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ABSTRACT 

 

RNA Exosome Regulated Antisense and Divergent Noncoding RNA 

Facilitate AID Targeting Throughout the B Cell Genome 

 

Evangelos Pefanis 

 

 Vertebrate immune systems are armed with the ability to generate highly specific 

immune responses capable of responding to nearly any foreign molecular threat. One of 

the major mediators of this response is immunoglobulins (Igs) produced by B 

lymphocytes. The specificity of individual Igs is created through a tightly orchestrated 

series of somatic DNA manipulations at Ig encoding loci resulting in functional gene 

rearrangements and nucleotide substitutions. These events serve to create a pool of 

naive B cells expressing Igs with distinct specificities, capable of expansion in response 

to antigen specific selection. Affinity of Ig towards antigen is enhanced through 

nucleotide substitutions introduced at the antigen binding variable region gene segments 

through the enzyme activation induced cytidine deaminase (AID) during the process of 

somatic hypermutation (SHM). AID also generates point mutations within noncoding 

DNA segments of the Ig heavy chain locus that are processed into double strand breaks 

leading to constant region isotype switching during class switch recombination (CSR). 

 The Ig diversification processes of SHM and CSR critically depend upon 

transcriptional activation of the relevant DNA segments. Transcription is thought to 

facilitate single strand DNA substrate recognition by AID during unwinding of the DNA 

duplex. The 3’-5’ exoribonuclease RNA exosome serves as a transcription dependent 

cofactor of AID. RNA exosome is comprised of multiple structurally integral core subunits



and associated nuclease subunits. In this work, RNA exosome core subunit Exosc3 and 

nuclease Exosc10 have been targeted for conditional mutagenesis and loss of function 

analysis in mouse cells. RNA exosome deficient B cells were significantly impaired in 

AID dependent SHM and CSR Ig diversification processes. Transcriptome analyses 

revealed a striking accumulation of promoter proximal antisense divergent noncoding 

transcripts (xTSS-RNA) at a subset of genes upon loss of RNA exosome function. xTSS-

RNAs mark regions of chromatin containing RNA exosome activity. Multiple known AID 

target sites including IgH and Myc were observed to express xTSS-RNA. Furthermore, 

genomic sites of recurrent AID dependent chromosomal translocations were enriched for 

xTSS-RNA. In addition to promoter proximal xTSS-RNA, cryptic intragenic antisense 

noncoding transcripts were found to accumulate at many genomic loci. In fact, multiple 

translocation hotspots precisely overlap regions of RNA exosome sensitive antisense 

transcription. AID targeted divergently transcribed promoters containing RNA exosome 

substrates possessed greater amounts of RNA:DNA hybrids, indicative of frequent 

transcriptional arrest. Lastly, RNA exosome deficient transcriptomes have revealed a 

substantial number of novel long intergenic noncoding RNAs and enhancer RNAs, 

indicating a hidden layer of cellular transcriptional activity. 

 A model of AID targeting utilizing transcriptional arrest is becoming increasingly 

apparent. Transcribed chromatin prone to undergo transcriptional arrest, such as Ig loci 

or xTSS-RNA expressing regions, frequently undergoes premature transcription 

termination coupled to RNA exosome mediated degradation of the nascent transcript. 

This process results in the creation of AID substrates and serves to stabilize its 

association with chromatin through multiple interactions involving RNA exosome and 

transcription complex subunits.  
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1.1 Brief overview of innate and adaptive immune responses 

All species of life have evolved various defense mechanisms providing protection 

against pathogens and other non-self antigens. The majority of species rely almost 

exclusively on germline encoded non-specific approaches referred to as the innate 

immune system, which is fully operable prior to pathogen encounter. However, during 

evolution all vertebrate species acquired an additional mechanism of immunity involving 

specific recognition of pathogen during the course of an immune response (Hirano et al., 

2011). This process is known as the adaptive immune response and involves 

introduction of somatic genome alterations to generate antigen recognition. Both innate 

and adaptive arms of the immune system can be further subdivided according to the 

nature of their mediators. Cell mediated immune responses require direct interactions 

between host cells and their target whereas humoral immune responses involve soluble 

factors. 

 Cellular mediators of the innate immune response include phagocytes such as 

macrophages and neutrophils. These cell types are capable of engulfing particulate 

antigens such as immune complexes, opsinized microorganisms, or infected cells and 

thus are crucial for infection clearance. Cell mediated innate responses also involve 

natural killer cells and innate lymphoid cells that are involved in direct killing of infected 

cells and release a wide array of pro-inflammatory cytokines (Spits and Cupedo, 2012). 

Humoral innate immunity is largely comprised of the complement system, a complex 

cascade of proteolytic events involving host serum factors eventually leading to 

opsinization and/or lysis of invading pathogens (Ricklin et al., 2010). Anti-microbial 

peptides such as defensins are an additional component of humoral innate immunity. 

These are located primarily on mucosal surfaces and are capable of penetrating 

microbial cell membranes leading to lysis and/or inhibition of metabolism (Brogden, 

2005).  
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 T lymphocytes are the key cell type involved in executing the cell mediated 

adaptive immune response. Their specificity towards antigen is imparted through the T 

cell receptor (TCR) that recognizes antigen in the form of membrane bound peptide-

MHC complexes on other cells. Their function is largely dependent on receiving 

activation cues arising from antigen specific interactions with dendritic cells. The 

dendritic cell in many ways bridges the innate and adaptive immune responses by 

translating non-specific phagocytosis of antigen into a potent antigen specific activation 

signal for T cells via cell surface antigen presentation. Activated cytotoxic T cells of the 

CD8+ lineage drive the cell mediated adaptive immune response by specific killing of 

infected cells presenting non-self peptides on their MHC-I cell surface molecules. CD4+ 

T helper cells relay critical activation and survival cues to B cells. 

 According to current knowledge, immunoglobulin (Ig) produced by B lymphocytes 

entirely accounts for the humoral adaptive immune response. Ig can bind antigen with 

high affinity, great specificity, and is a major protein constituent of serum. Interactions 

between Ig and antigen can lead to neutralization of pathogenic antigens such as 

viruses and bacterial toxins. Ig accumulation on large antigenic surfaces such as 

bacterial polysaccharides can induce their phagocytic uptake and degradation through 

macrophages. This same process can lead to complement-dependent cytotoxicity 

(CDC), where complement activation occurs on the surfaces of Ig coated microbial 

pathogens leading to lytic pore formation through the binding of complement initiator 

C1q with Ig. The accumulation of Ig on cell surfaces can also generate antibody-

dependent cell-mediated cytotoxicity (ADCC), where high avidity interactions between Ig 

and low affinity Fc receptors on natural killer cells can induce release of cytotoxic 

granules and lead to target cell apoptosis (Vivier et al., 2008). In light of these functions, 

Igs have repeatedly been leveraged for therapeutic purposes as evidenced by the 
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successful application of anti-CD20, anti-HER2, anti-VEGF, and anti-CTLA4 in the fight 

against various cancers (Reichert, 2012). 

 

1.2 Primary immunoglobulin diversification – V(D)J recombination 

Immunoglobulins are composed of 2 identical ~50 kDa heavy chain polypeptides 

and 2 identical ~25 kDa light chain polypeptides covalently linked by disulfide bridges. 

Each polypeptide contains distinct variable and constant regions. The constant regions 

of heavy and light chains are entirely germline encoded, and the heavy chain constant 

region determines Ig isotype, which imparts many of the effector functions. The variable 

regions directly bind with antigen and are not directly encoded within the genome. 

Instead, variable regions are encoded within discontinuous gene segments requiring 

assembly through an elaborate mechanism involving combinatorial rearrangement of 

somatic DNA. 

 In 1976, Tonegawa provided the initial insight pointing to immunoglobulin 

production involving somatic rearrangement. In a landmark experiment he observed that 

a radiolabelled light chain mRNA probe hybridized with two distinct DNA restriction 

fragments when using early embryo DNA, whereas DNA derived from a plasmacytoma 

line contained a single restriction fragment hybridizing with the same light chain probe 

(Hozumi and Tonegawa, 1976). This was correctly interpreted as the variable and 

constant regions being spaced far apart within the germline but that they undergo a 

somatic rearrangement bringing them in close proximity during B cell development. It 

was subsequently determined that light chain variable regions are assembled from two 

gene segments (variable and joining) (Max et al., 1979; Sakano et al., 1979) and heavy 

chain variable regions are assembled from three gene segments (variable, diversity, and 

joining) (Early et al., 1980; Maki et al., 1980) through the process of V(D)J 

recombination. 
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 V(D)J recombination is the ordered, lineage, and stage specific assembly of 

variable region antigen receptor gene segments. Lineage specificity is evidenced by the 

fact that Ig loci are fully rearranged only in B cells and not in T cells. Stage specific V(D)J 

recombination in B cells occurs during development where the heavy chain locus is 

rearranged prior to the light chain locus. Heavy chain rearrangement occurs during the 

pro-B cell stage whereas light chain rearrangement occurs during the pre-B cell stage. 

Joining of VH, DH, and JH segments during heavy chain rearrangement occurs in a tightly 

ordered fashion where DH and JH segments are rearranged first to form a DHJH fusion 

segment followed by VH to DHJH joining (Alt et al., 1984). Ordered rearrangement of gene 

segments is likely mediated through localized chromatin loops established by CTCF 

(Guo et al., 2011a; Guo et al., 2011b). 

 A key event in initiation of V(D)J recombination is induction of germline 

transcription at unrearranged V, D, and J segments. These germline transcripts were 

found to coincide with the particular class of gene segments undergoing rearrangement 

according to the lineage and stage specificity of the cell (Yancopoulos and Alt, 1985). 

From this observation sprung the accessibility model of V(D)J recombination, which 

hypothesized that the ordered, lineage, and stage specific rearrangement of variable 

region gene segments was accomplished through the differential accessibility of gene 

segments towards the putative recombinase. The epigenetic “opening” of local 

chromatin was proposed to provide access of given gene segments to transcription and 

recombinase machineries and helped resolve the long standing question of why antigen 

receptor gene segments of the B cell lineage are not recombined in the T cell lineage 

and vice versa. Germline transcripts were subsequently shown to coincide with the 

developmental onset of V(D)J recombination at all known antigen receptor loci 

(Abarrategui and Krangel, 2009). 
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 The mechanism of V(D)J recombination can be largely summarized as a two 

step process (Figure 1). The first involves site specific recognition and cleavage of V, D, 

or J gene segments by the lymphocyte specific RAG1/RAG2 endonuclease complex 

(Oettinger et al., 1990; Schatz et al., 1989). RAG cleavage occurs within recombination 

signal sequences flanking gene segments, leading to formation of hairpin coding ends. 

The second phase of V(D)J recombination involves joining of cleaved gene segments 

and is largely mediated through ubiquitously expressed components of the classical non-

homologous end-joining pathway (Alt et al., 2013). Broken coding ends are then held 

together by the Ku70/Ku80 heterodimer (Walker et al., 2001), which also serves to 

recruit the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) leading to 

Artemis endonuclease activation (Lieber, 2010). Artemis will then introduce a nick into 

the single stranded portion of the coding end hairpins (Ma et al., 2002). The free 3’ end 

can then be processed by terminal deoxynucleotidyl transferase (TdT) to introduce non-

templated nucleotides and filled in by DNA polymerase µ or λ (Schatz and Swanson, 

2011). In the final step the ligase complex composed of XLF, XRCC4, and DNA ligase IV 

seals the broken ends (Lieber, 2010) to form the fusion gene segment. 

      

Eµ Cµ 
46 kb 
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0.7 kb 2500 kb 
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Figure 1:  V(D)J recombination at the mouse Ig heavy chain locus 
(A - B) The ~2.7 Mb Ig heavy chain locus in germline orientation. Variable (VH) gene segments (~200 in 
total) are spaced across ~2.5 Mb. Ten diversity (DH) gene segments are spaced across 96 kb. Four joining 
(JH) gene segments occupy 1.3 kb. The intronic enhancer element (Eµ) lies between the last JH segment 
and the Cµ constant region. V(D)J recombination is initiated through germline transcription of DH and JH 
gene segments. RAG endonuclease cleaves the corresponding DH and JH segments that are subsequently 
joined through the NHEJ pathway to produce a fusion DHJH segment. 
(B - C) A second recombination event largely following the same mechanism as the first, takes place 
between a VH segment and the fusion DHJH segment. The VH to DHJH recombination event occurs with tight 
lineage specificity. 
(C - D) The VHDHJH segment serves as the variable region coding exon of the mature heavy chain mRNA.  
 

1.3 Secondary Ig diversification – somatic hypermutation & class switch 

recombination 

1.3.1 B cell diversification and selection within the germinal center 

Naive B cells that productively rearrange their Ig heavy and light chain loci 

resulting in functional non-autoreactive surface immunoglobulin (BCR) exit the bone 

marrow and circulate until they encounter cognate antigen. The fine-tuning of 

immunoglobulin takes place within a microanatomical structure known as the germinal 

center, which develops within secondary lymphoid organs upon immunization or 

antigenic stimulation. It is here where B cells introduce somatic mutations in Ig variable 

regions through the process of somatic hypermutation (SHM) and undergo isotype 

switching through the process of class switch recombination (CSR). SHM coupled with 

intercellular B cell selection defines the physiological phenomenon of affinity maturation, 

a process where the affinity of serum immunoglobulin towards antigen increases over 

time during an immune response. CSR leads to alteration of immunoglobulin effector 

function by specifically replacing the germline encoded IgM heavy chain isotype of naive 

B cells with a different isotype such as IgG, IgE, or IgA. Each of these isotypes differs in 

their accumulation within various bodily fluids, their molecular stoichiometry, and ability 

to interact with different cell types according to isotype specific Fc receptor expression. 

 Naive B cells circulating through secondary lymphoid organs such as spleen or 

lymph node occasionally encounter BCR-specific antigen and acquire T cell help, 
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resulting in B cell activation and eventually leading to germinal center formation. 

Germinal centers are comprised of two distinct histologic domains. A dark zone 

composed almost exclusively of proliferating B cells, and a light zone containing follicular 

dendritic cells (FDCs), B cells, and T helper cells (Victora and Nussenzweig, 2012). B 

cells within the dark zone undergo rapid cell division and express the enzyme activation 

induced cytidine deaminase (AID) that initiates mutagenesis of actively transcribed Ig 

loci. This process creates a pool of antigen specific B cell variants that undergo affinity 

based competitive selection involving FDCs and T helper cells within the light zone.  

 The germinal center is a highly dynamic environment involving extensive cell 

migration and rapid changes in gene expression (Allen et al., 2007; Hauser et al., 2007; 

Schwickert et al., 2007). Replicating B cells are maintained in the dark zone due to their 

high expression of chemokine receptor CXCR4, whereas B cell migration to the light 

zone is promoted through upregulation of CXCR5 (Allen et al., 2004). Here B cells alter 

their transcriptional signature from cell division to cell activation (Victora et al., 2010). 

The activation signal arises from BCR ligation of native antigen-immune complexes 

retained on the surface of FDCs (Carroll and Isenman, 2012). BCR signaling provides a 

necessary survival signal for B cells (Lam et al., 1997), and while important for 

elimination of B cells containing nonsense mutations in either Ig locus, is likely not the 

primary determinant of affinity based selection. A model whereby BCR mediated 

competition for antigen is solely responsible for selection of high affinity B cells would 

paradoxically also promote autoreactivity through selection of B cells with higher affinity 

towards self antigens (Victora and Nussenzweig, 2012). In addition to enhanced BCR 

signaling, higher BCR affinity towards antigen might also result in greater antigen 

endocytosis, processing, and presentation onto MHC class II molecules. Accordingly, 

affinity based B cell survival within the germinal center is thought to operate at the level 

of T cell help. B cells with the highest affinity towards antigen will engulf more antigen 
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than lower affinity B cells, and ultimately present more peptide-MHC II on their cell 

surface. T cells can preferentially synapse with B cells according to surface peptide-

MHC II concentration (Depoil et al., 2005), and thereby deliver differential CD40 survival 

signals. Recent studies using transgenic approaches have formally shown that the 

amount of antigen captured and presented by germinal center B cells to T follicular 

helper cells in the light zone regulates B cell division, somatic hypermutation, and Ig 

affinity maturation (Gitlin et al., 2014). Strong T cell derived CD40 signaling in germinal 

center B cells leads to NFκB activation, resulting in IRF4 mediated release of Bcl-6 

repression of Blimp-1 (De Silva et al., 2012). This signaling pathway ultimately leads to 

germinal center B cell differentiation toward the plasmablast fate and exit from the 

germinal center. Memory B cells are also produced during the germinal center reaction, 

although the signaling mechanisms involved are poorly understood. B cells within the 

light zone may also migrate back to the dark zone through the upregulation of CXCR4 to 

repeat the mutagenesis, proliferation, and selection cycle. This presumably provides 

antigen specific B cells additional opportunities to increase the affinity of their 

immunoglobulins by repeating the hypermutation process.  

 An important feature of the selection process is the establishment of a transient 

pro-apoptotic state in germinal center B cells. In its absence, differences in antigen 

affinity fail to translate into functional consequences through the process of low affinity B 

cell apoptosis. In essence, the germinal center reaction is thought to impose a fate of 

death onto all B cells that must be overcome through acquisition of higher affinity BCRs. 

The transcription factor Bcl-6 plays a critical role in orchestrating the pro-apoptotic state 

(Basso and Dalla-Favera, 2010). Bcl-6 actively represses transcription of the anti-

apoptotic factor Bcl-2 (Saito et al., 2009). In addition, Bcl-6 is thought to enhance the 

stringency of B cell survival by downregulating expression of BCR and CD40 signaling 

mediators (Basso et al., 2010; Shaffer et al., 2000). This likely raises the threshold for 
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BCR activation that presumably requires a compensatory rise in antigen affinity. Bcl-6 

repression of p53 (Phan and Dalla-Favera, 2004) and ATR (Ranuncolo et al., 2007) also 

promotes a tolerant response towards DNA damage accumulating in germinal center B 

cells resulting from rapid DNA replication and AID action. Bcl-6 also plays a role in cell 

fate determination within the germinal center by repressing expression of the plasma cell 

differentiation factor Blimp-1 (Shaffer et al., 2000), thereby prolonging the residency time 

of B cells within the germinal center reaction. 

 

1.3.2 Regulation of AID expression and activity 

AID is a protein expressed in germinal center B cells that is strictly required 

during SHM and CSR in both humans and mice (Muramatsu et al., 2000; Revy et al., 

2000). In its absence, both diversification processes are entirely ablated. AID was 

discovered through subtractive hybridization screening as a novel factor highly induced 

in a B lymphoma cell line upon CSR stimulation (Muramatsu et al., 1999). The cDNA for 

AID was found to encode a 24 kDa protein homologous to the RNA editing cytidine 

deaminase APOBEC-1. On the basis of this homology AID was predicted to deaminate 

the mRNA of a yet undiscovered DNA mutator leading to its functional activation 

(Muramatsu et al., 2000). Many lines of biochemical and genetic evidence have now 

determined that the substrate of AID is single stranded DNA (ssDNA). One of the first 

indications that DNA was the target of AID came from an experiment showing that AID 

expression in E. coli leads to accumulation of C to T transitions within the E. coli 

chromosome (Petersen-Mahrt et al., 2002). This was difficult to reconcile with the 

hypothesis that a specific eukaryotic mRNA served as the substrate of AID. In vitro 

experiments later indicated that although able to bind to both RNA and ssDNA, only on 

ssDNA can AID deaminate deoxycytidine residues to deoxyuridine (Bransteitter et al., 

2003; Dickerson et al., 2003). RNA, duplex DNA, and RNA:DNA hybrids were poor 
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substrates of AID in these assays. Recently, AID dependent deoxyuridine residues have 

been detected at multiple Ig loci through biochemical methods (Maul et al., 2011). 

 Constitutive expression of AID in mice through the use of a ubiquitously 

expressed transgene leads to widespread tumorigenesis (Okazaki et al., 2003). Given 

the highly mutagenic potential of AID it is not surprising that its expression and activity 

are tightly regulated in B cells through multiple mechanisms. Transcription of the Aicda 

locus (encoding AID) is inhibited in naive B cells through binding of c-Myb and E2F 

family transcriptional repressors to Aicda intron 1 (Huong le et al., 2013; Tran et al., 

2010). Binding of transcriptional activators Pax5 and E2A to this same region partially 

counters the inhibitory activity of c-Myb and E2F (Gonda et al., 2003; Tran et al., 2010). 

The Aicda locus also contains binding sites for transcriptional activators NFκB, STAT6, 

and HoxC4, all of whose activities are rapidly induced during conditions of Aicda 

induction such as CD40 ligation or LPS and IL-4 treatment (Dedeoglu et al., 2004; Park 

et al., 2009). AID mRNAs are also negatively regulated through binding of microRNAs. 

miR-155 (Dorsett et al., 2008; Teng et al., 2008) and miR-181b (de Yebenes et al., 

2008) bind to the 3’ untranslated region of the AID transcript and promote its 

degradation. 

 AID mutagenic activity can also be regulated through active subcellular 

partitioning of the protein. The majority of steady state AID is cytoplasmic (Rada et al., 

2002a; Schrader et al., 2005). AID gains access to the nucleus through its N-terminal 

nuclear localization signal (NLS) that binds to importin alpha in the cytoplasm and is 

shuttled into the nucleus through the nuclear pore complex (Ito et al., 2004; Patenaude 

et al., 2009). Nuclear occupancy of AID is partly limited through active nuclear export. 

The CRM1 nuclear export factor can bind to a nuclear export signal (NES) at the C-

terminal end of AID and ferry the protein back into the cytoplasm (Ito et al., 2004; 

McBride et al., 2004). AID also contains a cytoplasmic retention domain near the C-
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terminus, distinct from its NES (Patenaude et al., 2009), which is responsible for 

cytoplasmic sequestration with translation elongation factor 1 alpha (eEF1A) (Hasler et 

al., 2011). Factors influencing the subcellular stability of AID have also been identified. 

Nuclear AID is polyubiquitinated and has a shorter half-life compared to cytoplasmic AID 

(Aoufouchi et al., 2008). The nuclear factor REG-γ can accelerate proteasome mediated 

degradation of AID (Uchimura et al., 2011). Conversely, Hsp90 chaperones can bind to 

and stabilize cytoplasmic AID (Orthwein et al., 2010). This intricate balance between 

active AID subcellular localization and stability is critical for mediating AID’s 

immunoglobulin diversification functions while limiting potentially deleterious 

mutagenesis events. 

 

1.3.3 Transcription and AID function at Ig loci 

As the substrate specificity of AID is towards ssDNA, a key question was the 

context in which AID substrates become accessible. Preceding the discovery of AID, 

transcription of the target sequence was implicated as a critical step in the 

hypermutation process. It was shown that the variable region exon of a germline 

rearranged heavy chain transgene in mouse B cells contained far fewer mutations when 

its promoter was deleted (Fukita et al., 1998). However, targeting of SHM to variable 

regions was not specifically determined by the nature of the promoter, as transgenes 

containing heterologous promoters were still capable of undergoing SHM (Betz et al., 

1994; Tumas-Brundage and Manser, 1997). Later experiments using drug inducible 

transgenes in a hypermutating cell line indicated that the rates of SHM and CSR directly 

correlated with the rate of transgene transcription (Bachl et al., 2001; Lee et al., 2001). 

Another critical experiment provided evidence that the nature of the transcribed 

sequence, variable region exons in the case of SHM, does not determine targeting 

specificity. Here, SHM was evaluated in B cell hybridomas containing a rearranged light 
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chain transgene where the Vκ promoter was duplicated such that the VκJκ exon and the 

Cκ region were transcribed separately (Peters and Storb, 1996). Under these conditions 

both VκJκ and the Cκ regions underwent SHM, but the intervening sequence did not. In 

addition to showing that SHM was not determined by the variable region sequence per 

se, it also provided strong evidence that SHM was specifically linked to transcription 

initiation. This was consistent with previous findings showing that Ig locus mutations are 

clustered within the variable region while the constant region is spared, despite 

transcription taking place across both regions arising from the variable region promoter 

(Both et al., 1990; Lebecque and Gearhart, 1990). 

This functional association between SHM and transcription prompted 

experiments to determine whether AID physically interacts with the transcription 

machinery. Indeed, chromatin immunoprecipitation (ChIP) studies showed that AID 

occupies transcriptionally induced IgH loci during CSR (Nambu et al., 2003), thus 

implicating AID at sites of RNA polymerase II (RNAP II) activity. This same study also 

showed through co-immunoprecipitation experiments that AID and RNAP II physically 

interact within a complex (Nambu et al., 2003). More recently Spt5, an evolutionarily 

conserved component of the transcription machinery, was found to interact with AID 

(Pavri et al., 2010). Depletion of Spt5 through shRNA knockdown reduced AID 

occupancy at the IgH locus, and inhibited CSR by ~60% in primary B cells (Pavri et al., 

2010). Spt5 is one half of the heterodimeric DSIF complex (Wada et al., 1998). DSIF 

inhibits transcription elongation and is critical for promoter proximal pausing of RNAP II 

(Renner et al., 2001; Yamaguchi et al., 1999). Consequently, genomic occupancy of 

Spt5 is centered around transcription start sites (TSSs) (Pavri et al., 2010; Rahl et al., 

2010). Structural studies of DSIF/RNAP complexes have shown Spt5 interacts with a 

region of RNAP very close to the transcription bubble (Klein et al., 2011a; Martinez-

Rucobo et al., 2011), prompting the suggestion that Spt5 may tether AID onto RNAP II in 
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close proximity to ssDNA (Gazumyan et al., 2012). Interestingly, genome wide ChIP 

studies have also found AID concentrated near TSSs (Yamane et al., 2011). Co-

localization of RNAP II, Spt5, and AID near TSSs has led several groups to propose an 

RNAP II stalling model of AID function whereby stalled transcription complexes provide a 

platform to recruit AID to ssDNA target sites (Gazumyan et al., 2012; Kenter, 2012; 

Storb, 2014; Sun et al., 2013b). 

The elucidation of AID as a ssDNA specific deaminase reconciled well with the 

known role of transcription in hypermutation. One of the defining features of transcription 

is the unwinding of the DNA duplex during RNA synthesis within the transcription bubble 

formed by the elongating RNA polymerase (Gnatt et al., 2001). Within the transcription 

bubble the template DNA strand is buried within RNA polymerase and hybridized with 

the 3’ most 8-9 nucleotides of nascent RNA (Nudler et al., 1997). In contrast, the non-

template DNA strand is partially exposed in the context of the transcription bubble and is 

susceptible to enzymatic digestion (Korzheva et al., 2000; Wang and Landick, 1997). 

Therefore, the act of transcription can generate exposed ssDNA that could potentially 

allow access of AID to the DNA duplex. Indeed, using biochemical and genetic 

approaches, transcription was shown to create AID substrates largely restricted to the 

non-template DNA strand (Chaudhuri et al., 2003; Ramiro et al., 2003). 

The mechanism of AID action within the Ig loci of B cells has turned out to be far 

more complex and involving many downstream events beyond the initial cytidine 

deamination. For instance, incorporation of Ig mutations at A:T base pairs and 

recombination of CH genes during CSR, are both AID dependent processes but cannot 

be explained solely through cytidine deamination. AID utilizes many cofactors during Ig 

diversification and their collective actions in the context of CSR are illustrated below. 

CSR is the process leading to Ig isotype switch from IgM to IgG, IgE, or IgA. 

Each isotype is determined by the corresponding heavy chain CH gene. The mouse CH 
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genes are contained within a ~200 kb locus downstream of the JH gene segments and 

organized as Cµ, Cδ, Cγ3, Cγ1, Cγ2b, Cγ2a, Cε, and Cα (Shimizu et al., 1982). In addition 

to serving as exons of the mature heavy chain mRNA arising from the rearranged VH 

promoter, each CH region can also function as a distinct transcriptional unit. Each CH 

gene is accompanied by its own promoter that can be induced during specific stimulation 

conditions leading to production of noncoding germline transcripts (Figure 2) (Chaudhuri 

et al., 2007). Germline transcription is important for directing CSR machinery to the CH 

genes that will participate in the isotype switch. This was hypothesized based on the 

observation that transformed B cell lines with a tendency to switch to a particular isotype 

also express germline transcripts of the same CH gene (Stavnezer-Nordgren and Sirlin, 

1986; Yancopoulos et al., 1986). In much the same way that germline transcription of 

unrearranged V segments is thought to provide differential accessibility between TCR 

and IgH loci during V(D)J recombination, germline transcription of CH genes also 

provides differential accessibility between the different CH genes during CSR. 

Immediately upstream of CH genes (except Cδ) lies a highly repetitive, 1-12 kb G-

rich sequence referred to as the switch (S) region (Figure 2). CH germline transcription 

initiates with a short noncoding “I exon”, proceeds through the S region, and terminates 

downstream of the last CH coding exon (Lennon and Perry, 1985). The S region is 

entirely intronic and therefore absent from the mature CH germline transcript. 

Incidentally, splicing of germline transcript S region introns is critical for CSR as CH 

alleles containing mutant splice acceptor/donor sequences are highly defective for CSR 

(Hein et al., 1998; Lorenz et al., 1995), although the mechanistic underpinnings are 

poorly understood. For CSR to proceed, simultaneous transcription of donor and 

acceptor CH genes is required. The donor CH gene is invariantly Cµ and is constitutively 

transcribed in naive B cells (Li et al., 1994), in accordance with its role as the universal 
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donor CH gene during CSR. Transcription of downstream acceptor CH genes is induced 

through specific mitogen and/or cytokine signaling pathways (Keim et al., 2013). 
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Figure 2:  Molecular overview of class switch recombination 
(A) Multiple CH genes (only Cµ and Cγ1 are illustrated here) lie downstream of the rearranged heavy chain 
variable region VDJ exon. Each CH gene contains its own cognate promoter. Cµ is constitutively expressed 
whereas downstream CH genes such as Cγ1 are controlled through inducible promoters. Upstream of each 
CH gene is a 1-12 kb highly repetitive, guanosine rich intronic switch sequence. 
(B) Specific cytokine stimulation results in transcriptional activation of a downstream acceptor CH gene. 
Transcription through switch regions leads to DNA secondary structures that promote formation of ssDNA 
substrates of AID. AID carries out deamination of switch region deoxycytidine residues to deoxyuridine.  
(C) Base excision and mismatch repair pathways process DNA incorporated deoxyuridine residues into 
ssDNA breaks. Closely apposed ssDNA breaks can lead to blunt ended or staggered DNA double strand 
breaks. 
(D) DNA double strand breaks at donor and acceptor switch regions initiate a DNA damage response 
leading to synapsis and long-range end joining between switch regions, resulting in juxtaposition of the 
donor CH gene with the VDJ exon. The intervening Cµ containing DNA segment is excised as a circular DNA 
fragment (not illustrated). 
(E) Transcription and splicing of heavy chain transcripts arising from the VH promoter lead to mRNA 
containing the same variable region exons but with new isotype switched CH exons.    

 

S regions are required for CSR. Germline deletion of the donor Sµ region leads 

to a nearly complete block in CSR towards all isotypes (Khamlichi et al., 2004). The 

highly repetitive and G-rich nature of S regions makes them prone to co-transcriptional 

R-loop formation (Figure 2). Typically the nascent CH germline transcript will hybridize 

with the C-rich template strand forming a stable RNA:DNA hybrid leaving a displaced G-
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rich non-template strand. R-loop accumulation at transcribed S regions was first 

observed in vitro where S region containing plasmids adopted RNase H sensitive 

conformers following transcription (Daniels and Lieber, 1995; Reaban and Griffin, 1990). 

