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ABSTRACT 

Understanding and Reducing Clinical Data Biases 

Daniel Fort 

The vast amount of clinical data made available by pervasive electronic health records 

presents a great opportunity for reusing these data to improve the efficiency and lower the 

costs of clinical and translational research. A risk to reuse is potential hidden biases in 

clinical data. While specific studies have demonstrated benefits in reusing clinical data 

for research, there are significant concerns about potential clinical data biases. 

 

This dissertation research contributes original understanding of clinical data biases.  

Using research data carefully collected from a patient community served by our 

institution as the reference standard, we examined the measurement and sampling biases 

in the clinical data for selected clinical variables. Our results showed that the clinical data 

and research data had similar summary statistical profiles, but that there were detectable 

differences in definitions and measurements for variables such as height, diastolic blood 

pressure, and diabetes status. One implication of these results is that research data can 

complement clinical data for clinical phenotyping.  We further supported this hypothesis 

using diabetes as an example clinical phenotype, showing that integrated clinical and 

research data improved the sensitivity and positive predictive value. 



 

 i 

Table of Contents 

List	
  of	
  Charts,	
  Graphs,	
  Illustrations	
  ............................................................................................	
  v	
  

Acknowledgments	
  ........................................................................................................................	
  viii	
  

Dedication	
  ...........................................................................................................................................	
  ix	
  

1.	
   Introduction	
  and	
  Significance	
  .....................................................................................	
  1	
  

Overview	
  ..............................................................................................................................................	
  1	
  

Specific	
  Aims	
  .......................................................................................................................................	
  1	
  

Background	
  .........................................................................................................................................	
  3	
  

Electronic	
  Clinical	
  Data	
  .................................................................................................................................	
  3	
  

Current	
  State	
  of	
  Electronic	
  Clinical	
  Data	
  Validation	
  ........................................................................	
  4	
  

Gaps	
  in	
  Electronic	
  Clinical	
  Data	
  Validation	
  ..........................................................................................	
  6	
  

Validating	
  Datasets	
  vs.	
  Variables	
  ..............................................................................................................	
  7	
  

Gaps	
  in	
  Validating	
  Whole	
  Datasets	
  ..........................................................................................................	
  7	
  

Gaps	
  in	
  Effect	
  and	
  Treatment	
  of	
  Missing	
  Data	
  ....................................................................................	
  8	
  

Further	
  Gaps	
  and	
  Opportunities	
  ...............................................................................................................	
  8	
  

Setting	
  ...................................................................................................................................................	
  9	
  

Clinical	
  Data	
  Warehouse	
  ...........................................................................................................................	
  10	
  

Washington	
  Heights-­‐Inwood	
  Informatics	
  Infrastructure	
  for	
  Community-­‐Centered	
  

Comparative	
  Effectiveness	
  Research	
  ...................................................................................................	
  10	
  

Aims	
  ....................................................................................................................................................	
  12	
  

Aim	
  1:	
  Examining	
  Clinical	
  Data	
  for	
  Bias	
  .............................................................................................	
  13	
  

Aim	
  2:	
  Validation	
  of	
  Existing	
  Datasets	
  ................................................................................................	
  16	
  

Aim	
  3:	
  Addressing	
  Gaps	
  and	
  Opportunities	
  ......................................................................................	
  19	
  

Conclusion	
  ........................................................................................................................................	
  23	
  



 

 ii 

2.	
   Examining	
  Clinical	
  Data	
  for	
  Bias	
  .............................................................................	
  24	
  

Aim	
  1:	
  Examining	
  Clinical	
  Data	
  for	
  Bias	
  .................................................................................	
  24	
  

Study	
  1A	
  .............................................................................................................................................	
  24	
  

Introduction	
  ....................................................................................................................................................	
  24	
  

Setting	
  ...............................................................................................................................................................	
  27	
  

Datasets	
  and	
  Processing	
  ............................................................................................................................	
  29	
  

Processing	
  .......................................................................................................................................................	
  31	
  

Sampling	
  Bias	
  .................................................................................................................................................	
  34	
  

Measurement	
  Bias	
  .......................................................................................................................................	
  41	
  

Combining	
  Results	
  .......................................................................................................................................	
  45	
  

Study	
  1B:	
  eMERGE	
  Type	
  II	
  Diabetes	
  Phenotyping	
  Algorithm	
  .........................................	
  55	
  

Introduction	
  ....................................................................................................................................................	
  55	
  

Methods	
  ............................................................................................................................................................	
  57	
  

Results	
  ...............................................................................................................................................................	
  62	
  

Discussion	
  ........................................................................................................................................................	
  66	
  

Limitations	
  ......................................................................................................................................................	
  71	
  

Additional	
  Comparisons:	
  Missing	
  Data	
  ...................................................................................	
  72	
  

Background	
  .....................................................................................................................................................	
  72	
  

Innovation	
  .......................................................................................................................................................	
  72	
  

Methods	
  ............................................................................................................................................................	
  73	
  

Results	
  ...............................................................................................................................................................	
  74	
  

Conclusion/Discussion	
  ..............................................................................................................................	
  76	
  

Additional	
  Comparisons:	
  Categorical	
  Analysis	
  ....................................................................	
  77	
  

Background	
  .....................................................................................................................................................	
  78	
  

Methods	
  ............................................................................................................................................................	
  78	
  



 

 iii 

Results	
  ...............................................................................................................................................................	
  78	
  

Discussion/Conclusion	
  ..............................................................................................................................	
  79	
  

3.	
   Dataset	
  Validity	
  Analysis	
  ...........................................................................................	
  81	
  

Aim	
  2:	
  Validation	
  of	
  Existing	
  Datasets	
  ....................................................................................	
  81	
  

Study	
  2A:	
  Introduction	
  .................................................................................................................	
  81	
  

Dataset	
  Validity	
  Analysis	
  Methods	
  .......................................................................................................	
  85	
  

Comparing	
  Two	
  Datasets	
  ..........................................................................................................................	
  87	
  

Study	
  2B:	
  Data	
  Missing	
  at	
  Random	
  ...........................................................................................	
  93	
  

Summary	
  ..........................................................................................................................................................	
  93	
  

Introduction	
  ....................................................................................................................................................	
  93	
  

Methods	
  ............................................................................................................................................................	
  96	
  

Results	
  ...............................................................................................................................................................	
  98	
  

Limitations	
  ....................................................................................................................................................	
  100	
  

Conclusions	
  and	
  Recommendations	
  ..................................................................................................	
  100	
  

4.	
   Addressing	
  Gaps	
  and	
  Opportunities	
  ....................................................................	
  102	
  

Aim	
  3:	
  Addressing	
  Gaps	
  and	
  Opportunities	
  ........................................................................	
  102	
  

Study	
  3A:	
  Imputing	
  Missing	
  Data	
  in	
  a	
  Clinical	
  Dataset	
  ....................................................	
  102	
  

Methods	
  Background	
  ................................................................................................................................	
  102	
  

Methods	
  ..........................................................................................................................................................	
  108	
  

Results	
  .............................................................................................................................................................	
  111	
  

Limitations	
  ....................................................................................................................................................	
  112	
  

Discussion	
  and	
  Contributions	
  ...............................................................................................................	
  112	
  

Study	
  3B:	
  Nearest	
  Neighbor	
  Matching	
  between	
  Clinical	
  and	
  Survey	
  Records	
  .........	
  113	
  

Background	
  ...................................................................................................................................................	
  114	
  



 

 iv 

Methods	
  ..........................................................................................................................................................	
  115	
  

Results	
  .............................................................................................................................................................	
  115	
  

Discussion	
  and	
  Conclusion	
  .....................................................................................................................	
  116	
  

Study	
  3C:	
  Propensity	
  Score	
  to	
  Indicate	
  Representativeness	
  in	
  a	
  Dataset	
  .................	
  118	
  

Methods	
  ..........................................................................................................................................................	
  119	
  

Results	
  and	
  Discussion	
  ............................................................................................................................	
  120	
  

5.	
   Conclusions	
  and	
  Future	
  Work	
  ................................................................................	
  122	
  

Conclusions	
  ....................................................................................................................................	
  122	
  

Future	
  Work	
  ...................................................................................................................................	
  125	
  

Contributions	
  .................................................................................................................................	
  126	
  

6.	
   Bibliography	
  .................................................................................................................	
  127	
  

 

  



 

 v 

List of Charts, Graphs, Illustrations 

Table 1-1: Study research questions and conclusions 2	
  

Table 1-2: Datasets and definitions for study 1A 14	
  

Table 1-3: Datasets and definitions for study 1B 14	
  

Table 1-4: Datasets and definitions for study 2A 17	
  

Table 1-5: Datasets and definitions for study 2B 18	
  

Table 1-6: Datasets and definitions for study 3A 20	
  

Table 1-7: Datasets and definitions for study 3B 22	
  

Table 1-8: Datasets and definitions for study 3C 23	
  

Table 2-1: Datasets and definitions for Study 1A 29	
  

Table 2-2: Clinical variables, definitions, and local mappings 32	
  

Table 2-3: Summary statistics for Household, Clinical Raw, and two Clinical Sampled 

cohorts 37	
  

Table 2-4: Census gender and age distributions for WICER zip codes 38	
  

Table 2-5: Summary statistics for Weighted samples 39	
  

Table 2-6: P-values of comparison between Raw Clinical and Clinical Sampled datasets 

to the Household dataset 40	
  

Table 2-7: Summary statistics and p-value of comparison between the Matched samples

 44	
  

Table 2-8: Summary statistics and p-values of comparison for both Clinical and Survey 

samples and the Matched samples to parse measurement and selection bias 51	
  



 

 vi 

Table 2-9: Example summary statistics for alternate data point choice. While summary 

statistics can be significantly different from each other, alternate choices would not 

have changed the conclusions of the study 51	
  

Table 2-10: Sensitivity, specificity, F-measure, and Positive Predictive Value of simple 

diabetes phenotype and its components 52	
  

Table 2-11: DM2 Phenotyping Algorithm components and definitions 59	
  

Table 2-12: Patient level data variables and definitions 61	
  

Table 2-13: Cohort demography and characteristics. Groups are patients identified by the 

eMERGE DM2 Case algorithm (eMERGE Case), pool of potential cases meeting 

any of the diagnostic, medication, or lab value criteria (Case Pool), and those 

patients meeting none of the criteria (Excluded). Patients answering “Yes” or “No” 

to diabetes status are also reported. 64	
  

Table 2-14: Positive predictive value, sensitivity, and specificity for the eMERGE DM2 

Case algorithm, the component criteria individually (Diagnosis, Medication, Lab), 

the group of patients meeting all the criteria (Diagnosis AND Medication AND 

Lab), and patients meeting any of the criteria (Diagnosis OR Medication OR Lab).

 65	
  

Table 2-15: Positive predictive value, sensitivity, and specificity for the eMERGE DM2 

Case algorithm using only the patients identified by the eMERGE DM2 Control 

algorithm. 65	
  

Table 2-16: Prevalence of comorbidities for group of patients identified by the eMERGE 

DM2 Case algorithm (+eMERGE +Self), groups where the two methods disagreed 



 

 vii 

(+eMERGE –Self, -eMERGE +Self), and the group of patients with no 

identification for diabetes (-eMERGE –Self). 67	
  

Table 2-17: Pros and cons of EHR and Patient self-report data sources 70	
  

Table 2-18: Rates of missing data in Survey and Clinical datasets 74	
  

Table 2-19: Summary statistics for Filtered and Complete Case datasets as compared to 

Raw Clinical 75	
  

Table 2-20: Example Categorical Comparison. Differences in summary statistics remain 

present, but at typically smaller magnitudes than at the cohort level 79	
  

Table 3-1: Validity Analysis concepts and definitions 84	
  

Table 3-2: Example randomly generate hypotheses from the hypothesis set 85	
  

Table 3-3: Concepts and definitions for examining the effect of data MAR in a clinical 

dataset 95	
  

 

 

  



 

 viii 

Acknowledgments 

Thanks to my committee: Sue Bakken, Gil Kuperman, Rachel Richesson, Erin Holve.  

Special thanks to advisors Chunhua Weng and Adam Wilcox. 

 

Funding support: R01HS019853 (PI: Bakken), 5T15LM007079 (PI: Hripcsak), 

R01LM009886 (PI: Weng), UL1 TR000040 (PI: Ginsberg) 

 

My family, especially Lisa and Sophia. 

  



 

 ix 

Dedication 

 

Into the life of every PhD student a thesis must fall. This is dedicated to my wife, Lisa. 

 

the house never sees 

stones all turned, laid solid. forms 

of firm foundation 

 



 

 1 

1. Introduction and Significance 

Overview 

The vast amount of clinical data made available by pervasive electronic health records 

presents a great opportunity for reusing these data to improve the efficiency and lower the 

costs of clinical and translational research. A risk to reuse is potential hidden biases in 

clinical data. While specific studies have demonstrated positive value in research using 

clinical data, there are concerns about whether they are generally usable. This thesis is 

comprised of three aims which address measuring bias in and validation of a clinical 

dataset. 

 

Specific Aims 

Aim 1: Examining Clinical Data for Bias 

Examine a clinical dataset for selection and measurement bias through comparison with a 

higher quality research dataset. 

Aim 2: Validation of Existing Datasets 

Build and evaluate a method to compare datasets through the results of randomly 

generated hypothesis tests. 

Aim 3: Addressing Gaps and Opportunities 

Explore the use of more advanced techniques to address gaps and opportunities presented 

by the first two aims. 
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This thesis examines a clinical dataset for bias first through comparison of summary 

statistics with a research-quality dataset from the same population served by our 

institution. Second, we present a method to validate existing datasets by looking at the 

answers they provide to simple hypothesis tests rather than their summary statistics. A 

third aim contains a handful of studies which address potential gaps and opportunities 

presented by the findings of the first two aims. A summary of all three chapters, their 

component studies, and conclusions is presented in Table 1-1. 

 

Table 1-1: Study research questions and conclusions 

 Study Research Question Conclusions 

Aim 1: Examining Clinical Data for Bias 

 1A 
What are the selection and 
measurement biases in a electronic 
clinical dataset as compared to a 
higher quality research dataset? 

Our highly structured data and point measurements 
from a clinical process were not significantly 
different than our data from structured population 
survey. 

 1B 
What is the performance of a diabetes 
phenotyping algorithm and its 
components be investigated using 
patient self-reported data? 

Complex clinical variables could not be considered 
accurate, but components might be used for 
different purposes 

Aim 2: Validation of Existing Datasets 

 2A 
Can we build and evaluate a method to 
compare datasets through the results 
of randomly generated hypothesis 
tests? 

Method was designed and prototyped. Using this 
method, our research dataset is no more different 
than our clinical dataset than random samples from 
the clinical dataset are from each other.  

 2B What is the effect of data missing at 
random on validity analysis? 

Data missing at random at levels found in our 
clinical dataset had little effect on the “accuracy” 
of the dataset, as defined in study 2A. 

Aim 3: Addressing Gaps and Opportunities 

 3A 
Can missing data in a clinical dataset 
be replaced so that the "accuracy" of a 
dataset is improved? 

Data can be replaced using many different 
methods. No examined method demonstrated a 
significant improvement. 

 3B 
Can nearest neighbor matching 
replace matching based on identifiable 
data? 

Some patients can be matched between data 
sources. However, nearest neighbor matching was 
not demonstrated to be a useful replacement for 
more exact methods. 

 3C 
Can an individual's representativeness 
in a dataset be usefully represented 
with a point statistic? 

While the idea may merit further investigation, this 
score of representativeness was not a meaningful 
statistic to calculate in this case study. 
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The following section presents background on the issues of bias and validation in clinical 

data, and the explicit gaps which the studies of this thesis were intended to address. The 

rest of this chapter will briefly review relevant background, methods, results, and 

conclusions from each of these studies as collected aims. Each aim is covered in more 

detail in following, separate chapters. 

 

Background 

Electronic Clinical Data 

Electronic clinical data refers to the large-scale capture of information collected as part of 

diagnosis, treatment, and monitoring of health related conditions of a patient population. 

Within this thesis the term is typically used to refer to structured information (such as 

simple measurements like height and weight), but should also be understood to include 

narrative information (such as notes) and even images. 

 

Part of the promise of electronic clinical data is the acceleration of clinical research. 

Computational reuse of electronic clinical data has been frequently recommended for 

improving efficiency and reducing cost for comparative effectiveness research1. The $1.1 

billion for CER provided by the American Recovery and Reinvestment Act demonstrated 

an investment to that change2. $44 million of that sum is directed toward building an 

infrastructure for the collection and integration of multiple sources of data, from clinical 

and lab data to ongoing population surveys, for long-term support of future CER3. The 
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capacity to reuse data for future research is important because those kinds of supported 

studies, particularly retrospective observational studies, can be quicker and cost up to ten 

times less than randomized controlled trials1. 

 

Current State of Electronic Clinical Data Validation 

A risk to the use of electronic clinical data for research is hidden biases in the clinical 

data. While specific studies have demonstrated positive value in clinical data research, 

there are concerns about whether the data are generally usable4-8. Opaque data capture 

processes and idiosyncratic documentation behaviors of clinicians from multiple 

disciplines may lead instances of measurement bias where values derived a clinical 

process are different from a direct research measurement. A difference in the population 

who seek medical care versus the general residential population may introduce a selection 

bias when clinical data are used to estimate population statistics. Differences in which 

values are measured in which patients may lead to bias encoded in patterns of missing 

data. 

 

These potential problems are widely acknowledged, but they are difficult to evaluate. 

Comparison of data with a gold standard is by far the most frequently used method for 

assessing potential bias9. As reported by Hogan and Wagner, the gold standard for most 

evaluations of accuracy of electronic clinical data is the paper records of the same 

patients10. While the paper records may be of higher objective quality, they still represent 

an internal validation of the same measurement process and can provide no insight into 

potential selection biases. Individual variables or small subsets of data are sometimes 
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validated against other portions of the same data system. Internal validation of this sort 

has been demonstrated in evaluations such as height and weight, race and ethnicity, or 

completeness of a problem list. Comparisons to alternate internal sources are sometimes 

referred to as 'relative gold standards'11. 

 

Validations of more complex variables, such as disease status, have been carried out 

using more external sources of data like billing data, registries, and various forms of 

patient self-report8, 12-16. In these evaluations, the clinical data are typically considered the 

gold standard, or at least of higher relative quality, than the other data sources. However, 

some recent evaluations registries and clinical data fragmentation have cast doubt on the 

idea that the clinical data sources are always better. 

 

A final point is that, regardless of the gold standard used, none of the evaluations 

reviewed in this section can report a pure selection bias. Evaluations of variables against 

any gold standard for the same individuals can only report measurement bias. Evaluation 

of variables against a different population combine potential selection and measurement 

biases. Only by combining the two approaches, measurement of a different population 

and measurement of the same individuals within that population, could selection bias be 

parsed out. The possibility to make such a comparison was the opportunity for this thesis, 

and comprises study 1A. 
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Gaps in Electronic Clinical Data Validation 

A fundamental gap in the current domain of electronic clinical data validation is the lack 

of an external gold standard. Through comparison to higher-quality research data, in 

study 1A we validated a basic set of electronic clinical data variables such as height, 

weight, and blood pressure, as well as an example of a complex disease variable, 

diabetes. Basic measurements of a cohort such as average height and blood pressure were 

largely similar between clinical and research data sources. Complex measurements or 

labels, such as diabetes status of an individual, was not. 

 

However, alternate components or constructions of the electronic clinical data diabetes 

status, also known as a phenotyping algorithm, might be useful for constructing research 

cohorts for various purposes, for example high sensitivity or specificity. This conclusion 

corroborates the results of a paper by Richesson, et al, and further review suggested gaps 

in the typical evaluation of phenotyping algorithms, such as the eMERGE diabetes type 2 

algorithm, which could be specifically addressed by study 1B17. Namely, validation of 

electronic phenotyping algorithms typically have small sample sizes and are performed 

without external gold standards. Additionally, validation of these phenotyping algorithms 

is performed using identified cases and controls with little visibility over which 

individuals may be excluded by these algorithms. Study 1B validated the eMERGE 

Diabetes Phenotyping Algorithm using patient self-reported diabetes status as an external 

standard to address both of these gaps. 
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Validating Datasets vs. Variables 

While potential problems with electronic clinical data may be widely acknowledged and 

difficult to validate, research using electronic clinical data continues. Lacking gold 

standards, recent efforts have taken a more implicit approach to validating whole datasets 

in the form of study result replication. This kind of evaluation represents a shift from 

validating a dataset by comparing summary statistics with a reference to examining 

whether a dataset provides the same answers as a reference dataset. Groups such as 

HMORN, OMOP, and DARTNet assessed the accuracy of clinical data by comparing 

research results derived from clinical data with those derived from randomized controlled 

trials18-20. However, these projects reflect a focus on making a new system work rather 

than a lack of recognition of a potential problem. 

