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Abstract
Environmental indicators are increasingly being used in policy and management contexts, yet
serious data deficiencies exist for many parameters of interest to environmental decision making.
With its global synoptic coverage and the wide range of instruments available, satellite remote
sensing has the potential to fill a number of these gaps, yet their potential contribution to
indicator development has largely remained untested. In this paper we present results of a pilot
effort to develop satellite-derived indicators in three major issue areas: ambient air pollution,
coastal eutrophication, and biomass burning. A primary focus is on the vetting of indicators by
an advisory group composed of remote sensing scientists and policy makers.
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1. Introduction

Environmental indicators and aggregate indices reduce com-
plexity in policy-relevant ways, providing an important link
between science and policy and helping to point decision-
makers towards potential solutions to environmental pro-
blems. Indicators need to be able to separate the signal from
the noise, to make perceptible trends or phenomena that might
otherwise be lost in a sea of raw data (Hammond et al 1995).
There has been growing research on the influence of envir-
onmental indicators and indices in policy and management
contexts (de Sherbinin et al 2013, Unander 2005, Hezri and
Dovers 2006, POINT 2011, Morse 2011), with findings
showing that in selected contexts indicators can have a sig-
nificant impact on framing issues and driving changes in
policies and management practices.

Among many scientists raw monitoring data or scientific
analyses are often taken as ‘indicators’ of environmental
change. For audiences with sufficient technical expertise such
data can be useful for day-to-day management decision-
making. However, to be useful for higher level policy-making
indicators need to be properly designed to indicate progress
towards targets (desired outcomes) or to provide meaningful
trends or comparisons. For example, indicators can help
reduce complexity so that policy choices can be framed
clearly; they can help identify a need for intervention through
the analysis of trends or correlations with other indicators;
and they can help discover potential sources of innovation by
comparing across units. Indicators also help society to
deliberate about desired futures and possible solutions to
environmental concerns and they can drive action to tackle
environmental problems. To achieve these goals, it helps to
develop indicators for administrative units over which policy
makers have responsibility. This generally requires the
aggregation of spatial data to administrative units, normal-
ization (by area or population), statistical transformation of
raw data, and data reduction in order to improve commu-
nication and interpretation (OECD 2008, Ravenga 2005,
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Braat 1991). To further reduce complexity, indicators may be
aggregated into composite indices to summarize status or
progress across multiple environmental issue areas (e.g., Hsu
et al 2014, Wackernagel et al 2002).

A major challenge for environmental indicator develop-
ment has been persistent data gaps (Esty et al 2005, Hsu
et al 2014). Satellite remote sensing has the potential to
overcome these gaps by providing wall-to-wall coverage over
decadal time scales for important environmental parameters
(Esty et al 2005, Ravenga 2005). However significant barriers
to the use of satellite data for indicator development remain.
These relate to difficulties in accessing and using the data,
differences between what satellites actually measure and
parameters of interest to decision-makers, limited collabora-
tion between the environmental measurement and Earth
observing satellite communities to develop robust satellite-
based indicators, technical issues such as cloud cover inter-
fering with satellite data collection, and a lack of cross-cutting
technical and funding resources (Hsu et al 2013, National
Research Council 2007, Engel-Cox et al 2004). On top of
these barriers are the gaps in the perception of ‘readiness for
use’ and permissible levels of uncertainty between those in
the remote sensing community who have the technical
expertise to process remote sensing data, and those in the
policy community who could benefit from the indicators.

We explore these issues through lessons learned from a
project funded by NASA’s Applied Sciences Program, which
brought together stakeholders from the scientific and policy
communities to explore the utility and readiness of indicators
derived from remote sensing3. The goal of the project was to
develop a scientifically robust set of indicators that would
help policymakers to make informed decisions and ultimately
support policies and programs to protect the environment.
The focus was on three application areas: airborne particulate
matter concentrations, biomass burning, and coastal chlor-
ophyll trends. In the remaining sections we describe the
approach of using a cross-cutting advisory group (AG) to
guide and vet indicator design, we briefly present indicator
results in the three categories, and conclude by discussing
perceptions by remote sensing scientists and policy makers on
the readiness for use of the pilot indicators. Supplementary
Online Material (SOM) provides a brief review of efforts to
use satellite data for high-level decision making, additional
details on the methods and results in the three application
areas, and results of a survey of AG members.