Subsequent studies confirmed the presence of S region R-loops in chromosomes of 

activated B cells (Yu et al., 2003). Although the precise mechanism leading to formation 

of S region R-loops is unknown, nucleic acid thermodynamic properties are likely 

involved. For instance, the base composition of S region RNA:DNA hybrids is heavily 

biased towards base pairing between guanosine (rG) and deoxycytidine (dC). Physical 

studies with nucleic acids have demonstrated that rG:dC base pairs (as found in S 

region R-loops) are more stable than dG:dC base pairs present in duplex DNA (Roberts 

and Crothers, 1992). This may be an important factor in maintaining the S region 

RNA:DNA hybrid in the presence of continuous competition from the non-template 

strand. The importance of this asymmetric distribution of dG nucleotides between 

template and non-template strands at S region DNA has been confirmed in vivo. 

Inversion of Sγ1, such that the G-rich strand now serves as the template strand leads to 

a substantial, although not complete, defect in CSR to IgG1 (Shinkura et al., 2003). In 

addition, G-rich ssDNA such as the displaced S region non-template strand, can adopt 

stable intramolecular non-B form DNA secondary structures involving Hoogsteen base 

pairing (Bochman et al., 2012). For example, guanine can form a hydrogen bonded 

planar arrangement of 4 guanines known as a G-quartet. Stacking of G-quartets through 

the looping of ssDNA can create stable G-quadruplex structures. Therefore, involving 

multiple mechanisms, S regions appear to be inherently capable of promoting formation 

of co-transcriptional AID substrate ssDNA structures. 

 

 

 



	   18	  

1.3.4 Processing of AID generated DNA lesions during SHM and CSR 

However, R-loops cannot entirely account for generation of AID substrate 

ssDNA. First, variable region exons are not particularly G-rich on the non-template 

strand. Therefore AID mediated deamination during SHM is thought to occur through a 

mechanism that does not involve R-loops. Secondly, amphibian S regions display A:T 

richness, in contrast to G:C rich mammalian S regions (Mussmann et al., 1997). In vitro 

transcription of Xenopus Sµ does not produce R-loops, yet can partially substitute for 

murine Sγ1 in vivo (Zarrin et al., 2004). Furthermore, in contrast to mammalian S 

regions, A:T rich Xenopus Sµ does not display an orientation dependence during CSR 

(Zarrin et al., 2004). These observations suggest that additional mechanisms beyond R-

loop formation may be responsible for creating AID substrate ssDNA during CSR. 

Replication protein A (RPA) was isolated through a biochemical screen aimed at 

identifying cofactors that promote AID access to transcribed DNA (Chaudhuri et al., 

2004). RPA and AID together, but neither protein alone, can efficiently deaminate non-R-

loop forming transcribed DNA in vitro. RPA is a heterotrimeric ssDNA binding protein 

involved in DNA replication and damage responses (Oakley and Patrick, 2010). 

Stretches of ssDNA as short as 4 nucleotides can physically interact with RPA 

(Matsunaga et al., 1996), consistent with a possible role in promoting AID function during 

SHM in addition to CSR. On the basis of these observations it was proposed that RPA 

stabilizes ssDNA structures during SHM and CSR, thereby promoting their access to 

AID. 

The interaction between AID and RPA is controlled through serine 38 

phosphorylation of AID by protein kinase A (PKA) (Basu et al., 2005; Basu et al., 2008; 

Pasqualucci et al., 2006). Although only a minor fraction of total AID exists in the 

phosphorylated state, this fraction is substantially enriched on chromatin (McBride et al., 

2006). Furthermore, mutagenesis studies involving S38A knock-in mutants of AID have 
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confirmed that the integrity of the serine 38 residue is critical for SHM and CSR in vivo 

(Cheng et al., 2009; McBride et al., 2008). Recent studies suggest that phosphorylation 

of AID on chromatin may involve a positive feedback loop involving DNA breaks and 

CSR (Vuong et al., 2013). AID phosphorylation was found to be stimulated in response 

to DNA breaks. Likewise, AID phosphorylation enhances the rate of DNA break 

formation. Consistent with this model, PKA is recruited to S regions during CSR, 

resulting in RPA recruitment and AID phosphorylation (Vuong et al., 2009). Therefore, 

the post-translationally regulated interaction between RPA and AID provides an 

additional mechanism for transcription coupled ssDNA access to AID. 

In addition to providing ssDNA substrates of AID, cellular factors are also 

involved in processing and amplification of the initial AID generated lesion. The 

biochemical reaction catalyzed by AID, deamination of deoxycytidine to deoxyuridine, 

cannot directly account for mutations observed at A:T base pairs during SHM and CSR. 

Likewise, the specific activity of AID alone will not lead to a DNA break, a necessary 

intermediate for CSR. AID action on DNA creates a damage signal that is recognized by 

cellular DNA repair machinery. Base excision repair (BER) and mismatch repair (MMR) 

are the two major processes that cooperate with AID (Di Noia and Neuberger, 2007). 

Paradoxically, during Ig diversification BER and MMR lead to error-prone DNA repair, 

thus enhancing the spectrum of mutations within Ig loci. Deoxyuridine (dU) present in 

chromosomal DNA can be detected by both BER and MMR. It is thought that BER 

activity leads to diversification of the dU containing base pair, whereas MMR can 

diversify neighboring base pairs as well (Figure 3). As a result, MMR activity is required 

for mutagenesis of non-AID targeted A:T base pairs. 

Some AID generated dU:dG base pairs can escape BER or MMR and be carried 

into the S-phase of the cell cycle. Faithful DNA replication of dU:dG results in one 

daughter cell harboring a C>T or G>A transition, according to which DNA strand 



	   20	  

contained the dU nucleotide (Figure 3). Therefore, DNA replication of AID deaminated 

nucleotides is one means of providing a limited source of mutation during SHM and 

CSR. 

Non-native nucleotides incorporated in chromosomal DNA can be detected by 

DNA glycosylases involved in BER. dU is specifically recognized by uracil DNA 

glycosylase (UNG), which excises the uracil nitrogenous base from the deoxyribose-

phosphate backbone leaving behind an abasic site (Figure 3). Such residues are non-

informative and cannot be used as a template during faithful DNA replication. Instead, 

abasic sites can be bypassed by translesion DNA polymerases that can incorporate any 

of the four canonical deoxynucleotides onto the nascent chain (Figure 3). Abasic sites 

generated by UNG can also be excised from the DNA backbone by apurinic/apyrimidinic 

endonuclease 1 (APE1) creating a ssDNA break (Figure 3).  
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Figure 3:  Outline of downstream SHM mechanism involving BER and MMR pathways 
AID generated dU residues can be processed in 3 different ways. First, dU can be replicated by high fidelity 
DNA polymerases during S-phase to yield C>T transitions. Secondly, DNA incorporated dU can be 
recognized by the base excision repair enzyme uracil DNA glycosylase (UNG). UNG can excise the 
nitrogenous base from the dU nucleotide to produce an abasic site. The abasic residue can be removed by 
apurinic/apyrimidinic endonuclease 1 (APE1) to create a ssDNA break. Translesion DNA polymerases can 
bypass abasic templates by incorporating any deoxynucleotide. Thirdly, the dU:dG base pair can be 
recognized by the mismatch repair heterodimer MSH2/MSH6 and recruit exonuclease 1 (EXO1) to resect a 
short patch on the dU containing strand. MSH2/MSH6 can recruit mono-ubiquitylated PCNA and DNA 
polymerase η leading to error prone fill-in. 
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Consistent with a role for BER in Ig diversification, UNG deficiency leads to a 

severe defect in CSR and a stark alteration in the spectrum of mutations during SHM (Di 

Noia and Neuberger, 2002; Imai et al., 2003; Rada et al., 2002b). Transversion 

mutations at C:G base pairs produced during SHM are nearly absent when UNG activity 

is ablated. Instead, only transition mutations are observed at C:G base pairs, consistent 

with DNA replication over the unprocessed AID generated dU:dG base pair. 

Furthermore, the activity of UNG appears to be restricted to C:G base pairs as UNG 

deficiency does not alter the spectrum or frequency of mutations at A:T base pairs. 

Mutations in translesion DNA polymerases acting downstream of UNG also lead to 

alterations in the pattern of SHM. Rev1 is a translesion DNA polymerase possessing 

deoxycytidyl transferase activity that can bypass an abasic template residue by adding a 

dC nucleotide onto the nascent strand (Nelson et al., 1996). Accordingly, Rev1 deficient 

mice exhibit a strong reduction in C>G and G>C transversion frequency during SHM 

(Jansen et al., 2006). Also, APE1 deficiency was shown to impair CSR (Guikema et al., 

2007; Masani et al., 2013). 

The MMR pathway serves as a parallel mechanism of dU recognition and is 

critical for introducing mutations at A:T base pairs during SHM and CSR. Under normal 

cellular circumstances MMR helps preserve the integrity of genomic information by 

removing incorrect nucleotides from the newly synthesized strand following DNA 

replication. dU:dG base pairs are typically recognized by the MutSα heterodimer 

composed of MSH2 and MSH6 (Chahwan et al., 2012). During error-free MMR, MutSα 

recruits MutLα (composed of MLH1 and PMS2) to the mismatch where it then introduces 

a nick into the DNA strand containing the misincorporated nucleotide. The nick is then 

resected by exonuclease 1 (EXO1) leaving behind a short single stranded gap in the 

DNA that is subsequently filled in by DNA polymerase δ (Constantin et al., 2005).  
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SHM employs an error-prone version of MMR. While the AID generated dU:dG 

base pair is recognized by MSH2/MSH6, current evidence suggests that the 

MLH1/PMS2 nickase fails to be recruited (Chahwan et al., 2012). The mechanism 

behind this exclusion is poorly understood. However, evidence does exist for a nick 

occurring during SHM because EXO1 can still create a single stranded gap downstream 

of MSH2/MSH6 recruitment (Bardwell et al., 2004). Incidentally, the nick used by EXO1 

is likely not provided by the BER enzyme APE1, as UNG deficient mice exhibit normal 

SHM at A:T base pairs. MSH2/MSH6 can recruit mono-ubiquitylated PCNA and DNA 

polymerase η to the dU:dG base pair (Chahwan et al., 2012; Wilson et al., 2005). DNA 

polymerase η exhibits a high mutation rate at A:T base pairs (Matsuda et al., 2001).   

The importance of MMR in SHM was gleaned from the phenotypes of MSH2 and 

MSH6 deficient mice. B cells from Msh2-/- mice exhibit reduced overall SHM, with an 

exacerbation at A:T base pairs (Frey et al., 1998; Rada et al., 1998). The SHM pattern of 

Msh6-/- mice phenocopies that of Msh2-/- (Wiesendanger et al., 2000). Mutations at A:T 

base pairs are reduced by up to 90% in Msh2 and Msh6 null B cells, indicating that the 

vast majority of mutations at these residues are introduced through the MMR pathway. 

The remaining ~10% of mutations at A:T base pairs in Msh2 and Msh6 null B cells are 

very likely mediated through BER. When both BER and MMR pathways were ablated in 

Ung-/- Msh2-/- double deficient mice A:T mutations were entirely eliminated (Rada et al., 

2004). In fact, only C>T and G>A transition mutations were observed at Ig loci in Ung-/- 

Msh2-/- mice. This strongly implies these mutations arise from S-phase DNA replication 

over all AID generated dU:dG lesions in Ung-/- Msh2-/- B cells, thereby providing a 

genetic footprint of AID action. K164 mono-ubiquitylated PCNA cooperates with 

MSH2/MSH6 to recruit error-prone DNA polymerase η to the EXO1 processed ssDNA 

gap near the dU:dG base pair. PcnaK164R/K164R B cells incapable of PCNA mono-

ubiquitylation are strongly impaired in A:T mutagenesis (Arakawa et al., 2006; Langerak 
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et al., 2007). Likewise, EXO1 or DNA polymerase η deficiency also results in a nearly 

complete loss of mutations at A:T base pairs (Bardwell et al., 2004; Delbos et al., 2007; 

Masuda et al., 2007). 

 

1.3.5 DNA damage response and end joining during CSR 

As CSR involves DNA rearrangement of CH genes (Kataoka et al., 1980), a key 

event is formation of DNA double strand breaks (DSBs) at donor and acceptor S 

regions. Following the discovery of AID’s critical role in CSR, it was quickly discovered 

that AID was required for generation of DSBs at S regions and that this initiated a DNA 

damage response (Petersen et al., 2001). As outlined above, the processing of AID 

generated dU:dG base pairs in S regions through the actions of APE1 and/or EXO1 can 

introduce ssDNA breaks during CSR. Current models propose a stochastic mechanism 

for DSB formation during CSR whereby temporally apposed ssDNA breaks on both 

strands leads to a DSB. This is supported by the observation that S region staggered 

DSBs vastly outnumber blunt DSBs produced during CSR (Rush et al., 2004). DSBs 

generated at S regions are recognized by cellular components of the DNA damage 

response that coordinate with end joining pathways. This process leads to ligation of 

broken donor and acceptor S regions and deletion of Cµ and other intervening CH 

genes. 

One of the earliest events occurring after a DSB is binding of the Mre11-Rad50-

Nbs1 (MRN) complex to either end of the DSB (Carney et al., 1998). MRN tethering to 

the DSB recruits ATM kinase leading to its activation (Lee and Paull, 2005). ATM is a 

key component of the DNA damage response. It phosphorylates the p53 tumor 

suppressor, thus inducing the p53-dependent G1/S checkpoint to allow for sufficient time 

to repair the break before initiation of DNA replication (Boboila et al., 2012). ATM also 

phosphorylates histone variant H2AX (known as γH2AX) (Burma et al., 2001) and 
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histone binding protein 53BP1 (Anderson et al., 2001; Rappold et al., 2001) leading to 

assembly of large DNA damage associated chromatin foci proximal to the DSB. These 

foci can exceed 2 Mb in DNA length and are thought to serve as scaffolds to assist in 

recruitment of DNA repair factors (Boboila et al., 2012). Indeed, CSR is impaired to 

varying degrees in B cells from mice deficient for various DNA damage response factors. 

Nbn null B cells (Nbs1 deficient) are mildly impaired in CSR, displaying a ~50% 

reduction in CSR efficiency (Kracker et al., 2005; Reina-San-Martin et al., 2005). A 

slightly greater impairment in CSR is observed in either Atm null (Lumsden et al., 2004; 

Reina-San-Martin et al., 2004) or H2afx null (H2AX deficient) B cells (Petersen et al., 

2001; Reina-San-Martin et al., 2003). In contrast to other DNA damage response 

factors, Trp53bp1 gene deletion (53BP1 deficient) leads to a severe CSR phenotype. B 

cells from Trp53bp1-/- mice display approximately 5% CSR efficiency relative to wild type 

controls (Manis et al., 2004; Ward et al., 2004). This indicates a potential role for 53BP1 

in CSR beyond its recognized function in DNA damage response.  

Sequence analysis of S region joins from isotype switched B cells showed that 

the majority of CSR breaks are joined with little or no homology (Dunnick et al., 1993). 

This is consistent with S region DSBs being joined primarily via the classical non-

homologous end joining (C-NHEJ) pathway, as C-NHEJ can join blunt or staggered DNA 

ends containing 1-4 nucleotides of microhomology (Boboila et al., 2012). Likewise, CSR 

is impaired in mature B cells from C-NHEJ deficient mice expressing rearranged heavy 

and light chain “knock-in” alleles. However, unlike V(D)J recombination, which is strictly 

dependent on C-NHEJ, a significant CSR activity remains in mature B cells deficient in 

core C-NHEJ factors. Xrcc4 and DNA ligase IV are two such factors involved in the final 

end joining step of C-NHEJ. Consistent with a role for C-NHEJ in CSR end joining, Xrcc4 

or Lig4 deficient mature B cells display isotype switching impairment (Yan et al., 2007). 

Surprisingly, the level of CSR in Xrcc4 or Lig4 deficient mature B cells ranged between 
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25-50% relative to control B cells, demonstrating the presence of a robust alternative 

end joining mechanism driving CSR in the absence of C-NHEJ (Yan et al., 2007). Early 

reports on CSR in the absence of Ku70 or Ku80 suggested that CSR was entirely 

abrogated in the absence of either Ku component (Casellas et al., 1998; Manis et al., 

1998). However, a reexamination of the role of Ku in CSR using more robust B cell 

stimulation conditions showed that relative to control cells, up to 50% of CSR efficiency 

could be observed in Ku deficient mature B cells (Boboila et al., 2010). Indeed, analysis 

of S region joins produced in the absence of Xrcc4, Lig4, or Ku70 indicated a bias 

towards usage of longer microhomologies in the joining of S region DSBs (Boboila et al., 

2010; Yan et al., 2007). Collectively, current evidence supports the notion that end 

joining of S region DSBs is primarily mediated through C-NHEJ with a secondary, 

possibly backup pathway, operating through a microhomology annealing mechanism.  

Another important feature of DSB processing during CSR is the synapsis of 

broken S regions. This is of critical importance because in its absence chromosome loss 

or translocations could occur. γH2AX and 53BP1 that accumulate over long stretches of 

chromatin proximal to DSBs are implicated in synapsis of broken S regions. As 

mentioned previously, CSR is impaired in the absence of H2AX and 53BP1. However, S 

region breaks during CSR can be joined either within the same S region, leading to an 

intra-switch deletion (ISD), or between different S regions, and leading to isotype 

switching. Interestingly, while H2AX and 53BP1 deficiency impairs long-range CSR, it 

does not reduce the rate of local ISD (Reina-San-Martin et al., 2007; Reina-San-Martin 

et al., 2003). This suggests that γH2AX and 53BP1 are involved in promoting long-range 

end joining during CSR through the synapsis of broken S regions. Another important 

function of synapsis may be to suppress resection of broken DNA ends, to support C-

NHEJ. Indeed, H2AX and 53BP1 are required to suppress end resection of broken S 

regions during CSR (Bothmer et al., 2011; Bothmer et al., 2010). Consistent with this 
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notion, accumulation of the ssDNA binding protein RPA has been observed at S regions 

in H2AX or 53BP1 deficient B cells during CSR (Yamane et al., 2013). 

 

1.4 AID activity beyond Ig loci 

 AID’s mutagenic activity poses a significant threat to the genomic integrity of B 

cells. Although B cells have developed a remarkable ability to target AID activity to the Ig 

loci, the rest of the genome is not entirely spared. In fact, the notion of aberrant SHM 

introducing mutations beyond Ig genes predates the discovery of AID. One of the 

earliest examples implicating SHM as a mechanism responsible for introducing 

mutations in bystander genes was the discovery of BCL6 mutations in germinal center B 

cells (Pasqualucci et al., 1998; Shen et al., 1998). Sequence analysis of BCL6 in human 

B cell malignancies of various developmental origins indicated that BCL6 mutations are 

largely restricted to tumors of germinal center and post-germinal center origin 

(Pasqualucci et al., 1998). Subsequently, additional genes including MYC, PIM1, PAX5, 

and CD79B were found to contain mutations in a large percentage of germinal center 

derived diffuse large B-cell lymphoma samples (Gordon et al., 2003; Pasqualucci et al., 

2001). A relatively broader approach towards identifying the extent of AID generated 

mutations across the B cell genome later provided evidence that AID activity was far less 

restricted than previously thought. 1 kb segments of DNA downstream of the major TSS 

were systematically sequenced for 118 expressed genes from mouse germinal center B 

cells (Liu et al., 2008). Approximately 25% of assessed genes accumulated statistically 

significant levels of AID dependent mutations (Liu et al., 2008). When this same analysis 

was performed in the DNA repair deficient Ung-/- Msh2-/- background, up to half of the 

genes analyzed contained a significantly higher mutation load compared to wild type 

cells (Liu et al., 2008). This indicates that although AID activity is widespread, it is 

frequently countered by high fidelity DNA repair at regions outside Ig loci. Curiously, this 
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is the opposite phenomenon of what is observed at Ig loci, where DNA repair deficiency 

results in impairment of SHM. A very small number of assayed genes that were 

significantly mutated showed nearly identical mutation frequencies in wild type and Ung-/- 

Msh2-/- background (Liu et al., 2008), suggesting that DNA repair may be excluded at 

certain loci targeted by AID. This rare behavior was observed at Bcl6 and may have 

contributed to it being the first identified AID “off-target”. 

 In addition to point mutations arising from aberrant SHM, human B cell 

lymphomas frequently harbor chromosomal translocations involving Ig variable and S 

regions (Nussenzweig and Nussenzweig, 2010). Many of these translocations involve 

improper DSB resolution arising from RAG and AID mediated Ig diversification 

processes. A common consequence is the juxtaposition of strong Ig transcriptional 

regulatory elements onto proto-oncogene containing loci. This frequently leads to 

deregulation and/or overexpression of the participating proto-oncogene, resulting in 

cellular transformation. The earliest molecular characterization of a translocation 

involving Ig loci and a proto-oncogene was the discovery of reciprocal chromosomal 

rearrangements involving MYC and IGH in human Burkitt’s lymphoma (Dalla-Favera et 

al., 1982; Taub et al., 1982). Determining the role of AID in the genesis of Myc/IgH 

translocations was greatly assisted by the development of mouse models that could 

reproducibly give rise to this particular DNA rearrangement (Potter and Wiener, 1992). 

Specifically, using an IL-6 transgenic mouse model of plasmacytoma formation, Myc/IgH 

translocations were reported to be entirely AID dependent (Ramiro et al., 2004). 

Subsequent studies went on to show that Ung, a BER protein critical for S region DSB 

formation during CSR, was also required for Myc/IgH translocation (Ramiro et al., 2006). 

Furthermore, AID was specifically found to be required for creation of DSBs at both Myc 

and IgH (Robbiani et al., 2008), indicating a direct involvement of AID in Myc/IgH 

translocation. 



	   28	  

 In addition to Myc, AID was found to generate DSBs at many non-Ig loci across 

the B cell genome (Robbiani et al., 2009; Staszewski et al., 2011). In recent years, two 

independent groups have reported their attempts to catalog the extent of genome-wide 

AID dependent DSBs and translocations using a novel deep sequencing approach 

(Chiarle et al., 2011; Klein et al., 2011b). Briefly, I-SceI meganuclease recognition 

sequences were engineered into either Myc or IgH loci (Robbiani et al., 2008; Wang et 

al., 2009a; Zarrin et al., 2007). B cells harboring either of these modified alleles, on 

AicdaWT/WT or Aicda-/- backgrounds, were stimulated ex vivo to induce AID expression 

and subsequently transduced with I-SceI encoding retroviruses (Chiarle et al., 2011; 

Klein et al., 2011b). Under these conditions, one artificial DSB is intentionally introduced 

in either Myc or IgH through I-SceI cleavage of its target sequence, while undefined 

DSBs are generated in other parts of the genome through AID mediated mechanisms. I-

SceI induced DSBs resolved through translocations ultimately produce DNA 

rearrangements containing known and unknown sequences on either side of the 

junction. Adaptor PCR techniques enabled these junctions to be identified through deep 

sequencing approaches. Importantly, these experiments involved short-term culture 

conditions to allow for unbiased identification of rare translocations and to prevent the 

selective outgrowth of oncogenic translocations. These experiments identified genomic 

sites of recurrent AID dependent DSBs and translocations, which included many genes 

frequently translocated in various human B cell lymphomas (Chiarle et al., 2011; Klein et 

al., 2011b).  

 Genome mapping of these translocation sites uncovered several themes 

underlying the nature of recurrent B cell translocations. First, translocation frequency is 

vastly greater within a few kilobases of the I-SceI site, although this phenomenon was 

observed in both AicdaWT/WT and Aicda-/- backgrounds, indicating that proximity is an 

important factor in DSB resolution in the absence of AID (Chiarle et al., 2011; Klein et 
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al., 2011b). Furthermore, even over longer distances such as hundreds of kilobases 

from the I-SceI site, intra-chromosomal rearrangement was strongly preferred (Chiarle et 

al., 2011; Klein et al., 2011b), suggesting that nuclear architecture and chromosomal 

boundaries might be involved in DSB ligation.  

 AID dependent translocation junctions frequently mapped to transcribed genic 

regions (Chiarle et al., 2011; Klein et al., 2011b). Specifically, AID dependent 

translocations were significantly enriched near TSS regions, often within 2 kb of the TSS 

(Chiarle et al., 2011; Klein et al., 2011b). This is consistent with the notion of TSSs as 

areas of RNAP II accumulation and ssDNA generation, which would presumably be 

enriched in AID substrates. Surprisingly, transcription per se was insufficient to produce 

a recurrent AID dependent translocation site as multiple highly transcribed genes did not 

participate in translocations (Chiarle et al., 2011; Klein et al., 2011b). This suggests that 

other transcription coupled processes may be critically involved in the generation of AID 

dependent DSBs leading to translocations. More recent studies have begun to 

investigate variables involved in recurrent AID dependent translocations. Using 

chromosome conformation capture experiments and genome-wide RPA occupancy as 

readouts of genomic contact frequency and DNA damage, respectively, the relative 

contributions of physical proximity and AID generated DNA damage were assessed at 

recurrent translocation sites (Hakim et al., 2012). This study concluded that in the 

absence of AID, proximity and nuclear organization are important factors in determining 

translocation frequency (Hakim et al., 2012). In contrast, DNA damage resulting from 

AID activity correlates more strongly with translocation frequency than physical contact 

frequency (Hakim et al., 2012). Therefore, while both DNA damage and proximity are 

important variables in the generation of translocations, lesions generated by AID activity 

appear to be the driving force behind recurrent B cell translocations. 
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1.5 The conundrum of AID activity on both strands of DNA 

 A requisite of AID dependent CSR and chromosomal translocations is the 

creation of DNA breaks on both strands to produce a DSB. Statistical analyses of 

hundreds of antibody sequences provided early evidence that the SHM process is 

targeted to both DNA strands. A comparison of all triplet sequences with their respective 

inverse complements revealed similar mutation frequencies at the middle nucleotides 

and also between the first and third nucleotides (Milstein et al., 1998). Following the 

discovery of AID, mutational analysis of Ig loci under DNA repair deficient conditions that 

genetically reveal the AID deamination footprint, it was confirmed that AID activity is 

targeted nearly equivalently to both DNA strands (Rada et al., 2004; Xue et al., 2006). 

However, AID deaminase activity is specific for ssDNA, and currently proposed models 

of AID activity imply that each strand of the DNA duplex is targeted by individual AID 

complexes. Furthermore, transcription coupled AID deamination assays performed in 

vitro mainly result in deamination of the non-template strand (Basu et al., 2005; 

Chaudhuri et al., 2004). Ectopic expression of AID in bacteria or yeast also results in a 

strong bias towards non-template strand mutations (Gomez-Gonzalez and Aguilera, 

2007; Ramiro et al., 2003). Restriction of mutations to the non-template strand in these 

assays is likely due to occlusion of the template strand by the elongating RNAP 

complex. Furthermore, such assays are likely to not fully recapitulate all aspects of AID 

function as they occur in B cells. A major question therefore arises. How is AID activity 

targeted to the template strand in the physiological contexts of SHM and CSR? 

 A biochemical screen was performed in an attempt to identify potentially 

uncharacterized cellular factors that may promote AID access to the template strand 

during transcription coupled deamination (Basu et al., 2011). Namely, SHM substrate 

duplex DNA was transcribed in vitro in the presence of AID containing cellular extracts 

from the human B cell lymphoma Ramos cell line (Basu et al., 2011). A series of 
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chromatography steps including size exclusion, charge, density, and affinity purification 

were utilized to enrich for macromolecular complexes associated with DNA and AID. 

Importantly, fractions from each chromatography step were assayed for deamination 

activity to enrich for AID stimulation activity in subsequent purification steps (Basu et al., 

2011). Final affinity purification fractions eluted from an anti-AID column contained an 

activity that could stimulate AID deamination by ~100 fold in transcription coupled in vitro 

assays (Basu et al., 2011). Using mass spectrometry multiple subunits of the RNA 

exosome complex were identified in the AID stimulating fractions (Basu et al., 2011). 

Physical interaction between AID and RNA exosome was verified in primary mouse B 

cells stimulated for CSR as well as human and mouse B lymphoma cell lines through co-

immunoprecipitation experiments (Basu et al., 2011). 

 Functional consequences of RNA exosome association with AID were explored 

in the CH12F3 mouse B lymphoma cell line. These cells are capable of AID induction 

and directed class switching to IgA upon stimulation with anti-CD40, IL-4, and TGFβ 

(Nakamura et al., 1996). shRNA mediated knockdown of the Rrp40 subunit of RNA 

exosome in CH12F3 cells reduced CSR efficiency between 50-70% (Basu et al., 2011). 

Consistent with a role in CSR, Rrp40 recruitment to IgH Sµ and Sα regions was induced 

in stimulated CH12F3 cells (Basu et al., 2011). A similar pattern of RNA exosome 

recruitment was observed at Sµ and Sγ1 in primary mouse B cells stimulated towards 

IgG1 class switching (Basu et al., 2011). Strikingly, RNA exosome recruitment to S 

regions during CSR was found to be AID dependent, as Rrp40 occupancy at Sµ and Sγ1 

was not observed in Aicda-/- (AID deficient) B cells using identical stimulation conditions 

(Basu et al., 2011). This indicates that germline transcription of S regions is insufficient 

to recruit RNA exosome and that AID likely functions genetically upstream of RNA 

exosome during CSR. Finally, strand specific in vitro transcribed AID deamination 

assays indicated that RNA exosome, purified from either 293T human embryonic kidney 
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cells or reconstituted from recombinant bacterially expressed and purified subunits 

(Greimann and Lima, 2008), could direct AID activity towards both template and non-

template strands of multiple transcribed SHM substrates (Basu et al., 2011). Collectively, 

these data strongly implicate RNA exosome as the missing factor involved in directing 

AID activity to both strands of the DNA duplex during transcription coupled SHM and 

CSR at Ig loci. 

 

1.6 RNA exosome structure and function 

The RNA exosome is an ancient molecular complex whose existence can be 

traced throughout evolution. Its general structure and catalytic activity have been 

conserved across all kingdoms of life, although some of the mechanistic details have 

diverged. All RNA exosome related complexes studied to date possess 3’-5’ 

exoribonucleolytic activity and are comprised of multiple subunits that assemble into a 

toroid quaternary structure (Lykke-Andersen et al., 2009). As such, RNA exosome 

complexes possess a characteristic central channel traversing the length of the complex, 

through which single stranded RNA is funneled.  

Eukaryotic RNA exosome complexes contain either 10 or 11 distinct subunits 

(Allmang et al., 1999b). The structure’s core is made up of 9 subunits arranged in 2 

layers of rings. The larger ring is a heterohexamer composed of individual copies of 

Rrp41, Rrp42, Rrp43, Rrp45, Rrp46, and Mtr3 (Januszyk and Lima, 2014). Each of 

these subunits is homologous to bacterial RNase PH and thereby contains the 

characteristic RNase PH domain. Intersubunit interactions involving the RNase PH 

domains allow these 6 subunits to assemble into a toroid. In contrast to archaeal RNA 

exosome (Lorentzen et al., 2005), the hexamer ring of the eukaryotic RNA exosome is 

unstable on its own and requires 3 additional subunits to stabilize the complex (Liu et al., 

2006). Rrp40, Rrp4, and Csl4 form a secondary ring that sits on “top” of the hexamer 
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and function as a cap, holding the hexamer together. Each of the 3 cap subunits make 

extensive contacts with a different pair of hexamer subunits (Liu et al., 2006) resulting in 

a stabilized 9 subunit RNA exosome core structure. In addition, each cap subunit 

contains a pair of RNA binding domains that are important during substrate binding 

(Chlebowski et al., 2013). Namely, Rrp40 and Rrrp4 possess S1 and KH RNA binding 

domains, whereas Csl4 contains a KH and zinc ribbon domain. 