 

Gaps in Validating Whole Datasets 

One notable gap in dataset validation using published study results is the small size or 

scope of the validation. The DARTNet validation, for example, consisted of replicating a 

single statistical hypothesis20. The methods in study 2A were specifically developed to 

address this gap by evaluating the similarity between an electronic clinical dataset and its 

reference with approximately one hundred two-group hypothesis tests. Study 2A 

demonstrated that while there are differences in the “accuracy” of our clinical dataset as 

compared to our research-quality dataset, where accuracy is defined in terms of similarity 

between datasets of results to the body of hypothesis tests, the difference is no larger than 

random samples of clinical data are from each other. 
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Gaps in Effect and Treatment of Missing Data 

The fraction of patients with no data for a given variable can be quite large in a clinical 

dataset. The potential effects of this missing data are widely discussed but rarely 

evaluated21-23. Study 1A revealed the level of missing data in our clinical dataset was 

quite high but that the distribution of missing values was primarily at random. Study 2B 

evaluates the effect of data removed at random in our clinical dataset using the validation 

methods developed for study 2A. The results in our clinical dataset suggest that 

“accuracy”, as defined for study 2A, is not largely affected by levels of missing data 

typically found in clinical datasets. 

 

Further Gaps and Opportunities 

The studies of Aims 1 and 2 suggest further gaps and opportunities which might be 

addressed by more advanced techniques. Studies 3A, 3B, and 3C investigate three such 

opportunities, specifically in imputing missing data in clinical datasets, improving 

linkage between patients in different datasets, and computing the "representativeness" of 

a patient in a database. 

 

For example, the structure of study 2B can also be used to evaluate imputation of missing 

data. In study 3A, missing data from all datasets used in study 2B were imputed using a 

variety of methods. The results of each method were then compared to “accuracy” of the 

non-imputed, missing at random dataset. In general, no imputation method performed 

better than simply leaving data points missing. 
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Study 1A, and any subsequent study relying on matching research survey participants to 

their own clinical data, relied on name and birthdate as identifiers. A way to match 

patients within de-identified data would be useful to researchers wishing to use a multiple 

data sources. Study 3B used nearest-neighbor matching to investigate whether non-

personally identifiable information, such as health measurements like height, weight, and 

average blood pressure, could be useful in matching patients between data sources. While 

a small proportion of patients could be matched in this fashion, the technique cannot be 

recommended as a substitute for more exact methods at this time. 

 

Study 1A also identified that neither the Research nor Clinical datasets were 

representative of the local population as described by census data. Study 3C investigated 

an adaptation of a propensity score to indicate the representativeness of a patient in a 

clinical dataset based on demographics and health indicators. A case study using this 

score suggested that inclusion and exclusion criteria to a study probably do more to 

influence the representativeness of a study cohort than any underlying selection bias in 

the data source.  

 

Setting 

The work for this thesis was performed at the Columbia University Medical Center, 

specifically Presbyterian Hospital and its Clinical Data Warehouse (CDW). This setting 

also provides a unique research opportunity in the form of the Washington Heights-

Inwood Informatics Infrastructure for Community-Centered Comparative Effectiveness 

Research (WICER). The pair of these resources allows direct comparison of the research 
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(WICER) and clinical (CDW) data on the same geographic population and, for a smaller 

subset, the same individuals. The opportunity for this comparison was the direct 

motivation for studies 1A and 1B. These resources will now be reviewed. 

 

Clinical Data Warehouse 

The CDW is a large relational database compiling of much of the electronic patient data 

captured at this institution. Notes, treatment orders, diagnoses, lab test results, billing, 

demographic, and administration data from both ambulatory clinic and inpatient visits are 

available and matched to individual patients via a unique medical record number. Data 

from the CDW is used to support ongoing research, recruiting, and quality improvement 

activities. Data from the CDW is also used to support the institution's Meaningful Use 

attestation, which demonstrates completeness of the data. While most structured 

information is mapped to an internal Medical Entities Dictionary, mappings to widely 

used standards such as ICD-9 codes are also present. These mappings to more widely 

used standards make the implementation of something like the eMERGE diabetes 

phenotyping algorithm relatively easy. 

 

Washington Heights-Inwood Informatics Infrastructure for Community-

Centered Comparative Effectiveness Research 

Research quality data on a population within Columbia University Medical Center's 

catchment area provides a unique opportunity to evaluate bias in the institution's 

electronic clinical data. The Washington Heights/Inwood Informatics Infrastructure for 
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Community-Centered Comparative Effectiveness Research (WICER) Project has been 

conducting community-based research and collecting patient self-reported health 

information24. The overall goal of the WICER project is to understand and improve the 

health of the community and its aims of the WICER Project revolve around the collection 

and use of data from multiple sources to integrate and make data available in a research 

data warehouse. One of these sources is a household survey with the goal of collecting 

information about social determinants of health, health seeking behaviors, as well as 

establishing some baseline health information collected in a community setting. While 

much of the survey data is self-reported, blood pressure, height, and weight are measured 

three times each by survey administrators. The Household Survey targets 3,500 

households and approximately 6,000 individuals living in zip codes 10031, 10032, 

10033, 10034, and 10040. The research team selected a random, weighted sample of 

households from each of the eight health districts covering these zip codes. The survey 

population was then extended via cluster sampling to adjacent households and via 

network (i.e., snowball) sampling through personal contacts of individuals within the 

household.  

 

Because the WICER survey was administered to the same population served as the 

hospital, the selection criteria for the survey can be applied to the CDW as a basis for 

examining selection bias. The hospital records of survey participants who also have 

clinical data can be used to examine the clinical data for measurement bias. By 

combining these two results, the selection bias and measurement bias can be separated. 
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The WICER survey data is not without limitations. While the population sampling began 

with a random seed, the subsequent cluster and snowball sampling mean the original 

sample deviates in nonrandom ways from the population expected from the census 

distribution. Specifically, the WICER survey population contains more women and 

Hispanic individuals than would be expected based on census results. However, this 

sampling deviation is an excellent example of why the research data is of higher quality 

than the clinical data. Though it is not representative of the local population, because the 

sampling methodology was well-defined the nature and direction of the deviation can be 

explained.  

 

An additional limitation is that the overlap in variables between the WICER dataset and 

the CDW is small. However, this overlap is also the opportunity of the study. With higher 

quality research data to compare to our clinical dataset, the magnitude and direction of 

potential bias in clinical data can be quantified. 

 

Aims 

This thesis is compromised of three aims and seven component studies. Methods, results, 

and conclusions will be reviewed in this chapter and expanded upon in subsequent 

chapters. 
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Aim 1: Examining Clinical Data for Bias 

Aim: Examine a clinical dataset for selection and measurement bias through comparison 

with a higher quality research dataset. 

 

Introduction 

Aim 1 was comprised of two studies which examined a limited number of variables in a 

clinical dataset for selection and measurement bias versus a research-quality dataset. The 

goal was to calculate the differences in participant selection and measurement between 

using existing clinical data and prospective research data collection. 

 

Methods 

In the first study, study 1A, various clinical datasets were created to replicate the 

selection criteria for the WICER Community Survey and some demographic aspects of 

its resulting research cohort. Summary values for Age, Gender, Hispanic Ethnicity, 

Height, Weight, BMI, Smoking Status, Systolic and Diastolic blood pressure, and 

Diabetes Status from the same 18 month time period were statistically compared between 

samples. A second set of comparisons was also made between individuals with data from 

both sources, allowing us to distinguish which discrepancies in summary statistics must 

be the result of differences in the measurement process between the clinical and research 

data sources and which must be the result of sampling differences. See Table 1-2 for a 

summary of datasets used for these comparisons. 
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Table 1-2: Datasets and definitions for study 1A 

Dataset Name N Description 

Clinical Raw 78,418 Patients living within WICER zip codes with at least one 
visit recorded during WICER primary data collection 

Clinical Sampled 
(U/H) 

33,847 / 
56,694 

Averaged random samples from Clinical Raw to replicate 
demographics of Household dataset. 

Filtered 60,258 Members of the Clinical Raw dataset with data for at least 
two measured variables 

Complete Case 28,752 Members of the Clinical Raw dataset with data for all 
measured variables. 

Household 4,069 WICER Community Survey participants 
Matched 1,279 Population of patients with both Clinical and survey data. 

Weighted  
Version of any above dataset, re-weighted to age and 
gender distribution of the 2010 Census for the WICER zip 
codes 

 

In the second study, study 1B, our example of a complex clinical variable, diabetes status, 

was examined in more detail. Diabetes status is computationally identified in a clinical 

dataset using a combination of diagnoses, medications, and lab values. These 

components, singly and in combination, were validated against each patient's self-

reported diabetes status. See Table 1-3 for a summary of datasets used in this 

investigation. 

 

Table 1-3: Datasets and definitions for study 1B 

Dataset Name N Description 

Patient Self-reported 2,249 Patients with available self-reported diabetes status 
General Patient 
Population 786,893 Patients with one visit within the last five years. Includes 

patient self-reported cohort. 
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Results and Discussion 

While the research data source was considered to be of higher quality due to the rigor of 

its sampling and data collection procedures, the resulting research dataset did differ from 

the expected local population as described by census data. Multiple alternate samples 

were created and tested to investigate the effect of this demographic discrepancy. There 

were no significant differences in results between alternate samples. 

 

There is measurement bias present in Ethnicity, Height, Diastolic blood pressure, and 

Diabetes Status. There is a sampling bias in Age, Gender, and Smoking Status. There was 

no statistically significant difference in Weight, BMI, and Systolic blood pressure. The 

sampling and measurement biases in clinical data suggest three categories of clinical data 

variable. "Completely Accurate" variables are pieces of information such as address or 

birthdate which should remain the same for an individual regardless of data source. 

"Simple Measurement" variables are those like height, weight, and blood pressure which 

are the result of a single measurement or simple definition. While there may be 

systematic bias, the magnitude should be small. These two findings suggest datasets or 

analyses using highly structured data (e.g. age, gender) and point measurements (e.g. 

weight, blood pressure) collected from a clinical process should not have meaningfully 

different results than data collected as part of a structured research process. 

 

The third category of data variable is "Inferred Information", or more complex labels 

which rely on multiple points of clinical data to infer a status like diabetes, and was the 

primary focus of study 1B. These could not be considered accurate for population 
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summary purposes in this dataset, which is to say the summary values in the clinical 

dataset were very different from the research dataset, but parts of the clinical phenotype 

can be used to design a study toward different purposes such as maximizing sensitivity, 

specificity, or positive predictive value. 

 

Aim 2: Validation of Existing Datasets 

Aim: Build and evaluate a method to compare datasets through the results of randomly 

generated hypothesis tests. 

 

Introduction 

Aim 1 established that summary statistics for structured data and point measurements in 

our clinical dataset were not meaningfully different than our research dataset. However, 

most research using clinical data lacks the opportunity to use such direct reference data 

on the same individuals. Instead, a recent trend has been to validate an electronic clinical 

database by replicating a published finding or statistical result from another dataset. In 

study 2A, we expanded this concept into a method for comparing datasets through the 

results of multiple, randomly generated, two group hypothesis tests. This effort is 

considered preliminary in that the method was prototyped using a limited set of clinical 

data variables and without temporal considerations. In study 2B, we demonstrated the 

potential utility of the validation method by investigating the effect of data missing-at-

random, a potential bias we could not effectively measure in Aim 1. 
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Methods 

Datasets and Variables: This validation method was built using an electronic clinical 

dataset, our institution’s CDW, and a population research dataset, the WICER 

Community Survey. Data variables include age, gender, height, weight, BMI, smoking 

status, diastolic and systolic blood pressure. To simplify issues of temporality, only data 

from the same 18-month time frame as the research survey was pulled for the clinical 

dataset. See Table 1-4 for a summary of datasets used to build and analyze this method. 

 

Table 1-4: Datasets and definitions for study 2A 

Dataset Name N Description 

Research 4,069 Household dataset from Study 1A 
Clinical 78,418 Clinical Raw dataset from Study 1A 

Clinical Sample 4,069 Random sample of Clinical dataset with equal size to the 
Research dataset 

 

Hypothesis Generation: The core of this method is the use of multiple two group 

hypothesis tests to create and compare a highly granular portrait of the internal significant 

differences in a dataset. An example two group hypothesis test is the comparison of 

average systolic for 70-year-old men vs. 40-year-old men. We suggest that it is a more 

meaningful comparison of datasets to say that the average systolic blood pressure of 70-

year-olds is higher than the 40-year-olds of the same dataset, rather than comparing the 

average systolic blood pressure of 70-year-olds between two datasets. Approximately a 

hundred such two group hypothesis tests were generated to form a hypothesis library. 

 

Classification: All hypothesis tests in the hypothesis library were calculated in a 

reference dataset (typically the Research dataset), then in a candidate set (Clinical or 



 

 18 

Clinical Sample dataset). Hypotheses were classified depending on whether the result 

from the candidate set agreed or disagreed with that of the reference. 'Accuracy' is 

reported as the percent of hypotheses which agree. Classification was performed using 

the clinical dataset, research dataset, and random samples of the clinical dataset of the 

same size as the research dataset. This demonstration of classification marks the endpoint 

of study 2A. 

 

Data Missing-at-Random: For study 2B copies of the complete case clinical dataset (a 

version of the clinical dataset where every patient has at least one value for every 

variable) were created with some amount of the data deleted at random. The hypothesis 

library was computed on each of this sets and the accuracy calculated using the original, 

complete clinical dataset as a reference. These accuracies were used to gauge the effect of 

data MAR on our clinical dataset. See Table 1-5 for a summary of datasets used in this 

investigation. 

 

Table 1-5: Datasets and definitions for study 2B 

Dataset Name N Description 

Reference Dataset 28,752 Complete Case dataset from Aim 1 

Candidate Dataset 28,752 Copy of Reference Dataset with data deleted at random to 
a particular target (i.e. 10% deletion) 

 

Results and Discussion 

In study 2A, the comparison of the population research dataset to a random clinical 

dataset of the same size had an accuracy of .77. A baseline comparison of random clinical 

samples with each other had an accuracy of .81. The distribution of classified hypotheses 
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between both of these trials was compared with a chi-square test with a p-value of .64, 

meaning that the difference in accuracy between our research and clinical datasets is not 

significantly different than random samples of clinical data are from each other. These 

findings support the conclusions of Aim 1, that while differences may be detected 

between our clinical and research datasets those differences are not larger that those due 

to chance. 

 

In study 2B, accuracy was calculated for datasets with 10% to up to 99.99% of the data 

deleted at random. At levels found in original clinical dataset (~60%), calculated 

accuracy was still 90%. This finding is interesting because it suggests that data MAR at 

levels typically reported for clinical data may not greatly affect data quality. Study 2B 

was also valuable because it demonstrated the possibility of additional uses for the 

prototyped validation method, particularly in the idea that the method might be used to 

compare data subsets back to their sources.  

 

Aim 3: Addressing Gaps and Opportunities 

Aim: Explore the use of more advanced techniques to address gaps and opportunities 

presented by the first two aims. 

 

Overview 

Aims 1 and 2 were designed to address identified gaps in the current practice of clinical 

data validation. However, the execution of these aims suggested further opportunities for 

improvement that fell outside of their original scope. Studies 3A, 3B, and 3C investigate 
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three such opportunities, specifically in imputing missing data in clinical datasets, 

improving linkage between patients in different datasets, and computing the 

"representativeness" of a patient in a database. 

Study 3A: Imputing Missing Data  

Introduction: A variety of imputation methods are widely recommended to replace 

missing values in datasets. While study 2B suggested that missing data was not a 

significant problem in our clinical dataset, the methods and material of Aim 2 allowed us 

to quickly evaluate the effectiveness of these imputation methods in data MAR scenarios. 

 

Methods: Methods and datasets from study 2B were copied and reused with one 

addition: in study 3A the randomly removed data in the test datasets were imputed in by a 

variety of methods. Imputation methods included various implementations of single value 

replacement, linear regression, multiple imputation, kNN, and expectation maximization. 

As in study 2B, the accuracy of these datasets was computed against the complete case 

clinical dataset. An given imputation method would be useful if the imputed dataset had a 

higher computed accuracy than the un-imputed, missing data dataset from which it was 

made. See Table 1-6 for a summary of datasets used in this investigation. 

Table 1-6: Datasets and definitions for study 3A 

Dataset Name N Description 

Reference Dataset 28,752 Complete Case dataset from Aim 1 

Candidate Dataset 28,752 Copy of Reference Dataset with data deleted at random to 
a particular target 

Imputed Dataset 28,752 Copy of Candidate Dataset with deleted data imputed by 
some specific method 
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Results and Discussion: No method significantly improved the computed accuracy of an 

imputed dataset over the un-imputed dataset. This finding was surprising given the 

widespread recommendations for imputing missing data. While not every possible 

imputation method was tested, it may be that imputation methods are designed to mimic 

summary statistics and distributions of a complete dataset and not to add any of the 

meaningful information tested by our validation method. Additionally, it may be that 

these methods would show some benefit over baseline in a data missing not at random 

scenario. This topic needs further investigation. 

 

Study 3B: Nearest Neighbor Matching 

Introduction: A key component of Aim 1 was the comparison of clinical and structured 

research data on the same individuals. This comparison relied primarily on matching 

individuals using name and birthdate and could not have been performed using de-

identified data. Nearest Neighbor matching, on the other hand, could potentially match 

individuals between de-identified datasets by finding the closest resembling person based 

on all other variables. 

 

Methods: The spatial distance between each individual in the Clinical dataset to every 

individual in the Research dataset (and vice versa) was calculated. The "rank" of each 

match was calculated as the number of spatial matches which were nearer to the 

individual than their "true" match based on name and birthdate. Summary statistics on 

these ranks were reported. See Table 1-7 for a summary of datasets used in this 

investigation. 
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Table 1-7: Datasets and definitions for study 3B 

Dataset Name N Description 

Research Dataset 4,069 Household dataset from Aim 1 
Clinical Dataset 28,752 Complete Case dataset from Aim 1 

 

Results and Discussion: Out of nearly five thousand patients with matching records, 6% 

of research participants had their true matching clinical record as their closest clinical 

record. For 75% of survey participants, the true match was within the top 1,300 (out of 

nearly 29,000) clinical records. With an accurate matching rate of only 6%, nearest 

neighbor matching is not a useful replacement for more exact matching methods. 

 

Study 3C: Propensity Scoring for Representativeness in a Dataset 

Introduction: Aim 1 revealed that neither the Clinical nor Research datasets represented 

the demographics of local population as captured by census data. In addition, Aim 1 

demonstrated that sicker individuals were more likely to show up in the clinical dataset, 

suggesting that the clinical dataset is especially misleading with regards to the health of 

the local population. A way to display the "representativeness" of an individual based on 

their health and demographics might be a useful metric to help understand the 

generalizability of a patient cohort. 

 

Methods: A propensity score was calculated for each patient in our Clinical dataset 

based on representativeness in the Research dataset using age, sex, and health covariates 

of obesity and hypertension risk. The utility of this propensity score was examined by 
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looking at a case study of blood pressure measurements in a clinic setting. See Table 1-8 

for a summary of datasets used in this investigation. 

 

Table 1-8: Datasets and definitions for study 3C 

Dataset Name N Description 

Research Dataset 4,069 Household dataset from Aim 1 
Clinical Dataset 28,752 Complete Case dataset from Aim 1 

 

Results and Discussion: The median propensity score was .85, suggesting the patient 

cohort was fairly representative, and there was no apparent difference in results when 

considering representativeness of patients. The case study also highlights the fact that the 

inclusion criteria of the study have a great deal more effect on the representativeness of 

the cohort than any underlying sampling bias in the clinical dataset. While the idea may 

merit further investigation, this score of representativeness was not a meaningful statistic 

to calculate in this case study. 

 

Conclusion 

This chapter has presented brief overview of the background, methods, results, and 

impact of the aims and studies of this thesis. The following chapters will go into more 

detail on each of the three main aims. 
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2. Examining Clinical Data for Bias 

Aim 1: Examining Clinical Data for Bias 

Examine a clinical dataset for selection and measurement bias through comparison with a 

higher quality research dataset. 

 

Aim 1 was comprised of two studies which examined a limited number of variables in a 

clinical dataset for selection and measurement bias versus a research-quality dataset. The 

goal was to calculate the differences in participant selection and measurement between 

using existing clinical data and prospective research data collection. Study 1A used 

comparisons of summary statistics between data sources. Study 2B examined a particular 

example of a complex variable, diabetes, in greater depth. Additional comparisons 

involving missing data and categorical analysis are also presented in this chapter. 

 

Study 1A 

Introduction 

There is a need to increase the pace of Comparative Effectiveness Research (CER). The 

$1.1 billion for CER provided by the American Recovery and Reinvestment Act 

demonstrates an investment to that change2. $44 million of that sum is directed toward 

building an infrastructure for the collection and integration of multiple sources of data, 

from clinical and lab data to ongoing population surveys, for long-term support of future 

CER3.The capacity to reuse data for future research is important because those kinds of 
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supported studies, particularly retrospective observational studies, can be quicker and 

cost up to ten times less than randomized controlled trials1.  