2. Approach

Our approach began with the identification of environmental
issues that command the attention of policymakers, are pla-
gued by significant in situ data gaps, and had the potential to

be developed into indicators using satellite data. An under-
standing of the issues of greatest salience and data gaps was
garnered through more than a decade of collaboration by
CIESIN and Yale University in developing the Environmental
Sustainability Index (successive releases from 2000–2005)
and the Environmental Performance Index (successive relea-
ses from 2006–2014) (Hsu et al 2014, Esty et al 2005).
Identification of relevant satellite datasets drew on experience
such as support for the Group on Earth Observations (GEO)
in assessing satellite products to meet critical societal needs
(Zell et al 2012).

The co-authors worked with an AG of policy experts,
scientists, and remote sensing specialists. The AG included
members from agencies using environmental indicators (The
World Bank, Millennium Challenge Corporation (MCC), and
the US Environmental Protection Agency (EPA)), academics
specializing in the policy use of indicators, and remote sen-
sing and subject area specialists based at the National Aero-
nautics and Space Administration (NASA), NOAA,
universities, research institutions, and other government
agencies (table 1). To ensure relevance to international sta-
keholders, a portion of the AG was from outside the US. AG
members were selected based on their technical expertise,
often through recommendations from peers, and with a goal
of achieving a balance of membership across government
policy and scientific agencies, international agencies, and
academia; the air pollution sub-group was larger owing to
pre-existing work by team members at CIESIN and Battelle
(e.g., Emerson et al 2010 and 2012, YCELP and CIESIN
(Yale Center for Environmental Law and Policy and Center
for International Earth Science Information Network at
Columbia University) 2011, Engel-Cox et al 2004).

The role of the AG was to identify relevant monitoring
data and to vet methodologies and results for both scientific
robustness and policy relevance, including a final written
survey of AG members on the feasibility of satellite-based
environmental indicators. With quarterly input from the AG,
the project team assembled relevant remote sensing datasets,
performed geospatial analysis, presented the results to agen-
cies and decision-makers, and prepared final indicator data
sets and recommendations. It should be noted that not every
AG member in table 1 was involved at all stages; many of the
scientists provided more input at early stages of methodolo-
gical development, whereas the policy stakeholders were
better represented during the indicator evaluation stage. This
was not by design, but probably reflected preferences on the
part of the different groups. We provide AG feedback on the
individual indicators in the following sections, and review
overall interactions and findings in the discussion section.

3. Air quality

3.1. Background

Poor air quality is a major concern worldwide. The World
Health Organization (WHO) estimates that as many as 1.4
billion urban residents around the world breathe air with

3 The project’s full title was ‘Using Satellite Data to Develop Environmental
Indicators: An application of NASA Data Products to Support High Level
Decisions for National and International Environmental Protection.’ The
project represented a significant departure from the more technical
applications of remote sensing for decision-support generally funded by
NASA ROSES calls.
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pollutant levels exceeding the WHO air quality guidelines.
According to Lim et al (2012), outdoor air pollution is a
major contributor to the global environmental burden of
disease. The WHO indicates that it causes close to one million
premature deaths worldwide each year, with particulate matter
as a leading contributors (Ostro 2004). As such, air quality
has garnered the attention of policymakers worldwide. While
several air pollutants have adverse health effects, PM2.5

(microscopic particles less than 2.5 μm in diameter that lodge
deep in the lungs) is widely recognized as the worst, owing to
its potential to contribute to respiratory and cardiovascular
disease in exposed populations.

Understanding air pollution levels, sources, and impacts
is a critical first step in addressing air pollution problems (Hsu
et al 2013). However, ambient air quality monitors are rela-
tively sparse in many parts of the developing world, and even
where they exist, only represent air quality conditions in the
immediate vicinity of a monitor (Gutierrez 2010). There are
significantly more pollutant monitors within North America
and Western Europe (approximately 4100 monitors) than
collectively in the rest of the world (Engel-Cox et al 2012).
This disparity represents a significant in situ data gap in much
of the developing world that hinders inclusion of air quality in
global environmental indicators.

