δ

]
, which is updated by (3.12)-(3.14), as an approximation to the value

function vk(b, A), which is updated by (3.5)-(3.6).

We consider the approximation error ||W k
δ (b, A) − vk(b, A)||∞ at slot k (or iteration i = K −

k+ 1). In each iteration, the error is produced by the piecewise linear approximation in (3.14) and

propagated through solving the problem in (3.13). Then, at the end of each iteration the total error

accumulated by the obtained approximate value function is the sum of the newly produced error

and the discounted propagated error, growing with the iteration number. Since the update rules

for both vk(b, A) and W k
δ (b, A) start from the same initial value function vK(b, A), then the total

error in the i-th iteration (we use the subscript (i) to denote the i-th iteration, which represents

slot K − i+ 1) can be bounded by

||W (i)
δ (b, A)− v(i)(b, A)||∞ ≤

i∑

j=1

γi−jεj(δ) (3.15)

where

εj(δ) , max
b∈[0,bmax],A∈{0,1}

{V (j)(b, A)−W (j)
δ (b, A)} = ||V (j)(b, A)−W (j)

δ (b, A)||∞ (3.16)

is the new error produced by (3.14) in the j-th iteration. Moreover, the value of εj(δ) can be further

bounded by Proposition 3.4 in Section 3.2.2.

With the approximate value function for each slot k, when A = 1, the energy allocation given

Γ can be obtained by

p∗k(Γ) = arg max
p∈D1(b)

{
log(1 + ph) + γUk(b, p, 1)

}
. (3.17)

Define Bδ , {0, δ, 2δ, . . . , bmax}. Note that the approximate value function is linearly recovered

from the sample set {V k(b, A) | b ∈ Bδ} and W k
δ (b, A) = V k(b, A) for all b ∈ Bδ. We can consider

the standard dynamic programing with the discretized state space as a special case of the update

rules in (3.12)-(3.14). Then, the performance achieved with the approximate value function can be

characterized as follows.

Proposition 3.1. The approximate value function obtained by recursively solving (3.12)-(3.14) is

no less than the discrete value function obtained by the standard dynamic programming method with

the state space Bδ × {0, 1} where δ is the approximation precision.
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Proof. Given the discrete state space Bδ × {0, 1}, since W
(i)
δ (B,A) = V (i)(B,A) for any B × A ∈

Bδ × {0, 1}, the standard dynamic programming follows the same update rule in (3.12)-(3.14) but

with a discrete feasible energy allocation set for the optimization problem in (3.13), which is a

subset of D1(b).

Moreover, in the standard discrete dynamic programming, we discretize all continuous variables,

i.e., bk, hk, ek, pk, and then perform dynamic programming with an exhaustive search on pk for all

possible combinations of (bk, hk); while with the proposed approximate value function, we only

discretize the battery state bk and then obtain the approximate value function for each discretized

bk in closed-form.

3.2.2 Concavity of Approximate Value Function

In (3.12)-(3.14), we note that the approximate value function is based on the solution to an op-

timization problem (3.13). To facilitate solving (3.13), in this subsection, we will show that the

approximate value function W k
δ (b, A) given in (3.14) is concave for 0 ≤ b ≤ bmax given A ∈ {0, 1}.

Then (3.13) is a convex optimization problem given h and b.

First, we introduce the following lemma, which can be easily shown and illustrated in Fig. 3.2.

Lemma 3.1. If a function f(x) ∈ R (x ∈ X ⊆ R) is non-decreasing, for any x′ ∈ X , f(min{x, x′})
is also non-decreasing. Further, if the non-decreasing function f(x) is concave, then f(min{x, x′})
is concave for x ∈ X ∪ [x′,∞).

We have the following non-decreasing property of W k
δ (b, A).

Proposition 3.2. For any k ∈ {1, 2, . . . ,K − 1}, if the approximate value function W k+1
δ (b, A) is

non-decreasing with respect to b ∈ [0, bmax] given A ∈ {0, 1}, so is W k
δ (b, A).

Proof. If W k+1
δ (b, A) is non-decreasing with respect to b ∈ [0, bmax] for A ∈ {0, 1}, by Lemma 3.1,

we have that W k+1
δ (min{bmax, b}, A) is also non-decreasing with respect to b ∈ [0,+∞). Then, we

have that Uk(b, p, A), which is a linear combination of the terms of the form W k+1
δ (min{bmax, b +

ek − pk}, A), is also non-decreasing with respect to b ∈ [0, bmax], given p and A.

Given any battery level b ∈ [0, bmax), channel fading h, the energy p0 such that p0 ∈ DA(b), and

ε > 0 such that b+ ε ≤ bmax, we have

p0 ∈ DA(b+ ε) , (3.18)
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y

x

f(min{x, x′})

x′

f(x′)

0

Figure 3.2: Illustration of Lemma 3.1.

and

log(1 + p0h) + γUk(b, p0, A) ≤ log(1 + p0h) + γUk(b+ ε, p0, A)

≤ max
p∈DA(b+ε)

{
log(1 + ph) + γUk(b+ ε, p, A)

}
. (3.19)

Since V k(b, A) is a non-negative linear combination of the terms of the form maxp∈DA(b)

{
log(1+

ph) + Uk(b, p, A)
}

, V k(b, A) is non-decreasing with respect to b ∈ [0, bmax]. Then, by (3.14), we

have that W k
δ (b, A) is also non-decreasing with respect to b ∈ [0, bmax].

The next result is on the concavity of W k
δ (b, A).

Proposition 3.3. For any k ∈ {1, 2, . . . ,K}, if the approximate value function W k+1
δ (b, A) is

non-decreasing and concave with respect to b ∈ [0, bmax] given A ∈ {0, 1}, so is W k
δ (b, A).

Proof. SinceW k+1
δ (b, A) is non-decreasing and concave with respect to b ∈ [0, bmax] given A ∈ {0, 1},

by Lemma 3.1, we have W k+1
δ (min{bmax, b}, A) is non-decreasing and concave with respect to b ≥ 0

given A ∈ {0, 1}. Since b+e−p is a linear combination of b and p, then W k+1
δ (min{bmax, b+e−p}, A)

is jointly concave with respect to b and p. Moreover, it follows that Uk(b, p, A) is also jointly concave

with respect to b and p given A ∈ {0, 1}[68].

Since the feasible domain DA(b) is different under A = 0 and A = 1. We consider the two cases

separately.
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When A = 0, since D0 = 0, vk(b, 0) can be written as

V k(b, 0) = Ehk
[
γUk(b, 0, 0)

]
. (3.20)

Since Uk(b, p, A) is concave with respect to b ∈ [0, bmax] given p and A ∈ {0, 1}, so is V k(b, 0) [68].

Then, by (3.14), W k
δ (b, 0) is non-decreasing with respect to b ∈ [0, bmax].

When A = 1, the feasible domain of the objective function in (3.5) is given by C , {(b, p) :

0 ≤ b ≤ bmax, 0 ≤ p ≤ min{b, pmax}}. It can be verified that C is a convex set. Then, for any

(b1, p1), (b2, p2) ∈ C, their convex combination (θb1 + θ̄b2, θp1 + θ̄p2) ∈ C, where θ ∈ [0, 1] and

θ̄ , 1− θ.
Moreover, since D1(b1),D1(b2) are non-empty, we can denote

p1 = arg max
p∈D1(b1)

{
log(1 + ph) + γUk(b1, p, 1)

}
, (3.21)

and

p2 = arg max
p∈D1(b2)

{
log(1 + ph) + γUk(b2, p, 1)

}
. (3.22)

Then

max
p∈D1(θb1+θ̄b2)

{
log(1 + ph) + γUk+1(θb1 + θ̄b2, p, 1)

}

≤ log(1 + (θp1 + θ̄p2)h) + γUk+1(θb1 + θ̄b2, θp1 + θ̄p2, 1)

≤ θ log(1 + p1h) + θ̄ log(1 + p2h) + θγUk+1(b1, p1, 1) + θ̄γUk+1(b2, p2, 1) (3.23)

= θ
(

log(1 + p1h) + γUk+1(b1, p1, 1)
)

+ θ̄
(

log(1 + p2h) + γUk+1(b2, p2, 1)
)

= θ max
p∈D1(b1)

{
log(1 + ph) + γUk+1(b1, p, 1)

}
+ θ̄ max

p∈D2(b2)

{
log(1 + ph) + γUk+1(b2, p, 1)

}
, (3.24)

where (3.23) follows from the joint concavity, and (3.24) follows from the definitions in (3.21) and

(3.22).

Therefore, we have that maxp∈D1(b)

{
log(1 + ph) + γUk+1(b, p, 1)

}
is concave with respect to

b ∈ [0, bmax]. By (3.13) and (3.14), we further have W k
δ (b, 1) is concave with respect to b ∈ [0, bmax]

[68].

From Propositions 3.2 and 3.3, we have that if W k+1
δ (b, A) is non-decreasing and concave so

is W k
δ (b, A) for any k ∈ {1, 2, . . . ,K − 1}. Since log(1 + ph) is non-decreasing and concave with
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respect to b ∈ [0, bmax], it is easily verified by (3.5) that WK
δ (b, A) = V K(b, A) = vK(b, A) is also

non-decreasing and concave with respect to b ∈ [0, bmax] given A. By induction, we obtain the

following theorem.

Theorem 3.1. For k = 1, 2, . . . ,K, the approximate value function W k
δ (b, A) is non-decreasing

and concave with respect to b ∈ [0, bmax] given A ∈ {0, 1}. Further, the problem in (3.13) is a

convex optimization problem given b ∈ [0, bmax] and A ∈ {0, 1}.

Therefore, the problem in (3.13) can be solved efficiently by some convex solver and exhaustive

search can be avoided.

Since both V (i)(b, A) and W
(i)
δ (b, A) are concave and non-decreasing, where i = K − k + 1 is

the iteration number, we can further bound the approximation error εi(δ) in (3.16) as follows.

Proposition 3.4. For any iteration i, we have

0 ≤ εi(δ) ≤ max
A∈{0,1}

{
2V (i)(δ, A)− V (i)(2δ, A)− V (i)(0, A)

}
, (3.25)

where εi(δ) = ||V (i)(b, A)−W (i)
δ (b, A)||∞.

Proof. By Theorem 3.1, V (i)(b, A) is non-decreasing and concave with respect to b given A. As

illustrated in Fig. 3.3, for b ∈ [0, δ], the value of V (i)(b, A) is smaller than the value on line (*) but

larger than W
(i)
δ (b, A), and therefore the distance between the value on line (*) and W

(i)
δ (b, A) can

also be considered as an upper bound on the approximation error, i.e., V (i)(b, A) −W (i)
δ (b, A) for

b ∈ [0, δ]. According to the second-order derivative property of the concave function, we have that

V (i)((n+ 1)δ, A)− V (i)(nδ,A)− (V (i)((n+ 2)δ, A)− V (i)((n+ 1)δ, A))

≥V (i)((n+ 2)δ, A)− V (i)((n+ 1)δ, A)− (V (i)((n+ 3)δ, A)− V (i)((n+ 2)δ, A)) (3.26)

for all n ≥ 0. Then, we further have that 0 ≤ maxb{V (i)(b, A) −W (i)
δ (b, A)} ≤ max{2V (i)(δ, A) −

V (i)(2δ, A) − V (i)(0, A), 2V (i)(2δ, A) − V (i)(3δ, A) − V (i)(δ, A), · · · } = 2V (i)(δ, A) − V (i)(2δ, A) −
V (i)(0, A).

Note that, given the specific value of the energy prediction and distribution of the channel gain,

the upper bound on εi(δ) can be numerically evaluated. Moreover, using (3.15), an upper bound on

the optimal performance (the continuous value function without using the approximation) can be
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generated for evaluating the performance of the proposed algorithms. Since V (i)(b, A) is continuous,

concave and non-decreasing with respect to b ∈ [0, bmax] given A ∈ {0, 1}, by (3.25), the error bound

on εi(δ)→ 0 as approximation precision δ → 0.

b

V (i)(b, A)

V (i)(b, A)

δ

V (i)(δ, A)

2V (i)(δ, A)− V (i)(2δ, A)

V (i)(2δ, A)

2δ 3δ0V (i)(0, A)

W
(i)
δ (b, A)

0 ≤ V (i)(b, A)−W
(i)
δ (b, A) ≤ ǫi(δ) ≤ maxA∈{0,1} ǫ0(A)

ǫ0(A)

(∗)

Figure 3.3: The piecewise linear approximation of the value function and the approximation error

bound.

Remark 3.1. In the above discussion, we used a piecewise linear approximation to construct the

approximate value function. In fact, any approximation method that preserves the concavity (and

non-decreasing property) of the reconstructed function by using samples from a concave (and non-

decreasing) function can be used to construct an approximate value function, and our analysis is

still valid. In particular, using a higher-order interpolation method can potentially improve the

performance. However, in that case it becomes more challenging to ensure the concavity preser-

vation. More importantly, the computational complexity becomes higher when using a high-order

interpolation method.

3.3 energy allocation with Prefect Energy Prediction

Note that in (3.13), we need to solve the following optimization problem for a given B ∈ Bδ and

A ∈ {0, 1}:

p∗(h) = arg max
p(h)∈DA(B)

{
log(1 + p(h)h) + γUk(B, p(h), A)

}
, h ≥ 0 . (3.27)
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When A = 0, p∗(h) = 0. On the other hand, when A = 1, we will obtain the optimal solution

p∗(h) in closed-form.

Since the approximate value function W k+1
δ (b, A) in (3.14) is a piecewise linear function of b

given A, it follows that Uk(B, p, 1) in (3.12) is also a piecewise linear function with respect to p

given B, which is differentiable everywhere except at J , {p | p = B + ek − B0, B0 ∈ Bδ}. By

Theorem 3.1 and Lemma 3.1, Uk(B, p, 1) is also concave and non-decreasing with respect to p.

Since Uk(B, p, 1) is a piecewise linear function, we denote I , {p0, p1, . . . , pN} as the set of

the non-differentiable points, where p0 = 0, pN = min{pmax, B}, and pi, (0 < i < N) is the i-th

smallest element in J ∩D1(B) \ {p0, pN}. Also, we denote W = {w1, w2, . . . , wN} as the set of the

corresponding slopes, where wi is the slope of the segment [pi−1, pi], given by

wi ,−
γ

δ
EA | 1

{
V k+1(dmin{bmax, B + ek − pi}/δe δ, A)

− V k+1(bmin{bmax, B + ek − pi}/δc δ, A)
}
, (3.28)

which is derived from (3.12) and (3.14). Hence, the derivative of Uk(B, p, 1) for p ∈ D1(B) \ I is

w(p) = wi, if p ∈ (pi−1, pi) . (3.29)

Since Uk(b, p, A) is concave and non-decreasing with respect to p, we have 0 ≥ w0 > w1 > . . . > wN .

Fig. 3.4 is a sketch of the stair-case function w(p).

pp0 p1 p3p2

w1

w2

w3

w0

p4

w(p)

0

Figure 3.4: The derivative of Uk(B, p, 1) with respect to p.

In this section we first obtain the closed-form solution to (3.27), and then use it to obtain the

optimal energy allocation for both finite- and infinite-horizon cases.
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3.3.1 The Optimal Solution to (3.27)

In this subsection, for simplicity, we drop the superscript k and denote the objective function in

(3.27) as

gh(p) , log(1 + ph) + γU(B, p, 1), p ∈ D1(B) . (3.30)

We note that gh(p) is differentiable for p ∈ D1(B) \ I with

g′h(p) =
1

1/h+ p
+ w(p) . (3.31)

On the other hand, at the non-differentiable points in I, the right-derivative and the left-derivative

of gh(p) can be written as

g′h(p+) ,
1

1/h+ p
+ w(p+) , (3.32)

and

g′h(p−) ,
1

1/h+ p
+ w(p−) , (3.33)

respectively.

Theorem 3.2. The optimal solution to (3.27) is given by

p∗(h) =





− 1
wi
− 1

h
1
h ∈ [− 1

wi
− pi,− 1

wi
− pi−1] ∩ [0,+∞)

i = 1, 2, . . . , N − 1

pi
1
h ∈ (− 1

wi+1
− pi,− 1

wi
− pi) ∩ [0,+∞)

i = 1, 2, . . . , N − 1

0 1
h ∈ (− 1

w1
− p0,∞)

pN
1
h ∈ [0,− 1

wN
− pN )

, (3.34)

where p0 = 0 and pN = min{pmax, B}.

In Fig. 3.5 we give a sketch of p∗(h). To prove Theorem 3.2, we first give the necessary and

sufficient conditions for the optimal solution p∗ as follows [68].

Lemma 3.2. p∗ is the optimal solution to (3.27) given h, if and only if,

1. g′h(p∗+) ≤ 0 ≤ g′h(p∗−), when g′h(0+) > 0 and g′h(min{B, pmax}−) < 0;

2. p∗ = min{B, pmax}, when g′h(min{B, pmax}−) ≥ 0;
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p∗

1/h

p0

p1

pN

p2

p3

− 1
w2

− p1− 1
w1

− p1 − 1
w2

− p2− 1
w1

− p0− 1
wN

− pN

Figure 3.5: The optimal solution p∗(h).

3. p∗ = 0, when g′h(0+) ≤ 0.

Note that, Condition 1 corresponds to the case that p∗ is in the interior of D1(B). In this case,

the left-derivative and the right-derivative should have opposite signs or be both zero at p∗ so that

the increasing and decreasing of p both lead to the decreasing of the objective function. Condition

2 and Condition 3 correspond to the cases that p∗ is on each side of the boundary of D1(B), where

the objective function is non-decreasing and non-increasing for all p ∈ D1(B), respectively.

The following proposition gives a sufficient condition for the optimality of p∗(h) given B.

Proposition 3.5. Given any B ∈ Bδ, for h ≥ 0, if the energy schedule p∗(h) ∈ intD1(B) satisfies

p∗(h) =





− 1
w(p∗(h)) − 1

h ,

when p∗(h) ∈ intD1(B) \ I,
− 1
w(p∗(h)−)

− 1
h or − 1

w(p∗(h)+)
− 1

h ,

when p∗(h) ∈ I,

(3.35)

then p∗(h) is the optimal solution to (3.27).

Proof. Substituting (3.35) into (3.32)-(3.33), we have g′h(p∗(h)+) = 0 or g′(p∗(h)−) = 0 when

p∗(h) ∈ I, and g′h(p∗(h)+) = g′(p∗(h)−) = 0 when p∗(h) ∈ intD1(B) \ I. Since g′h(p∗(h)+) ≤
g′h(p∗(h)−), we have g′h(p∗(h)+) ≤ 0 ≤ g′h(p∗(h)−). Moreover, since gh(p) is concave, we have

0 ≤ g′h(p∗(h)−) < g′h(0−) and g′h(min{pmax, B}−) < g′h(p∗(h)+) ≤ 0. By Lemma 3.2 (Condition 1),

we conclude the optimality.
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Then it is easy to verify that for 1
h ∈ [− 1

wi
− pi,− 1

wi
− pi−1] ∩ [0,+∞), i = 1, 2, . . . , N − 1, the

solution given by (3.34) satisfies the optimality condition in Proposition 3.5.

For 1
h ∈ (− 1

wi+1
− pi,− 1

wi
− pi) ∩ [0,+∞), i = 1, 2, . . . , N − 1, we use the next proposition to

prove the optimality of (3.34).

Proposition 3.6. For any non-differentiable point pi ∈ I \ {p0, pN}, pi is the optimal solution to

(3.27) for any 1
h ∈ (− 1

wi+1
− pi,− 1

wi
− pi) ∩ [0,+∞).

Proof. From (3.32)-(3.33), g′h(p+
i ) and g′h(p−i ) are functions of 1

h for a given pi. If (− 1
wi+1
−pi,− 1

wi
−

pi) ∩ [0,+∞) is not empty, it is easy to verify that 0 = g′h(pi
−) > g′h(pi

+) when 1
h = − 1

wi
− pi, and

g′h(p−i ) > g′h(p+
i ) and g′h+(pi) ≤ 0 when 1

h = − 1
wi+1
− pi. Since given pi, g

′
h(p−i ) and g′h(p+

i ) increase

as 1
h decreases, then decreasing 1

h from − 1
wi
−pi to max{0,− 1

wi+1
−pi}, we have g′h(p−i ) ≥ 0 ≥ g′h(p+

i )

for all 1
h ∈ (− 1

wi+1
− pi,− 1

wi
− pi) ∩ [0,+∞). By Lemma 3.2, the proposition follows.

Propositions 3.5 and 3.6 obtain the optimal solution for 1
h ∈ [− 1

wN
− pN ,− 1

w1
] ∩ [0,∞). For

other h ≥ 0, using Conditions 2 and 3 in Lemma 3.2, we can prove the optimality of (3.34) as

follows.

Proposition 3.7. 1. For any h such that 1
h ≥ − 1

w1
, the optimal solution is p∗(h) = 0;

2. For any h such that 0 ≤ 1
h ≤ − 1

wN
− pN , the optimal solution p∗(h) = pN .

Proof. Note that, since U(B, p, 1) is non-increasing with respect to p, we have − 1
w1
≥ 0. When

1
h = − 1

w1
, it is easy to verify that g′h(0+) = 0. Since g′h(0+) is also a function of 1

h which decreases

as 1
h increases, we have for any 1

h ≥ − 1
w1

, g′h(0+) ≤ 0. By Condition 3 in Lemma 3.2, we must

have p∗(h) = 0 for any h such that 1
h ≥ − 1

w1
≥ 0. Similarly, we may also verify that for any

1
h ≤ − 1

wN
− pN , g′h(p−N ) ≥ 0. By Condition 2 in Lemma 3.2, we must have p∗(h) = pN for any h

such that 0 ≤ 1
h ≤ − 1

wN
− pN .

Note that, given B ∈ Bδ, p∗(h) is a piecewise function in closed-form. Then, V k(B,A) can be

efficiently evaluated as

V k(B, 1) = Ehk
{

log(1 + p∗(hk)hk) + γUk(B, p∗(hk), 1)
}
, (3.36)

and

V k(B, 0) = Ehk
{

log(1) + γUk(B, 0, 0)
}

= Uk(B, 0, 0) , (3.37)
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where

Uk(B, p, 0) =
∑

A′=0,1

Pr(Ak+1 = A′ | Ak = 0)
[
W k+1
δ (min{bmax, B + ek − p}, A′)

]
. (3.38)

3.3.2 Calculating the Approximate Value Function

In order to obtain the energy allocation, we need to compute the approximate value function given

by (3.12)-(3.14) for k = 1, 2, . . . ,K (K =∞ for infinite-horizon case). Then, when the observation

is available, we solve the problem given in (3.17).

3.3.2.1 Finite K

We first consider the finite-horizon case where K is finite, we assume that the distributions of

channel fading are independent across slots but not necessarily identical.

The energy allocation consists of two phases. In the first phase, we recursively compute the

approximate value function from k = K to k = 1, following (3.12)-(3.14). Specifically, in the i-th

iteration, we obtain W
(i)
δ (b, A) for slot k = K − i+ 1 as follows. Based on W

(i−1)
δ (b, A) obtained in

the previous iteration (or the initial function for the first iteration), for each B ∈ Bδ and A = {0, 1},
we obtain the piecewise linear function U (i)(B, p,A) by specifying the sets I and W. Then, we use

(3.34) to obtain p∗(h) and use (3.36)-(3.37) to update V (i)(B,A) for all B ∈ Bδ and A = {0, 1}.
With the set {V (i)(B,A) | B ∈ Bδ, A = {0, 1}}, the approximate value function W

(i)
δ (b, A) can be

obtained using (3.14) and we store the closed-form W
(i)
δ (b, A) in a look-up table. Note that the

above first phase should be completed before the first slot.

The second phase is performed at the beginning of each slot, once the observation becomes avail-

able. This phase is to solve the problem given in (3.17) using (3.34). Specifically, at the beginning

of slot k, the transmitter observes the system state, i.e., the channel access state A, the channel

gain h, and the current battery state b. When A = 0, the transmitter keeps silent. Otherwise, the

transmitter retrieves the approximate value function W k+1
δ (b, A) (i.e., W

(K−i−1)
δ (b, A)) from the

look-up table and then calculate the energy allocation using (3.34).

The entire computational procedure for the finite-horizon case is summarized in Algorithm 3.1.
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Algorithm 3.1 - Finite-Horizon energy allocation

1: Inputs

Distributions of H, A; value of ek for k = 1, 2, . . . ,K

Approximation precision δ > 0; discount factor γ ∈ [0, 1]

2: Phase-I: Compute the approximate value function update

(offline calculation)

FOR k = K TO 1

(*) Calculate V k(B, h,A) for B ∈ Bδ, A ∈ {0, 1}
using (3.34) (or general convex solver) and (3.36)-(3.37)

Compute W k
δ (b, A) from V k(B,A) using (3.14) and store it

ENDFOR

3; Phase-II: energy allocation (online calculation)

FOR k = 1 TO K

Get the observations Γk = (bk, hk, Ak)

Retrieve W k+1
δ (b, A) and calculate Uk(bk, p, Ak) using (3.12)

Calculate p∗(hk) using (3.34)

ENDFOR

Remark 3.2. If the observations can be predicted in a scheduling period K, i.e., H, E, and A are

known in advance, we can rewrite (3.4) as follows

P∗ = arg max
pk,k=1,2,...,K

{ K∑

k=1

Ak log(1 + pkhk)
}
, (3.39)

subject to the constraints in (3.1), (3.49), and (3.3) for k = 1, 2, . . . ,K.

We note that in the above case all the observations are non-causally known in advance and the

problem in (3.39) is a convex optimization problem. An efficient dynamic water-filling algorithm

was proposed in [69] for solving (3.39) optimally. Moreover, since (3.39) is a special case of the

stochastic case, Algorithm 3.1 is also applicable and would approach the optimal performance as the

dynamic water-filling algorithm when δ → 0. Specifically, the use of Algorithm 3.1 or the dynamic

water-filling algorithm strikes a balance between the performance and the computational complexity.
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3.3.2.2 Infinite K

In the infinite-horizon case, although K is infinite, the number of the iterations in the first phase is

not infinite since the approximate value function will converge. Moreover, since we have assumed

that ek is static and hk is i.i.d., the converged approximate value function can be directly used in

(3.17) to obtain the energy allocation with the observations in the second phase, for all slots.

We denote

Tδ : Wδ(b, A)→Wδ(b, A) (3.40)

as the value function update operator in (3.12)-(3.14): based on a given value function W
(i)
δ (b, A),

it solves (3.13) to obtain V (i)(B, p,A) for B ∈ Bδ, and then generates the new approximate value

function W
(i+1)
δ (b, A) by (3.14). Then we can write

W
(i+1)
δ (b, A) , Tδ

[
W

(i)
δ (b, A)

]
, b ∈ [0, bmax] . (3.41)

Note that T0 is the standard Bellman operator corresponding to (3.5)-(3.6) without the value

function approximation, i.e., δ = 0 [65].

Then the computational procedure for the infinite-horizon case is summarized in Algorithm 3.2.
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Algorithm 3.2 - Infinite-Horizon energy allocation

1: Inputs

Distributions of h, A; value of e; discount factor γ ∈ (0, 1)

Approximation precision δ > 0; termination condition α

2: Phase-I Approximate value function update

(offline calculation)

i← 0

REPEAT

(*) W
(i+1)
δ (b, A) = Tδ

[
W

(i)
δ (b, A)

]

i← i+ 1

UNTIL ||W (i)
δ (b, A)−W (i−1)

δ (b, A)||∞ ≤ α
W ∗δ (b, A)←W

(i)
δ (b, A)

3: Phase-II energy allocation (online calculation)

AT THE BEGINNING OF EACH SLOT

Get the observations Γ = (b, h,A)

Retrieve W ∗δ (b, A) and calculate U∗(b, p, A) using (3.12)

Calculate p∗(h) using (3.34)

To show the convergence of the approximate value function update, we first note that, by

repeatedly performing T0 on any initial value function, a converged value function can be obtained

as follows [65]:

v∗(b, A) , T0 · T0 · . . .
[
v(1)(b, A)

]
= T ∞0

[
v(1)(b, A)

]
. (3.42)

Extending the convergence of T0 to Tδ, we introduce the following lemma. The proof is given in

Appendix 3.7.1.

Lemma 3.3. The operator Tδ has the γ-contraction property, i.e., for any two functions V1(b, A)

and V2(b, A), we have

||Tδ
[
V1(b, A)

]
− Tδ

[
V2(b, A)

]
||∞ ≤ γ||V1(b, A)− V2(b, A)||∞ . (3.43)

It then follows that

||T i+1
δ

[
W

(1)
δ (b, A)

]
− T iδ

[
W

(1)
δ (b, A)

]
||∞ ≤ γi||Tδ

[
W

(1)
δ (b, A)

]
−W (1)

δ (b, A)||∞ , (3.44)
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i.e., T iδ
[
W (1)(b, A)

]
converges as i increases. Then, the converged approximate value function can

be denoted as

W ∗δ (b, A) , T ∞δ
[
W

(1)
δ (b, A)

]
(3.45)

and we have

W ∗δ (b, A) = Tδ
[
W ∗δ (b, A)

]
. (3.46)

Using the γ-contraction property in Lemma 3.3, the convergence behavior of Algorithm 3.2 can be

further characterized as

||W (i+1)
δ (b, A)−W ∗δ (b, A)|| =||T iδ

[
W

(1)
δ (b, A)

]
− T iδ

[
W ∗δ (b, A)

]
||∞

≤γi−j+1||W (j)
δ (b, A)−W ∗δ (b, A)||∞ , (3.47)

for j ∈ {1, 2, . . . , i}. Note that, the convergence speed is mainly controlled by the value of the

discount factor γ. Moreover, the error between the converged approximate value function and

v∗(b, A) is bounded as follows.

Theorem 3.3. If ||T iδ [W
(1)
δ (b, A)]− T i−1

δ [W
(1)
δ (b, A)]||∞ ≤ α, then the error between v∗(b, A) and

W
(i)
δ (b, A) is bounded by

||W (i)
δ (b, A)− v∗(b, A)||∞ ≤

γα+ ||2v∗(δ, A)− v(0, A)− v∗(2δ, A)||∞
1− γ . (3.48)

Proof. The proof is provided in Appendix 3.7.2.

Theorem 3.3 characterizes the performance of Algorithm 3.2 by giving an error bound after it

converges with a tolerance α. Specifically, in (3.48), the two terms in the numerator of the right-

hand side represent the error introduced by the convergence tolerance α and by the value function

approximation δ, respectively. Obviously, as α and δ both go to zero, the error bound in (3.48)

goes to zero. Moreover, a smaller discount factor γ leads to a smaller error bound.

Note that, Algorithms 1 and 2 have both the offline calculation part and the online calculation

part. During offline calculation, we evaluate V k(B,A) for each B ∈ Bδ in each iteration, i.e.,

solve O(Bmax/δ) convex optimization problems in each iteration. Specifically, rather than using an

exhaustive search for each combination of the discretized (B,H) (H is the discretized channel gain)

as done by the standard discrete MDP method, the proposed algorithms use (3.34) to calculate

V k(B,A) for each B ∈ Bδ directly. Moreover, for the infinite case, by Lemma 3.3, the α-converged
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approximate value function can be obtained within O(logγ α) iterations. On the other hand, during

online calculation, we retrieve W k+1
δ (b, A) (or W ∗δ (b, A)) from the look-up table and then use (3.34)

to compute the energy allocation for the specific observation (bk, hk, Ak).