A distant structural homolog of the eukaryotic RNA exosome is the bacterial 

enzyme polynucleotide phosphorylase (PNPase). Similar to RNA exosome, bacterial 

PNPase contains 3’-5’ exoribonucleolytic activity and adopts a toroid structure 

(Symmons et al., 2000). However, the PNPase structure is composed of one repeating 

unit that assembles into a homotrimer. Each PNPase subunit contains two RNase PH 

domains (analogous to the RNA exosome hexamer) and a set of S1 and KH RNA 

binding domains (analogous to the RNA exosome cap) (Symmons et al., 2000).  

 Archaeal RNA exosome complexes are structured similarly to bacterial PNPase 

and eukaryotic RNA exosomes in that they assemble into a toroid and contain 3’-5’ 

exoribonucleolytic activity. However, the RNA exosome complex of archaea contains an 

intermediate degree of compositional complexity. The 6 RNase PH domains that 

collectively go into formation of the toroid are contributed via 3 copies of the 

Rrp41/Rrp42 heterodimer that form the archaeal RNA exosome hexamer (Lorentzen et 

al., 2005). Similar to eukaryotes, archaea possess distinct cap subunits that interact with 

and help further stabilize the hexamer. Although only Rrp4 and Csl4 cap subunits have 

been observed in archaea, the stoichiometry between cap and hexamer subunits is 

conserved. As such, 3 copies of Rrp4 and/or Csl4 interact with the archaeal hexamer 

(Buttner et al., 2005; Lorentzen and Conti, 2005). Due to the symmetry of the archaeal 

hexamer imposed by the trimer of Rrp41/Rrp42 dimers, multiple combinations of Rrp4 

and Csl4 are present in archaeal RNA exosome complexes (Chlebowski et al., 2013). 
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The relevance of this structural diversity in archaeal RNA exosome complexes is poorly 

understood. 

 In addition to evolutionary divergence in RNA exosome structural composition, a 

dramatic divergence in the mechanism of catalysis has also occurred. Bacterial PNPase 

and archaeal RNA exosome contain active sites that project into the lumen of their 

respective central channels (Chlebowski et al., 2013). In stark contrast, the 9 subunit 

eukaryotic RNA exosome core is catalytically inert (Dziembowski et al., 2007), largely 

because of non-synonymous substitutions at critical active site residues. Nucleolytic 

activity is imparted on the eukaryotic RNA exosome core in trans through association 

with active nuclease subunits Rrp6 and Dis3 (known as Rrp44 in yeast). Rrp6 is a 

distributive 3’-5’ exoribonuclease (Januszyk et al., 2011), whereas Dis3 contains both 

processive 3’-5’ exo- (Lorentzen et al., 2008) and endoribonuclease activities contained 

within distinct domains (Lebreton et al., 2008; Schaeffer et al., 2009). Therefore, unlike 

distantly related complexes, the eukaryotic RNA exosome has evolved to possess 3 

distinct nucleolytic activities through association of complimentary nuclease subunits 

with the catalytically inert RNA exosome core. Furthermore, Rrp6 and Dis3 binding to 

the RNA exosome core does not appear to be positively or negatively codependent. As 

such, different RNA exosome isoforms can exist containing Rrp6 alone, Dis3 alone, or 

together with Rrp6 and Dis3 (Tomecki et al., 2010). Cellular localization studies have 

shown that different RNA exosome isoforms are concentrated in distinct subcellular 

compartments. Specifically, human RNA exosome exists in the nucleus as an 11 subunit 

holoenzyme containing both Rrp6 and Dis3 nucleases. Nucleolar and cytoplasmic RNA 

exosome complexes contain 10 subunits but differ in their nuclease composition. 

Cytoplasmic human RNA exosome complexes are associated with Dis3L, a homolog of 

Dis3 that contains 3’-5’ exoribonuclease activity but lacks endonuclease activity (Staals 

et al., 2010). A distinct RNA exosome isoform also exists in the nucleolus that contains 
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Rrp6 but lacks a Dis3 subunit. These subcellular compositional differences in nuclease 

subunits presumably result in compartmentalization of distinct nucleolytic activities within 

the cell. Nuclear RNA exosome complexes, containing both types of nucleases, exhibit 

processive and distributive 3’-5’ exoribonuclease activity as well as endonuclease 

activity. Cytoplasmic and nucleolar complexes lack endonuclease activity but possess 

processive and distributive 3’-5’ exoribonuclease activities, respectively. How the cell 

orchestrates formation of distinct RNA exosome isoforms within different subcellular 

compartments is entirely unknown.  

 Recent biochemical studies on RNA exosome complexes incorporating active 

site mutants of Rrp6 and Dis3 have shed light on the catalytic mechanisms performed by 

the holoenzyme. Importantly, Rrp6 and Dis3 were found to influence the activity of one 

another. Rrp6 exonuclease activity is severely impaired within 11 subunit holoenzymes 

reconstituted with exonuclease dead Dis3 (Wasmuth and Lima, 2012). Likewise, Rrp6 

robustly accelerates the activity of Dis3, as 10 subunit RNA exosome complexes 

containing Dis3 are far less active when compared to 11 subunit complexes containing 

both nuclease subunits (Wasmuth and Lima, 2012). Surprisingly, the ability of Rrp6 to 

stimulate Dis3 within the 11 subunit holoenzyme is also observed with exonuclease 

dead mutants of Rrp6. These observations provided evidence for a functional interaction 

between Rrp6 and Dis3. Further studies uncovered a critical role for the catalytically inert 

RNA exosome central channel in modulating Rrp6 and Dis3 function within the complex. 

RNA exosome channel mutants containing various length amino acid insertions 

predicted to project into and occlude the central channel were used to elucidate the 

influence of the RNA exosome core on nuclease subunit function. Dis3 activity is 

strongly impaired within these channel occlusion mutants (Wasmuth and Lima, 2012). 

As mentioned previously, Rrp6 activity is poisoned by exonuclease dead Dis3 within the 

11 subunit complex. However, Rrp6 function in the presence of exonuclease dead Dis3 
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can be partially restored by occlusion of the RNA exosome central channel (Wasmuth 

and Lima, 2012). In fact the activity of Rrp6 in the context of channel occlusion appears 

to be largely independent of Dis3 function. Furthermore, RNA crosslinking studies 

indicate that channel occlusion preferentially diverts the RNA path away from Dis3 and 

towards Rrp6 (Wasmuth and Lima, 2012). Collectively, these results suggest the 

existence of alternate, but mutually exclusive, RNA paths within the RNA exosome. The 

dominant path appears to traverse the entire length of the central channel. Here, RNA 3’ 

ends enter the RNA exosome central channel from one end and exit from the opposite 

end where they interact with Dis3. This path presumably blocks an alternate path leading 

to Rrp6. A recent structural analysis of an RNA exosome core complex bound to Rrp6 

and RNA has revealed a widening of the Rrp40-Rrp4-Csl4 entry ring when bound to 

Rrp6, presumably providing RNA greater access through the central channel towards 

Dis3 in the presence of Rrp6 (Wasmuth et al., 2014). Analysis of the RNA exosome core 

crystal structure has uncovered 4 potential side channels that largely bypass the central 

channel and may provide direct access of RNA to Rrp6 (Wasmuth and Lima, 2012). 

Therefore, it appears that the eukaryotic RNA exosome core has evolved to modulate 

the activities of associated nucleases. 

 Initial structural studies performed on partial RNA exosome preparations 

revealed that Rrp6 and Dis3 bind to opposite ends of the complex. Cryo-electron 

microscopy of 10 subunit RNA exosome complexes containing Rrp6 alone suggested 

that Rrp6 binds near the “top” of the complex, adjacent to the entry pore Rrp40-Rrp4-

Csl4 cap (Cristodero et al., 2008). X-ray crystallography of Dis3 bound to the Rrp41-

Rrp45 fragment of the RNA exosome hexamer ring indicated that Dis3 lies on the 

“bottom” of the complex near the exit pore (Bonneau et al., 2009). More recently, the 

crystal structure of an RNA bound 11 subunit RNA exosome complex was reported 

(Makino et al., 2013). Consistent with previous results, Rrp6 and Dis3 are located near 
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the entry and exit pores, respectively. Furthermore, the structure reveals the long RNA 

path that traverses the length of the central channel leading to Dis3. Approximately 25 

nucleotides of single stranded RNA is needed to reach the exonuclease site of Dis3 

(Makino et al., 2013). In addition, Dis3 adopts a strikingly different conformation in the 

RNA bound 11 subunit complex (Makino et al., 2013) in comparison to the RNA free 

Dis3-Rrp41-Rrp45 structure (Bonneau et al., 2009). Specifically, the Dis3 exonuclease 

domain exhibits a ~90 degree rotation between the two structures (Bonneau et al., 2009; 

Makino et al., 2013). In the RNA bound structure, the exonuclease domain of Dis3 aligns 

with the exit pore in a position that allows it to capture the RNA 3’ end (Makino et al., 

2013). However, recent cryo-electron microscopy studies on Dis3 containing RNA 

exosome complexes suggest that RNA can also directly access the Dis3 exonuclease 

domain. RNA molecules that are not long enough to traverse the central channel can still 

bind the exonuclease domain of Dis3, but do not generate the conformational change in 

Dis3 associated with RNA threading through the central channel (Liu et al., 2014). 

 Collectively, these structural studies suggest that RNA exosome utilizes a 

ratcheting like mechanism of catalysis during RNA degradation. RNA passing through 

the central channel is captured by Dis3 due to a conformational change in the 

exonuclease domain. It has been proposed that following RNA binding, “breathing” of 

the Dis3 exonuclease domain between the apo- and RNA-bound forms may generate a 

pulling force on the RNA resulting in processive nucleolysis (Liu et al., 2014). Further 

studies will undoubtedly reveal additional mechanistic insights involving the multitude of 

interactions between RNA and the RNA exosome. Currently, no less than 3 different 

RNA paths have been described. RNA substrates can be threaded through the entire 

length of the central channel to reach Dis3 (Makino et al., 2013). RNA can pass through 

the entry pore but be diverted to Rrp6 through side channels between the cap and 

hexamer ring, thereby bypassing the exit pore (Wasmuth and Lima, 2012). Lastly, short 
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RNA can bypass the RNA exosome core entirely, through interactions with the Dis3 

exonuclease domain in the apo state (Liu et al., 2014). It is likely that these distinct RNA 

paths are involved in RNA substrate discrimination and processing fates. 

 The RNA exosome is responsible for degradation and/or processing of a wide 

array of cellular transcripts. In fact prior to the discovery of the RNA exosome complex, 

the Rrp4 subunit was cloned on the basis of its ability to complement a temperature 

sensitive 5.8S ribosomal RNA (rRNA) 3’ end processing defect in yeast (Mitchell et al., 

1996). Subsequent fractionation and purification studies revealed that Rrp4 is a 

component of a much larger 3’-5’ exoribonuclease complex involved in 3’ end maturation 

of 5.8S rRNA from 7S rRNA precursors (Mitchell et al., 1997). Loss of function mutations 

in either RNA exosome nuclease subunit, Rrp6 or Dis3, leads to readily detectable 

accumulation of 7S rRNA precursors in yeast (Briggs et al., 1998; Dziembowski et al., 

2007). More recently, shRNA mediated knockdown of multiple RNA exosome subunits in 

human HeLa cell lines has confirmed the involvement of RNA exosome in 5.8S rRNA 3’ 

end maturation (Tafforeau et al., 2013). In contrast to yeast studies, RNA exosome 

shRNA knockdown in HeLa cells has provided evidence that RNA exosome, in particular 

the Rrp6 nuclease subunit, may be involved in a late 3’ end processing step during 

human 18S rRNA maturation (Tafforeau et al., 2013).  

 In addition to rRNA, RNA exosome is also involved in processing of yeast small 

nucleolar RNA (snoRNA) and small nuclear RNA (snRNA) precursors (Allmang et al., 

1999a; van Hoof et al., 2000). These findings were confirmed in genome-wide 

transcriptome analyses of Rrp6 and Dis3 mutant yeast. Specifically, Rrp6 or Dis3 

depletion leads to widespread accumulation of snoRNA and snRNA precursors (Gudipati 

et al., 2012). However, this processing appears to be much more dependent on Rrp6 

than Dis3 as accumulation of pre-snoRNA and pre-snRNA is far greater in Rrp6 versus 
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Dis3 single mutants, and is not exacerbated upon depletion of both Rrp6 and Dis3 

compared to Rrp6 alone (Gudipati et al., 2012).  

 Mature mRNAs are not robustly targeted by RNA exosome. Approximately 10% 

of mRNAs exhibit significant differential accumulation between wild type and Rrp6 or 

Dis3 mutant yeast (Gudipati et al., 2012). However, intron containing pre-mRNAs can 

serve as substrates of RNA exosome (Bousquet-Antonelli et al., 2000). In genome-wide 

studies, up to half of all intronic regions display elevated read counts in Dis3 mutants 

owing to accumulation of pre-mRNAs rather than spliced introns (Gudipati et al., 2012). 

While Rrp6 deletion did not significantly alter intronic read counts (Gudipati et al., 2012), 

RNA-protein crosslinking studies indicate significant and largely similar preferential 

binding of Rrp6 and Dis3 to intron-exon junctions (pre-mRNA) compared to exon-exon 

junctions (spliced mRNA) (Schneider et al., 2012). Thus, the specific roles of Rrp6 and 

Dis3 in pre-mRNA degradation are not yet fully understood. 

 In addition to normal cellular transcripts, RNA exosome is also critical for rapid 

elimination of distinct types of aberrant transcripts. In particular, mRNA transcripts that 

lack a stop codon are degraded via the “nonstop mediated mRNA decay” pathway. 

These transcripts can arise through mutation, errors in transcription, or premature 

polyadenylation. Nonstop mRNA decay substrates are rapidly targeted for degradation 

by the cytoplasmic RNA exosome in a process requiring ribosomal stalling at the 3’ end 

of the transcript (Frischmeyer et al., 2002; van Hoof et al., 2002). RNA exosome is also 

involved in cytoplasmic 3’-5’ directed “nonsense mediated mRNA decay” of aberrant 

mRNA molecules containing premature stop codons (Mitchell and Tollervey, 2003; 

Takahashi et al., 2003). However, the role of RNA exosome in nonsense mediated 

mRNA decay is limited, as degradation from the opposite end of the transcript involving 

decapping and Xrn1 nuclease mediated 5’-3’ directed degradation is more robust 

(Schaeffer et al., 2010). Aberrant “read-through” transcripts that bypass transcription 
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termination signals can be targeted for RNA exosome mediated degradation (Rondon et 

al., 2009; Torchet et al., 2002). Translationally stalled transcripts observed in “no-go 

decay” also are subject to RNA exosome mediated degradation following 

endonucleolytic cleavage (Doma and Parker, 2006). In summary, RNA exosome can 

target a multitude of cellular transcripts. How RNA exosome identifies transcripts 

destined for degradation is poorly understood. It is likely that cofactors play an important 

role in recruiting RNA exosome to its targets. One of the better understood pathways 

involves co-transcriptional targeting of RNA exosome to a particularly unstable class of 

widespread cryptic transcripts in yeast. 

 Cryptic unstable transcripts (CUTs) encompass a class of RNA molecules 

deriving from intergenic regions originally discovered in yeast mutants of Rrp6 (Wyers et 

al., 2005). A very short half-life limits their abundance in wild type cells to nearly 

undetectable levels in the steady state due to rapid RNA exosome mediated 

degradation. Ablation of RNA exosome function typically results in stabilization of CUTs 

(Wyers et al., 2005). Genome-wide analyses of CUT biogenesis have revealed their 

length to be approximately 300 bp on average (Neil et al., 2009; Xu et al., 2009). CUTs 

primarily initiate from nucleosome depleted regions of bidirectional promoters and are 

often transcribed divergent to stable mRNA transcripts (Neil et al., 2009; Xu et al., 2009). 

Unlike relatively stable mRNA transcripts, CUTs undergo a distinct form of transcription 

termination that is coupled to RNA degradation. In yeast, a complex composed of RNA 

binding proteins Nrd1 and Nab3 along with helicase Sen1 (NNS complex) is responsible 

for CUT transcriptional termination (Arigo et al., 2006; Thiebaut et al., 2006). The NNS 

complex interacts with transcriptionally engaged RNAP II molecules (Gudipati et al., 

2008; Vasiljeva et al., 2008) and recruits TRAMP, which catalyzes 3’ end 

oligoadenylation of the nascent transcript (Grzechnik and Kufel, 2008). TRAMP is a 

nuclear polyadenylation complex composed of non-canonical polyA polymerase Trf4, 
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either RNA binding protein Air1 or Air2, and RNA helicase Mtr4 (LaCava et al., 2005; 

Wyers et al., 2005). Importantly, TRAMP strongly stimulates RNA exosome function by 

adding unstructured 3’ tails onto transcripts destined for RNA exosome mediated 

degradation. In fact, RNA exosome targeted snoRNAs undergo NNS mediated 

transcriptional termination (Kim et al., 2006) and accumulate extended 3’ 

oligoadenylated tails in RNA exosome mutant yeast (LaCava et al., 2005). Collectively, 

the NNS and TRAMP complexes help to recruit and stimulate RNA exosome activity at 

co-transcriptional targets.  

 RNA exosome studies performed in human cell lines have uncovered similarities 

as well as important differences between yeast and human. CUT like “promoter 

upstream transcripts” (PROMPTs) are stabilized in human HeLa cells upon shRNA 

mediated knockdown of RNA exosome subunits (Preker et al., 2008). Similar to CUTs, 

PROMPTs are highly unstable and are primarily transcribed from bidirectional promoters 

divergent to stable mRNA transcripts (Preker et al., 2008). In addition, PROMPTs can 

reach 2 kb in length, which is substantially longer than CUTs (Preker et al., 2008). 

Similarly performed studies in mouse embryonic stem cells indicate that RNA exosome 

sensitive upstream antisense RNA (uaRNA) are transcriptionally regulated species. 

Similar to many mRNA transcripts, uaRNA engaged RNAP II can undergo promoter 

proximal pausing (Flynn et al., 2011). Paused nascent uaRNA transcription complexes 

can be released through P-TEFb mediated phosphorylation of RNAP II to subsequently 

undergo RNA exosome mediated degradation (Flynn et al., 2011).  

 When compared with yeast, mammalian cells may also utilize different 

mechanisms of RNA exosome recruitment to co-transcriptional targets. For instance 

MTR4, the human homolog of yeast TRAMP subunit Mtr4, exists in two distinct nuclear 

complexes. “Human TRAMP” complex resembles yeast TRAMP in its composition and 

contains MTR4, TRF4, and ZCCHC7 (human homolog of yeast Air1/2) (Lubas et al., 
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2011). The nuclear exosome targeting (NEXT) complex, is made up of MTR4 and RNA 

binding proteins RBM7 and ZCCHC8 (Lubas et al., 2011). Surprisingly, NEXT complex 

is required for RNA exosome mediated degradation of PROMPTs, whereas human 

TRAMP complex is not (Lubas et al., 2011). However, it is unclear how NEXT complex is 

recruited to RNA exosome co-transcriptional substrates as obvious homologs of yeast 

NNS complex subunits Nrd1 or Nab3 appears to be absent in humans (Chlebowski et 

al., 2013). Recent studies indicate that the cap-binding complex (CBC) physically 

associates with NEXT complex and RNA exosome (Andersen et al., 2013). Consistent 

with a role for CBC in RNA exosome targeting to co-transcriptional substrates, PROMPT 

stabilization resulting from individual knockdown of NEXT complex or RNA exosome 

subunits is exacerbated when paired with shRNA mediated knockdown of CBC subunits 

(Andersen et al., 2013). 
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Chapter 2: Materials and Methods 
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2.1 Bacterial homologous recombination 

 DH10B strain E. coli clones were obtained from a mouse genomic DNA BAC 

library and electroporated with plasmid pTSEBG-rev. This plasmid contains the lambda 

phage exo, bet, and gam open reading frames as a single polycistronic unit under 

control of an arabinose inducible promoter. pTSEBG-rev also contains the temperature 

sensitive pSC101 origin of replication. Single colonies carrying both the BAC clone and 

pTSEBG-rev were grown to mid-log phase at 30°C. The cultures were then induced with 

L-arabinose (Sigma) to a final concentration of 0.2% and grown at 37°C for 45 minutes. 

Competent cells were immediately prepared from these cultures and electroporated with 

linearized donor vector. Cells were then cultured in LB broth for an additional 4 hours 

and plated overnight at 37°C in the presence of antibiotics specific for the recombinant 

BAC.  

 

2.2 Pulsed-field gel electrophoresis (PFGE) 

 BAC DNA (500 ng) was digested using restriction enzymes for 4 hours. DNA 

fragments were embedded in 1% low melting temperature agarose (SeaPlaque; Lonza). 

The agarose plugs were allowed to solidify in the wells of a 1% PFGE-grade agarose gel 

(SeaKem Gold; Lonza) prepared in 0.5X TBE buffer. Electrophoresis was performed 

using the CHEF-DR II PFGE system (Bio-Rad). PFGE running conditions were in 0.5X 

TBE buffer at 6 volts, for 11 hours at 12°C, using 1 sec and 6 sec initial and final switch 

times, respectively. The gel was soaked in 0.5 µg/ml ethidium bromide for 30 minutes, 

washed several times with dH2O, and visualized over UV light. 

 

2.3 Cell culture and class switch recombination   

Splenic B cells from sex matched littermate mice were prepared using anti-CD43 

microbead (Miltenyi Biotec) negative selection and cultured in RPMI 1640 media 
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containing 15% FBS. Ex vivo cultures utilizing the ROSA26CreERt2 allele were cultured for 

16 hours with 100 nM 4-hydroxytamoxifen (Sigma) and 20 µg/ml LPS (Sigma) followed 

by addition of IL-4 (R&D Systems) at 20 ng/ml, and cultured for an additional 72 hours in 

a 37°C incubator. Cells were collected, resuspended in cold PBS containing 2% FBS 

and incubated with anti-CD16/CD32 neutralizing antibody (BD Biosciences) for 15 

minutes on ice. Cell suspensions were subsequently stained using fluorescently labeled 

anti-B220 and anti-IgG1 antibodies (BD Biosciences) for 30 minutes on ice with periodic 

mixing. Data were acquired on a FACSAria cell sorter (BD Biosciences) and analyzed 

using FloJo software (Tree Star). 

 

2.4 Western blot analysis 

Cells were collected, washed once with cold PBS buffer, and centrifuged. 

Supernatant was discarded and cell pellets were resuspended in 1 ml cold RIPA buffer 

containing proteinase inhibitor cocktail (Roche) per 107 cells and incubated on ice with 

periodic mixing for 20 minutes. Lysates were then centrifuged at top speed in a table top 

centrifuge for 15 minutes. The clarified lysates were collected and stored at -80°C. 

Protein concentrations were determined using the bicinchoninic acid (BCA) reagent 

method (Pierce). Ten µg of total protein was used for each sample during SDS-PAGE. 

Antibodies used during immunoblotting were anti-Exosc3 (Santa Cruz Biotechnology), 

anti-Exosc10 (Sigma), anti-AID (Chaudhuri et al., 2003), anti-Actin (Abcam), and goat 

anti-rabbit IgG HRP (Jackson ImmunoResearch). 

 

2.5 Chromatin immunoprecipitation 

 Crosslinking was performed on cultured B cells using formaldehyde. Sonication 

was carried out on ice using a Branson Sonifier 250 apparatus for 20 cycles, each cycle 

comprising 20 sec of sonication at duty cycle 30% followed by a 2 min rest period.  
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Lysates were pre-cleared for 1 hr. Lysates were incubated with indicated antibodies 

overnight at 4 °C. Protein A/G conjugated sepharose beads were added for 90 min with 

continued rotation. Beads were subsequently treated to the standard series of washes 

(low salt, high salt, LiCl, and TE) and ChIP products were eluted followed by RNase A 

treatment overnight at 60 °C and proteinase K treatment for 2 hr at 55 °C. ChIP DNA 

was recovered using ethanol precipitation. Primers used for ChIP quantitative PCR were 

as follows, Myc: CGGTTGATCACCCTCTATCACTC and 

GCTCCACACAATACGCCATGTAC; Pim1: CCCAGGATCTAGCCCACATAACATC and 

AGCGTAGCAAGTTGTGAGAAATGG; Pax5: CTGCTAGGATGGTTCTGCTTGG and 

CAACTCAATTGCAACCTCCATAGGTC; Cd79b: TGCTGATTGAGAAGGTTGGTGTG 

and GGAAGGGGTTGCTCCTGAATC; Cd83: AGATCTCCCTTGCTCAAACAACG and 

GACCTGCTACTCTCCAGATTTTGTG; Cmas: GGAAAACGGAAAGAGGCTGGAG and 

TGAGCTCAGAGGAGCCTCTAG; Atp13a2: CAGCCTGTCCTTTTCCGTCTATC and 

AGCTCGCTGAGATCTTGATGC; March2: GCAGCAAGTCTACAGCCAGAG and 

GCCTCTGAGTATCATCTGCCAATC; Fam107b: GACACCTTCCATTAGACAGGTGAC 

and AGATGAGAGCTCTGGATCCTTGG. 

 

2.6 DNA:RNA hybrid immunoprecipitation (DRIP) 

 DRIP was performed on cultured B cells according to a previously described 

method (Ginno et al., 2012) with minor modifications involving restriction endonuclease 

selections. Briefly, cells were digested overnight in TE buffer with proteinase K, followed 

by phenol-chloroform extraction and ethanol precipitation of nucleic acids. Genomic DNA 

was digested using BsoBI, NheI, NcoI, and StuI in the presence or absence of RNase H 

(New England Biolabs). Purified DNA was subsequently immunoprecipitated using the 

RNA:DNA hybrid specific S9.6 monoclonal antibody (kind gift of F. Chédin). DRIP and 

ChIP primers used for quantitative PCR were the same.  
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2.7 CRISPR/Cas9 mediated deletion of Cd83 and Pim1 xTSS-RNA regions 

 Guide RNA sequences were designed using an online tool (http://tools.genome-

engineering.org). Guide RNA encoding oligonucleotides (Cd83, 

AGTGCCCAACACTACCTAAT and TTCCGAAGCCTCAGGGCGCG; Pim1, 

ATCAGACACATTCCGAGAAG and CTCTGTGTTTCCCGGAGATT) were cloned into 

the BbsI site of pSpCas9(BB)-2A-GFP (pX458 Addgene) as described (Ran et al., 

2013). Guide RNA/Cas9 expression vectors were electroporated into CH12F3 cells 

using Amaxa Nucleofector (Lonza). Cells were cloned using limiting dilution 3 days after 

electroporation. Individual clones were screened for homozygous deletion of xTSS-RNA 

encoding regions using PCR. Screening primers for Cd83 xTSS-RNA deletion were 

CCATGCTACAATGCACAGACCTAC and CAGCCTAGAAACAGGAGCTGGAG. 

Screening primers for Pim1 xTSS-RNA deletion were 

CCAGGGATCAAACCTAGGATTTTC and CAGAAGACGCCCTATTTGCATAAGG. AID 

ChIP primers were as follows: Pim1, CTCGCTCCGCCGCCGCTGCTG and 

CGCAGGTGGGCCAGGGAGTTGAT; Cd83, GCCTCCAGCTCCTGTTTCTA and 

TCGGAGCAAGCCACCGTCAC. 

 

2.8 Somatic hypermutation  

 Peyer’s patches were excised from 2.5 – 3.5 month old paired littermates and 

gently dissociated by passage through a 70 µm cell strainer. Germinal center B cells 

were stained with anti-B220 (BD Biosciences) and peanut agglutinin (Vector 

Laboratories). DAPI stain was added just prior to cell sorting to exclude dead cells. Cells 

were directly sorted into lysis buffer containing proteinase K (Viagen) using a FACSAria 

cell sorter (BD Biosciences) and incubated at 55°C overnight. 15 µg GlycoBlue (Life 

Technologies) was added to the lysates and genomic DNA was purified via ethanol 

precipitation. A portion of the JH4 intron was amplified by PCR using LA Taq (Takara) 
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and a primer pair (J558FR3Fw: 5’-GCCTGACATCTGAGGACTCTGC-3’ and 

JH4intronRv: 5’-CCTCTCCAGTTTCGGCTGAATCC-3’) that requires a VDJ 

rearrangement of the IgH locus for amplification to occur (Jolly et al., 1997). JH4 

amplicons were ligated into the pCR2.1-TOPO vector (Life Technologies) and individual 

clones were sequenced using M13 primers. Mutation analysis at Cd83 in CH12F3 cells 

was performed on a 488 base pair sequence located ~150 base pairs downstream to the 

Cd83 mRNA TSS between PCR primers GCCTCCAGCTCCTGTTTCTA and 

TGTTGCTTTCACTGCAGCTCTC. 

 

2.9 Cell proliferation analysis using intracellular fluorescent tracer 

 Splenic B cells were prepared using anti-CD43 microbead negative selection. At 

the completion of the purification protocol, cells were washed twice with serum free PBS 

and resuspended at a cell concentration of 2 x 106 per ml. An equivalent volume of 2 µM 

Violet Proliferation Dye 450 (VPD450) (BD Biosciences) was added to the cells and 

incubated at 37°C for 15 minutes. Extracellular VPD450 was quenched by adding 5 

volumes of RPMI 1640 media containing 15% FBS. Cells were centrifuged, resuspended 

in fresh growth media at 0.2 x 106 per ml and cultured in a 37°C incubator. VPD450 and 

GFP fluorescence was monitored on a daily basis using flow cytometry. 

 

2.10 RNA preparation and quantitative RT-PCR 

 Total RNA was isolated from B cells using Trizol reagent (Life Technologies). 

RNA was resuspended in nuclease-free water and quantified using a NanoDrop 

spectrophotometer. Total RNA (1.5 µg) was converted to cDNA using random hexamer 

oligonucleotides and the Superscript III First-Strand Synthesis System (Life 

Technologies). Exosc3, Exosc10, and Aicda mRNA measurements were performed 

using the TaqMan Gene Expression Assay (Applied Biosystems). All other qRT-PCR 
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experiments were performed using SYBR Green Master Mix (Roche Applied Science). 

Expression levels for individual transcripts were normalized against beta-actin and/or 

cyclophilin A with similar results. Fold changes in transcript levels were calculated as: 

Fold change = 2^(CtWT,GOI – Ctmutant, GOI) / 2^(CtWT,actin – Ctmutant,actin) 

 

2.11 RNA sequencing and transcriptome assembly 

 Total RNA was depleted of ribosomal RNA using the Ribo-Zero rRNA removal kit 

(Epicentre). Libraries were prepared with Illumina TruSeq or TruSeq Stranded total RNA 

sample prep kits, and then sequenced with 50 to 60 million, 2×100 bp paired raw filter 

passing reads on an Illumina HiSeq 2000 V3 instrument at the Columbia Genome 

Center. To assemble each transcriptome, all total RNA reads were first mapped onto the 

mouse reference genome (mm9) with TopHat version 1.3.2 (Trapnell et al., 2009). 