 

There may be unanticipated consequences to the secondary use of data which were not 

collected for research, particularly clinical data. Clinical data are collected to aid 

clinicians in diagnosis, treatment, and monitoring of health-related conditions. However, 

exactly what data values are collected and how they are measured depend on the clinical 

need. In contrast, data collected as part of a research effort is targeted to exactly what 

questions need to be answered and can be controlled for consistency and completeness. 

 

An implication of reusing existing data in new research is the possible inclusion of 

whatever biases are present in the original data. These biases may impact new research 

conclusions even if they had no effect on the original purpose for which the data were 

collected25-27. The cause of a bias could be any of several mechanisms, such as selection 

bias, missing data, or measurement error, but the effect is a measurable difference 

between the sample in a data set and the underlying population which that sample is 

meant to represent. If such a bias is present, conclusions drawn from the dataset may not 

be true for the population as a whole. The severity of any biases determines whether the 

data are still useful. 

 

Understanding the effect of bias in this way is important because it explains why clinical 

data, while perfectly appropriate for its originally collected purpose, may not be 

appropriate for research. Clinical data are collected with no concern if a patient is 
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representative. The observed data are a product of health monitoring, diagnosis, or 

treatment, and so may not be consistent across the patient population or measured with 

the same rigor for each patient. 

 

Research data, in contrast, are collected in such a way as to preserve genuine causal 

relationships. Population samples are selected in order to minimize selection bias or at 

least deviate from the underlying population in known ways. In a well-designed study 

data collection is designed to be as consistent across patients as possible. 

 

Despite possible biases, clinical data are still very tempting to use. Even before the 

advent of Meaningful Use guidelines, clinical data were abundant both in number of 

patients covered and in the quantity of data available per patient. Given the cost of 

prospective data collection in healthcare, existing clinical data might also much cheaper 

to acquire. What is needed is an assessment of the extent of bias in clinical data and 

whether that bias makes clinical data inappropriate for research. 

 

The methodology for assessing bias is derived from experimental and control group 

comparison in trial reporting. A presentation of baseline values for study groups is 

expected in a simple table. In a randomized controlled trial, for example, any difference 

between the intervention and control groups should be due only to chance. In this case 

statistical comparison between groups is recommended against28. In the case of our 

clinical and research datasets, however, we suspect differences between the two groups 
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may be due to systematic selection and measurement biases and, therefore, statistical 

comparison will reveal these differences. 

 

Concern about bias in clinical data is widely reported, but rarely assessed4-8. Typically, 

summary and baseline values are reported and straightforward statistical comparisons are 

performed to demonstrate significant differences between populations. The difference 

between these assessments of bias and those in trial reporting are the choice of groups. 

Census data may be useful for some demographics, but cannot be used to evaluate any 

clinical values and are therefore limited in assessing the extent of bias in clinical data29. 

Other evaluations focus on differences between sites or sources of clinical data to sub-

populations which are already in a clinical dataset30, 31. The weakness of these evaluations 

is that they can demonstrate extent but not direction of any bias. What is therefore needed 

is a clinical dataset which has been selected to overlap with a research dataset to allow 

direct comparison of demographic and baseline values. We can meet this need with the 

CDW and the WICER Community Survey. 

 

Setting 

This work was performed within the Columbia University Medical Center (CUMC). The 

source of clinical data for this proposal was the CDW. The source of research data was 

the Washington Heights/Inwood Informatics Infrastructure for Community-Centered 

Comparative Effectiveness Research (WICER) Household Survey. CUMC is based in 

and serves the population of the Washington Heights / Inwood region of New York, 
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implying that a subset of the CDW population will be drawn from the same population 

sampled by WICER. 

 

CDW 

The CDW is a large relational database compiling of much of the electronic patient data 

captured at this institution. Notes, treatment orders, diagnoses, lab test results, billing, 

demographic, and administration data from both ambulatory clinic and inpatient visits are 

available and matched to individual patients via a unique medical record number. Data 

from the CDW is used to support ongoing research, recruiting, and quality improvement 

activities. Data from the CDW is also used to support the institution's Meaningful Use 

attestation, which demonstrates completeness of the data. 

 

WICER Household Survey 

The aims of the WICER Project revolve around the collection and use of data from 

multiple sources to integrate and make available in a research data warehouse. One of 

these sources is a household survey with the goal of collecting information about social 

determinants of health, health seeking behaviors, as well as establishing some baseline 

health information collected in a community setting. While much of the survey data is 

self-reported, blood pressure, height, and weight are measured three times each by survey 

administrators. Survey data will be combined with matching participants' clinical 

information to create a longitudinal health record. Information from patients with both 

clinical and survey data will be made available via a "Research Data Explorer" for future 

research32. 
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The Household Survey targets 3,500 households and approximately 6,000 individuals 

living in zip codes 10031, 10032, 10033, 10034, and 10040. The research team selected a 

random, weighted sample of households from each of the eight health districts covering 

these zip codes. The survey population was then extended via cluster sampling to 

adjacent households and via network sampling through personal contacts of individuals 

within the household.  

 

Multiple versions of the survey have been administered. For the three versions 

administered since April 2012, the data variables for this proposed work appear to have 

been measured the same way. Data for the study will be queried across all three versions 

and combined. 

Table 2-1: Datasets and definitions for Study 1A 

Dataset Name N Description 

Clinical Raw 78,418 Patients living within WICER zip codes with at least one 
visit recorded during WICER primary data collection 

Clinical Sampled 
(U/H) 

33,847 / 
56,694 

Averaged random samples from Clinical Raw to replicate 
demographics of Household dataset. 

Filtered 60,258 Members of the Clinical Raw dataset with data for at least 
two measured variables 

Complete Case 28,752 Members of the Clinical Raw dataset with data for all 
measured variables. 

Household 4,069 WICER Community Survey participants 
Matched 1,279 Population of patients with both Clinical and survey data. 

Weighted  
Version of any above dataset, re-weighted to age and 
gender distribution of the 2010 Census for the WICER zip 
codes 

 

Datasets and Processing 

This section reviews datasets used for this thesis. Specifically, the exact definitions for 

inclusion into any dataset, exact query definitions for clinical variables, and 
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summarization and data processing steps will be discussed. A summary of datasets and 

their composition is presented in Table 2-1. 

 

Raw Clinical 

The Raw Clinical dataset represents the simplest attempt to replicate the WICER 

Community Survey results by replicating its selection criteria directly within the CDW. 

For each person >18 years old on 3/1/2012, living within the 5 WICER zip codes (10031, 

10032, 10033, 10034, 10040), with at least one recorded visit between 3/1/2012 and 

9/1/2013, the following variables were extracted from the CDW: Birthdate, Gender, 

Race, Ethnicity, Smoking Status, Height, Weight, Systolic and Diastolic blood pressure, 

Glucose Test Values, Diabetes ICD-9 codes, HbA1c values. In case of multiple recorded 

values between 3/1/2012 and 9/1/2013, all values were retrieved. The time points used 

are the beginning and end of primary data collection for WICER. 

 

For primary comparison with the survey dataset, the following were calculated or carried 

forward: Age, Gender, Race, Ethnicity, Smoking Status, Average Height, Average 

Weight, BMI, Average Systolic and Diastolic blood pressure, Consensus_Diabetes (>1 

Diabetes ICD-9 Code AND (>1 High Glucose OR >0 High HbA1c). The choice was 

made to average multiple values to best represent mimicking a population-based research 

study. 

 

For smoking status, the most common answer was used. Smoking status is also a special 

case in that, unlike the continuous variables, the effect of missing data must be accounted 
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for. In smoking status, a missing value may be simply missing or may denote negative 

smoking status. While the simple prevalence of smoking status was reported, an alternate 

value of “Prevalence of Smoking with Reported Status was also calculated but not 

reported. Exact CDW mappings for each variable are presented in Table 2-2. 

 

Raw Survey 

For each individual taking the WICER Community Survey in the Household setting, the 

following variables were extracted: Age, Sex, Race, Hispanic, Smoking Status, Height, 

Weight, Systolic and Diastolic blood pressures, Diabetes Status. 

 

Processing 

For each dataset, a number of secondary processing steps were taken to inform later 

investigations. Some steps were common to all datasets, some steps were specific to each 

dataset. 

 

Common to all sets:  

- A matching indicator variable was added and set to 1 if the individual is present in 

both survey and clinical datasets (as defined by a matching dictionary created by 

Adam Wilcox) and 0 otherwise. 

- A partial (excluding cholesterol) Framingham risk score was calculated. 
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Table 2-2: Clinical variables, definitions, and local mappings 

Variable Definition Mapping 

AVERAGE_WEIGHT Average weight recorded 
for the patient. 

Values of flow sheet items descriptions 
starting with 'vs_weight%' from 
FS_WEST with a recorded time 
between 2012-03-01 and 2013-09-30 
are stored for each MRN. These values 
are converted into float and averaged 
for each MRN. 

AVERAGE_HEIGHT Average height recorded 
for the patient. 

Values of flow sheet items descriptions 
starting with 'vs_height%' from 
FS_WEST with a recorded time 
between 2012-03-01 and 2013-09-30 
are stored for each MRN. These values 
are converted into float and averaged 
for each MRN. 

BMI Calculated BMI for the 
patient. 

Basic BMI formula of weight (kg) / 
height (m) squared is calculated for 
each patient with both a height and 
weight. 

AVERAGE_SYSTOLIC 
Average systolic blood 
pressure recorded for the 
patient. 

Values for rows with item names equal 
to 'vs_amb_intnal_med_NIBP_(s)', 
'vs_bp_arterial_s', and 
'vs_bp_noninvasive (s)' recorded time 
between 2012-03-01 and 2013-09-30 
are retrieved and averaged for each 
patient. These specific item names 
were supplied by Adam Wilcox as 
corresponding to ambulatory blood 
pressures. 

AVERAGE_DIASTOLIC 
Average diastolic blood 
pressure recorded for the 
patient. 

Values for rows with item names equal 
to 'vs_amb_intnal_med_NIBP_(d)', 
'vs_bp_arterial_d', and 
'vs_bp_noninvasive (d)' recorded time 
between 2012-03-01 and 2013-09-30 
are retrieved and averaged for each 
patient. These specific item names 
were supplied by Adam Wilcox as 
corresponding to ambulatory blood 
pressures. 

SMOKING Consensus smoking status 
for the patient. 

Values for rows with item names equal 
to 'amb_tobacco', 
'amb_tobacco_use_MU', 
'amb_intnalmed_tobacco', 
'note_sw_initas_tobacco', 
'amb_fam_plan_visit_soc_tobacco', 
'md_ivcard_SocHx_tobacco', 
'amb_aim_tobacco_use', 
'amb_obgyn_visit_tobacco_use', 
'amb_fam_plan_PT_soc_tobacco', 
'amb_rheumatology_tobaccouse', 
'note_EDNurAssess_smoking_hx', 
'note_nsg_hx_smoking', 
'note_EDAdltTemp_smoking_YN', 
'note_UCC_Soc_smoking', 
'note_dc_hx_smoking', 
'note_cardiac_surg_SocHx_smoking', 
'amb_ENT_CON_soc_hx_smoking', 
'note_EDRME_smoking_YN' recorded 
time between 2012-03-01 and 2013-09-
30 are retrieved for each patient. These 
values are automatically recoded to 
Yes, No, NA (where the value is 
unrelated to smoking), and Unknown 
(where the value couldn't be otherwise 
parsed). The value with the greatest 
tally is recorded as smoking status. 
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- Categorical indicator variables were added consisting of BMI (Underweight, Normal 

Weight, Overweight, Obese 1, Obese 2, Obese 3), Age by Decade (18-24, 25-34, 35-

44, 45-54, 55-64, 75-84, 85+), and Hypertension Risk (Normal, Prehypertension, 

Stage 1, Stage 2). For each category, each person is assigned a 1 for the variable which 

includes them and a 0 for all other variables. 

 

Survey datasets: 

- If duplicates of name and date of birth for participants are detected, only the first 

recorded survey is kept. 

 

Clinical dataset: 

- Numerous other variables were collected for each individual. These include total 

number of diagnoses recorded, number of high HbA1c values recorded at any time in 

the patient record, number of high glucose values recorded at any time in the patient 

record, number of normal HbA1c values, and the number of visits, diagnoses, 

procedures, and labs recorded each for the last 5, 3, and 1 years. Alternate ways of 

classifying potential diabetes status were also calculated. 
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Sampling Bias 

Summary 

This section presents the background, methods, and results of an investigation into the 

sampling bias in a clinical dataset. The initial effort is to attempt various strategies for 

replicating the WICER research sample using the CDW, both by applying the same 

selection criteria as used in the Community Survey and by replicating the resulting 

demographics of the Community Survey. While significant differences in resulting 

population measurements can be detected, without a matched sample it is impossible to 

determine whether these differences arise from sampling or measurement bias.  

 

Research Question: Can the population sample of a research study be replicated using a 

clinical population? Can you retrieve a cohort with the same demographic properties? 

 

Background 

The WICER Household Survey used snowball and network sampling on top of a 

stratified random population seed of individuals over the age of 18 within five zipcodes 

(10031, 10032, 10033, 10034, 10040). The survey participant population was found to 

deviate from the demographics of the known census distribution. Specifically, the survey 

population has a higher proportion of women (.71 vs .53 in Census) and is almost entirely 

Hispanic. One way of assessing potential problems with clinical data reused for research 

is to apply the same selection criteria as a population research study and determine 

whether the same kinds of people are selected. 
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Innovation 

The selection bias of clinical patient populations has been studied. What is innovative 

about this study is the attempt to replicate the selection criteria of an existing research 

study for direct comparison, followed by alternate sampling methodologies to attempt to 

replicate the results of the that selection criteria in a particular population (for example, 

ensuring higher proportion of women and Hispanic individuals rather than anyone over 

the age of 18). 

 

Methods 

Raw Clinical 

The selection criteria of the WICER Household survey were applied to the CDW to form 

the Raw Clinical dataset, described above.  

 

Clinical Sampled (H) 

To replicate the higher proportion of women and Hispanic individuals in the actual 

WICER Survey population, the Raw Clinical dataset was randomly sampled with exact 

gender and ethnicity targets. The procedure was repeated ten times, and the results 

averaged, to form the Clinical Sampled (H) dataset. 

 

Clinical Sampled (U) 

Later steps revealed that many Hispanic individuals were being labeled as "Unknown" 

ethnicity, so the sampling process was repeated to allow both labeled "Hispanic" and 
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"Unknown" ethnicities to meet the ethnicity target. This set is the Clinical Sampled (U) 

dataset. 

 

Weighted 

Finally, Raw Clinical and the WICER Community were re-weighted to the expected 

Census distribution for the 5 WICER zipcodes for both age and gender. For 

completeness, the weighting procedure was extended to both Clinical Sampled Datasets 

(U and H) 

 

Comparing Datasets 

Samples were primarily described by the following variables: Size of the set (N), Age, 

Proportion Female, Proportion Hispanic, Weight (kg), Height (cm), Prevalence of 

Smoking, Prevalence of Smoking among Labeled Status, Systolic and Diastolic blood 

pressure, Prevalence of Diabetes (self-reported status in the survey population, >1 

Diabetes ICD-9 code AND (>0 abnormal HbA1c OR >1 abnormal glucose) ). 

 

For continuous variables, values for each patient for each dataset were averaged and 

compared via t-test. For categorical variables, proportions were compared via chi-square. 

For datasets with multiple samples (Clinical Sampled H/U), values were also averaged 

across all samples for comparison. Due to the number of statistical comparisons 

performed, a Bonferroni-corrected p-value of 1e-4 was used. 
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Statistical comparison was not performed for the re-weighted samples. It is a possible, 

but non-trivial task to compute standard deviations of a re-weighted sample. 

 

Results 

Summary statistics for the WICER Household, Raw Clinical, Clinical Sampled (H), and 

Clinical Sampled (U) populations are presented in Table 2-3. WICER Household 

population was known to contain a higher proportion of women than the clinical 

population (.71 vs .62) and Hispanic individuals (.96 vs .50). The Household population 

is also older (50.12 vs 47.55) than the clinical population and has high diastolic blood 

pressure (80.95 vs 73.07). The proportion of individuals self-identifying as diabetic in the 

Household population (.16) is wildly divergent from the proportion of clinical patients 

with diabetes according to this definition (.04). Prevalence of diabetes was later 

investigated in much greater detail using the eMERGE Diabetes phenotyping algorithm. 

Table 2-3: Summary statistics for Household, Clinical Raw, and two Clinical Sampled cohorts 

File Household  Clinical Raw Clinical 
Sampled (H) 

Clinical 
Sampled (U) 

N 4069  78418 33847 56694 
Age 50.12  47.55 46.47 46.98 
Proportion Female 0.71  0.62 0.71 0.71 
Proportion Hispanic 0.96  0.50 1.00 0.60 
Weight kg 75.42  75.69 74.69 74.75 
Height cm 161.25  160.34 158.91 159.13 
BMI 28.20  28.10 28.30 28.30 
Prevalence of 
Smoking 

0.06  0.09 0.08 0.08 

Prevalence of 
Smoking Among 
Labeled Status 

0.06  0.12 0.10 0.10 

Systolic 127.68  127.23 126.75 126.48 
Diastolic 80.95  73.07 72.46 72.72 
Prevalence of 
Diabetes (Survey = 
self-report, Clinical = 
>1 Diabetes ICD-9 
AND >1 abnormal 
test) 

0.16  0.04 0.04 0.04 
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The clinical sampling process does change some of the summary statistics. Sampled 

populations are approximately 0.5-1.0 years younger, 1-2cm shorter, and weigh 1kg less. 

 

The combined Census distribution for the 5 WICER zip codes for age and gender is 

presented in Table 2-4. These values were used to re-weight sampled to the expected 

Census distribution. 

Table 2-4: Census gender and age distributions for WICER zip codes 

Age Range % Male % Female 
18-24 0.08 0.07 
25-34 0.11 0.11 
35-44 0.09 0.09 
45-54 0.08 0.09 
55-64 0.06 0.08 
65-74 0.03 0.05 
75-84 0.02 0.03 
>85 0.01 0.01 
total 0.47 0.53 

 

 

Summary statistics for the re-weighted WICER Household, Raw Clinical, Clinical 

Sampled (H), and Clinical Sampled (U) populations are presented in Table 2-5. Weighted 

samples are 3-6 years younger than the original samples and are 53% female. Weighted 

samples tend to be slightly taller, weigh a little more, and be more likely to smoke. It is 

possible these characteristics are more prevalent in the younger portion of the population 

and were magnified by the re-weighting procedure. If so, this could represent a selection 

bias which was not detected by direct comparison between the Research and Clinical 

datasets. 
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Table 2-5: Summary statistics for Weighted samples 

 Weighted 
Household 

 Weighted 
Clinical 

Weighted 
Sampled (H) 

Clinical 
Sampled (U) 

N      
Age 44.63  44.13 44.11 44.10 
Proportion Female 0.53  0.53 0.53 0.53 
Proportion Hispanic 0.95  0.50 1.00 0.61 
Weight kg 76.96  78.24 77.99 78.00 
Height cm 163.68  162.70 162.11 162.50 
BMI 27.74  28.11 28.25 28.15 
Prevalence of Smoking 0.06  0.10 0.10 0.09 
Prevalence of Smoking 
Among Labeled Status 

0.07  0.14 0.12 0.13 

Systolic 125.48  126.76 127.34 126.70 
Diastolic 80.65  73.43 73.31 73.47 
Prevalence of Diabetes 
(Survey = self-report, 
Clinical = >1 Diabetes 
ICD-9 AND >1 abnormal 
test) 

0.12  0.03 0.04 0.04 

 

Results of the statistical comparison between the Raw Clinical, Clinical Sampled (H) and 

Clinical Sampled (U) are presented in Table 2-6. The Bonferroni-corrected p-value is 1e-

4. Age, Height, Smoking Status, and Diastolic blood pressure were all strongly 

significantly different. The proportion of patients with diabetes was also strongly 

significantly different. However, this represents a very simplistic diabetes phenotype and 

this portion of the investigation was later expanded using the eMERGE Diabetes 

phenotyping algorithm.  

 

The proportion of female and Hispanic patients in the Raw Clinical population was 

significantly different than the Household population. By design, this difference is 

removed in the two Clinical Sampled populations. Weight, BMI, and Systolic blood 

pressure are insignificantly different across all three samples.  
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Table 2-6: P-values of comparison between Raw Clinical and Clinical Sampled datasets to the Household dataset 

 

p-values 
of Raw 

Clinical vs 
Household 

p-values 
of Clinical 
Sampled 

(H) vs 
Household 

p-values 
of Clinical 
Sampled 

(U) vs 
Household 

Age 3.58E-12 8.52E-22 3.99E-17 

Proportion 
Female 

8.47E-08 0.755 0.749 

Proportion 
Hispanic 

9.76E-180 0.054 4.91E-86 

Weight kg 0.851 0.016 0.016 

Height cm 3.42E-07 1.3E-14 3.06E-13 

BMI 0.207 0.924 0.167 

Prevalence of 
Smoking 

1.95E-10 2.22E-05 2.31E-05 

Prevalence of 
Smoking Among 
Labeled Status 

4.02E-32 4.13E-16 1.72E-18 

Systolic 0.164 0.005 0.0002 

Diastolic 0 0 0 

Prevalence of 
Diabetes (Survey 
= self-report, 
Clinical = >1 
Diabetes ICD-9 
AND >1 
abnormal test) 

1.32E-241 5.23E-181 8.7E-209 

Discussion and Conclusion 

It is possible to apply the same selection criteria to a clinical database as used in a 

population research study. However, there are significant discrepancies in the 

demographics of the resulting dataset. Even when the demographic discrepancies are 

accounted for (via targeted sampling), there are significant differences in variables such 

as height and diastolic blood pressure. What is most surprising is that there are some 

variables, such as weight, BMI, and systolic blood pressure, which are not significantly 

different regardless of sampling method.  
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This first stage of the investigation only examined the effect of sampling. What is not 

known at this point is whether the apparent discrepancies between WICER Survey 

participants and the Clinical population are a result of simply sampling or whether the 

variables themselves are being measured differently. 