Moreover, the proposed algorithms calculate the energy allocation based on the continuous

battery state and channel gain, and the obtained energy allocation is also continuous. Thus it

provides higher precision for both offline calculation and online calculation than the conventional

discrete MDP method, especially when the discretization step is large. Finally, as shown in Section

3.3, a better performance can be achieved by the proposed algorithm with a lower computational

complexity compared with the conventional discrete MDP method.

3.4 Energy allocation with Imperfect Energy Prediction

Although energy harvesting is usually predictable, there may exist a non-negligible prediction error

in practice. In this section, we treat the case of imperfect energy harvesting prediction where the

prediction error is an independent random variable. We also consider a general payoff function

r(p,A), which is continuous, non-decreasing and concave with respect to p given A ∈ {0, 1}.

3.4.1 Model with Imperfect Energy Prediction

In this section, we assume that the energy harvesting process consists of a deterministic part ek and

a stochastic part εk, where εk is an independent random variable. The deterministic process ek in

practice is obtained from the prediction using historic observations, e.g., by using some prediction

algorithm. In the extreme case that the prediction is not available, we can set ek = 0 and treat the

independent random variable εk > 0 as the harvested energy.

Incorporating the prediction error εk, the problem formulation is modified as follows:

bk+1 = min
{
bmax, bk + ek + εk − pk

}
, (3.49)

and

P∗ , arg max
pk(·),k=1,2,...,K

{
EH,E,A

[ K∑

k=1

γk−1r(pk(Γk), hk)
]}

, (3.50)

subject to the constraints in (3.1), (3.3), and (3.49), for k = 1, 2, . . . ,K, where E , [ε1, ε2, . . . , εK ].

Accordingly, since εk is a random variable, the (approximate) value function update rules in (3.6)
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and (3.12) are changed to

uk(bk, pk, Ak) , Eεk,Ak+1|Ak

[
vk+1(min{bmax, bk + ek + εk − pk}, Ak+1)

]
, (3.51)

and

Uk(bk, pk, Ak) , Eεk,Ak+1|Ak

[
W k+1
δ (min{bmax, bk + ek + εk − pk}, Ak+1)

]
, (3.52)

respectively.

Thus the update rules of the new approximate value function defined for the model with imper-

fect energy prediction is updated using (3.13), (3.14) and (3.52). Then we can still apply Algorithm

3.1 and Algorithm 3.2 to compute the energy allocation for finite- and infinite-horizon cases, re-

spectively. Specifically, as compared to (3.6) and (3.12), the only difference in (3.51) and (3.52) is

the expectation with respect to the prediction error εk, which preserves the concavity and mono-

tonicity. Then, it is easy to verify that Proposition 3.2 and Proposition 3.3 still hold for the model

with imperfect energy prediction. Also, since r(p,A) is continuous, non-decreasing and concave

with respect to p given A, the approximate value function for the general model is still concave by

Theorem 3.1. Therefore, except for Theorem 3.2, all results derived for the prefect energy prediction

are also valid for the general model with imperfect energy prediction.

However, note that, the optimal solution p∗(h) in (3.34) is based on the facts that Uk(b, p, A) is a

piecewise linear function and r(p, h) = log(1+ph), which are no longer valid with the general payoff

function and/or imperfect energy prediction. Then, in Algorithms 1 and 2, the steps marked by

(*), which aim to solve the problem in (3.13), need to be modified accordingly. In particular, since

the corresponding problem is still a convex optimization problem, we now can use some general

convex solver to numerically solve (3.13).

3.4.2 Complexity and Performance

By analyzing the piecewise linear approximation method, Propositions 3.1 and 3.4 give the lower

bound on the approximate value function and the upper bound on the approximation error, re-

spectively, which are valid for both the models with the perfect and imperfect energy predictions.

Also, for the infinite-horizon case, the convergence and the approximation error of Algorithm 3.2

are provided in (3.44) and Theorem 3.3 for the perfect energy prediction case, which also extends
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to the model with the imperfect energy prediction. Thus the error in the energy allocation goes to

zero as the approximation precision δ goes to zero, for both the finite- and infinite-horizon cases.

Moreover, the approximate value function is formed by the piecewise linear approximation and

is concave with respect to the battery level. Thus, the problem in (3.13) is a convex optimization

problem, which can be solved efficiently by the standard convex solver. Specifically, for the finite-

horizon case, the energy allocations can be obtained in K iterations while for infinite-horizon

case, the approximate value function converges within O(logγ α) iterations. In both the finite-

and infinite-horizon cases, O(1/δ) convex optimization problems with single variable and single

constraint are solved in each iteration. For the specific case that the energy is predicted perfectly

and the payoff is the channel rate, the optimal solution to (3.13) can also be obtained in closed-form,

as shown in (3.34). With the proposed algorithms, the continuous energy allocation is obtained

by solving a continuous MDP model in a computationally efficient manner. As compared to the

conventional discrete MDP method, the proposed algorithms do not involve exhaustive search.

Note that, based on the approximate value function in (3.13), (3.14) and (3.52), we have a

mapping from the observation Γk to the energy allocation pk, which is obtained by solving the

optimization problem in (3.13) for each slot k. This mapping can be denoted as Π(k) : Γ → p.

Using Π(k), we denote the received expected payoff as

v̄kΠ(k)(bk, Ak) ,Ehk
[
r(pk(Γk), hk) + γūk(bk, pk(Γk), Ak)

∣∣∣ pk(Γ) ∈ Π(k)
]
, (3.53)

where

ūk(bk, pk, Ak) , Eεk,Ak+1|Ak
[
v̄k+1

Π(k)(min{bmax, bk + ek + εk − pk}, Ak+1)
]

(3.54)

and

v̄K+1
Π(k) (b, A) = vK+1(b, A) = 0 , (3.55)

for all b ∈ [0, bmax] and A ∈ {0, 1}.

Proposition 3.8. Suppose that Π(k) is obtained by solving the continuous MDP problem with the

approximate value function W k
δ (bk, Ak). We have

v̄kΠ(k)(b, A) ≥W k
δ (b, A), ∀b ∈ [0, bmax],∀A ∈ {0, 1} , (3.56)

for all k ∈ [1,K], i.e., the performance of the obtained energy allocation is lower bounded by the

approximate value function.
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Proof. In the first iteration k = K, by (3.55) and (3.14), we know that v̄K+1
Π(k) (b, A) ≥ V K+1(b, A) ≥

WK+1
δ (b, A) for all b ∈ [0, bmax] and A ∈ {0, 1}. Since Π(K) is obtained by solving (3.13), according

to (3.53) we have v̄KΠ(K)(b, A) ≥ V K+1(b, A) ≥ WK
δ (b, A), where the first inequality follows since

v̄K+1
Π(k) (b, A) ≥ WK+1(b, A) for all b ∈ [0, bmax], A ∈ {0, 1} and the second inequality follows since

V K+1(b, A) is concave and non-decreasing. Using induction, the proposition holds.

3.5 Simulation Results

We use the payoff function r(p, h) = log(1 + ph). We assume that the channel fading Hk is an

i.i.d. random variable following the Rayleigh distribution with the parameter σ. We first assume

that the harvested energy can be perfectly predicted. For the transmitter, we set the maximum

transmission power as pmax/Tc = 6 units per slot, the battery capacity as bmax = 15 units, and the

initial battery level as b0 = 2 units. Further, we set the probability of the channel access suspension

as q = q̂ = 0.1, the approximation precision δ of the approximating value function as 1 and 0.1,

and the convergence error tolerance for the infinite-horizon case as α = 0.0001.

We first evaluate the performance of the proposed algorithms. For comparison, we consider three

simple energy allocation methods, the greedy policy, the balanced policy, and the standard discrete

MDP method. The greedy policy tries to allocate as much energy as possible in each slot subject to

the energy availability. On the other hand, the balanced policy tries to allocate a constant energy

in each slot, e.g., the mean value of the harvested energy. Moreover, for the standard discrete

MDP method, we discretize the battery level, the channel gain, and the transmission energy with

the same precision factor δ, and then perform the dynamic programming algorithm and the value

iteration algorithm on the discrete state space for the finite- and infinite-horizon cases, respectively.

For the finite-horizon case, we set K = 30, γ = 1, and σ = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. We

randomly generate the prediction value ek following a positive truncated-Gaussian distribution

with the variance of 2. We consider two typical scenarios, an energy-constrained scenario with

the mean of the harvested energy of 2, and a power-constrained scenario with the mean of the

harvested energy of 4. In the energy-constrained scenario, the average harvested energy is much

lower than the maximum transmission power and the energy schedule is mainly constrained by the

energy availability. On the other hand, in the power-constrained scenario, the average harvested
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energy approaches to the maximum transmission power and this constraint dominates the energy

scheduling. For both scenarios, we compare the performance of the proposed algorithm with the

standard discrete MDP method, the greedy policy and the balanced policy, averaged over 2 ×
106 realizations in Fig. 3.6 and Fig. 3.7, respectively. Although we cannot obtain the optimal

performance, we utilize the error bound given in (3.15) and (3.25) as an upper bound on the

optimal performance. Also, the performance obtained by the standard discrete MDP method can

serve as the lower bound. Moreover, the performance of the proposed algorithm with additional

choices of approximation precision δ is shown in Fig. 3.8 for the energy-constrained scenario.
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Figure 3.6: Performance comparisons in the energy-constrained scenario for the finite-horizon case.

It can be seen from Fig. 3.6 and Fig. 3.7 that for δ = 1, the performance of the proposed

algorithm tightly approaches the upper bound on the optimal performance in both scenarios while

there is a gap between the proposed algorithm and the standard discrete MDP method. The main

reason is that the discrete MDP method discretizes all continuous variables and causes some non-

negligible error with the large discretization step. For δ = 0.1, both the proposed algorithm and

the standard discrete MDP method achieve the comparable performance, but their computational
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Figure 3.7: Performance comparisons in the power-constrained scenario for the finite-horizon case.

complexities are not comparable, e.g., the exhaustive search is involved in the latter. The greedy and

balanced policies both have significantly inferior performances. Also, it is seen from Fig. 3.8 that

the performance of the proposed algorithm improves as δ decreases, and as δ → 0 it approaches the

optimal performance. Moreover, we note that the total rate increases as the Rayleigh parameter

σ increases and the rate in the energy-constrained scenario is higher than that in the power-

constrained scenario.

For the infinite-horizon case, we set γ = 0.85, ek = 3, and σ = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. Similar to

the finite-horizon case, we evaluate the performance for various energy allocation policies, averaged

over 2 × 106 realizations. The performance comparisons for various energy allocation policies are

shown in Fig. 3.9. Moreover, the convergence speeds of the proposed algorithm and the discrete

MDP method (i.e., the value iteration algorithm [65]) are shown in Fig. 3.10 for σ = 1 and γ =

0.8, 0.9, which are also compared with the convergence speed bound.

Similar to the finite-horizon case, it is seen from Fig. 3.9 that the proposed algorithm has the

best performance, tightly approaching the upper bound on the optimal performance. We note
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Figure 3.8: Performance under different approximation precisions in the energy-constrained sce-

nario.

that the standard discrete MDP method with a discretization step of δ = 0.1 performs worse than

the proposed algorithm. Further, the approximation gap is slightly higher in the infinite case as

compared to that in the finite case. Moreover, we see that the greedy approach has the worst

performance. In addition, it is seen from Fig. 3.10 that the discount factor affects the convergence

speed, as analyzed in Section 3.3. In the simulations for γ = 0.8, 0.9, the convergence speeds

of the proposed algorithm are close to the convergence speed bounds (given in (3.47)), which

converge within around 30 and 70 iterations for the different discount factors, respectively. Also,

the conventional discrete MDP method and the proposed algorithm have the similar convergence

speeds, while the proposed algorithm has lower complexity in each iteration.

We next evaluate the impact of the imperfect prediction error. We consider the finite-horizon

case and set K = 10, γ = 1, ek = 3.5, σ = 1, q = 1− q̂ = 0, and δ = 0.1. In this scenario, we only

consider the impact of the imperfect prediction and we assume that the channel fading is known

and the energy prediction error follows the discrete uniform distribution between −v and v with
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Figure 3.9: Performance comparisons for the infinite-horizon case.

the step of 0.1. The total payoff obtained by the proposed algorithm with causal information and

the water-filling based algorithm in [69] with non-causal information is compared in Fig. 3.11, over

different prediction error ranges v = 0, 0.5, 1, 1.5, 2, 2.5. It is seen from Fig. 3.11 that as v decreases,

the performance gap of the two algorithms with and without non-causal information decreases and

approaches zero.

3.6 Conclusions

We have considered the problem of optimal energy allocation for an access-controlled transmit-

ter with energy harvesting capability, operating in time-slotted fashion with causal knowledge of

the channel state and the energy harvesting state. The energy harvesting process is a sum of a

deterministic non-causal estimate and a random causal prediction error. This problem is formu-

lated as a Markov decision process with continuous state. To efficiently solve this problem for

both the finite- and infinite-horizon cases, we have introduced the approximate value function and
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Figure 3.10: The convergence behavior of Algorithm 3.2 for σ = 1, δ = 0.1.

developed efficient algorithms for obtaining the approximately optimal solutions. The proposed

algorithms provide an approximately optimal continuous energy allocation, whose performance is

better than that obtained by the standard discrete MDP method, in a computationally efficient

manner. Simulation results demonstrate that the proposed algorithms can closely approach the

optimal performance for both the finite- and infinite-horizon cases.

3.7 Appendices

3.7.1 Proof of Lemma 3.3

It is known that T0, which is the operator in the standard value iteration algorithm, is a γ-

contraction [65]. Denoting (b∗, A∗) , arg ||T0

[
V1(b, A)

]
− T0

[
V2(b, A)

]
||∞, for any (B0, A0) and

(B0 + δ, A0) where B0, B0 + δ ∈ Bδ, A0 ∈ {0, 1}, we have that

∣∣∣T0

[
V1

]
(B0, A0)− T0

[
V2

]
(B0, A0)

∣∣∣ ≤
∣∣∣
(
T0

[
V1

]
− T0

[
V2

])
(b∗, A∗)

∣∣∣ (3.57)
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Figure 3.11: Performance comparisons for the finite-horizon case with different prediction error

ranges.

and

∣∣∣T0

[
V1

]
(B0 + δ, A0)− T0

[
V2

]
(B0 + δ, A0)

∣∣∣ ≤
∣∣∣
(
T0

[
V1

]
− T0

[
V2

])
(b∗, A∗)

∣∣∣ . (3.58)

Note that, given a value function V (b, A), Tδ
[
V
]
(b, A) is the piecewise linear function recon-

structed from the sample set {T0

[
V
]
(B,A) | B ∈ Bδ}, as in (3.14). Since B0, B0 + δ ∈ Bδ, then for

any b ∈ [B0, B0 + δ], we have

∣∣∣Tδ
[
V1

]
(b, A)− Tδ

[
V2

]
(b, A)

∣∣∣

≤ max
{ ∣∣∣Tδ

[
V1

]
(B0, A)− Tδ

[
V2

]
(B0, A)

∣∣∣ ,
∣∣∣Tδ
[
V1

]
(B0 + δ, A)− Tδ

[
V2

]
(B0 + δ, A)

∣∣∣
}

= max
{ ∣∣∣T0

[
V1

]
(B0, A)− T0

[
V2

]
(B0, A)

∣∣∣ ,
∣∣∣T0

[
V1

]
(B0 + δ, A)− T0

[
V2

]
(B0 + δ, A)

∣∣∣
}

(3.59)
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Since B0 and A are arbitrarily chosen from Bδ/max{Bδ} and {0, 1}, respectively, we have

||Tδ
[
V1(b, A)

]
− Tδ

[
V2(b, A)

]
||

≤max
{ ∣∣∣T0

[
V1

]
(B0, A0)− T0

[
V2

]
(B0, A0)

∣∣∣ ,
∣∣∣T0

[
V1

]
(B0 + δ, A0)− T0

[
V2

]
(B0 + δ, A0)

∣∣∣
}

(3.60)

≤
∣∣∣
(
T0

[
V1

]
− T0

[
V2

])
(b∗, A∗)

∣∣∣ (3.61)

=||Tδ
[
V1(b, A)

]
− Tδ

[
V2(b, A)

]
||∞ (3.62)

≤γ||V1(b, A)− V2(b, A)||∞ (3.63)

where (3.60) follows from (3.59), (3.61) follows from (3.57)-(3.58), and (3.62) follows the definition

of (b∗, A∗).

3.7.2 Proof of Theorem 3.3

Denote β(b, A) , v∗(b, A)− Tδ
[
v∗(b, A)

]
. By Lemma 3.3, we have

||W (i)
δ (b, A)− v∗(b, A)||∞

= ||W (i)
δ (b, A) +W

(i+1)
δ (b, A)−W (i+1)

δ (b, A)− v∗(b, A)||∞

≤ ||W (i)
δ (b, A)−W (i+1)

δ (b, A)||∞ + ||W (i+1)
δ (b, A)− v∗(b, A)||∞

= ||Tδ
[
W

(i)
δ (b, A)

]
− Tδ

[
W

(i−1)
δ (b, A)

]
||∞ + ||Tδ

[
W

(i)
δ (b, A)

]
− Tδ

[
v∗(b, A)

]
− β(b, A)||∞

= ||Tδ
[
W

(i)
δ (b, A)

]
− Tδ

[
W

(i−1)
δ (b, A)

]
||∞ + ||Tδ

[
W

(i)
δ (b, A)

]
− Tδ

[
v∗(b, A)

]
||∞ + ||β(b, A)||∞

≤ γ||W (i)
δ (b, A)−W (i−1)

δ (b, A)||∞ + γ||W (i)
δ (b, A) + v∗(b, A)||∞ + ||β(b, A)||∞ (3.64)

where (3.64) follows the γ-contraction of the operator Tδ.
From (3.64), we have

||W (i)
δ (b, A)− v∗(b, A)||∞ ≤

γ||W (i)
δ (b, A)−W (i−1)

δ (b, A)||∞ + ||β(b, A)||∞
1− γ

≤ γα+ ||β(b, A)||∞
1− γ (3.65)

Also, since the only difference between Tδ and T0 is the approximation process, then we have

β(b, A) = v∗(b, A)− Tδ
[
v∗(b, A)

]
= v∗(b, A)−L

[
T0 [v∗(b, A)] , δ

]
= v∗(b, A)−L

[
v∗(b, A), δ

]
. Using
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Proposition 3.4, we have

||β(b, A)||∞ ≤ ||2v∗(δ, A)− v(0, A)− v∗(2δ, A)||∞

≤ ||v∗(δ, A)− v∗(0, A)||∞ . (3.66)

Therefore, (3.65) can be further written as

||W (i)
δ (b)− v∗(b)||∞ ≤

γα+ ||2v∗(δ, A)− v(0, A)− v∗(2δ, A)||∞
1− γ . (3.67)
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Chapter 4

Energy-Bandwidth Allocation for

Flat-Fading Point-to-Point Channels

In this chapter, we consider a multiuser system with multiple transmitters, each powered by a

renewable energy source. Each transmitter communicates with its designated receivers and is con-

strained by the availability of the energy, the capacity of the battery, and the maximum (average)

transmission power. Moreover, a frequency band is shared by all transmitters and we assume or-

thogonal channel access to avoid interference. We aim to obtain the optimal joint energy-bandwidth

allocation over a fixed scheduling period based on the available information on the channel states

and energy harvesting states at all transmitters, to maximize the weighted sum of the achievable

rate.

Consider the special case of equal weights and each transmitter communicates with only one

receiver. Then, without energy harvesting, TDMA is optimal for the maximum unweighted sum-

rate, i.e., at any time the link with the highest rate takes all bandwidth. However, for energy

harvesting transmitters, TDMA is no longer optimal. This is because the finite battery capacity

leads to energy discharge and waste by some transmitters that are not scheduled to transmit in a

time slot. Therefore, to make the best use of the harvested energy, multiple transmitters should split

the frequency band and transmit in a same slot. In this chapter, we assume that the channel is flat

fading and therefore each transmitter only needs to be allocated a portion of the total bandwidth.

We first consider the non-causal case, i.e., the energy harvesting and the channel fading can be
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predicted for the scheduling period, and formulate a convex optimization problem with O(MK)

variables and constraints, where M is the number of receivers and K is the number of scheduling

time slots. Since the computational complexity of a generic convex solver becomes impractically

high when the number of constraints is large [68], we will develop an iterative algorithm that

alternates between energy allocation and bandwidth allocation. We will show that this algorithm

converges to the optimal solution of the joint energy-bandwidth scheduling problem. For the special

case that each transmitter only communicates with one receiver and all weights are equal, optimal

algorithms to solve the energy and bandwidth allocation subproblems are also the optimal energy-

bandwidth allocation algorithm that obtained a computational complexity of O(MK2). We then

consider the causal case, where the harvested energy and the channel gain can only be observed

at the beginning of the corresponding time slot. We propose a suboptimal energy-bandwidth

allocation algorithm that follows a similar structure of the noncausal optimal solution. Simulation

results demonstrate that both the proposed non-causal and causal algorithms achieve substantial

performance improvement over some heuristic scheduling policies. Moreover, in the next chapter,

we will focus on the energy-bandwidth allocation in multiple broadcast channels and take the

proportional fairness into account.

4.1 System Model and Problem Formulation

4.1.1 System Model

Consider a network consisting of N transmitters and M receivers sharing a total bandwidth of B

Hz, where N ≤ M and each transmitter may communicate with multiple receivers. We assume

a scheduling period of K time slots and no two transmitters can transmit in the same time slot

and the same frequency band. Denote akm ∈ [0, 1] as the normalized bandwidth allocation for link

m in time slot k. We consider a flat and slow fading channel, where the channel gain is constant

within the entire frequency band of B Hz and over the coherence time of Tc seconds, which is also

the duration of a time slot. Assuming that each time slot consists of T time instants, we denote

Xki
m as the symbol sent to the receiver of link m at instant i in slot k. The corresponding received

signal at receiver m is given by Y ki
m = Xki

mh
k
m +Zkim , where hkm represents the complex channel gain

for link m in slot k, and Zkim ∼ CN(0, 1/T ) is the i.i.d. complex Gaussian noise (i.e., the power
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spectral density of the noise is 1/Tc). We denote Hk
m , |hkm|2 and denote pkm ,

∑T
i=1 |Xki

m |2 as the

transmission energy consumption for link m in slot k (i.e., the sum of the symbols’ energy in each

slot). Without loss of generality, we normalize B to 1; then, akm become the allocated bandwidth

of link m in slot k. For link m, the upper bound of the achievable channel rate in slot k can be

written as akm log(1 + pkmH
k
m/a

k
m) [70]. Moreover, we denote K , {1, 2, . . . ,K} as the scheduling

period, N , {1, 2, . . . , N} as the set of transmitters, andM , {1, 2, . . . ,M} as the set of receivers.

Further, we denote Mn , {m | m is the receiver of transmitter n,m ∈ M} as the set of receivers

of transmitter n, where Mn
⋂Mn′ = φ for all n 6= n′ ∈ N .

Assume that each transmitter is equipped with an energy harvester and a buffer battery, as

shown in Fig. 4.1. The energy harvester harvests energy from the surrounding environment. We

denote Ekn as the total energy harvested up to the end of slot k by transmitter n. Since in practice

energy harvesting can be accurately predicted for a short period [71][66], we assume that the

amount of the harvested energy in each slot is known. Moreover, the short-term prediction of the

channel gain in slow fading channels is also possible [72]. Therefore, we assume that {Hk
m} and

{Ekn} are known non-causally before scheduling. Note that such non-causal assumption also leads

to the performance upper bound of the system. We will relax this assumption and consider causal

knowledge of the channels and energy harvesting in Section 4.4.
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Figure 4.1: The system block diagram.

For transmitter n, assuming that the battery has a limited capacity Bmax
n and is empty initially,
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then the battery level at the end of slot k can be written as

Bk
n = Bk−1

n +
(
Ekn − Ek−1

n

)
−

k∑

κ=1

∑

m∈Mn

pκm −
k∑

κ=1

Dκ
n, (4.1)

where Dk
n ≥ 0 represents the energy discharge (waste) for transmitter n in slot k. Moreover, Bk

n

must satisfy 0 ≤ Bk
n ≤ Bmax

n for all k ∈ K.

We assume that each transmitter n has a maximum per-slot transmission energy consumption,

Pn, such that
∑

m∈Mn
pkm ≤ Pn for k ∈ K. With the maximum transmission energy and the

limited battery capacity, some of the harvested energy may not be able to be utilized, and is

therefore wasted, i.e., Dk
n may necessarily be strictly positive in some slots. Then, the constraints

on the battery level can be written as

0 ≤ Ekn −
k∑

κ=1

∑

m∈Mn

pκm −
k∑

κ=1

Dκ
n ≤ Bmax

n . (4.2)

Moreover, we denote D , {Dn | Dn , [D1
n, D

2
n, . . . , D

K
n ], n ∈ N} as the discharge allocation.

Note that, we assume controllable energy discharge, i.e., the energy can be discharged and wasted

anytime, even when the battery is not full.

Remark 4.1. In the transmitter model, both the maximum transmission energy and the battery

capacity are finite. If the harvested energy is ample, part of the energy has to be discharged even

if the transmitter transmits at the maximum (available) transmission energy in each slot. That is,

Dk
n
∗
> 0 is due to the incoming energy being large enough that it cannot be used for transmission

or storage.

4.1.2 Problem Formulation

Define 0 · log(1 + x
0 ) , 0. We use upper bounds of the achievable channel rate over a weighted sum

of the M links and K slots as the performance metric, given by

CW(P,A) =
∑

m∈M
Wm

∑

k∈K
akm · log(1 +

pkmH
k
m

akm
), akm ∈ [0, 1], pkm ∈ [0,∞) , (4.3)

where P , {pm | pm , [p1
m, p

2
m, . . . , p

K
m],m ∈ M} is the energy allocation, A , {ak | ak ,

[ak1, a
k
2, . . . , a

k
M ], k ∈ K} is the bandwidth allocation, and W , {Wm,m ∈ M} is the weight set. In

particular, when Wm = 1 for all m ∈M, CW(P,A) becomes the throughput of the network.
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Note that, both akm and pkm can be zero in (4.3). However, if akm = 0, the channel rate of link

m in slot k is zero, even if the energy allocation pkm > 0, thus pkm is actually wasted. However, we

still treat the pair (akm = 0, pkm > 0) as feasible as long as
∑

m∈Mn
pkm ≤ Pn.

We formulate the following energy-bandwidth allocation problem:

max
P,A,D

CW(P,A) (4.4)

subject to 



0 ≤ Ekn −
∑k

κ=1

∑
m∈Mn

pκm −
∑k

κ=1D
κ
n ≤ Bmax

n
∑M

i=1 a
k
i = 1

akm ≥ 0
∑

m∈Mn
pkm ≤ Pn

pkm ≥ 0

Dk
n ≥ 0

(4.5)

for all k ∈ K,m ∈M and n ∈ N .

4.1.3 Optimal Energy Discharge Allocation

To efficiently solve the problem in (4.4)-(4.5), we consider a two-stage procedure. In the first stage,

we obtain the optimal energy discharge allocation D∗ such that

max
P,A,D=D∗

CW(P,A) = max
P,A,D

CW(P,A) (4.6)

with the constraints in (4.5). And in the second stage, we use D∗ and define the energy expenditure

for transmission as

Ẽkn , Ekn −
k∑

κ=1

Dκ
n
∗ . (4.7)

Then we solve the following problem:

max
P,A

CW(P,A) (4.8)

subject to 



Ẽkn −Bmax
n ≤∑k

κ=1

∑
m∈Mn

pκm ≤ Ẽkn
∑M

i=1 a
k
i = 1

∑
m∈Mn

pkm ≤ Pn
pkm ≥ 0

akm ≥ 0

(4.9)
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for all n ∈ N ,m ∈M and k ∈ K.

We consider the following greedy strategy to obtain the energy discharge allocation by assuming

that each transmitter transmits at the maximum power in each slot, i.e.,





Dk
n = max{Bk−1

n + Ekn − Ek−1
n −∑k

κ=1

∑
m∈Mn

pkm −Bmax
n , 0}

∑
m∈Mn

pkm = min{Pn, Bk−1
n + Ekn − Ek−1

n }
, k = 1, 2, . . . ,K (4.10)

for all n ∈ N .

Note that, following (4.10), the total discharged energy is minimized and thus the amount of

the energy used for transmission is maximized. Intuitively, this way the feasible domain becomes

the largest, providing the best performance for transmission energy scheduling. Specifically, given

a feasible bandwidth allocation A, the achievable rate of each link is non-decreasing with respect

to the transmission energy, and the battery of each transmitters operates independently. There-

fore, following the same lines of the proof in [69], the optimality of (4.10) can be established. In

particular, using any feasible energy discharge D corresponding to the minimal energy wastage, the

optimal value of (4.8) is same, which is no less than the optimal value under any feasible energy

discharge allocation with non-minimal energy wastage.

Lemma 4.1. The discharge allocation given by (4.10) is the optimal D∗ to the problem in (4.4)-

(4.5), i.e., it satisfies (4.6), where the LHS of (4.6) is subject to the constraints in (4.9) and the

RHS is subject to the constraints in (4.5).

Note that, CW(P,A) is continuous and jointly concave with respect to akm ∈ [0, 1] and pkm ∈
[0,∞) for k ∈ K,m ∈ M. Then, the problem in (4.8)-(4.9) is a convex optimization problem and

can be solved by a generic convex solver, whose complexity becomes impractically high when the

number of constraints is large [68], which in this case is O(MK). To reduce the computational

complexity, we will develop an efficient algorithm in this paper, which exploits the structure of the

optimal solution.

4.2 Iterative Algorithm and its Optimality

The problem in (4.8)-(4.9) is a convex optimization problem with linear constraints. When the

objective function is differentiable in an open domain, the K.K.T. conditions are sufficient and



CHAPTER 4. ENERGY-BANDWIDTH ALLOCATION FOR FLAT-FADING
POINT-TO-POINT CHANNELS 70

necessary for the optimal solution [68]. Note that, (4.3) is non-differentiable at akm = 0. To use

the K.K.T. conditions to characterize the optimality of the problem in (4.8)-(4.9), we consider the

following approximation:

PW(ε) : max
P,A

CW(P,A) (4.11)

subject to 



Ẽkn −Bmax
n ≤∑k

κ=1

∑
m∈Mn

pκm ≤ Ẽkn
∑M

i=1 a
k
i = 1

∑
m∈Mn

pkm ≤ Pn
pkm ≥ 0

akm ≥ ε

(4.12)

for all n ∈ N ,m ∈ M, k ∈ K, where ε is a small positive number. In particular, PW(0) is the

original problem in (4.8)-(4.9).

Lemma 4.2. When ε → 0+, the optimal value of PW(ε) converges to the optimal value of the

problem in (4.8)-(4.9), i.e., limε→0+ PW(ε) = PW(0).