Cufflinks version 1.2.1 was subsequently applied to assemble the whole transcriptome 

and to identify all possible transcripts (Trapnell et al., 2010). To retain short RNA 

information, the Cufflinks overlap-radius was set to one and biological replicates were 

merged. Assembled transcripts were further annotated by overlapping with transcript 

coordinates of annotated mRNA/lncRNA (UCSC mouse genome browser), lincRNA 

(Guttman et al., 2009), and snoRNA (Yoshihama et al., 2013). The transcript overlap 

window was set to 200 bp of the annotated transcription start and end sites. Assembled 

transcripts possessing no overlap with any annotated RNA located within 2 kb upstream 

of an annotated transcript were classified as gapped upstream transcripts. 

 

2.12 Statistical analysis 

 To test the significance of the difference of two vectors, two-sided nonparametric 

Wilcoxon rank sum test was applied to calculate p-values. To test the difference 

between two proportions, the following equation was used: 
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where p1  and p2  are two proportions, p  is the expected value, and n1  and n1  are the 

population size. P-values were generated by normal distribution. DEseq pipeline (Anders 

and Huber, 2010) was applied for the normalization of library size and differential gene 

expression analysis. 

 

2.13 Analysis of B cell translocation capture sequencing (TC-Seq) datasets 

 Genome-wide B cell translocation breakpoint datasets were downloaded under 

SRA accession number SRA039959 (http://www.ncbi.nlm.nih.gov/sra). Mapping of the 

breakpoints was performed according to a previously described computational workflow 

(Oliveira et al., 2012). All alignments were performed using the Burrows-Wheeler Aligner 

(Li and Durbin, 2009) with default parameters. Read counting was performed using 

BEDTools (Quinlan and Hall, 2010). 

 

2.14 Statistical model for predicting translocation breakpoint probability 

 To predict the probability of observing breakpoints in a given genomic region, we 

assume the number of translocation (TC-Seq) reads within a given region follows a 

negative binomial model with parameters r and p. A maximal likelihood method was 

applied to estimate the parameters. At each given genomic region the probability of 

translocation breakpoint occurrence was defined as the probability to harbor more than 0 

TC-Seq reads. Two types of genomic regions were evaluated separately. For the 

analysis of translocation hotspot genes each base pair spanning 2 kb upstream from the 

TSS to the TES were binned into 13 tiers according to antisense transcript expression 
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levels. For the genome-wide analysis, annotated genes that do not harbor known 

antisense transcripts (28,947 loci) were binned into 46 antisense expression tiers. 

 

2.15 Mouse embryonic stem cell derivation and cell culture 

 Exosc3 conditional null ES cells were derived through mating of female 

Exosc3COIN/+ and male Exosc3COIN/+ ROSA26CreERt2/CreERt2/+ mice. Likewise, Exosc10 

conditional null ES cells were derived by crossing female Exosc10COIN/+ with male 

Exosc10LacZ/+ ROSA26CreERt2/CreERt2/+ mice. Three week old female mice were 

superovulated by intraperitoneal injection of 5 units pregnant mare’s serum gonadotropin 

(PMSG) followed 47 hours later by intraperitoneal injection of 5 units human chorionic 

gonadotropin (hCG). Immediately following delivery of hCG, female mice were paired 

individually with rested stud male mice. Mating pairs were separated the following 

morning. Females were euthanized 3 days later for blastocyst isolation. Individual ES 

cell clones were generated with the assistance of the Transgenic Mouse Shared 

Resource (Herbert Irving Comprehensive Cancer Center). ES cells were maintained in 

DMEM supplemented with 15% FBS, 1 mM sodium pyruvate, 1X non-essential amino 

acids, 1X L-glutamine, 1X penicillin/streptomycin, 100 µM 2-mercaptoethanol, and 1000 

units/mL murine leukemia inhibitory factor (Millipore). ES cell cultures were typically 

maintained on irradiated CF-1 mouse embryonic fibroblast (Global Stem) feeder layers 

and received daily media changes. For Exosc3 or Exosc10 ablation studies, ES cell 

cultures were treated with 4-OHT for 2 days, followed by 2 additional days without 4-

OHT. GFP+ (Exosc3) or FP635+ (Exosc10) ES cells were isolated using cell sorting. 
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Chapter 3: Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results presented in this chapter have been partly published in, 

Pefanis, E., Wang, J., Rothschild, G., Lim, J., Chao, J., Rabadan, R., Economides, A.N., 
and Basu, U. (2014). Noncoding RNA transcription targets AID to divergently transcribed 
loci in B cells. Nature 514, 389-393. 
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3.1 Selection of Exosc3 and Exosc10 for B cell studies 

To explore the role of RNA exosome in AID mediated immunoglobulin 

diversification mechanisms and B lymphocyte transcriptional regulation we undertook a 

path to mutagenize Exosc3 and Exosc10 in mouse cells. The rationale for focusing on 

these two subunits was that it might allow us to identify exosome mediated co-

transcriptional RNA processing activities that may be key to AID related functions. Loss 

of Exosc3, encoding the RRP40 structural subunit necessary for assembly of the core 

exosome complex (Liu et al., 2006), would likely translate into a complete loss of RNA 

exosome function. Exosc10 encodes the RRP6 3’-5’ exoribonuclease subunit of the 

exosome complex. In contrast to RRP40, RRP6 is not required for assembly of the core 

exosome complex (Liu et al., 2006) and its localization is greatly enriched in the nucleus 

(Tomecki et al., 2010). As transcription coupled RNA processing and AID mediated 

deamination of DNA are strictly nuclear events we hypothesized that Exosc10 ablation 

may result in perturbation of these activities owing to nuclear specific exosome defects. 

An important caveat to this prediction is potential redundancy between Exosc10 and 

Dis3, which encodes the RRP44 nuclease subunit found in both nuclear and cytoplasmic 

exosome complexes (Tomecki et al., 2010). Exosc3 deficiency however, is expected to 

disrupt nuclear as well as cytoplasmic functions of the exosome complex. 

 

3.2 Initial attempts at creating and analyzing RNA exosome developmentally 

deficient mice 

 We sought to generate RNA exosome developmentally deficient mice using 

embryonic stem cells containing targeted, monoallelic LacZ cassette based whole gene 

replacements of Exosc3 (Figure 4A) or Exosc10. F1 generation heterozygotes of Exosc3 

or Exosc10 were intercrossed, but viable Exosc3LacZ/LacZ or Exosc10LacZ/LacZ pups were 

not obtained (Figure 4B). Embryos from Exosc3LacZ/+ intercrosses were also genotyped 
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at 13.5 days of gestation, but once again Exosc3LacZ/LacZ embryos failed to be observed. 

However, this embryo analysis uncovered a discrepancy between the number of uterine 

decidua and the number of actual embryos. Of the 38 decidua observed, only 30 

contained embryos. This difference is in line with the expected Mendelian ratio of 

Exosc3LacZ/LacZ embryos and is likely to account for the Exosc3LacZ/LacZ embryos that fail to 

develop post-implantation. 

A                                                                                    B 
Exon3!Exon2!Exon1! Exon4!

LoxP! LoxP!
LacZ-p(A)! hUbC-neor-p(A)!

Exosc3 

  	  

Exosc3LacZ 
 
Exosc10LacZ 

pups genotyped  WT HET KO 

40 66 0 106 

98 38 60 0  

 
Figure 4:  Evidence for embryonic lethality in Exosc3 knockout mice 
(A) Schematic of the Exosc3LacZ allele (KOMP ID# VG10322). Homologous recombination was used to 
replace the entire coding region of Exosc3 (3.8 kb) with the ZEN-Ub1 cassette (LacZ open reading frame, 
loxP flanked human ubiquitin C promoter expressing neomycin phosphotransferase). Red and green boxes 
indicate Exosc3 5’ and 3’ untranslated regions, respectively. 
(B) Embryonic lethality in Exosc3 and Exosc10 developmentally deficient mice. Genotypes obtained from 3-
week old pups generated from multiple Exosc3LacZ/+ or Exosc10LacZ/+ intercrosses. 
 

 Exosc3LacZ/+ heterozygotes were analyzed for potential CSR defects. Wild type 

and Exosc3LacZ/+ naive IgM+ splenic B cells were isolated and cultured in the presence of 

LPS with and without IL-4 to induce isotype switching to IgG1 and IgG3, respectively. 

While Exosc3LacZ/+ B cells express 50% less Exosc3 mRNA as compared to wild type B 

cells (Figure 5A), nearly identical levels of IgG1 and IgG3 conversion was observed 

between genotypes (Figure 5B). Thus, the absence of Exosc3 haploinsufficiency in B 

cells undergoing CSR along with the inability to produce fetal liver chimerism due to 

embryonic lethality of Exosc3LacZ/LacZ embryos prior to E13.5, necessitated the 

construction of conditional alleles of Exosc3 and Exosc10. 



	   55	  

0.00 

0.20 

0.40 

0.60 

0.80 

1.00 

1.20 

1 2 3 4 

WT_LPS Exosc3-LacZ/+_LPS WT_LPS+IL4 Exosc3-LacZ/+_LPS
+IL4 

mExosc3 mRNA levels in stimulated ex vivo B cell cultures 

Exosc3WT/WT 
LPS 

Exosc3LacZ/+ 
LPS 

Exosc3WT/WT 
LPS + IL-4 

Exosc3LacZ/+ 
LPS + IL-4 

A 

   	  

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.09220.262

day 4.5 LPS + IL-4 WT
B220-APC + IgG1-PE

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.08420.306

day 4.5 LPS + IL-4 Exosc3 HET
B220-APC + IgG1-PE

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.1 5.75

00.111

day 4.5 LPS WT
B220-APC + IgG3-FITC

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.2 5.62

7.12e-30.178

day 4.5 LPS Exosc3 HET
B220-APC + IgG3-FITC

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.09220.262

day 4.5 LPS + IL-4 WT
B220-APC + IgG1-PE

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.08420.306

day 4.5 LPS + IL-4 Exosc3 HET
B220-APC + IgG1-PE

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.1 5.75

00.111

day 4.5 LPS WT
B220-APC + IgG3-FITC

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.2 5.62

7.12e-30.178

day 4.5 LPS Exosc3 HET
B220-APC + IgG3-FITC

Exosc3WT/WT 

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.09220.262

day 4.5 LPS + IL-4 WT
B220-APC + IgG1-PE

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.08420.306

day 4.5 LPS + IL-4 Exosc3 HET
B220-APC + IgG1-PE

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.1 5.75

00.111

day 4.5 LPS WT
B220-APC + IgG3-FITC

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.2 5.62

7.12e-30.178

day 4.5 LPS Exosc3 HET
B220-APC + IgG3-FITC

Exosc3LacZ/+ 

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.09220.262

day 4.5 LPS + IL-4 WT
B220-APC + IgG1-PE

103 105 107

IgG1-PE

102

103

104

105

106

107

B
22

0-
A

P
C

68.2 31.4

0.08420.306

day 4.5 LPS + IL-4 Exosc3 HET
B220-APC + IgG1-PE

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.1 5.75

00.111

day 4.5 LPS WT
B220-APC + IgG3-FITC

103 105 107

IgG3-FITC

102

103

104

105

106

107

B
22

0-
A

P
C

94.2 5.62

7.12e-30.178

day 4.5 LPS Exosc3 HET
B220-APC + IgG3-FITC

B2
20
!

IgG1!

B2
20
!

IgG3!

B 

 
 
Figure 5:  Absence of Exosc3 haploinsufficiency in B cells undergoing CSR 
(A) Quantitative RT-PCR analysis of Exosc3 mRNA expression in cultured B cells undergoing CSR. 
Expression levels are normalized to beta-actin and plotted relative to LPS treated wild type cells.  
(B) Flow cytometric analysis for surface IgG1 and IgG3 on purified B cells stimulated with LPS with and 
without IL-4, respectively. Upper right quadrant of each plot indicates the percentage of isotype switched B 
cells. 
 

3.3 Construction of Exosc3 and Exosc10 conditional alleles 

3.3.1 Design strategy for Exosc3 and Exosc10 conditional alleles 

 The design of the Exosc3 and Exosc10 conditional alleles was primarily 

influenced by three principles. First, each conditional allele must convert to a null allele 

upon exposure to Cre recombinase activity. Second, the conditional alleles must exert 

wild type functionality in the absence of Cre. Third, the accommodation of a reporter 

system to allow for simple and robust identification of cells bearing conditional alleles 

pre- and post-Cre activity. These principles are featured in the conditionals by inversion 

(COIN) allele approach (Economides et al., 2013) and were implemented in the design 

of the Exosc3 (Figure 6) and Exosc10 conditional alleles. 

The Exosc3COIN allele utilizes a Cre dependent genetic “FLEx switch” (Schnutgen 

et al., 2003) to inactivate the Exosc3 open reading frame while simultaneously activating 

GFP expression from the endogenous locus. This is mediated through the usage of wild 
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type loxP and mutant lox2372 Cre recognition sequences while leveraging the activity of 

Cre recombinase to invert or excise as circular DNA any DNA sequence according to the 

orientation of the flanking lox sites (Abremski et al., 1983). A critical feature of the COIN 

allele lies in the incompatibility of loxP and lox2372 sites to serve as Cre substrates 

(Siegel et al., 2004). loxP/loxP and lox2372/ lox2372 pairs can serve as efficient 

substrates for Cre, while the loxP/lox2372 pair cannot. 
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Figure 6:  Schematic of the Exosc3COIN allele and conversion to Exosc3COINinv 
Cre recombinase mediated inversion of the lox2372 pair (red triangles) and subsequent deletion via the loxP 
pair (violet triangles). GFP expressing terminal exon represented by green arrows. Exons illustrated as 
numbered boxes. Splicing pattern indicated by dashed lines. SA, splice acceptor. T2A, ribosomal skipping 
sequence. 
 

 The murine Exosc3 locus is comprised of 4 exons, all of which are coding, and 

contains a single consensus coding sequence (CCDS) transcript annotation. To 

preserve the normal splicing pattern of the Exosc3 coding transcript in the context of the 

Exosc3COIN allele in the absence of Cre, the upstream and downstream loxP/lox2372 

arrays were placed in the first and third introns, respectively (Figure 6). Immediately 

upstream of the downstream lox array within intron 3 of the Exosc3COIN allele lies an 

inverted GFP expressing terminal exon, which is designed to be silent in the COIN 

configuration due to its opposite orientation relative to Exosc3 transcription. The precise 
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insertion points of the lox arrays and GFP terminal exon into the Exosc3 locus were 

selected according to weak evolutionary conservation within these introns (Ovcharenko 

et al., 2004) to minimize the probability of disrupting non-annotated regulatory elements. 

 Although the Exosc3 open reading frame is expected to be maintained in the 

Exosc3COIN allele, Cre mediated conversion to Exosc3COINinv is engineered to disrupt 

expression of Exosc3 through multiple mechanisms. Exosc3COIN contains two distinct 

Cre substrates, namely the pair of inverted loxP sites and the pair of inverted lox2372 

sites. Regardless of which lox pair is utilized initially, the final product remains 

Exosc3COINinv. Figure 6 illustrates the conversion of Exosc3COIN to Exosc3COINinv initiating 

via inversion of the lox2372 pair. This results in inversion of the single intervening loxP 

site, such that the loxP pair is now in direct repeat orientation. Subsequent deletion 

between the loxP pair results in loss of the intervening lox2372 site and locks the allele 

in the Exosc3COINinv configuration. This disrupts Exosc3 expression through two distinct 

mechanisms. First, the inversion of Exosc3 exons 2 and 3 destroys the open reading 

frame of the Exosc3 coding transcript. Secondly, inversion of the GFP terminal exon 

should prematurely terminate transcription arising from the Exosc3 promoter at the 

polyadenylation sequence located immediately downstream of GFP. In addition, the 

inversion mechanism creates an endogenous reporter within the Exosc3 locus. 

Transcription of the Exosc3COINinv allele results in splicing of exon 1 onto the GFP 

terminal exon. Fused upstream of the GFP open reading frame lies a splice acceptor 

sequence followed by a T2A ribosomal skipping sequence (Szymczak et al., 2004). 

Translation of the Exosc3COINinv transcript is predicted to create two distinct protein 

products; soluble GFP protein and a fusion peptide corresponding to the translation 

product of Exosc3 exon 1 and T2A. 

 The Exosc10COIN allele was designed to operate in a nearly identical manner as 

the Exosc3COIN allele with two minor differences. Due to exon phase differences between 
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Exosc3 and Exosc10, the Exosc10COIN allele inverts only exon 2 while still disrupting the 

open reading frame of the wild type Exosc10 transcript. Also, the reporter in Exosc10COIN 

was replaced with the far-red fluorescent protein TurboFP636 (Shcherbo et al., 2007). 

 

3.3.2 Exosc3COINneo and Exosc10COINneo targeting vector construction 

COIN allele targeting vector construction was accomplished through three 

sequential modifications of Exosc3 or Exosc10 containing bacterial artificial 

chromosomes (BACs) using homologous recombination in E. coli (Zhang et al., 1998). A 

schematic illustrating this process for Exosc3 is outlined in Figure 7. 
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Figure 7:  Flowchart of Exosc3COINneo targeting vector construction 
Bacterial homologous recombination was used to insert the 5’ lox array into intron 1 of Exosc3. BAC DNA 
from correctly modified clones was purified, digested with I-CeuI, and ligated in cis to remove the hygr 
selection cassette from the 5’ lox array. A second homologous recombination step was utilized to insert the 
inverted GFP terminal exon, 3’ lox array, and hUbC-neor selection cassette within intron 3. 
 

 BAC clones containing the Exosc3 and Exosc10 loci were obtained from a 

genomic DNA library of the 129Sv mouse strain (Adams et al., 2005). Donor vectors 

used to introduce the 5’ lox array were constructed using standard molecular biology 

techniques. These 5’ donor vectors contain a pair of short, ~70 bp sequences that are 

homologous to regions within introns 1 of Exosc3 or Exosc10. Between the pair of 

homology sites lie the lox2372 and loxP elements, which themselves are separated by 
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an I-CeuI flanked hygromycin selection cassette. Transfer of the modified sequence from 

the 5’ donor vector onto the BAC was performed through homologous recombination. In 

short, E. coli containing Exosc3 or Exosc10 BACs were transiently induced to express 

lambda phage exo, bet, and gam (Red operon) and subsequently transformed with 

linearized 5’ donor vector. 5’ lox array recombinants were screened by PCR for the 

presence of correctly modified intron 1 junctions using oligonucleotides located outside 

of the homology sites together with oligonucleotides specific for the hygromycin selection 

cassette. 

 The next step in the vector construction process was removal of the hygromycin 

selection cassette. BAC DNA from properly targeted 5’ lox array recombinants was 

purified and digested with I-CeuI homing endonuclease. Following heat inactivation of I-

CeuI, T4 DNA ligase was used to re-circularize the BACs. DH10B E. coli cells were 

transformed with this DNA and plated in the presence or absence of hygromycin. 

Correctly deleted clones were screened for by PCR across the deletion junction.  

 The final step in construction of the Exosc3COINneo and Exosc10COINneo BAC 

targeting vectors (BACvecs) involved insertion of the inverted terminal exon, 3’ lox array, 

and neomycin selection cassette in introns 3 and 2, respectively. Accordingly, 3’ donor 

vectors were constructed containing this modification flanked by Exosc3 intron 3 or 

Exosc10 intron 2 homology sites, in a manner analogous to the 5’ donor vectors. 

Linearized 3’ donor vectors were introduced into recombination primed E. coli cells 

containing hygr cassette deleted 5’ lox array modified BAC clones. Recombinants were 

screened by PCR across both unique junctions introduced during this step using 

oligonucleotides located outside the homology sites together with oligonucleotides 

recognizing elements within the modification (terminal exon polyadenylation sequence or 

neor coding sequence).  
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 To further screen the Exosc3COINneo and Exosc10COINneo BACvecs, both intron 

modifications were fully sequenced between each pair of homology sites and confirmed 

for the absence of any mutations. Additionally, each modified BAC was analyzed for the 

presence of any spurious rearrangements within the large homology arms flanking the 

Exosc3 and Exosc10 loci. Such rearrangements can potentially occur during induction of 

homologous recombination and can greatly affect subsequent gene targeting steps and 

locus integrity. Pulsed-field gel electrophoresis of the restriction fragments of the 

Exosc3COINneo and Exosc10COINneo BACvecs yielded the expected banding pattern (Figure 

8), thus confirming the absence of any gross DNA rearrangements. 
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Figure 8:  Analysis of Exosc3COINneo and Exosc10COINneo BACvec integrity 
Pulsed-field gel electrophoresis of Exosc3COINneo and Exosc10COINneo BACvec restriction fragments. 3BV1, 
3BV2, 10BV1, and 10BV2 indicate the COINneo modified Exosc3 or Exosc10 containing bMQ BAC library 
clones 452h18, 386a13, 169f23, and 395a09, respectively. P indicates the corresponding unmodified 
parental BAC clone. Molecular weight markers are indicated in kilobases. Predicted restriction fragment 
lengths are as follows (unique fragments highlighted): 
SbfI – P: 91*, 57, 23 kb;  3BV1: 95*, 57, 23 kb 
PacI – P: 72, 52*, 11 kb;  3BV2: 72, 56*, 11 kb 
AgeI – P: 57*, 33, 27, 13, 5, 1.2, 0.9 kb;  10BV1: 62*, 33, 27, 13, 5, 1.2, 0.9 kb 
AgeI – P: 67, 57*, 26, 9, 5, 1.2, 0.9 kb;  10BV2: 67, 62*, 26, 9, 5, 1.2, 0.9 kb 
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3.3.3 Gene targeting of Exosc3COINneo in mouse embryonic stem cells 

 The BACvec for Exosc3COINneo was linearized and electroporated into 

ROSA26CreERt2/+, 129S6/SvEv x C57BL/6 hybrid ES cells. Following selection with G418 

antibiotic, individual colonies of cells were expanded and evaluated for replacement of 

the wild type allele with the COINneo allele. BACvecs possess very long homology arms 

(41 kb and 82 kb for Exosc3COINneo; 62 kb and 66 kb for Exosc10COINneo) that are intended 

to increase the efficiency of gene targeting (Valenzuela et al., 2003). However, such 

homology arm lengths make it exceedingly difficult to screen for targeted ES cell clones 

using standard Southern blotting techniques involving restriction enzyme digestion 

schemes predicated on not cutting within the homology arms. Targeted clones were 

therefore identified using a quantitative PCR based copy number analysis approach 

(Frendewey et al., 2010). Exosc3COINneo/+ targeted clones were identified on the basis of 

differential amplification of wild type allele specific sequences. Specifically, Taqman 

probes corresponding to ~100 bp regions within Exosc3 introns 1 and 3 which were 

disrupted due to the insertion of the lox arrays were used to differentiate the wild type 

from the COINneo allele. Clone AF8 consistently required ~1 additional PCR cycle 

relative to the parental ES cell line when amplifying with wild type allele specific probes, 

whereas a non-targeted locus (Wnt2b) was equivalently amplified (Figure 9). 

Conversely, COINneo allele specific elements such as GFP and neor were present at 

single copy in clone AF8, but were absent in the parental line (not shown). This data 

collectively implies that a single wild type allele has been replaced with the COINneo 

allele at the Exosc3 locus of clone AF8. 
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Figure 9:  Confirmation of Exosc3COINneo/+ targeted ES cell clone AF8 
Quantitative PCR amplification of Exosc3WT allele specific elements (intron 1 and 3 probes) in a 
Exosc3COINneo BACvec targeted clone (AF8). The Wnt2b probe represents a non-targeted control locus. 
Genomic DNA was used as template. Ct, cycle threshold. 
 

3.3.4 Gene targeting of Exosc10COINneo in mouse embryonic stem cells 

 Gene targeting efforts using the Exosc10COINneo BACvec failed to produce 

targeted ES cells, thus prompting an alternative approach. The Exosc10COINneo BACvec 

was used as a template to subclone a ~20 kb fragment containing the entire 

Exosc10COINneo modification with shorter homology arms into a plasmid containing a 

diphtheria toxin A (DTA) cassette. In comparison to the BACvec, the significantly smaller 

sized plasmid could be delivered at higher concentrations during ES electroporation. In 

addition, the DTA cassette provides a strong negative selection pressure against 

random integration events.  

 The linearized DTA based Exosc10COINneo targeting vector, containing 6.7 kb and 

8.2 kb homology arms, was electroporated into ROSA26CreERt2/+, 129S6/SvEv x C57BL/6 

hybrid ES cells. Individual G418 resistant ES cell clones were screened by quantitative 

PCR using the same approach as previously described for Exosc3COINneo. Candidate 

targeted clones were further screened using Southern blotting. Proper targeting of the 

upstream homology arm was assessed using an external probe located beyond the 

homology arm boundary (Figure 10A). Targeted Exosc10COINneo alleles could be 

distinguished from Exosc10WT alleles with this probe due to length differences of the 
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HindIII restriction fragments. Each of the candidate clones produced 2 distinct HindIII 

fragments, corresponding in size to the 16 kb targeted Exosc10COINneo allele and the 

endogenous 12 kb Exosc10WT allele (Figure 10B). In contrast, the parental ES cell line 

yields only the 12 kb Exosc10WT HindIII fragment. A similar Southern blot screen 

involving NsiI digestion and an external downstream probe confirmed that the 

downstream homology was also properly recombined (not shown). An additional 

Southern blot was also performed on the HindIII digested clones using a neor specific 

probe to determine the number of copies present per genome. Since the targeting vector 

contains a single HindIII site, the number of restriction fragments detected by the neor 

probe corresponds to the number of integration events. Each of the candidate clones 

contained a single 16 kb neor specific fragment corresponding to the Exosc10COINneo 

allele (not shown), thus ruling out the presence of random non-targeted integration 

events.  
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Figure 10:  Southern blot screening of targeted Exosc10COINneo/+ ES cell clones 
(A) Schematic of the Exosc10 wild type and COINneo genomic loci. External upstream homology arm 
Southern blot probe represented by blue box. Dashed lines represent the homology arm boundaries. Exons 
1-3 represented by open boxes. Red and violet triangles represent lox2372 and loxP sites, respectively. Red 
arrow illustrates the pre-inverted T2A-FP635 terminal exon. SA, splice acceptor site. DTA, diphtheria toxin A 
cassette. H, HindIII site. 
(B) Southern blot screen of HindIII digested Exosc10COINneo/+ candidate ES cell clones using the external 
upstream homology arm probe. 16 kb and 12 kb bands correspond to the Exosc10COINneo and Exosc10WT 
alleles, respectively. P, parental ES cell clone. 
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3.4 Functional characterization of Exosc3COIN allele inversion in B cells 

 Targeted Exosc3COINneo/+ ROSA26CreERt2/+ ES cells were injected into blastocysts 

and subsequently implanted into pseudopregnant recipients to give rise to chimeric 

mice. Male chimeras displaying the greatest ES cell contribution on the basis of coat 

color were crossed with female ACTB:FLPe transgenic mice (Rodriguez et al., 2000) 

resulting in germline deletion of the FRT flanked Exosc3COINneo neor cassette. Exosc3 

heterozygous mice were intercrossed to produce wild type, heterozygous, and 

homozygous Exosc3 conditional allele genotypes on the ROSA26CreERt2/+ background. 

Mendelian ratios of each genotype were observed (not shown). 

 In order to assess the function of the Exosc3COIN allele in live cells, naive splenic 

B cells were purified from Exosc3COIN/+ and Exosc3COIN/COIN mice using anti-CD43 

magnetic bead negative isolation. Cells were treated with 4-hydroxytamoxifen (4-OHT) 

to activate CreERt2, and stimulated with lipopolysaccharide (LPS) and interleukin 4 (IL-

4) to induce CSR to IgG1. CreERt2-mediated inversion of the Exosc3COIN allele to 

Exosc3COINinv produces a defined alteration in the genomic locus that can be monitored 

by Southern blotting due to the repositioning of restriction sites. A strategy was 

developed to distinguish the WT, COIN, and COINinv alleles of Exosc3 (Figure 11A). 

Genomic DNA was prepared from B cells at 0, 2, 3, and 4 days following 4-OHT 

treatment, digested with HindIII enzyme and subjected to Southern blotting analysis. 

Prior to 4-OHT treatment (day 0), no evidence of CreERt2 activation was detected in 

either genotype as monitored by the presence of the Exosc3COINinv specific fragment 

(Figure 11B). All subsequent time points following 4-OHT addition (days 2-4) displayed a 

near complete conversion of the Exosc3COIN allele to Exosc3COINinv (Figure 11B). As 

expected, the Exosc3WT allele was insensitive to CreERt2 activation and was entirely 

absent in the Exosc3COIN/COIN derived DNA. Furthermore, the absence of unexpected 
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Exosc3-specific fragments provides evidence that the process of COIN allele inversion 

does not produce faulty chromosomal rearrangements arising from the Exosc3 locus. 
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Figure 11:  Exosc3COIN allele inversion in B cells 
(A) HindIII restriction maps of the WT, COIN, and COINinv alleles of Exosc3. The black shaded box above 
exon 3 indicates the location of the probe used for Southern blotting in (B). 
(B) Southern blot of HindIII digested genomic DNA from naive splenic B cells (day 0) or 4-hydroxytamoxifen 
(4-OHT) treated (days 2-4), LPS + IL-4 stimulated B cells from Exosc3COIN/+ and Exosc3COIN/COIN mice on 
ROSA26CreERt2/+ background. Radiolabeled probe is specific for exon 3 of Exosc3. 
 

 An important feature of the Exosc3COIN allele is induction of the GFP reporter 

upon inversion. This requires precise matching of the exon phases of Exosc3 exon 1 

and the inverted T2A-GFP terminal exon in order to maintain the translational reading 

frame required for production of GFP protein. B cells derived from Exosc3COIN/+ and 

Exosc3COIN/COIN mice carrying the ROSA26CreERt2 allele were analyzed for GFP 

fluorescence using flow cytometry. Naive B cells displayed little to no GFP fluorescence 

(Figure 12), which was consistent with the absence of detectable Exosc3COINinv allele as 

previously shown (Figure 11B). However, when cultured in the presence of 4-OHT, 

Exosc3COIN/+ and Exosc3COIN/COIN B cells exhibited robust induction of GFP fluorescence 

(Figure 12). 
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Figure 12:  Induction of GFP fluorescence upon Exosc3COIN allele inversion 
Flow cytometry analysis of GFP fluorescence in naive or 4-OHT treated, LPS + IL-4 stimulated B cell 
cultures. Indicated Exosc3 genotypes are on ROSA26CreERt2/+ background. 
 