 

Measurement Bias 

Summary 

By using a matched cohort, a group of individuals who participated in the Community 

Survey and also have clinical records in the CDW, it is possible to compare the 

measurement of individuals by a large clinical system to the focused, methodological 

measurement of a research study. However, this analysis of measurement bias comes at 

the expense of identifying selection bias. 

 

Research Question: Given the same group of individuals, does the process of measuring 

people in a clinical environment and for a primary clinical purpose result in the same 

summary values as a population research study? 

 

Background 

Following the first stage of the investigation, we know that applying the same sampling 

criteria results in a population with different demographic properties than the research 

study. Likewise, after correcting for the demographic differences, there remain 

significant differences in variables such as height and diastolic blood pressure. By 
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limiting the variable summary comparison to a group of the same individuals, it is 

possible to determine which discrepancies are a result of differences in measurement (as 

part of a clinical process vs part of a research study) and which are a result of the 

differences in sampling. 

 

Innovation 

Validation of individual variables, including the ones used in this study, have been 

performed. These validations are rarely performed on larger groups of variables, and 

never with the goal of parsing discrepancies in measurement from discrepancies in 

sampling. 

 

Methods 

The basic data, variables, and statistical comparison remain the same as the previous 

investigation. However, comparison was limited to only individuals who took a WICER 

Community Survey who also have at least one visit during the study period (3/1/2012 to 

9/1/2013). Because this step in the investigation is about differences in measurement, 

rather than sampling, individuals who took the survey in the clinic (ACN) setting were 

also included to maximize cohort size. In the instance of a survey participant matching 

more than one clinical record, all clinical records were included in the clinical dataset. 

 

A survey participant is considered ‘matched’ if there is a patient in the CDW with the 

same name and birthdate. Original matches were provided by Adam Wilcox. The body of 

resulting Survey data is the Matched Survey dataset and the clinical data for the same 
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individuals is the Matched Clinical dataset. T-tests were performed on continuous 

variables, and chi-square tests on categorical variables, for comparison between datasets 

with a Bonferroni-corrected p-value of 1e-4. 

 

Results 

Summary and comparison statistics for Clinical and Survey measurements for the 

matched individuals are presented in Table 2-7. Only 12 participants matched more than 

one clinical record. The individuals in the dataset were matched on birthdate, so the 

apparent (and statistically insignificant) discrepancy in age is primarily a result of 

calculating age from birthday. Proportion Hispanic is significantly different and a result 

of many self-identifying Hispanic individuals being recorded as “Unknown” ethnicity in 

the clinical database. Recorded weights, BMI, Smoking, and Systolic BP are 

insignificantly different. Heights are approximately 3cm taller in the Survey data, and 

statistically significantly different. Diastolic blood pressure is approximately 5 points 

higher in the Survey and also statistically significantly different. The proportion of 

patients with diabetes was also strongly significantly different, however, this represents a 

very simplistic diabetes phenotype and this portion of the investigation was later 

expanded using the eMERGE Diabetes phenotyping algorithm. 

 

Discussion  / Conclusion 

The measurements in a clinical environment and for a clinical purpose were different in 

some variables than measurement for research purposes of the same individuals. While it 

was possible that these discrepancies were in fact introduced by the investigation, the fact 
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that the variables came in pairs which were retrieved and analyzed the same way suggests 

that the discrepancies were present in the data themselves. For example, height and 

weight were identified, retrieved, and analyzed in exactly the same fashion, yet heights 

showed a discrepancy and weights did not. Systolic and diastolic blood pressure were the 

same. 

Table 2-7: Summary statistics and p-value of comparison between the Matched samples 

File Matched 
Clinical 

Matched 
Survey 

p-values of 
Matched vs 

Matched 
N 1291 1279  
Age 52.33 51.12 0.072 
Proportion 
Female 

0.79 0.78 0.963 

Proportion 
Hispanic 

0.56 0.94 8.17E-17 

Weight kg 77.16 76.99 0.851 
Height cm 158.23 161.31 3.42E-07 
BMI 29.70 28.90 0.207 
Prevalence of 
Smoking 

0.08 0.08 0.944 

Prevalence of 
Smoking 
Among 
Labeled 
Status 

0.09 0.08 0.283 

Systolic 128.48 127.50 0.204 
Diastolic 74.34 79.24 8.68E-25 
Prevalence of 
Diabetes 
(Survey = self-
report, Clinical 
= >1 Diabetes 
ICD-9 AND >1 
abnormal test) 

0.09 0.22 3.91E-15 

 

The more immediate value of this stage was in ethnicity and smoking. By using the same 

individuals it is possible to demonstrate that people who self-identify as Hispanic are 

being labeled incorrectly in the clinical process. Conversely, smoking status, which was 

very different between the unmatched Clinical and Survey populations in the prior stage 

of the investigation, is not significantly different here. This finding suggests that smoking 



 

 45 

status is accurately labeled in the clinical process and the difference detected in the 

previous stage represents a difference in the population samples and not their 

measurement. 

 

Combining Results 

Summary 

By combining the previous two sets of results, it becomes possible to parse the 

differences between datasets into selection bias and measurement bias. Summary values 

which are different in the Matched cohort comparison must be the result of measurement 

bias. Summary values which are different in the sample comparison but which were not 

measured differently in the Matched comparison must therefore be the result of sampling 

bias. That nested comparison is performed in this section. The sampling and 

measurement biases in this clinical dataset suggest three categories of clinical variable: 

completely accurate, simple measurement, and inferred information. The nature and 

implications of these variables are discussed. 

 

Additionally, putting the results together in this fashion allows some sensitivity analysis 

into alternate data point selection and summarization steps. In general none of the 

alternatives had a significant effect any of the results. Alternatives and their effects are 

discussed in detail. This further detail includes discussion about the components of the ad 

hoc diabetes phenotyping algorithm used in the first part of this thesis. The investigation 

and discussion of the ad hoc diabetes phenotyping algorithm led directly to the following, 

supplemental study on the eMERGE phenotyping algorithm. 
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Methods 

Diabetes Phenotyping Algorithm 

A simple clinical phenotyping method was developed for type 2 diabetes in the CDW 

using ICD-9 Codes, HbA1c test values, and glucose test values. Using the strictest 

criteria, a patient will only be identified as having diabetes if there are at least two ICD-9 

codes for diabetes, at least one HbA1c test value >6.5, or at least two high glucose test 

values. A glucose test value is coded as high if it is >126 for a fasting glucose test or 

>200 otherwise. Effectiveness of labeling of each of these components was also explored. 

 

Data Point Selection 

Each clinical variable could have many data points from multiple points of measurement 

across time, which necessitated careful data point selection to ensure that summary data 

points were both representative of all data points and comparable across data sources 

without introducing data sampling biases. This includes an issue of temporal bias, where 

some data variables, such as weight, might naturally be expected to change over time. To 

make a comparable cross-section to the Survey dataset and to ensure the resulting data 

reflects not only the same sample but also the same sample at the same time, we selected 

only data points recorded during the 18-month WICER study period from the CDW. In 

this way, assuming the survey participants are measured at random throughout an 18- 

month period, so too are the clinical data population. 
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In the matched sample we had an opportunity to more finely tune the data comparison. 

The most direct approach is to simply select the clinical data point closest in time to the 

survey measurement of any given participant. Alternatives include the closest prior or 

subsequent data paint as well as using a single randomly selected point rather than the 

average of all clinical data points. While alternate data point selection options were 

explored, to best keep the results comparable the reported values for the matched sample 

were derived in the same fashion as for the sample at large. 

 

Data Measure Selection 

With representative patient sample, meaningful variables, and representative data points, 

the next important step for designing an unbiased verification study was to select a 

meaningful data measure, which seems to be the most subjective step without standard 

guidance. For this step, we considered two measures: (a) population-level average 

summary statistics; and (b) patient-level average summary statistics. 

 

Option (a): Population-Level Average summary statistics 

Multiple data values available during the study period were averaged in order to 

minimize any temporal effects while also allowing the use of the most number of 

patients. Continuous variables within each set were averaged, with one exception, and 

compared via t-test. The median BMI value was used for comparison as the mean 

summary value for the calculation of BMI is more susceptible to outliers. Choice of other 

"best matching" clinical data values, such as the closest prior and subsequent values in 

time as well as simple random choice, were also explored. 
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Proportions of interest, which include % female, % smoking, and % Hispanic, for the 

categorical variables were reported and compared with chi-square test. For some 

proportions there is a possibility that negative or healthy status might not be recorded and 

would therefore be accurately represented by missing data. Therefore for smoking and 

diabetes there is a second value reported: the proportion of labeled status, which excludes 

any patient with missing data rather than assume missing data denotes known negative 

status. 

 

For the purpose of primary analysis, only the strictest, ALL criteria for diabetes diagnosis 

are reported, as consistent with the eMERGE criteria. However, each component of the 

diabetes diagnosis was examined for sensitivity, specificity, and positive predictive 

against the patient's self-reported diabetes status. All summary and statistical 

comparisons were performed in Python, using the SciPy scientific computing package for 

statistical comparisons. 

 

Option (b): Patient-level Average Summary Statistics 

When there is sufficient clinical data, it is possible to create a distribution of expected 

values for a given patient and compare the survey value to that distribution. At its 

simplest, the comparison is simply whether the survey value is within one standard 

deviation of the mean of the available clinical values. This process was performed for 

patients with at least five data points for the same variable recorded during the study 

period. 
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Results 

Following the population summary approach, values and statistics for each data point are 

presented in Table 2-8. Here, the interior two columns of summary statistics are the 

Matched cohorts and the exterior are the Raw Clinical and Survey datasets. Variables 

where values for the interior columns are significantly different (with a Bonferroni 

corrected p-value of 1e10-4) represent instances of measurement bias. Variables where 

the values for the exterior columns are significantly different but the interior columns are 

not are instances of sampling bias. The Survey dataset tends to be slightly older and 

contain more women. Survey participants were almost entirely identifying as Hispanic. 

Sixteen percent of the survey participants self-identified as having diabetes. Measuring 

the Matched dataset via clinical data and primary survey collection processes broadly 

records the same values. There are statistically significant measurement discrepancies in 

Hispanic ethnicity labeling, height measurement, diastolic blood pressure, and diabetes 

status determination. Where the Clinical and Survey datasets differ, in age, proportion of 

women, and prevalence of smoking, are evidence of statistically significant differences in 

sample composition. 

 

In exploring patient-level summary statistics, the number of patients with sufficient data 

to construct a distribution of expected blood pressures was 866. Of these, 491(57%) and 

479(55%) had a survey systolic or diastolic blood pressure, respectively, greater than one 

standard deviation away from their clinical mean. Table 2-9 shows an example result of 

alternate data point selections in Systolic BP. While values are statistically significantly 
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different from one another in this and other examples, they would not change the 

conclusions drawn from Table 2-7. 

 

The sensitivity, specificity, and positive predictive value of various strategies to identify 

diabetes status using clinical data are presented in Table 2-10. In this simple phenotype, 

ALL is the intersection of three criteria and ANY is the union. The three criteria are 

having at least two ICD-9 codes for diabetes, one high HbA1c value, and at least two 

high glucose values. The rationale for requiring two of some categories is to restrict 

potentially spurious results. In the case of diagnostic codes, for example, a diabetes ICD-

9 code might be recorded for a negative diabetes evaluation. The removal of these 

restrictions was also considered. The ALL criteria have the highest positive predictive 

value, but the lowest sensitivity. Both the ICD-9 and HbA1c-based criteria have high 

specificities and the ICD-9 based criteria alone have the highest F-measure for sensitivity 

and specificity. Proportions of patients retrieved under each qualifying criteria are 

consistent with published results17. 
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Table 2-8: Summary statistics and p-values of comparison for both Clinical and Survey samples and the 
Matched samples to parse measurement and selection bias 

 Raw 
Clinical 

Matched 
Clinical 

Matched 
Survey Survey  

Matched 
vs. 

Matched 
Clinical 

vs. Survey 

Age 47.55 52.33 51.12 50.12  0.072 p << .0001 
Proportion 
Female 0.62 0.79 0.78 0.71  0.963 p << .0001 

Proportion 
Hispanic 0.50 0.56 0.94 0.96  

p << 
.0001 p << .0001 

Weight kg 75.69 77.16 76.99 75.42  0.851 0.851 
Height cm 160.34 158.23 161.31 161.25  

p << 
.0001 p << .0001 

BMI 28.10 29.70 28.90 28.20  0.207 0.207 
Prevalence 
of Smoking 0.09 0.08 0.08 0.06  0.944 p << .0001 

Systolic 127.23 128.48 127.50 127.68  0.204 0.164 
Diastolic 73.07 74.34 79.24 80.95  

p << 
.0001 p << .0001 

Prevalence 
of Diabetes 
(Survey = 
self-report, 
Clinical = 
>1 Diabetes 
ICD-9 AND 
>1 
abnormal 
test) 

0.04 0.09 0.22 0.16  
p << 
.0001 p << .0001 

 

Table 2-9: Example summary statistics for alternate data point choice. While summary statistics can be 
significantly different from each other, alternate choices would not have changed the conclusions of the study 

Systolic 
Blood 

Pressure 
Research 

Value 

Clinical Data Point Choice 

Closest 
Prior 

Closest 
Subsequent 

Random 
Point 

Mean of 
Available 

Values 
N 1290 1107 962 1185 1185 
Mean 127.8 127.9 130.3 129.3 128.5 
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Table 2-10: Sensitivity, specificity, F-measure, and Positive Predictive Value of simple diabetes phenotype and 
its components 

Value 
ALL  

(ICD-9 AND 
HbA1C AND 

Glucose) 

ANY 
(ICD-9 OR 

HbA1C 
OR 

Glucose) 

≥1 
ICD-9 

≥2 
ICD-9 

HIGH 
HbA1C 

HIGH 
Glucose 

Sensitivity 0.33 0.81 0.90 0.84 0.48 0.52 
Specificity 0.98 0.35 0.88 0.93 0.96 0.74 
F-
measure 0.49 0.49 0.89 0.88 0.64 0.61 

       
Positive 
Predictive 
Value 

0.82 0.27 0.68 0.78 0.79 0.37 

  

Discussion 

Our study shows discrepancies between clinical and research data, both in sampling and 

measurement. Clinical measurement of some data, such as gender and BMI, accurately 

reproduces the research measurement and others, such as diabetes, do not. While raw 

results may be interesting, because of the limits of overlapping data between sets and the 

comparisons which could be made, the raw results may have little value outside of this 

case study. If these discrepancies can be considered as representative of classes of clinical 

data, we can abstract some idea of generalizable accuracy of clinical data as compared to 

primary research data. We introduce three categories of accuracy. 

 

The first category is "completely accurate" information, such as sex, birthdate, and 

therefore age. These data might be considered Personally Identifiable Information (PII), 

or information that on its own could be used to identify an individual. This classification 

suggests that address, social security number, and phone number would also be accurate 
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between datasets. While there will be instances of coding error, misreporting, or other 

errors, by and large these data are consistent across datasets. It should be noted that 

birthdate was one of the criteria by which individuals were identified for the Matched, 

and therefore errors in the recording of birthdate would be excluded from this analysis. 

Also, while PII should be accurate across datasets, this does not suggest that all 

demographic information, such as ethnicity, will be accurate. 

 

The second category is 'simple measurement' information, which is the result of a clear 

concept or measurement process. Height, weight, systolic and diastolic blood pressure, 

smoking status, and ethnicity are included in this category. Here, the simplicity of the 

measurement or concept leads to agreement in the value between sources, and differences 

in the value are the result of a difference in either the concept definition or the 

measurement process. For example, measured heights in the Matched group differ by 

approximately 2.5cm or 1in, suggesting that the concept and measurement of height in 

the Survey sample includes shoes. Likewise, diastolic blood pressure is consistently 

measured 5 points higher in the Survey sample, suggesting a difference in measurement. 

Ethnicity, which is self-reported in the survey, is labeled by hospital staff during 

admission to the hospital, resulting in approximately one third of Hispanic individuals 

being labeled as 'Unknown' ethnicity in the Clinical sample. 

 

The final category of accuracy is 'inferred' information, where a complex concept, such as 

diabetes, is inferred from multiple variables. When compared with self-reported Survey 

values, no single prediction or combination of variables can be considered accurate for an 
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entire cohort. However, some results may be useful enough for a specific purpose. For 

example, requiring ALL criteria has a high positive predictive value and may provide a 

high level of accuracy within a given cohort. Conversely, using just HbA1c 

measurements has a high sensitivity and may be most valuable when a larger quantity of 

data is required for statistical power. 

 

At least in this case study, discrepancies in the 'simple measurement' category are stable 

across multiple sampling methodologies. Discrepancies are also stable when samples are 

broken down into categories such as age by decade, obesity classification, and 

hypertension risk category. This stability is what would be expected if the discrepancies 

were the result of simple measurement error and would suggest these discrepancies 

represent systematic bias in the clinical data. It is possible that reported discrepancies are 

the result of data retrieval and processing. However, the presence of pairs of 

measurements such as weight/height and systolic/diastolic blood pressure, retrieved and 

processed in an identical manner, where one is accurate and one not, suggests the 

discrepancies are truly present in at data source. Due to the limitations of this case study, 

it is unclear how generalizable this finding may be. 

 

The choice of exact data points may also influence study results, so care must be taken in 

accurately summarizing patient data. In this study, the biggest apparent difference was 

between closest prior and subsequent data points. The reason may be that closest prior 

data point represents the end of a series of blood pressures which began with a 

hospitalization and is, therefore, the nearest to "normal". The closest subsequent data 
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point, however, would represent the initial data collection of a hospitalization and would 

likely reflect a health crisis. Furthermore, defining allowable data points in time restricts 

the number of patients, who qualify for comparison. Using the average value for each 

patient smoothens out these temporal effects and allows the use of the maximum number 

of patients for comparison. 

 

Study 1B: eMERGE Type II Diabetes Phenotyping Algorithm 

Introduction 

One popular use case for EHR data is to identify patients for care management or 

research, prospectively, or as part of retrospective cohort for study. In this context, cohort 

identification using EHR data is known as EHR phenotyping. The Electronic Medical 

Records and Genomics (eMERGE) consortium is a current multi-site research network 

sponsored by the National Institutes of Health of the United State. This network develops 

precise and portable phenotyping algorithms using heterogeneous EHR data33. To 

improve algorithm portability across different EHR systems, the design and evaluation of 

EHR phenotyping algorithms have relied on collaboration across institutions. For 

example, the eMERGE Type 2 Diabetes Mellitus (DM2) Case and Control algorithms 

were developed collaboratively by five institutions, resulting in the identification of over 

three thousand cases and controls to support a genome-wide association study (GWAS) 

on diabetes patients34, 35. The algorithm uses commonly captured EHR data elements for 

diagnosis, medications, and lab values to identify Type 2 diabetics. The emphasis on 

portability imposes a tradeoff due to the inherent data quality issues of those commonly 
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captured EHR data elements. For example, ICD-9 billing codes are a coarse 

representation for nuanced narrative notes, medication orders do not necessarily reflect 

medication adherence, and as reported by Wei et al., EHR data fragmentation could 

negatively impact clinical phenotyping36. Moreover, the EHR data may not actually 

reflect patient perceptions of their own health.  

 

The eMERGE DM2 algorithm was originally validated using chart review. The expense 

of chart review typically limits sample size and only 50-100 each for cases and controls 

were reviewed in this example34, 35. Moreover, the chart review process does not sample 

from patients excluded from the case and control groups, meaning that a true sensitivity 

for identification of diabetes cases may not be established. Finally, chart review is still 

internal validation, implying the reference standard is still limited to information captured 

within the EHRs of related institutions36. Richesson et al. compared the identified 

individuals from different diabetes phenotyping algorithms17. While different algorithms 

might be created for different purposes, for example maximizing sensitivity for a registry 

versus specificity for a genetic study, the results do suggest that any given algorithm may 

fail to identify all diabetics in a database. 

 

With the increasing emphasis on patient and community engagement for clinical 

research, self-reported diseases status has risen as an alternative data source for clinical 

phenotyping.  These data are usually collected directly from patients, as opposed to EHR 

data that reflect the perceptions of health care providers. Prior studies checked the self-
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reported diabetes status against EHR data and achieved sensitivities around 0.75, and 

specificities around 0.912, 14, 16, 37.  