Satellite remote sensing air quality datasets offer the
potential to fill that gap (Hsu et al 2013, Martin 2008). Based
upon AG consultations, the project team focused principally
on PM2.5, given the health impacts and recent advances in
correlation of satellite data with surface level PM2.5 con-
centrations. (For a discussion of other satellite-derived air

quality indicators proposed to the AG, see the SOM.) A
primary satellite-derived dataset relevant to PM2.5 is Aerosol
Optical Depth (AOD), a measurement of scattering of light
between the satellite and ground surface. AOD is available
from a number of satellites worldwide, including NASA’s
Moderate Resolution Imaging Spectroradiometer (MODIS)
and Multi-angle Imaging Spectroradiometer (MISR) instru-
ments on the Terra satellite. Numerous studies have shown
that AOD is proportional to PM2.5 (e.g., Hoff and Christo-
pher 2009, Weber et al 2010) and can be used as a surrogate
dataset to fill the spatial gaps of ground-based monitoring
networks.

3.2. Summary methods

Two related methodologies were developed for calculation of
the air quality indicator. Here we briefly describe the first
method, which relied on an existing dataset of satellite-
derived surface level PM2.5 concentrations for 2001–2006
(van Donkelaar et al 2010) to craft a policy-relevant pilot
indicator that accounts for population exposures and is geo-
graphically aggregated. Details on the second method, which
used conversion factors from van Donkelaar et al to process
time series particulate matter grids based on MODIS/MISR
data, are presented in the SOM.

van Donkelaar et al (2010) generated a global, satellite-
derived, annual average PM2.5 surface for the years 2001–06
based on level 2 (L2), daily MODIS and MISR satellite
instrument AOD (figure 1). The results were validated against
coincident and non-coincident ground-based measurements of
PM2.5 with high levels of agreement. The geographic

Table 1. Advisory group members.

Name Organization Area of specialty

Policy Jane Metcalfe EPA Office of International Affairs Air pollution, international decision-making
Steve Young EPA Office of Environmental Info. Environmental indicators
Glenn-Marie Lange World Bank, Environment Dept. Environmental policy and indicators
Thomas Bauler Free University of Brussels Policy influence of indicators
Andria Hayes-
Birchler

Millennium Challenge Corporation Indicators as a selection criteria for devel-
opment aid disbursement

Air Pollution Jill Engel-Cox Battelle Air pollution remote sensing
Ana Prados Univ. of Maryland Baltimore Campus Air pollution remote sensing
Dale Quattrochi NASA Marshall Space Flight Center RS apps for air quality and public health
Aaron Cohen Health Effects Institute Epidemiology of air pollution health effects
Greg Carmichael University of Iowa Air pollution remote sensing
Randall Martin Dalhousie University Air quality and biomass burning
Jun Wang University of Nebraska Aerosols
Daven Henze University of Colorado Particulates in Africa
Pat Kinney Columbia University Particulates in Africa
Darby Jack Columbia University Particulates in Africa
Kelly Chance Harvard/Smithsonian Atmospheric remote sensing

Biomass Burning Louis Giglio Science Systems and Applications MODIS active fire data
David Ganz The Nature Conservancy Ecosystem impacts of fire
Doug Morton Goddard Space Flight Center Emissions from biomass burning
Luigi Boschetti University of Maryland MODIS active fire and burn scar data

Coastal Water Quality Ajit Subramaniam Lamont-Doherty Earth Observatory Ocean color, SeaWiFS applications
Mazlan bin Hashim Technical University of Malaysia (UTM) Coastal water quality, air quality
Richard Stumpf NOAA, Coastal Oceanographic Assessment,

Status and Trends Branch
Harmful algal bloom forecasting systems
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coverage of the dataset is nearly global with a horizontal
resolution of 0.1° × 0.1°. Coincident aerosol vertical profiles
from the GEOS-Chem chemical transport model, validated
with CALIPSO space-borne lidar vertical profiles, were used
to calculate daily conversion factors that account for the
relationship between satellite column AOD and surface PM2.5

concentrations. The AOD–PM2.5 relationship varies spatially
and temporally due to global and seasonal variations in
aerosol size, aerosol type, relative humidity, and boundary
layer height. The conversion factors were applied by van
Donkelaar et al to the MODIS/MISR AOD data to estimate
surface-level PM2.5 concentrations, measured in micrograms
per cubic meter (μg m−3).