 Most importantly, it was ascertained whether Exosc3COINinv behaves as a 

functional null allele of Exosc3. This was determined by measuring the mRNA and 

protein abundance of Exosc3 following inversion of the Exosc3COIN allele. mRNA levels 

of Exosc3 were equivalent between Exosc3COIN/+ and Exosc3COIN/COIN B cells prior to 

CreERt2 activation (Figure 13A), indicating that the Exosc3COIN allele is not 

hypomorphic. Upon treatment with 4-OHT, Exosc3 mRNA levels in Exosc3COIN/+ 

ROSA26CreERt2/+ cells are rapidly reduced yet stabilized at 50% of uninduced level 

(Figure 13A), due to the presence of a single Cre-insensitive Exosc3WT allele. In 

contrast, Exosc3COIN/COIN ROSA26CreERt2/+ cells display a ~95% reduction in Exosc3 

mRNA abundance following 4-OHT treatment (Figure 13A). Whole cell protein extracts 

were prepared from similarly treated cells and analyzed for Exosc3 protein expression 

by immunoblotting. CreERt2 activated Exosc3COIN/COIN B cells contained nearly 

undetectable levels of Exosc3 protein relative to control Exosc3WT/WT cells (Figure 13B).  
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Figure 13:  Depletion of Exosc3 mRNA and protein upon Exosc3COIN inversion  
(A) Quantitative RT-PCR time course analysis of Exosc3 mRNA expression in naive (day 0) or 4-OHT 
treated (days 2-4), LPS + IL-4 stimulated B cell cultures. Indicated Exosc3 genotypes are on 
ROSA26CreERt2/+ background. Expression levels are normalized to cyclophilin A (Ppia) and plotted relative to 
naive Exosc3COIN/+. 
(B) Western blot analysis of Exosc3 protein expression in whole cell extracts from 4-OHT treated, LPS + IL-4 
stimulated B cell cultures. Anti-actin used as loading control. WT, Exosc3WT/WT ROSA26CreERt2/+; C/C, 
Exosc3COIN/COIN ROSA26CreERt2/+. 
 

3.5 Class switch recombination in Exosc3 deficient B cells 

 Previous findings have implicated the RNA exosome complex as a key 

component of the CSR machinery in B cells. Using Exosc3 shRNA knockdown studies in 

the mouse B cell lymphoma cell line CH12F3, it was observed that RNA exosome is 

required for efficient CSR and is recruited to transcribed IgH switch sequences through 

an AID dependent mechanism (Basu et al., 2011). In an effort to confirm these previous 

results and extend them to primary B cells, CSR efficiency was analyzed in 

Exosc3COIN/COIN B cells following Cre activation. Naive IgM+ splenic B cells were purified 

from Exosc3COIN/+ and Exosc3COIN/COIN mice on the inducible ROSA26CreERt2/+ background. 

Cells were cultured in the presence of 4-OHT, and stimulated with LPS + IL-4 to induce 

isotype switching to IgG1 during the course of Exosc3 depletion. A ~75% reduction in 

IgG1 conversion was consistently observed in Exosc3COIN/COIN B cells compared to 

control Exosc3COIN/+ (Figure 14).  
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Figure 14:  Exosc3 depletion leads to class switch recombination impairment  
(A) Representative flow cytometric analysis for surface IgG1 on purified B cells treated with 4-OHT, and 
stimulated with LPS + IL-4 for 72 hours. Numbers indicate the percentage of GFP+ B220+ B cells having 
isotype switched to IgG1. 
(B) Quantification of IgG1 CSR defect. The efficiency of IgG1 conversion of Exosc3COIN/COIN B cells was 
plotted as the fraction of control Exosc3COIN/+. Indicated Exosc3 genotypes are on ROSA26CreERt2/+ 
background. Data compiled from three biological replicates. Statistical significance was determined by 
Student’s t-test. 
 

To assess whether this observed CSR impairment is due to RNA exosome 

deficiency and not the result of a deficit in other mediators of CSR, AID expression and 

IgG1 germline transcription were evaluated in Exosc3COIN/COIN B cells. AID is specifically 

induced in germinal center B cells (Muramatsu et al., 1999), and is the only identified B 

cell specific factor absolutely required during CSR and SHM (Muramatsu et al., 2000). 

Likewise, transcription and processing of germline CH segment transcripts during CSR is 

involved in promoting generation of ssDNA substrates for AID (Keim et al., 2013). The 

kinetics of Aicda (AID) mRNA accumulation was compared between CSR stimulated 

Exosc3COIN/+ and Exosc3COIN/COIN B cells using quantitative RT-PCR. Aicda induction 

followed similar kinetics between Exosc3COIN/+ and Exosc3COIN/COIN B cells (Figure 15A). 

AID protein levels were found to be comparable as well (Figure 15B). In addition, 

nascent IgG1 germline transcript levels were elevated in Exosc3COIN/COIN B cells (Figure 

15C). Therefore, differences in AID expression or CH germline transcription is unlikely to 

account for the CSR defect observed in Exosc3 deficient B cells. 
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Figure 15:  AID and IgG1 germline transcript expression in CSR stimulated Exosc3 deficient B cells 
(A) Quantitative RT-PCR time course analysis of Aicda mRNA expression in naive (day 0) or 4-OHT treated 
(days 2-4), LPS + IL-4 stimulated B cell cultures. Indicated Exosc3 genotypes are on ROSA26CreERt2/+ 
background. Expression levels are normalized to cyclophilin A (Ppia) and plotted relative to naive 
Exosc3COIN/+. 
(B) Western blot analysis of AID protein expression in whole cell extracts from 4-OHT treated, LPS + IL-4 
stimulated B cell cultures. Anti-actin used as loading control. WT, Exosc3WT/WT ROSA26CreERt2/+; C/C, 
Exosc3COIN/COIN ROSA26CreERt2/+. 
(C) Quantitative RT-PCR analysis of IgSγ1 intron expression. Primers were designed to amplify a region of 
the IgG1 germline transcript between the IgSγ1 core repeat and the CSR-specific IgG1 non-coding I exon. B 
cells from two independent pairs of littermate mice of each genotype were treated with 4-OHT and 
stimulated with LPS + IL-4. Indicated genotypes are on ROSA26CreERt2/+ background. Expression levels are 
normalized to beta-actin and plotted relative to Exosc3WT/WT. 
 

3.6 Somatic hypermutation in Exosc3 deficient B cells 

 To determine the role of RNA exosome in SHM, Exosc3COIN mice were bred onto 

a Cd19Cre/+ background. The Cd19Cre allele (Rickert et al., 1997) results in Cre 

recombinase expression specifically in the B cell lineage, beginning early in B cell 

development in the bone marrow and persisting throughout maturation in the periphery 

including the germinal center. Peyer’s patches from Exosc3COIN/+ Cd19Cre/+ and 

Exosc3COIN/COIN Cd19Cre/+ mice were harvested and germinal center B cells were 

identified as B220+ PNAhi using flow cytometry. Physiologically normal levels of germinal 

center B cells were present in Exosc3COIN/+ Cd19Cre/+ Peyer’s patches (Figure 16). In 

contrast, Exosc3COIN/COIN Cd19Cre/+ germinal center B cell numbers were markedly 

reduced (Figure 16). This could reflect a developmental arrest in Exosc3 deficient cells 

at some stage in the B lineage preceding the germinal center and/or reduced 
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persistence following Exosc3 depletion initiating at the earliest stages of development in 

the bone marrow. 
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Figure 16:  Exosc3 depletion in early B cell development leads to loss of germinal center B cells 
Flow cytometric analysis of Peyer’s patch derived germinal center B cells from Exosc3COIN/+ and 
Exosc3COIN/COIN mice on Cd19Cre/+ background were identified as B220+ PNAhi populations. The percentage 
of germinal center B cells amongst all GFP+ B220+ cells is indicated. 
 

 A more conservative approach to generating Exosc3 deficient germinal center B 

cells was subsequently adopted utilizing an AicdaCre allele (Figure 17A). This allele is 

expected to deliver Cre recombinase expression during later stages of B cell 

development, specifically during the germinal center reaction. However, there are 

existing reports of AID expression occurring in male and female germ cells (Morgan et 

al., 2004; Schreck et al., 2006), which could potentially result in Exosc3COIN inversion in a 

substantial fraction of cells including early B cell progenitors. Since Exosc3 is expressed 

in naive splenic B cells, the GFP reporter of Exosc3COIN was utilized as a lineage tracer 

in Exosc3COIN/+ AicdaCre/+ mice to determine whether Aicda expression had occurred in 

precursor cells. GFP fluorescence in B220+ B cells as well as other non-B lineage cells 

of the spleen was rare in Exosc3COIN/+ AicdaCre/+ mice (Figure 17B), suggesting that 

Aicda expression is limited in B cell precursors. However, stimulation of naive B cells 

with LPS + IL-4, conditions capable of inducing Aicda expression (Figure 15A), lead to 
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GFP production in Exosc3COIN/+ AicdaCre/+ B cells (Figure 17C), confirming that AicdaCre 

can be properly induced through physiologically relevant stimuli.  
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Figure 17:  Characterization of the AicdaCre allele 
(A) Schematic of the targeted AicdaCre allele. An open reading frame comprised of a nuclear localization 
signal fused to Cre recombinase was used to disrupt the ATG start codon in exon 1 of Aicda. Exons are 
represented as numbered boxes. 
(B) Flow cytometric analysis of AicdaCre activity (as determined by GFP fluorescence) in B220+ and B220- 
naive splenocyte populations. 
(C) AicdaCre induction in LPS + IL-4 stimulated B cell cultures. 
 

 Exosc3COIN/+ mice were subsequently bred to homozygosity on an AicdaCre/+ 

background and germinal center B cell production was assessed. Exosc3COIN/COIN 

AicdaCre/+ mice displayed robust numbers of Peyer’s patch derived germinal center B 

cells, with a moderate increase in relative cell number compared to Exosc3COIN/+ 

AicdaCre/+ mice (Figure 18A). Furthermore, this increase in germinal center B cells was 

not due to differential AicdaCre induction as both Exosc3COIN/+ and Exosc3COIN/COIN 

germinal center B cell fractions displayed very similar GFP fluorescence (Figure 18A). 

Interestingly, this observed increase in germinal center B cell accumulation phenocopies 

other AID mutant mouse models exhibiting SHM deficits (McBride et al., 2008; 

Muramatsu et al., 2000). Exosc3COIN/+ AicdaCre/+ and Exosc3COIN/COIN AicdaCre/+ germinal 

center B cells were collected and genomic DNA was prepared. To evaluate Exosc3COIN 

inversion efficiency in these samples, genomic copy number analysis was performed by 
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comparing the ratio of Exosc3COIN : GFP using quantitative PCR. Specifically, the 

Exosc3COIN amplicon was derived from a segment of Exosc3COIN that is lost during the 

process of allele inversion, namely the region between the lox2372 and loxP sites of the 

3’ lox array (Figure 6). An Exosc3COIN allele, prior to inversion would have an Exosc3COIN 

: GFP ratio of 1, whereas an inverted Exosc3COINinv allele would have an Exosc3COIN : 

GFP ratio of 0. Using this approach it was determined that ~70% of Exosc3COIN alleles 

were inverted in Exosc3COIN/COIN AicdaCre/+ germinal center B cells (Figure 18B), 

indicating the presence of a mixed population of homozygous null Exosc3COINinv/COINinv 

and heterozygous Exosc3COINinv/COIN genotypes. Allele inversion appeared complete in 

Exosc3COIN/+ AicdaCre/+ cells (Figure 18B). SHM was evaluated in these same samples by 

determining the mutation frequency within a defined 645 bp intronic sequence located 

downstream of the JH4 gene segment of the IgH locus (Jolly et al., 1997). Total mutation 

frequency in Exosc3COIN/COIN AicdaCre/+ germinal center B cells was reduced to 62% of 

control Exosc3COIN/+ AicdaCre/+ (p = 7.23E-13) (Figure 18C). This SHM defect was 

exacerbated at CG base pairs, which are enriched for direct sites of AID action. CG 

mutation frequency in Exosc3COIN/COIN AicdaCre/+ cells was reduced to 53% of control 

Exosc3COIN/+ AicdaCre/+ (p = 4.44E-16) (Figure 18C).  
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Figure 18:  Reduced somatic hypermutation efficiency in Exosc3 deficient germinal center B cells 
(A) Flow cytometric analysis of Peyer’s patch derived germinal center B cells. Exosc3COIN/+ and 
Exosc3COIN/COIN germinal center B cells on AicdaCre/+ background were identified as B220+ PNAhi 
populations. The percentage of germinal center B cells amongst all B220+ cells is indicated. 
(B) Exosc3COIN inversion efficiency in germinal center B cells as determined by Exosc3COIN : GFP genomic 
copy number analysis using quantitative PCR. 
(C) Somatic hypermutation analysis of Peyer’s patch derived germinal center B cells. Mutation frequencies 
were determined by sequencing a 645 bp intronic region downstream of the JH4 gene segment of the 
immunoglobulin heavy chain (IgH) locus. P-values were determined by proportion test. 
 

 The proliferative capacity of Exosc3COIN/+ AicdaCre/+ and Exosc3COIN/COIN AicdaCre/+ 

B cells was evaluated ex vivo by monitoring the kinetics of GFP induction in these cells 

and dilution of an intracellular fluorescent dye. When stimulated with LPS + IL-4 these 

cells produce distinct GFP+ and GFP- populations (Figure 19A). Exosc3COIN/+ AicdaCre/+ 

and Exosc3COIN/COIN AicdaCre/+ B cell cultures have comparable percentages of GFP+ cells 

after 2.5 days (Figure 19A). When assayed 24 hours later (day 3.5), a comparable 

increase in GFP+ Exosc3COIN/+ and Exosc3COIN/COIN cells was observed (Figure 19B), 

providing evidence that these cells proliferate at approximately similar rates. Additionally, 

VPD450 dye dilution assays demonstrated comparable rates of cell division between 

Exosc3COIN/+ and Exosc3COIN/COIN B cells (Figure 19C), despite a 10-fold reduction in 

Exosc3 mRNA levels in Exosc3COIN/COIN B cells (Figure 19D). 
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Figure 19:  Ex vivo proliferation analysis of Exosc3 deficient B cells 
(A) FACS analysis indicating the percentage of GFP negative (left gate) and GFP positive (right gate) B cells 
2.5 days post LPS stimulation. 
(B) Kinetic analysis of GFP positive B cell accumulation at indicated time points post LPS stimulation. 
Indicated Exosc3 genotypes are on AicdaCre/+ background. 
(C) Proliferation analysis determined by VPD450 dye dilution at 1.5 and 2.5 days post LPS stimulation. 
(D) Quantitative RT-PCR analysis of Exosc3 mRNA expression in GFP positive cells at 3.5 days post LPS 
stimulation. Expression levels are normalized to beta-actin and plotted relative to Exosc3COIN/+. 
 

It should be noted that while these differences in SHM rates are significant, they 

likely underrepresent the complete effect of RNA exosome depletion on SHM due to the 

simultaneous induction of Cre and AID expression in these cells. A temporal window 

exists between the onset of Exosc3COIN inversion and when the effects of RNA exosome 

deficiency begin to manifest, which is dependent upon Exosc3 mRNA and protein 

turnover rates. During this window AID can function in a relatively physiological setting in 

Exosc3COIN/COIN AicdaCre/+ cells. 

 

3.7 Characterization of the Exosc3 deficient B cell transcriptome 

 RNA exosome mediated degradation and/or processing of substrate RNAs is 

highly efficient within cells. In most cases substrate concentrations in wild type cells are 

constrained to levels approaching the detections limits of conventional methodologies. 

Typically RNA exosome substrates are revealed following perturbation of RNA exosome 

function. Prior analyses of mammalian RNA exosome substrates have relied upon 

shRNA mediated knockdown of RNA exosome subunits (Flynn et al., 2011; Preker et al., 

2008). However, shRNA approaches can be confounded by indeterminate combinations 

of incomplete knockdown of the intended target gene as well as partial knockdown of 

unintended genes. Gene targeting approaches implementing well defined genetic 

changes often circumvent these inherent limitations of shRNA. Therefore, we sought to 

leverage the Exosc3COIN mouse model as a novel tool providing for a more specific and 

fuller characterization of RNA exosome substrate RNA in mammalian cells. In addition, 

we hypothesized that a genome-wide transcriptome analysis of Exosc3 deficient B cells 
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uncovering RNA exosome substrates, and by extension sites of RNA exosome activity, 

could provide additional insights into the nature of AID target genes during Ig 

diversification. 

 RNA from Exosc3 deficient B cells reported in the CSR studies above were used 

for genome-wide transcriptome analyses. Specifically, Exosc3COIN/COIN along with control 

Exosc3COIN/+ or Exosc3WT/WT B cells on a ROSA26CreERt2/+ background were treated with 

4-OHT and stimulated with LPS + IL-4 for 72 hours. Total RNA was extracted from GFP+ 

B cells (for Exosc3COIN genotypes), depleted of ribosomal RNA, and processed for next-

gen shotgun sequencing (RNA-seq). In short, resulting RNA reads were mapped onto 

the mouse mm9 reference genome using the TopHat algorithm (Trapnell et al., 2009) 

and whole transcriptome assembly was performed with Cufflinks (Trapnell et al., 2010). 

To validate this RNA-seq data pipeline we used the Integrative Genomics Viewer (IGV) 

browser (Robinson et al., 2011) to visually assess the mapping of RNA reads to the 

Exosc3 locus. The Exosc3COIN inversion scheme predicts a very distinctive Exosc3 

expression signature whereby allele inversion results in loss of expression 

corresponding to exons 2-4, while expression of exon 1 remains unperturbed (Figure 6). 

The predicted pattern of Exosc3 exon expression was observed in the mapping of 

Exosc3COIN/COIN RNA-seq reads, as visualized through the IGV browser (Figure 20). This 

mapping data strongly supports the Exosc3COIN inversion scheme that was initially 

designed. In turn, the specific exclusion of Exosc3COIN/COIN RNA-seq reads mapping to 

Exosc3 exons 2-4 served as a critical internal control towards validating our 

bioinformatics work scheme. 
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Figure 20:  RNA-seq confirms mechanism of Exosc3COIN inversion leading to ablation of Exosc3 
expression 
IGV profile of RNA-seq mapped reads at the Exosc3 locus from 4-OHT treated, LPS + IL-4 stimulated B cell 
cultures. Exosc3 exons 1-4 are indicated from left to right as black rectangles. Indicated Exosc3 genotypes 
are on ROSA26CreRTt2/+ background. 
 

 In order to uncover broad, fundamental changes in transcriptional regulation 

resulting from RNA exosome deficiency, we performed differential expression analysis 

between Exosc3WT/WT and Exosc3COIN/COIN transcriptomes according to transcript families 

(Figure 21). A list of ~25,000 annotated mouse transcripts including mRNAs, lncRNAs, 

and snoRNAs was assembled from available databases (Guttman et al., 2009; Karolchik 

et al., 2014; Yoshihama et al., 2013). Differential expression analysis confirmed that 

global levels of certain ncRNA species were significantly upregulated in the 

Exosc3COIN/COIN transcriptome. snoRNA, which have been previously reported as targets 

of RNA exosome in yeast (Allmang et al., 1999a), were indeed upregulated in Exosc3 

deficient B cells (p = 8E-10) (Figure 21). Another class of ncRNA upregulated in Exosc3 

deficient B cells, not previously described as RNA exosome targets, was lncRNA (p = 

2E-27) (Figure 21). Intriguingly, global mRNA levels were not upregulated in the 

Exosc3COIN/COIN transcriptome (Figure 21). Early reports provided evidence that mature 

mRNAs can be degraded through the combined actions of decapping coupled 5’-3’ Xrn1 

mediated degradation (Hsu and Stevens, 1993) in conjunction with RNA exosome 

mediated 3’-5’ degradation (Anderson and Parker, 1998). These two pathways of mRNA 

degradation are partially redundant (Schaeffer et al., 2010). However, the relative 
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stabilization of specific mRNAs in mutants of Xrn1 or cytoplasmic RNA exosome function 

suggest that decapping coupled 5’-3’ mediated degradation is the dominant pathway of 

mRNA turnover (Schaeffer et al., 2010). However, it is possible that RNA exosome 

function may be limited to specific mRNA types. A subset of mRNAs with particularly 

short half-lifes such as those possessing 3’UTR AU-rich elements (AREs) may be 

specifically tagged for rapid RNA exosome mediated degradation (Chen et al., 2001). 

Consistent with our data indicating a lack mRNA stabilization in the Exosc3COIN/COIN 

transcriptome (Figure 21), recent reports indicate that mammalian DIS3L2, a homolog of 

DIS3, functions in cytoplasmic 3’-5’ degradation of mRNA independently of RNA 

exosome (Lubas et al., 2013; Malecki et al., 2013).  
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Figure 21:  Differential expression analysis of transcript classes between Exosc3COIN/COIN and 
Exosc3WT/WT 
The horizontal bar for each transcript type represents the 95% confidence interval (calculated by Student’s t-
distribution after a Bonferroni adjustment) of a base-2 logarithmic fold change between Exosc3COIN/COIN and 
Exosc3WT/WT RPKM. Circles indicate mean values. Red and green bars indicate transcript types expressed 
at significantly higher or lower levels within the Exosc3COIN/COIN transcriptome, respectively. 
 

 Transcripts mapping to regions upstream of annotated coding gene TSSs 

constituted the most highly upregulated RNA class observed in the Exosc3COIN/COIN B cell 

transcriptome (Figure 21). These TSS proximal transcripts could be separated into two 

classes according to their sequence overlap with cognate downstream mRNA. 

Ungapped TSS-RNAs were defined as TSS upstream transcripts that’s assembled RNA-
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seq reads were found to overlap with cognate downstream coding transcripts. In 

contrast, gapped upstream TSS-RNAs do not overlap with cognate downstream coding 

transcripts and thereby display distinct regions of non-overlap between TSS-RNA and 

coding transcripts during assembly of mapped RNA-seq reads. We determined that 

approximately 3,144 genes expressed detectable levels of TSS upstream transcripts in 

Exosc3 wild type and Exosc3 deficient B cells collectively. The bioinformatic analysis 

revealed 1,127 gapped and 832 ungapped TSS-RNA transcripts displaying log2 RPKM 

fold changes greater than 1 in Exosc3 deficient B cells compared to Exosc3 wild type B 

cells. This group of RNA exosome regulated transcripts was collectively labeled as 

“xTSS-RNA”. In Exosc3 wild type B cells approximately 70% of xTSS-RNA loci display 

trace levels of expression as indicated by RPKM values less than 1 (Figure 22A). In 

contrast, upwards of 80% of xTSS-RNA loci displayed RPKM values greater than 1 in 

Exosc3 deficient B cells, indicating significant levels of expression (Figure 22A). These 

data indicate that RNA exosome deficiency leads to a global stabilization of xTSS-RNA. 

Incidentally, Hspa9 is illustrative of a locus containing two distinct RNA exosome 

substrates, namely an upstream xTSS-RNA transcript and an intragenic snoRNA 

homolog of human SNORD63 (Figure 22B). In addition, xTSS-RNA and cognate 

downstream mRNA expression levels correlated poorly (Figure 22C), suggesting that 

xTSS-RNA and mRNA transcripts may be regulated independently. This result is 

consistent with the observed lack of mRNA stabilization genome-wide at coding genes in 

the Exosc3COIN/COIN B cell transcriptome (Figure 21). 
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Figure 22:  Stabilization of xTSS-RNA in Exosc3 deficient B cells 
(A) Distribution of xTSS-RNA RPKM expression levels in Exosc3WT/WT and Exosc3COIN/COIN B cells. 
(B) Representative genomic locus displaying both xTSS-RNA and snoRNA upregulation. IGV profile of RNA-
seq mapped reads at the Hspa9 locus (20 kb window). Red arrow indicates the Hspa9 xTSS-RNA. 
SNORD63, a snoRNA expressed within the Hspa9 locus, is indicated. 
(C) Scatter plot of xTSS-RNA and cognate mRNA expression levels in Exosc3 deficient B cells at individual 
loci indicating weak correlation. Pearson correlation coefficient is indicated.  
 

 Compiling genome wide expression data centered 1 kilobase upstream and 

downstream to the TSS of coding genes illustrates the steady state accumulation of 

xTSS-RNA in the TSS upstream region in Exosc3 deficient B cells (Figure 23A). In such 

global gene expression analyses, xTSS-RNA as a family of transcripts are nearly 

undetectable in wild type B cells in the steady state (Figure 23A). Average transcript 

length for xTSS-RNAs in Exosc3 deficient B cells was approximately 700 nucleotides 

(Figure 23B,C). The Exosc3COIN/COIN transcriptome was used to guide the annotation of 

individual xTSS-RNA transcripts since their stabilization in Exosc3COIN/COIN permitted a 

more robust determination of their transcription start and end sites. These annotations 

were then applied onto the Exosc3WT/WT transcriptome. Although expressed at far lower 
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levels in Exosc3WT/WT, assembly of RNA-seq reads at xTSS-RNA loci revealed an 

average xTSS-RNA transcript length of 600 nucleotides in Exosc3 wild type B cells 

(Figure 23B). The observed 100 nucleotide difference in xTSS-RNA length in wild type 

and Exosc3 deficient cells, while minimal, proved to be statistically significant (p = 2.3E-

5) (Figure 23B) and may indicate impaired transcription termination in the absence of 

RNA exosome coupled xTSS-RNA degradation. The distribution of observed xTSS-RNA 

lengths in Exosc3COIN/COIN was limited to less than 1.5 kb (Figure 23C). Characterization 

of the gap, or non-overlapping sequence between xTSS-RNA and cognate downstream 

mRNA, revealed a distribution of gap lengths largely between 100 and 500 bp (Figure 

23D). This result strongly suggested that xTSS-RNAs and mRNAs possess distinct 

TSSs at individual loci. 
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Figure 23:  Characterization of xTSS-RNA distribution around TSSs 
(A) Genome-wide expression level analysis 1 kb upstream and downstream of TSS region for expressed 
protein coding genes. Coding genes with RPKM > 1 were classified as expressed. Analysis was restricted to 
coding genes that do not have any known genes within a 4 kb upstream boundary. Indicated genotypes are 
on ROSA26CreERt2/+ background. 
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(B) Boxplot analysis indicating the length of gapped xTSS-RNAs in wild type and Exosc3 deficient primary B 
cell cultures. Data represent median values compiled from two biological replicates. Whiskers represent 
99% of data values. P-value determined by Wilcoxon rank sum test. 
(C) The distribution of observed lengths for all gapped xTSS-RNAs in Exosc3 deficient B cells. Data 
compiled from two biological replicates. 
(D) The distribution of the lengths of the gap between xTSS-RNA and cognate coding transcript. Data 
compiled from two biological replicates. 
 

 Strand specific RNA sequencing was performed on Exosc3 wild type and Exosc3 

deficient B cells in order to further characterize xTSS-RNAs for their transcriptional 

orientation. xTSS-RNA transcription could occur either divergently or in tandem relative 

to cognate coding transcripts. Genome-wide mapping of stranded RNA-seq reads 

located within 2 kb upstream and downstream of coding gene TSSs revealed that the 

great majority of TSS upstream transcripts observed in Exosc3WT/WT and Exosc3COIN/COIN 

cells are antisense relative to cognate mRNA transcripts (Figure 24). Therefore, xTSS-

RNA and mRNA transcript pairs are largely transcribed in a divergent orientation.  
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Figure 24:  Antisense nature of xTSS-RNA 
Strand specific distribution of B cell RNA-seq mapped reads 2 kb upstream and downstream of expressed 
coding gene TSSs. Indicated genotypes are on ROSA26CreERt2/+ background and cells were treated with 4-
OHT and stimulated with LPS and IL-4. Data compiled from two biological replicates. 
 

 Transcription profiling reproducibility in Exosc3WT/WT and Exosc3COIN/COIN B cells 

was directly examined through statistical means. Independent biological replicates 

involving B cells derived from separate littermate pairs of Exosc3WT/WT and 

Exosc3COIN/COIN mice on a ROSA26CreERt2/+ background were treated with 4-OHT and 

stimulated with LPS + IL-4. Live cells were specifically isolated using flow cytometry and 
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RNA was processed for RNA sequencing as previously described. The two independent 

sets of gene expression data for both Exosc3WT/WT and Exosc3COIN/COIN B cells were 

plotted against one another. This analysis revealed a high degree of statistical 

correlation between replicate data sets for both Exosc3WT/WT and Exosc3COIN/COIN B cells 

(Figure 25), thus highlighting the robustness of the transcriptional phenotype observed in 

Exosc3 deficient cells. 
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Figure 25:  Replicate analysis of Exosc3WT/WT and Exosc3COIN/COIN genome-wide transcription profiling 
Scatter plots indicating expression levels of individual genes in Exosc3WT/WT and Exosc3COIN/COIN B cells 
treated with 4-OHT and stimulated with LPS + IL-4 from two separate littermate pairs. B cells were purified, 
cultured, FACS sorted, and RNA was purified and sequenced by RNA-seq all independently between the 
two experiments. Indicated genotypes are on ROSA26CreERt2/+ background. Pearson correlation is indicated. 
 

3.8 RNA exosome substrate ncRNAs mark AID dependent B cell translocation 

hotspots genome-wide 

 Although genome-wide transcriptome analyses reveal a stark accumulation of 

xTSS-RNA transcripts in Exosc3 deficient B cells, this phenotype is not universally 

observed across all individual genes. In fact many genes display little to no xTSS-RNA 

accumulation in Exosc3COIN/COIN B cells. Such loci include the genes for beta-actin (Actb), 

interleukin-2 receptor common gamma chain (Il2rg), and uracil DNA glycosylase (Ung) 

(Figure 26) to name a few. This data suggests that differential RNA exosome recruitment 

may occur at various RNAP II dependent promoters. Since both RNA exosome and AID 

utilize co-transcriptional mechanisms of RNA degradation and DNA deamination, 
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respectively, we hypothesized whether RNA exosome activity could be detected at AID 

target genes in the form of xTSS-RNA. Several previously reported AID target genes, 

including IgG1, Myc, Cd83, and Pim1 were observed to accumulate significant levels of 

xTSS-RNA in Exosc3COIN/COIN B cells (Figure 27). This indicates that RNA exosome is 

differentially recruited to the promoter proximal region for a subset of genes, of which 

includes AID target genes IgG1, Myc, Cd83, and Pim1. 

               

Il2rg!

Exosc3WT/WT!

Exosc3COIN/COIN!

Exosc3WT/WT!

Exosc3COIN/COIN!

Ung!

Exosc3WT/WT!

Exosc3COIN/COIN!

Actb!

A 

B 

C 

 
 
Figure 26:  Absence of xTSS-RNA at three representative loci 
(A-C) IGV profile of RNA-seq mapped reads at the beta actin locus (A) (Actb; 7.6 kb window), Il2rg locus (B) 
(5.4 kb window) and Ung locus (C) (12 kb window). Direction of transcription at each locus is from left to 
right. Annotated exons are represented by blue rectangles. Indicated genotypes are on ROSA26CreERt2/+ 
background and B cell cultures were treated with 4-OHT and stimulated with LPS + IL-4. 
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Figure 27:  RNA exosome activity at AID target gene IgG1, Myc, Cd83, and Pim1 promoter proximal 
regions 
(A) Strand specific RNA-seq mapped reads for Exosc3WT/WT and Exosc3COIN/COIN 2 kb upstream and 
downstream of the CSR-specific IgG1 germline transcript TSS. 
(B) Quantification of IgG1 xTSS-RNA expression levels from RNA-seq derived RPKM values. 
(C) IGV profile of RNA-seq mapped reads at a 9 kb window containing the Myc locus. Red arrows 
highlighting Myc xTSS-RNA reads. 
(D) Quantification of Myc xTSS-RNA expression levels from RNA-seq derived RPKM values. 
(E) IGV profile of RNA-seq mapped reads at a 22 kb window containing the Cd83 locus. Red arrows 
highlighting Cd83 xTSS-RNA reads. 
(F) Quantification of Cd83 xTSS-RNA expression levels from RNA-seq derived RPKM values. 
(G) IGV profile of RNA-seq mapped reads at a 9 kb window containing the Pim1 locus. Red arrows 
highlighting Pim1 xTSS-RNA reads. 
(H) Quantification of Pim1 xTSS-RNA expression levels from RNA-seq derived RPKM values. 
All indicated genotypes are on ROSA26CreERt2/+ background and purified B cell cultures were treated with 4-
OHT and stimulated with LPS + IL-4. 
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 As described earlier, TSSs have been implicated in genome-wide studies of AID 

dependent chromosomal translocations in mouse B cells (Chiarle et al., 2011; Klein et 

al., 2011b). These studies revealed that while AID dependent chromosomal 

translocations occur throughout the genome, their frequency is elevated within TSS 

proximal regions of active genes. In comparison to silent chromatin, actively transcribed 

regions of the genome are likely to generate more frequent ssDNA intermediates that 

may serve as substrates of AID. While the generally more accessible nature of actively 

transcribed chromatin is likely to contribute somewhat to the enrichment of chromosomal 

translocations to TSS proximal regions, it is likely that this effect is limited and possibly 

mediated through stochastic interactions between AID and chromatin. In support of this 

notion is the observation that many heavily transcribed genes are not involved as 

partners of AID dependent chromosomal translocations in genome-wide studies (Chiarle 

et al., 2011; Klein et al., 2011b). Similarly, analysis of the Exosc3 deficient B cell 

transcriptome revealed disconnects at many genes between degrees of xTSS-RNA 

accumulation and downstream mRNA expression levels (Figure 22C). For instance, 

IgG1 and Actb constitute two of the most strongly transcribed loci in stimulated B cells. 