 

While pieces of patient self-reported data have informed specific elements of clinical data 

used for phenotyping, such as self-reported smoking rate38 and date of diagnosis39, little is 

known about how self-reported disease status data might be useful for clinical 

phenotyping. Both EHR data and patient self-reported health data have advantages and 

disadvantages for patient identification. We faced an unusual opportunity to address this 

research question. The Washington Heights/Inwood Informatics Infrastructure for 

Community-Centered Comparative Effectiveness Research (WICER) Project has been 

conducting community-based research and collecting patient self-reported health 

information24. A subset of surveyed individuals have clinical information stored at the 

Columbia University Medical Center, allowing direct comparison of diabetes status 

derived from clinical data to the self-reported diabetes status. Therefore, in this study we 

will validate the eMERGE DM2 Case algorithm using patient-reported diabetes status. 

This study is part of a larger research effort to use research data to verify clinical data 

accuracy.  

 

Methods 

1. Data Collected by WICER 

The survey collected information about social determinants of health and health seeking 

behaviors as well as established some baseline health information. Survey participants 

were explicitly asked whether they had been told they had diabetes, high blood sugar, or 
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sugar in the urine when not pregnant. The answer to this question was extracted as the 

self-reported diabetes status. 

 

2. Data Collected by the Columbia University Clinical Data Warehouse  

Data from the CDW were used to compute the case and control labels from the eMERGE 

phenotyping algorithm. 

 

3. The eMERGE DM2 Case and Control Algorithms 

As stated above, the eMERGE DM2 Case algorithm consists of three sets of criteria: 

diagnosis, medications, and lab values4. Diagnosis and medication criteria have 

components which indicate Diabetes Mellitus Type I (DM1) or Type II. Only patients 

with DM1 ICD-9 codes were completely excluded from the Case algorithm. For the 

purpose of this study, any patient reporting positive diabetes status who also had DM1 

ICD-9 codes had their status reset to negative. DM1 medications only denote insulin 

dependence, which may also be found in DM2, and so additional logical criteria are 

required.  

 

In contrast, the criteria for the eMERGE DM2 Control algorithm are very similar to the 

case algorithm, with the exceptions that no effort is made to distinguish between the 

types of diabetes (i.e., I or II), and the range of ICD-9 codes for the diagnostic criteria is 

expanded to include observations that co-occur with Type 2 diabetes. Criteria and their 

definitions are presented in Table 2-11. 
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Table 2-11: DM2 Phenotyping Algorithm components and definitions 

Criterion Definition Query Terms 
DM1 Diagnosis Patient has ICD-9 codes 

indicating Diabetes Type 
I. 

250.x1, 250.x3 

DM2 Diagnosis Patient has ICD-9 codes 
indicating Diabetes Type 
II. 

250.x0, 250.x2  
excl 250.10, 
250.12 

Control 
Diagnosis 

Patient has ICD-9 codes 
indicating diabetes, 
conditions which may 
lead to diabetes, or 
family history of diabetes 

250.xx, 790.21, 
790.22, 790.2, 
790.29, 648.8x, 
648.0x, 791.5, 
277.7, V18.0, 
V77.1 

DM1 
Medications 

Patient has medication 
history for drugs treating 
Diabetes Type I. 

insulin 
pramlintide 

DM2 
Medications 

Patient has medication 
history for drugs treating 
Diabetes Type II. 

acetoexamide 
tolazamide 
chlorpropamide 
glipizide 
glyburide 
glimepiride 
repaglinide 
nateglinide 
metformin 
rosiglitazone 
pioglitazone 
troglitazone 
acarbose 
miglitol 
sitagliptin 
exenatide 

Control 
Medications 

Patient has medication 
history for drugs treating 
diabetes. 

Combination of 
DM1 and DM2 
Medications 

DM Lab Patient has recorded lab 
value for HbA1c > 6.5, 
Fasting Glucose >= 126, 
Random Glucose > 200 

HbA1c, Fasting 
Glucose, Random 
Glucose 

 

4. Cohort Identification 

Patient data were extracted for every patient in the CDW for 2009-13. We chose this time 

window to replicate the time scale used by Richesson, et al. and to accommodate the fact 

that the medication data in our data warehouse are not complete prior to 2009. A subset 

of CDW patients who also have a WICER-recorded diabetes status was identified for 

validation of the eMERGE DM2 Case algorithm. The remainder of the CDW population 
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was used to investigate potential differences between the self-reported population and the 

general data population. 

 

5. Data Element Extraction for Each Cohort  

Table 2-12 presents the variables and definitions required for cohort identification and 

comparison using the eMERGE Case and Control algorithms. For each patient in a 

dataset, the data elements in Table 2-12 were either extracted or calculated. The self-

reported diabetes status for each individual was extracted from their survey response and 

included in the patient level data. For the purpose of this study, any patient reporting 

positive diabetes status who also had DM1 ICD-9 codes had their self-reported status 

reset to negative. 

 

6. Analysis Plan 

Several groups of patients were collected for comparison from both the subset of patients 

with self-reported diabetes status and general patient population. These groups are the 

patients identified by the eMERGE DM2 Case algorithm (eMERGE Case), the pool of 

potential cases meeting any of the diagnostic, medication, or lab value criteria (Case 

Pool), and those patients meeting none of the criteria (Excluded). For patients with self-

reported status, patients responding "Yes" and "No" were also separated for analysis. The 

number of patients, fraction of patients who are female, average and standard deviation 

for age, number of visits, and time between the first and last recorded visit for each group 

were reported. For groups of patients with self-reported status, the number of patients 
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identifying as diabetic was also reported. Summary values for each group were 

quantitatively described and compared. 

 

Table 2-12: Patient level data variables and definitions 

Variable Definition 
Sex Sex of the patient. 
Age Age in years on 1/1/2014. 
Visits Number of visits between 2009 and 2013. 
Span Length of time in days between first and last 

recorded visit. 
DM1 Diagnosis Number of ICD-9 codes meeting the 

Diabetes Type I diagnostic criteria. 
DM2 Diagnosis Number of ICD-9 codes meeting the 

Diabetes Type II diagnostic criteria. 
Control 
Diagnosis 

Number of ICD-9 codes meeting the Control 
algorithm diagnostic and family history 
exclusion criteria. 

DM1 Medication Earliest prescription date for medication 
meeting the Diabetes Type I medication 
criteria. 

DM2 Medication Earliest prescription date for medication 
meeting the Diabetes Type II medication 
criteria. 

Control 
Medication 

Number of medication orders meeting the 
control algorithm exclusion criteria. 

Glucose Tests Number of glucose test values recorded for 
the patient. 

Abnormal Labs Number of lab results high enough to indicate 
diabetes. 

Diagnosis  
Criteria 

1 if the patient meets the diagnostic criteria 
for Diabetes Type II, 0 otherwise. 

Medication 
Criteria 

1 if the patient meets the medication criteria 
for Diabetes Type II, 0 otherwise. 

Lab Value 
Criteria 

1 if the patient meets the labs criteria for 
Diabetes Type II, 0 otherwise. 

Case 1 if the patient is identified by the eMERGE 
Case algorithm, 0 otherwise. 

Control 1 if the patient is identified by the eMERGE 
Control algorithm, 0 otherwise. 

Survey 
Diabetes 

1 for a positive patient-reported diabetes 
status, 0 otherwise. Exists only in Matched 
Data 

 

Sensitivity, specificity, and positive predictive value against all patient self-reported 

statuses were calculated for the eMERGE DM2 Case algorithm, the component criteria 
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individually (Diagnosis, Medication, Lab), the group of patients meeting all the criteria 

(Diagnosis AND Medication AND Lab), and patients meeting any of the criteria 

(Diagnosis OR Medication OR Lab). Sensitivity, specificity, and positive predictive 

value were also calculated for the eMERGE DM2 Case group using just the individuals 

identified by the paired Control algorithm. 

 

The eMERGE DM2 Case algorithm was expected to identify patients who do not report 

having diabetes, and not all patients reporting diabetes were expected to be identified by 

the algorithm. To investigate whether identification by the DM2 Case algorithm was a 

result of different subtypes of diabetes, with different patterns of comorbidities, all ICD-9 

codes were pulled for each patient. ICD-9 codes were truncated at the root code level, or 

the whole number component of the code, and the frequencies of codes for each group 

were reported. 

 

Results 

We report our results in Tables 2-13 through 2-16, which includes summary statistics and 

demographics on specified patient groups, as well as validation statistics against all 

patient self-reported diabetes statuses and only those identified by the Control algorithm. 

See Figure 2-1 for a Venn diagram displaying the overlap between the patients identified 

by the eMERGE DM2 Case algorithm and those patients self-reporting positive diabetes 

status. 
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Figure 2-1: Venn diagram of overlap between patients identified by the eMERGE DM2 Case algorithm and 
patients self-reporting positive diabetes status 

 

There were 2,249 WICER Survey participants with self-reported diabetes status who had 

at least one visit recorded at our institution within the last five years. Table 2-13 presents 

summary statistics and demography for patients reporting diabetes and no diabetes. The 

patients identified by the eMERGE DM2 Case algorithm (eMERGE Case), the pool of 

potential cases meeting any of the diagnostic, medication, or lab value criteria (Case 

Pool), and those patients meeting none of the criteria (Excluded) are presented for both 

the patients with reported diabetes status and the general population. In patients with self-

reported status, eMERGE Cases and patients in the Case Pool are, on average, more than 

15 years older than the Excluded group, and have twice as many recorded visits. The 

same difference is more than 24 years in the general patient population, with three times 

as many recorded visits. Patients with reported status are more likely to be female, as 

expected, but follow the same trend with regard to age and visits, albeit with 1.8-3.5x as 

many visits. While patients with reported status do tend to be older than the general 

population in general (46.1 vs. 36.4), those in the respective Case Pools are 

approximately the same age (61.8 vs. 61.0).  

143
(28%)

61
(12%)

304
(60%)

Self-reported diabetes
n = 447

eMERGE Case
n = 204
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Table 2-13: Cohort demography and characteristics. Groups are patients identified by the eMERGE DM2 Case 
algorithm (eMERGE Case), pool of potential cases meeting any of the diagnostic, medication, or lab value 
criteria (Case Pool), and those patients meeting none of the criteria (Excluded). Patients answering “Yes” or 
“No” to diabetes status are also reported. 

Cohort Group N 
Patient-
reported 
Diabetes 

Count 

Fraction 
Female 

Average 
Age (SD 

Age) 

Average 
Visits 
(SD 

Visits) 

Average 
Time 

between 
First and 
Last Visit 
(SD Time) 

Patient-
reported 
Diabetes 

Status 

Yes 447 447 0.76 62.0 
(12.1) 

40.3 
(45.4) 

1223.6 
(665.3) 

No 1,802 0 0.79 48.0 
(16.9) 

24.4 
(33.6) 

1052.2 
(654.6) 

eMERGE 
Case 204 143 0.72 62.4 

(12.3) 
34.8 

(36.7) 
1293.6 
(568.5) 

Case 
Pool 670 387 0.76 61.8 

(13.0) 
43.3 

(45.9) 
1285.1 
(520.1) 

Excluded 
+ Control 1,579 60 0.79 46.1 

(16.3) 
20.9 

(29.7) 
1159.0 
(564.9) 

General 
Patient 

Population 

eMERGE 
Case 25,310 n/a 0.50 65.8 

(15.2) 
18.7 

(29.6) 
902.1 

(641.0) 
Case 
Pool 106,569 n/a 0.50 61.0 

(21.3) 
19.0 

(32.2) 
848.4 

(649.7) 

Excluded 
+ Control 680,324 n/a 0.58 36.4 

(22.8) 
5.8 

(11.6) 
677.3 

(589.2) 

 

Table 2-14 shows the validation statistics against self-reported status. Sensitivity and 

specificity for the eMERGE phenotyping algorithm were .32 and .97, respectively, while 

positive predictive value was .70. The highest positive predictive value (.85) was 

achieved by requiring all criteria (Diagnosis AND Medication AND Lab). This 

combination also has the highest specificity (.98). While the highest sensitivity (.87) was 

achieved by the least restrictive combination (Diagnosis OR Medication OR Lab), the 

sensitivity of the combination requiring all criteria (.55) was still higher than that of the 

eMERGE algorithm.  

 



 

 65 

Table 2-14: Positive predictive value, sensitivity, and specificity for the eMERGE DM2 Case algorithm, the 
component criteria individually (Diagnosis, Medication, Lab), the group of patients meeting all the criteria 
(Diagnosis AND Medication AND Lab), and patients meeting any of the criteria (Diagnosis OR Medication OR 
Lab). 

Set N 
Patient-

reportedDiabetes 
Count 

Positive 
Predictive 

Value 
Sensitivity Specificity 

eMERGE Case 204 143 0.70 0.32 0.97 
Diagnosis 517 369 0.71 0.83 0.92 
Medication 320 260 0.81 0.58 0.97 
Labs 549 330 0.60 0.74 0.88 
Diagnosis  
AND 
Medication 
AND Lab 

291 246 0.85 0.55 0.98 

Diagnosis  
OR Medication 
OR Lab 

670 387 0.58 0.87 0.84 

 

Validation statistics were also computed for the eMERGE DM2 Case algorithm using 

only the eMERGE DM2 Control patients for comparison. These results are presented in 

Table 2-15. As a pair the DM2 Case and Control algorithms excluded 1,449 patients, 

reducing the pool of analyzable patients to 800. The majority of self-identified diabetes 

patients fell into the excluded group, which raised the apparent sensitivity of the 

eMERGE DM2 Case algorithm to .93. However, the apparent specificity fell to .91.  

Table 2-15: Positive predictive value, sensitivity, and specificity for the eMERGE DM2 Case algorithm using 
only the patients identified by the eMERGE DM2 Control algorithm. 

Set N 
Patient-

reportedDiabetes 
Count 

Positive 
Predictive 

Value 
Sensitivity Specificity 

eMERGE Case 204 143 0.70 0.93 0.91 
eMERGE Control 596 11 n/a n/a n/a 
Excluded 1449 293 n/a n/a n/a 

 

The 15 most frequent ICD-9 codes for the intersections between the patients satisfying 

the eMERGE DM2 Case algorithm and the patients with positive self-identified diabetes 
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status (+eMERGE +Self) are presented in Table 2-16. Codes for groups where the two 

methods disagreed (+eMERGE –Self, -eMERGE +Self) are presented in the same table 

as well as codes for the group of patients with no identification for diabetes (-eMERGE –

Self). Note that DM1 and DM2 share the same root code (250) and no steps were taken to 

distinguish between types in this analysis. In general, the rank order of codes by 

frequency, as well as their general prevalence, is the same for the three diabetic groups 

regardless of how they were identified. The prevalence for diabetes ICD-9 codes is 

notably high in these groups. Prevalence for many of these codes is very different from 

patients without any indication of diabetes. Other comorbidities which are at least twice 

as prevalent in a diabetes group as in the non-diabetes group are hypertension, high 

cholesterol, diseases of the esophagus, and obesity. Patients with some identification for 

diabetes resemble the non-diabetic, general patient population in the prevalence of codes 

for follow-up examination, special investigations or examinations.  

 

Discussion  

The results of the eMERGE DM2 Case algorithm, as well as its component criteria, was 

validated against all patients with self-reported diabetes status, prompting several points 

for consideration. We will discuss issues surrounding the generalizability of the patients 

with self-reported diabetes status to the general patient population, discrepancies between 

identification from the eMERGE DM2 Case algorithm and the self-reported statuses, and 

the potential contributions of patient self-reported data to EHR phenotyping. 
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Table 2-16: Prevalence of comorbidities for group of patients identified by the eMERGE DM2 Case algorithm 
(+eMERGE +Self), groups where the two methods disagreed (+eMERGE –Self, -eMERGE +Self), and the group 
of patients with no identification for diabetes (-eMERGE –Self). 

ICD9 
Root 
Code 

Root Code Description 
+eMERGE 
+Self 
(n= 143) 

+eMERGE 
-Self 
(n = 61) 

-
eMERGE 
+Self 
(n = 304) 

-
eMERGE  
-Self 
(n = 
1,275) 

250 Diabetes mellitus 0.99 0.93 0.74 0.05 
401 Essential hypertension 0.86 0.85 0.79 0.34 
272 Disorders of lipid metabolism 0.65 0.67 0.63 0.21 

786 Symptoms involving 
respiratory system 0.48 0.47 0.44 0.31 

V67 Follow-up examination 0.46 0.44 0.48 0.44 

V76 Special screening for 
malignant neoplasms 0.46 0.43 0.54 0.30 

724 Other and unspecified 
disorders of the back 0.41 0.33 0.37 0.28 

V72 Special investigations and 
examinations 0.39 0.39 0.49 0.47 

789 Abdominal pain 0.38 0.43 0.39 0.34 
780 General Symptoms 0.36 0.43 0.40 0.28 

719 Other and unspecified 
disorders of joint 0.35 0.43 0.39 0.27 

530 Diseases of the esophagus 0.35 0.36 0.29 0.16 
729 Disorders of the soft tissue 0.34 0.33 0.39 0.23 
278 Obesity 0.33 0.43 0.40 0.21 

V04 
Need for prophylactic 
vaccination and inoculation 
against single disease 

0.31 0.49 0.48 0.25 

 

Patient Comparison and Generalizability  

One concern with this dataset is the patients with self-reported diabetes status, those who 

participated in the WICER Community Survey, are known to differ from the general 

population in several ways. The group is older, containing more women, and is mostly 

Hispanic. However, the portion of these patients with positive indications for diabetes do 

resemble their counterparts in the general patient population in terms of age, and the 

relatively increased number of recorded visits, as shown in Table 2-14. These findings 

suggest that the characteristics of patients with diabetes do not depend on the population 

from which they are drawn. 
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In Table 2-16, ICD-9 codes for diabetes are the most frequently represented in patients 

with some identification, either by the eMERGE DM2 Case algorithm or self-report, for 

diabetes, as expected. However, there are some discrepancies. The relatively lower 

prevalence of diabetes ICD-9 codes in the portion of self-reporting patients not identified 

by the eMERGE DM2 Case algorithm may indicate self-report inaccuracies or the effect 

of missing data in this group. The 5% prevalence of diabetes ICD-9 codes in the the 

group with no identification for diabetes (-eMERGE –Self) may be a result of codes 

specific for DM1 which were filtered out by the DM2 case algorithm and not in that 

analysis.  

 

Discrepancies in Identifying Diabetes 

The eMERGE DM2 Case algorithm is known to perform well against case review and 

does achieve very high specificity in this evaluation. The algorithm performs less well in 

selecting all of the individuals who self-report having diabetes, and this may be for many 

reasons. First, the case algorithm is restrictive in order to limit the inclusion of DM1 

patients. While steps were taken to exclude any patients who obviously had DM1, some 

of the patients who remain in the pool of potential cases may be rightfully excluded for 

this reason. Second, the non-selected patients may be incorrect about their diabetes status, 

though this is probably unlikely as this group of patients resembles the selected patients 

in patterns of visits and other demographics as well as the presence and frequency of 

comorbitidies. Moreover, if a large number of patients were in fact incorrect about their 

diabetes status, we would expect to see more discovered by the control selection 
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algorithm. Lastly, and suggested by Wei, et al., the non-selected patients may be the 

product of data fragmentation, which is to say they do not have enough of their healthcare 

data consolidated in our system to allow identification by the eMERGE DM2 Case 

algorithm. For example, 83% of the self-reporting diabetic patients have at least a ICD-9 

code for DM2 in our data warehouse, but at least 60% of those fail to be identified by the 

eMERGE DM2 Case algorithm for lack of sufficient clinical evidence for that diagnosis. 

 

The more interesting group may be those patients selected by the eMERGE DM2 Case 

algorithm who do not self-identify as having diabetes. They have met the algorithm's 

stringent inclusion criteria, have visit patterns, other demographics, and comorbidities in 

common with the self-identifying diabetic patients, suggesting they do have diabetes. 

That these patients seem to not be aware they have diabetes may have large implications 

to their treatment, adherence to that treatment, and their engagement with any treatment. 

Pacheco reported that only approximately half of the patients identified by the eMERGE 

DM2 algorithm at Northwestern had diabetes as part of the patient’s problem list, further 

suggesting that this effect is not confined to the patient13. 

 

Contribution of Patient Self-reported Data  

There are pros and cons to both EHR data and patient self-reported data (Table 2-17) 

which point to how the two data sources might complement each other. EHR data is very 

heterogenous, with many data types, but that data may have issue such as missingness 

and inaccuracies that limit their secondary use for research. The more common elements 

have successfully been used for patient phenotyping algorithms, but that does not 
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necessarily imply the algorithms have high sensitivity. In contrast, patient self-reported 

data reflects the patient's perception of their health status and may imply higher patient 

engagement in treatment, but may also be inaccurate and does not imply there is a useful 

quantity of clinical data at any one institution. 

Table 2-17: Pros and cons of EHR and Patient self-report data sources 

 Data Source 

 EHR Patient self-report 

Pro 

Heterogenous data 
types support high 

specificity. 
Reflects patient 

perception. 