A population-weighting was applied to the surface-level
PM2.5 concentrations in order to create an exposure indicator
with human health policy relevance. Population weighting
simply gives greater weight to PM2.5 concentrations in more
populated areas than in less populated areas, thereby ensuring
that measures tied to administrative units are not biased by
large sparsely populated areas with relatively clean air. To
implement the population-weighting, the fraction of the total
country population within each grid cell of a country was
determined using the Global Rural–Urban Mapping Project
(GRUMP), v1 population dataset representing the year 2000
(Center for International Earth Science Information Network
(CIESIN)/Columbia University, International Food Policy
Research Institute (IFPRI), The World Bank, and Centro
Internacional de Agricultura Tropical (CIAT) 2011). The
population-weighted PM2.5 indicator was then calculated as
the country sum of the product of the estimated PM2.5 con-
centration for a grid cell and the fraction of the population
within that grid cell4. The result represents an average con-
centration of PM2.5 to which a country’s population is
exposed.

3.3. Results

The results show patterns of PM2.5 concentrations above
WHO guidelines of 10 μg m−3 annual average PM2.5, as
shown by the colored areas in figure 2. High concentrations
are found in several European countries, much of dryland
Africa, the Middle East, and South and Southeast Asia. Par-
ticularly high average exposure is found in China (56 μg m−3,
more than five times the WHO concentration guideline). One
hundred out of 156 countries have concentrations above
WHO guidelines for PM2.5. At the recommendation of the
AG, average exposure was also calculated at province/state
levels to highlight concentration differentials particularly
within large, densely populated countries (SOM, figure 1).

3.4. AG review

The limitations of air quality satellite measurements include
deriving surface-level concentrations from column measure-
ments, understanding spatial patterns at scales finer than the
native satellite spatial resolution (e.g., 10 km2 for daily
MODIS AOD although 3 km2 products are becoming avail-
able), dealing with missing data, and maintaining continuity
of measurements as satellites degrade and are replaced. While
the team developed approaches to address most of these
limitations, the AG felt that the satellite-based air quality
indicators are more properly understood as a communication
tool, and would not be useful per se in identifying mitigation
strategies. This indicator does not have sufficient detail to
support development of pollution control strategies since it
does not address critical issues such as pollutant transport and
chemistry. However, it should be noted that the use of the
indicator for communication is consistent with our definition
of a policy-relevant indicator.

AG engagement provided a number of additional insights
on the suitability of satellite data for indicator development.
The requirements for indicators to be scientifically rigorous,
policy relevant, transparent, and sustainable underlie the

Figure 1. Satellite-derived annual average surface-level PM2.5 concentrations at 50% relative humidity, 2001–06 (map generated from data
available at http://fizz.phys.dal.ca/~atmos/martin/?page_id=140).

4 Due to the resolution of the satellite data, this calculation was performed
only for those countries with an area greater than 200 km2, eliminating most
small island countries and some city-states.
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suitability of satellite data (and particularly, air quality data)
for environmental indicators. The two methods tested, the
second of which involved using time series satellite AOD data
with simplified assumptions, illustrate trade-offs among these
criteria for alternate methods of applying satellite-based air
quality data. Method 1 employs higher temporal and spatial
resolution data than Method 2, more accurately capturing
spatial and temporal variations in pollutant levels. Method 1
also relies on computing resources and knowledge of che-
mical transport models. Method 2 can be calculated by a
geographic information system expert with internet access
and a detailed methodology including a file of AOD/PM2.5

ratios and filters, and can be developed as a time series and
routinely updated5. Method 2 thus has higher sustainability in
terms of lending itself to self-calculation by non-experts.