Proof. Since the objective function CW(P,A) is continuous with respect to P × A ∈ {[0,∞)} ×
{[0, 1]} and the constraints in (4.12) are all linear, we have that the optimal solution of PW(ε) is con-

tinuous with respect to ε, i.e., limε→0+ argPW(ε) = argPW(0). Therefore, we have limε→0+ PW(ε) =

PW(0).

By introducing the auxiliary variables {λkn ≥ 0}, {µkn ≥ 0}, {βkm ≥ 0} and {αk} and converting

the constraints in (4.12) into the Lagrangian multiplier, we can define the Lagrangian function for
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PW(ε) as

L ,
M∑

m=1

Wm

K∑

k=1

akm · log(1 +
pkmH

k
m

akm
)

−
N∑

n=1

K∑

k=1

( ∑

m∈Mn

pkm

K∑

κ=k

λκn − λknẼkn
)

+
N∑

n=1

K∑

k=1

( ∑

m∈Mn

pkm

K∑

κ=k

µκn − µkn
(
Ẽkn −Bmax

n

))

−
K∑

k=1

αk(
M∑

m=1

akm − 1)

+
K∑

k=1

M∑

m=1

βkm(akm − ε) .

Then, the following K.K.T. conditions, which are sufficient and necessary for the optimal solu-

tion to the convex optimization problem in (4.11)-(4.12), are obtained from the Lagrangian function:

Hk
m

1 + pkmH
k
m/a

k
m

= (vkn − ukn)/Wm, k ∈ K, n ∈ N , m ∈Mn (4.13)

log(1 +
pkmH

k
m

akm
)− pkmH

k
m

akm + pkmH
k
m

= (αk − βkn)/Wm, k ∈ K, n ∈ N , m ∈Mn (4.14)

λkn · (
k∑

κ=1

∑

m∈Mn

pκm − Ẽkn) = 0, k ∈ K, n ∈ N (4.15)

µkn · (
k∑

κ=1

∑

m∈Mn

pκm − Ẽkn +Bmax
n ) = 0, k ∈ K, n ∈ N (4.16)

αk · (
M∑

m=1

akm − 1) = 0, k ∈ K (4.17)

βkm · (akm − ε) = 0, k ∈ K, m ∈M (4.18)

together with the constraints in (4.12), and λkn, µ
k
n, β

k
m ≥ 0 for all k ∈ K, n ∈ N , and m ∈ M,

where in (4.13)

ukn ,
K∑

κ=k

µκn, v
k
n ,

K∑

κ=k

λκn . (4.19)

In this section, we will first decompose the energy-bandwidth allocation problem PW(ε) in

(4.11)-(4.12) into two subproblems, and then propose an iterative algorithm to solve PW(ε). We

will prove that the iterative algorithm converges to the optimal solution to the problem in (4.8)-

(4.9).
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4.2.1 Iterative Algorithm

To efficiently solve problem PW(ε) in (4.11)-(4.12), we first decompose it into two groups of sub-

problems, corresponding to energy allocation and bandwidth allocation, respectively.

• Given the bandwidth allocation A = {ak | k ∈ K}, for each n ∈ N , obtain the energy

allocation pm by solving the following subproblem:

EPn : max
pm,m∈Mn

∑

m∈Mn

Wm

K∑

k=1

akm · log(1 +
pkmH

k
m

akm
) (4.20)

subject to 



Ẽkn −Bmax
n ≤∑k

κ=1

∑
m∈Mn

pκm ≤ Ẽkn
∑

m∈Mn
pkm ≤ Pn

pkm ≥ 0,m ∈Mn

, k ∈ K . (4.21)

• Given the energy allocation P = {pm | m ∈ M}, for each k ∈ K, obtain the bandwidth

allocation ak by solving the following subproblem:

BPk(ε) : max
ak

M∑

m=1

Wm · akm · log(1 +
pkmH

k
m

akm
) (4.22)

subject to 



∑M
i=1 a

k
i = 1

akm ≥ ε, m ∈M
. (4.23)

To obtain the optimal solution to the original problem in (4.8)-(4.9), we propose an iterative

algorithm that alternatively solves EPn for all n ∈ N and BPk(ε) for all k ∈ K, with a diminishing

ε over the iterations. To perform the algorithm, we initially set akm = 1/M,∀m, k, and solve EPn

to obtain the initial P. In each iteration i, we first solve BPk(ε0/i) to update ak ∈ A for all k ∈ K,

where ε0 is a pre-specified positive value; with the updated A, we then solve EPn to update pm ∈ P
for all m ∈M.

The proposed iterative algorithm is summarized in Algorithm 4.1 and its block diagram is shown

in Fig. 4.2.
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Transmitter 

1

(Solve EP1)

Central 

Controller

(Solve BPk( 0/i)

for all k)

Transmitter 

2

(Solve EP2)

Transmitter 

N

(Solve EPN)

… ...

pm
k
Hm

k
, for all k, m M1

am
k
, for all k, m M1

pm
k
Hm

k
, for all k, m M2

am
k
, for all k, m M2

pm
k
Hm

k
, for all k, m MN

am
k
, for all k, m MN

Figure 4.2: The block diagram of Algorithm 4.1.
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Algorithm 4.1 - Iterative Energy-Bandwidth Allocation Algorithm

1: Initialization

i = 0, A = 1/M , V (0) = 0, choose any ε0 > 0,

Solve EPn for all n ∈ N to generate the initial P
Specify the maximum number of iterations I, the convergence tolerance δ > 0

2: Energy-Bandwidth Allocation

REPEAT

i← i+ 1, ε← ε0/i

Solve BPk(ε) to update ak ∈ A for all k ∈ K
Solve EPn to update {pm | m ∈Mn} ⊂ P for all n ∈ N
V (i) = CW(P,A)

UNTIL |V (i) − V (i−1)| < δ OR i = I

In the next subsection, we will show that Algorithm 4.1 converges and the pairwise optimal A
and P can be obtained, which is also the optimal solution to the problem in (4.8)-(4.9).

We note that, PW(ε) is a convex optimization problem with O(MK) variables and constraints.

The computational complexity of using the generic convex solver is non-linear with respect to the

number of the variables and constraints, which may be impractically high when M and K become

large. Using Algorithm 4.1, the optimal solution to PW(ε) can be obtained by solving O(N + K)

convex optimization subproblems which contains O(K|Mn|) or O(M) variables and constraints.

Therefore, the overall computational complexity can be significantly reduced with Algorithm 4.1

for large M and K.

4.2.2 Proof of Optimality

We first give the following proposition.

Proposition 4.1. Given any bandwidth allocation {akm > 0 | k ∈ K},m ∈ M, the optimal energy

allocation for the problem EPn is unique. Also, given the energy allocation {pkm | m ∈ M}, k ∈ K
such that

∑M
m=1 p

k
m > 0, the corresponding optimal bandwidth allocation for the problem BPk(ε) is

unique.

Proof. This proposition can be obtained by verifying the strict concavity of CW(P,A) with respect

to P given A, and with respect to A given P.
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Given a pair (P,A), if pm ∈ P is the optimal solution to EPn for all n ∈ N given A, and ak ∈ A
is the optimal solution to BPk(ε) for all k ∈ K given P, we say that P and A are pairwise optimal

for PW(ε). We also note that, for each subproblem, its K.K.T. conditions form a subset of those of

PW(ε) given the other primal variables, where any two subsets contain no common dual variable.

Then, if the primal variables are pairwise optimal, the K.K.T. conditions in each corresponding

subset are satisfied and hence all K.K.T. conditions of PW(ε) are satisfied, i.e., the pairwise optimal

solution is also the optimal energy-bandwidth allocation for PW(ε).

Theorem 4.1. The energy-bandwidth allocation {P,A} is the optimal solution to PW(ε) for any

ε > 0, if and only if, {pm,m ∈Mn} ∈ P is optimal to PW(ε) given {P\{pm,m ∈Mn},A} for all

n ∈ N , and ak ∈ A is optimal to PW(ε) given {A\ak,P} for all k ∈ K.

We note that, for BPk(ε), when
∑M

m=1 p
k
m = 0, the objective value is zero for all feasible

bandwidth allocations. Therefore, we can fix akm = 1/M as the optimal bandwidth allocation for

this case in Algorithm 4.1. Then, by Proposition 4.1, we have that the optimal solution to each

subproblem in Algorithm 4.1 is unique. The next theorem establishes the optimality of Algorithm

4.1. The proof is given in Appendix 4.7.1.

Theorem 4.2. Algorithm 4.1 converges; and the converged solution (P,A) is the optimal solution

to the problem in (4.8)-(4.9).

Note that, the convergence is due to the expansion of the feasible domain by reducing ε resulting

in the increasing objective value over iterations. The optimality can be proved by first verifying the

pairwise optimality of the solution upon convergence and then showing it cannot be suboptimal.

4.3 Throughput Maximization for Multiple Point-to-Point Chan-

nels

In this section, we consider the special case that each transmitter can only communicate with one

receiver and all links have the same weight, i.e., Mn = {n} and Wm = 1 for all m ∈ M. The

energy and bandwidth allocation subproblem can be rewritten as

EPn : max
pn

K∑

k=1

akn · log(1 +
pknH

k
n

akn
) (4.24)
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subject to 



Ẽkn −Bmax
n ≤∑k

κ=1 p
κ
n ≤ Ẽkn

0 ≤ pkn ≤ Pn
, k ∈ K , (4.25)

and

BPk(ε) : max
ak

N∑

n=1

akn · log(1 +
pknH

k
n

akn
) (4.26)

subject to 



∑N
i=1 a

k
i = 1

akn ≥ ε, n ∈ N
, (4.27)

respectively.

4.3.1 Solving EPn: Discounted Dynamic Water-Filling

Given ak, since EPn is a subproblem of the problem in (4.11)-(4.12), its K.K.T. conditions form a

subset of those of the original problem, given by (4.13), (4.15) and (4.16).

To develop an efficient algorithm, we first rewrite the K.K.T. condition in (4.13) as

pkn = akn ·
( 1

vkn − ukn
− 1

Hk
n

)
. (4.28)

Since the energy allocation must satisfy 0 ≤ pkn ≤ Pn, (4.28) can be further written as

pkn = min
{
Pn, a

k
n ·
[ 1

vkn − ukn
− 1

Hk
n

]+}
. (4.29)

Comparing the K.K.T. conditions in (4.13) with (24) in [69], the only difference is the scaling

factor akn. Following the same analysis in [69], we have the following theorem.

Theorem 4.3. Given any bandwidth allocation A, a feasible energy allocation P is an optimal

solution to (4.8)-(4.9), if and only if it follows the discounted water-filling rule in (4.29), where

the water level 1
vk−uk may increase only at a battery depletion point (BDP) such that Bk

n = 0, and

decrease only at a battery fully charged point (BFP) such that Bk
n = Bmax

n .

Proof. Given any bandwidth allocation A, we note that by the first KKT condition in (4.13) along

with the constraints 0 ≤ pkn ≤ Pn, the optimal energy allocation satisfies (4.28). Thus, the optimal

energy level in slot k is determined by the dual variables vkn, u
k
n and the channel state Hk

n.

We note that, the KKT conditions in (4.15) and (4.16) constrain the changes of the water levels

1
vkn−ukn

. To satisfy these two conditions, λk may only be non-zeros at the BDPs, i.e., for k such
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that Ẽkn −
∑k

t=1 p
t
n = Bk

n = 0, and µkn may only be non-zeros at the BFPs, i.e., for k such that

Ẽkn −
∑k

t=1 p
t
n = Bk

n = Bmax
n . Since the dual variables λkn and µkn are non-negative, ukn and vkn,

which are defined in (4.19), are non-increasing over k. Specifically, since λkn and µkn cannot be both

non-zero at the same time, the water level 1
vkn−ukn

may only increase when vkn changes, i.e., λkn is

non-zero at the BDPs, or decrease when ukn changes, i.e., µkn is non-zero at the BFPs.

Theorem 4.3 gives the necessary and sufficient conditions for the optimal energy allocation

given any bandwidth allocation. Given the set of BDP/BFPs corresponding to the optimal energy

allocation, the optimal energy allocation and the corresponding the water level for the segment

between two adjacent BDP/BFPs, (a, type of a) and (b, type of b), can be written as

pkn = min
(
Pn , a

k
n ·
[
w − 1

Hk
n

]+)
, (4.30)

where w is the water level of a segment such that

b∑

κ=a+1

pκn = min
{

(b− a)Pn, Ẽ
b
n − Ẽan +

(
I(a is BFP)− I(b is BFP)

)
Bmax
n

}
, (4.31)

with I(A) being an indicator function given by

I(A) ,





1, if A is true

0, otherwise
. (4.32)

Specifically, (4.30)-(4.31) represent the water-filling operation in a segment between two optimal

BDP/BFPs, as mentioned in Theorem 4.3. Also, (4.31) ensures that with the energy allocation the

boundary points a and b are the desired BDP/BFPs.

For example, given the set of the BDP/BFPs, the relationship among the water level wk, the

energy allocation pk, and the channel state Hk can be characterized as in Fig. 4.3. In particular,

if the energy allocation shown in Fig. 4.3 is optimal for EPn, the water level wkn = 1/(vkn − ukn)

can only increase at the BDPs, e.g., slot 2 , and decrease at the BFPs, e.g., slot 6, as well as the

resulted energy allocation is feasible, i.e., the constraints in (4.12) are satisfied.

We will consider the “manually” generated set of BFP/BDPs which is called general BDP/BFPs

set, where the BDP/BFPs are generated by constraining the battery be empty or fully-charged in

some specific slots. In contrast to the optimal BDP/BFPs set, the energy allocation obtained by

(4.30) based on a general BDP/BFPs set may not be feasible and/or optimal. Specifically, if the
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obtained energy allocation satisfies the constraints in (4.12), we call the energy allocation feasible;

if the obtained energy allocation only violates the battery capacity constraints in some time slots,

i.e, Bk
n ≥ Bmax

n for some k, we call the energy allocation semi-feasible; otherwise, we call the energy

allocation infeasible. Note that both semi-feasible and infeasible energy allocations are not feasible

to the problem in EPn.

For a specific case that, given a general BDP/BFPs set, by (4.30), the energy allocation is

feasible and the corresponding water levels satisfy the optimality conditions in Theorem 4.3, this

general BDP/BFPs set can be considered as the optimal BDP/BFPs set and the corresponding

energy allocation is the optimal solution to EPn. Therefore, in the following subsections, we want

to compose such optimal BDP/BFPs set.

Denote a general BDP/BFPs set as X = {(k, type of k) | k is a BDP or BFP} where each

element in X is sorted by ascending order of k, e.g., a set that contains only the default BDPs is

{(0,BDP), (K,BDP)}. To obtain X ∗, starting from X = {(0,BDP)}, we can iteratively append the

next optimal BDP or BFP to X until (K,BDP) is added, i.e., we consider the generated BDP/BFP

set as X ∗. To identify if a specific time slot should be a BDP or BFP in X ∗, we recursively perform

the following two operations on a segment between (a, type of a) and (b, type of b): Forward Search

and Backward Search.

For the forward search operation, we find the largest (k, type of k) ∈ {(a + 1,BDP), (a +

2,BDP), . . . , (b− 1,BDP), (b, type of b)} such that the energy allocation of the segment [a + 1, k],

which is calculated by (4.30), is feasible or semi-feasible. If it is feasible, add (k,BDP) to X and

continue the forward search for the segment between (k,BDP) and (K,BDP); if it is semi-feasible,

we perform backward search for the segment between (a, type of a) and (k,BDP).

     1/H5      

   w3        

       1/H6     

 w1   1/H4   w7    

   1/H3     1/H8   

 1/H1      1/H7    

  1/H2       … 1/HK 

           

time slot 1 2 3 4 5 6 7 8 … K 

 

Figure 4.3: An example of a energy allocation and the corresponding water levels and BDPs/BFPs.
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For the backward search operation, we find and eliminate the largest Bmax-violation point, i.e.,

the largest k ∈ [a+ 1, b] such that Bk > Bmax. Specifically, we first obtain the energy allocation of

the segment [a + 1, b] using (4.30) and find out the largest Bmax-violation point k. Then, setting

k as a BFP, we obtain the energy allocation of the segment [a + 1, k] using (4.30) again. If the

energy allocation is infeasible, we perform forward search on the segment between (a, type of a)

and (k,BFP); if the energy allocation is feasible, add (k,BFP) to X and perform forward search

on the segment between (k,BFP) and (K,BDP); otherwise, we perform backward search on the

segment between (a, type of a) and (k,BFP).

The steps involved in these two operations are described below. We set the initial BDP/BFPs

set as X = {(0,BDP)} and apply the forward search operation on the segment between (0,BDP)

and (K,BDP) to get the optimal set of BDPs and BFPs.

Algorithm 4.2 - Algorithm for finding optimal BDPs and BFPs

1: Algorithm: Run Forward Search on
(
(0,BDP), (K,BDP)

)

2: Subroutine 1 - Forward Search
(
(a, type of a), (b, type of b)

)

If a = K, the search is complete.

For (k1, type of k1) ∈ {(a+ 1,BDP), . . . , (b− 1,BDP), (b, type of b)}
let k = the largest k1 ∈ (a, b] such that the energy allocation from a+ 1 to k1 calculated

by (4.30) is feasible or semi-feasible

- if feasible, add (k,BDP) to X
and Forward Search

(
(k, type of k), (K,BDP)

)

- if semi-feasible, Backward Search
(
(a, type of a), (k,BDP)

)

3: Subroutine 2 - Backward Search
(
(a, type of a), (b, type of b)

)

Let k = the largest Bmax-violation point in (a, b]

For the energy allocation calculated by (4.30) for segment [a+ 1, k] where k is BFP

- if feasible, add (k,BFP) to X
and Forward Search

(
(k,BFP), (K,BDP)

)

- if semi-feasible, Backward Search
(
(a, type of a), (k,BFP)

)

- if infeasible, Forward Search
(
(a, type of a), (k,BFP)

)

Algorithm 4.2 is a recursive algorithm, in which a BDP is added by the forward search while a

BFP is added at the end of a consecutive recursion of the backward search. Specifically, readdressing

the definition of the water level of a segment in (4.31), when a BDP is added, it is ensured that the
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water level of the segment between the last BDP/BFP and the newly added BDP be lower than

that of the segment between the newly added BDP and the next BDP/BFP that will be added in

the subsequent recursion. Moreover, when a BFP is added, the opposite is ensured.

Note that, Algorithm 4.2 is implemented by recursively performing the forward search and

the backward search, based on the water-filling operation. In the recursive process, the starting

point a can only increase from 0 to K while the ending point b can only decrease from K to a for

each starting point a. Since the complexity of the traditional water-filling algorithm is O(1), the

complexity of Algorithm 4.2 can be further bounded by O(K2).

Specifically, [69, Corollary 1] shows that for each BDP added by the forward search operation,

the water level of the segment before the BDP is lower than that after the BDP; while [69, Propo-

sition 2] shows that, for each BFP added by the backward search operation, the water level of the

segment before the BFP is higher than that after the BFP. By Theorem 4.3, we know that such

BDPs and BFPs added by the dynamic water-filling algorithm can satisfy the optimality conditions

for the problem in EPn, i.e., the water levels may only increase at BDPs and only decrease at BFPs.

Thus, we arrive at the optimality.

Theorem 4.4. By performing the dynamic water-filling algorithm, the resulted BDP/BFPs set is

the optimal set of BDPs and BFPs for the problem in EPn, i.e., we can get the optimal transmission

schedule by using (4.30) to water-fill each segment between two adjacent points in the optimal

BDP/BFP set with a constant water level.

4.3.2 Solving BPk(ε): Bandwidth Fitting Algorithm

We first note that, when pkn = 0 and akn ≥ ε, the channel rate achieved by transmitter n in slot k is

zero. Therefore, in a slot k such that
∑N

n=1 p
k
n = 0, any feasible bandwidth allocation is optimal,

achieving the maximum channel rate 0. However, in a slot k where
∑N

n=1 p
k
n > 0, in order to

maximize the channel rate, the transmitter with zero energy allocation pkn = 0 must be allocated

with the minimal bandwidth, i.e., akn = ε. We denote the energy allocation {pkn |
∑N

i=1 p
k
i > 0, n ∈

N} as the non-zero energy allocation and, in the remainder of this subsection, we will obtain the

optimal bandwidth allocation given a non-zero energy allocation.

Since BPk(ε) is a subproblem of the problem given in (4.11)-(4.12), its K.K.T. conditions form

a subset of those of the original problem, given by (4.14), (4.17) and (4.18).
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Given a non-zero energy allocation, since we know that the transmitter with zero energy allo-

cation should be allocated with the minimal bandwidth, we rewrite the K.K.T. condition related

to the transmitters with the non-zero energy allocation in (4.14) as

− log(
akn

akn + pknH
k
n

)− (1− akn
akn + pknH

k
n

) = αk − βkn (4.33)

for all k ∈ K, and all n such that pkn > 0, n ∈ N .

Denoting y(αk, βkn) as the solution to the following equation,

− log(y(αk, βkn))− (1− y(αk, βkn)) = αk − βkn, (4.34)

from (4.33)-(4.34), we then have

akn = pknH
k
n · z(αk, βkn) , (4.35)

where

z(αk, βkn) ,
y(αk, βkn)

1− y(αk, βkn)
, (4.36)

and 0 < y(αk, βkn) < 1.

By (4.18), we have that βkn must be zero when akn > ε. Then we divide {akn, n ∈ N} into two

sets: T k , {n | akn > ε, n ∈ N} and T̄ k , {n | akn = ε, n ∈ N}. Then, (4.35) can be rewritten as

akn =





pknH
k
nz(α

k, 0), when n ∈ T k, pkn > 0

pknH
k
nz(α

k, βkn), when n ∈ T̄ k, pkn > 0
, (4.37)

where βkn ≥ 0 and

pknH
k
nz(α

k, βkn) = ε, n ∈ T̄ k . (4.38)

Also, we have

akn = ε ≥ pknHk
nz(α

k, βkn), when pkn = 0 . (4.39)

Substituting (4.37) and (4.39) into the constraints
∑N

n=1 a
k
n = 1, we further have

|T̄ k| · ε+
∑

n∈T k
pknH

k
nz(α

k, 0) = 1 . (4.40)

Next, we characterize the optimality condition for the bandwidth allocation problem BPk(ε)

given the non-zero energy allocation, as follows.
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Theorem 4.5. Given any energy allocation {pkn |
∑N

i=1 p
k
i > 0, n ∈ N}, the bandwidth allocation

ak is the optimal to BP(ε), if and only if, for every n ∈ T k, it satisfies

akn = (1− |T̄ k| · ε) pknH
k
n∑

i∈T k p
k
iH

k
i

, (4.41)

and for any n ∈ T̄ k, it satisfies

akn = ε ≥ (1− |T̄ k| · ε) pknH
k
n∑

i∈T k p
k
iH

k
i

, (4.42)

for all k ∈ K.

Proof. Rearranging (4.40), we have

z(αk, 0) =
1− |T̄ k| · ε∑
n∈T k p

k
nH

k
n

. (4.43)

Necessity: When akn ∈ T k, we have akn > ε and thus βkn = 0. Substituting (4.43) to (4.37), we

have (4.41). When akn ∈ T̄ k, we have akn = ε and thus βkn ≥ 0.

Note that, since y(αk, βkn) is the solution to (4.34), which is an equation of the form y−log(y) = x

for which y increases when x decreases for y ∈ (0, 1), we see that y(αk, βkn) increases as βkn increases.

Then, we have z(αk, βkn) increases as βkn increases given αk, thus z(αk, βkn) ≥ z(αk, 0). Since

pknH
k
n ≥ 0, we further have

pknH
k
nz(α

k, βkn) ≥ pknHk
nz(α

k, 0) . (4.44)

Substituting (4.38) or (4.39), and (4.43) into the LHS and RHS of (4.44), respectively, we get

(4.42).

Sufficiency: For the transmitters with zero energy allocation, it is easy to verify that the minimal

bandwidth allocation is optimal. For other transmitters, since akn > 0, by (4.35), we must have

0 < y(αk, βkn) < 1 and thus 0 < z(αk, βkn) <∞. Note that, by (4.34), y(αk, βkn) ∈ (0, 1) and αk−βn
is one-to-one mapping. Therefore, for any akn satisfying the sufficient conditions in Theorem 4.5,

we can always find the corresponding dual variables αk and βkn in (4.40) and (4.38), satisfying all

the K.K.T. conditions.

Intuitively, Theorem 4.5 states that the optimal bandwidth allocation should be proportional

to the transmission “condition”, i.e., pknH
k
n. In particular, if the desired bandwidth allocation for

transmitter n is less than the minimal requirement ε, akn should be set as the minimal requirement
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ε. Based on Theorem 4.5, we propose the following iterative bandwidth fitting algorithm. Initially,

we set T k = {n | pkn > 0, n ∈ N} and T̄ k = N \ T k. In each iteration, we calculate the bandwidth

allocation akn by (4.41) with the current T k and T̄ k. We denote V = {n | akn ≤ ε, n ∈ T k} as a

“violation set”, containing the elements in T k that violate the definition of T k , {n | akn > ε, n ∈
N}. Then, we move all n ∈ V from T k to T̄ k. This iterative process ends when V is empty. Finally,

with the obtained T k and T̄ k, the optimal allocation can be calculated by (4.41)-(4.42).

The procedure of the algorithm is summarized as follows:

Algorithm 4.3 - Iterative Bandwidth Fitting Algorithm

1: Initialization

T k = {n | pkn > 0, n ∈ N}, T̄ k = N \ T k

2: Bandwidth Fitting

FOR k ∈ K such that
∑N
n=1 p

k
n > 0

REPEAT

Calculate akn by (4.41) for all n ∈ T k

Set the violation set V = {n | akn ≤ ε, n ∈ T k}
Move all n ∈ V from T k to T̄ k

UNTIL V = { }
ENDFOR

2: Bandwidth Allocation

Obtain akn with T k and T̄ k by (4.41)-(4.42) for all n ∈ N , k ∈ K such that
∑N
n=1 p

k
n > 0

Note that, Algorithm 4.3 will terminate in at most N iterations since the elements transfer

between T k and T̄ k is one-directional. Moreover, for all k ∈ K such that
∑N

n=1 p
k
n > 0, at the end

of the last iteration, since V is empty, we have that the condition in (4.41) is satisfied by all n ∈ T k

and we have akn > ε for all n ∈ T k. Also, for all other n ∈ T̄ k, obviously we have akn = ε. If (4.42)

is also satisfied, we can further claim that with the obtained T k and T̄ k, Algorithm 4.3 gives an

optimal bandwidth allocation.

The next result shows that, at the end of each iteration (including the last iteration), with the

obtained T̄ k, (4.42) is satisfied. The proof is given in Appendix 4.7.2.

Proposition 4.2. For all n ∈ T̄ k, which is obtained by Algorithm 4.3 at the end of each iteration,

(4.42) is satisfied for all k ∈ K such that
∑N

n=1 p
k
n > 0.
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With Proposition 4.2, we conclude that the bandwidth allocation obtained by Algorithm 4.3 is

optimal. Moreover, since the number of iterations is bounded by N , the computational complexity

of Algorithm 4.3 is O(N).

Remark 4.2. In each iteration of Algorithm 4.1, N subproblems of EPn and K subproblems of

BPk(ε) need to be solved, using the discounted dynamic water-filling algorithm and the bandwidth

fitting algorithm, whose computational complexities are O(K2) and O(N), respectively. Thus the

overall computational complexity of Algorithm 4.1 becomes O(NK2), which is significantly lower

than that of the generic convex tools.

4.4 Suboptimal Algorithm with Causal Information

In Section 4.2, we proposed an iterative algorithm to obtain the optimal energy-bandwidth alloca-

tion with non-causal information of the channel gains and the harvested energy, whose performance

can also serve as an upper bound on the achievable rate. In this section, we consider the case that

the channel fading and energy harvesting are not predicable, i.e., their realizations can only be

observed causally at the beginning of the corresponding slot. We will propose a heuristic algorithm

to obtain the suboptimal energy-bandwidth allocation that follows the structure of the optimal

solution. For simplicity, we still focus on the throughput maximization problem for point-to-point

channels considered in Section 4.3.

We first give the structure of the optimal solution for the problem in (4.8)-(4.9).

Lemma 4.3. If (A,P) is the optimal solution to the problem in (4.8)-(4.9), then

• {pkn | akn > 0, n ∈ N , k ∈ K} satisfy

pkn = min
{
Pn, a

k
n ·
[
wkn −

1

Hk
n

]+
+ γkn

}
, (4.45)

where γkn is the energy adjuster and wkn > 0 may only increase/decrease at BDP/BFP;

• {akn |
∑N

i=1 p
k
i > 0, n ∈ N , k ∈ K} satisfy

akn =
pknH

k
n∑

i∈N p
k
iH

k
i

. (4.46)
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Proof. Comparing (4.45) with the optimal energy allocation given in (4.29) by Theorem 4.3, the

only difference is the term of energy adjuster γkn. Note that, for the optimal energy allocation, given

n, k, we have that γkn = 0 if pkn < Pn since the performance can be improved if pkn can be further

increased by decreasing a positive γkn. Therefore, we have that for the optimal energy allocation,

(4.45) is equivalent to (4.29).

Given P, we next show that the optimal akn = 0 if and only if pkn = 0. Specifically, if pkn = 0,

the rate of link n in slot k is constant zero for any akn ≥ 0. Since
∑N

i=1 p
k
i > 0 and

∑N
n=1 a

k
n = 1, if

we reassign the non-zero bandwidth akn of link n to any other links i such that pki > 0 in slot k, the

sum rate in slot k is increased. Therefore, we have akn = 0 if pkn = 0. On the other hand, if pkn > 0,

we have that the derivative of the objective function over akn tends to infinity as akn → 0+, which

means that we can always move certain bandwidth from some other link to link n with akn = 0 and

pkn > 0, such that the rate loss of the other link is less than the rate gain of link n. Therefore,

akn = 0 is not optimal if pkn > 0. Hence, akn = 0 if and only if pkn = 0. By eliminating the terms of

pkn = 0 in the objective function, the optimal bandwidth allocation is positive and then Theorem

4.5 can be adapted for the case ε = 0, i.e., (4.46) is obtained.

Lemma 4.3 provides the structure of the optimal energy-bandwidth allocation, in which the

water level wkn is the only parameter affected by the future channel fading and energy harvesting.

Specifically, if the energy harvesting and channel gains are predictable, then the optimal wkn can be

obtained, as in the proposed non-causal algorithm, where γkn = 0 if pkn < Pn, and γkn ≥ 0 if pkn = Pn.

In other words, in (4.45), γkn does not affect the value of pkn when the optimal water level wkn is

given. However, when the energy harvesting and channel fading processes are unpredictable, the

optimal wkn is hard to obtain. Note that γkn essentially acts as an adjusting factor to mitigate the

energy waste caused by the non-optimality of wkn, i.e., if the suboptimal water level is lower than

the optimal one and therefore causes the energy waste, we can try to utilize the wasted energy for

transmission. Then, we use the potentially wasted energy as the adjuster, given by

γkn = max

{
0, Bk−1

n + ∆k
n −min

{
Pn, a

k
n ·
[
wkn −

1

Hk
n

]+}
−Bmax

n

}
. (4.47)

where ∆k
n , Ekn−Ek−1

n is the energy harvested energy in slot k. Specifically, γkn becomes the actual

energy wastage Dk
n if the water-filling fashion in (4.29) is followed using the water level wkn.