Common, standardized 
elements support 

portability. 
Might imply higher 
patient engagement. 

Con 

High rate of 
missingness. 

Does not imply useful 
quantity of clinical data. 

May only reflect 
encounter with a single 

institution 

Patient perception may 
not be clinically 

accurate. 

 

The best use of patient self-reported status may be augmenting EHR-based phenotyping 

algorithms. Phenotyping algorithms like the eMERGE DM2 algorithm typically require 

multiple criteria for successful identification of a disease and in our study the majority of 

patients who self-reported positive diabetes status did not have enough data in our system 

to be selected by the DM2 Case algorithm. Yet, 87% of them did have at least one ICD-9 

code, medication order, or lab result to support a diagnosis of diabetes. If patient self-

reported status could be standardized and used in addition to commonly captured EHR 

data elements for phenoyping algorithms, our study suggests the number of patients 

identified by such algorithms could be greatly increased.  
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This recommendation comes with two caveats, however. First, the contribution of patient 

self-reported status to phenotyping algorithms for research will depend on the needs of 

that research. If clinical data are important, as in a retrospective observational study, then 

patients who cannot be identified from their data alone may not be useful. Approaches 

such as the eMERGE DM2 Case algorithm would therefore be the best way to identify 

meaningful cases within a data source. On the other, if the goal is to simply identify as 

many patients with a disease or status as possible, for a potential prospective study or a 

GWAS, then self-reported data would be a valuable addition.  

 

The second caveat is the issue of standardization. The portability of phenotyping 

algorithms relies on the use of common and standardized EHR data elements, such as 

ICD-9 codes. If the source of patient self-reported disease status is not standardized down 

to the exact wording of the question being answered, then the results may not be 

comparable and the resulting algorithm may not be portable. For example, the source of 

patient self-reported diabetes status in our study did not distinguish between DM1 and 

DM2. While steps were taken to address this limitation, the exact results of this study 

would probably be different if the survey question had specifically addressed DM2 alone. 

Therefore, any potential phenotyping algorithm built using our data might not perform 

the same on a data source with a patient self-reported data source specific to DM2. 

 

Limitations 

This study has several limitations. First, relatively few people were surveyed compared to 

the size of the large volume of patients in the EHRs. While the patients with self-reported 
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status do appear to resemble identified cases from the general patient population, the 

population taking the WICER Community Survey is known to be older, and contain a 

higher proportion of women and Hispanic individuals. Additionally, the WICER 

Community Survey does not distinguish between DM1 and DM2. While obvious DM1 

cases were removed from the dataset, it is unknown what percentage of the remaining 

patients may have DM1. 

 

Additional Comparisons: Missing Data 

Research Question: How prevalent is missing data in a clinical dataset? How does 

removing patients with missing data change the clinical dataset? 

Background 

One large limitation of clinical data sources is a high rate of missing data and, put simply, 

sicker patients have more data. Research has been done into how the prevalence of 

clinical data in sicker patients may influence research cohorts. While statistics on missing 

data were collected at all points of previous investigation in this document, the rates of 

missing data have not been examined or analyzed. Additionally, one common strategy to 

deal with missing data in a clinical dataset is to simply remove any patient missing any 

data. Here, the effect of such a method on the Raw Clinical dataset is also examined. 

 

Innovation 

There is little innovation in this section. It does confirm published patterns of missing 

data in clinical data sources. 
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Methods 

Proportions of patients lacking any data points for each variable were reported. Chi-

square test was performed to test whether these proportions were significantly different 

between the Raw Clinical and Survey datasets. 

 

A Complete Case was defined as any patient with a Gender, Weight, Height, Smoking 

Status, and Systolic and Diastolic blood pressure. Ethnicity was excluded due to known 

problem in labeling. BMI was excluded as a calculated variable depending on height and 

weight. Diabetes was excluded because of the simplistic and unreliable diabetes 

phenotype used at this stage. Age was excluded as it cannot be missing according to the 

database design. The Complete Case dataset was created containing only patients meeting 

this complete case definition. 

 

An additional Filtered dataset was created to look at the intermediate case, where patients 

with a great deal of missing data were excluded but some missing data values were 

allowed. In the Filtered dataset, all patients have at least two of the variables present of 

the complete case definition. Summary and comparison statistics for the Complete Case 

and Filtered dataset, as compared to the Raw Clinical dataset, were reported. 

 

Rates of missing data were also examined in terms of other variables, such as age. If the 

rates of missing data vary highly depending on other variables, then that variable is 
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MNAR. On the other hand, if rates of missing data do not depend on other variables then 

the data may be MAR. 

 

Results 

The proportions of missing data for each variable are presented in Table 2-18. Rates of 

missing data in the survey are very low, by design. Rates of missing data in the Raw 

Clinical dataset depend on the variable, from .16 for Systolic and Diastolic blood 

pressures to .59 for Height and Weight. Labels for diabetes status were missing at a much 

higher rate, however, diabetes was considered in more detail separately. Proportions of 

missing data were significantly different between Raw Clinical and Household datasets 

for every variable. 

Table 2-18: Rates of missing data in Survey and Clinical datasets 

 Survey Clinical 
missing GENDER 0.01 0.00 
missing ETHNICITY 0.02 0.32 
missing WEIGHT 0.01 0.53 
missing HEIGHT 0.01 0.59 
missing BMI 0.02 0.59 
missing SMOKING 0.03 0.27 
missing SYSTOLIC 0.02 0.16 
missing DIASTOLIC 0.03 0.16 
missing ALL DIABETES 0.02 0.87 
 

Table 2-19 contains the summary statistics for the Filtered and Complete datasets, as well 

as the Raw Clinical dataset for comparison. The statistics for the Filtered dataset are 

virtually unchanged from the Raw Clinical dataset. Less than half of the patients (28,752 

vs. 78,418) in the Raw Clinical dataset meet the definition for Complete Case. Complete 

cases are nearly 4 years older (51.30 vs 47.55), contain more women, are slightly heavier 

and shorter, but have slightly lower blood pressure. 
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Table 2-19: Summary statistics for Filtered and Complete Case datasets as compared to Raw Clinical 

File Clinical Raw Filtered (>2 
values) 

Complete 
Case 

N 78418 60258 28752 
Age 47.55 47.33 51.30 
Proportion 
Female 

0.62 0.62 0.68 

Proportion 
Hispanic 

0.50 0.52 0.49 

Weight kg 75.69 75.69 76.07 
Height cm 160.34 160.18 159.97 
BMI 28.10 28.20 28.30 
Prevalence 
of Smoking 

0.09 0.12 0.10 

Prevalence 
of Smoking 
Among 
Labeled 
Status 

0.12 0.12 0.10 

Systolic 127.23 127.09 125.93 
Diastolic 73.07 73.06 72.54 
Prevalence 
of Diabetes 
(Survey = 
self-report, 
Clinical = >1 
Diabetes 
ICD-9 AND 
>1 abnormal 
test) 

0.04 0.05 0.09 

 

Figure 2-2 shows the rates of missing data for one variable (systolic blood pressure) vs 

age by decade. This figure is representative of other graphs of missing data and was 

chosen to illustrate that, while the rates of missing data do fluctuate with age, those 

fluctuations are dwarfed by the underlying rate of missing data at all ages. For this 

reason, the Clinical dataset is categorized as having data missing primarily at random, 

which will be treated as MAR in following studies. 
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Figure 2-2: Rate of missing systolic blood pressure by age in the Clinical dataset 

 

Conclusion/Discussion 

Proportions of missing data are quite high (up to .59) for some variables and are 

significantly different from the research population. Again, what is surprising is that 

measurements at the population cohort level are in fact stable and statistically 

insignificantly different in some variables.  

 

Most patients are missing some data (Filtered) and fewer than half the patients met the 

complete case definition. It is not surprising that the removal of patients missing most 

data had little effect on the summary statistics for the Filtered dataset as patients with 

very little data also make very little impact on the dataset. Restricting the dataset to 
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patients meeting the complete case definition, however, did have measurable effects on 

the same summary statistics. 

 

The high rates of missing data are the reason behind using population aggregate statistics 

for previous stages. The rate of missing data for height and weight, for example, would 

mean excluding approximately 35% of the Matched sample, or nearly 400 individuals. 

By aggregating over the whole population, we preserve all available data for analysis.  

 

The other implication of the high rates of missing data are the significant differences in 

the Complete Case dataset. While data are classified as primarily missing at random, the 

examination of the Complete Case dataset reveals the limits of that classification. The 

members of the Complete Case dataset are older and likely sicker than the general patient 

population, and this difference results from requiring merely a single clinical data point in 

a handful of clinical variables. Larger data requirements for inclusion should be expected 

to result a much larger sampling bias. Conversely, if a researcher wants to limit sampling 

bias then any proposed cohort or analysis should be made as flexible to missing data as 

possible.  

  

Additional Comparisons: Categorical Analysis 

Research Question: So far, these investigations have looked at population aggregate 

statistics, which may mask more focused differences (such as within groups of 18-24 

years olds). Do the trends identified above hold true smaller groups? 
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Background 

Each row of each dataset was also assigned an indicator variable for BMI, Age by 

Decade, and Hypertension risk. These categories are useful because they aggregate 

continuous variables into clinically meaningful subgroups. While trends and 

discrepancies identified in previous stages of this investigation may be interesting, it is 

possible there are more significant differences hidden at these more highly granular 

levels. 

 

Methods 

Categorical indicator variables were added consisting of BMI (Underweight, Normal 

Weight, Overweight, Obese 1, Obese 2, Obese 3), Age by Decade (18-24, 25-34, 35-44, 

45-54, 55-64, 75-84, 85+), and Hypertension Risk (Normal, Prehypertension, Stage 1, 

Stage 2). For each category, each clinical patient or survey participant is assigned a 1 for 

the variable which includes them and a 0 for all other variables. 

 

All datasets were split along each category to be compared side by side and examined for 

notable differences from prior recorded conclusions. 

 

Results 

The results are too large to be displayed in this format. A sample result is included in 

Table 2-20. Here, the summary statistics of each dataset are presented for only those 

members with a recorded age between 18 and 24. 
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Table 2-20: Example Categorical Comparison. Differences in summary statistics remain present, but at typically 
smaller magnitudes than at the cohort level 

Category 18-24 
Data Raw Clinical Clinical 

Sampled (H) 
Clinical 

Sampled (U) 
Household ACN 

N 10148 50156 78324 390 114 
Age 21.63 21.56 21.6 20.53 20.54 
Proportion 
Female 

0.6152 0.7124 0.7067 0.6385 0.8158 

Hispanic 0.5681 1 0.6473 0.9179 0.8947 
Weight kg 72.4754 71.5152 71.476 74.2689 70.9576 
Height cm 163.1921 161.5481 162.1624 165.0253 163.0572 

 

 

Considering age, the broader trends between datasets remain true. Points which break the 

broader trends are areas where the datasets unexpectedly agree. For example, the 

proportion female is not significantly different in the categories of age 25-34, 35-44, 45-

54, 75-84, and >85 even though it remains significantly different at the aggregate level. 

 

In the BMI categories, Raw Clinical and the Household Survey population align very 

closely. In the Normal weighted category, smoking, gender, and even the crude diabetes 

label used here are not significantly different. 

 

In the Hypertension Risk categories, the broader trends between datasets hold true. In the 

Pre-Hypertension Category, Systolic BP is significantly different, while gender is not. 

 

Discussion/Conclusion 

For the most part, all broad conclusions about discrepancies between sampling and 

measurement hold true at higher granularities. What is surprising is that, where the prior 

results are not true, the datasets actually become more similar at these higher levels of 
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granularity. For example, the differences between the members of the Raw Clinical and 

Household datasets for patients between the ages of 25-34 may be smaller than between 

all the members of the entire dataset. 

 

These exceptions suggest that maybe differences in summary statistics across entire 

datasets may not have as large of an effect at the level of a specific research hypothesis 

which considers only one of these categories. It was this conclusion which led directly 

into the idea for a dataset validity analysis using a highly granular portrait of the 

significant differences which may be present in a dataset. 
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3. Dataset Validity Analysis 

 

Aim 2: Validation of Existing Datasets 

Aim: Build and evaluate a method to compare datasets through the results of randomly 

generated hypothesis tests. 

 

Aim 1 established that summary statistics for structured data and point measurements in 

our clinical dataset were not meaningfully different than our research dataset. However, 

most research using clinical data lacks the opportunity to use such direct reference data 

on the same individuals. Instead, a recent trend has been to validate an electronic clinical 

database by replicating a published finding or statistical result from another dataset. In 

study 2A, we expanded this concept into a method for comparing datasets through the 

results of multiple, randomly generated, two group hypothesis tests. This effort is 

considered preliminary in that the method was prototyped using a limited set of clinical 

data variables and without temporal considerations. In study 2B, we demonstrated the 

potential utility of the validation method by investigating the effect of data missing-at-

random, a potential bias we could not effectively measure in Aim 1. 

 

Study 2A: Introduction 

Despite potential problems and biases in electronic clinical data, they are widely used for 

research. We have demonstrated that, with a unique set of circumstances like the overlap 

of the WICER Community Survey with the population of the CDW, it is possible to 
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examine a clinical dataset for specific selection and measurement biases. However, the 

lack of those unique circumstances does not mean that clinical datasets used for research 

remain unexamined. Clinical datasets are examined, or validated, in different ways 

depending on the resources available. These validation steps may include comparing data 

from different sites within a federated research network or validating through replicating 

the result of an existing research trial. Several projects and their approaches to dataset 

validation will now be reviewed, followed by an overview of the dataset validity analysis 

we have implemented. 

 

SENTINEL and HMORN were designed to integrate clinical data with claims data to 

make up for gaps in the analysis of claims data alone29, 40. Because members' claims 

warehouses typically comprise multiple clinical locations, this goal required the creation 

of a federated system where local data elements are mapped to a common data model 

which can be queried across multiple sites. Again, data normalization and bias issues are 

acknowledged and the solution is transparency to the end user40. These projects validated 

their datasets through comparison with expected census distributions, similar to our 

weighting steps in the previous aim. Sociodemographic characteristics for the research 

population in one region were compared to census results for the same region with a 

result of no significant differences, suggesting that a clinical sample selection may not 

represent a bias in their population39. 

 

DARTNet is another project to build a federated data system designed to compile 

clinically enriched data for CER. The improvement over a project like HMORN was the 
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goal of improving the quality and reliability of data by limiting mapping to only around 

150 common data elements, though local mapping may be time consuming and there is 

concern about bias issues because of it20, 41. To investigate potential data bias issues, pilot 

studies using the system were explicitly chosen to replicate a set of previous studies so 

research outcomes could be verified against a true baseline. The goal was to identify 

greater effectiveness of combination therapies over single drug therapy for diabetes on 

common diabetes disease markers, a task which required the identification of a cohort as 

well as the monitoring of their health status and treatment protocols41. Results were 

"highly similar" to published findings and this pilot study step represents a true 

acknowledgment of potential biases associated with secondary use of data as well as a 

compromise towards its use. This kind of study result replication represents a shift from 

comparing differences in the content of datasets, i.e. summary statistics, to comparing the 

answers a dataset can provide.  

 

Our method for dataset validity analysis explicitly expands upon this final example of 

validation. However, where projects like DARTNet validate a dataset on a single research 

conclusion, we use a set of randomly generated two group hypothesis tests to create a 

highly granular portrait of the answers a dataset might provide. In the first aim, a clinical 

dataset was compared to a research dataset by asking, for example, whether the average 

systolic blood pressure of 70 year-olds was the same between datasets. In this aim we ask 

questions like whether the average systolic blood pressure of 70 year-olds is greater than 

40 year-olds in both datasets. In this way, the actual numbers do not matter, only that the 

datasets answer the same or different. For an illustration of this example, see Figure 3-1. 
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Table 3-1 contains common concepts and their definitions for this section. Building and 

using a method for validity analysis such as this requires several steps, which will now be 

reviewed in detail.    

 

Figure 3-1: Example of testing for answers rather than comparing summary statistics. Perhaps it is more 
meaningful if the same difference, in this example that 70 year-olds have higher blood pressure than 40 year 
olds, is present in two datasets rather than whether their summary statistics are the same. 

Table 3-1: Validity Analysis concepts and definitions 

Concept Definition 
Hypothesis Any randomly generated two group hypothesis test in the 

hypothesis set. 
Hypothesis Set Set of hypotheses that, when evaluated on a dataset, 

provide a highly granular portrait of the differences within a 
dataset. 

Candidate 
Dataset 

Dataset where the hypothesis set is being evaluated, 
answers to be classified against the reference dataset. 

Reference 
Dataset 

Dataset where the hypothesis set was generated and whose 
answers will serve as the basis for classifying a candidate 
dataset. In these studies, the reference dataset is assumed 
to be of equal or higher quality to the candidate dataset. For 
example, the research dataset vs. the clinical dataset.  

  

Clinical Dataset Raw Clinical Dataset from Aim 1. 
Research 
Dataset 

WICER Household Survey dataset from Aim 1. 

Clinical Sample A dataset of equal size to the research dataset, randomly 
drawn from the clinical dataset. 
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Dataset Validity Analysis Methods 

For the purpose of this investigation, a 'testing hypothesis' will be limited to a simple 

two-group comparison test (either chi-square or t-test depending on whether the outcome 

variable is categorical or continuous, respectively) between cohorts defined in terms of 

one or more other categorical variables. For example, is the systolic blood pressure of 

women older than 65 the same as men of the same age?  

 

Potential test hypotheses will be randomly generated with the following procedure. Two 

variables will be chosen at random to serve as independent variables to define a cohort. If 

the variable chosen has a continuous range, then what is actually referenced is one of the 

categorical values for that variable. For example, if systolic blood pressure is chosen then 

what will actually define the cohort is one of the hypertension risk categories. Three 

examples from the randomly generated hypothesis set are shown in Table 3-2. 

Table 3-2: Example randomly generate hypotheses from the hypothesis set 

Is the PROPORTION of SMOKERS in MEN with STAGE 1 HYPERTENSION vs. 
PREHYPERTENSION different? 
Is the MEAN of DIASTOLIC BP of PATIENTS >85 with SEVERE OBESITY vs. 
OBESITY different? 
Is the PROPORTION of WOMEN in SMOKERS AGE 65-74 vs. 75-84 different? 
 

The testing hypothesis is then classified by whether the null hypothesis is accepted or 

rejected (with a significance threshold of .05) when the test is performed in the candidate 

set and the base set. A hypothesis test which results in a p-value of <.05 in the candidate 

set and in the base set is considered a true positive. One which has a p-value of >.05 in 

both sets is considered a true negative. Each of these results is considered "accurate" in 

that the candidate dataset provides the same answer as the base set.  
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Figure 3-2: Classification matrix and Accuracy calculation for Validity Analysis 

 

 

For example, the mean systolic blood pressure of women older than 65 is compared with 

men older than 65 with a p-value of .65 in some candidate set and .37 in the base set. This 

test is classified as a true negative as no significant difference was detected in either set. 

This hypothesis test supports the “accuracy” of the candidate set because the candidate 

set has provided the same answer as the base set. A high proportion of accurate 

hypothesis tests supports the validity of that candidate set. Hypothesis tests which result 

in different answers from the base set are coded as false positive or false negative 

depending on whether the test result in a p-value of <.05 or >.05 in the candidate set, 

respectively, and are considered “inaccurate” results regardless of direction. This 

classification matrix is presented in Figure 3-2.  
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The hypothesis generating procedure was performed using the Complete Case clinical 

dataset as the candidate set and the Research Dataset as the base set. The procedure was 

repeated until there were at least five unique hypotheses in each class. 

 

Comparing Two Datasets 

Introduction 

In prior work, the summary statistics of two datasets were compared to establish the 

magnitude and direction of selection and measurement bias in clinical data. The 

discovered differences, while statistically significant and with some caveats, are probably 

not meaningful differences. The reason the multi-hypothesis validation procedure was 

devised and implemented was to investigate how similar the clinical and research datasets 

are in their internal differences and in how much they agree in the answers they might 

provide.  

 

This section discusses how multi-hypothesis validation was applied to the Clinical and 

Research datasets from prior work, as well as additional comparisons to explore the 

impact of the results. Specifically, the Research (n=4,069) and Clinical (n=78,418) 

datasets were compared using multi-hypothesis validation procedure described above. 

The datasets agree on 57/84 hypotheses, for an accuracy of 68%. 

 

However, while outcomes were encouraging, there were concerns that the greater size 

and power of the clinical dataset might skew the results. Therefore, 40 rounds of 

comparisons were made between the Research dataset and an equal sized (n=4,069) 
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random sample of the Clinical dataset. In addition, 40 rounds of comparisons were made 

between equal sized (n=4,069) random samples of the Clinical dataset to determine the 

effect of the random sampling. Accuracy was 77% and 81% for research vs. clinical 

sample and clinical sample vs. clinical sample, respectively. The distribution of results 

was compared with chi-square test with a p-value of .64, suggesting that the results from 

the Research dataset are no more different from the clinical dataset than samples of the 

clinical dataset are from each other.  