AG members cited the complex relationship between
satellite-derived AOD and surface PM2.5 exposure—espe-
cially as it relates to disease risk—as a potential factor lim-
iting indicator readiness. Also, one AG member noted that if
the observation time of the satellite does not correspond to
peak PM2.5 concentrations locally, then the corresponding
satellite data may not provide the best representation of
population exposure to air pollution. Although this problem
may not be significant on a global scale, it should be
addressed in future analyses to prevent potential mis-
interpretation or ‘over-trusting’ of the indicator results by
decision makers who are not familiar with the details of the
satellite dataset.

There are trade-offs between the use of satellite data and
other forms of air quality monitoring and modeling outputs to
support environmental indicators. Given that air quality
monitors are relatively sparse in many parts of the developing
world, satellite data helps fill a significant in situ data gap that
hinders inclusion of air quality in global environmental
indicators. The amount of labor required to operate a few

monitors in a city is virtually the same as the labor required to
calculate a satellite-based indicator for the entire world, on the
order of a few hundred hours per year. Ground-based air
quality monitors can cost tens of thousands of US dollars for
initial purchase and several thousand US dollars for operation
and maintenance. They also require well-functioning institu-
tions and trained technicians to produce consistent, high
quality data. Development of satellite derived estimates
requires considerably less investment and expertise. Possible
next steps are described in the SOM.

4. Biomass burning

4.1. Background

Biomass burning has a number of environmental impacts,
including greenhouse gas emissions, health impacts from fire-
related pollution (Johnston et al 2012), and ecosystem effects
(Nepstad et al 1999). Some 20% of global emissions of
greenhouse gases are due to fire activity (Bowman
et al 2009), and the resulting emissions of black carbon are a
major contributor to climate change and human health issues
(Shindell et al 2012). Research suggests that climate change
is contributing to an increase in fire activity in some regions
(Westerling et al 2009, Flannigan et al 2009), resulting in a
positive feedback loop of forest drying contributing to fires,
which contributes to greenhouse gas emissions and ultimately
more climate change and fires.

For the purposes of this indicator, it was assumed that
most fire activity is either directly or indirectly due to human
activity. An example of the former would be fires intention-
ally set to clear land for agriculture or to prepare land for
cultivation, or accidentally set owing to failure to contain a
fire in combination with drought conditions. An example of
the latter would be forest fires produced by lightning strikes in
areas where land clearing processes or climate change has
resulted in a substantial alteration to the moisture content of
the vegetative cover. Although the evidence for the human

Figure 2. Population-weighted annual PM2.5 concentrations by country (2001–2006).

5 van Donkelaar et al (2013) have subsequently developed a time series of
their own using improved modeling methods which were used in the
development of two air quality indicators in the 2014 EPI (Hsu et al 2014).
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influence on fire activity is mixed (see for example Krawchuk
et al 2009 and Le Page et al 2010), in the context of changing
land use and climate conditions there is reason to believe that
trends can be ascribed to human influences. For example, in a
global assessment of fire activity, Chuvieco et al (2008) found
a high association between population distribution and fire
persistence. Therefore, our indicator focused on patterns and
trends (spatial and temporal variation) in biomass burning
with an emphasis on emissions and ecosystem impacts, with a
goal of identifying countries with either increases or decreases
in biomass-burning related emissions. Decreases in emissions
would presumably signal countries that are improving their
fire activity management over time, although the potential for
major influence from short term climate variability or longer
term climate change cannot be ignored as a contributing
factor to fire activity. We address this in section 4.4.

4.2. Methods

For this indicator the AG recommended that we leverage prior
work in assembling the Global Fire Emissions Database 3
(GFED3), a 13-year validated time series gridded emissions
database (1997–2009) (van der Werf et al 2010). GFED3 is
summarized on a half degree grid, though the emissions
estimates come from higher resolution underlying burned area
and active fire data. For the time period since 2000, more than
90% of the global burned area was mapped using MODIS
500 m resolution data. GFED3 emissions estimates (annual
estimated tons of carbon per pixel) are further subdivided by
fire type within every half degree cell: deforestation and
degradation fires, savanna fires, woodland fires, forest fires,
agricultural waste burning, and tropical peatland fires.