Based on Lemma 4.3, we design an adaptive water-filling algorithm, aiming to obtain a sub-
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optimal energy-bandwidth allocation, which follows the structure of the optimal solution given in

Lemma 4.3. With the proposed algorithm, except for the calculation of the water levels, all other

optimality conditions are approached by the obtained energy-bandwidth allocation. Specifically, to

avoid the use of the future information, the water levels are calculated by a heuristic method.

The proposed algorithm is an online algorithm. Initially, we set a water level w0
n for each

transmitter n ∈ N . At the beginning of slot k, we check the battery level of each transmitter.

If the battery is empty or full, we decrease or increase the water level by a factor, e.g., wkn =

c · wk−1
n (or wk−1

n /c). Otherwise, we keep the water level unchanged. Then, based on the water

level wkn, we calculate the energy allocation and bandwidth allocation {pkn, akn | n ∈ N} by solving

the equations (4.45), (4.46) and (4.47). In particular, substituting (4.47) into (4.45), there are two

equations and two variables, which can be solved numerically.

Moreover, we propose the following choices of the initial water level w0
n and the factor c,

w0
n ≈ N · E

[
Ekn

]
+ E

[
1

Hk
n

]
, (4.48)

and

c ≈ 1 + Pn/w
0
n (4.49)

The algorithm is summarized as follows:

Algorithm 4.4 - Adaptive Water-Filling Algorithm (the superscript k is dropped)

1: Input

Current water level and battery level {wn, Bn | n ∈ N}
2: Output

Updated water level and battery level {wn, Bn | n ∈ N}
Energy-bandwidth allocation {pn, an | n ∈ N}

3: At the beginning of each slot

FOR n ∈ N
IF Bn = Bmax

n THEN wn ← wn/c

IF Bn = 0 THEN wn ← wn · c
ENDFOR

Solve the equation group of (4.45), (4.46) and (4.47) to obtain {pn, an | n ∈ N}
Bn ← min{Pn, Bn + ∆n − pn} for all n ∈ N
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4.5 Simulation Results

Suppose that there are N = 4 transmitters in the network and each communicates with one receiver,

and we assume Wn = 1 for n = 1, 2, 3, 4. We set the scheduling period as K = 40 slots. For each

transmitter n, we set the initial battery level B0
n = 0 and the maximum battery capacity Bmax

n = 20

units. Assume that the harvested energy follows a truncated Gaussian distribution with mean µE

and variance of σ2 = 2, and the fading channel parameter follows the standard complex Gaussian

distribution, i.e., hkn ∼ CN (0, 1), so that Hk
n ∼ exp(1).

For comparison, we consider three scheduling strategies, namely, the greedy policy, the TDMA

greedy policy, and the equal bandwidth policy. For the greedy policy, each transmitter tries to

consume the harvested energy as much as possible in each slot, as calculated by (4.10). Then, the

central controller allocates the bandwidth to each transmitter by using the iterative bandwidth

fitting algorithm (i.e., Algorithm 4.3). For the TDMA greedy policy, each transmitter uses the

maximum possible energy to transmit in each slot, and the central controller allocates the entire

bandwidth to the transmitter with the maximum pknH
k
n. For the equal bandwidth policy, the central

controller allocates each transmitter equal bandwidth and then each transmitter uses the optimal

energy allocation.

To evaluate the performance of different algorithms, we consider two scenarios, namely, the

energy-limited scenario, where the maximum transmission power is Pn = 10 units per slot, and the

power-limited scenario, where the maximum transmission power is Pn = 5 units per slot. Moreover,

the convergence threshold in Algorithm 4.1 is set as δ = 10−3, and the initial water level and

the parameter c in Algorithm 4.4 are set as w0
n = 25 and c = 1.1, respectively. We compare the

achievable rates of different algorithms under different mean values µE of the harvested energy. In

the energy-limited scenario, the transmitter has more freedom to schedule the harvested energy to

be consumed in each slot because of the large maximum transmission power. One the other hand,

in the power-limited scenario, the harvested energy would be consumed in the future slots since the

maximum transmission power is reached more frequently. Furthermore, for both scenarios, when

the energy harvesting parameter µE is small, it corresponds to the “energy-constrained” condition,

where the scheduling is mainly constrained by the energy availability. And when µE is large, it

corresponds to the “power-constrained” condition, where the scheduling is more constrained by the

maximum transmission power.
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Before we compare the performance of different algorithms, we first illustrate the convergence

behavior of Algorithm 4.1 in Fig. 4.4 with µE = 4. It is seen that Algorithm 4.1 converges (the

relative error is less than 0.001) within 4 and 7 iterations for Pn = 5 and Pn = 10, respectively.

Next, we set µE = 4 and Pn = 10 and give the 20-slot snapshots (slot 20 - slot 40) of the obtained

energy-bandwidth allocation in Fig. 4.5, Fig. 4.6 and Fig. 4.7. Specifically, Fig. 4.5 and Fig.

4.6 illustrate the relationship among the water level wkn, transmission energy pkn and the battery

level Bk
n obtained by Algorithm 4.1 and Algorithm 4.4, respectively, showing that although both

algorithms follow the water-filling structure with the dynamic water levels, their water levels vary

according to different rules, based on the dynamic of the battery. Moreover, the optimal bandwidth

allocation akn obtained by Algorithm 4.1 is illustrated in Fig. 4.7, and we can see that most of the

time the channel is shared by multiple transmitters to maximize the sum-rate.
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Figure 4.4: The convergence of Algorithm 4.1 for µE = 4.

We then run the simulation 1000 times to obtain the rates given by various scheduling strategies,

as well as by the optimal schedule solved by a general convex solver, shown in Fig. 4.8 and Fig.

4.9, for the energy-limited scenario and the power-limited scenario, respectively. It is seen from
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Figure 4.5: 20-slot snapshot of the optimal energy allocation obtained by Algorithm 4.1 for a

particular transmitter (µE = 4, Pn = 10).

that for both scenarios the proposed non-causal iterative algorithm (Algorithm 4.1) achieves the

same performance as that corresponding to the optimal energy-bandwidth allocation solved by the

generic convex solver, corroborating the optimality of Algorithm 4.1 as stated by Theorem 2. Also,

the proposed causal algorithm (Algorithm 4.4) performs worse than the optimal policy but still

better than the other heuristic policies. Moreover, for all policies, the performance is improved as

the mean of the harvested energy increases.

From Fig. 4.8, for the energy-limited scenario, the performance gap between the TDMA greedy

policy and the optimal solution increases as the mean of the harvested energy increases. It is

because when the mean of the harvested energy is high, due to the maximum transmission power

and battery capacity constraints, the single-user transmission of TDMA results in significant energy

waste by the non-transmitting transmitters in each slot.

On the other hand, from Fig. 4.9, for the power-limited scenario, the performance gap between

the optimal solution and some of the suboptimal algorithms (Algorithm 4.4 and the greedy policy)
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Figure 4.6: 20-slot snapshot of the energy allocation obtained by Algorithm 4.4 for a particular

transmitter (µE = 4, Pn = 10).

decreases as the mean of the harvested energy increases. It is because when the harvested energy

is ample, the optimal energy allocation achieves the maximum transmission power more frequently

and approaches the greedy policy. Also, in the power-limited scenario, the TDMA greedy policy

performs significantly worse than other algorithms since the low maximum transmission power

results in a lot of energy waste in the absence of any channel sharing.

Moreover, as expected, the performance in the energy-limited scenario is better than that in

the power-limited energy for all policies. This is because the lower maximum transmission power

restricts the flexibility of the energy scheduling and causes waste of energy due to the limited

battery capacity.
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Figure 4.7: 20-slot snapshot of the optimal bandwidth allocation by Algorithm 4.1 (µE = 4, Pn =

10).

4.6 Conclusions

In this paper, we have considered the joint energy-bandwidth allocation problem for multiple energy

harvesting transmitters over K time slots. This problem is formulated as a convex optimization

problem with O(MK) variables and constrains, where M is the number of the receivers and K

is number of the slots in a scheduling period, which is hard to solve with a generic convex tool.

We have proposed an energy-bandwidth allocation algorithm that iterates between solving the

energy allocation subproblem and the bandwidth allocation subproblem, and the convergence and

the optimality of the iterative algorithm have been shown. When each transmitter communicates

with one receiver and the sum-rate is unweighted, the discounted dynamic water-filling algorithm

and the bandwidth fitting algorithm are proposed to optimally solve the energy and bandwidth

allocation subproblems, respectively. Moreover, a heuristic algorithm is also proposed to obtain

the suboptimal energy-bandwidth allocation causally and efficiently, by following the structure of
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Figure 4.8: Performance comparisons in the energy-limited scenario (Pn = 10, Bmax
n = 20).

the optimal energy-bandwidth solution. In a companion paper, we will consider multiple broadcast

channels under the joint energy-bandwidth allocation framework and develop efficient algorithms

for solving the two subproblems under both orthogonal and non-orthogonal access.

4.7 Appendices

4.7.1 Proof of Theorem 4.2

We note that, the feasible domain of BPk(ε0/i) expands with iterations while the feasible domain of

EPn remains unchanged. Since we successively solve the maximization problems EPn and BPk(ε0/i)

in iteration i, we have that the objective value is non-decreasing over the iterations. On the

other hand, the objective function is upper bounded by CW(P,A) ≤∑M
m=1

∑K
k=1 log(1 + PmH

k
m)

therefore the algorithm converges. Since the feasible domain of PW(ε) is a closed set for ε ≥ 0, at

the converged point V , we can find the corresponding P0 and A0 which are pairwise optimal for

PW(ε) otherwise V = CW(P0,A0) can be increased by performing another iteration. Specifically, if
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Figure 4.9: Performance comparisons in the power-limited scenario (Pn = 5, Bmax
n = 20).

V is reached within finite iterations m′, P0 and A0 are pairwise optimal for PW(ε0/i
′); otherwise,

P0 and A0 are pairwise optimal for PW(0).

We first consider the case that V is reached within finite iterations i′. Since V is reached within

finite iterations i′, we have that P0 and A0 are pairwise optimal for both PW(ε0/i
′) and PW(ε0/(i

′−
1)). Then, by Theorem 4.1, (P0,A0) is the optimal solution to PW(ε0/i

′) and PW(ε0/(i
′−1)). Note

that, since the feasible domain of PW(ε0/i
′) is expanded from that of PW(ε0/(i

′− 1)) by decreasing

ε, (P0,A0) is not on the boundary of akn ≥ ε0/i
′, i.e., the equality of akm ≥ ε0/i

′ does not hold.

Therefore, continually expanding the feasible domain of PW(ε) by decreasing ε from ε0/i
′ to 0,

(P0,A0) remains at a local optimal point and thus also a global optimal point according to the

domain’s convexity.

We then consider the case that V can only be approached with infinite iterations. For this

case, we have that P0 and A0 are pairwise optimal for PW(0). However, we note that, even so,

(P0,A0) is not necessarily optimal solution to PW(0) when akm = 0 for some m ∈ M and k ∈ K.

To show the optimality of (P0,A0), we use the proof by contradiction. Suppose that P0 and
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A0 are pairwise optimal for PW(0) but (P0,A0) is not an optimal solution to PW(0). Denote

Z , {(m, k) | akm = 0, akm ∈ A0, p
k
m ∈ P0} as the set of the links with zero bandwidth allocation.

Since P0 and A0 are pairwise optimal for PW(0), we have that all K.K.T. conditions hold except

for the links (n, k) ∈ Z, i.e., excluding the links in Z, (P0,A0) is optimal for PW(0) by Theorem

4.1 (excluding the links in Z, the problem PW(0) is equivalent to PW(ε′) where ε′ is the remaining

smallest bandwidth allocation). However, since we also have that (P0,A0) is not optimal for PW(0),

then we know that {akm = 0, pkm = 0 | (m, k) ∈ Z} is suboptimal, i.e., we can always reassign an

arbitrary small bandwidth from some non-zero bandwidth link to a zero bandwidth link and then

perform EPn to achieve a new objective value which is higher than V . Obviously, due to the

increase of the objective value, the energy allocation of the link with the newly assigned bandwidth

must increase from zero to a positive value after solving EPn with the new bandwidth allocation.

Specifically, for a link (m, k) ∈ Z, if reassigning an arbitrary small bandwidth can result in the

corresponding pkm increased form zero to a positive value, we must have Hk
m > vkn − ukn such that

m ∈Mn by Theorem 4.3, i.e., according to the water-filling solution, vkn−ukn increases after solving

EPn with the new akm > 0 while the new pkm determined by (4.29) must be positive.

However, in each specific iteration, we have akm > 0 and the optimal solution to EPn satisfies

Hk
m ≤ vkn − ukn such that m ∈ Mn when pkm = 0, by (4.29). Note that, the objective function

is continuous and the problem is a convex optimization problem. Then, following the algorithm,

when akm converges to zero, we also have Hk
m ≤ vkn−ukn when pkm = 0, which is contradiction to the

above suboptimal assumption. Therefore, the converged objective value must be the optimal value

for problem PW(0).

4.7.2 Proof of Proposition 4.2

Note that, initially, T̄ k contains the elements such that pkn = 0 and, obviously, (4.42) is satisfied.

Following the procedure of Algorithm 4.3, at the end of each iteration, new elements are added to

T̄ k. Therefore, we need to show that, for any n ∈ T̄ k, (a) (4.42) is satisfied for n in the iteration

when n is added to T̄ k; (b) (4.42) is still satisfied for n in the next iterations.

We first show that, at the end of each iteration, n0 ∈ V, which is newly added to T̄ k, satisfies

(4.42) after this move. At the beginning of the iteration, we have the sets T k and T̄ k. Following

Algorithm 4.3, we recalculate akn by (4.41) for all n ∈ T k and all k ∈ K. After this recalculation, if
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V is non-empty, i.e., there exists n0 ∈ V such that akn0
≤ ε, we will move n0 from T k to T̄ k at the

end of the iteration. Also, we have

ε ≥ akn0
= pkn0

Hk
n0

1− |T̄ k| · ε∑
i∈T k p

k
iH

k
i

(4.50)

= pkn0
Hk
n0

1− |T̄ k| · ε− akn0∑
i∈T k p

k
iH

k
i − pkn0

Hk
n0

(4.51)

≥ pkn0
Hk
n0

1− |T̄ k| · ε− ε∑
i∈T k p

k
iH

k
i − pkn0

Hk
n0

(4.52)

= pkn0
Hk
n0

1− |T̄ k ∪ n0| · ε∑
i∈T k/n0

pkiH
k
i

, (4.53)

where (4.51) follows since akn0
= pkn0

Hk
n0

1−|T̄ k|·ε∑
i∈T k p

k
iH

k
i

and akn0
= pkn0

Hk
n0

akn0
pkn0H

k
n0

and we know that if

c = (a+ b)/(x+ y) and c = b/y, then c = a/x = b/y = (a+ b)/(x+ y). (4.52) follows since akn0
≤ ε.

Rearranging (4.53), we have ε ≥ (1−|T̄ k∪n0|·ε)
pkn0H

k
n0∑

i∈T k/n0
pkiH

k
i

where n0 ∈ T̄ k∪n0, T̄ k ← T̄ k∪n0

and T k ← T k/n0 are the new sets generated at the end of the iteration, respectively. Hence, n0,

which is newly added to T̄ k, satisfies (4.42).

We next show that, n0 will also satisfy (4.42) in subsequent iterations. By (4.50)-(4.53), we

also have
1− |T̄ k| · ε∑
i∈T p

k
iH

k
i

≥ 1− |T̄ k ∪ n0| · ε∑
i∈T k/n0

pkiH
k
i

, (4.54)

i.e., the value of 1−|T̄ k|·ε∑
i∈T p

k
iH

k
i

decreases over the iterations, and so is the value of pkn0H
k
n0

1−|T̄ k|·ε∑
i∈T p

k
iH

k
i

.

Moreover, by (4.50), we have that ε ≥ pkn0
Hk
n0

1−|T̄ k|·ε∑
i∈T p

k
iH

k
i

in the current iteration. Therefore, in the

subsequent iterations, (4.42) remains satisfied for n0.
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Chapter 5

Energy-Bandwidth Allocation for

Flat-Fading Broadcast Channels

In the last chapter, for a network with multiple orthogonal broadcast channels and energy harvest-

ing transmitters, we proposed an iterative algorithm for computing the optimal energy-bandwidth

allocation to maximize the weighted throughput. For the special case that each transmitter only

communicates with one receiver and all weights are equal, the algorithms for efficiently solving

the energy and bandwidth allocation subproblems are also proposed. In this chapter, we develop

algorithms for solving the two subproblems for the general case of multiple broadcast channels.

Moreover, for a single (non-orthogonal) broadcast channel with energy harvesting transmitter, the

optimal energy scheduling over static and two-user fading channels was discussed in [73] and [74],

respectively. In this chapter, we treat the energy-bandwidth allocation problem for multiple broad-

cast channels, including both orthogonal and non-orthogonal broadcast. Taking the proportional

fairness into account, [75] discussed the convergence of the general proportionally-fair scheduling

without energy harvesting. For energy harvesting transmitters with unbounded battery capac-

ity, heuristic algorithms have been proposed in [52] to find the time-power allocations under the

proportional fairness. The proportionally-fair energy-bandwidth allocation in multiple orthogonal

broadcast channels is also treated in this chapter.

In particular, we consider a network with multiple transmitters, each powered by the renewable

energy source. We assume that the transmitters are assigned orthogonal frequency bands to avoid
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interfering from each other. In orthogonal broadcast, the frequency band assigned to the transmitter

is further split for the transmission to each designated receiver orthogonally (i.e., no interference); on

the other hand, in non-orthogonal broadcast, the transmissions to all designated receivers take place

on the same frequency band assigned to the transmitter. For the special case where all links have

equal weights, with orthogonal or non-orthogonal broadcast, we show that each transmitter should

only use the strongest channel in each slot, i.e., multiple broadcast channels reduce to multiple

point-to-point channels, and thus we can directly use the algorithms in Chapter 4 to obtain the

optimal energy-bandwidth allocation. For the general weighted case, we develop algorithms for

solving the two subproblems, i.e., energy allocation and bandwidth allocation, for both orthogonal

and non-orthogonal broadcast. We also reveal that the gain by non-orthogonal broadcast over

orthogonal broadcast is limited with energy harvesting transmitters.

Moreover, we formulate a proportionally-fair (PF) throughput maximization problem with or-

thogonal broadcast. In point-to-point channels without energy harvesting, in slot k, the optimal

PF scheduler schedules the link with maxmR
k
m/A

k
m, where Rkm is the rate achievable by link m

in slot k and Akm is the average rate of link m up to slot k. The average rate is computed over

a time window as a moving average: Rk+1
m = (1 − α)Akm + αRkm if link m is scheduled in slot k,

and Ak+1
m = (1 − α)Akm otherwise [75]. However, in the presence of energy harvesting, using a

single link is not optimal and thus scheduling multiple links in a slot and splitting the bandwidth is

essential. To efficiently solve the PF throughput maximization problem, we convert it to a weighted

throughput maximization problem with proper weights. The algorithm to obtain such weights is

also proposed.

5.1 Multiple Orthogonal Broadcast Channels

Consider a network consisting of N transmitters and M receivers where transmitter n ∈ N commu-

nicates with receivers in the set Mn (
⋃
nMn =M, and Mn

⋂Mn′ = Φ for n 6= n′) in an orthog-

onal broadcast channel. Our goal is to schedule the transmission in K slots K , {1, 2, . . . ,K} to

maximize the weighted sum-rate by proper energy and bandwidth allocation (i.e., the problem in

(4.4)-(4.5)). Specifically, in Chapter 4, we first gave the optimal energy discharge schedule in (4.10)

and then proposed an iterative algorithm (Algorithm 4.1) to obtain the optimal energy allocation
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P , {pkm, ∀m ∈M, k ∈ K} and the bandwidth allocation A , {akm,∀m ∈M, k ∈ K}.
Recall the general energy-bandwidth allocation problem PW(ε) for multiple orthogonal broad-

cast channels formulated in (4.11)-(4.12):

PW(ε) : max
P,A

CW(P,A) (5.1)

subject to 



Ẽkn −Bmax
n ≤∑k

κ=1

∑
m∈Mn

pκm ≤ Ẽkn
∑M

m=1 a
k
m = 1

∑
m∈Mn

pkm ≤ Pn
pkm ≥ 0

akm ≥ ε

(5.2)

for all n ∈ N ,m ∈M, k ∈ K, where

CW(P,A) =
∑

m∈M
Wm

∑

k∈K
akm log(1 +

pkmH
k
m

akm
), akm ∈ [0, 1], pkm ∈ [0,∞), (5.3)

W , {Wm,∀m ∈ M} is the set of weights, ε is the required minimal bandwidth allocation, Ẽkn is

the effective harvested energy after optimally discharging the surplus energy in (4.10), and Bmax
n is

the battery capacity of transmitter n.

Introducing the non-negative dual variables λkn, µkn, αk, βkm and ξkn for all n ∈ N ,m ∈ M and

k ∈ K, we denote

M(P,A) ,−
∑

n,k

λkn

(
k∑

κ=1

∑

m∈Mn

pκm − Ẽkn

)
+
∑

n,k

µkn

(
k∑

κ=1

∑

m∈Mn

pκm − Ẽkn +Bmax
n

)

−
∑

k

αk(
∑

m

akm − 1) +
∑

m,k

βkm(akm − ε)−
∑

n,k

ξkn(
∑

m∈Mn

pkm − Pn)

=−
∑

n,k

( ∑

m∈Mn

pkm

K∑

κ=k

λκn − λknẼkn

)
+
∑

n,k

( ∑

m∈Mn

pkm

K∑

κ=k

µκn − µkn
(
Ẽkn −Bmax

n

))

−
∑

k

αk(
∑

m

akm − 1) +
∑

m,k

βkm(akm − ε)−
∑

n,k

ξkn(
∑

m∈Mn

pkm − Pn) , (5.4)

as the Lagrangian multipliers. Then, the Lagrangian functions for PW(ε) can be defined as

LO , CW(P,A) +M(P,A) . (5.5)
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5.1.1 Maximizing Network Throughput

For the special case that all links have equal weights, e.g., W = {Wm = 1,m ∈ M}, the following

result states that each transmitter should only use its strongest channel.

Theorem 5.1. The problem P{1}(0) in multiple orthogonal broadcast channels is equivalent to the

energy-bandwidth allocation problem in point-to-point channels formulated as

max
P,A

∑

n∈N ,k∈K
akmkn

log

(
1 +

pk
mkn
Hk
mkn

ak
mkn

)
(5.6)

subject to the constraints in (5.2), where mk
n , arg maxm∈Mn{Hk

m} for each k ∈ K. Thus the

optimal energy-bandwidth allocation can be efficiently solved by the algorithms in Chapter 4.

Proof. The first-order condition is necessary for optimality, which can be written as

Hk
m

1 + pkmH
k
m/a

k
m

=
vkn − ukn + ξkn

Wm
, m ∈Mn , (5.7)

with ukn ,
K∑

κ=k

µκn ,

vkn ,
K∑

κ=k

λκn. (5.8)

By setting Wm = 1, we then have

pkm = akm

[
1

vkn − ukn + ξkn
− 1

Hk
m

]+

. (5.9)

When
∑

m∈M pkm > 0 and ε = 0, the optimal bandwidth allocation is given as [53]

akm =
pkmH

k
m∑

j∈M pkjH
k
j

, m ∈M . (5.10)

Then, for any transmitter n such that
∑

m∈Mn
pkm > 0 and denoting ∆ ,

∑
m∈Mn

akm, we further

have

akm =
pkmH

k
m∆∑

j∈Mn
pkjH

k
j

, m ∈Mn ⊆M . (5.11)

Substituting (5.11) into (5.9), we then have

pkm =
pkmH

k
m∑

j∈M pkjH
k
j

[
1

vkn − ukn + ξkn
− 1

Hk
m

]+

∆, m ∈Mn . (5.12)
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Replacing pkj in (5.12) by (5.9), we have

pkm = pkm

[
1

vkn−ukn+ξkn
− 1

Hk
m

]+
Hk
m∆

akm

[
1

vkn−ukn+ξkn
− 1

Hk
m

]+
Hk
m +

∑
j∈Mn,j 6=m a

k
j

[
1

vkn−ukn+ξkn
− 1

Hk
j

]+

Hk
j

. (5.13)

When pkm > 0,
[

1
vkn−ukn+ξkn

− 1
Hk
m

]+
> 0 and (5.13) can be further written as

1 =
∆

akm +

(
∑

j∈Mn,j 6=m a
k
j

[
1

vkn−ukn+ξkn
− 1

Hk
j

]+

Hk
j

)
/

([
1

vkn−ukn+ξkn
− 1

Hk
m

]+
Hk
m

) , (5.14)

⇒ ∆ = akm +
∑

j∈Mn,j 6=m
akj




[
1/(vkn − ukn + ξkn)− 1/Hk

j

]+

[1/(vkn − ukn + ξkn)− 1/Hk
m]

+

Hk
j

Hk
m


 . (5.15)

Moreover, according to the definition of ∆, we also have

akm +
∑

j∈Mn,j 6=m
akj · 1 = ∆ . (5.16)

Denoting mk
n , maxm∈Mn

{
Hk
m

}
, by (5.9) and (5.11), we have pk

mkn
> 0 when

∑
m∈Mn

pkm > 0.

Note that, since [
1/(vkn − ukn + ξkn)− 1/Hk

j

]+

[
1/(vkn − ukn + ξkn)− 1/Hk

mkn

]+ ·
Hk
j

Hk
mkn

≤ 1 (5.17)

for all j ∈ {m ∈ Mn | m 6= mk
n}, we must have akj = 0 for all j ∈ {m ∈ Mn | m 6= mk

n} so that

(5.15) and (5.16) are both satisfied.

Therefore, when
∑

m∈Mn
pkm > 0, we must have pk

mkn
> 0 and pkj = 0 for {∀j ∈ Mn | j 6= mk

n}.
On the other hand, when

∑
m∈Mn

pkm = 0, we have pkm = 0 for all m ∈Mn given n and k thus the

achievable rate is zero no matter which channel is selected.

5.1.2 Optimal Algorithms for Solving Subproblems

For the general weighted sum-rate problem, the iterative algorithm developed in Chapter 4 decom-

poses PW(ε) as follows.

• Given the bandwidth allocation An , {akm,∀m ∈ Mn, k ∈ K}, for each n ∈ N , obtain the

energy allocation pm , [p1
m, p

2
m, . . . , p

K
m] by solving the following subproblem:

EPn(An,W) : max
pm,m∈Mn

∑

m∈Mn

Wm

K∑

k=1

akm log(1 +
pkmH

k
m

akm
) (5.18)
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subject to 



Ẽkn −Bmax
n ≤∑k

κ=1

∑
m∈Mn

pκm ≤ Ẽkn
∑

m∈Mn
pkm ≤ Pn

pkm ≥ 0, m ∈Mn

, k ∈ K . (5.19)

• Given the energy allocation Pk , {pkm, ∀m ∈ M}, for each k ∈ K, obtain the bandwidth

allocation ak , [ak1, a
k
2, . . . , a

k
M ] by solving the following subproblem:

BPk(Pk, ε,W) : max
ak

M∑

m=1

Wma
k
m log(1 +

pkmH
k
m

akm
) (5.20)

subject to 



∑M
i=1 a

k
i = 1

akm ≥ ε, m ∈M
. (5.21)

In Chapter 4, algorithms for solving the above two subproblems are obtained for the special

case of point-to-point channels and equal weights. We now develop algorithms for the general case.

5.1.2.1 Solving the Bandwidth Allocation Subproblem

Based on the Lagrangian function defined in (5.5), the first-order condition and the complementary

slackness of the bandwidth allocation problem can be written as

log(1 +
pkmH

k
m

akm
)− pkmH

k
m

akm + pkmH
k
m

=
(αk − βkm)

Wm
, (5.22)

αk(
∑

m

akm − 1) = 0, (5.23)

βkm(akm − ε) = 0, (5.24)

which along with the constraints in (5.21) constitute the K.K.T. conditions of BPk(Pk, ε,W). Since

BPk(Pk, ε,W) is a convex optimization problem with linear constraints, its K.K.T. conditions are

sufficient and necessary for optimality when ε > 0 [68].

Denote xkm = Xm(αk, βm) as the solution to

xkm − log(xkm) = (αk − βkm)/Wm + 1 , 0 < xm < 1. (5.25)

Note that, for x ∈ (0, 1), x− log(x) ∈ (1,∞). Then, xkm ∈ (0, 1) exists when αk − βkm ≥ 0 and the

bandwidth allocation given by

akm = pkmH
k
m

Xm(αk, βkm)

1−Xm(αk, βkm)
, (0 < Xm(αk, βkm) < 1) (5.26)
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for pkm > 0 satisfies the first-order condition in (5.22).

When pkm = 0, we have αk = βkm ≥ 0 by (5.22). If αk = βkm > 0, we have akm = ε by (5.24).

Otherwise, we can set akm = ε and the K.K.T. conditions still hold. Thus the minimal bandwidth

should be assigned to the receiver with zero transmission energy.

We note that, if there exists an m such that pkm > 0, the left-hand-side of (5.22) is greater than

0 and thus αk > 0. Then, by (5.23),
∑

m a
k
m = 1 must hold. Assigning the minimal bandwidth to

the receiver with zero transmission energy and substituting (5.26), we further have

∑

m∈Zc0

pkmH
k
m

Xm(αk, βm)

1−Xm(α, βm)
+ |Z0|ε = 1 , (5.27)

where Z0 , {m | pkm = 0} = {m | pkm = 0, akm = ε} and Zc0 is the complementary set of Z0.

Moreover, by (5.24), we know that βkm = 0 when akm > ε. Then, (5.27) can be further written as

∑

m∈Zc1∩Zc0

pkmH
k
m

Xm(αk, 0)

1−Xm(αk, 0)
+ |Z1|ε = 1− |Z0|ε , (5.28)

where Z1 , {m | pkm > 0, βkm > 0}.
Note that, for any m ∈ Z1, we have

akm = pkmH
k
m

Xm(αk, βkm)

1−Xm(αk, βkm)
= ε, (βkm > 0) . (5.29)

According to (5.25), since Xm(α, β) is decreasing with respect to α and increasing with respect to

β ≥ 0 when Xm(α, 0) ∈ (0, 1), then so does Xm(α,β)
1−Xm(α,β) . Hence, we further have

pkmH
k
m

Xm(αk, 0)

1−Xm(αk, 0)
≤ pkmHk

m

Xm(αk, βkm)

1−Xk
m(αk, βkm)

= ε, m ∈ Z1 . (5.30)

Therefore, (5.28) can be written as

∑

m∈Zc0

max

{
ε, pkmH

k
m

Xm(αk, 0)

1−Xm(αk, 0)

}
= 1− |Z0|ε . (5.31)

Theorem 5.2. Suppose that αk is the solution to (5.31). Then, the optimal bandwidth allocation

for BPk(Pk, ε,W) is given by

akm =





ε, if pkm = 0

max
{
ε, pkmH

k
m

Xm(αk,0)
1−Xm(αk,0)

}
, if pkm > 0

. (5.32)
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Proof. The first term in (5.32) follows since the minimal bandwidth should be allocated to the

receiver with zero transmission energy. Also, by (5.30) and (5.26) we have the second term in

(5.32). Moreover, when αk satisfies (5.31), all K.K.T. conditions of the bandwidth allocation

problem are satisfied therefore the optimal bandwidth allocation is obtained.