 

Results 

Each hypothesis in the hypothesis set was evaluated on the two datasets and the result 

classified as described in the previous section. Aggregate results of this multi-hypothesis 

validation are presented in Figure 3-3. In direct comparison of the clinical and research 

datasets, a significant difference was detected in both datasets for 44 hypotheses. A 

significant difference was not detected it both datasets in 13 hypotheses, leading to a 68% 

overall agreement between datasets. 

 

 

Figure 3-3: Hypothesis classification results and accuracy for Clinical dataset vs. Research dataset 
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In the clinical dataset, a significant difference was detected in 22 hypotheses where there 

was not a difference in the research set. This may be due to the larger power in the 

clinical set due to its greater number of members (n=78,418 in Clinical, vs n=4,069 in 

Research). To investigate this possibility, and compare the datasets more fairly, forty 

random subsets of the clinical dataset were compared to the research dataset, the results 

averaged, and presented in Figure 3-4. The lower power of the clinical sample lead to 

fewer false positives (12.3 vs 22) and a higher rate of agreement between datasets of 

(77%). 

 

However, the use of the smaller clinical samples introduced a new question: was the 

clinical sampling procedure introducing any new problems? To investigate this 

possibility, random clinical samples of the same size (n=4,069) were compared with each 

other and the results of forty comparisons averaged. These results are presented in Figure 

3-5. 

 

Figure 3-4: Hypothesis classification results and Accuracy for Clinical Sample vs. Research dataset 
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Figure 3-5: Hypothesis classification results and Accuracy for Clinical Sample vs. Clinical Sample 

 

As they were drawn from the same clinical dataset, the comparison of clinical samples 

should result in the highest possible rate of accuracy. What is interesting is that this rate 

of accuracy, and indeed the distribution of classified hypotheses, between the comparison 

of clinical samples (Figure 3-5) and the comparison of the Research dataset with clinical 

samples (Figure 3-4) are not very dissimilar. The similarity can be evaluated statistically 

with a chi-square test using the results of the clinical sample comparison as the expected 

frequencies and the comparison of the Research dataset to clinical samples as the 

observed, experimental frequencies.  

 

The result of the chi-square test is a p-value of 0.64, meaning the classification of 

hypotheses between the Research datasets and any clinical sample of the same size is not 

significantly different from that between two random clinical samples.  
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Limitations 

What has been presented is an analytic method to explore similarities and differences 

between datasets in terms of the answers they provide to statistical tests. Choices were 

made in the exploration and evaluation of this method which may have impacted the 

results. Because the goal was to compare the Research and Clinical sets, again only a 

limited set of overlapping variables could be used. Next, hypotheses were generated 

using the same Research and Clinical datasets, meaning all evaluations were predicated 

on there being detectable differences between the sets. Lastly, while the clinical sample 

comparison can establish an upper bound on “accuracy” between datasets, this evaluation 

stops short of determining what level of accuracy is needed for confident research using 

clinical data. 

 

Discussion and Recommendations 

This evaluation demonstrates that, regardless of statistically significant differences in 

summary statistics, Research data and Clinical data provide largely similar answers to 

random statistical tests. Moreover, the difference between Research and Clinical data is 

no larger than the difference between random clinical data samples drawn from the same 

dataset. These findings suggest that electronic clinical data might be used with equal 

confidence as research data on the same population. 

 

However, there are larger implications to how this analytic method might be applied. The 

goal is validation of a dataset, which requires a dataset for comparison and an available 

hypothesis library. Given a large publicly available clinical dataset, researchers could 

generate their own hypothesis libraries using all overlapping data. The benefit of this 
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option is that the dataset validation can be tailored. For example, hypotheses could be 

generated using only outcomes of interest for the proposed research questions. The 

downside of this option is that it requires the availability of a large, highly granular and 

inclusive dataset.  

 

A different, related approach is the publication of a common hypothesis library and the 

results when performed on a particular database. The advantage here is that no data need 

be shared yet the same comparisons can be made between datasets. There might be 

problems with power issues due to different database sizes, as were encountered in this 

analysis, but they might be overcome by publishing exact p-value results and simply 

scaling the significance threshold accordingly. The disadvantage to publishing just a 

hypothesis library and results is that the generated hypotheses would have to be limited to 

common data elements to ensure generalizability between clinical datasets. This was 

essentially the approach taken in this evaluation between a research and clinical dataset, 

demonstrating the approach is possible. 

 

A more limited, but possibly more useful, application of this analytic method is for local 

validation. A medical institution might be interested in validating a random subset of data 

for preliminary research use or ensuring that a specialized cohort has representative 

clinical data. In these cases it would be very useful to compare the limited datasets to 

other random clinical datasets of the same size. Such an internal validation might 

establish the extent to which the answers from a de-identified random subset might be 
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trusted without resorting to the use of identified data, or whether the results from a more 

specific research cohort might be generalized to the larger patient population. 

 

Study 2B: Data Missing at Random 

Summary 

Data MAR should not bias a dataset, however, the levels of missing data present in our 

clinical dataset are quite high. Using the dataset validity analysis method developed for 

this aim, the effect of data MAR can be investigated. At levels of missing data up to 60%, 

or the highest level present in our clinical dataset, the dataset still results in 90% of the 

same answers as the original version of the dataset with no missing data. The more 

surprising finding is that even at 99.9% data deletion, if a significant difference between 

two groups can be detected, then that difference was almost certainly present in the 

complete dataset. 

 

Research Question: What is the effect of data MAR on validity analysis? 
 

Introduction 

 
This thesis has primarily focused on the differences between a clinical dataset and 

research dataset in terms of sampling and measurement bias. The third major issue is that 

of missing data. The rate of missing data in the clinical dataset from virtually zero for 

some variables (sex, age) to quite high for others (height, weight). A description of 

missing data for more complex, inferred variables such as diabetes depends on the 
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phenotyping algorithm being used and, particularly, how many different sources of 

information are required to support the diabetes label. 

 

There are three generally accepted classes of bias due to data incompleteness: Missing at 

Random, Missing at Random, Missing Not at Random, and Missing Completely at 

Random42, 43. 

 

Missing data bias is generally classified as Missing at Random (MAR) or Missing Not at 

Random (MNAR). Data MAR are, as the name implies, missing throughout the dataset at 

a rate which does not depend on any recorded factor. A subset of data MAR are data 

Missing Completely at Random (MCAR) in which data are missing with no dependence 

on any factor recorded or otherwise. The data MCAR is difficult to demonstrate outside 

of artificially limited datasets. While data MAR does decrease the sample size, and 

therefore "resolution", for detecting difference between groups, it adds no directed bias. 

 

Data MNAR, however, are where the rate of missing data depends on some other 

recorded variable. Data MNAR can lead to biases which affect research outcomes 

because here the rate of missing data is unbalanced. If, for example, younger people were 

more likely to refuse participation in a blood pressure survey and blood pressure tended 

to increase with age, then that survey might report an average age and blood pressure 

higher than the true underlying population.  
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As previously reported in this document, the effect of missing data in the clinical dataset 

is primarily MAR. However, while data MAR does not bias a dataset as defined above, 

data MAR does degrade the power of a dataset in possibly unpredictable ways. The most 

common approach to dealing with missing clinical data is to simply exclude any patient 

with missing data, called the Complete Case approach. The advantage is that any issues 

with missing data are excluded from the dataset. The disadvantage is patients with some 

missing data may have useful data to contribute to an aggregate analysis, and are 

discarded.  

 

The effects of restricting patient cohorts to those with more data have been previously 

investigated44, 45. While the effect of particular data requirements were not investigated in 

this thesis, some similar broad trends were recognized in the analysis of the Filtered and 

Complete Case datasets. Given the method of validating datasets described in the 

previous section, there is an opportunity to evaluate the effect of data MAR on a clinical 

dataset. Table 3-3 presents concepts and definitions for this section. 

 

Table 3-3: Concepts and definitions for examining the effect of data MAR in a clinical dataset 

Concept Definition 
Clinical Data 
Point 

Any clinical observation for a variable within the dataset. 
Patients may have multiple clinical data points per variable. 

Summary Data 
Point 

The average of all clinical data points for a variable for each 
patient. Values of summary data points are evaluated as part 
of the validity analysis. 

Target Any one of a range of data deletion targets from 10% to 
99.99%. The target represents the chance that each clinical 
data point will be deleted. 

Candidate Set For this study, candidate sets are targeted, deleted datasets 
where clinical data points have been deleted up to a given 
target. 

Reference Set For this study, the reference set is the Complete Case 
dataset where each patient has at least one clinical data 
point for each variable. 
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Given the method of validating datasets described in the previous section, there is an 

opportunity to evaluate the effect of data MAR on a clinical dataset.  

 

Methods 

Dataset 

A 'clinical data point' is a single observation for a patient, for some variable, in the 

clinical data source. A ‘summary data point’ is the average of all clinical data points for a 

patient. The intent is to start with a dataset where every patient has at least one clinical 

data point per variable, and therefore a summary data point for each variable, known as 

the Complete Case set. While not the same as the original Clinical dataset, the Complete 

Case set does have the advantage of providing a gold standard for a subsequent 

evaluation of missing data. 

 

A secondary consideration is to restrict data choice to what was used for the first aim. 

One reason for this restriction is that defining and acquiring clinical data is a painstaking 

and time consuming process. Another is that this restriction means the effects of missing 

data and imputation will be investigated in the same context as the first aim, where the 

quantity of missing data could be determined in a "real world" scenario. A third 

consideration is that restricting the dataset to the same variables as previously used also 

means the same hypothesis library can be used as was generated in the previous 

evaluation. 

 



 

 97 

Therefore, this investigation uses a Complete Case dataset of clinical patients with at 

least one clinical data point for Age, Sex, Height, Weight, BMI, Systolic and Diastolic 

blood pressures. If multiple clinical data points are available for a patient, they were 

averaged into a 'summary data point'. Validation set hypothesis tests will be performed on 

the summary values. There are approximately thirty thousand patients in this Complete 

Case set. 

 

Data Deletion 

There are multiple ways to create a data MAR scenario. What is needed is a way to delete 

clinical data up to a target value (50%, 90%, etc.) For this investigation, treat each 

patient's summary data value as a collection of clinical data points. For example, each 

patient has one summary data value for weight which is the mean of many recorded 

clinical data values. For each trial, a candidate set is created where each clinical data 

point has a chance of deletion equal to the target. Clinical data points are then 

summarized and recorded in the same way as the base set. Therefore, the target for each 

set represents the approximate percentage of clinical data points which have been deleted. 

This process is repeated on ten sets for each target, and the results averaged. 

 

Hypotheses and Testing 

The hypothesis library generated in the previous step was used in the evaluation of 

missing data. Each hypothesis test is evaluated on the candidate set and that result 

compared to the result of that hypothesis test on the base set. A hypothesis test which 

results in a p-value of <.05 in the candidate set and in the base set is considered a true 
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positive. One which has a p-value of >.05 in both sets is considered a true negative. Each 

of these results is considered "accurate" in that the candidate dataset provides the same 

answer as the base set. Hypothesis tests which result in different answers from the base 

set are coded as false positive or false negative depending on whether the test result in a 

p-value of <.05 or >.05 in the candidate set, respectively.  

 

For this investigation accuracy is reported as the percentage of hypothesis tests whose 

results are either true positive or true negative as compared to the base set, or (TP + TN) / 

(TP + TN + FP + FN). Positive predictive value is the percentage of hypothesis tests 

which result in a p-value <.05 in the candidate set which are also true positives, or TP / 

(TP + FP). 

 

Alternative methods of data deletion were considered, performed, and evaluated. The 

results were not significantly different. This method was chosen because it more closely 

maintains the underlying patterns of missingness in the clinical data points. 

 

Results 

See Figure 3-6 for accuracy and positive predictive value of validation vs. target data 

deletion value. Up until 30% data removal there is very little difference in validation. Up 

until 80% data removal, the vast majority of validation hypotheses will still have the 

same results. Accuracy quickly degrades past 80% data deletion. 
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Figure 3-6: Graph of Accuracy and Positive Predictive Value for targeted, deleted datasets vs Complete Case 
dataset 

Even at near total data deletion, there is a sizable fraction of hypotheses which still 

compute “correctly”, which is to say the same answer to a hypothesis test is calculated in 

the targeted, deleted dataset as in the base, complete dataset. However, these hypotheses 

are instances where no significant difference was could be detected and that was also true 

in the base, complete set. While these results remain true, because so many hypotheses 

are now incorrectly reporting no significant difference, they cannot be trusted. 

 

The surprising finding is that the rate of false positive results is very, very low at all 

levels of missing data, implying that even in a very degraded dataset, any two group 

hypothesis test which indicates a significant difference between groups is likely correct. 
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Limitations 

This investigation had several limitations, some in common with the rest of this thesis 

and some pertaining specifically to this investigation. The more general limitations 

include the reuse of the same dataset and variables as previous investigations. The result 

of those choices is a hypotheses library limited to the same variables. While it meant the 

same hypotheses library could be reused, the broader dynamics of this analytic method 

could not be explored. 

 

Conclusions and Recommendations 

The biggest takeaway from this investigation is that data MAR have very little effect on 

this analytic method until data are missing at very high levels. While the amount of 

missing data in the clinical dataset may seem objectively high (~50% for some variables), 

it is valuable to note that this amount is less than the level of missing data required to 

significantly affect the validity of the dataset. In other words, the effect of missing data 

should not be a concern for researchers using this particular clinical dataset. If the level of 

missing data, and especially the fact the data appear to be primarily MAR, are common 

across clinical datasets, then typical levels of missing data should generally not be a 

concern for researchers using electronic clinical data. 

 

This recommendation has important implications. If missing data has no significant effect 

on the validity of a dataset, efforts should be taken to retain patients with missing data in 

clinical datasets. If care is taken to include analyses which can be performed on some 

level of aggregate statistics, such as those randomly chosen by the hypothesis generation 
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process, then power can be added to a dataset even if the patients being added are missing 

data. 

 

The positive predictive value result should further contribute to confidence in using 

datasets with missing data for research. At all levels of missing data, even up to levels 

approaching 100% data deletion, if a difference could be statistically significantly 

detected, then that difference was almost certainly statistically significant in the original 

dataset. The steadily decreasing accuracy demonstrates that as the level of missing data 

increases, the number of hypotheses where a statistically significant result is also 

decreasing and that negative predictive value becomes poor. These implications suggest 

that structured clinical datasets with >90% missing data can still be used for research. 

However, in work with these datasets only statistically significant differences should be 

reported as non-significant differences have much lower likelihood of being accurate. 
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4. Addressing Gaps and Opportunities 

Aim 3: Addressing Gaps and Opportunities 

Aim: Explore the use of more advanced techniques to address gaps and opportunities 

presented by the first two aims. 

 

Aims 1 and 2 were designed to address identified gaps in the current practice of clinical 

data validation. However, the execution of these aims suggested further opportunities for 

improvement that fell outside of their original scope. Studies 3A, 3B, and 3C investigate 

three such opportunities, specifically in imputing missing data in clinical datasets, 

improving linkage between patients in different datasets, and computing the 

"representativeness" of a patient in a database. 

 

Study 3A: Imputing Missing Data in a Clinical Dataset 

 
Research Question: Can missing data in a clinical dataset be replaced so that the 

accuracy of a dataset is improved? 

 

Methods Background 

 
Multiple methods have been recommended for imputing missing data in datasets. They 

range from using a single summary value to substitute for all missing data to complex 

machine learning methods which seek to replicate not only summary statistics but the 

underlying distribution. This section reviews the background and recommendations 

concerning this range of imputation methods. 
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Complete case analysis is the simplest approach to dealing with missing data. With 

complete case analysis, only records where values for all data variables are recorded are 

included42, 46-49. Complete case analysis neatly sidesteps the problem of missing data by 

ignoring, which can be an effective strategy when data are MAR. However, when data 

are MNAR, complete case analysis precisely preserves whatever problems are present.  A 

subset of complete case analysis is case restriction, where the criteria for inclusion are 

much more rigidly defined in order to limit potential biases by excluding known 

confounders25, 50. For example, a retrospective study on heart disease my exclude any 

patient record with any indication for heart disease or history of compatible symptoms. 

Much like a live randomized, controlled trial, case restriction can strengthen argument for 

a causal link between exposure and outcome, but the generalizability of the finding may 

be compromised. Complete case analysis was used as a baseline in this investigation. 

 

The next step in complexity involves replacing all missing data of a type with a single, 

simple value, commonly known as single value replacement42, 46-49. Most of the methods 

in this class, such as Last Observation Carried Forward (LCOF), are designed to deal 

with gaps in time series data and dropouts. However, some can be adapted to single data 

fields. For instance, the mean or median value of a variable across the entire population 

can be substituted for any missing value. When comparing two groups, the mean or 

median of each group can be substituted for missing values within that group. A more 

conservative variation is to use the mean or median value of the control group alone for 

all missing values, thereby ensuring that any finding is biased toward the null hypothesis. 
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The third class are estimating methods, such as linear regression. Typically, regression 

coefficients are used to estimate the values of missing data46-48, 51. The advantage of this 

method is that substituted values are arguably more suited to the case to which they are 

supplied. However, the substitution is only as strong as the regression model. 

 

Highly computational approaches exist which use more complex assumptions about the 

distribution of variables in order to make substitutions. Previously mentioned methods 

substitute the most likely value for any missing data point, for different definitions and 

calculations of likely. However, the likelihood of all substituted data values being exactly 

the most likely (for example, exactly the mean) is small. These more complex methods 

take that point into account and create substituted data points more holistically by looking 

at the range of values. 

 

The first such method is multiple imputation42, 46, 47, 49, 50. A substitute for each missing data 

value is drawn randomly from all values present for a given variable. The process is 

repeated multiple times to create a pool of imputed data sets. Results from queries over 

all datasets are averaged. The advantage is that the extremities and the shape of the 

distribution are preserved exactly as well as they are represented by existing values. The 

disadvantage is that only the exact values actually present are used as replacements. 

 

K Nearest Neighbor (kNN) is a method similar to multiple imputation where the possible 

replacement values are limited to those of the "nearest" rows in terms of spatial distance. 
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Here, spatial distance is a way of computing similarity using all available data. In this 

method the intuition is values from similar patients will be closer to the true value 

missing for the patient in question than a randomly chosen value from the entire set. The 

downside of this method is that it may fail when there are many data variables, or 

dimensions, used for the distance calculation. This limitation, which was not a factor in 

the current investigation, might be side-stepped by limiting the variables for the distance 

calculation. 

 

Expectation Maximization, on the other hand, draws values from an artificial distribution 

based on the values which are present42, 46, 49, 52. Missing data values of any variable will 

be replaced with the result of an expectation maximization algorithm, taking into account 

the distribution of that variable and the likelihood of all other replacements made. The 

advantage over multiple imputation is that substituted values are smoother and do not 

literally rely on existing values. 

 

Evaluation of Methods for Reducing Bias in Clinical Data 

As mentioned previously, while there is a strong history of use of presented methods in 

other contexts, there is not a great deal of evaluation of these methods on clinical data.  

Two such evaluations and a meta-analysis of missing data method application are 

presented here. The two evaluations are characteristic of those which are performed. One 

reason they may be so rare is that, lacking research quality reference data, evaluation is 

limited to essentially a sensitivity analysis on a targeted study's conclusions. What these 

evaluations demonstrate is that when a simple data replacement method is sufficient to 
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change a study's statistical conclusion, then there was probably a significant bias in the 

study's original data. 

 

The first evaluation takes the form of an analysis of basic missing data mitigation 

strategies on longitudinal data from a weight-loss trial22. Ware, et al., began with a look at 

missing data, starting from a complete case set, which should mimic the rigorous 

inclusion standards of a complex clinical dataset. While they did not have access to full 

data, they could add cases to the analysis through the application of basic methods such 

as LCOF and First Observation Carried Forward (FOCF). LOCF is a method for missing 

data replacement in a time series where the last recorded value is used to substitute for 

the missing data values at the end. FOCF is a related method where the first recorded 

observation is used as the substitute. Each of these methods was applied to the weight 

loss dataset to augment the number of cases and compare results to only using complete 

cases. The study demonstrated that while the trend of the data was preserved the 

statistical significance of the conclusion was not, suggesting study dropout was a case of 

data MNAR. 

 

An evaluation by Raboud, et al., of slightly more complex methods on nonrandom 

missing data in a study of CD4 counts following antiretroviral therapy concluded that 

"missing data ... can result in underestimation of treatment effects"21. Dropout is common 

in HIV trials due to poor compliance, treatment toxicity, and other causes and the result 

of that dropout can mean data MNAR. This evaluation again began with simple value 

replacements such as LOFC but stepped forward to methods such as imputation with 
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regression-predicted values. While in this instance, using a complete case baseline would 

result in an underestimation of treatment effects, the authors acknowledge that because 

dropout was correlated with treatment group, which is to say missing not at random, the 

effect could have been easily inverted for a different set of treatment effects. Again, bias 

could not be directly demonstrated, but the change in apparent treatment effect is 

suggestive of data MNAR. 