However, IgG1 revealed a strong accumulation of TSS proximal xTSS-RNA (Figure 

27A), whereas Actb displayed negligible levels of xTSS-RNA expression (Figure 26A). 

We therefore compared a list of 1,774 genes displaying robust xTSS-RNA expression 

with 88 genes previously reported to undergo recurrent AID dependent chromosomal 

translocations in stimulated B cells (Klein et al., 2011b). Despite representing less than 

10% of annotated coding genes in the mouse genome, the xTSS-RNA gene list 

overlapped with nearly half of reported AID dependent translocation hotspots (p < 

0.0001) (Figure 28A). Specifically, 40 genes were identified as recurrent translocation 

sites also containing significant xTSS-RNA expression (Figure 28A). In order to further 

validate this correlation a statistical bootstrapping analysis was performed. Using our B 
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cell transcriptome data we mathematically modeled 10,000 distinct sets of 88 genes 

containing similar transcription levels as the 88 translocation hotspot genes set. This 

analysis revealed that random chance on average would select only 15 genes from the 

xTSS-RNA gene list (Figure 28B). Therefore, the overlap of 40 genes from the 

translocation hotspot list within the xTSS-RNA gene list represents a valid enrichment 

correlation (p = 4.6E-10) (Figure 28B) between xTSS-RNA expression and translocation 

recurrence.   
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Figure 28:  xTSS-RNA enrichment at sites of recurrent AID dependent chromosomal translocations  
(A) Venn diagram of genes with xTSS-RNA transcripts (pink), genes that undergo recurrent AID dependent 
chromosomal translocations (green) (Klein et al., 2011b) and genes undergoing somatic hypermutation in 
the mouse B cell genome (brown) (Liu et al., 2008). A set of 40 genes undergo recurrent AID dependent 
chromosomal translocations and express xTSS-RNAs, of which 5 (Myc, Cd79b, Cd83, Pax5, and Pim1) 
have been shown to be directly hypermutated in mouse B cells. P-value of overlap was determined by 
Fisher’s exact test. 
(B) Statistical bootstrapping analysis used to determine the probability of identification of 40 random xTSS-
RNA expressing genes solely based on expression level. Ten thousand control gene lists were obtained 
each containing 88 genes sharing similar expression profiles with the 88 genes contained in the 
translocation hotspots list. By overlapping random control groups and xTSS-RNA gene list, we simulate the 
distribution of number of genes contained in the xTSS-RNA gene list. The binomial fitting (red curve) 
illustrates the distribution of randomly overlapped genes between the control and xTSS-RNA gene sets. P-
value was determined by binomial distribution. 
 

 Comparing xTSS-RNA expression between Exosc3WT/WT and Exosc3COIN/COIN B 

cells specifically for the 40 genes found to contain xTSS-RNA expression and undergo 

recurrent chromosomal translocations confirmed that these genes accumulate 

significantly higher levels of xTSS-RNA upon Exosc3 ablation (Figure 29A). In contrast, 

mRNA levels at these 40 genes collectively were nearly identical between Exosc3WT/WT 
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and Exosc3COIN/COIN cells (Figure 29B). This indicates that the observed increase in 

xTSS-RNA expression at recurrent translocation sites in Exosc3COIN/COIN cells is in fact 

due to loss of RNA exosome function and not simply owing to greater overall 

transcription at these sites. If RNA exosome activity plays a functional role in the 

generation of chromosomal translocations, one expectation would be that recurrent 

translocation sites should be contained amongst the highest xTSS-RNA expressing 

genes. Indeed recurrent translocation sites were observed to accumulate significantly 

more xTSS-RNA even in comparison to all other xTSS-RNA expressing genes in 

Exosc3COIN/COIN B cells (Figure 29C).  
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Figure 29:  Recurrent translocations sites display greater TSS proximal RNA exosome activity  
(A) Quantification of xTSS-RNA expression at 40 recurrent translocation sites overlapping with xTSS-RNA 
gene list from Figure 28A. 
(B) Quantification of mRNA expression at 40 recurrent translocation sites overlapping with xTSS-RNA gene 
list from Figure 28A. 
(C) Enrichment of xTSS-RNA expression amongst translocation hotspots in Exosc3 deficient B cells. 
Translocation hotspot gene set is comprised of the 40 genes identified in Figure 28A that undergo recurrent 
AID mediated translocations and display xTSS-RNA accumulation in Exosc3COIN/COIN B cells. The “other 
xTSS-RNA genes” set is comprised of 1,694 genes expressing both xTSS-RNA and cognate mRNA, but 
have not been reported as recurrent translocation sites in B cells. 
Boxplots represent median values compiled from two biological replicates. Whiskers represent 99% of data 
values. P-values were determined by Wilcoxon rank sum test. 
 

 In addition, overlapping the xTSS-RNA gene list with a limited set of 23 genes 

previously shown to undergo hypermutation in mouse germinal center B cells (Liu et al., 

2008) revealed a similar enrichment to that observed with the translocation hotspot list. 

Specifically, 10 of the 23 reported hypermutation loci (43%) were present in the xTSS-
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RNA gene list (p < 0.0001) (Figure 28A). Overlapping the xTSS-RNA, translocation 

hotspots, and hypermutation gene lists revealed a subset of genes consisting of Myc, 

Pim1, Pax5, Cd79b, and Cd83 (Figure 28A). Interestingly, somatic mutations in each of 

these genes have been reported in human subjects with diffuse large B-cell lymphoma 

(Lohr et al., 2012; Pasqualucci et al., 2011). This analysis has revealed a significant 

enrichment of xTSS-RNA expression at genomic sites undergoing hypermutation and 

chromosomal translocations, two distinct types of AID induced DNA damage in B cells, 

suggesting that xTSS-RNA expression and/or RNA exosome function may be intimately 

involved in the targeting of AID activity.  

 Translocation breakpoints in AID expressing B cells (Klein et al., 2011b) were 

mapped onto the mouse genome according to a previously described bioinformatic 

workflow (Oliveira et al., 2012). This approach provided for a higher resolution analysis 

by allowing us to visualize sites of Exosc3 sensitive transcription and translocations for 

individual genes. One of the most well studied B cell translocation sites owing to its 

strong oncogenic potential and causative role in Burkitt’s lymphoma is Myc. As 

expected, Myc is included in the 88 genes reported to undergo recurrent AID dependent 

chromosomal translocations in B cells (Klein et al., 2011b). In addition, Myc was found to 

express significant levels of xTSS-RNA in Exosc3 deficient B cells (Figure 27C,D) and 

as such is included amongst the 40 genes overlapping between the xTSS-RNA and 

translocation hotspot gene sets depicted in Figure 28A. However, the question remained 

as to where the chromosomal breakpoints were specifically occurring and whether they 

corresponded with sites of RNA exosome function. A closer examination of the Myc 

locus revealed two translocation hotspots in B cells. One was located upstream of the 

Myc TSS. The other translocation hotspot was located within the first intron of Myc. 

Strikingly, it was observed that both of these Myc translocation hotspots precisely 

overlapped with areas of Exosc3 sensitive antisense transcription (Figure 30). The Myc 
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TSS upstream translocation site corresponds with the Myc xTSS-RNA transcript while 

the intron 1 translocation site maps to a genic antisense RNA exosome substrate 

transcript. This indicates that antisense transcription initiation is likely occurring both 

upstream of the canonical Myc coding transcript TSS and also downstream within the 

gene body. As these Myc antisense transcripts appear less than 1 kb in length and fail to 

accumulate in wild type B cells (Figure 30), it is likely that they are subjected to early 

transcription termination coupled to co-transcriptional RNA exosome mediated 

degradation. 
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Figure 30:  Myc translocation breakpoints at sites of RNA exosome regulated xTSS-RNA and genic 
antisense transcription 
Mouse B cell translocation counts (Klein et al., 2011b) indicated on the positive y-axis. Myc antisense RNA-
seq reads derived from Exosc3WT/WT or Exosc3COIN/COIN B cell transcriptomes indicated on the negative y-
axis. The positions of Myc exons 1-3 relative to the TSS are represented as grey boxes. Indicated 
genotypes are on ROSA26CreERt2/+ background and cells were treated with 4-OHT and stimulated with LPS 
and IL-4. Data compiled from two biological replicates. 
 

 The stabilization of genic antisense RNA exosome substrate transcripts at Myc 

led us to ask if antisense transcription may be preferentially targeted for degradation by 

RNA exosome. Using strand specific RNA-seq data sets we compared either sense or 

antisense transcript levels for individual annotated loci between Exosc3WT/WT and 

Exosc3COIN/COIN. On a genome-wide scale, sense transcript levels are mildly increased 

between Exosc3WT/WT and Exosc3COIN/COIN B cells (Figure 31A). In contrast, we observed 

a much stronger shift towards greater antisense RNA levels at the vast majority of loci in 
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Exosc3 deficient cells (Figure 31B). In light of this data, we examined the relationship 

between antisense transcript levels and chromosomal translocation frequency at 

translocation hotspot genes. The 88 translocation hotspots were computationally 

deconstructed into approximately 4 million genomic positions, which were then grouped 

into 13 tiers corresponding to increasing antisense expression. This approach provided a 

more accurate analysis of the relationship between antisense transcription and 

chromosome break frequency by allowing antisense rich and poor regions located within 

individual genes to be treated independently. Using this method we observed that the 

probability of detecting a translocation junction (TC-Seq read) was positively correlated 

with increasing antisense transcript levels (Figure 31C). 
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Figure 31:  Genome-wide RNA exosome targeting of antisense transcripts 
(A-B) Scatter plot of sense (A) and antisense (B) transcript expression at annotated loci in Exosc3WT/WT and 
Exosc3COIN/COIN B cell transcriptomes. Indicated genotypes are on ROSA26CreERt2/+ background and cells 
were treated with 4-OHT and stimulated with LPS and IL-4. Data compiled from two biological replicates. 
(C) Correlation between chromosomal breakpoint occurrence and antisense transcript expression levels in 
Exosc3 deficient B cells at translocation hotspot genes. Approximately 4 x106 genomic positions were 
distributed across 13 bins according to antisense RNA expression levels. A negative binomial distribution 
was applied to each region to estimate the probability of observing a translocation junction. Error bars 
indicate the 95% confidence interval of parameter estimation. Blue line represents the robust fit of expected 
values. Pearson correlation coefficient (PCC) is indicated. 
 

 This observation of RNA exosome regulated antisense transcription within the 

gene body of Myc corresponding to a translocation hotspot, prompted the question of 

whether additional recurrent translocation sites exhibit RNA exosome surveillance. 

Specifically, we evaluated if any of the 48 translocation hotspots that do not display 
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significant accumulation of xTSS-RNA upon Exosc3 ablation (Figure 28A) may in fact be 

regulated by RNA exosome at sites distal to their TSSs. Strikingly, many translocation 

hotspot genes devoid of TSS proximal RNA exosome regulation, as defined here by lack 

of xTSS-RNA accumulation, were indeed observed to contain short antisense transcripts 

stabilized in Exosc3COIN/COIN cells at various sites along the gene body. Included amongst 

these translocation hotspot genes with primarily distal antisense RNA exosome 

regulation were Apobec3, Gimap5, Ly6a, and Ppp3cc (Figure 32). Thus, cryptic 

antisense transcription initiation downstream of canonical TSSs may serve as an 

additional mechanism of RNA exosome mediated recruitment of AID onto 

transcriptionally active chromatin.  
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Figure 32:  Distal RNA exosome substrate antisense transcripts at sites of recurrent chromosomal 
translocations at xTSS-RNA deficient loci 
(A-D) Apobec3 (A), Gimap5 (B), Ly6a (C), and Ppp3cc (D) represent four previously characterized AID 
dependent translocation hotspot loci in mouse B cells (Klein et al., 2011b), which we observe as devoid of 
TSS proximal xTSS-RNA transcription but do exhibit distal RNA exosome targeted genic antisense 
transcription. Mouse B cell translocation counts (Klein et al., 2011b) indicated on the positive y-axis. 
Exosc3WT/WT or Exosc3COIN/COIN B cell antisense RNA-seq reads located on the negative y-axis. Indicated 
genotypes are on ROSA26CreERt2/+ background and cells were treated with 4-OHT and stimulated with LPS 
and IL-4. Data compiled from two biological replicates. 
 

 In addition to sites undergoing recurrent chromosomal translocations, we looked 

to see whether the association between antisense transcription and breakpoints could 
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be extended genome-wide. A collection of 28,947 annotated genomic loci devoid of 

known overlapping antisense transcripts were evaluated in the Exosc3COIN/COIN 

transcriptome for translocation junctions. Similar to what was observed at translocation 

hotspots (Figure 31C), the occurrence of chromosomal breakpoints exhibited a positive 

linear relationship with respect to antisense transcription levels in B cells genome-wide 

(Figure 33). Furthermore, this analysis revealed a significantly stronger correlation 

between translocation occurrence and antisense transcription, in comparison to sense 

transcription (Figure 33). This result is consistent with the observation of greater 

susceptibility of antisense transcripts towards RNA exosome mediated degradation 

(Figure 31A,B) and supports a model in which genomic regions exhibiting greater RNA 

exosome activity are more prone to acquire DNA damage resulting from misappropriated 

AID activity. 
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Figure 33:  Genome-wide association between antisense transcription and chromosomal 
translocation in B cells 
(A-B) Probability of translocation breakpoint occurrence in the B cell genome with respect to sense (A) or 
antisense (B) transcription levels. Genomic regions comprising 28,947 annotated loci were sorted across 46 
expression tiers. A negative binomial distribution was applied to each region to estimate the probability of 
observing a translocation junction. Blue line represents the robust fit of expected values. Pearson correlation 
coefficient (PCC) is indicated. 
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3.9 RNA exosome facilitates targeting of AID to divergently transcribed 

promoters 

 As shown earlier, the Exosc3 deficient B cell transcriptome data indicated that 

while many genes accumulate antisense xTSS-RNA in their promoter upstream region, 

many other genes exhibited little to no detectable accumulation of xTSS-RNA. This 

implies that collectively mammalian promoters may exhibit varying degrees of divergent 

transcription. To examine this further RNA exosome occupancy at divergent and non-

divergent gene promoters was assessed using chromatin immunoprecipitation of RRP40 

(Exosc3). AID targeted divergent promoters of Pim1, Pax5, Myc, Cd79b, and Cd83 

exhibited significant enrichment of RRP40 over background in stimulated wild type B 

cells (Figure 34A). Consistent with a nearly complete loss of RRP40 protein in 

Exosc3COIN/COIN cells (Figure 13B), little to no RRP40 occupancy could be observed at 

these divergent promoters in Exosc3COIN/COIN (Figure 34A). In addition, transcriptionally 

active non-divergent promoters comprised of Cmas, Atp13a2, March2, and Fam107b 

displayed little RRP40 recruitment in either Exosc3WT/WT or Exosc3COIN/COIN cells (Figure 

34A). This data strongly suggests that the accumulation of xTSS-RNA at AID targeted 

divergently transcribed promoters is directly due to the loss of promoter proximal RNA 

exosome function in Exosc3 deficient cells. 

 Since our data provides evidence of differential RNA exosome recruitment to 

mammalian promoter regions, we considered the possibility that this may also translate 

into differences in genomic AID targeting via its association with RNA exosome. Guided 

by this, as well as previous reports indicating that chromatin associated AID is 

preferentially localized over active TSSs (Yamane et al., 2011), we explored whether 

AID might be preferentially targeted to divergently transcribed promoters through an 

RNA exosome dependent mechanism. Chromatin immunoprecipitation of AID in 

stimulated Exosc3WT/WT or Exosc3COIN/COIN B cells indicated that AID targeting to 
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divergent Pim1, Pax5, Myc, Cd79b, and Cd83 promoters was significantly impaired upon 

Exosc3 ablation (Figure 34B). These differences in AID targeting efficiency cannot be 

explained simply through differences in AID expression as stimulated Exosc3WT/WT and 

Exosc3COIN/COIN B cells express comparable levels of AID (Figure 15A,B). As previous 

studies have indicated that AID activity at target genes can be quantitatively influenced 

by corresponding changes in transcription initiation rates (Bachl et al., 2001; Lee et al., 

2001), we compared histone H3 lysine 4 trimethyl (H3K4me3) modification levels at AID 

targeted divergent promoter regions. H3K4me3 chromatin marks are predominantly 

localized to promoter regions actively undergoing transcription initiation (Barski et al., 

2007; Guenther et al., 2007). Immunoprecipitation of H3K4me3 indicated that this 

epigenetic marker of transcription initiation was similar in abundance between 

Exosc3WT/WT and Exosc3COIN/COIN B cells at divergently transcribed promoters of Pim1, 

Pax5, Myc, Cd79b, and Cd83 (Figure 34C). As such, impaired AID targeting to divergent 

promoter regions in Exosc3 deficient B cells is likely not due to significant changes in 

transcription initiation. Furthermore, in contrast to divergently transcribed promoter 

regions, AID occupancy was nearly undetectable at non-divergent promoters of Cmas, 

Atp13a2, March2, and Fam107b in both wild type and Exosc3 deficient B cells (not 

shown). Collectively, these data support a model in which RNA exosome is preferentially 

recruited to divergently transcribed promoter regions relative to non-divergent promoters, 

and consequently resulting in differential AID targeting efficiencies between such 

genomic regions.  
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Figure 34:  RNA exosome facilitates recruitment of AID to divergently transcribed promoters  
(A) RRP40 (Exosc3) occupancy at divergent and non-divergent promoters. B cells of indicated genotypes 
are on ROSA26CreERt2/+ background, treated with 4-OHT and stimulated with LPS + IL-4. Chromatin 
immunoprecipitation (ChIP) was performed using anti-RRP40 (Genway) or control rabbit IgG. Quantitative 
PCR was performed using primers specific for sequences upstream and proximal to the TSS of the indicated 
genes. Data are plotted as mean values of RRP40 enrichment relative to input from three technical 
replicates. Error bars represent standard deviation. 
(B) Exosc3 dependent AID targeting to divergent promoters. ChIP was performed using anti-AID or control 
rabbit IgG. B cell culture and quantitative PCR as described in (A). Data are plotted as fold change of ChIP 
product normalized to Exosc3COIN/COIN. *P < 0.05, **P < 0.01 (log2 transformation of Z-test). 
(C) H3K4me3 histone marks are maintained in Exosc3 deficient B cells at sites normally targeted by AID. 
ChIP was performed with anti-H3K4me3 (Millipore) or control rabbit IgG. B cell culture and quantitative PCR 
as described in (A). Data are plotted as fold change of ChIP product normalized to Exosc3COIN/COIN. ns, not 
significant (t-test). 
 

 To evaluate whether divergent xTSS-RNA expressing regions contain sequence 

determinants that facilitate recruitment of AID, we utilized CRISPR/Cas9 gene editing to 

delete these corresponding regions for AID target genes Cd83 and Pim1 (Figure 35A,B). 

Homozygous deleted Cd83 and Pim1 xTSS-RNA clonal CH12F3 B cell lymphoma lines 

were created (Figure 35C). CH12F3 cells exhibit stimulation dependent AID induction 

and cytokine directed CSR, illustrating that key AID regulatory mechanisms are 

recapitulated in these cells. Quantitative RT-PCR revealed that Pim1 and Cd83 mRNA 

levels were slightly reduced by approximately 5% and 30% in Pim1 and Cd83 xTSS-

RNA region deleted CH12F3 cells, respectively (not shown). However, AID occupancy at 

Pim1 and Cd83 were disproportionately reduced in stimulated CH12F3 cells containing 

deletion of the corresponding xTSS-RNA region. AID chromatin immunoprecipitation at 
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Pim1 and Cd83 promoter proximal regions was reduced by approximately 85% and 75% 

in Pim1 and Cd83 xTSS-RNA region deleted CH12F3 cells, respectively (Figure 35D,E). 

SHM was evaluated within the first kilobase downstream of the Cd83 mRNA TSS in 

parental and Cd83 xTSS-RNA region deleted CH12F3 cells. Incidentally, Cd83 was 

selected over Pim1 due to a previous report indicating that AID induced mutations at 

Cd83, unlike Pim1, fail to undergo high fidelity DNA repair in germinal center B cells (Liu 

et al., 2008). As such, we hypothesized that AID mediated low frequency “off-target” 

mutations introduced at the Cd83 locus in parental and xTSS-RNA region deleted 

CH12F3 cells might persist and allow for their quantification. Mirroring the observed 

reduction in AID occupancy at Cd83 TSS proximal regions, SHM frequency at Cd83 was 

reduced by approximately 75% in stimulated Cd83 xTSS-RNA region deleted CH12F3 

cells relative to parental CH12F3 cells (Figure 35F). These data support the notion that 

xTSS-RNA expressing regions of divergently transcribed genes contain sequences or 

motifs that promote AID recruitment. It is possible that the xTSS-RNA region deletions 

characterized here may have disrupted transcription of the corresponding xTSS-RNA 

and in essence converted each locus to unidirectional sense transcription. Alternatively, 

deletion of the xTSS-RNA region may not have disrupted divergent transcription per se, 

but removed transcribed sequence motifs that promote AID recruitment. This notion will 

be discussed later in further detail. In either case, xTSS-RNA regions contain sequence 

determinants that facilitate targeting of AID.  
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Figure 35:  Deletion of xTSS-RNA expressing region reduces AID recruitment and hypermutation  
(A-B) CRISPR/Cas9-mediated deletion strategy of Cd83 (A) and Pim1 (B) xTSS-RNA expressing regions in 
CH12F3 B cells. Locations of CRISPR/Cas9 guide RNAs (red markings), genotyping primers (blue 
triangles), ChIP primers (green triangles), and numbered exons (blue boxes) are indicated. 
(C) PCR genotyping of Cd83 and Pim1 xTSS-RNA region deleted CH12F3 clones. Predicted wild type and 
xTSS-RNA deletion amplicons illustrated in (A) and (B). Molecular weight markers represent kilobase units. 
(D-E) Deletion of xTSS-RNA region impairs AID targeting to divergently transcribed genes. Anti-AID ChIP 
was performed on parental or clonal CH12F3 B-cell lymphoma lines containing CRISPR/Cas9 mediated 
deletions of Pim1 (D) or Cd83 (E) xTSS-RNA regions. qPCR was performed using exon 1 specific primers. 
Mean values from three technical replicates are indicated. *P < 0.05, **P < 0.01 (t-test). 
(F) Deletion of Cd83 xTSS-RNA region impairs SHM. Mutation frequency was determined within a 488 base 
pair region beginning approximately 150 base pairs downstream of the Cd83 mRNA TSS. All mutations 
were derived from unique clonal amplified sequences. Number of sequenced clones for parental and Cd83 
xTSS-RNA region deleted CH12F3 was 69 and 102, respectively. **P < 0.01 (proportion test). 
 

3.10 Evidence of RNA exosome substrate RNA:DNA hybrids at divergently 

transcribed AID target sites 

 One predominant mechanism whereby AID gains access to substrate ssDNA is 

through the displacement of non-template strand DNA during co-transcriptional 

RNA:DNA hybrid formation. This mechanism is particularly prevalent within the highly 

repetitive G-rich switch regions of the IgH locus during CSR (Yu et al., 2003). In addition, 

studies in yeast have shown that the Sen1 helicase component of the RNA exosome 

cofactor Nrd1-Nab3-Sen1 transcription termination complex plays an important role in 

resolving co-transcriptional RNA:DNA hybrids (Mischo et al., 2011). In light of these 
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studies, and our data supporting an RNA exosome dependent effect on AID targeting to 

divergently transcribed promoter regions, we hypothesized that such regions may be 

more prone to RNA:DNA hybrid formation.  

 Recently, phosphorylation of histone H3 at serine 10 (H3S10ph) has been 

associated with R-loop forming regions of chromatin (Castellano-Pozo et al., 2013). 

Consistent with this observation, other studies have reported that R-loop generating 

donor and acceptor IgH switch regions are specifically marked with H3S10ph during 

CSR (Li et al., 2013). We therefore examined H3S10ph occupancy as a surrogate for R-

loop formation at RNA exosome and AID dually targeted divergent promoters. The 

H3S10ph chromatin mark was indeed significantly elevated at Myc, Pax5, Cd79b, and 

Cd83 promoter regions in wild type stimulated B cells (Figure 36A,B). In contrast, 

H3S10ph levels in these cells were nearly undetectable at non-divergent promoters of 

Cmas, Atp13a2, March2, and Fam107b (Figure 36A). Interestingly, a significant increase 

in H3S10ph accumulation was observed at multiple divergently transcribed AID target 

genes upon Exosc3 ablation (Figure 36C). These results suggest that actively 

transcribed divergent promoters may constitute genomic regions that are more prone to 

R-loop formation. In turn, frequent R-loops at divergent promoters would likely result in 

greater transcriptional stalling leading to RNA exosome and AID recruitment. 

 R-loop formation at promoter proximal regions was assessed using a second 

independent method known as DNA:RNA immunoprecipitation (DRIP). This technique 

involves a modified nucleic acid immunoprecipitation protocol utilizing the sequence 

independent RNA:DNA hybrid specific S9.6 monoclonal antibody to enrich for genomic 

R-loops (Ginno et al., 2012). In this assay we observed a generally greater DRIP 

efficiency in Exosc3 deficient B cells at AID targeted divergent promoters compared with 

non-divergent promoters (Figure 36D). In particular, Pim1 and Cd79b experienced a 5-
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fold increase in promoter proximal R-loop formation in response to Exosc3 ablation 

(Figure 36D). 
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Figure 36:  RNA:DNA hybrids at AID targeted RNA exosome substrate divergent promoters  
(A-B) H3S10ph occupancy at divergent and non-divergent promoters in LPS + IL-4 stimulated wild type B 
cells. ChIP was performed using anti-H3S10ph (Millipore) or control rabbit IgG. Quantitative PCR was 
performed using primers specific for sequences upstream and proximal to the TSS of the indicated genes. 
Data are plotted as mean values of H3S10ph enrichment relative to input from three technical replicates. 
(C) H3S10ph accumulation at AID targeted divergent promoters upon Exosc3 ablation. B cells of indicated 
genotypes are on ROSA26CreERt2/+ background, treated with 4-OHT and stimulated with LPS + IL-4. ChIP 
was performed as described in (A). Data are plotted as mean fold change of Exosc3COIN/COIN normalized to 
Exosc3WT/WT from three technical replicates. *P < 0.05, **P < 0.01 (log2 transformation of Z-test). 
(D) DNA:RNA immunoprecipitation (DRIP) of divergent and non-divergent promoter regions using S9.6 
monoclonal antibody. B cell culture as described in (C). Quantitative PCR as described in (A). Data are 
plotted as mean values of DRIP enrichment relative to input from three technical replicates. 
 

3.11 Class switch recombination in Exosc10 deficient B cells 

 Exosc10 conditional null mice were generated from Exosc10COINneo/+ targeted 

mouse embryonic stem cells using the same approach as described for Exosc3. Briefly, 

Exosc10COINneo/+ male chimeric mice were derived via blastocyst injection of targeted ES 

cells. Male chimeric mice displaying nearly complete ES cell contribution on the basis of 

coat color were crossed with female ACTB:FLPe transgenic mice. Resulting pups were 

genotyped for loss of the neomycin selection cassette and the ACTB:FLPe transgene 



	   100	  

was outbred during subsequent backcrossings. Exosc10COIN/+ heterozygotes of the 

conditional allele were typically crossed with Exosc10LacZ/+ heterozygous null mice to 

generate Exosc10COIN/LacZ conditional null mice and associated wild type and 

heterozygotes. In such crosses one parent was usually homozygous for the inducible 

ROSA26CreERt2 allele. 

 Naive splenic B cells were isolated from Exosc10COIN/LacZ ROSA26CreERt2/+ and 

control mice as described for Exosc3 conditional mice. B cells were treated with 4-OHT 

and stimulated with IgG1 CSR conditions using LPS + IL-4. As described earlier, the 

Exosc10COIN allele was engineered to produce an inversion of Exosc10 exon 2 in the 

presence of Cre recombinase activity, resulting in the concomitant activation of the red 

fluorescent FP635 reporter and transcription termination (Figure 37A). Indeed activation 

of CreERt2 with 4-OHT produced a robust induction of FP635 fluorescence in greater 

than 90% of Exosc10COIN/LacZ ROSA26CreERt2/+ B cells (Figure 37B). Exosc10 mRNA 

levels were measured using a Taqman quantitative PCR gene expression probe specific 

for the Exosc10 exons 11-12 junction. As anticipated, Exosc10 mRNA levels in 4-OHT 

treated Exosc10COIN/LacZ ROSA26CreERt2/+ B cells were dramatically reduced to less than 

5% of control Exosc10WT/WT ROSA26CreERt2/+ B cells (Figure 37C). In addition, Rrp6 

(Exosc10) protein abundance was reduced to negligible levels in 4-OHT treated 

Exosc10COIN/LacZ ROSA26CreERt2/+ B cells (Figure 37D). Collectively, these data help 

validate the constructed Exosc10COIN allele as a functionally conditional allele of Exosc10 

and indicate that 4-OHT treatment of Exosc10COIN/LacZ ROSA26CreERt2/+ B cells constitutes 

a viable model of Exosc10 deficiency. 