Denote

G(α) ,
∑

m∈Zc0

max

{
ε, pkmH

k
m

Xm(αk, 0)

1−Xm(αk, 0)

}
. (5.33)

We note that Xm(αk, 0) ∈ (0, 1) is continuous and decreasing with respect to αk, then so does

Xm(αk,0)
1−Xm(αk,0)

. Since pkmH
k
m is constant, we have that G(αk) ∈ (0,+∞) is also continuous and de-

creasing with respect to αk. Then, we may use the bisection method [76] to find out αk such that

G(αk) = 1− |Z0|ε and the optimal bandwidth allocation can be obtained by (5.32).

The procedure for solving the bandwidth allocation is summarized as follows.

Algorithm 5.1 - Solving bandwidth allocation subproblem BPk(Pk, ε,W)

1: Initialization

Specify initial αu > αl > 0 (G(αu) < 1− |Z0|ε < G(αl)) and error tolerance δ > 0

2: REPEAT

α← (αu + αl)/2

FOR all m ∈M
Calculate Xm(α, 0) by solving (5.25) with β = 0

ENDFOR

Evaluate G(α) using {Xm(α, 0),m ∈M}
IF |G(α)− 1 + |Z0|| < δ THEN Goto step 3 ENDIF

IF G(α) > 1− |Z0|ε THEN αl ← α ELSE αh ← α ENDIF

3: FOR all m ∈M
Calculate akm by (5.32)

ENDFOR

Since we need to solve for Xm(α, 0) from (5.25) repeatedly, we can pre-compute the solutions

to y = x − log(x), x ∈ (0, 1) and store them in a look-up table. Then the overall complexity of

Algorithm 5.1 is O(M) for solving BPk(Pk, ε,W).

Remark 5.1. In Chapter 4, we focused on the special case of equal weights, where the optimal

bandwidth allocation can be directly obtained by the iterative bandwidth fitting algorithm (Algo-
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rithm 4.3) without solving the dual variable αk and calculating the intermediate variable Xm(αk, 0).

However, for the general weighted case, we need to solve the equation group consisting of (5.25)

for all m ∈ M and (5.31) to obtain the dual variable αk and then calculate the optimal bandwidth

allocation given by (5.32).

5.1.2.2 Solving the Energy Allocation Subproblem

EPn(An,W) is a convex optimization problem with linear constraints thus its K.K.T. conditions

are necessary and sufficient for optimality [68]. Using the Lagrangian function defined in (5.5), in

addition to the first-order condition and the feasibility constraints, the complementary slackness

can be written as

λk(

k∑

κ=1

∑

m∈Mn

pκm − Ek) = 0, (5.34)

µkn(

k∑

κ=1

∑

m∈Mn

pκm − Ek +Bmax) = 0, (5.35)

ξkn(
∑

m∈Mn

pkm − Pn) = 0 (5.36)

constituting the K.K.T. conditions.

Taking the derivative of (5.4) on pkm and using the first-order condition, we have

pkm = akm

[
Wm

vkn − ukn + ξkn
− 1

Hk
m

]+

. (5.37)

By (5.36), when
∑

m∈Mn
pkm = Pn, we have ξkn ≥ 0 and otherwise ξkn = 0. Then, we have

pkm = akm

[
Wm

vkn − ukn
− 1

Hk
m

]+

(5.38)

when
∑

m∈Mn
akm

[
Wm

vkn−ukn
− 1

Hk
m

]+
< Pn. Otherwise, since the constraint requires

∑
m∈Mn

pkm ≤ Pn,

given vkn and ukn, we can determine ξ̄kn ≥ 0 such that

∑

m∈Mn

akm

[
Wm

vkn − ukn
− 1

Hk
m

]+

≥
∑

m∈Mn

akm

[
Wm

vkn − ukn + ξ̄kn
− 1

Hk
m

]+

= Pn . (5.39)

Then we can treat

P̄ km , akm

[
Wm

vkn − ukn + ξ̄kn
− 1

Hk
m

]+

(5.40)
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Figure 5.1: Two-dimensional water-filling. The “water” (energy) is filled over both the receiver-axis

(left) and time-axis (right) with the same water level w as interpreted in (5.41)-(5.42).

as the maximum transmission energy for each receiver and thus the optimal energy allocation is

pkm = min

{
P̄ km, a

k
m

[
Wmw

k
n −

1

Hk
m

]+
}

, (5.41)

where wkn , 1/(vkn − ukn).

We note that, pkm in (5.41) is a function of wkn. Then, using the same analysis in Chapter 4, we

have the following proposition:

Proposition 5.1. Given any bandwidth allocation An, pkm is the optimal energy allocation for

EPn(An,W), if and only if, the feasible allocation pkm follows the generalized two-dimensional water-

filling formula in (5.41), where the water level wkn may only increase at BDP such that Bk
n = 0 and

only decrease at BFP such that Bk
n = Bmax

n .

We note that, in the orthogonal broadcast channel, each transmitter communicates with mul-

tiple receivers and the transmitted energy is drawn from the same battery. Then, according to

(5.41), the water (energy) is not only filled along the time axis but also along the receiver index

axis, as shown in Fig. 5.1. In other words, given two adjacent BDP/BFPs (a, the type of a) and

(b, the type of b) where a ≤ b, the energy allocation pkm can be calculated by (5.41) with the same

water level wkn = wab for all receiver m ∈ Mn and slot k ∈ [a + 1, b]. Then, the water level wab

should be determined by

b∑

k=a+1

M∑

m=1

pkm(wab) = Eb − Ea + (I(a is BFP)− I(a is BDP))Bmax
n (5.42)
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where I(·) is an indicator function and pkm(wab) is calculated by (5.41) with wkn = wab for k ∈
[a+ 1, b].

In [69], a single-user dynamic water-filling algorithm is proposed to find the BDP/BFP set by

recursively performing the “forward search” and “backward search” operations with conventional

water-filling. Since here the increase/decrease of the water level also occurs at BDP/BFPs, replacing

the conventional water-filling used in [69] by the two-dimensional water-filling in (5.41)-(5.42), we

can obtain the BDP/BFP set for optimal energy allocation in multiple orthogonal broadcast chan-

nels. We name this algorithm as the two-dimensional dynamic water-filling algorithm. Moreover,

after obtaining the optimal BDP/BFP set, the optimal energy allocation can be further calculated

by (5.41)-(5.42).

Remark 5.2. We note that, with equal weights, by Theorem 5.1, the energy-bandwidth allocation

problem for multiple orthogonal broadcast channels is equivalent to that for multiple point-to-point

channels treated in Chapter 4. Although the general algorithms developed in this section can obtain

the optimal energy-bandwidth allocation for the equal weight case, solving the problem by using The-

orem 5.1 along with the algorithms in Chapter 4 has a lower computational complexity. Specifically,

for the general case, the energy allocation subproblem EPn(An,W) contains O(|Mn|K) variables

and the bandwidth allocation subproblem BPk(Pk, ε,W) contains O(M) variables, whereas the cor-

responding subproblems in Chapter 4 contain only O(K) and O(N) variables, respectively. Also,

the iterative bandwidth fitting algorithm in Chapter 4 does not require the calculation of the dual

variable αk and the intermediate variables Xm(αk, 0), providing better computational efficiency.

5.2 Multiple Non-Orthogonal Broadcast Channels

5.2.1 Problem Formulation

We consider a system with multiple non-orthogonal broadcast channels, where each transmitter

communicates with all its receivers on the same (assigned) frequency band at the same time.

Denoting Xmki as the symbol sent for receiver m at instant i in slot k, the signal received at

receiver m is Ymki = hmkXmki +
(
hmk

∑
m0 6=mXm0ki + Zmki

)
, where hmk represents the complex

channel gain for receiver m in slot k and Zmki ∼ CN(0, 1) is the i.i.d. complex Gaussian noise.

We note that,
∑

m0 6=mXm0ki represents the interference and is treated as noise by receiver m.
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Moreover, we denote the channel gain and the energy consumption in each slot k as Hk
m , |hmk|2

and pkm , 1
Tc

∑
i |Xmki|2, respectively.

We denote ãkn as the amount of bandwidth used by transmitter n. Then, we use the upper bound

of the achievable rate over a weighted sum of the M receivers and K slots as the performance metric,

given by [70]

C̃W(P, Ã) ,
∑

n∈N

∑

k∈K
ãkn

∑

m∈Mn

Wm log

(
1 +

pkmH
k
m/ã

k
n∑

m0 | Hk
m<H

k
m0
pkm0

Hk
m/ã

k
n + 1

)
, (5.43)

where Ã , {ãkn,∀n ∈ N , k ∈ K}. Note that, the rate in each slot is achieved by decoding the

messages in the order of the channel quality [77], i.e., we decode the message from a weaker channel

prior to that from a stronger channel. Moreover, we assume no two channels have the same gain

in the same slot.

We define the energy-bandwidth allocation problem in multiple non-orthogonal broadcast chan-

nels as follows:

P̃W(ε) : max
P,Ã

C̃W(P, Ã) (5.44)

subject to (5.2), where
∑

m∈M akm = 1 and akm ≥ ε is replaced by
∑

n ã
k
n = 1 and ãkn ≥ ε,

respectively.

We note that, the above problem is non-convex due to the non-convexity of the objective

function. To obtain the energy-bandwidth allocation, we first define p̃kn ,
∑

m∈Mn
pkm for all

n ∈ N and rewrite (5.44) as

max
p̃kn,ã

k
n

{∑

n

∑

k

max∑
m∈Mn

pkm=p̃kn

{
ãkn

∑

m∈Mn

Wm log

(
1 +

pkmH
k
m/ã

k
n∑

m0 | Hk
m<H

k
m0
pkm0

Hk
m/ã

k
n + 1

)}}
. (5.45)

Denoting

F kn (p) , max
πm :

∑
m∈Mn

πm=1,πm≥0

∑

m∈Mn

Wm log


1 +

πmpH
k
m(∑

m0 | Hm<Hm0
πm

)
pHk

m + 1


 , (5.46)

we further write (5.45) as

max
P,Ã

C̃W(P, Ã) = max
p̃kn,ã

k
n

∑

n

∑

k

ãknF
k
n (p̃kn/ã

k
n) , (5.47)

where P̃ , {p̃kn, ∀n ∈ N , k ∈ K} is the total energy allocation.
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To solve P̃W(ε), we first solve (5.47) to obtain the optimal bandwidth allocation Ã and the

optimal total energy allocation P̃. Then, given the total energy allocation P̃, we further optimally

split the total energy for each receiver by solving (5.46).

The optimal solution to (5.46) is given in [73], which is summarized in the following Lemma:

Lemma 5.1. For any (n, k), we have a set of energy cut-off lines {Lkm,∀m ∈ Mn} sorting in

ascending order such that Lka ≤ Lkb if Hk
a > Hk

b for all a, b ∈ Mn. For any a ∈ Mn, the optimal

energy splitting is

pka =





Lkb − Lka, if Lkb < p̃kn

p̃kn − Lkb , if Lka ≤ p̃kn ≤ Lkb
0 if p̃kn < Lka

, (5.48)

where Lka ≤ Lkb are two adjacent cut-off lines.

The procedure for computing {Lkm, ∀m ∈Mn} is also given in [73].

5.2.2 Solving the Problem in (5.47)

The convexity of F kn (p) has been shown in [73], given by the following lemma:

Lemma 5.2. F kn (p) is strictly concave with respect to p, whose first-order derivative is continuous.

Then, the problem in (5.47) is still an energy-bandwidth allocation problem with the rate

function defined in (5.46), which is increasing and jointly concave with respect to the total energy

and bandwidth allocations. Note that the problem in (5.47) and the problem in (4.8)-(4.9) have the

same feasible domain and the corresponding optimal energy allocations both follow the water-filling

formula (will be shown later in this section). Then, it is easy to verify that the optimal energy

discharge given by (4.10) and the iterative algorithm (Algorithm 4.1) can also give the optimal

solution to the problem in (5.47).

Hence we focus on the energy and bandwidth allocation subproblems as follows:

• Energy allocation subproblem: Denote Ãn , {ãkn, k ∈ K},

ẼPn(Ãn,W) : max
p̃kn

∑

n

∑

k

ãknF
k
n (p̃kn/ã

k
n) , (5.49)

subject to





Ẽkn −Bmax
n ≤∑k

κ=1 p̃
κ
n ≤ Ẽkn

0 ≤ p̃kn ≤ Pn
, k ∈ K. (5.50)
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• Bandwidth allocation subproblem: Denote P̃k , {p̃kn, n ∈ N},

B̃Pk(P̃k, ε,W) : max
ãkn

∑

n

∑

k

ãknF
k
n (p̃kn/ã

k
n) , (5.51)

subject to

subject to





∑N
n=1 ã

k
n ≤ 1

ãkn ≥ ε
, n ∈ N . (5.52)

Using the Lagrangian multiplier defined in (5.4), we first write the Lagrangian function for the

problem in (5.47) as

LN ,
∑

n

∑

k

ãknF
k
n (p̃kn/ã

k
n) +M(P̃, Ã) . (5.53)

5.2.2.1 Solving the Energy Allocation Subproblem

Since ẼPn(Ãn,W) is a convex optimization problem with linear constraints, its K.K.T. conditions

are sufficient and necessary for optimality when ε > 0 [68]. With LN defined in (5.53), we can write

the first-order condition for the non-orthogonal broadcast channel as

∂
(
ãknF

k
n (p̃kn/ã

k
n)
)
/∂p̃kn , (F kn )

′
(p̃kn/ã

k
n) = vkn − ukn (5.54)

where vkn and ukn are defined in (5.8), and (F kn )′(p) denotes the first-order derivative of F kn (p). For

all p ≥ 0, we further derive the derivative of F kn (p) in closed-form:

Proposition 5.2. For any p ≥ 0, the derivative of F kn (p) is

(F kn )
′
(p) = max

m∈Mn

{
Wm

p+ 1/Hk
m

}
. (5.55)

The proof of Proposition 5.2 is provided in Appendix 5.6.1.

Moreover, we note that (F kn )
′
(p̃kn/ã

k
n) is strictly decreasing with respect to p̃kn due to the strict

concavity of F kn (p). Then using (5.54) and Proposition 5.2, p̃kn can be uniquely determined as

follows

p̃kn = ãkn

(
(F kn )

′)−1
(1/wkn) (5.56)

= min

{
Pn, ã

k
n max
m∈Mn

{[
Wmw

k
n −

1

Hk
m

]+
}}

(5.57)

where wkn = 1/(vkn − ukn) and (·)−1 denotes the inverse function.
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We note that, since PW(ε) and P̃W(ε) have the same Lagrangian multipliers, by analyzing the

K.K.T. conditions and using Proposition 5.2, it is easy to verify that the changes of wkn still follows

Proposition 5.1, i.e., it may only increase/decrease at the BDP/BFP. Then, we treat (5.57) as a

water-filling formula and the water level is determined by

b∑

k=a+1

p̃kn(wab) = Eb − Ea + (I(a is BFP)− I(a is BDP))Bmax
n (5.58)

where p̃kn(wab) is calculated by (5.57) with wkn = wab for k ∈ [a+ 1, b].

As for the energy allocation problem in multiple orthogonal broadcast channels, since here

the water level change also occurs at BDP/BFPs, we can use the water-filling in (5.57)-(5.58) to

replace the conventional water-filling operation in [69, Algorithm 5.2], and then the BDP/BFP set

can be obtained. After obtaining the BDP/BFP set, using (5.57)-(5.58), we obtain the optimal

total energy allocation.

5.2.2.2 Solving the Bandwidth Allocation Subproblem

When
∑

n∈N p̃
k
n = 0, the sum-rate in slot k is zero. Thus, in this subsection we focus on the case

∑
n∈N p̃

k
n > 0.

Since B̃Pk(P̃k, ε,W) is a convex optimization problem with linear constraints, its K.K.T. con-

ditions are sufficient and necessary for optimality when ε > 0 [68]. The first-order condition can be

written as

∂
(
ãknF

k
n (p̃kn/ã

k
n)
)

∂ãkn
= F kn (p̃kn/ã

k
n)− (F kn )

′
(p̃kn/ã

k
n)p̃kn/ã

k
n = αk , n ∈ N , k ∈ K , (5.59)

where the value of F kn (p̃kn/ã
k
n) can be calculated using the algorithm in [73]. Taking the constraints

in (5.52) into account, ãkn must satisfy

N∑

n=1

max{ãkn, ε} = 1, k ∈ K . (5.60)

We note that, for each k ∈ K, we have N + 1 equations [(5.59) for all n ∈ N and (5.60)] and N + 1

variables [ãkn for all n ∈ N and αk]. Therefore, all the variables ãkn can be uniquely determined by

solving the equation group given k ∈ K.

Since F kn (p) is concave by Lemma 5.2, aF kn (p/a) is jointly concave with respect to p and a. Then,

∂
(
aF kn (p/a)

)
/∂a is non-increasing with respect to a given p. Also, the left-hand-side of (5.60) is
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non-decreasing with respect to a. Therefore, given αk, we can use the bisection method to find the

corresponding ãkn(αk) in (5.59). Finally we can use the bisection method again to determine the

proper αk such that (5.60) is satisfied. The procedure for computing the bandwidth allocation is

summarized as follows.

Algorithm 5.2 - Solving bandwidth allocation subproblem B̃Pk(Pk, ε,W)

1: Initialization

Specify initial αku > αkl > 0 such that
∑N
n=1 max{ãkn(αku), ε} < 1 <

∑N
n=1 max{ãkn(αkl ), ε}

Specify error tolerance δ > 0

2: REPEAT

α← (αku + αkl )/2

FOR all n ∈ N
(*) Solve (5.59) to obtain ãkn(α) using the bisection method

ENDFOR

IF |∑N
n=1 max{ãkn(αk), ε} − 1| < δ THEN Goto step 4 ENDIF

IF
∑N
n=1 max{ãkn(αk), ε} > 1 THEN αkl ← α ELSE αkh ← α ENDIF

3: FOR all n ∈ N
Calculate ãkn by (5.32)

ENDFOR

The complexity of Algorithm 5.2 is O(N).

Remark 5.3. Comparing Algorithm 5.2 with Algorithm 5.1, the main difference lies in the step

marked by “*”, where the corresponding bandwidth allocations akm and ãkn are calculated by solving

the same equation [i.e., (5.25)] in Algorithm 5.1 and multiple different equations [i.e., (5.59) with

different F kn (p̃kn/ã
k
n) for all n ∈ N ] in Algorithm 5.2.

5.2.3 Special Case: Equal Weights

When Wm = 1 for all m ∈M, by Proposition 5.2, we have

(F kn )
′
(p) = max

m∈Mn

{
1

p+ 1/Hk
m

}
, (5.61)
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for all p ≥ 0. Since, given any a, b ∈ Mn such that Ha > Hb > 0, we have 1/(p + 1/Ha) >

1/(p+ 1/Hb) for all p ≥ 0, then we have

(F kn )
′
(p) = max

m∈Mn

{
1

p+ 1/Hk
m

}
=

1

p+ 1/maxm∈Mn{Hk
m}

. (5.62)

Therefore, by (5.46), we must have

F kn (p) = log(1 + pHk
mkn

) (5.63)

where mk
n , arg maxm∈Mn{Hk

m}, i.e., each transmitter uses only the strongest channel to transmit

in each slot. Then, we have the following corollary.

Corollary 5.1. Theorem 5.1 also holds for the network with multiple non-orthogonal broadcast

channels. Moreover, with equal weights, networks with multiple orthogonal and non-orthogonal

broadcast channels achieve the same maximum throughput.

Remark 5.4. When the weights are equal, by Corollary 5.1, the energy-bandwidth allocation for

multiple orthogonal broadcast channels is equivalent to that for multiple point-to-point channels

treated in Chapter 4. Comparing to the algorithms in Chapter 4, the general algorithms in this sec-

tion involve solving subproblems with more variables and constraints and the additional calculations

of F kn (p) and α. Thus we should use Corollary 5.1 along with the algorithms in Chapter 4 to solve

the energy allocation problem when the weights are equal.

5.2.4 Achievable Rate Regions

Denoting CO,m(P,A) and CN,m(P,A) as the sum-rate of receiver m achieved by the energy-

bandwidth allocation (P,A) in K slots for multiple orthogonal and non-orthogonal broadcast

channels, respectively. Then, the rate region can be defined as R(·) , {(r1, r2, . . . , rM ) | 0 ≤ rm ≤
C(·),m(P,A), P,A are feasible}, where (r1, r2, . . . , rM ) is the sum-rate vector for all receivers.

Lemma 5.3. The rate region RO is convex for the network with multiple orthogonal broadcast

channels.

Proof. Consider two sum-rate vectors R1, R2 ∈ RO and the corresponding energy-bandwidth allo-

cation as (P1,A1) and (P2,A2). Then, given any θ ∈ (0, 1) and θ̄ = 1−θ, consider R3 = θR1 + θ̄R2,
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where Ri , (ri1, r
i
2, . . . , r

i
M ). We note that, CO,m(P,A) is sum of a series of log functions which are

concave with respect to pkm and akm. Then, for m ∈M, we have

r3
m = θr1

m + θ̄r2
m (5.64)

≤ θCO,m(P1,A1) + θ̄CO,m(P2,A2) (5.65)

≤ CO,m(θP1 + θ̄P2, θA1 + θ̄A2) (5.66)

where P3 , θP1 + θ̄P2 and A3 , θA1 + θ̄A2. Note that, since PW(ε) is a convex optimization

problem and its feasible domain is also convex, (P3,A3) is a feasible energy-bandwidth allocation.

Then, by definition we have R3 ∈ RO and thus RO is a convex set.

Moreover, for the network with multiple non-orthogonal broadcast channels, we define a convex

region

R̄N ,

{
(r1, r2, . . . , rM ) : rm ≤ P̃{Wm=1,Wi=0,∀i 6=m}(0),

∑

m

rm ≤ P̃{Wm=1,∀m}(0)

}
. (5.67)

Note that for W = {Wm = 1,Wi = 0, ∀i 6= m}, P̃W(0) and PW(0) maximize the sum-rate for the

single receiver m and the two problems are the same. Then we have

P̃{Wm=1,Wi=0,∀i 6=m}(0) = P{Wm=1,Wi=0,∀i 6=m}(0) = max
P,A are feasible

C(·),m(P,A), m ∈M . (5.68)

For Wm = 1,m ∈ M, by Theorem 5.1 and Corollary 5.1, P̃{Wm=1,∀m}(0) and P{Wm=1,∀m}(0)

have the same solution, which can be denoted as (P∗,A∗). For any (r1, r2, . . . , rM ) ∈ RN , by

definition, we have rm ≤ maxP,A are feasible CN,m(P,A) and
∑

m rm ≤
∑

mCN,m(P∗,A∗). Then,

we have RN ⊆ R̄N and the sum-rate vectors (C(·),1(P∗,A∗), C(·),2(P∗,A∗), . . . , C(·),M (P∗,A∗)) and

(. . . , 0,P{Wm=1,Wi=0,∀i 6=m}(0), 0, . . .) for all m ∈ M can be achieved with both orthogonal and

non-orthogonal broadcast.

We give an example for the network with one transmitter and two receivers. According to the

above analysis,RO and R̄N have three common points on the boundary as shown in Fig. 5.2: (R1, 0)

for {W11 = 1,W12 = 0}, (0, R2) for {W11 = 0,W12 = 1}, and (R∗1, R
∗
2) for {W11 = W12 = 0.5}. Due

to the concavity of RO and R̄N , the maximum improvement (Euclidean distance between boundary

of RO and R̄N ) of using the non-orthogonal broadcast channel is bounded by

∆ = max





(R2 −R∗2)(R∗1 +R∗2 −R2)√
(R2 −R∗2)2 +R∗1

2
,
(R1 −R∗1)(R∗2 +R∗1 −R1)√

(R1 −R∗1)2 +R∗2
2



 . (5.69)
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Outer-bound of R̄N

Inner-bound of RO

Figure 5.2: Rate regions of orthogonal and non-orthogonal broadcast channels.

5.3 Achieving Proportional Fairness in Orthogonal Broadcast Chan-

nels

In this section, we formulate a proportionally-fair (PF) throughput maximization problem for the

network with multiple orthogonal broadcast channels, and show that it can be converted to a

weighted throughput maximization problem with some proper weights.

5.3.1 PF Throughput Maximization

We consider the following utility function

U(P,A) ,
∑

m∈M
log

(∑

k∈K
akm log(1 +

pkmH
k
m

akm
)

)
(5.70)

Then, the PF throughput maximization problem is formulated as

Fε : max
P,A

U(P,A) (5.71)

subject to the constraints in (5.2), whose solution is known to result in proportional fairness [52][75].

Without loss of generality, we assume ẼKn > 0 for all n ∈ N and thus each transmitter achieves a

non-zero sum-rate to make the PF throughput lower bounded.
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We next convert Fε into a weighted throughput problem PW(ε). Specifically, givenW, we denote

Rm(W) as the sum-rate achieved for receiver m by the optimal solution to PW(ε); we also denote

R̄m as the sum-rate achieved for receiver m by the optimal solution to Fε. We note that, since the

rate region RO is convex, Rm(W), which is the tangent point of a hyperplane (defined by W) to

RO, is continuous in W.

Theorem 5.3. Given W, the optimal solution to PW(ε) is also optimal to Fε, if and only if, there

exists θ > 0 such that WmRm(W) = θ for all m ∈ M, where Rm(W) is the sum-rate achieved for

receiver m by the optimal solution to PW(ε).

Proof. We note that PW(ε) and Fε have the same decision variables and the same constraints and

they can use the same Lagrangian multiplier as defined in (5.4). Then, the Lagrangian functions

for PW(ε) and Fε can be defined as (5.5) and

LF ,
∑

m∈M
log

(∑

k∈K
akm log(1 +

pkmH
k
m

akm
)

)
+M(P,A), (5.72)

respectively. Taking the first-order derivatives with respect to pkm, we have

∂LP
∂pkm

= Wm

∂
(
akm log(1 + pkmH

k
m

akm
)
)

∂pkm
+
∂M
∂pkm

, (5.73)

∂LF
∂pkm

=
1

R̄m

∂
(
akm log(1 + pkmH

k
m

akm
)
)

∂pkm
+
∂M
∂pkm

; (5.74)

also, we can obtain the derivative with respect to akm in the same form as above. Note that, for

PW(ε) and Fε, their K.K.T. conditions are sufficient and necessary for optimality when ε > 0. Also,

since R̄m is the sum-rate achieved for receiver m by the optimal solution to Fε and Rm(W) is the

sum-rate achieved by the optimal solution to PW(ε), when Wm = 1/Rm(W) for all m ∈ M, the

solution satisfies the K.K.T. conditions of Fε also satisfies those of PW(ε), and vice versa. Therefore,

PW(ε) and Fε have the same optimal solution. Moreover, we note that scaling Wm by a positive

factor θ does not affect the optimality of PW(ε) and thus the above equivalence condition can be

further relaxed to Wm = θ/Rm(W) where θ > 0. Furthermore, since the objective functions of the

two problems are both continuous, we can further extend the result to the case of ε = 0.

We call W the PF weights if PW(ε) and Fε have the same optimal solution.
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5.3.2 Obtaining the PF Weights

To obtain the PF weights, we first define an optimization problem:

min
( 1
W1

, 1
W2

,..., 1
WM

)∈RO
max
P,A

{∑

m

Wm

(∑

k

akm log(1 +
pkmH

k
m

akm
)− 1/Wm

)}
(5.75)

subject to 



∑
k a

k
m log(1 + pkmH

k
m

akm
) ≥ 1/Wm, n ∈ N ,m ∈Mn

Constraints in (5.2)
. (5.76)

We note that, since 1/Wm is drawn from the rate region RO, the optimal value of (5.75) is zero, and
∑

k a
k
m log(1 + pkmH

k
m

akm
) − 1/Wm = 0. By Theorem 5.3, the PF weights is also the optimal solution

to (5.75). Then, denoting W̄m ,Wm +λm where λm ≥ 0 is the dual variable, we convert the inner

maximization problem in (5.75) to its dual problem and (5.75) can be further written as

min
( 1
W1

, 1
W2

,..., 1
WM

)∈RO,W̄m≥Wm

max
P,A subject to (5.2)

{∑

m

W̄m

(∑

k

akm log(1 +
pkmH

k
m

akm
)− 1/Wm

)}
.

(5.77)

Note that the inner problem of (5.77) is equivalent to the weighted throughput optimization

problem PW̄(ε) with an additional constant term
∑

m W̄m/Wm, where W̄ = {W̄m,m ∈M}. Thus,

when Wm = W̄m = 1/Rm(W), the problem in (5.77) is optimally solved (the optimal value is zero,

which is same as the problem in (5.75)) and by Theorem 5.3 the optimal PF weights are obtained.

Then, we can write the subgradient for the outer minimization problem in (5.77) as [68]

gW̄m
= Rm(W̄)− 1/Wm , (5.78)

gWm = W̄m/W
2
m > 0 . (5.79)

Since the subgradient of Wm is positive, the optimal 1/Wm is on the positive boundary of

RO. Note that (R1(W̄), R2(W̄), . . . , RM (W̄)) is on the positive boundary of RO and changes

continuously as W̄ changes. Then, the following update rule





Wm ← min
{
W̄m,

[
Wm − δ · (Rm(W̄)− 1/Wm)

]+}

W̄m ← max
{
Wm,

[
W̄m − δ · gW̄m

]+} , (5.80)

enforces that Wm always moves closer to the point on the positive boundary of RO and W̄m is

updated by the subgradient. Specifically, if we fix Wm (or W̄m) and update W̄m (or Wm) only
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using the second (first) term in (5.80), Wm (or W̄m) can converge and the optimal W̄m (or Wm)

can be obtained for the fixed Wm (or W̄m).

To find the PF weights, we need to obtain the optimal solution to (5.77) such that Wm = W̄m.

Specifically, we choose the same initial condition and step size for Wm and W̄m, and simultaneously

update Wm and W̄m in each iteration. Then, Wm and W̄m remain the same in each iteration and

the update rule becomes

W (i+1)
m = W̄ (i+1)

m ←
[
W̄ (i)
m − δ(i) · g(i)

W̄m

]+
, (5.81)

where the step size δ(i) satisfies limi→∞ δ(i) = 0 and
∑+∞

i=1 δ(i) = +∞, e.g., δ(i) = 1/i. In

particular, if W
(i+1)
m can converge, the problem in (5.77) is optimally solved and finally we have

W̄m = Wm for all m ∈M, i.e., Rm(W) = 1/Wm. By Theorem 5.3, W are the PF weights.

The procedure for computing the PF energy-bandwidth allocation is summarized as follows.