 

Rather than examining a single study, Molnar, et al., took a systematic review approach 

to the application of a LOFC approach to the treatment of missing data in the domain of 

dementia therapiesol23. They examined the quality of included research studies with 

regard to the treatment of missing data and case selection with the conclusion that 

"published results of some trials may be inaccurate." However, this review derives its 

conclusion from an analysis of which included studies used any form of missing data 

mitigating methodology and the degree to which that methodology, if present, was 

applied. The data itself was not examined. What is interesting about Molnar's approach is 

the acknowledgement that LOFC is only successful when data are MAR and can 

introduce greater bias otherwise. Studies under analysis were penalized for the 

application of LOCF without a discussion of whether it was an appropriate method to 

use. 

 

While these three studies are applicable to proposed work, they do highlight some gaps in 

current research. One is that only a limited set of methods is ever directly compared using 

the same data, making it difficult to evaluate the relative strength of one method against 
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another. The second is that, lacking reference data, it is impossible to directly evaluate 

the extent of bias. Rather, evaluation of a study is treated as a sensitivity analysis where a 

study's conclusion is thrown into doubt if application of some method is enough to 

significantly change it. There is a need for an evaluation of clinical data against research 

quality reference data as well as an evaluation of multiple methods for addressing bias 

performed on the same dataset. 

 

Methods 

Datasets 

This investigation makes use of the targeted, deleted datasets created for the prior 

investigation of the effect of data MAR on the validity analysis. Ten datasets were 

created for each missing data target, where the targets range from 10% to 99.99% and the 

target represents the chance of being deleted for each clinical data point. Patients with 

multiple clinical data points per variable have their clinical data points averaged to make 

a summary data point. The starting set for these targeted, deleted datasets is the Complete 

Case dataset, a set restricted to patients with at least one clinical data point for Age, Sex, 

Height, Weight, BMI, Systolic and Diastolic blood pressures. 

 

Hypothesis Set 

Like the targeted, deleted datasets, the same hypothesis library generated in the previous 

section was used in this analysis. 
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Imputation Methods 

The following methods were used to replace missing data in a copy of each targeted, 

deleted dataset.  

 

Simple Mean, Median 

All missing values are replaced with the mean or median value, respectively, for that 

variable across the entire dataset. Replacement was performed in Python. 

 

Conserve Mean, Median 

In the two cohorts defined by the current hypothesis test in the validity analysis, missing 

values are replaced with the mean or median value, respectively, of the first cohort. The 

intent is to err on the side of minimizing the difference between cohorts. Replacement 

was performed in Python. 

 

Target Mean, Median 

In the two cohorts defined by the current hypothesis test in the validity analysis, missing 

values are replaced with the mean or median value, respectively, of the cohort. The intent 

is to tailor the value replacement to the cohort being studied. Replacement was performed 

in Python. 

 

Linear Imputation 

A linear model is constructed out of available data and missing values are filled using this 

model. This method was applied with the lmImpute function in the Imputation package 



 

 110 

for R. Due to limitations with the number of data points which could be used, as well as 

the fact that this function was not configured for categorical variables, the results of this 

method are not reported. 

 

kNN 

Replacement value is the mean of the five nearest patients as calculated by spatial 

similarity. This method was applied with the kNNImpute function of the Imputation 

package for R. 

 

GBM 

GBM is a technique to impute missing values when large quantities of categorical and 

numerical data are present. Expectation maximization is performed with boosted trees. 

This method was applied with the gbmImpute function in the Imputation package for R. 

 

Imputation Application and Reporting 

There are ten targeted, deleted datasets for each target. For each of these sets, a copy is 

created with the missing summary data values imputed by one of the methods described 

above. Each dataset is then processed to assign the categorical variables such as cardiac 

risk and obesity. As in the previous investigation, these candidate sets are validated 

against the original Complete Case dataset using the existing hypothesis library. For this 

investigation, only accuracy is reported and compared to a baseline accuracy of the 

accuracy of the targeted, deleted dataset without imputation or replacement of missing 

data. 
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Results 

Accuracy for Simple Mean and Median, Conserve Mean and Median, Target Mean and 

Median, kNN, and GBM imputation methods in terms of the level of missing data is 

presented in Figure 4-1. The baseline used for comparison of imputation efficacy is the 

accuracy of the targeted, deleted dataset without imputation or replacement of missing 

data. 

 

Figure 4-1: Graph of Accuracy for various imputation methods vs. the Complete Case Dataset. No method 
performs significantly better than Baseline, which is accuracy calculated with missing data in place. 

In general, no imputation method performed better at maintaining the accuracy of 

hypothesis test results as compared to the original, complete dataset. At around data 

removal of .9, Target Mean and Median have a slight improvement in accuracy over 

baseline. The more complicated imputation method of kNN is actually significantly 

worse than baseline and all of the simpler methods.  
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Limitations 

This investigation reuses the same datasets, hypotheses, and validation method as 

previous investigations, and shares the same limitations. While a good cross-section of 

methods, at differing levels of complexity, were evaluated, this investigation was not 

exhaustive. It is possible a more specialized, focused method could maintain accuracy at 

high levels of missing data. In addition, these methods were only applied to a data MAR 

scenario. While the data MAR here replicates a broadly true clinical data scenario, these 

methods may also perform better in a data MNAR scenario. 

 

Discussion and Contributions 

In general, no imputation method performed better than baseline. This may be because 

the goal of these methods, from the very simple mean replacements to the very complex 

machine learning approaches, is to replicate the summary statistics and distributions of 

the existing data. In the validation method reused in this investigation, what is being 

tested is whether randomly defined cohorts have a significant difference. In other words, 

imputation methods may be very good at replicating summary statistics but do not have 

any effect at preserving or replicating the differences between tiny subsets of the dataset. 

 

The conclusion of the prior investigation was that data missingness has very little effect 

on validating a dataset until present at very high levels, that missing data at the patient 

level should not exclude a patient from a dataset. Given the conclusion of that study and 

the result of this study, it is recommended that no missing data replacement be performed 

for clinical data intended for research. The caveat to the recommendation is that this 
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investigation was only performed using data MAR random scenarios. While clinical data 

was primarily MAR in the clinical dataset used here, the class of missing data in a 

clinical dataset should be determined before deciding whether to replace missing data by 

any method. 

 

While ultimately negative, the results of this investigation are still a significant 

contribution. As reviewed in the background section, ranges of data replacement and 

imputation methods have been recommended for clinical data. However, these methods 

are not evaluated in terms of maintaining accuracy of a dataset in the face of increasing 

levels of missing data, nor are they ever evaluated against each other. Secondly, the result 

is surprising. It was the expectation for this investigation that missing data replacement 

would be beneficial and that more complex methods would perform better than simpler 

options. In reality, no method performs better than leaving the missing data in place and 

the recommendation of this investigation is to not replace missing data when the data is 

MAR. 

 

Study 3B: Nearest Neighbor Matching between Clinical and Survey 

Records 

Research Question: Can nearest neighbor matching replace matching based on 

identifiable data? 
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Background 

In WICER, survey participants are matched to their own clinical records primarily by 

looking at name and birthdate. While additional manual efforts raise the number of 

matches, some survey participants do not have a clinical record in the CDW. It might be 

possible to assign such survey participants a "closest" record whose demographics and 

health measurements are literally the nearest to those recorded by the survey. A further 

application of this method is that, if successful, it could be used to match patients within 

de-identified datasets without using a research identifier. 

 

Figure 4-2: Graphical example of nearest-neighbor matching 

An example of this nearest-neighbor matching is presented in Figure 4-2. Here, Sam on 

the bottom represents a survey participant whose clinical measurements are nearly 

identical to his survey measurements. The “distance” between these two measurement 

vectors is virtually zero, making his closest clinical match his “true” match, or himself. 

The record on the top is a composite patient of an individual named Wendy, who was 

interviewed for the Household Survey, and Claire, who has a record in the CDW and 

lives in Washington Heights. The data for their demographics, BMI, blood pressure, etc. 

are almost identical, suggesting that someone like Wendy might have a clinical record 

like that of Claire. 
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Methods 

The nearest neighbor matching method relies on complete data for each record, so each 

data source was limited to only those records with complete data for age, sex, height, 

weight, BMI, systolic and diastolic blood pressure. Additionally, the clinical data source 

was limited to Hispanic or Unknown ethnicities. 

 

Each record is treated as a vector. For each survey record, the spatial distance to every 

clinical record is calculated and sorted based on distance. Each records place in the list is 

known as its "rank". The record with the smallest distance is the best match, but the 

process is evaluated by determining the number of records between the closest match 

based on spatial distance and the true match.  

 

Results 

This process was evaluated by looking at survey participants who do have a matching 

clinical record based on name and birthdate, then calculating how many clinical records 

stand between the true match and the closest match. Out of nearly five thousand matches, 

6% of survey participants had their true matching clinical record as their closest clinical 

record. For 75% of survey participants, the true match was within the top 1,300 (out of 

nearly 29,000) clinical records.  
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The reverse matching rates (clinical record to nearest survey) were also calculated. The 

same 6% most closely match their true survey record. However, 75% percentile matching 

is approximately 2500 (out of nearly 5000). Full results are presented below. 

  SURVEYS MATCHING TO CLINICAL 
  Average rank of 1881 of 28749. 
 
  5th percentile rank is 0. 
  25th percentile rank is 22. 
  50th percentile rank is 185. 
  75th percentile rank is 1283. 
  95th percentile rank is 11718. 
 
  6 percent had a rank of 1. 
  18 percent had a rank of less than 10. 
  41 percent had a rank of less than 100. 
  71 percent had a rank of less than 1000. 
  82 percent had a rank of less than 2000. 
   
 
  CLINICAL MATCHEDS TO SURVEY 
  Average rank of 1599 of 4872. 
 
  5th percentile rank is 0. 
  25th percentile rank is 56. 
  50th percentile rank is 2025. 
  75th percentile rank is 2535. 
  95th percentile rank is 3568. 
 
  6 percent had a rank of 1. 
  16 percent had a rank of less than 10. 
  27 percent had a rank of less than 100. 
  40 percent had a rank of less than 1000. 
  49 percent had a rank of less than 2000. 
 

Discussion and Conclusion 

Six percent of records match exactly themselves in both directions. Survey records are 

much more likely to be spatially close to their true matches in the clinical data source 

than the opposite. This is true in terms of the absolute rank, but, considering how many 
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fewer survey records are available as potential matches, much worse in relative terms. 

This finding suggests that the members of the pool of survey records more closely 

resemble each other than the members of the pool of clinical records. While it may mean 

that in some sense it does not matter which survey record is matched to, it is certainly 

more difficult to find true matches. 

 

In contrast, the much larger pool of clinical records contains a greater variability and 

distance between individuals, meaning the matching process does a much better job of 

finding true matches. While this reverse matching is still better than chance, it is not as 

close in relative terms as the performance of the original direction, which was surveys 

matching against the clinical records. This finding suggests that the survey records are 

more homogeneous than the clinical records, which is backed up by the demographics of 

the survey population. Furthermore, it may be that the clinical matches are not as useful 

as they appear on the surface. If the 1,300 clinical records to which one survey 

participants closely matches are the same clinical records for every survey participant, 

then the matching is effectively meaningless. 

 

Additional limitations on this method are the known, albeit small, biases in measurement 

between the clinical and research measurements at the cohort level, and the especially 

high variability at the patient level between these measurements. While the presence of 

these limitations may make the 6% true match rate surprisingly high, it is not high 

enough to consider nearest-neighbor matching a viable substitute for more exact 

matching methods. 
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Study 3C: Propensity Score to Indicate Representativeness in a Dataset 

Research Question: Can an individual's representativeness in a dataset be usefully 

represented with a point statistic? 

 
Background 

A propensity score is the marginal probability of treatment, effect, or inclusion in a group 

given any number of possible covariates. For example, in a hypertension study it may be 

that older people are simultaneously more likely to suffer from a heart attack and take a 

certain drug. A simple investigation into the drug's effects might conclude the drug was a 

risk factor for heart attacks. A propensity score based approach would group study 

participants by likelihood of taking the drug rather than simply exposure to the drug. 

Older people who took the drug would be pooled with any other group of people who 

were also very likely to take the drug. These people would only be compared to 

individuals from the same group who did not take the drug. Similarly, individuals from 

groups which were very unlikely to take the drug would only be compared to individuals 

from those groups which did take the drug. In this way, the effect of exposure to the drug 

is separated from whatever factors confound that exposure. 

 

The intuition behind this study was that a similar score might be useful to account for 

sampling bias in a dataset. If a clinical dataset contains significant sampling bias, 

presumably favoring sicker individuals than the general population, then research 

conclusions from that dataset might not be generalizable to a healthier population. A 
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propensity score for representativeness in a dataset could be used to stratify the dataset 

prior to analysis. If a research conclusion is true for the over-represented segment of the 

dataset as well as the under-represented segment, then it is likely to be generalizable to 

the general population. 

 

Given selection bias in a clinical dataset, a 'bias propensity score' would account for the 

marginal probability of inclusion in a dataset given any number of potential health 

covariates. With access to the source for clinical data and the Household Survey 

population, it is possible to estimate the representativeness of any person in the clinical 

dataset based on the number of people similar to them in the research dataset. In this way, 

the representativeness of any arbitrary cohort drawn from clinical database could be 

determined. 

 

Methods 

The representativeness of a person in a dataset is calculated as the fraction of the dataset 

composed of individuals of the same gender, age by decade, hypertension risk category, 

and BMI category. The bias propensity score for a person in the clinical dataset is 

calculated as their representativeness in the clinical dataset divided by the 

representativeness in the research dataset. In the event that a particular intersection of 

categories was not represented in the research dataset, its representativeness was set to 

0.5. A propensity score >1.0 implies that an individual is over-represented, or more 

common, in the clinical dataset than the research dataset. A propensity score <1.0 implies 

that an individual is actually less represented. The bias propensity score is different than a 
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simple case weight, as was used to re-weight the cohorts to a census distribution in the 

first aim, because it also includes covariates like hypertension risk and BMI categories 

which have direct health implications. 

 

The performance of the bias propensity score was investigated via case study. A cohort 

was requested to study the difference between measured blood pressures between the 

ACN survey setting and the clinical record. The bias propensity score was calculated for 

every member of the cohort and the relationship between the scores and the results 

examined in that context. 

 

Results and Discussion 

The case study research cohort had 511 members and a median bias propensity score of 

.85. Bias propensity score had a range of .04 to 5.66. The top and bottom quintile of the 

cohort as grouped by propensity score did not have significantly different results. 

 

This case study demonstrates that a bias propensity score is fairly easy to calculate and 

could meaningfully indicate the representativeness of any individual in a dataset. The 

median propensity score indicates that this cohort is fairly representative of a research 

cohort, containing individuals only slightly less represented in the clinical dataset than 

the research dataset.  

 

However, this case study also demonstrates the limitations of this approach. While a bias 

propensity score might be interesting, in this case study there was no noticeable effect on 
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study outcomes. Also, it demonstrates how the selection criteria for a research study have 

a great deal more effect on the makeup of a research cohort than any underlying sampling 

bias in the dataset. While the utility of a bias propensity score should be investigated in 

other cohorts, it was not a useful statistic to calculate in this case study.  
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5. Conclusions and Future Work 

Conclusions 

This thesis examines issues and opportunities surrounding electronic clinical data for 

research. In the first aim we examined a clinical dataset for sampling and measurement 

bias primarily through comparison to a research quality dataset drawn from the same 

population. While there is only a direct overlap between the datasets in a few variables, 

there was enough of an overlap to detect some significant, but probably not meaningful, 

differences between the datasets. We reported some considerations for replicating work 

of this kind, most important being the inclusion of a matched set, or a set of individuals 

with records in both data sources, to parse the difference between measurement and 

sampling bias. 

 

The more interesting outcome of the first aim is the idea of three categories of clinical 

variable. We identified completely accurate, simple measurement, and inferred 

information as the three categories of clinical variable. The completely accurate category 

encompasses information like addresses, phone numbers, and other personally identifying 

information, which might be expected to remain the same for an individual for a given 

time. The second category, simple measurement, includes height, weight, and blood 

pressures, or variables with a simple definition that derive from a single measurement. 

While there may be systematic differences, they were typically small in our datasets. 

These two findings suggest datasets or analyses using highly structured data (e.g. age, 

gender) and point measurements (e.g. weight, blood pressure) collected from a clinical 
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process should not have meaningfully different results than data collected as part of a 

structured research process. 

 

The third category is inferred information, or clinical variables which draw from multiple 

sources to infer a complex status such as diabetes. These could not be considered 

accurate for population summary purposes in this dataset, which is to say the summary 

values in the clinical dataset were very different from the research dataset, but parts of the 

clinical phenotype can be used to design a study toward different purposes such as 

maximizing sensitivity, specificity, or positive predictive value. 

 

To further investigate the dynamics of an inferred variable, we used the eMERGE Type 2 

Diabetes Phenotyping Algorithm. eMERGE is a consortium which aims to build precise 

and portable phenotyping algorithms for electronic clinical data. In this instance, the 

diabetes phenotyping algorithm uses a combination of diagnoses, medications, and lab 

results to infer a diabetes for a genetic study, appropriately trading off sensitivity to 

support a research goal of high specificity. However, this phenotype should not be used, 

for example, to populate a diabetes registry where high sensitivity should be the primary 

concern. By validating the components of the eMERGE diabetes phenotyping algorithm, 

singly and in simple combinations, we can demonstrate how the same criteria might be 

repurposed to other research goals.  

 

Aim 2 revolved around building and demonstrating a method to validate existing datasets 

for research. Rather than comparing the summary statistics for variables in a dataset, it 
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may be more interesting and meaningful to compare the answers a dataset might provide. 

For example, it might be more meaningful that the mean blood pressure 70 year-olds is 

higher than 40 year-olds in a candidate dataset and that is also true in a reference dataset. 

By randomly generating and evaluating many such hypotheses, we can create a highly 

granular portrait of a datasets and the similarity of the answers they might provide.  

 

The conclusion of this validity analysis method on our clinical and research datasets is 

that the clinical data is no more different than the research dataset in terms of the answers 

it provides than two random clinical data samples are from each other. The validity 

analysis method was also used to investigate the effect of data MAR on a clinical dataset. 

At levels common in our clinical dataset, or up to 60% of the data missing, the dataset 

still scores 90%. Even at 99.9% of data removed, if a significant difference can be 

detected in the dataset, that difference is almost certainly present in the complete dataset. 

Again, the results of the second aim bolster the result of the first aim that electronic 

clinical datasets comprised of structured, simple measurements might be effectively used 

for research regardless of concerns about measurement and sampling biases, and bias due 

to missing data. 

 

A third aim collects three studies which investigate the use of more advanced techniques 

on gaps and opportunities for using electronic clinical data for research. These studies 

involved evaluating missing data imputation methods using the existing deleted data 

datasets, whether nearest-neighbor vector matching could be used to substitute for more 

exact matching methods based on name and birthdate, and whether propensity scores can 
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be used to meaningfully indicate a patient's representativeness in a dataset. While none of 

these studies ultimately had a positive result, they demonstrate a willingness to look at 

the edges of the utility of electronic clinical data and suggest directions for future 

research. 

 

Future Work 

While the results and conclusions of this thesis support the idea that electronic clinical 

data might be used for research, the limited scope may negatively impact the 

generalizability of the conclusions. Instead, the impact of this thesis might be as a set of 

analytic methods and an indication for future work. 

 

From the first aim there are a set of considerations which describe how to use a research 

dataset to validate a clinical dataset. The opportunities to perform this task may be 

limited. However, the methods described could be used to validate various research 

cohorts or their sampling criteria against the database from which they were drawn. 

These tasks could be performed as a sensitivity analysis on a dataset and resulting 

measurement and sampling differences from the source dataset can be rigorously 

described. Like the difference in heights between the Survey and Clinical datasets, it is 

not as if any one answer is more correct than the other, but that the capacity to describe 

the source of the difference adds to the quality of a dataset. 

 

Similarly the second aim was limited by its original purpose to the same set of 

overlapping variables between the Clinical and Survey datasets. However, the method 
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suggests an immediate application in the same vein as described for the first aim. Here 

the validity analysis method would be used to demonstrate the accuracy of a research 

dataset against its data source or to demonstrate that a de-identified subset can provide 

the same answers as a whole dataset. In both cases the immediate next steps involve 

generalizing the methods used in this thesis beyond the limitations of the datasets used. 

Methods must be generalized to deal with more types of variables and with issues of 

temporality. 

 

Contributions 

Concerns about bias in electronic clinical data may be widely reported but are difficult to 

quantify. This thesis includes an explicit investigation of selection and measurement 

biases in electronic clinical data through comparison to a higher quality data source on 

the same individuals. Such an investigation simply would not be possible without the 

setting and resources available in our institution. Secondary investigations resulted in a 

novel method to compare datasets by the answers they provide to a library of randomly 

generated hypothesis tests. Use of this method supports the conclusions of the first aim, 

that any biases in our electronic clinical dataset were largely insignificant, but also shows 

promise for future work in validating arbitrary datasets for research. 
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