	   101	  

T2A$FP635*

SA*

1*

pA*

3* 25*2*
lox2372 

loxP 

lox2372 

loxP 

Inversion via 
loxP 

T2A$FP635*

SA*
1* pA* 3* 25*

Deletion via 
lox2372 

T2A$FP635*

SA*
1* pA* 3* 25*

Exosc10COIN 

Exosc10COINinv 

Exosc10WT Rosa26CreERt2/+ 

0 50K 100K 150K 200K 250K

0

10
2

10
3

10
4

10
5

1.08 

Exosc10COIN/LacZ Rosa26CreERt2/+ 

0 50K 100K 150K 200K 250K

0

10
2

10
3

10
4

10
5

93.2 

FP
63

5 

FSC 

Exosc10WT/WT ROSA26CreERt2/+ Exosc10COIN/LacZ ROSA26CreERt2/+ 

A B 

 

           
0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

1.2 

1" 2" 3" 4"

Exosc10,WT" Exosc10,COIN/+" Exosc10,LacZ/+" Exosc10,COIN/LacZ"

Exosc10 mRNA 

Exosc10WT/WT Exosc10COIN/+ Exosc10LacZ/+ Exosc10COIN/LacZ 

beta actin 

Rrp6 (Exosc10) 
Exo

sc1
0W

T/W
T  

Exo
sc1

0C
OIN/LacZ  C D 

 
 
Figure 37:  Exosc10COIN allele inversion leads to functional loss of Exosc10 expression 
(A) Cre mediated inversion scheme of Exosc10COIN. Schematic illustrates inversion of Exosc10 exon 2 and 
activation of the FP635 expressing terminal exon through inversion of the loxP pair. A subsequent Cre 
mediated deletion between the lox2372 pair is illustrated. Numbered boxes represent Exosc10 exons. Red 
and blue triangles indicate positions of lox2372 and loxP sites, respectively. Dashed lines indicate Exosc10 
splicing. SA, splice acceptor. 
(B) Induction of FP635 fluorescence in Exosc10 deficient B cells. Cells were cultured in the presence of 4-
OHT and stimulated with LPS and IL-4. Number within each plot indicates the percentages of FP635 
expressing B cells. 
(C) Quantitative RT-PCR analysis of Exosc10 mRNA levels in ex vivo B cell cultures. Indicated genotypes 
are on ROSA26CreERt2/+ background. Cells were treated as described in (B). Expression levels are 
normalized against beta actin (Actb) and plotted relative to Exosc10WT/WT. 
(D) Western blot analysis of Rrp6 (Exosc10) protein levels in cultured B cells. Indicated genotypes are on 
ROSA26CreERt2/+ background. Cells were treated as described in (B). Anti-actin immunoblot serves as a 
loading control. 
 

 Exosc10 deficient B cells were evaluated for IgG1 CSR by comparing surface 

IgG1 expression following LPS and IL-4 stimulation. CSR efficiency was significantly 

reduced in Exosc10COIN/LacZ B cells to less than 50% frequency of wild type control B 

cells (Figure 38A). As CSR defects can be compounded by improper AID induction and 

cellular proliferation, these variables were evaluated in our Exosc10 deficient B cell 

cultures. Indeed, AID protein levels were comparable between Exosc10COIN/LacZ and 

Exosc10WT/WT B cells (Figure 38B). Furthermore, cellular proliferation as determined by 

dilution of the VPD450 violet fluorescent tracer in Exosc10COIN/LacZ B cells was similar to 

wild type control B cells (Figure 38C). These data indicate that loss of the Rrp6 
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(Exosc10) nuclease subunit of the RNA exosome results in a substantial CSR defect. 

Interestingly, Exosc10 ablation consistently produced a milder CSR defect compared to 

Exosc3 ablation. Unlike Exosc3, which expresses a necessary subunit of the RNA 

exosome core and is thought to be present in all assembled RNA exosome complexes, 

the Exosc10-encoded Rrp6 subunit is not absolutely required for RNA exosome function 

(Wasmuth and Lima, 2012). In fact, Dis3-encoded Rrp44 nuclease containing RNA 

exosome complexes can exclude Rrp6 and retain catalytic activity. Therefore, it is 

possible that the difference in CSR impairment observed between Exosc3 and Exosc10 

deficient B cells might indicate a potential role for Dis3 in CSR. 
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Figure 38:  Impaired CSR in Exosc10 deficient B cells 
(A) IgG1 CSR frequency in 4-OHT treated, LPS + IL-4 stimulated Exosc10WT/WT ROSA26CreERt2/+ and 
Exosc10COIN/LacZ ROSA26CreERt2/+ B cell cultures. Numbers within FACS plots indicate the percentage of 
IgG1 isotype switched B220+ B cells. Exosc10COIN/LacZ ROSA26CreERt2/+ plot is gated on FP635+ cells. 
(B) Western blot analysis of AID protein levels in cultured B cells. Indicated genotypes are on 
ROSA26CreERt2/+ background. Cells were treated as described in (A). Anti-actin immunoblot serves as a 
loading control (reprinted from Figure 37D as anti-actin, -AID, and -Rrp6 immunoblots were performed in 
parallel using the same lysate samples).  
(C) B cell proliferation analysis using VPD450 fluorescent tracer dilution. Plots indicate the degree of 
VPD450 dilution resulting from cell division following 3 days of 4-OHT treatment. Cells were stimulated as 
described in (A).  
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3.12 ncRNA discovery in RNA exosome deficient embryonic stem cells 

 One of the more intriguing aspects of RNA exosome substrate transcripts is their 

remarkable instability in normal cells. For instance, the upregulation of xTSS-RNA 

transcripts in Exosc3 deficient cells often initiates from a nearly undetectable baseline 

level. We therefore hypothesized that RNA exosome deficiency might serve as an 

experimental model for ncRNA discovery by virtue of the stabilization of transcripts that 

would otherwise be rapidly turned over by RNA exosome. For practical purposes such 

as access to greater cell numbers and avoiding costly and lengthy mouse breeding, 

Exosc3 and Exosc10 conditional null embryonic stem (ES) cells were rederived from 

isolated blastocysts. Exosc3COIN/COIN and Exosc10COIN/LacZ ES cells containing the 

ROSA26CreERt2 allele were treated with 4-OHT. GFP+ Exosc3 and FP635+ Exosc10 

deficient ES cells were purified using flow cytometry. Western blot and qRT-PCR 

analyses of these samples confirmed a nearly complete loss of Exosc3 and Exosc10 

derived protein and mRNA (not shown). RNA prepared from these cells was used for 

strand specific RNA sequencing. As previously performed for Exosc3 deficient B cells, 

ES cell RNA-seq reads mapping 2 kilobases upstream or downstream of annotated 

TSSs were plotted with respect to strand polarity. Similar to what was observed in B 

cells, Exosc3COIN/COIN ES cells displayed a highly significant accumulation of TSS 

upstream antisense transcripts (p = 9.3E-151) (Figure 39A). These transcripts represent 

the ES cell counterparts of B cell xTSS-RNA. Interestingly, Exosc10COIN/LacZ ES cells also 

displayed a statistically significant upregulation of TSS upstream antisense transcripts (p 

= 5.6E-21) (Figure 39B), although their accumulation was far less compared to Exosc3 

deficient ES cells. Again, it is possible that the difference in xTSS-RNA stabilization 

between Exosc3 and Exosc10 deficient ES cells may be due to partial functional 

redundancy between the two RNA exosome nuclease subunits Exosc10 and Dis3. 

Although expected, the presence of RNA exosome sensitive xTSS-RNA transcripts in 
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ES cells confirms that RNA exosome mediated surveillance of promoter proximal 

transcripts is not restricted to B cells, but more likely represents a general feature of 

cellular transcription. 
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Figure 39:  Accumulation of xTSS-RNA in Exosc3 and Exosc10 deficient embryonic stem cells 
(A-B) Distribution of TSS proximal strand specific RNA sequencing reads in Exosc3 and Exosc10 deficient 
ES cells. Indicated genotypes are on ROSA26CreERt2/+ background and cells were treated with 4-OHT as 
described. Data was compiled from two replicate experiments. 
 

 Transcriptomes of Exosc3COIN/COIN and Exosc10COIN/LacZ ES cells were 

computationally reconstructed from RNA-seq data and interrogated for perturbations in 

ncRNA expression. Known annotated lincRNAs (Guttman et al., 2009) in addition to 

novel uncharacterized lincRNAs revealed specifically in either Exosc3 or Exosc10 

deficient transcriptomes were evaluated. In defining novel lincRNA transcripts we 

incorporated conventional lincRNA characteristics including non-coding potential, multi-

exonic splicing pattern, and a minimum transcript length of 200 nucleotides. This 

analysis yielded a collection of 4,975 ES cell expressed lincRNAs. When compared to 

wild type ES cell expression, 38% and 22% of these lincRNAs were significantly 

upregulated in Exosc3 and Exosc10 deficient ES cells, respectively (Figure 40). For 

many of these lincRNAs, expression was often undetectable in wild type cells, a feature 

reminiscent of RNA exosome substrate xTSS-RNAs. In addition, these Exosc3 and 

Exosc10 dependent changes in lincRNA expression were reproducible (Figure 40A), 
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suggesting that they represent specific transcriptional events and/or entities and not 

stochastic transcripts arising from transcriptional noise. Similar to xTSS-RNA, global 

changes in magnitude of lincRNA expression were generally more pronounced in 

Exosc3 deficient cells compared to Exosc10 deficient cells (Figure 40A). Comparing 

lincRNA expression changes between Exosc3COIN/COIN and Exosc10COIN/LacZ ES cells 

revealed a partially co-linear relationship (0.59 Pearson correlation) (Figure 40B), 

suggesting that many, but not all, differentially expressed lincRNAs are regulated by 

RNA exosome complexes containing both Rrp40 and Rrp6. Specifically, 83% of 

differentially expressed lincRNAs in Exosc10 deficient ES cells, were also upregulated in 

Exosc3 deficient cells (Figure 40C). In contrast, only 48% of Exosc3 regulated lincRNAs 

were upregulated in Exosc10 deficient cells (Figure 40C). Collectively these data support 

a role for RNA exosome in modulating lincRNA stability. Intriguingly, many Exosc3 

regulated lincRNAs did not present significant perturbations upon Exosc10 ablation. 

Several non-mutually exclusive possibilities may explain this data. It is possible that 

Exosc3 and Exosc10 co-regulated lincRNAs may largely be regulated by Rrp6-

containing nuclear RNA exosome complexes, whereas Exosc3-specific regulated 

lincRNAs may comprise cytoplasmic RNA exosome substrates. Alternatively, Exosc3-

specific regulated lincRNAs may be substrates of nuclear and/or cytoplasmic RNA 

exosome complexes containing the Rrp44 (Dis3) nuclease and excluding Rrp6. It is also 

possible that a role for Rrp6 in regulating Exosc3-specific lincRNAs in Rrp6/Rrp44-

containing RNA exosome complexes may be hidden due to functional redundancy in 

resulting Rrrp44-containing RNA exosome complexes. 
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Figure 40:  RNA exosome ablation reveals novel lincRNA in ES cells 
(A) Heat map illustrating lincRNA expression levels in Exosc3 and Exosc10 deficient ES cells. Horizontal 
lines represent individual lincRNA transcripts. Indicated genotypes are on ROSA26CreERt2/+ background and 
cells were treated with 4-OHT as described. Replicate experiments are shown. 
(B) Scatter plot illustrating Exosc3 and Exosc10 dependencies for individual lincRNAs in ES cells. Log2 fold 
change over wild type control in Exosc3 and Exosc10 deficient ES cells plotted on x- and y-axes, 
respectively. 
(C) Venn diagram illustrating the numerical overlap of Exosc3 and Exosc10 regulated lincRNAs in ES cells. 
P-value determined by Fisher’s exact test. 
 

 Enhancers constitute critical cis-acting chromatin domains that play key roles in 

transcriptional activation and frequently serve as key determinants of tissue-specific 

gene expression programs. Often located distal to the promoters they regulate, 

enhancers are thought to function in close spatial proximity to promoters through long 

range chromatin looping. Although initially thought to serve only as transcription factor 

docking sites or scaffolds, it is commonly appreciated now that enhancer function is far 

more dynamic. For instance, functional enhancer elements are actively transcribed by 

RNAP II and produce labile enhancer RNAs (eRNAs) (De Santa et al., 2010; Kim et al., 

2010). These eRNA transcripts have been proposed as integral components imparting 

functionality upon enhancers. It one model, eRNAs promote enhancer-promoter 

interactions through eRNA mediated recruitment of chromatin looping cohesin 
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complexes and promoter occupied Mediator complex (Lam et al., 2014; Plank and Dean, 

2014). Other models have proposed enhancer transcription leads to chromatin 

remodeling events that promote transcription initiation and/or elongation of target genes 

(Mousavi et al., 2013). 

 As eRNAs typically possess short half lives in normal cells, we hypothesized 

whether their instability was partly due to RNA exosome mediated degradation. In fact, 

Exosc3 deficient B cells displayed a 5-fold increase in transcripts mapping to the distal 

IgH 3’ regulatory region enhancer, as well as upstream enhancer elements mapping to 

the Cd83 locus (not shown). A more complete analysis of enhancer elements in RNA 

exosome ablated cells was greatly aided by better annotations of these elements in ES 

cells. Predicted enhancers have been systematically mapped across the genome of 

mouse ES cells on the basis of H3K4me1, H3K27ac, p300 histone acetyltransferase 

occupancies, and H3K4me3 exclusion (Shen et al., 2012). eRNA expression levels at 

these enhancers were compared between wild type and Exosc3 or Exosc10 deficient ES 

cells. We observed significantly higher levels of eRNA expression at 25% of active 

annotated enhancers in Exosc3 ablated ES cells relative to wild type control ES cells 

(Figure 41). In addition, 8% of enhancer elements in ES cells displayed increased eRNA 

expression upon loss of Exosc10 (Figure 41). Similar to RNA exosome regulated 

lincRNAs, many but not all RNA exosome regulated enhancer elements were shared 

between Exosc3 and Exosc10 deficient ES cells (Figure 41B,C). Specifically, eRNA 

levels at 27% of Exosc3 dependent enhancers displayed Exosc10 co-regulation (Figure 

41C). In contrast, 90% of Exosc10 regulated enhancers also displayed increased eRNA 

levels in Exosc3 deficient ES cells. Therefore, a significant fraction of enhancer elements 

in ES cells are transcriptionally regulated by RNA exosome, with Rrp6 function partly 

restricted within the context of Rrp40-containing RNA exosome core complexes. 
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Figure 41:  RNA exosome mediated regulation of transcription at enhancer elements in ES cells 
(A) Heat map illustrating eRNA expression levels in Exosc3 and Exosc10 deficient ES cells. Horizontal lines 
represent individual enhancer elements. Indicated genotypes are on ROSA26CreERt2/+ background and cells 
were treated with 4-OHT as described. Replicate experiments are shown. 
(B) Scatter plot illustrating Exosc3 and Exosc10 co-regulation of eRNA transcription at enhancer elements in 
ES cells. Log2 fold change over wild type control in Exosc3 and Exosc10 deficient ES cells plotted on x- and 
y-axes, respectively. 
(C) Venn diagram illustrating the numerical overlap of Exosc3 and Exosc10 regulated enhancers in ES cells. 
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Chapter 4: Discussion 
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4.1 Transcription stalling as a mechanism of RNA exosome mediated AID 

targeting 

 Transcription is a discontinuous process involving frequent pausing and re-

initiation of RNAP II as it traverses through the DNA (Churchman and Weissman, 2011). 

Transcription pausing can be a regulated event such as in the case of promoter proximal 

pausing, whereby RNAP II having escaped pre-initiation complex formation, frequently 

synthesizes a ~50 nucleotide long nascent transcript before it undergoes a stable and 

often prolonged pause on the chromatin (Kwak and Lis, 2013). Pausing of RNAP II can 

also be the consequence of encountering obstacles in the DNA template. Such 

impediments can include difficultly transcribed primary sequence elements, repetitive 

sequences capable of forming secondary structures, high nucleosome density, DNA 

damaged template, collisions with DNA or RNA polymerases, among others. The key 

distinction between transcription pausing and arrest relates to the elongation 

competency of RNAP II (Adelman and Lis, 2012). Paused polymerases persist in the 

pre-translocated state, enzymatically capable of adding the next nucleotide, with the 3’ 

end of the nascent transcript contained within the active site of the polymerase. It is 

likely that such complexes may not serve as direct co-transcriptional substrates of RNA 

exosome as occlusion of the nascent RNA 3’ end would prevent RNA exosome access. 

Indeed promoter proximal paused transcription complexes have been reported to be 

remarkably stable and resistant to RNA exosome mediated degradation (Henriques et 

al., 2013). Arrested transcription complexes however contain RNAP II molecules that are 

incapable of incorporating a nucleotide onto the growing nascent RNA due to a 

displacement of the RNA 3’ end and the polymerase active site. Backtracking of RNA 

polymerase on DNA leads to transcription arrest. Such arrested complexes can 

transition back to the paused state through transcription elongation factor TFIIS 

mediated cleavage of the 3’ end extruding portion of the nascent RNA (Adelman et al., 
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2005). Nascent transcript sequencing in yeast has uncovered numerous intragenic 

RNAP II pause sites (Churchman and Weissman, 2011). A majority of these pause sites 

exhibit a downstream shift by ~18 nucleotides in TFIIS mutants (Churchman and 

Weissman, 2011), indicating that backtracking may be a relatively frequent event. 

However, backtracked transcription complexes can also be resolved through RNA 

exosome recognition of the extruding RNA 3’ end resulting in degradation coupled 

transcription termination (Lemay et al., 2014). An intriguing possibility is that TFIIS and 

RNA exosome may functionally compete at arrested transcription complexes to promote 

elongation or degradation, respectively. Consistent with this model, TFIIS has been 

shown to be absent from AID complexes containing RNA exosome (Sun et al., 2013a). 

Small RNA deep sequencing has uncovered short RNA fragments of ~18 nucleotides 

that were proposed to be TFIIS cleavage products of backtracked RNAP II (Taft et al., 

2009). If indeed backtracked transcription complexes are targeted by RNA exosome, 

and/or TFIIS and RNA exosome compete, using small RNA deep sequencing 

approaches one might expect to observe an accumulation of ~18 nucleotide long TFIIS-

generated RNA fragments at genomic sites of RNA exosome substrate accumulation in 

either Exosc3 or Exosc10 deficient cells. 

 An inevitable product of transcription pausing or arrest is a decrease in 

transcription elongation rate. Temporary pausing of transcription is thought to facilitate 

the integration of RNA processing events such as capping, splicing, and polyadenylation 

(Zhou et al., 2012). Nucleosome remodeling and relief of DNA topological stress may 

also lag with respect to transcription and demand a pause in the progression of RNA 

polymerase before elongation can resume. A consequence of decreased transcription 

elongation is a kinetic shift towards degradation coupled transcription termination. 

Elongation and degradation coupled transcription termination represent antagonistic 

processes and in fact compete with one another in vivo. Mutant yeast expressing slowly 
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elongating RNAP II exhibit premature Sen1 dependent termination, which is coupled to 

RNA exosome mediated processing (Hazelbaker et al., 2013). Therefore, it is likely that 

obstacles and/or sequence elements that impede the progression of RNAP II, create a 

more permissive context for degradation coupled transcription termination.  

 Actively transcribed B cell Ig loci are endowed with multiple properties capable of 

inducing transcription pausing or arrest. For instance, IgH switch regions that precede 

CH gene segments and are the sites of AID mediated DNA double strand break 

formation, are highly enriched for guanosine nucleotides on the non-template DNA 

strand. Interestingly, recent genome-wide analyses of RNA polymerase pausing in E. 

coli have revealed a G-rich transcription pause consensus sequence (corresponding to 

the RNA or non-template DNA strand) comprised of G-10Y-1G+1 (Larson et al., 2014; 

Vvedenskaya et al., 2014). Furthermore, E. coli RNA polymerase contains a specific 

structure known as the “core recognition element” that specifically binds with non-

template strand guanosine residues in the +1 position, but not with any of the other three 

nucleotides (Zhang et al., 2012). As many fundamental aspects of transcription are 

conserved throughout evolution, it is interesting to speculate that similar pause 

determinants may be involved in eukaryotic transcription as well. If true, IgH switch 

region non-template strand G-richness may provide a direct sequence specific 

mechanism of favoring transcriptional pause or arrest through DNA-RNAP II interactions, 

and in turn lead to enhanced transcription termination and recruitment of RNA exosome 

and AID. 

 IgH switch sequences present obstacles to transcription elongation due to their 

strong propensity to form R-loops (Yu et al., 2003). As such, RNAP II accumulates within 

IgH switch sequences during germline transcription of CH genes in CSR, suggesting 

frequent polymerase pausing or arrest (Rajagopal et al., 2009; Wang et al., 2009b). R-

loop formation and persistence can impede transcription elongation through multiple 
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mechanisms. For instance, an RNA polymerase generating an extended co-

transcriptional R-loop in its wake is hindered in its ability to progress along the DNA 

template (Huertas and Aguilera, 2003). It is possible that the RNA:DNA hybrid trailing 

the RNA polymerase may create a tethering effect that limits the progression of the 

transcription complex. In conjunction, R-loop generation by the leading RNA polymerase 

can induce trailing RNA polymerases to pause or arrest. An elongating transcription 

complex presumably can collide with an R-loop in its downstream path, resulting in 

polymerase backtracking or arrest. Electron microscopy studies have reveled extensive 

RNA polymerase pileups at an R-loop forming locus in vivo (El Hage et al., 2010). Yet 

another feature of IgH switch sequences that may lend them to induce transcription 

stalling is their potential to create G-quadruplex structures. These are stable planar 

secondary DNA structures that form on G-rich ssDNA, and have been found to exist in 

the genomes of mammalian cells (Biffi et al., 2013; Lam et al., 2013). When transcribed 

in vitro, IgH switch sequences can generate G-quadruplex structures (Duquette et al., 

2004). Displacement of the G-rich non-template strand during transcription of switch 

sequences provides an opportunity for G-quadruplex formation. In addition, stabilization 

of switch sequence R-loops may allow G-quadruplex structures to initiate and persist. 

Conversely, G-quadruplexes may stabilize the non-template strand in cis, and reduce its 

base pairing capacity to compete with RNA already hybridized with the template DNA 

strand. It also remains a possibility that even after resolution of an RNA:DNA hybrid, that 

G-quadruplexes on the non-template strand may inhibit proper re-annealing of the 

template and non-template DNA strands of the switch regions. A less than fully duplex 

DNA template would likely create an obstacle for transcription. A more speculative 

mechanism of transcription stalling at Ig loci may specifically involve AID deaminated 

cytidine target residues in the DNA. It is conceivable that non-native deoxyuridine serves 

as a poorer template when utilized by RNAP II. Coevolution between polymerases and 
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DNA may have optimized the interactions between RNAP II and the four canonical 

deoxynucleotides. As such, RNAP II may undergo a transcription pause upon 

encountering deoxyuridine. Recent studies have demonstrated that RNAP II 

accumulation also occurs at transcribed Ig variable regions during hypermutation (Wang 

et al., 2014). A deoxyuridine based mechanism of transcription stalling may explain 

RNAP II accumulation at Ig variable regions that are largely devoid of R-loop formation. 

Ig loci can provide such an opportunity as deoxyuridine residues sufficiently persist to 

allow for their direct biochemical detection in AID expressing B cells (Maul et al., 2011). 

Contrary to other mechanisms of transcription stalling, a deoxyuridine induced stall 

would serve as an AID dependent downstream event. It may also serve as a parallel 

mechanism of enhancing mutation clustering in conjunction with error prone DNA repair 

mechanisms of Ig diversification. 

 Multiple mechanisms therefore combine to hinder the elongation rate of 

transcription complexes at Ig loci. This in turn would create a preponderance of 

premature transcription termination leading to RNA exosome recruitment for the 

resolution of arrested transcription complexes (Figure 42). In fact, artificially inducing 

premature transcriptional arrest at an Ig locus through targeted insertion of a 

transcription termination element leads to enhanced hypermutation in the upstream 

region proximal to the site of transcription termination (Kodgire et al., 2013). An 

abundance of distinct transcription obstacles, particularly at IgH, may therefore create a 

synergistic effect with respect to premature transcription termination, which may in turn 

underlie the “targeting” phenomenon of AID towards Ig loci. AID mediated mutations 

accumulate at Ig loci at rates of approximately 102 - 103 fold higher frequency compared 

to other regions of the genome (Liu et al., 2008). Since AID requires transcription to gain 

access to substrate ssDNA, it is likely that the high rate of Ig transcription in B cells is at 

least partly responsible for the remarkably efficient targeting of AID to these loci. 
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However, transcription initiation cannot sufficiently explain the AID targeting 

phenomenon towards Ig loci, as several other equivalently transcribed genes 

accumulate far less mutations in AID expressing B cells (Chiarle et al., 2011; Klein et al., 

2011b). It is more likely that premature transcription termination, rather than transcription 

initiation, accounts for AID targeting. Several factors involved in premature transcription 

termination have been found to associate with AID, most likely in the context of a larger 

transcription complex. RPA binds to ssDNA exposed during transcription and can 

physically associate with AID and stimulate its activity (Chaudhuri et al., 2004). 

Elongation factor Spt5 plays a critical role in inducing promoter proximal transcription 

pausing and associates with pause released transcription elongation complexes, has 

also been reported to interact with AID (Pavri et al., 2010). As mentioned earlier, RNA 

exosome and AID biochemically interact as well (Basu et al., 2011). In addition, E3 

ubiquitin ligase Nedd4 ubiquitylates RNAP II at sites of DNA damage to promote 

removal of stalled transcription complexes through proteasomal degradation of RNAP II 

(Anindya et al., 2007). Nedd4 has recently been demonstrated to promote CSR and is 

present in a complex containing AID (Sun et al., 2013a). Importantly many of these 

factors interact with one another, suggesting that they operate within a larger complex to 

coordinate AID activities. For instance, in addition to AID, Spt5 associates with both 

RNAP II and RNA exosome (Andrulis et al., 2002; Wada et al., 1998). Furthermore, 

Nedd4 helps to stabilize the interaction between AID, Spt5, and RNA exosome at 

transcribed IgH switch sequences (Sun et al., 2013a), presumably by facilitating RNA 

exosome access to nascent transcript 3” ends through RNAP II proteolysis. Collectively, 

these factors may stabilize AID through multiple interactions at sites of premature 

transcription termination. In turn, a stable association between AID and termination 

factors coupled to strong transcriptional stalling at Ig loci, may synergize to produce a 

highly efficient means of directing AID activity in B cells.  
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Figure 42:  Model of RNA exosome dependent AID recruitment to sites of premature RNAP II 
termination 
Sense and antisense post-initiation transcription complexes can undergo transcriptional arrest due to 
various transcription impediments such as G-rich DNA, R-loops, DNA damage, polymerase collisions, 
among others. Transcriptional arrest may then result in premature termination leading to RNA exosome and 
AID recruitment. 
 

 Interestingly, AID targeting exhibits a transcriptional context dependency that is 

tied to transcription initiation proximity. This was elegantly illustrated through the 

experiments of Peters and Storb where transgenic insertion of a VL promoter upstream 

of a CL gene segment allowed for hypermutation of an Ig sequence that would otherwise 

be spared of AID mediated mutation accumulation (Peters and Storb, 1996). Not only did 

this experiment disprove the notion that hypermutation of Ig variable regions and switch 

sequences was determined by sequence specific recognition of these loci, it also 

revealed a relationship between proximity to the site of transcription initiation and 

targeting of the hypermutation machinery. A clear illustration of this point can also be 

observed by comparing the related processes of SHM and CSR within the IgH locus of 

normal B cells. Transcription of the protein coding immunoglobulin heavy chain mRNA 

initiates from the cognate variable region promoter, and proceeds through the 

assembled VDJ exon, past a several kilobase long switch sequence containing intron, 

followed by the constant region. During SHM of IgH variable regions, AID mediated 
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mutations are largely targeted to the VDJ exon region while the much further 

downstream switch sequences are largely spared of mutations. Interestingly, these are 

the same G-rich, R-loop prone switch sequences that create strong obstacles to 

transcription elongation during CSR. However, a critical distinction between transcription 

through switch sequences during SHM and CSR is once again proximity to the site of 

transcription initiation. During CSR, transcription of switch sequences occurs through the 

context of CH germline transcripts that initiate not from the upstream distal VH promoter, 

but rather from a proximal CH promoter. Therefore, transcription through switch 

sequences can lead to differing outcomes with respect to AID targeting and is dependent 

upon proximity to the site of transcription initiation. This is likely to reflect a difference in 

transcription stalling efficiency relative to the distance of the transcription complex from 

the TSS. Transcriptionally engaged RNAP II undergoes strong transcription stalling in 

proximity to the promoter (Kwak and Lis, 2013). In contrast, productive elongation is 

achieved through the association of different complexes with RNAP II. For instance, 

association of engaged RNAP II with elongation factors such as ELL proteins, super 

elongation complexes, as well as the PAFc complex (Zhou et al., 2012) may require a 

temporal window, prior to which the transcription complex may be more prone to 

undergo transcription arrest. Interestingly, the length of RNA exosome substrate 

transcripts largely mirrors the restricted spreading of AID initiated mutations to less than 

2 kilobases and peaking approximately 500 base pairs from the site of transcription 

initiation. This may reflect a critical distance where transcription complexes may be more 

prone to RNA exosome coupled premature termination. Beyond this distance from the 

TSS, transcription complexes may be less prone to premature termination due to 

association with elongation factors. Consistent with this model, NNS mediated 

premature transcription termination can be inhibited by the PAFc elongation complex in 

yeast (Kim and Levin, 2011). 
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 Antisense transcription arising from intragenic loci may provide yet another 

mechanism leading to transcription arrest. Multiple genes including Myc, Apobec3, 

Gimap5, Ly6a, and Ppp3cc were shown here to express RNA exosome substrate 

antisense transcripts within gene bodies. Importantly, these sites of antisense intragenic 

transcription precisely overlapped with breakpoints of AID mediated recurrent 

chromosomal translocations. Since these genes also express sense mRNA transcripts, 

there is the potential for convergent transcription between sense and antisense 

transcription complexes. Therefore, AID dependent intragenic translocations at sites 

harboring RNA exosome substrate antisense transcripts shown here, could arise from 

transcriptional arrest and/or interference due to the convergence of head to head RNAP 

II complexes. However, this would necessitate that sense and antisense intragenic 

transcription are not mutually exclusive events and can occur on the same template and 

at the same time. Although this may be exceedingly difficult to observe experimentally in 

living cells, the possibility clearly exists in principle, and may be approachable in vitro. 

For instance, one could compare rates of AID association between convergent and 

unidirectional transcribed chromatin substrates in vitro for evidence of preferential AID 

recruitment at sites of convergent transcription. One consequence of convergent 

transcription is head to head collisions between oncoming RNA polymerases, as 

converging RNA polymerases cannot bypass one another in vitro (Hobson et al., 2012). 

In vivo, this could result in backtracking arrest of either converging RNAP II complex, 

leading to RNA exosome coupled premature transcription termination. Alternatively, 

convergent transcription may also impede transcription elongation through mechanisms 

not involving actual collisions between RNAP II. As transcription proceeds through DNA, 

opposite torsional stress accumulates in either direction. Specifically, positive and 

negative supercoiling of the DNA template occurs ahead of and behind the elongating 

transcription complex, respectively (Liu and Wang, 1987). During convergent 
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transcription, positive supercoiling of the DNA ahead of each RNA polymerase would 

create an area of extensive positive supercoiling lying between the two RNA 

polymerases. As positive supercoiling of DNA will impede transcription elongation 

(Gartenberg and Wang, 1992), convergent transcription may lead to transcriptional 

stalling prior to relaxation of the DNA by DNA gyrase. As discussed earlier, extended 

transcriptional stalling could ultimately lead to RNA exosome coupled premature 

transcription termination and AID recruitment to such sites. Consistent with this model, 

intragenic antisense transcripts accumulate in yeast upon depletion of an RNA exosome 

coupled transcription termination factor, resulting in transcription interference with 

convergent sense mRNA transcription complexes (Schulz et al., 2013).  