Algorithm 5.3 - PF energy-bandwidth allocating algorithm

1: Initialization

i = 0

Specify the initial fairness weights W(0), convergence threshold δ0, maximum iteration number I

2: Obtaining the PF weight

REPEAT

i← i+ 1

Solve PW(i−1)(ε) to obtain (P(i),A(i))

Update W(i) by (5.81)

UNTIL
∑
m |Rm(W(i))− 1/W

(i)
m | ≤ δ0 OR i = I

3: Choose the energy-bandwidth Allocation

(P(i),A(i)) is the obtained energy-bandwidth allocation

Note that, the convergence of the proposed algorithm is highly dependent on the selection of

the initial value, i.e., W(0). Specifically, we can set

1

W
(0)
m

≈ E{Ẽkn,Hk
n}
[
R̄m(K)

]
, (5.82)

as the initial PF weights, where R̄m(K) denotes the sum-rate achieved by the solution to Fε given

the realizations {Ẽkn, Hk
n, n ∈ N , k ∈ K} in the scheduling period K, and the simulation results in

Section 5.4 demonstrate that the optimal performance is approached closely in a few iterations.
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5.4 Simulation Results

We first focus on a single transmitter and compare the achievable rate regions for orthogonal

and non-orthogonal two-user broadcast channels, i.e, N = 1 and M = 2. For the transmitter,

we set the initial battery level Bk
n = 0, the battery capacity Bmax

n = 20 units, and we do not

apply the maximum power constraint. We generate the realizations of the harvested energy and

channel gains following the truncated Gaussian distribution N (10, 2) and the Rayleigh distribution

with the parameter 2, respectively. Moreover, we consider two scheduling period, K = 1 slot

and K = 10 slots, and show the sum-rate improvement by the non-orthogonal broadcast over

the orthogonal broadcast in Fig. 5.3 and Fig. 5.4, respectively. Specifically, we note that when

K = 10 the improvement is quite marginal. Moreover, in Fig. 5.4, two curves share three common

points corresponding to the sum-rate achieved by the solution to P0(W1,W2) for (W1,W2) =

(1, 0), (0.5, 0.5) and (0, 1), respectively. Also, when W1 = W2 = 0.5, the sum-rates are maximized

for both the orthogonal and non-orthogonal broadcast, which are same.

5.4.1 Weighted Sum-Rate Maximization

We then consider a network with multiple broadcast channels where there are N = 3 transmitters

and each communicates with 2 receivers, i.e., M1 = {1, 2},M2 = {3, 4},M3 = {5, 6}. We set

the scheduling period as K = 20 slots. For each transmitter n, we set the initial battery level

B0
n = 0 and the battery capacity Bmax

n = 20 units. We assume that the harvested energy follows

a truncated Gaussian distribution with mean µn and variance of 2. We also assume a Rayleigh

fading channel with the parameter σm.

For comparison, we consider two simple scheduling strategies, namely, the greedy energy policy

and the equal bandwidth policy. For the greedy energy policy, each transmitter first tries to use up

the available energy in each slot. Then, given the available energy for each transmitter, we solve the

energy-bandwidth allocation problem slot by slot, i.e., PW(0) for K = 1, to calculate the energy

and bandwidth allocated for each receiver. For the equal bandwidth policy, we first assign the

bandwidth for each transmitter equally. Then, given the assigned bandwidth for each transmitter,

we solve an energy-bandwidth allocation problem transmitter by transmitter, i.e., PW(0) for N = 1,

to calculate the energy and bandwidth (for orthogonal broadcast channel only) allocated for each
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Figure 5.3: Achievable sum-rate regions of two-user orthogonal/non-orthogonal broadcast channels

(K = 1).

receiver.

To compare the performance of the different algorithms and policies, we evaluate the (weighted)

sum-rate for the multiple orthogonal broadcast channels (O-BCs) and non-orthogonal broadcast

channels (NO-BCs), respectively. We useW1 = {Wm = 1/6} andW2 = {Wm = (2(n−1)+m)/21}
for the unweighted and weighted sum-rate cases, respectively, and set the channel fading parameter

σm = 2. Moreover, we assume the power unconstrained case where the energy harvesting rate

is µn = 6, 7, 8, 9, 10, 11 units per slot and a power constrained case where the maximum power

constraint is Pn = 10 and the energy harvesting rate is µn = 1, 2, 3, 4, 5, 6 units per slot. We

run the simulation 500 times to obtain the performance for the different algorithm and policies, as

shown in Figs. 5.5, 5.6, and 5.7 for the power unconstrained case withW1, the power unconstrained

case with W2, and the power constrained case with W2, respectively.

As shown in Fig. 5.5, the maximum throughput in NO-BC is the same as that in O-BC under

the optimal energy-bandwidth allocation and the greedy energy policy. This is because in both O-
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Figure 5.4: Achievable sum-rate regions of two-user orthogonal/non-orthogonal broadcast channels

(K = 10).

BC and NO-BC, the optimized bandwidth allocation requires that each transmitter only transmit

to the receiver with the strongest channel in each slot when the weights are equal (e.g., W1), as

stated in Theorem 5.1 and Corollary 5.1. For the equal bandwidth policy, O-BC performs worse

than NO-BC since the NO-BC makes better use of the allocated bandwidth by optimally treating

the interference. When we use the unequal weights W2, it is seen in Figs. 5.6 and 5.7 that we

may get better performance by using NO-BC instead of O-BC under all policies. However, for

the optimal energy-bandwidth allocation, such improvement is quite marginal. Moreover, when

the maximum power is constrained, it is seen in Fig. 5.7 that the gap between the performances

of the optimal energy-bandwidth allocation and the greedy energy policy decreases as the energy

harvesting rates increases.
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Figure 5.5: Sum-rate comparisons for different policies without the maximum power (W1).

5.4.2 PF Throughput Maximization

We next evaluate the PF throughput performance in the network with multiple orthogonal broad-

cast channels. For comparison, we consider three scheduling strategies, namely, the greedy policy,

the traditional PF policy, and the approximate PF policy. For the greedy policy, the transmitter

evenly splits the maximum available energy for the transmission to each receiver in each slot, i.e.,

pkm = Bk
n/|Mn|, and the equal bandwidth is also allocated, i.e., akm = 1/M . For the traditional PF

policy, the transmitter tries to use the maximum available energy in each slot and one transmission

link is chosen to use the entire bandwidth as follows:

arg max
m

{
log(1 + pkmH

k
m)/R̃km

}
, (5.83)

where we denote R̃km as the average sum-rate before slot k [75]. For the approximate PF policy, we

use the approximate PF weights given in (5.82) and then solve a weighted sum-rate maximization

problem.

To evaluate the performance of the different algorithm and policies, we consider two scenarios,
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Figure 5.6: Weighted sum-rate comparisons for different policies without the maximum power (W2).

namely, the varying EH scenario, where the different transmitters have different means of the

energy harvesting such that µ1 + 2 = µ2 + 1 = µ3 and the channel fading parameter is σ = 2 for all

transmitters, and varying channel scenario, where the different transmitters have different channel

fading parameters such that σ1(·) + 0.5 = σ2(·) and the mean of the energy harvesting is µ = 2 for

all transmitters. In both the scenarios, the maximum power is unconstrained and we compare the

performance of Algorithm 5.3 and the other three polices with the optimal PF throughput obtained

using the generic convex solver. Specifically, in the varying EH scenario and the varying channel

scenario, we assume µ1 = 1, 2, 3, 4, 5, 6 units per slot and σ1(·) = 1, 1.2, 1.4, 1.6, 1.8, 2, respectively.

We run the simulation 500 times to obtain the performance for the different algorithm and policies,

as well as the optimal schedule solved by a general convex solver, as shown in Fig. 5.8 and Fig. 5.9

for the varying EH scenario and the varying channel scenario, respectively.

From Fig. 5.8 and Fig. 5.9, it is seen that for both scenarios Algorithm 5.3 achieves the same

performance as that achieved by the optimal energy-bandwidth allocation solved by the generic

convex solver, which is better than the other policies, as excepted. Specifically, the performance



CHAPTER 5. ENERGY-BANDWIDTH ALLOCATION FOR FLAT-FADING BROADCAST
CHANNELS 123

1 2 3 4 5 6

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

Energy Harvesting Rate µ (unit per slot)

W
e

ig
h

te
d

 S
u

m
−

R
a

te
 (

n
a

ts
 p

e
r 

s
lo

t)

 

 

Optimal − O−BC

Optimal − NO−BC

Greedy Energy − O−BC

Greedy Energy − NO−BC

Equal Bandwidth − O−BC

Equal Bandwidth − NO−BC

Figure 5.7: Weighted sum-rate comparisons for different policies with the maximum power (W2,

Pn = 10).

of the approximate PF policy is close to the optimal performance and better than that of the

traditional PF and greedy policies. It is because the energy harvesting and channel fading processes

are stationary and erodic and the sum-rate achieved by the optimal energy-bandwidth allocation is

close to the PF weights parameter. Also, the traditional PF policy is optimal for the transmitters

without using the renewable energy source. However, due to the energy harvesting process with the

finite battery capacity, the potential energy overflow necessitates the bandwidth share to maximize

the proportionally-fair throughput. Therefore, the traditional PF policy gives the suboptimal

performance for the transmitters powered by the renewable energy source. Moreover, the greedy

policy, which does not take the energy and the fairness factors into account, provides the worst

performance among the simulated algorithm/polices.

We also evaluate the convergence speed of Algorithm 5.3 with different initial weights W, i.e.,

the approximate PF weights and equal weights, as shown in Fig. 5.10 for K = 20. It is seen that,

the convergence speed with the initial approximate PF weights is faster than that with the initial
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Figure 5.8: Performance comparisons in the varying EH scenario.

equal weights, approaching to the optimal performance after around 10 iterations.

5.5 Conclusions

We have treated the energy-bandwidth allocation problem for a network consisting of multiple

energy harvesting transmitters, each broadcasting to multiple receivers, to maximize the weighted

throughput and the proportionally fair throughput. Based on the general iterative algorithm devel-

oped in Chapter 4 that alternatively solves the energy and bandwidth allocation subproblems, we

have developed optimal algorithms for solving the two subproblems for both orthogonal and non-

orthogonal broadcast. Moreover, for orthogonal broadcast, we have shown that the PF through-

put maximization problem can be converted to the weighted throughput maximization problem

with proper weights. Simulation results demonstrate that the proposed algorithms offer significant

performance improvement over various suboptimal allocation schemes. Moreover, it is seen that

with energy-harvesting transmitters, non-orthogonal broadcast offers limited gain over orthogonal
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Figure 5.9: Performance comparisons in the varying channel scenario.

broadcast.

5.6 Appendix

5.6.1 Proof of Proposition 5.2

By Lemma 5.1, we have

(F kn )
′
(p) = ∂

( ∑

m∈Mn

Wm log(1 +
pkm(p)Hk

m

Hk
m

∑
m0 | Hk

m<H
k
m0
pkm0

(p) + 1
)

)
/∂p (5.84)

= ∂

(
Wa log(1 +

(p− Lka)Hk
a

LkaH
k
a + 1

)

)
/∂p (5.85)

=
Wa

p+ 1/Hk
a

, p ∈ [Lka, L
k
b ] (5.86)

where (5.85) follows because (5.48) indicates that, for any a ∈Mn, pka(p) is constant when p < Lka

or p > Lkb .
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Hence (F kn )′(p) is a piecewise function composed by the segments in the form of fkm(p) ,

Wm/(p
k
m + 1/Hk

m). By Lemma 5.2, (F kn )
′
(p) is continuous. Thus, for any two adjacent different

cutoff lines Lka < Lkb , L
k
a is the intersection of the two curves fka (p) = Wa/(p+ 1/Hk

a ) and fkb (p) =

Wb/(p+ 1/Hk
b ).

Denoting the intersection of fka (p) and fkb (p) as Ikab (i.e., p = Iab such that fka (Ikab) = fkb (Ikab)),

we then have

Lka = Ikab ,
Hk
bWb −Hk

aWa

Hk
bH

k
a (Wa −Wb)

. (5.87)

Specifically, for any a, b ∈Mn, Ikab is unique if it exists. Then, we can write

F kn (p̃) =

∫ p̃

0
(F kn )′(p)dp (5.88)

= max
{Ikab<I

k
bc<...<p̃ | a,b,c,...∈Mn}

{∑

ab

∫ min{Ikbc,p̃}

Ikab

fka (p)dp

}
, (5.89)

where (5.89) follows since (F kn )′(p) is a piecewise function with the segments of fkm(p) and Ikab is

the intersection of fka (p) and fkb (p).
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Then, as shown in Fig. 5.11, we can obtain a set of Ikab and it is easy to verify that the optimal

solution to the problem in (5.89) forms the derivative of F kn (p) as

(F kn )
′
(p) = max

m∈Mn

{
Wm

p+ 1/Hk
m

}
. (5.90)
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Chapter 6

Energy-Subchannel Allocation for

Multiuser Networks in

Frequency-Selective Fading Channels

In this chapter, we focus on the energy-subchannel allocation in frequency-selective fading channels.

Specifically, we consider a network with multiple transmitters, each powered by a renewable energy

source and equipped with a finite-capacity battery. We assume a frequency-selective fading channel

and split the frequency band into multiple flat fading subchannels with equal bandwidth. To avoid

interference, no two transmitters can transmit in the same subchannel and the same time slot.

We first assume that the harvested energy and channel gain can be predicated for a schedul-

ing period and formulate an energy-subchannel allocation problem to maximize the sum-rate in a

scheduling period, which is a mixed integer optimization problem where the energy allocation is

continuous and the subchannel allocation is binary. We first decompose the problem into distributed

price-based energy-subchannel allocation problems for each transmitter, and a subgradient algo-

rithm is used to update the price of each subchannel. To solve the price-based energy-subchannel

allocation problem, we derive a controlled water-filling mechanism which is used in each recursion

of the dynamic water-filling algorithm proposed in [69]. Specifically, the controlled water-filling

incorporates the channel price and gain by setting a price-related water-filling stage higher than

the channel-related water-filling stage (the inverse of the channel gain) in the conventional water-
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filling such that the subchannel is used only when the water level is higher than the price-related

water-filling stage. Moreover, we show that the proposed energy-subchannel allocation algorithm

is asymptotically optimal when the bandwidth of each subchannel goes to zero.

Moreover, we also propose a causal algorithm without the predictions of the energy harvesting

and channel fading processes, using a Q-learning approach [78]. At the beginning of each slot, the

transmitter independently decides the amount of the energy used in the current slot based on the

current battery level and then the energy-subchannel allocation is calculated given the allocated

energy of each transmitter.

6.1 System Model and Problem Formulations

6.1.1 System Model

We consider a network consisting of N transmitter-receiver pairs, where each transmitter is powered

by a renewable energy source and sends data to its respective receiver. The frequency band of B

Hz is divided into M equal-bandwidth subchannels and each subchannel is flat-fading. Denote

β , B/M Hz as the bandwidth of each subchannel. To avoid interference, each subchannel can

be used by only one transmitter in each time slot. Let aknm ∈ {0, 1} be the subchannel allocation

indicator, where aknm = 1 indicates that transmitter n transmits on subchannel m in slot k, and

aknm = 0 otherwise. We assume that each subchannel gain is constant over a coherence time of

Tc seconds, which is also the duration of the slot, and each slot consists of T = βTc time instants

(i.e., β samples are transmitted per second). Denoting Xki
nm as the symbol sent by transmitter n

at instant i in slot k and subchannel m, the received signal (by receiver n at instant i in slot k and

subchannel m) is given by Y ki
nm = Xki

nmh
k
nm +Zkinm, where hknm denotes the complex channel gain of

subchannel m between the n-th transmitter-receiver pair and Zkinm ∼ CN(0, βT ) is the i.i.d. complex

Gaussian noise. (The power spectral density of the noise is 1/Tc so that the noise power is β/Tc

which is the total variance of β noise samples (per second). Therefore, the variance of each noise

sample is 1/Tc = β/T .) Denote Hk
nm , |hknm|2 and denote pknm ,

∑T
i=1 |Xki

nm|2 as the transmission

energy consumption in a slot. Then the capacity of the above discrete-time channel is given by

log(1 + Hk
nmp

k
nm/T

β/T ) = log(1 + pknmH
k
nm/β) nats per channel use [70]. Since each slot of Tc seconds

contains T = Tcβ channel uses, the upper-bound of the achievable rate is then β log(1+pknmH
k
nm/β)
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nats per second per subchannel. Moreover, we denote P , {pknm, n ∈ N ,m ∈ M, k ∈ K} and

A , {aknm, n ∈ N ,m ∈ M, k ∈ K | aknm ∈ {0, 1}} as the energy allocation and subchannel

allocation, respectively, where N , {1, 2, . . . , N} is the set of transmitters, M , {1, 2, . . . ,M} is

the set of subchannels, and K , {1, 2, . . . ,K} is the set of time slots in a scheduling period.

Each transmitter is powered by the energy harvested from the surrounding environment and

buffered by a finite-capacity battery. We first assume that the amount of the harvested energy in

each slot can be perfectly predicted for the scheduling period [71][66] and denote Ekn as the total

energy harvested up to the end of slot k by transmitter n; we also assume that the gain Hk
nm of each

subchannel is predictable [72]. Thus {Ekn, Hk
nm, n ∈ N ,m ∈ M, k ∈ K} is known at the beginning

of each scheduling period. In Section 6.3, we will relax the non-causal assumption on Ekn and Hk
nm

and develop a causal energy-subchannel allocation algorithm.

Assuming that the battery has a finite capacity Bmax
n and is empty initially, the battery level

at transmitter n at the end of slot k can be written as

Bk
n = min

{
Bmax
n , Bk−1

n +
(
Ekn − Ek−1

n

)
−
∑

m∈M
pknm

}
, (6.1)

where Bk
n ≥ 0 for all n ∈ N and k ∈ K. Moreover, each subchannel m is allocated to at most one

transmitter in each slot k, i.e.,
∑

n∈N a
k
nm ≤ 1 for all k ∈ K,m ∈M.

6.1.2 Problem Formulation

For each transmitter n, we use the upper-bound of the achievable sum-rate over K slots as the

performance metric, given by

Cn(Pn,An) ,
∑

k∈K

∑

m∈M
βaknm log(1 + pknmH

k
nm/β) , (6.2)

where Pn , {pknm,m ∈ M, k ∈ K} ⊆ P and An , {aknm,m ∈ M, k ∈ K} ⊆ A. We note that,

although (6.2) may not be achievable by practical codes and modulations, it is a commonly used

metric for evaluating the communication system performance [41][42].

We formulate the energy-subchannel allocation problem as follows:

max
P,A

∑

n∈N
Cn(Pn,An) , (6.3)
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subject to 



Ekn −Bmax
n ≤∑k

κ=1

∑
m∈M pκnm ≤ Ekn n ∈ N , k ∈ K

∑
n∈N a

k
nm ≤ 1 m ∈M, k ∈ K

pknm ≥ 0 n ∈ N ,m ∈M, k ∈ K
aknm ∈ {0, 1} n ∈ N ,m ∈M, k ∈ K

, (6.4)

where the first constraint in (6.4) is the non-recursive form of (6.1).

Note that, the problem in (6.3)-(6.4) is a mixed integer programming problem where the sub-

channel allocation A is a set of binary variables and the energy allocation P is a set of non-negative

real variables. Even though it is convex for fixed A, obtaining the jointly optimal energy-subchannel

allocation needs an exhaustive search over all NM possible subchannel allocations. Our objective is

to develop a low-complexity suboptimal algorithm for solving (6.3)-(6.4) with provable performance

guarantee and asymptotic optimality. By removing the second constraint in (6.4) and adding it to

the objective function with the use of Lagrangian multipliers, we define the Lagrangian function as

L(P,A,Λ) ,
∑

n∈N
Cn(Pn,An)−

∑

k∈K

∑

m∈M
λkm

(∑

n∈N
aknm − 1

)

=
∑

k∈K

∑

n∈N

∑

m∈M
aknmβ

[
log(1 + pknmH

k
nm/β)− λkm/β

]
+
∑

k∈K

∑

m∈M
λkm , (6.5)

where Λ , {λkm ≥ 0,m ∈M, k ∈ K} is the set of the dual variables. Then, the dual of the original

problem in (6.3)-(6.4) can be written as

inf
Λ : λkm≥0

{
max
P,A
L(P,A,Λ)

}
, (6.6)

where the inner maximization problem has the following constraints




Ekn −Bmax
n ≤∑k

κ=1

∑
m∈M pκnm ≤ Ekn n ∈ N , k ∈ K

pknm ≥ 0 n ∈ N ,m ∈M, k ∈ K
aknm ∈ {0, 1} n ∈ N ,m ∈M, k ∈ K

. (6.7)

The next theorem indicates that the strong duality holds for the original problem in (6.3)-(6.4)

when the subchannels bandwidth β → 0. Note that, this result and its proof are similar to those

in [58].

Theorem 6.1. When M →∞, and B = o(M), the gap between the primal problem in (6.3)-(6.4)

and its dual problem in (6.6)-(6.7) goes to zero.



CHAPTER 6. ENERGY-SUBCHANNEL ALLOCATION FOR MULTIUSER NETWORKS IN
FREQUENCY-SELECTIVE FADING CHANNELS 132

Proof. When M → ∞, and B = o(M), the bandwidth β = B/M of each subchannel becomes

infinitesimal. We first consider the case when the channel is flat-fading, i.e., Hk
nm = Hk

n, ∀m ∈
M. Then, the location of the allocated subchannel on the frequency band does not affect the

achievable rate and thus the energy-subchannel allocation problem is equivalent to an energy-

bandwidth allocation problem such that the frequency band is split to all transmitters in fractions,

which is given by

max
αkn,p

k
n

∑

n∈N

∑

k∈K
αkn log(1 + pknH

k
n/α

k
n) (6.8)

subject to 



Ekn −Bmax
n ≤∑k

κ=1 p
κ
n ≤ Ekn n ∈ N , k ∈ K

pkn ≥ 0 n ∈ N , k ∈ K
0 ≤∑n∈N α

k
n ≤ B k ∈ K

αkn ≥ 0 n ∈ N , k ∈ K

, (6.9)

where αkn and pkn are the bandwidth and energy allocated to transmitter n in slot k, respectively.

Defining 0 · log(1 + p/0) , lima→0+ a · log(1 + p/a) = 0, the energy-bandwidth allocation problem

in (6.8)-(6.9) is a convex optimization problem with linear constraints, whose strong duality holds,

i.e., the portion of the bandwidth is utilized when the corresponding dual variable is positive.

Now consider the frequency-selective channel with total bandwidth B = o(M). When M →∞,

the total frequency band is divided into a set of infinitesimal frequency bands. By continuity,

the channel gains within each band approaches a constant value as the subdivision becomes finer

and finer. Note that, every achievability with splitting frequency among different users in each

subdivision can be transformed into assigning different frequency subchannels (or frequency point)

to different transmitters as M → ∞ and vice versa. Thus, the two problems are equivalent when

M →∞ and the strong duality holds.

Denoting

Un,Λ(Pn,An) ,
∑

k∈K

∑

m∈M
βaknm

[
log(1 + pknmH

k
nm/β)− λkm/β

]
, (6.10)

we decompose the inner maximization problem in (6.6) into N subproblems, each associated with

a transmitter n, given by

max
Pn,An

Un,Λ(Pn,An) (6.11)
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subject to 



Ekn −Bmax
n ≤∑k

κ=1

∑
m∈M pκnm ≤ Ekn k ∈ K

pknm ≥ 0 m ∈M, k ∈ K
aknm ∈ {0, 1} m ∈M, k ∈ K

. (6.12)

Since L(P,A,Λ) =
∑

n∈N Un,Λ(Pn,An) +
∑

m∈M,k∈K λ
k
m, and there is no constraint that inter-

relates different values of n, the inner optimization of (6.6) can be solved by independently solving

the problems in (6.11)-(6.12) for all n ∈ N . Moreover, in the utility function (6.10), the dual

variable λkm can be interpreted as the price of using the subchannel. To maximize Un,Λ(Pn,An),

if the potential achievable sum-rate of choosing the subchannel, β log(1 + pknmH
k
nm/β), is less than

the cost λkm/β, the transmitter would not use the subchannel.

We now consider the outer optimization in (6.6). Given Λ(i−1) and denoting

(P(i),A(i)) , arg max
P,A
L(P,A,Λ(i−1)) (6.13)

subject to the constraints in (6.7), the subgradient of λkm is g
(i)

λkm
,
∑

n∈N a
k
nm

(i) − 1 and the price

can be adjusted according to

λkm
(i)

=
[
λkm

(i−1)
+ δ(i) · g(i)

λkm

]+
(6.14)

until L(P(i),A(i),Λ(i−1)) converges. Note that, using a non-summable diminishing step size δ(i)

such that limi→∞ δ(i) = 0 and limi→∞
∑

i δ(i) = ∞, e.g., δ(i) = 1/i, the subgradient method in

(6.13)-(6.14) can obtain the optimal solution to the dual problem in (6.6)-(6.7) when i → ∞ (if

(6.13) can be optimally solved) [68]. However, with finite number of subgradient updates, the dual

problem may not be optimally solved. As a result, the obtained solution may not be feasible to the

primal problem in (6.3)-(6.4). Therefore, a final adjustment is needed.

The procedure for solving the energy-subchannel allocation problem in (6.3)-(6.4) is summarized

as follows.
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Algorithm 6.1 - Energy-subchannel allocation

1: Initialization

Specify the maximum number of iterations I

Specify the initial price Λ(0) , {λkm
(0)
,m ∈M, k ∈ K}

i← 0

2: REPEAT [Solving the dual problem in (6.6)-(6.7)]

i← i+ 1

Update (P(i),A(i)) by solving the problem in (6.13) given Λ(i−1), which is equivalent to

solving the problem in (6.11)-(6.12) for all n ∈ N (Algorithm 6.2, Section 6.2.1)

FOR all m ∈M, k ∈ K
Update λkm

(i)
using (6.14)

ENDFOR

UNTIL i > I OR the optimal value of (6.13) converges

3: Record the solution to the dual problem

(P̃, Ã)← (P(i),A(i))

Obtain a feasible solution to the primal problem in (6.3)-(6.4) based on (P̃, Ã) (Section 6.2.3)

We note that the problem in (6.11)-(6.12) is still a mixed integer program, and will be treated

in the next section.

6.2 Solving the Price-Based Energy-Subchannel Allocation Prob-

lem

In this section, we focus on solving the price-based energy-subchannel allocation problem in (6.11)-

(6.12). We note that, given any feasible subchannel allocation An, the problem in (6.11)-(6.12) is

a convex optimization problem over Pn with the linear constraints. Thus its K.K.T. conditions are

sufficient and necessary for optimality [68]. Using the similar analysis as in [69, Theorem 2], we

can conclude that given An the optimal Pn has a water-filling form, given by

pknm = aknmβ

[
1

wkn
− 1

Hk
nm

]+

. (6.15)

Moreover, the water level 1/wkn may increase only in the slot when the battery is depleted, i.e.,

battery depletion point (BDP) Bk
n = 0, and may decrease only in the slot when the battery is

fully-charged, i.e., battery fully-charged point (BFP) Bk
n = Bmax

n .
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6.2.1 Proposed Algorithm

To solve the problem in (6.11)-(6.12), based on the above condition, we propose an algorithm to

find a set of BDP/BFPs Xn such that, for each adjacent pair (a, b) ⊆ Xn, when the dual of the

following problem

max
aknm,p

k
nm

b∑

k=a+1

∑

m∈M
βaknm

[
log(1 + pknmH

k
nm/β)− λkm/β

]
(6.16)

subject to 



∑b
k=a+1

∑
m∈M pknm ≤ Un(a, b)

pknm ≥ 0 k ∈ [a+ 1, b],m ∈M
aknm ∈ {0, 1} k ∈ [a+ 1, b],m ∈M

, (6.17)

where

Un(a, b) , Ba
n +

(
Ebn − Ean

)
−Bb

n = Ebn − Ean +
(
I(a is BFP)− I(b is BFP)

)
Bmax
n

is optimally solved, 1) the obtained energy allocation follows the water-filling rule in (6.15), where

the water level 1/wkn may only increase/decrease at BDP/BFPs, respectively; and 2) the energy

allocation is feasible, i.e., for any adjacent pair (a, b) ⊆ Xn, Ba
n = 0/Bmax

n if a is a BDP/BFP and

0 ≤ Bk
n ≤ Bmax

n for all k ∈ [a+ 1, b].

6.2.1.1 Forward/Backward Search

In [69], for a single-user energy-harvesting transmitter, an algorithm is proposed to find the

BDP/BFP set by recursively performing the forward/backward search. Here we adopt the same

procedure to search for the BDP/BFP sets, where the Forward Search and Backward Search op-

erations are performed on a segment between two adjacent BDP/BFPs, e.g., [a, type of a] and

[b, type of b], recursively. Specifically, we start the algorithm by performing the Forward Search

on [0,BDP] and [K,BDP] with the initial BDP/BFP set Xn = {[0,BDP]}. New BDP/BFPs are

appended to Xn as the algorithm proceeds. The algorithm is listed as follows.
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Algorithm 6.2 - Procedure for solving (6.11)-(6.12)

INPUT: Channel price Λ

OUTPUT: Energy-subchannel allocation (Pn,An)

ALGORITHM: Run Forward Search on
(
[0,BDP], [K,BDP]

)

1: Subroutine 1 - Forward Search
(
[a, type of a], [b, type of b]

)

If a = K, the search is complete.

FOR [k1, type of k1] ∈ {[a+ 1,BDP], . . . , [b− 1,BDP], [b, type of b]}
(*) Solve the dual of the problem in (6.16)-(6.17) with (a← a+ 1, b← k1) using (6.27),

(6.28) and (6.34)

ENDFOR

Let k = the largest k1 ∈ [a+ 1, b] such that the obtained energy allocation contains no

negative battery level, i.e., Bkn ≥ 0 for all k ∈ [a+ 1, k1]

- if contains no over-charged battery level, i.e., Bkn ≤ Bmax
n for all k ∈ [a+ 1, k1], record

the obtained (pknm, a
k
nm), add (k, type of k) to Xn, Forward Search

(
[k, type of k], [K,BDP]

)

- otherwise, let c = the largest slot with the over-charged battery level,

Backward Search
(
[a, type of a], [k,BDP], c

)

2: Subroutine 2 - Backward Search
(
[a, type of a], [b, type of b], k

)

(*) Set k as BFP and obtain the allocation by solving the dual of the problem in (6.16)-(6.17)

with (a← a+ 1, b← k) using (6.27), (6.28) and (6.34)

- if feasible, record the obtained (pknm, a
k
nm), add [k,BFP] to Xn,

Forward Search
(
[k,BFP], [K,BDP]

)

- if contains over-charged battery level only, set the largest one as c,

Backward Search
(
[a, type of a], [k,BFP], c

)

- if contains negative battery level, Forward Search
(
[a, type of a], [k,BFP]

)

Note that, the original version of Algorithm 6.2 is proposed in [69] for single-user energy allo-

cation to maximize the sum-rate. There since the problem is convex with linear constraints, it was

shown that the algorithm obtains a set of BDP/BFPs along with the optimal energy allocation,

where the energy allocation has the water-filling form and the water level may only increase/decrease

at BDP/BFPs, respectively.

In this chapter, the step marked by (∗) in Algorithm 6.2 solves the dual of the problem in

(6.16)-(6.17), whose optimal solution follows a controlled water-filling structure (c.f. Proposition

6.1) and the water level is non-decreasing as the available energy Un(a, b) increases. Since the
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problem in (6.16)-(6.17) is non-convex, its strong duality cannot be guaranteed. Thus, due to the

duality gap, the equality may not hold for the first constraint in (6.17) even if its dual problem is

optimally solved. Denote the energy residual as

Rn(a, b) , Un(a, b)−
b∑

k=a+1

∑

m∈M
pknm , (6.18)

where (pknm, a
k
nm) is the energy-subchannel allocation obtained by solving the dual of the problem

in (6.16)-(6.17). If Rn(a, b) = 0, slot b is a BDP/BFP. On the other hand, if Rn(a, b) > 0, slot b

is a pseudo BDP/BFP. (For pseudo BDP/BFP, we treat the energy residual as “used”, e.g., the

energy residual is reallocated in Section 6.2.3.)

Using a similar analysis as in [69, Section III.D], we can also verify the following property of

Algorithm 6.2.

Lemma 6.1. Algorithm 6.2 obtains a set of pseudo BDP/BFPs Xn along with the feasible energy-

subchannel allocation. Moreover, the obtained energy-subchannel for any adjacent pair (a, b) ⊆ Xn
has the water-filling form in (6.15), where the water level may only increase/decrease at pseudo

BDP/BFP, respectively.

However, if the duality gap exists for the problem in (6.16)-(6.17), the obtained energy-subchannel

allocation is suboptimal for its primal problem. In Section 6.2.2, it is shown that the gap between

the output of Algorithm 6.2 and the optimal solution to the problem in (6.11)-(6.12) is at most Kβ

(c.f. Theorem 6.2).

Next we show that the optimal solution to the dual of the problem in (6.16)-(6.17) has a

controlled water-filling form.

6.2.1.2 Controlled Water-Filling

Introducing the dual variable wabn ≥ 0 and defining the Lagrangian function

Labn (wabn ,Pn,An) ,
b∑

k=a+1

∑

m∈M
aknmβ

[
log(1 +

pknmH
k
nm

β
)− λkm

β

]
− wabn

(
b∑

k=a+1

∑

m∈M
pknm − Un(a, b)

)
,

(6.19)

the dual of the problem in (6.16)-(6.17) can be written as

inf
wabn ≥0

{
max

pknm≥0,aknm∈{0,1}
Labn (wabn ,P,A)

}
. (6.20)
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Given aknm, the inner maximization problem in (6.20) is convex with linear constraints. Thus

the first-order condition together with the constraint pknm ≥ 0 is sufficient for the optimality of pknm

[68]. Then we have

pknm = βaknm

[
1

wabn
− 1

Hk
nm

]+

, (6.21)

where the dual variable 1/wabn can be considered as the water level and is constant between adjacent

pair (a, b) ⊆ Xn. Substituting (6.21) into (6.20), the dual problem can be written as

min
wabn ≥0

max
aknm∈{0,1}

b∑

k=a+1

∑

m∈M
βaknm

([
log(

Hk
nm

wabn
)

]+

−
[
1− wabn

Hk
nm

]+

− λkm
β

)
+ wabn Un(a, b). (6.22)

Then, the optimal subchannel allocation is given by

aknm = I

([
log(

Hk
nm

wabn
)

]+

−
[
1− wabn

Hk
nm

]+

− λkm
β

> 0

)
(6.23)

= I
(

log
Hk
nm

wabn
− (1− wabn

Hk
nm

)− λkm
β

> 0

)
I
(
wabn ≤ Hk

nm

)
(6.24)

= I


log

1/wabn
1/Hk

nm

− log
e

(1− wabn
Hknm

)+
λkm
β /Hk

nm

1/Hk
nm

> 0


 I

(
wabn ≤ Hk

nm

)
(6.25)

= I


 1

wabn
− 1

Hk
nm/e

(1− wabn
Hknm

)+
λkm
β

> 0


 I

(
1

wabn
≥ 1

Hk
nm

)
(6.26)

= I
(

1

wabn
− 1

H̃k
nm(wabn )

> 0

)
I
(

1

wabn
≥ 1

Hk
nm

)
, (6.27)

where

H̃k
nm(w) , Hk

nm/e
(1− w

Hknm
)+

λkm
β .

Hence the optimal solution to the inner problem of (6.20) is given by the following controlled

water-filling rule, as illustrated in Fig. 6.1,

pknm = β

(
1

wabn
− 1

Hk
nm

)+

I
(

1

wabn
− 1

H̃k
nm(wabn )

> 0

)
, (6.28)

where wabn is the optimal dual variable for the problem in (6.20).

To calculate the optimal dual variable wabn , we first substitute (6.23) into (6.22) and the problem

in (6.22) can be rewritten as

min
wabn ≥0

F (wabn ) , (6.29)
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1/H

m

1/w

1 2 3 54 6

1/Hm

1/H̃m(w)

. . .

. . .

. . .

Figure 6.1: The controlled water-filling. For subchannels 2, 3 and 6, the amount of the allocated

energy is represented by the distance between 1/w and 1/Hm. No energy is allocated to subchannels

1 and 5 due to the control of 1/H̃m(w), and subchannel 4 due to the deep fading 1/Hm.

where

F (w) ,
b∑

k=a+1

∑

m∈M
β

([
log(

Hk
nm

w
)

]+

−
[
1− w

Hk
nm

]+

− λkm
β

)+

+ wUn(a, b) . (6.30)

It is easy to verify that F (w) is continuous and differentiable except at some points w0 such that[
log(H

k
nm
w0

)
]+
−
[
1− w0

Hk
nm

]+
− λkm

β = 0. That is, the non-differentiable point satisfies w = H̃k
nm(w) ≤

Hk
nm. Specifically, at the differentiable point, the derivative of F (w) can be written as

F ′(w) = −
b∑

k=a+1

∑

m∈M
β

(
1

w
− 1

Hk
nm

)+

I

([
log(

Hk
nm

w
)

]+

−
[
1− w

Hk
nm

]+

− λkm
β

> 0

)
+ Un(a, b)

= −
b∑

k=a+1

∑

m∈M
β

(
1

w
− 1

Hk
nm

)+

I
(

1

w
− 1

H̃k
nm(w)

> 0

)
+ Un(a, b) . (6.31)

And at the non-differentiable point, we have





F ′(w+) = −∑b
k=a+1

∑
m∈M β

(
1
w − 1

Hk
nm

)+
I
(

1
w − 1

H̃k
nm(w)

> 0
)

+ Un(a, b)

F ′(w−) = −∑b
k=a+1

∑
m∈M β

(
1
w − 1

Hk
nm

)+
I
(

1
w − 1

H̃k
nm(w)

≥ 0
)

+ Un(a, b)
. (6.32)

Note that, since the Lagrangian duality function F (w) is convex with respect to w [68], F ′(w+)

is non-decreasing with respect to w for all w ≥ 0. Since F ′(w−) ≤ F ′(w+) for all w ≥ 0, when we
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use

w̃ = min argw{F ′(w+) ≥ 0, w ≥ 0} (6.33)

we always have F ′(w̃−) ≤ 0 ≤ F ′(w̃+) and w̃ is the optimal dual variable for the problem in (6.20).

In particular, when w̃ is a differentiable point, we have F ′(w̃+) = F ′(w̃−) = 0.

Moreover, by (6.28) and (6.32), (6.33) can be further written as

w̃ = min argw

{
Un(a, b)−

b∑

k=a+1

∑

m∈M
pknm ≥ 0

}
(6.34)

= min argw {Rn(a, b) ≥ 0} (6.35)

where Rn(a, b) is the energy residual defined in (6.18).

Since the dual problem in (6.20) is solved optimally, from the Lagrangian function Labn (wabn ,Pn,An)

in (6.19), it follows that wabn Rn(a, b) is the duality gap between the primal problem in (6.16)-(6.17)

and the dual in (6.20) [68], where Rn(a, b) is given in (6.18) and wabn = w̃. In case that Rn(a, b) = 0,

i.e., we can find a water level w such that the equality in (6.34) holds, then we have strong duality

thus the energy-subchannel allocation obtained by solving the dual problem in (6.20) is optimal for

the problem in (6.16)-(6.17).

Proposition 6.1. The optimal solution to the dual problem in (6.20) follows the controlled water-

filling in (6.27), (6.28) and (6.34). When the energy residual Rn(a, b) = 0, the strong duality holds

and the obtained energy-subchannel allocation is optimal for the problem in (6.16)-(6.17).

Remark 6.1. Note that, (6.27) is not the unique optimal subchannel allocation. For example,

aknm = I(1/wabn −1/H̃k
nm(w) ≥ 0)I

(
wabn ≤ Hk

nm

)
is also optimal for the inner maximization problem

of (6.20). Specifically, given the optimal dual variable w̃, if there exists a unique (m, k) such that

H̃k
nm(w̃) = w̃, then aknm = 0 and 1 are both optimal for the inner maximization problem in (6.20).

When we take aknm = 0, by (6.34), we always have
∑b

k=a+1

∑
m∈M pknm ≤ Un(a, b), i.e., the obtained

energy-subchannel allocation is feasible to the primal problem in (6.16)-(6.17). On the other hand,

if we take aknm = 1, the energy allocation may become infeasible since F ′(w̃) is non-differentiable

at w̃ and F ′(w̃−) = Un(a, b)−∑b
k=a+1

∑
m∈M pknm ≤ 0. In case that we have multiple (m, k) such

that H̃k
nm(w̃) = w̃, to reduce the duality gap, we can modify aknm from 0 to 1 for such (m, k) one

by one until the energy allocation becomes infeasible. Obviously, these changes do not affect the

optimality for the dual problem in (6.20) but the duality gap reduces as Rn(a, b) decreases.
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1/w

∑b
k=a+1

∑M
m=1

∑
m pknm

Un(a, b)

Rn(a, b)

Figure 6.2: The relationship between the water level 1/wabn and energy consumption
∑b

k=a+1

∑
m p

k
nm using controlled water-filling. When Un(a, b) is between the marked two dotted-

lines, Rn(a, b) is the distance between Un(a, b) and the lower dotted-line; otherwise, Rn(a, b) = 0.

6.2.2 Performance Analysis

6.2.2.1 Duality Gap of the Problem in (6.16)-(6.17)

Recall that wabn Rn(a, b) is the duality gap between the primal problem in (6.16)-(6.17) and the dual

problem in (6.20). To bound this gap, we first sketch the energy consumption
∑b

k=a+1

∑
m∈M pknm

calculated by the controlled water-filling in (6.28) as a function of the water level 1/w, shown in

Fig. 6.2, which is not continuous. Note that, for a value of Un(a, b) on the continuous segment

of the curve, the corresponding water level 1/w is such that Rn(a, b) = 0. Then, by Proposition

6.1, the strong duality holds for the problem in (6.16)-(6.17). On the other hand, for a value of

Un(a, b) in the discontinuous gap, the amount of unutilized energy Rn(a, b) > 0 and the duality

gap is wabn Rn(a, b).

Proposition 6.2. The duality gap between the primal problem in (6.16)-(6.17) and the dual problem
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in (6.20) is bounded by

wabn Rn(a, b) ≤ β max
m∈M,k∈[a+1,b]

{
1−G(λkm)

}
(6.36)

≤ β (6.37)

where wabn is the optimal dual variable and G(λ) is the root of x − log x − 1 = λ/β for 0 ≤ x ≤ 1.

Specifically, G(λ) is a continuous and decreasing function, and G(0) = 1.

Proof. By (6.31)-(6.32), for any w ≥ 0, we have

F ′(w+)− F ′(w−) =
b∑

k=a+1

∑

m∈M
β

(
1

w
− 1

Hk
nm

)+

I
(

1

w
− 1

H̃k
nm(w)

= 0

)
. (6.38)

When w̃ is the optimal dual variable for the problem in (6.20), by (6.18), F ′(w̃+) is the energy

residual after using the energy-subchannel allocation obtained by (6.28) and we also have F ′(w̃−) ≤
0 ≤ F ′(w̃+). Note that, as discussed in Remark 1, the energy residual may be further reduced by

modifying some aknm from 0 to 1 without affecting the optimality of the problem in (6.20) and the

feasibility of the problem in (6.16)-(6.17). Thus Rn(a, b) is bounded by

Rn(a, b) ≤ F ′(w̃+) (6.39)

≤ F ′(w̃+)− F ′(w̃−) (6.40)

=
b∑

k=a+1

∑

m∈M
β

(
1

w̃
− 1

Hk
nm

)+

I
(

1

w̃
− 1

H̃k
nm(w̃)

= 0

)
. (6.41)

We next show that, after the procedure in Remark 1, (6.41) can be tightened as

Rn(a, b) ≤ β max
m∈M,k∈[a+1,b]

{
1

H̃k
nm(w̃)

− 1

Hk
nm

| w̃ = H̃k
nm(w̃) ≤ Hk

nm

}
. (6.42)

Specifically, if there exists unique (m, k) such that H̃k
nm(w̃) = w̃, then (6.42) holds trivially. If there

are multiple (m, k) such that H̃k
nm(w̃) = w̃, after the procedure in Remark 1, there must exist a

subchannel that when this subchannel is used the energy residual becomes negative (i.e., the energy

allocation becomes infeasible). Then, by contradiction, if (6.42) does not hold, for any (m, k) such

that H̃k
nm(w̃) = w̃ and aknm = 0, using the subchannel m in slot k can always lead positive energy
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residual, i.e.,

Rn(a, b)− β
(

1

H̃k
nm(w̃)

− 1

Hk
nm

)+

(6.43)

>Rn(a, b)− β max
m∈M,k∈[a+1,b]

{
1

H̃k
nm(w̃)

− 1

Hk
nm

| w̃ = H̃k
nm(w̃) ≤ Hk

nm

}
(6.44)

>0 . (6.45)

We next bound the duality gap wabn Rn(a, b). Note that, by (6.41), if there does not exist (n, k)

such that H̃k
nm(wabn ) = wabn , we have Rn(a, b) = 0. Otherwise, by (6.42), we have

wabn Rn(a, b) ≤ max
k∈[a+1,b],m∈M

{
wabn β

(
1

wabn
− 1

Hk
nm

)
| wabn = H̃k

nm(wabn ) ≤ Hk
nm,

}
(6.46)

≤ β max
k∈[a+1,b],m∈M

{
1− wabn

Hk
nm

| wabn = H̃k
nm(wabn ) ≤ Hk

nm

}
(6.47)

≤ β . (6.48)

Moreover, we solve the following equation:

H̃k
nm(w) , Hk

nm/e
(1− w

Hknm
)+

λkm
β = w (6.49)

=⇒ w

Hk
nm

− log
w

Hk
nm

= 1 +
λkm
β

. (6.50)

Denoting G(λ) as the root of x− log(x) = 1 + λ/β, it is easy to verify that, when 0 ≤ x ≤ 1, G(λ)

is a continuous decreasing function where G(0) = 1. Then, substituting G(λ) into (6.47), we have

(6.36).

6.2.2.2 Performance Bound for Algorithm 6.2

Note that, Proposition 6.2 gives the bound on the duality gap between the primal problem in

(6.16)-(6.17) and its dual problem in (6.20) for any adjacent BDP/BFPs; and Algorithm 6.2 solves

such dual problems in (6.20) for all adjacent pairs (a, b) ⊆ Xn. The next result bounds the gap

between the output of Algorithm 6.2 and the optimal solution to the problem in (6.11)-(6.12).

Theorem 6.2. Suppose that (P̃n, Ãn) is the solution obtained by Algorithm 6.2 and (P∗n,A∗n) is

the optimal solution to the problem in (6.11)-(6.12). The performance gap is bounded by

Un,Λ(P∗n,A∗n)− Un,Λ(P̃n, Ãn) ≤
∑

(a,b)⊆Xn

wabn Rn(a, b) (6.51)

≤ Kβ , (6.52)
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where Xn is the (pseudo) BDP/BFP set obtained by Algorithm 6.2, 1/wabn is the corresponding

water level for any adjacent pair (a, b) ⊆ Xn.

Proof. Introducing the dual variables Γn , {γkn ≥ 0, k ∈ K} and Θn , {θkn ≥ 0, k ∈ K}, we define

the Lagrangian function for the problem in (6.11)-(6.12) as

Ln,Λ(Γn,Θn,Pn,An)

, Un,Λ(Pn,An) +
∑

k∈K
γkn

(
Ekn −

k∑

κ=1

∑

m∈M
pκnm

)
−
∑

k∈K
θkn

(
Ekn −

k∑

κ=1

∑

m∈M
pκnm −Bmax

n

)
. (6.53)

Then, the dual problem of (6.11)-(6.12) is

inf
Γn,Θn : γkn≥0,θkn≥0

{
max

An,Pn : aknm∈{0,1},pknm≥0
Ln,Λ(Γn,Θn,Pn,An)

}
. (6.54)

Since the first-order condition is sufficient for the optimality of the inner maximization problem

of (6.54) given An, the optimal energy allocation is

pknm = aknmβ

[
1

wkn
− 1

Hk
nm

]+

, (6.55)

where the water level 1/wkn is determined by

wkn ,
K∑

κ=k

(γκn − θκn) . (6.56)

For all adjacent pair (a, b) ⊆ Xn, we denote w̃kn , wabn for all k ∈ [a + 1, b]. Then, for k =

1, 2, . . . ,K − 1, we calculate θ̃kn ≥ 0 and γ̃kn ≥ 0 based on w̃kn and w̃k+1
n by the following rules:

when w̃kn > w̃k+1
n , we set γ̃kn = w̃kn − w̃k+1

n and θ̃kn = 0; when w̃kn < w̃k+1
n , we set γ̃kn = 0 and

θ̃kn = w̃k+1
n − w̃kn; when w̃kn = w̃k+1

n , we set θ̃kn = γ̃kn = 0. Moreover, for k = K, we set γ̃Kn = w̃Kn and

θ̃Kn = 0. Note that, by Lemma 6.1, the water level 1/w̃kn may only increase/decrease at (pseudo)

BDP/BFPs, respectively. Then, we have γ̃kn > 0 only if k is a (pseudo) BDP and θ̃km > 0 only if k

is a (pseudo) BFP, and γ̃kn = 0 and θ̃km = 0 otherwise.

Denoting Γ̃n , {γ̃kn, k ∈ K} and Θ̃n , {θ̃kn, k ∈ K}, by the weak duality, we always have

Un,Λ(P∗n,A∗n)− Un,Λ(P̃n, Ãn) ≤ min
γkn≥0,θkn≥0

max
aknm∈{0,1},pknm≥0

Ln,Λ(Γn,Θn,Pn,An)− UΛ(P̃n, Ãn)

≤ max
aknm∈{0,1},pknm≥0

Ln,Λ(Γ̃n, Θ̃n,Pn,An)− Un,Λ(P̃n, Ãn) . (6.57)
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By removing the terms with γ̃kn = 0 and/or θ̃kn = 0 in (6.53), we have

max
aknm∈{0,1},pknm≥0

Ln,Λ(Γ̃n, Θ̃n,Pn,An)

= max
aknm∈{0,1},pknm≥0

{Un,Λ(Pn,An)

+
∑

k∈Xn is BDP

γ̃kn

(
Ekn −

k∑

κ=1

∑

m∈M
pκnm

)
−

∑

k∈Xn is BFP

θ̃kn

(
Ekn −

k∑

κ=1

∑

m∈M
pκnm −Bmax

n

)
 .

(6.58)

Note that, since E0
n = 0 and B0

n = 0 (i.e., k = 0 is a BDP), for any (pseudo) BDP/BFP k ∈ Xn,

we have

Ekn −
k∑

κ=1

∑

m∈M
pκnm

=

(
Ekn − E0

n −
k∑

κ=1

∑

m∈M
pκnm + I(0 is BFP)Bmax

n − I(k is BFP)Bmax
n

)
+ I(k is BFP)Bmax

n

=
∑

(a,b)⊆Xn,b≤k

(
Ebn − Ean + I(a is BFP)Bmax

n − I(b is BFP)Bmax
n −

b∑

κ=a+1

∑

m∈M
pκnm

)
+ I(k is BFP)Bmax

n

=
∑

(a,b)⊆Xn,b≤k

(
Un(a, b)−

b∑

κ=a+1

∑

m∈M
pκnm

)
+ I(k is BFP)Bmax

n . (6.59)
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Substituting (6.59) into (6.58), we further have

max
aknm∈{0,1},pknm≥0

Ln,Λ(Γ̃n, Θ̃n,Pn,An)

= max
aknm∈{0,1},pknm≥0



Un,Λ(Pn,An) +

∑

k∈Xn is BDP

γ̃kn
∑

(a,b)⊆Xn,b≤k

(
Un(a, b)−

b∑

κ=a+1

∑

m∈M
pκnm

)

−
∑

k∈Xn is BFP

θ̃kn


 ∑

(a,b)⊆Xn,b≤k

(
Un(a, b)−

b∑

κ=a+1

∑

m∈M
pκnm

)
+Bmax

n −Bmax
n







= max
aknm∈{0,1},pknm≥0



Un,Λ(Pn,An) +

∑

(a,b)⊆Xn

(
Un(a, b)−

b∑

κ=a+1

∑

m∈M
pκnm

)
K∑

κ=a+1

(
γ̃κn − θ̃κn

)




(6.60)

=
∑

(a,b)⊆Xn

max
aknm∈{0,1},pknm≥0

{
b∑

k=a+1

∑

m∈M
βaknm

[
log(1 +

pknmH
k
nm

β
)− λkm

β

]

+

(
Un(a, b)−

b∑

k=a+1

∑

m∈M
pknm

)
wabn

}

= Un,Λ(P̃n, Ãn) +
∑

(a,b)⊆Xn

(
Un(a, b)−

b∑

k=a+1

∑

m∈M
p̃knm

)
wabn (6.61)

= Un,Λ(P̃n, Ãn) +
∑

(a,b)⊆Xn

Rn(a, b)wabn , (6.62)

where (6.60) follows since γkm = 0 if k is not a (pseudo) BDP and θkm = 0 if k is not a (pseudo)

BFP, and (6.61) follows since (P̃n, Ãn) is obtained by solving the dual problem in (6.20) for all

adjacent pairs (a, b) ⊆ Xn where wabn is corresponding optimal dual variable. Then, using (6.57),

(6.51) follows. Moreover, by Proposition 6.2, we further have

Un,Λ(P∗n,A∗n)− Un,Λ(P̃n, Ãn) ≤
∑

(a,b)⊆Xn

β ≤ Kβ . (6.63)

Note that, if the strong duality of the problem in (6.16)-(6.17) holds, the energy-subchannel

allocation obtained by solving the dual problem is also optimal for the primal problem, and by

Proposition 6.1 we have Rn(a, b) = 0. Then, when the strong duality of the problem in (6.16)-

(6.17) holds for all adjacent pairs (a, b) ⊆ Xn, we have Rn(a, b) = 0 for all adjacent pair (a, b) ⊆ Xn,

and by Theorem 6.2 we further have the following corollary.



CHAPTER 6. ENERGY-SUBCHANNEL ALLOCATION FOR MULTIUSER NETWORKS IN
FREQUENCY-SELECTIVE FADING CHANNELS 147

Corollary 6.1. Let Xn be the BDP/BFP set obtained by Algorithm 6.2. If the strong duality of the

problem in (6.16)-(6.17) holds for all adjacent pairs (a, b) ⊆ Xn, the energy-subchannel allocation

obtained by Algorithm 6.2 is optimal for the problem in (6.11)-(6.12).

Moreover, if we let M → ∞ and B = o(B), then β → 0 and by Theorem 6.2, the gap to

optimality diminishes.

Corollary 6.2. The energy-subchannel allocation obtained by Algorithm 6.2 is asymptotically op-

timal for the problem in (6.11)-(6.12) when M →∞ and B = o(M).

If the price-based energy-subchannel allocation problem in (6.11)-(6.12) can be solved optimally,

then the dual problem in (6.6)-(6.7) is solved optimally by Algorithm 6.1. By Theorem 6.1, when

M → ∞ and B = o(M), we have the strong duality for the original problem in (6.3)-(6.4). And

thus the obtained primal solution is optimal to the original problem.

Corollary 6.3. When M → ∞ and B = o(M), the energy-subchannel allocation obtained by

Algorithm 6.1 is asymptotically optimal for the original problem in (6.3)-(6.4).

6.2.3 Final Energy-Subchannel Allocation Adjustment

In general, Algorithm 6.2 is suboptimal for solving the problem in (6.11)-(6.12). Thus the optimality

of the dual problem in (6.6)-(6.7) may not be achieved even with an infinite number of subgradient

updates, and the obtained subchannel allocation in step 2 of Algorithm 6.1 may be infeasible,

i.e., a subchannel may be allocated to more than one transmitter. To recover the feasibility of

the obtained subchannel allocation, for any (m, k) such that
∑

n∈N ã
k
nm > 1, we will only retain

the strongest transmitter, i.e., for the strongest transmitter n0 , arg maxn
{
pknmH

k
nm

}
, we keep

ãkn0m = 1, and for other transmitters, we update ãknm ← 0, Rn(a, b) ← Rn(a, b) + p̃knm and then

set p̃knm ← 0. Note that, although in theory the feasibility is a potential issue of the proposed

algorithm, simulations show that Algorithm 6.1 yields feasible solution most of the time.

Recall that as well as the above feasibility recovery of the subchannel allocation, the positive

energy residual Rn(a, b) is introduced by the weak duality of the problem in (6.16)-(6.17) that may

be zero. Note that, the objective function in (6.3) is non-decreasing with respect to pknm. We next

focus on the segment between slots a and b such that Rn(a, b) is larger than a positive threshold

(namely target segment), and reallocate the energy residual to improve the performance.
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Specifically, for each target segment (a, b) ⊆ Xn, the energy surplus can be written as for

k ∈ [a+ 1, b]:

Rkn , I(a is BFP)Bmax
n + Ekn − Ean −

k∑

κ=a+1

∑

m∈M
p̃κnm , (6.64)

which contains the energy residual that can be reallocated in the current slot, i.e., the reallocatable

energy, and the energy reserved for future use according to the energy allocation p̃knm. In particular,

we have Rn(a, b) = Rbn − I(b is BFP)Bmax
b .

Note that, when we reallocate E0 to subchannel m0 in slot k0, i.e., pk0nm0
← pk0nm0

+ E0, by

(6.64), Rkn is decreased by E0 for all k ∈ [k0, b]. Since the energy surplus cannot be negative, the

reallocatable energy accumulated by slot k can be written as

Ēkn , min
κ∈[k,b]

{Rκn, Rbn − I(b is BFP)Bmax
b } , (6.65)

i.e., given p̃knm we cannot reallocate more than a total of Ēkn to the slots before k otherwise the

energy surplus becomes negative for some slot after k and/or b is no longer a BFP. Then, the

increment of the reallocatable energy in adjacent slots, i.e., Ēkn− Ēk−1
n , is the energy residual newly

introduced in slot k and, we can reallocate the increment to the allocated channels evenly for

immediate use:

rknm =





(Ēkn − Ēk−1
n )/

∑
m′∈M aknm′ if aknm = 1

0 if aknm = 0
(6.66)

and

p̃knm ← p̃knm + rknm (6.67)

for all k ∈ [a + 1, b] such that Ēkn − Ēk−1
n > 0 and m ∈ M. Specifically, using the reallocation in

(6.66), we have
∑b

k=a+1

∑
m∈M rknm = Rn(a, b).

6.3 Causal Energy-Subchannel Allocation

So far we have assumed that both the harvested energy and the channel states for future K time

slots are known in advance for energy-subchannel allocation. In this section, we consider a causal

scheduling mechanism where we assume each transmitter can only observe the current battery level

and channel gains at the beginning of each slot. In our proposed causal scheme, at the beginning

of each slot, each transmitter determines its total transmission energy based on the battery level,
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and then the energy-subchannel allocation for the current slot is calculated by solving a one-shot

energy-subchannel allocation problem. We will make use of the statistics of the energy harvesting

and channel fading processes in computing the total transmission energy policy.

Denoting πn(b) as the decision policy for the total transmission energy (i.e., at any slot, given

the battery level b, transmitter n spends πn(b) transmission energy in this slot), we formulate the

following problem to maximize the sum of discounted expected utilities Jk(π(Bk−1)) by choosing

a proper total transmission energy policy:

max
πn(b) : 0≤πn(b)≤b

E{Hk,Ẽ
k
,k=1,2,...}

[∑

k

ηk−1Jk(π(Bk−1))

]
, (6.68)

where Bk−1 , [Bk−1
1 , Bk−1

2 , . . . , Bk−1
N ] is the vector of the battery levels at the beginning of slot

k, Hk , [Hk
11, H

k
12, . . . ,H

k
NM ] and Ẽ

k
, [Ẽk1 , Ẽ

k
2 , . . . , Ẽ

k
N ] are the vectors of the channel gains

and harvested energy in slot k, respectively, π(Bk−1) , [π1(Bk−1
1 ), π2(Bk−1

2 ) . . . , πN (Bk−1
N )] is the

vector of the total transmission energy, η ∈ [0, 1) is the discount factor, and the battery level is

updated by

Bk
n = min{Bmax

n , Bk−1
n + Ẽkn − πn(Bk−1

n )} . (6.69)

Specifically, in (6.68), we define the utility function as the maximum sum-rate in slot k given the

total transmission energy π(Bk−1), i.e.,

Jk(π(Bk−1)) , max
aknm,p

k
nm

{∑

n

∑

m

βaknm log(1 + pknmH
k
nm/β)

}
, (6.70)

subject to 



∑
m p

k
nm ≤ πn(Bk−1

n ) n ∈ N
∑

n a
k
nm ≤ 1 m ∈M

pknm ≥ 0 n ∈ N ,m ∈M
aknm ∈ {0, 1} n ∈ N ,m ∈M

. (6.71)

Note that, the one-shot energy-allocation problem in (6.70)-(6.71) is a special case of the prob-

lem in (6.3)-(6.4) where K = 1 and E1
n = πn(Bk−1

n ), and thus it can be solved by Algorithm 6.1.

Moreover, when K = 1, in Algorithm 6.1, the solution to the price-based energy-bandwidth alloca-

tion in (6.11)-(6.12) is given in closed-form, i.e., (aknm, p
k
nm) are given by (6.27)-(6.28), respectively,

where the water level 1/wkn is determined by wkn = min argw
{
πn(Bk−1

n )−∑m∈M pknm ≥ 0
}

.
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The problem in (6.68) is an infinite-horizon Markov decision process (MDP) consisting of N in-

dependent Markov chains. Since each transmitter can only observe its own battery level, the utility

has to be viewed as a stochastic function by each transmitter, where the randomness is introduced

by the other transmitters’ battery levels, channel gains, and total transmission energy policies. For

each transmitter, since the statistic of the stochastic utility function is hard to characterize, we use

the Q-learning technique [78] to obtain the total transmission energy policy. In general, Q-learning

is a useful numerical method to solve an MDP problem with stochastic utility function [78][79].