 

4.2 RNA exosome in the maintenance of genomic integrity 

 Cells continuously operate under selective pressures to maintain the integrity of 

their genetic material during metabolic processes involving DNA such as transcription 

and DNA replication. R-loops formed during transcription disrupt the DNA duplex and 

pose a substantial threat for genomic instability, especially when the processing of such 

structures is impaired (Aguilera and Garcia-Muse, 2012; Chan et al., 2014; Skourti-

Stathaki and Proudfoot, 2014). RNA:DNA hybrids can occur naturally within cells, 

predominantly during lagging strand DNA synthesis of Okazaki fragments and within the 

transcription bubble of elongating RNA polymerases. However, analyses performed on 

various RNA processing mutants have revealed that transient R-loop formation occurs 

frequently within cells. In fact, nearly all RNA processing pathways are involved to 

various degrees in the suppression of R-loop formation or persistence and preservation 

of genomic integrity (Wahba et al., 2011). Many RNA processing pathways have likely 

coevolved with respect to both RNA metabolic and DNA maintenance functions. 
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 Co-transcriptional R-loops are thought to initiate via mechanisms involving the 

nascent transcript either invading the DNA duplex or intercepting the template DNA 

strand prior to its annealing with the non-template strand. Nascent RNA and template 

DNA exit through different channels within RNAP II (Westover et al., 2004), making it 

implausible that R-loops result from an extension of the RNA:DNA hybrid present within 

the transcription bubble. As a result, a temporal opportunity exists for RNA processing 

factors interacting with the nascent transcript to modulate R-loop formation.  Such is the 

case with THO/TREX, a complex that binds nascent RNA co-transcriptionally to link 

mRNP formation with nuclear export. Yeast strains carrying deletion mutations in various 

THO subunits exhibit a transcription dependent hyper-recombination phenotype 

(Aguilera and Klein, 1990; Piruat and Aguilera, 1998). Importantly, THO mutants 

accumulate co-transcriptional R-loops and the hyper-recombination phenotype can be 

suppressed either through cleavage of the nascent transcript or overexpression of 

RNase H (Huertas and Aguilera, 2003). Similarly, THO depletion in human cells leads to 

R-loop accumulation and genomic instability (Dominguez-Sanchez et al., 2011). This 

suggests THO components bind to nascent RNA as it exits RNAP II forming an mRNP 

complex that inhibits hybridization between the nascent RNA and template DNA strand. 

Analogously, splicing factors also interact with nascent RNA to inhibit R-loop associated 

genomic instability. Depletion of splicing factor SRSF1 results in the accumulation of R-

loops and DNA double strand breaks, both of which can be suppressed by RNase H 

overexpression (Li and Manley, 2005). Through multiple mechanisms cells have evolved 

ways to preserve the integrity of their genome by preventing co-transcriptional R-loop 

formation by intercepting the nascent transcript and inhibiting its annealing with the 

template DNA strand. 

 But how do R-loops create genomic instability in cells? R-loop exposure of the 

template DNA strand as ssDNA makes it far more accessible to chemical mutagenesis 
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arising from reactive oxygen species or other environmental insults (Kim and Jinks-

Robertson, 2012). As previously mentioned, R-loops can serve as obstacles to 

transcription elongation, leading to RNA polymerase pileups and collisions (El Hage et 

al., 2010). Base modification of the exposed ssDNA component of R-loops may need to 

be bypassed using highly mutagenic translesion DNA polymerases. Replisomes can 

encounter nicks on the R-loop associated non-template DNA strand leading to the 

cessation of DNA synthesis and creation of DNA double strand breaks at the site where 

the DNA template nick overlaps with the site of nucleotide incorporation. However, a 

major mechanism of R-loop associated DNA damage arises from encounters between 

the replication and transcription machineries. In fact it appears that eukaryotic DNA 

replication and transcription have co-evolved to minimize such encounters. For instance, 

unlike prokaryotes, eukaryotic replisomes and transcription complexes elongate at 

similar speeds (Helmrich et al., 2013). This minimizes the opportunity for co-directional 

collisions between DNA and RNA polymerases. In addition, transcription during S-phase 

occurs largely at sites where replisomes are not actively performing DNA synthesis 

(Helmrich et al., 2013). However, impaired transcription elongation arising from R-loops 

increases the likelihood of collisions between replisomes and transcription complexes. 

These collisions typically result in stalling of the replication fork leading to DNA 

rearrangements through various mechanisms (Gan et al., 2011; Tuduri et al., 2009; 

Wellinger et al., 2006). Co-directional collisions between DNA polymerases and R-loop 

forming backtracked RNA polymerases can create DNA double strand breaks (Dutta et 

al., 2011). Head to head convergence between DNA polymerases and R-loop arrested 

transcription complexes can lead to replication fork reversal due to the accumulation of 

DNA torsional stress (Aguilera and Garcia-Muse, 2012). As the replisome approaches 

an arrested transcription complex head on, positive supercoiling will continue to build 

upstream of the replisome. This favors the creation of “chicken-foot” replication fork 
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structures that involve template switching of the nascent DNA chains. Resolution of such 

aberrant intermediates in DNA synthesis require recombination mediated repair, which 

can lead to DNA rearrangements. Furthermore, R-loop dependent collisions involving 

replisomes and transcription complexes may play an important role in DNA breakage at 

common fragile sites present in exceptionally long genes. Transcription of human genes 

exceeding 800 kilobases in length requires more than one cell cycle to complete 

(Helmrich et al., 2011), thus necessitating an encounter between the replisome and 

transcription complex. Such collisions result in R-loop formation and genomic instability 

at common fragile sites (Helmrich et al., 2011). Interestingly, chemical inhibition of 

topoisomerase 1, which promotes R-loop formation, preferentially reduces expression of 

long genes due to impaired transcription elongation (King et al., 2013). This suggests 

that R-loop formation may be more prevalent at long genes, and thereby exhibit more 

frequent transcription arrest, which in turn may promote the collisions observed between 

replisomes and transcription complexes at common fragile sites present in long genes.  

 As evidenced above, R-loops pose a serious risk for development of genomic 

instability. Cells utilize factors involved in RNP biogenesis, splicing, and DNA torsion 

relief to prevent R-loop formation. But how do cells resolve R-loops after they have 

formed, and what role might RNA exosome play in this process? Our findings indicate 

that RNA exosome is preferentially recruited to divergent promoters enriched in the R-

loop associated H3S10ph chromatin mark. In addition, Exosc3 deficiency lead to an 

increase in H3S10ph occupancy at RNA exosome targeted promoters. Similar trends 

were observed using RNA:DNA hybrid specific immunoprecipitation. Collectively, these 

data suggest that RNA exosome is recruited to R-loop forming loci and suppresses their 

accumulation, likely through degradation. Multiple lines of evidence support an active 

role for RNA exosome in the resolution of R-loops. Degradation coupled transcription 

termination in yeast is thought to initiate through binding of the Nrd1 termination factor 
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with the carboxyl terminal domain of RNAP II (Steinmetz et al., 2001). As described 

earlier, Nrd1 is a component of the Nrd1-Nab3-Sen1 (NNS) transcription termination 

complex. NNS binding to RNAP II is then stabilized through the TRAMP oligoadenylation 

complex (Grzechnik and Kufel, 2008). This serves to enhance Nrd1 recruitment of RNA 

exosome to sites of NNS mediated transcription termination (Vasiljeva and Buratowski, 

2006). Importantly, the Sen1 subunit of the NNS termination complex possesses 

RNA:DNA hybrid helicase activity (Kim et al., 1999). Mutation of the Sen1 helicase 

domain results in R-loop accumulation, increased DNA damage foci, and transcription 

dependent hyper-recombination (Mischo et al., 2011). Similarly, depletion of senataxin, 

the mammalian homolog of Sen1, results in transcription termination defects and R-loop 

accumulation in human cells (Skourti-Stathaki et al., 2011). Furthermore, SUMO 

conjugated senataxin directly interacts with the Rrp45 core subunit of RNA exosome at 

sites of transcription dependent DNA damage (Richard et al., 2013). It is becoming 

increasingly evident that transiently formed co-transcriptional R-loops are quite prevalent 

and cells utilize premature transcription termination and RNA exosome mediated 

degradation to suppress their persistence. RNA exosome dependent R-loop resolution 

would serve as a critical mechanism for preventing genomic instability. One expectation 

arising from such a model is that RNA exosome deficient cells would display elevated 

levels of genomic instability.  

 Chromosomal translocations are a characteristic feature of diffuse large B-cell 

lymphoma (DLBCL). Karyotype analysis of clinical DLBCL specimens places the 

incidence of chromosomal abnormalities at nearly 90% of cases (Cigudosa et al., 1999). 

DLBCL primarily derives from AID expressing germinal center B cells or post-germinal 

center B cells. As mentioned earlier, studies in mouse B cells have revealed a large 

number of AID dependent chromosomal translocations (Chiarle et al., 2011; Klein et al., 

2011b). Is it possible that the high prevalence of chromosomal translocations in DLBCL 
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might be due to a combination of R-loops, AID activity, and RNA exosome mediated 

targeting of AID? Unstable proto-oncogenes mutated in DLBCL are highly enriched for 

R-loop promoting non-template DNA strand G-rich sequences in comparison to 

translocation sites present in malignant T cells or AID negative B cells (Duquette et al., 

2007). Also, it has been reported that AID expression leads to a decrease in 

topoisomerase 1 expression in B cells (Kobayashi et al., 2009). Topoisomerase 1 

relieves torsional stress derived from negative DNA supercoils to suppress R-loop 

formation. Therefore, it is intriguing to speculate that AID expressing germinal center B 

cells may operate in a state more conducive to the formation of genome destabilizing co-

transcriptional R-loops. In addition, AID may also play a more active role in the initiation 

of R-loops. In addition to non-template DNA strand G-richness, a strong determinant of 

R-loop initiation is a nick in the non-template strand (Roy et al., 2010). As described 

earlier, deoxyuridine residues resulting from AID mediated deamination of deoxycytidine, 

are processed by BER and MMR DNA repair pathways involving nicked DNA 

intermediates. These AID derived nicks may promote R-loop initiation leading to 

transcriptional arrest and RNA exosome recruitment allowing for the stabilization of AID 

at these sites. This model is consistent with a previous observation indicating that AID is 

required for the recruitment of RNA exosome to transcribed IgH switch regions in B cells 

(Basu et al., 2011). Topoisomerase downregulation and AID dependent nicking of the 

non-template DNA strand may synergize to promote R-loop formation specifically in 

germinal center B cells. In turn, the greater need to resolve these R-loops would 

enhance the frequency of RNA exosome recruitment onto chromatin. Coupled with the 

observation that RNA exosome stabilizes AID occupancy at its target sites, enhanced R-

loop formation in AID expressing germinal center B cells may ultimately lead to the DNA 

rearrangement events that are so frequently observed in DLBCL. 
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 Burkitt’s lymphoma is an aggressive form of B-cell non-Hodgkin's lymphoma 

characterized by rapidly proliferating malignant B cells. Nearly all cases of Burkitt’s 

lymphoma involve chromosomal translocations between MYC and one of the 

immunoglobulin loci (Boxer and Dang, 2001). Approximately 80% of these cases 

specifically involve translocations between MYC and IgH. Burkitt’s lymphoma 

translocation breakpoints at MYC cluster within 3 regions (Boxer and Dang, 2001). Class 

I breakpoints map to a region close to the first exon and intron of MYC. Class II 

breakpoints cluster upstream, but proximal, to MYC exon 1. Lastly, the class III MYC 

breakpoints map several hundreds of kilobases away from MYC. Interestingly, the class 

I breakpoint overlaps with a transcriptional pause site. Nuclear runoff assays in a 

promyelocytic leukaemia cell line revealed a transcription elongation block mapping to 

the boundary between exon 1 and intron 1 at MYC (Bentley and Groudine, 1986). This 

same region is predicted to contain an R-loop forming sequence according to a 

computational algorithm created to identify potential R-loop sites genome-wide 

(Wongsurawat et al., 2012). Furthermore, ectopic expression of AID in yeast leads to 

chromosomal translocations at a transcribed human MYC sequence containing the first 

exon and intron of MYC (Ruiz et al., 2011). These heterologous MYC translocations 

were greatly enhanced in a THO deficient background, suggesting that the MYC 

translocations observed arise due to R-loop formation. Our data revealed significant R-

loop associated H3S10ph chromatin marks at Myc. We also uncovered RNA exosome 

substrate antisense transcripts precisely overlapping two distinct Myc translocation 

hotspots in B cells. One hotspot mapped immediately upstream of Myc exon 1, the other 

mapped at the boundary region between exon 1 and intron 1. Importantly, these two 

regions of RNA exosome substrate antisense transcription are the same two regions 

where MYC proximal breakpoints cluster in Burkitt’s lymphoma. R-loop mediated 

premature termination of antisense transcription may facilitate RNA exosome mediated 
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targeting of AID to these two sites, ultimately resulting in DNA breakage at MYC. These 

breaks could then go on to ligate to DNA breaks frequently arising at IgH during 

immunoglobulin diversification to give rise to the highly oncogenic MYC/IgH 

rearrangements that drive the pathogenesis of Burkitt’s lymphoma. 

 Human mutations in RNA exosome subunit genes have been linked to heritable 

neurodegenerative disorders. Homozygous recessive mutations in EXOSC3 are 

responsible for pontocerebellar hypoplasia type 1 (PCH1) (Wan et al., 2012). Similarly, 

homozygous recessive mutations in EXOSC8, encoding another RNA exosome core 

subunit, results in cerebellar hypoplasia (Boczonadi et al., 2014). Two distinct heritable 

neurodegenerative disorders arise from mutations in SETX, which encodes the RNA 

exosome cofactor senataxin. Recessive SETX mutations are responsible for ataxia 

oculomotor apraxia type 2 (AOA2) (Moreira et al., 2004), while dominant SETX 

mutations are tied to a juvenile form of amyotrophic lateral sclerosis (ALS4) (Chen et al., 

2004). A mechanistic understanding is presently unclear regarding how these mutations 

give rise to the clinical features of these disorders. Might an accumulation of genome 

destabilizing R-loops be partly responsible for these developmental phenotypes? 

Interestingly, the recently described interaction between senataxin and RNA exosome at 

sites of transcription dependent DNA damage is abolished in AOA2 specific SETX 

variants (Richard et al., 2013). Furthermore, as all of the neurodegenerative disorders 

described here are heritable, they involve rare gene variants that circulate in human 

populations. These recessive variants may predispose otherwise healthy subjects to R-

loop associated genomic instability leading to more common malignant transformations. 

For instance, recurrent somatic mutations in the RNA exosome nuclease subunit gene 

DIS3, have been reported in multiple myeloma (Chapman et al., 2011) and acute 

myeloid leukemia (Ding et al., 2012). 
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4.3 Mechanisms of RNA exosome targeting to divergently transcribed 

promoters 

 Until relatively recently, transcription initiation in eukaryotes was thought to occur 

unidirectionally. In the case of mRNA, transcription initiation was to proceed in the 

direction of the translational reading frame. However, the development of nascent RNA 

labeling and purification schemes coupled with genome-wide deep sequencing has 

unequivocally demonstrated the bidirectional nature of eukaryotic transcription initiation 

(Core et al., 2008; Seila et al., 2008). The underlying cause of bidirectional transcription 

initiation ultimately relates back to eukaryotic promoter structure. Classical TATA box 

containing promoters are specifically recognized by the TATA-binding protein (TBP) 

component of the TFIID general transcription factor complex. Typically, approximately 30 

base pairs away from the TATA box lies an initiator sequence containing the TSS 

(Sandelin et al., 2007). These two distinct elements, the TATA box and initiator, create a 

vector that provides directional information allowing for unidirectional transcription 

initiation at TATA box containing promoters. However, only approximately 15% of human 

promoters contain identifiable TATA box elements (Cooper et al., 2006). Instead, the 

majority of mammalian promoters lacking TATA elements contain CpG dinucleotide rich 

sequences known as CpG islands (Sandelin et al., 2007). Transcription at CpG island 

promoters is thought to initiate through CpG-binding transcription factors such as Sp1, 

which in turn specifically recruit TFIID through direct protein-protein interactions (Hoey et 

al., 1993). As a result, TFIID binding and ultimately pre-initiation complex formation 

occurs on either side of CpG-binding transcription factors, leading to divergently directed 

bidirectional transcription initiation (Wu and Sharp, 2013). Incidentally, CpG island 

promoters are rare in Drosophila, and consequently transcription initiation is largely 

unidirectional in these species (Core et al., 2012). Transcription factor binding to DNA 

must overcome competing interactions from histones for the same site. This competition 
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between transcription factors and histones gives rise to nucleosome depleted regions of 

chromatin (Bai et al., 2011; Floer et al., 2010). As expected, transcriptionally active 

mammalian promoters contain pre-initiation complexes at nucleosome depleted TSS 

regions (Ozsolak et al., 2007). Furthermore, proximal H3K4me3 histone modifications 

can stimulate pre-initiation complex formation (Lauberth et al., 2013). Consistent with 

prevalent bidirectional transcription initiation, genome-wide chromatin 

immunoprecipitation studies have revealed a bivalent symmetrical distribution of 

H3K4me3 flanking the TSS at mammalian mRNA encoding genes (Barski et al., 2007; 

Guenther et al., 2007), thus promoting bidirectional pre-initiation complex formation. In 

fact, two distinct bidirectional transcription complexes can simultaneously occupy a 

single allele in divergent orientation (Rhee and Pugh, 2012). Despite that, promoter 

proximal antisense divergent ncRNA such as xTSS-RNA characterized in this work, as 

well as analogous transcripts observed in different species and by other laboratories 

(Flynn et al., 2011; Neil et al., 2009; Preker et al., 2008; Xu et al., 2009), are far more 

unstable compared to their cognate mRNA partners and require inhibition of RNA 

exosome activity for their reliable detection. Therefore, promoter directionality in 

eukaryotes is governed not through specific orientation queues during transcription 

initiation, but rather through differential degradation of divergent sense and antisense 

transcript pairs. 

 Recent studies have revealed degradation-coupled early transcription termination 

as a key determinant underlying promoter directionality in human and mouse. Coding 

strand motif analyses indicate antisense divergent transcripts are significantly 

enrichment in promoter proximal polyadenylation signals compared to sense pre-mRNA 

transcripts (Almada et al., 2013; Ntini et al., 2013). Polyadenylation signals play a critical 

role in transcription termination of RNAP II transcribed coding genes by specifying the 

site of endonucleolytic RNA cleavage and polyadenylation (Proudfoot, 2011). Inversely, 
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5’ splice site sequences recognized by U1 snRNP are strongly enriched within sense 

pre-mRNA transcripts in comparison with antisense divergent ncRNA transcripts 

(Almada et al., 2013; Ntini et al., 2013). The relevance of this distribution bias in U1 

snRNP binding sites lies in the fact that the U1 snRNP complex can inhibit transcription 

termination by suppressing polyadenylation signal utilization (Berg et al., 2012; Kaida et 

al., 2010). Importantly, U1 snRNP mediated suppression of transcription termination 

occurs within a 1 kilobase distance from the 5’ splice site sequence and operates most 

effectively proximal to the site of transcription initiation. Together, polyadenylation signal 

enrichment within antisense divergent transcripts and U1 snRNP binding site enrichment 

at sense pre-mRNA transcripts work in opposite fashion through transcription 

termination to impose a strong net transcriptional directionality on an otherwise 

inherently bidirectional process. It should be noted that additional mechanisms have 

been shown to promote transcriptional directionality in eukaryotic cells. Gene looping 

between sites of transcription initiation and termination bring these two regions of 

chromatin in close spatial proximity. Mutations in Ssu72, a phosphatase associating with 

sites of transcription initiation and termination, can disrupt gene looping between these 

sites (Tan-Wong et al., 2012). Surprisingly, disruption of gene looping leads to the 

accumulation of promoter derived antisense divergent transcripts (Tan-Wong et al., 

2012). It is presumed that looping of the termination and initiation sites promotes 

transcriptional directionality by allowing terminating RNAP II to reinitiate at the promoter. 

Remodeling of nucleosome positioning can also play a role in transcriptional 

directionality. In yeast, the Isw2 chromatin remodeling complex directionally repositions 

nucleosomes towards intergenic noncoding regions and away from coding sequences 

near sites of transcription initiation (Whitehouse et al., 2007). Loss of Isw2 function 

results in cryptic transcription arising from noncoding regions adjacent to genic coding 

sites, presumably due to nucleosome depletion at these regions. More recently, an 
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unbiased screen for regulators of promoter directionality in yeast has revealed chromatin 

assembly factor I (CAF-I) as a repressor of promoter derived antisense divergent 

transcription (Marquardt et al., 2014). CAF-I introduces H3K56ac modified histones onto 

DNA, a chromatin mark enriched at sites of rapidly exchanged nucleosomes such as 

nucleosome depleted regions surrounding promoters (Dion et al., 2007; Rufiange et al., 

2007). Presumably, CAF-I inhibits antisense divergent transcription by limiting the 

nucleosome depleted residency time of promoter upstream sequences by depositing 

H3K56a histones onto these regions, thus preventing DNA access to transcription 

initiation factors. Therefore, assembly and remodeling of chromatin can also play 

important roles in the control of promoter directionality.  

 As discussed above, antisense divergent transcripts are geared to undergo early 

termination. It remains an open question as to why and how these early terminating 

transcripts are specified for RNA exosome mediated degradation. Interestingly, RNAP II 

termination involving polyadenylation signals, such as those present in pre-mRNA, are 

recognized by cleavage and polyadenylation factors that ultimately promote transcript 

stabilization. However, these same polyadenylation signals trigger degradation-coupled 

termination in the context of antisense divergent transcripts such as xTSS-RNA. It has 

been proposed that proximity to the site of transcription initiation may dictate the choice 

between RNA polyadenylation versus degradation at polyadenylation signals (Jensen et 

al., 2013). In yeast, RNA exosome sensitive antisense divergent transcripts are 

terminated shortly after initiation via the Nrd1-Nab3-Sen1 (NNS) termination complex 

(Arigo et al., 2006; Thiebaut et al., 2006). The NNS complex physically interacts with 

RNA exosome and its cofactor adenylation complex TRAMP (Vasiljeva and Buratowski, 

2006), coupling early transcription termination with RNA exosome mediated degradation. 

The TSS position effect on RNA exosome coupled NNS termination involves interactions 

between the NNS complex and RNAP II C-terminal domain (CTD) heptad repeat. 
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Specific RNAP II CTD post-translational modifications are generally associated with 

different stages of RNAP II elongation status. Serine-5 phosphorylation of RNAP II CTD 

is largely associated with initiating or early elongating RNAP II, whereas serine-2 CTD 

phosphorylations typically mark RNAP II molecules during productive elongation (Egloff 

et al., 2012). The Nrd1 subunit of the NNS complex interacts far more strongly with CTD 

phosphorylations on serine-5 residues compared with serine-2 (Vasiljeva et al., 2008), 

suggesting that early elongation RNAP II CTD modifications may be implicated in the 

TSS position effect on degradation coupled early transcription termination. Along with 

binding to RNAP II CTD, Nrd1 also serves as an RNA binding protein (Creamer et al., 

2011; Wlotzka et al., 2011). Interestingly, Nrd1 RNA binding motifs are enriched within 

TSS associated antisense divergent transcripts compared to partner coding transcripts 

(Schulz et al., 2013). Consistent with this observation, Nrd1 depletion leads to a 

significant accumulation of TSS associated antisense divergent transcripts, while sense 

coding transcripts are hardly affected (Schulz et al., 2013). Collectively, NNS mediated 

termination, which is tightly coupled with RNA exosome mediated degradation, restricts 

antisense divergent transcription through both early elongation RNAP II CTD 

modifications and specific RNA motifs enriched within antisense divergent transcripts. It 

is also noted that histone modifications also play a role in differentially promoting 

degradation coupled transcription termination in the antisense direction. H3K79me2 and 

H3K36me3 modified histones occupy regions of chromatin associated with transcription 

elongation and are strongly enriched in sense coding regions relative to antisense non-

coding regions of divergent transcript pairs (Barski et al., 2007; Seila et al., 2008). 

H3K36me3 has been found to facilitate recruitment of the histone chaperone FACT 

complex to promote transcription elongation (Carvalho et al., 2013). Thus, the paucity of 

H3K36me3 chromatin marks at regions of antisense divergent transcription could result 
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in greater frequency of RNAP II arrest to further promote degradation coupled early 

transcriptional arrest over these regions. 

 Surprisingly, orthologs of NNS termination complex subunits Nrd1 and Nab3 are 

absent in higher eukaryotes (Jensen et al., 2013), despite being essential for viability in 

yeast (Conrad et al., 2000; Steinmetz and Brow, 1996). In contrast, the Sen1 helicase 

subunit of NNS has been retained as human ortholog senataxin (SETX) (Moreira et al., 

2004). Sen1 and senataxin likely share some of the same functions as deficiency of 

either factor leads to impaired transcription termination (Mischo et al., 2011; Suraweera 

et al., 2009). Early studies seeking to uncover interacting proteins of the NNS complex 

using tagged Nrd1 confirmed the known interaction with Sen1, but also revealed an 

interaction involving both subunits of the heterodimeric nuclear cap-binding complex 

(Vasiljeva and Buratowski, 2006). As mentioned earlier, in human cells RNA exosome 

physically associates with components of the nuclear cap-binding complex (Andersen et 

al., 2013). Interestingly, depletion of cap-binding complex subunits leads to impaired 

transcription termination and a synergistic hyper-accumulation of antisense divergent 

non-coding transcripts in conjunction with RNA exosome depletion (Andersen et al., 

2013). It is possible that in mammalian cells senataxin cooperates with the nuclear cap-

binding complex to facilitate the recruitment of RNA exosome to arrested antisense 

divergent transcription complexes.  

 Multiple reasons may exist for why cells would need to rapidly degrade 

noncoding transcripts arising from antisense divergent transcription. For instance, what 

harms might be posed if cells allowed such prevalent transcripts to accumulate under 

normal situations? One possibility is that antisense divergent transcripts could contain 

short open reading frames that could give rise to deleterious peptides possessing 

dominant negative activities or which might be prone to aggregation. If allowed to 

persist, antisense divergent transcripts could conceivably be processed by cellular RNA 
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interference machinery into miRNA to deregulate gene expression. Alternatively, 

antisense divergent ncRNA might function as molecular sponges by competing with 

mRNA 3’ UTRs for miRNA bound RNA-induced silencing complex (RISC) binding. 

Furthermore, the act of divergent transcription creates a zone of negative DNA 

supercoiling between the two RNA polymerases. As negative supercoils promote R-loop 

formation, degradation of associated R-loops may promote transcription and help to 

maintain genomic stability. Incidentally, this process is likely aberrantly exploited by AID 

resulting in TSS proximal DNA damage leading to chromosomal translocations in B 

cells.  

 Given the risks associated with divergent non-coding transcription, it is 

interesting to speculate why eukaryotic cells not only tolerate it, but also apparently 

select for it. Remarkably, 10% of protein coding genes in the human genome are 

organized in a divergent orientation separated by less than 1 kilobase (Wu and Sharp, 

2013). Furthermore, a majority of long non-coding RNA (lncRNA) found in mouse 

embryonic stem cells are derived from divergently oriented lncRNA-mRNA gene pairs 

(Sigova et al., 2013). Evidence of positive evolutionary selection for divergent 

transcription can be observed in species specific lncRNA as well. Comparative genomic 

studies have revealed over 1,000 divergently transcribed human lncRNAs lack an 

equivalent mouse ortholog (Gotea et al., 2013). These observations have prompted 

some to propose that RNA exosome targeted antisense divergent transcripts may serve 

as evolutionary precursors of lncRNA and mRNA (Wu and Sharp, 2013). In fact, 

correlative evidence linking transcript stability with sequence content supports this 

hypothesis. As mentioned above, a consequence of divergent transcription is 

stabilization of R-loops due to enhanced negative supercoiling of intervening DNA. This 

would prolong the exposure time of the non-template DNA strand as ssDNA and 

increases its susceptibility to environmental deamination leading to gains in guanosine 
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and thymidine residues (Wu and Sharp, 2013). In fact, transcribed regions have 

produced a mutational strand asymmetry during the course of mammalian evolution 

resulting in greater guanosine and thymidine accumulation on the non-template DNA 

strand (Green et al., 2003). Sharp and colleagues have proposed that the 

aforementioned asymmetric mutational bias may favor the gain of guanosine/thymidine-

rich U1 snRNP binding sites and loss of adenosine-rich polyadenylation signals (Wu and 

Sharp, 2013). This in turn would promote stabilization of RNA exosome targeted 

antisense divergent transcripts by reducing transcription termination frequency and 

lengthening the transcription unit. Consistent with this model, RNA exosome substrate 

antisense divergent ncRNA-mRNA, lncRNA-mRNA, and mRNA-mRNA divergent gene 

pairs display increasing ratios of U1 snRNP binding sites to polyadenylation signals in 

the antisense direction, and consequently resulting in increasing transcript stability 

(Almada et al., 2013). Therefore, in addition to gene duplication followed by sequence 

divergence, pervasive antisense divergent transcription may create an opportunity for de 

novo gene formation through natural selection. 

 

4.4 Concluding remarks 

 Recent major advances in nucleic acid sequencing technologies have made it 

increasingly clear that vast portions of eukaryotic genomes are extensively transcribed 

as noncoding RNA. These transcripts are usually short lived and have long evaded 

detection. The experiments and analyses performed in this thesis strongly support a role 

for RNA exosome in the processing and/or degradation of a large class of noncoding 

transcripts in mammalian cells. Most prominently, RNA exosome substrate noncoding 

transcripts are abundantly transcribed upstream of many mRNA expressing promoters in 

an antisense divergent orientation. In addition, a large number of cryptic intragenic 

initiating antisense transcripts are suppressed through RNA exosome mediated 
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degradation processes. A consequence of promoter proximal divergent transcription 

and/or intragenic antisense transcription is the creation of torsional stress or polymerase 

interference that can promote transient R-loop formation leading to premature 

transcription termination. RNA exosome is likely recruited to sites of arrested 

transcription for the purpose of resolving these potentially genome destabilizing 

structures. Indeed we observed that genomic sites displaying RNA exosome activity 

displayed higher levels of termination promoting R-loops. 

 SHM and CSR are two critical B cell pathways involved in the generation of high 

affinity effector function enabled immunoglobulins. These pathways are initiated via AID 

mediated transcription coupled deoxycytidine deamination of Ig loci. Many studies have 

revealed extensive transcriptional stalling at Ig loci in activated B cells. In the case of 

IgH, structural and sequence determinants such as asymmetric G-richness and 

repetitiveness can promote R-loop formation that consequently lead to premature 

transcription termination. Through its interaction with RNA exosome, AID likely gains 

access to substrate DNA by exploiting cellular mechanisms that resolve arrested 

transcription complexes through degradation coupled termination.  

 Although B cells display a remarkable ability to target the mutagenic activity of 

AID largely to Ig loci, the rest of the genome is not entirely spared. For instance, it has 

long been appreciated that AID is responsible for initiating DNA breaks at MYC and IGH 

that ultimately give rise to oncogenic chromosomal translocations driving B cell 

transformation in Burkitt’s lymphoma. In fact, genomic studies of AID occupancy on 

chromatin have revealed significant AID binding throughout the genome. It has also 

been demonstrated that AID can introduce extensive amounts of DNA damage covering 

wide portions of the B cell genome resulting in chromosomal translocations. Findings 

presented here indicate a significant association between sites of RNA exosome 

targeted noncoding transcription and recurrent AID dependent chromosomal 
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translocations. This supports a model whereby RNA exosome mediated RNA processing 

events recruit AID to arrested noncoding transcription complexes resulting in DNA 

damage at such sites, thereby creating an important link between transcription coupled 

RNA processing and genomic integrity in B cells. 
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