We first define the Q-function Qn(b, p), which represents the expected utility if transmitter n

chooses the total transmission energy p when its battery level is b. Then, in each iteration i, the

Q-function can be updated as follows [78]:

Qn(Bi−1
n , P in)← Qn(Bi−1

n , P in) + αi
[
J i(π(Bi−1)) + η max

0≤p≤Bin
Qn(Bi

n, p)−Qn(Bi−1
n , P in)

]
, (6.72)

where αi ∈ [0, 1] is the learning rate, η ∈ [0, 1) is the discount factor, and

P in ← πn(Bi−1
n ) =





arg max0≤p≤Bi−1
n

Qn(Bi−1
n , p) with probability of 1− ε

random p ∈ [0, Bi−1
n ] with probability of ε

. (6.73)

is the total transmission energy for transmitter n. Note that both Bi
n and P in are discretized

and therefore (6.72) amounts to updating an element in a two-dimensional lookup table in each

iteration. Under certain conditions, Qn(b, p) converges to the expected utility corresponding to the

optimal πn(b) in (6.68), with probability 1 [78]. Specifically, the lookup tables {Qn(b, p), n ∈ N}
are computed offline, using the realizations of the energy harvesting and channel fading processes

Ẽ
k

and Hk. For the online energy-subchannel allocation, at the beginning of slot k, given the

battery level Bk−1
n , the total transmission energy is given by

πn(Bk−1
n ) = arg max

0≤p≤Bk−1
n

Qn(Bk−1
n , p) , (6.74)

for all n ∈ N .

The procedure for computing {Qn(b, p), n ∈ N} is summarized as follows.
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Algorithm 6.3 - Computing the total transmission energy policy by Q-learning

1: Initialization: Randomly generate the non-negative Q-function such that

Qn(b, p) = 0 for p > b for all n ∈ N , specify ε > 0, α > 0, 0 < η < 1, and I > 0

2 i← 0

REPEAT

Calculate π(Bi−1) using (6.73)

Calculate J i(π(Bi−1) by solving the problem in (6.70)-(6.71)

Update Bi using (6.69)

Update Qn(Bi−1n , P in) using (6.72) for all n ∈ N
IF Qn(b, p) converges OR i = I

Obtain the policy πn(b)← arg max0≤p≤bQn(b, p) and stop

ELSE

i← i+ 1

ENDIF

6.4 Simulation Results

Suppose that there are N = 4 transmitters in the network and the scheduling period is K = 20

slots. We assume that the total bandwidth is B = 2 MHz and divide the channel into M = 16

subchannels. For each transmitter n, we set the initial battery level as B0
n = 0 and the battery

capacity as Bmax
n = 6 units. Assume that the harvested energy in each slot follows a truncated

Gaussian distribution with mean µ and variance 1.5 and the channel is frequency-selective Rayleigh

fading, where the delay spread is στ = 1 µs, the number of the paths is 3bστBc = 6, the power of

the j-th path is σ2
j = σ2

h exp(− j
στB

), and σ2
h is chosen to normalize the path loss to

∑6
j=1 σ

2
j /β = σ,

where σ2 is the channel parameter. Moreover, in Algorithm 6.3, we set the discount factor η = 0.9,

the Q-learning exploration probability ε = 0.1, the learning factor α = 0.2, the discretization step

for the battery level, energy, and the decision policy is 0.3, and the maximum iteration number is

I = 2× 105 iterations.

For comparison, we consider two greedy scheduling strategies, namely, the energy greedy policy

(with the optimized subchannel) and the energy-subchannel greedy policy. For the energy greedy

policy, each transmitter tries to use up its available energy in each slot, i.e.,
∑

m p
k
nm = Bk

n.
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Then, given the available energy, we calculate the energy-subchannel allocation by solving the

problem in (6.3)-(6.4) for K = 1 using Algorithm 6.1. For the energy-subchannel greedy policy,

the subchannel is always allocated to the transmitter with the best channel gain, i.e., aknm = I(n =

arg maxn{Hk
nm,∀n ∈ N}), and each transmitter tries to use up its available energy in each slot,

i.e.,
∑

m p
k
nm = Bk

n. Then, given the subchannel allocation, we always split the available energy to

each allocated subchannel evenly. Moreover, since Algorithm 6.1 solves the dual of the problem in

(6.3)-(6.4), the Lagrangian duality function is an upper-bound on the performance of the optimal

energy-subchannel allocation (P∗n,A∗n), i.e.,

∑

n∈N
Cn(P∗n,A∗n) ≤ max

P,A satisfies (6.7)
L(P,A,Λ0) (6.75)

= max
Pn,An satisfy (6.12) for n∈N

{∑

n∈N
Un,Λ0(Pn,An) +

∑

k∈K

∑

m∈M
λkm

}
(6.76)

where Λ0 the channel price obtained by Algorithm 6.1. Since Algorithm 6.2 solves the price-based

energy-allocation problem in (6.11)-(6.12), by Theorem 6.2, (6.76) can be further bounded by

∑

n∈N
Cn(P∗n,A∗n) ≤

∑

n∈N


Un,Λ0(P̃n, Ãn) +

∑

(a,b)⊆Xn

Rn(a, b)


+

∑

k∈K

∑

m∈M
λkm (6.77)

≤ L(P̃, Ã,Λ0) +
∑

n∈N ,(a,b)⊆Xn

Rn(a, b) (6.78)

where (P̃, Ã) is the energy-subchannel allocation obtained by Algorithm 6.2 and Xn is the corre-

sponding (pseudo) BDP/BFP set. We use (6.78) as an upper-bound on the sum-rate of the optimal

energy-subchannel allocation.

To evaluate the performance of the different algorithms/policies, we consider two scenarios,

energy-harvesting varying scenario (EH scenario), where we fix the channel parameter σ2 = 1

and simulate for various means of the harvested energy µ = 1.6, 1.8, 2.0, 2.2, 2.4, 2.6, and channel-

fading varying scenario (CF scenario), where we fix the mean of the harvested energy µ = 2 and

simulate for various channel parameters σ2 = 0.7, 0.8, 0.9, 1.0, 1.1, 1.2. For each scenario, we run the

simulation 500 times to compare the performances of the proposed non-causal algorithm (Algorithm

6.1) with and without the energy residual reuse, respectively, the causal algorithm (Algorithm 6.3),

the energy greedy policy, and the energy-subchannel greedy policy, along with the upper-bound on

the optimal performance given in (6.78), as shown in Figs. 6.3 and 6.4 for EH and CF scenarios,

respectively.
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Figure 6.3: Performance comparisons for various energy harvesting mean parameter µ (EH sce-

nario).

It is seen from Figs. 6.3 and 6.4 that the proposed non-causal algorithm with energy residual

reuse achieves the best performance, which is close to the upper-bound on the optimal performance

and slightly better than the non-causal algorithm without energy residual reuse. For the causal

algorithm, since the energy-subchannel allocation is calculated without using the predictions of the

harvested energy and subchannel gains in the future slots, it performs worse as compared to the

proposed non-causal algorithm, as expected. Although both the causal algorithm and energy greedy

policy optimize the subchannel allocation given the total energy spending in each slot, the causal

algorithm performs better because it learns the relationship between the total energy expenditure

and the sum-rate from the past slots and then uses it to decide the energy spending in the current

slot. Moreover, the energy-subchannel greedy policy performs the worst among the simulated

algorithms/policies. For both scenarios and algorithms/policies, the performance improves as the

mean of the energy harvesting or the channel parameter increases.

Next, we set σ2 = 1, µ = 2, and the initial λkm = 0 to examine the convergence of Algorithm
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Figure 6.4: Performance comparisons for various channel parameter σ2 (CF scenario).

6.1. We compare the upper-bound on the optimal performance and the sum-rate achieved by the

obtained feasible energy-subchannel allocation with and without the reuse of the energy residual,

respectively, over the iterations. It can be seen from Fig. 6.5 that the upper-bound on the optimal

performance decreases and the sum-rate increases with iterations, respectively. The three curves

converge after around 30 iterations and finally leave a small gap due to the weak duality of the

problem in (6.3)-(6.4) and the suboptimality of Algorithm 6.2. We note that, after utilizing the

energy residual, the performance of Algorithm 6.1 improves and the gap to the upper-bound on

the optimal performance decreases. Specifically, this gap represents the maximum rate loss of the

proposed non-causal algorithm compared with the optimal solution. Moreover, in Fig. 6.6, we show

the number of the occurrences that a subchannel is allocated to more than one transmitter (which

is called conflict) for the allocation obtained by Algorithm 6.1 over the iterations. It is seen that

the number of the conflicts decreases in general and finally drops to 0 after 27 iterations.
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Figure 6.5: The convergence of Algorithm 6.1 over iterations.

6.5 Conclusions

We have considered the energy-subchannel scheduling problem for multiple energy harvesting trans-

mitters in frequency-selective fading channels. Assuming that the harvested energy and channel

gains can be predicted for the scheduling period, we have developed an algorithm to obtain the

energy-subchannel allocation for the scheduling period for each transmitter. Although the joint

energy-subchannel scheduling problem is a mixed integer program and non-convex, it is shown that

the proposed algorithm is asymptotically optimal when the bandwidth of each subchannel goes

to zero. A causal algorithm is also proposed based on the Q-learning method that makes use of

the statistics of the energy harvesting and channel fading processes. Simulation results demon-

strate that the proposed non-causal algorithm performs closely to the upper-bound on the optimal

performance and the proposed causal algorithm outperforms several heuristic allocation policies.



CHAPTER 6. ENERGY-SUBCHANNEL ALLOCATION FOR MULTIUSER NETWORKS IN
FREQUENCY-SELECTIVE FADING CHANNELS 156

0 5 10 15 20 25 30 35 40
0

50

100

150

200

250

Iteration Numbers

N
u

m
b

e
r 

o
f 

C
o

n
fl
ic

ts

Figure 6.6: The number of subchannel conflicts over iterations.



CHAPTER 7. CONCLUSIONS 157

Chapter 7

Conclusions

Motivated by the rapid developments of energy harvesting technologies and the increasing demands

for wireless communication systems, we focused on the energy harvesting communications and

studied the resource allocation problems to make the best use of the limited resources. In this thesis,

we proposed resource allocation algorithms for the following energy harvesting communication

systems:

• energy allocation for the energy harvesting communication tags (EnHANTs);

• energy allocation for single energy harvesting transmitter;

• jointly energy-bandwidth allocation for energy harvesting networks in multiple flat-fading

point-to-point channels;

• jointly energy-bandwidth allocation for energy harvesting networks in multiple flat-fading

broadcasting channels;

• jointly energy-subchannel allocation for energy harvesting networks in frequency-selective

fading channels.

By proposing the resource allocation algorithms, we aim to make the energy harvesting com-

munication system operate in an efficient way, making the best use of the limited resource and

providing the reliable and quality communication service.



BIBLIOGRAPHY 158

Bibliography

[1] S. Sudevalayam and P. Kulkarni, “Energy harvesting sensor nodes: survey and implications,”

IEEE Commun. Surveys Tuts., vol. 13, no. 3, pp. 443–461, Sep. 2011.

[2] J. A. Paradiso and T. Starner, “Energy scavenging for mobile and wireless electronics,” IEEE

Trans. Pervasive Computing, vol. 4, pp. 18–27, Jan. 2005.

[3] C. Han and et al, “Green radio: radio techniques to enable energy-efficient wireless networks,”

IEEE Commun. Mag., vol. 49, no. 6, pp. 46–54, Jun. 2011.

[4] Y. Chen, S. Zhang, S. Xu, and G. Li, “Fundamental trade-offs on green wireless networks,”

IEEE Commun. Mag., vol. 49, no. 6, pp. 30–37, Jun. 2011.

[5] A. Bianzino, C. Chaudet, D. Rossi, and J. Rougier, “A survey of green networking research,”

IEEE Commun. Surveys Tuts., vol. 14, no. 1, pp. 3–20, Jan. 2012.

[6] H. Bogucka and A. Conti, “Degrees of freedom for energy savings in practical adaptive wireless

systems,” IEEE Commun. Mag., vol. 49, no. 6, pp. 38–45, Jun. 2011.

[7] Y. Wu and et al, “Green transmission technologies for balancing the energy efficiency and

spectrum efficiency trade-off,” IEEE Commun. Mag., vol. 52, no. 11, pp. 112–120, Nov. 2014.

[8] D. Gunduz, K. Stamatiou, M. Michelusi, and M. Zorzi, “Designing intelligent energy harvesting

communication systems,” IEEE Commun. Mag., vol. 52, no. 1, pp. 210–216, Jan. 2014.

[9] M. Ismail and W. Zhuang, “Green radio communications in a heterogeneous wireless medium,”

IEEE Wireless Commun. Mag., vol. 21, no. 3, pp. 128–135, Jun. 2014.



BIBLIOGRAPHY 159

[10] L. Guan and A. Zhu, “Green communications: digital predistortion for wideband RF power

amplifiers,” IEEE Microw. Mag., vol. 15, no. 7, pp. 84–99, Nov. 2014.

[11] J. Wu, “Green wireless communications: from concept to reality,” IEEE Wireless Commun.

Mag., vol. 19, no. 4, pp. 4–5, Aug. 2012.

[12] Z. Zheng, X. Zhang, L. Cai, R. Zhang, and X. Shen, “Sustainable communication and net-

working in two-tier green cellular networks,” IEEE Trans. Wireless Commun., vol. 21, no. 4,

pp. 47–53, Aug. 2014.

[13] A. Conti, M. Win, and M. Chiani, “Slow adaptive M-QAM with diversity in fast fading and

shadowing,” vol. 55, no. 5, pp. 895–905, May 2007.

[14] Z. Hasan, H. Boostanimehr, and V. Bhargava, “Green cellular networks: a survey, some re-

search issues and challenges,” IEEE Commun. Surveys Tuts., vol. 13, no. 4, pp. 524–540, Nov.

2011.

[15] R. Prasad, S. Devasenapathy, V. Rao, and J. Vazifehdan, “Reincarnation in the ambiance:

devices and networks with energy harvesting,” IEEE Commun. Surveys Tuts., vol. 16, no. 1,

pp. 195–213, Sep. 2014.

[16] I. Krikidis, S. Timotheou, S. Nikolaou, G. Zheng, D. Ng, and R. Schober, “Simultaneous

wireless information and power transfer in modern communication systems,” IEEE Commun.

Mag., vol. 52, no. 11, pp. 104–110, Nov. 2014.

[17] S. Chen, P. Sinha, N. Shroff, and C. Joo, “Finite-horizon energy allocation and routing scheme

in rechargeable sensor networks,” in Proc. IEEE INFOCOM 11’, Apr. 2011, pp. 2273–2281.

[18] G. Yang, B. Stark, S. Hollis, and S. Burrow, “Challenges for energy harvesting systems under

intermittent excitation,” IEEE J. Emerg. Sel. Topics Circuits Syst., vol. 4, no. 3, pp. 364–374,

Sep. 2014.

[19] M. Gorlatova, P. Kinget, I. Kymissis, D. Rubenstein, X. Wang, and G. Zussman, “Energy

harvesting active networked tags (EnHANTs) for ubiquitous object networking,” in Proc.

ACM MobiCom 09’, Sep. 2009, pp. 18–25.



BIBLIOGRAPHY 160

[20] ——, “Energy harvesting active networked tags (EnHANTs) for ubiquitous object network-

ing,” IEEE Wireless Commun. Mag., vol. 17, no. 6, pp. 18–25, Dec. 2010.

[21] O. Ozel and S. Ulukus, “Achieving AWGN capacity under stochastic energy harvesting,” IEEE

Trans. Inf. Theory, vol. 58, no. 10, pp. 6471–6483, Oct. 2012.

[22] R. Rajesh, V. Sharma, and P. Viswanath, “Capacity of Gaussian channels with energy har-

vesting and processing cost,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2563–2575, May

2014.

[23] Y. Dong and A. Ozgur, “Approximate capacity of energy harvesting communication with finite

battery,” in Proc. IEEE ISIT 14’, Jun. 2014, pp. 801–805.

[24] O. Ozel, K. Tutuncuoglu, S. Ulukus, and A. Yener, “Capacity of the discrete memoryless

energy harvesting channel with side information,” in Proc. IEEE ISIT 14’, Jun. 2014, pp.

796–800.

[25] A. Nasir, X. Zhou, S. Durrani, and R. Kenedy, “Relaying protocols for wireless energy har-

vesting and information processing,” IEEE Trans. Wireless Commun., vol. 12, no. 7, pp.

3622–3636, Jul. 2013.

[26] L. Lin, N. Shroff, and R. Srikant, “Asymptotically optimal energy-aware routing for multihop

wireless networks with renewable energy sources,” IEEE/ACM Trans. Netw., vol. 15, no. 5,

pp. 1021–1034, Oct. 2007.

[27] Y. Wu and W. Liu, “Routing protocol based on genetic algorithm for energy harvesting-wireless

sensor networks,” IET Wireless Sensor Syst., vol. 3, no. 2, pp. 112–118, Jun. 2013.

[28] S. Sarkar, M. Khouzani, and K. Kar, “Optimal routing and scheduling in multihop wireless

renewable energy networks,” IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1792–1798, Jul.

2013.

[29] G. Martinez, S. Li, and C. Zhou, “Wastage-aware routing in energy-harvesting wireless sensor

networks,” IEEE Sensors J., vol. 14, no. 9, pp. 2967–2974, Sep. 2014.



BIBLIOGRAPHY 161

[30] H. Dhillon, Y. Li, P. Nuggehalli, Z. Pi, and J. Andrews, “Fundamentals of heterogeneous

cellular networks with energy harvesting,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp.

2782–2797, May 2014.

[31] M. Zheng, P. Pawelczak, S. Stanczak, and H. Yu, “Planning of cellular networks enhanced by

energy harvesting,” vol. 17, no. 6, pp. 1092–1095, Jun. 2013.

[32] L. Liu, R. Zhang, and K. Chua, “Wireless information transfer with opportunistic energy

harvesting,” IEEE Trans. Wireless Commun., vol. 12, no. 1, pp. 288–300, Jan. 2013.

[33] S. Kim and et al, “Ambient RF energy-harvesting technologies for self-sustainable standalone

wireless sensor platforms,” Proc. IEEE, vol. 102, no. 11, pp. 1649–1666, Nov. 2014.

[34] V. Chawla and S. H. Dong, “An overview of passive RFID,” IEEE Commun. Mag., vol. 45,

no. 9, pp. 11–17, Sep. 2007.

[35] A. Janek, C. Steger, R. Weiss, J. Preishuber-Pfluegl, and M. Pistauer, “Lifetime extension of

semi-passive UHF RFID tags using special power management techniques and energy harvest-

ing devices,” in Proc. IEEE AFRICON 07’, Sep. 2007, pp. 1–7.

[36] F. Iannello, O. Simeone, and U. Spagnolini, “Energy management policies for passive RFID

sensors with RF-energy harvesting,” in Proc. IEEE ICC 10’, May 2010, pp. 1–6.

[37] K. Yang and X. Wang, “Battery-aware adaptive modulation based on large-scale MDP,” IEEE

Trans. Wireless Commun., vol. 7, no. 1, pp. 72–77, Jan. 2008.

[38] ——, “Battery-aware adaptive modulation with QoS constraints,” IEEE Trans. Commun.,

vol. 54, no. 10, pp. 1797–1805, Oct. 2006.

[39] V. Sharma, U. Mukherji, V. Joseph, and S. Gupta, “Optimal energy management policies for

energy harvesting sensor nodes,” IEEE Trans. Wireless Commun., vol. 9, no. 4, pp. 1326–1336,

Apr. 2010.

[40] K. Tutuncuoglu and A. Yener, “Optimum transmission policies for battery limited energy

harvesting nodes,” IEEE Trans. Commun., vol. 11, no. 3, pp. 1180–1189, Mar. 2012.



BIBLIOGRAPHY 162

[41] C. Ho and R. Zhang, “Optimal energy allocation for wireless communications with energy

harvesting constraints,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4808–4818, Sep. 2012.

[42] O. Ozel, K. Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, “Transmission with energy har-

vesting nodes in fading wireless channels: optimal policies,” IEEE J. Sel. Areas Commun.,

vol. 29, no. 8, pp. 1732–1743, Sep. 2011.

[43] Z. Wang, V. Aggarwal, and X. Wang, “Renewable energy scheduling for fading channels with

maximum power constraint,” in Proc. IEEE Allerton 13’, Oct. 2013, pp. 1394–1400.

[44] Q. Bai, R. Amjad, and J. Nossek, “Average throughput maximization for energy harvesting

transmitters with causal energy arrival information,” in Proc. IEEE WCNC 13’, Apr. 2013,

pp. 4232–4237.

[45] P. Blasco, D. Gunduz, and M. Dohler, “A learning theoretic approach to energy harvesting

communication system optimization,” IEEE Trans. Wireless Commun., vol. 12, no. 4, pp.

1872–1882, Apr. 2013.

[46] J. Yang and S. Ulukus, “Optimal packet scheduling in a multiple access channel with energy

harvesting transmitters,” J. Commun. Netw., vol. 14, no. 2, pp. 140–150, Apr. 2012.

[47] K. Tutuncuoglu and A. Yener, “Sum-rate optimal power policies for energy harvesting trans-

mitters in an interference channel,” J. Commun. Netw., vol. 14, no. 2, pp. 151–161, Apr.

2012.

[48] O. Ozel, Y. Jing, and S. Ulukus, “Optimal broadcast scheduling for an energy harvesting

rechargeable transmitter with a finite capacity battery,” IEEE Trans. Wireless Commun.,

vol. 11, no. 8, pp. 2193–2203, Jun. 2012.

[49] L. Huang and M. Neely, “Utility optimal scheduling in energy-harvesting networks,”

IEEE/ACM Trans. Netw., vol. 21, no. 4, pp. 1117–1130, Aug. 2013.

[50] B. Gurakan, O. Ozel, J. Yang, and S. Ulukus, “Energy cooperation in energy harvesting

communications,” IEEE Trans. Commun., vol. 61, no. 12, pp. 4884–4898, Nov. 2013.

[51] K. Tutuncuoglu and A. Yener, “Cooperative energy harvesting communications with relaying

and energy sharing,” in Proc. IEEE ITW 13’, Sep. 2013, pp. 1–5.



BIBLIOGRAPHY 163

[52] N. Tekbiyik, T. Girici, E. Uysal-Biyikoglu, and K. Leblebicioglu, “Proportional fair resource

allocation on an energy harvesting downlink,” IEEE Trans. Wireless Commun., vol. 12, no. 4,

pp. 1699–1711, Apr. 2013.

[53] Z. Wang, V. Aggarwal, and X. Wang, “Optimal energy-bandwidth allocation for energy har-

vesting interference networks,” in Proc. IEEE ISIT 14’, Jul. 2014, pp. 1166–1170.

[54] K. Kim, Y. Han, and S. Kim, “Joint subcarrier and power allocation in uplink OFDMA

systems,” IEEE Commun. Lett., vol. 9, no. 6, pp. 526–528, Jun. 2005.

[55] H. Zhu and J. Wang, “Chunk-based resource allocation in OFDMA systems - Part II: Joint

chunk, power and bit allocation,” IEEE Trans. Commun., vol. 60, no. 2, pp. 499–509, Dec.

2011.

[56] A. Abrardo, M. Belleschi, P. Detti, and M. Moretti, “Message passing resource allocation for

the uplink of multi-carrier multi-format systems,” IEEE Trans. Wireless Commun., vol. 11,

no. 1, pp. 1536–1276, Jan. 2012.

[57] K. Yang, N. Prasad, and X. Wang, “A message-passing approach to distributed resource

allocation in uplink DFT-Spread-OFDMA systems,” IEEE Trans. Commun., vol. 59, no. 4,

pp. 1099–1113, Apr. 2011.

[58] W. Yu and R. Liu, “Dual methods for nonconvex spectrum optimization of multicarrier sys-

tems,” IEEE Trans. Commun., vol. 54, no. 7, pp. 1310–1322, Jul. 2006.

[59] L. Yang and G. B. Giannakis, “Battery-aware adaptive modulation with QoS constraints,”

IEEE Signal Process. Mag., vol. 21, no. 6, pp. 26–54, Nov. 2004.

[60] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306,

Apr. 2006.

[61] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk, “Signal processing with

compressive measurements,” IEEE J. Select. Topics Sig. Process., vol. 4, no. 2, pp. 445–460,

Apr. 2010.

[62] C. Carbonelli and U. Mengali, “M-PPM noncoherent receivers for uwb applications,” IEEE

Trans. Wireless Commun., vol. 5, no. 8, pp. 2285–2294, Aug. 2006.



BIBLIOGRAPHY 164

[63] C. Hu, R. Khanna, J. Nejedlo, , K. Hu, H. Liu, and P. Chiang, “A 90 nm-CMOS, 500 Mbps, 3-5

Ghz fully-integrated IR-UWB transceiver with multipath equalization using pulse injection-

locking for receiver phase synchronization,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp.

1076–1088, May 2011.

[64] A. Seyedi and B. Sikdar, “Performance modeling of transmission schedulers for sensor networks

capable of energy harvesting,” in Proc. IEEE ICC 10’, May 2010, pp. 1–5.

[65] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. New

York: John Wiley & Sons, 1994.

[66] J. Piorno, C. Bergonzini, K. Atienza, and T. Rosing, “Prediction and management in energy

harvested wireless sensor nodes,” in Proc. VITAE 09’, May 2009, pp. 6–10.

[67] J. Lu, S. Liu, Q. Wu, and Q. Qiu, “Accurate modeling and prediction of energy availability

in energy harvesting real-time embedded systems,” in Proc. Green Computing Conf. 10’, Aug.

2010, pp. 469–476.

[68] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge University

Press, 2009.

[69] Z. Wang, V. Aggarwal, and X. Wang, “Iterative dynamic water-filling for fading multiple-access

channels with energy harvesting,” available at arXiv 1401.2376, Aug. 2013.

[70] T. Cover and J. Thomas, Elements of Information Theory. New York: Wiley, 1991.

[71] M. Gorlatova, A. Wallwater, and G. Zussman, “Networking low-power energy harvesting de-

vices: measurements and algorithms,” IEEE Trans. Mobile Comput., vol. 12, no. 9, pp. 1853–

1233, Sep. 2013.

[72] A. Duel-Hallen, “Fading channel prediction for mobile radio adaptive transmission systems,”

Proc. IEEE, vol. 95, no. 12, pp. 2299–2313, Dec. 2007.

[73] J. Yang, O. Ozel, and S. Ulukus, “Broadcasting with an energy harvesting rechargeable trans-

mitter,” IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 571–583, Feb. 2012.



BIBLIOGRAPHY 165

[74] ——, “Optimal scheduling over fading broadcast channels with an energy harvesting trans-

mitter,” in Proc. IEEE CAMSAP 11’, Dec. 2011, pp. 193–196.

[75] H. Kushner and P. Whiting, “Convergence of proportional-fair sharing algorithms under gen-

eral conditions,” IEEE Trans. Wireless Commun., vol. 3, no. 4, pp. 1250–1259, Jul. 2004.

[76] R. Burden and J. Faires, Numerical Analysis. Boston: PWS-KENT, 1989.

[77] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge: Cambridge

University Press, 2005.

[78] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. Cambridge, MA: MIT

Press, 1988.

[79] L. Buoniu and B. S. R. Babuka, “Multi-agent reinforcement learning: an overview,” Innova-

tions in Multi-Agent Systems and Applications, vol. 310, no. 1, pp. 183–221, 2010.


	1 Introduction
	1.1 Background
	1.2 Literature Review
	1.3 Outline and Contributions
	1.3.1 Energy Allocation for Single EH Transmitter
	1.3.2 Joint Energy-Bandwidth Allocation for EH Networks


	2 Energy Allocation for Enhanced Energy Harvesting Communication Tags
	2.1 System Descriptions
	2.1.1 Communication Model
	2.1.2 Energy Harvesting Model

	2.2 Problem Statement
	2.2.1 Performance Measure
	2.2.2 Markov Decision Process
	2.2.3 The MDP Formulation

	2.3 Computing the Optimal Energy Allocation Policy
	2.3.1 Modified Policy Iteration Algorithm
	2.3.2 Convergence of the MPI Algorithm

	2.4 Simulation Results
	2.5 Conclusions

	3 Energy Allocation for Energy Harvesting Transmitters
	3.1 Problem Formulation
	3.1.1 System Model
	3.1.2 Problem Formulation

	3.2 Approximate Value Function
	3.2.1 Value Function Approximation
	3.2.2 Concavity of Approximate Value Function

	3.3 energy allocation with Prefect Energy Prediction
	3.3.1 The Optimal Solution to (3.27)
	3.3.2 Calculating the Approximate Value Function

	3.4 Energy allocation with Imperfect Energy Prediction
	3.4.1 Model with Imperfect Energy Prediction
	3.4.2 Complexity and Performance

	3.5 Simulation Results
	3.6 Conclusions
	3.7 Appendices
	3.7.1 Proof of Lemma 3.3
	3.7.2 Proof of Theorem 3.3


	4 Energy-Bandwidth Allocation for Flat-Fading Point-to-Point Channels
	4.1 System Model and Problem Formulation
	4.1.1 System Model
	4.1.2 Problem Formulation
	4.1.3 Optimal Energy Discharge Allocation

	4.2 Iterative Algorithm and its Optimality
	4.2.1 Iterative Algorithm
	4.2.2 Proof of Optimality

	4.3 Throughput Maximization for Multiple Point-to-Point Channels
	4.3.1 Solving EPn: Discounted Dynamic Water-Filling
	4.3.2 Solving BPk(): Bandwidth Fitting Algorithm

	4.4 Suboptimal Algorithm with Causal Information
	4.5 Simulation Results
	4.6 Conclusions
	4.7 Appendices
	4.7.1 Proof of Theorem 4.2
	4.7.2 Proof of Proposition 4.2


	5 Energy-Bandwidth Allocation for Flat-Fading Broadcast Channels
	5.1 Multiple Orthogonal Broadcast Channels
	5.1.1 Maximizing Network Throughput
	5.1.2 Optimal Algorithms for Solving Subproblems

	5.2 Multiple Non-Orthogonal Broadcast Channels
	5.2.1 Problem Formulation
	5.2.2 Solving the Problem in (5.47)
	5.2.3 Special Case: Equal Weights
	5.2.4 Achievable Rate Regions

	5.3 Achieving Proportional Fairness in Orthogonal Broadcast Channels
	5.3.1 PF Throughput Maximization
	5.3.2 Obtaining the PF Weights

	5.4 Simulation Results
	5.4.1 Weighted Sum-Rate Maximization
	5.4.2 PF Throughput Maximization

	5.5 Conclusions
	5.6 Appendix
	5.6.1 Proof of Proposition 5.2


	6 Energy-Subchannel Allocation for Multiuser Networks in Frequency-Selective Fading Channels
	6.1 System Model and Problem Formulations
	6.1.1 System Model
	6.1.2 Problem Formulation

	6.2 Solving the Price-Based Energy-Subchannel Allocation Problem
	6.2.1 Proposed Algorithm
	6.2.2 Performance Analysis
	6.2.3 Final Energy-Subchannel Allocation Adjustment

	6.3 Causal Energy-Subchannel Allocation
	6.4 Simulation Results
	6.5 Conclusions

	7 Conclusions
	Bibliography