The following steps were followed to create the indica-
tors. We added total emissions from forest, deforestation and
degradation, woodland, savanna, and tropical peatland fire
emissions; we omitted agriculture waste burning because this
reflects seasonal fires that tend to have low net carbon
emissions (crops quickly grow back resulting in re-absorption
of carbon dioxide from the atmosphere). In ArcGIS 10 we
created annual grids of emissions for these biomass burning
types. Using R, we produced a cluster map on a gridcell basis
depicting areas where there is both high frequency and
intensity (total) of emissions (results presented in SOM). We
regridded the data set at 2.5 min (∼4 km at equator), so that it
would better correspond to the CIESIN country boundary
data, and then we produced total emissions by country
and year.

4.3. Results

The country-based indicator of average annual emissions over
the last five years of the time period shows very high emis-
sions in the United States, northern South America, Central
Africa, Australia, India and China (table 2). Figure 3 depicts
emissions divided by land area. Among countries with tem-
perate climates the US, Canada, Russia, and Australia are
major emitters per land area, as are most countries with dense

tropical forests with the exception of Liberia, Gabon and
Congo-Brazzaville.

We sought to determine if there were significant trends in
country level emissions over the ten year period. We could
not identify any significant trends in the slope of ton of carbon
emissions by year given the small sample size (n= 10), but
there are a number of countries that saw large percentage
increases and decreases in emissions when comparing the first
half of the period to the second half (figure 4). Brazil, Peru
and Bolivia saw large increases of 37%, 20%, and 73%,
respectively, presumably owing to recent droughts and
increases in forest fire activity in the Amazon Basin over this
period. Algeria saw a near doubling in emissions. Much of
South Asia is also a hotspot of increased burning between the
two time periods.

4.4. AG review

An original goal of this indicator was to determine which
countries are improving their fire management over time, as
signaled by declining emissions. This goal turns out to be
difficult to achieve. Although human land management
activities are indeed important and can affect overall emis-
sions, year-on-year variations are more likely to be driven by
climatic factors. In work not presented here, we sought to
identify statistically significant trends in emissions, but given
the short time series (n= 10) and high inter-annual variability,
very few countries had significant trends. The percent change
map (figure 4) could be used to conduct further analysis
regarding the possible impact of management, positive or
negative. Normalizing emissions by rainfall could potentially
result in an indicator that more effectively identifies areas
where land management activities are contributing to
increasing trends. One additional issue with the trend
approach is that forest burning depletes forest biomass, so
there may be an upper asymptote beyond which biomass
burning tends to level off. In other words, declining emissions
could mean a country has largely been deforested.

Table 2. Total biomass burning carbon emissions (excluding
agricultural waste) by country (in million metric tons), average for
the period 2005–2009 (top 20 countries).

Country
Total
carbon Country

Total
carbon

Brazil 76 090 Tanzania 15 492
Dem. Rep. of
Congo

49 680 United States of
America

14 798

Angola 41 012 Nigeria 10 344
Indonesia 38 239 Boliva 10 113
Sudan (North and
South)

37 429 Myanmar 9870

Australia 34 800 Ethiopia 9457
Central African
Republic

32 714 Cameroon 8766

Mozambique 28 470 Chad 8686
Zambia 27 878 Madagascar 8422
Canada 20 072 Ghana 6809
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A second goal of pinpointing areas of high biomass
burning for policy attention was partially accomplished,
though it would be good to use the cluster analysis results
(presented in the SOM) in combination with information on
the type of fire activity (forest, agriculture, peatland, etc) to
identify fire ‘hotspots’ that might link to potential policy
responses. This relates to a critique by the AG, that the
indicator conflates a number of separate policy issues,
including deforestation and land degradation (in some cases

not sustainable); sustainable agriculture and land use pro-
cesses; and peatland burning. It also does not adequately
address the nature of burning activity in geographically dis-
parate regions such as the boreal and tropical forests. The
types of burning and locations where burning is taking place
will require different policy responses, and the degree to
which the indicator is relevant to a policy process depends on
separating these out.

Figure 3. Total biomass burning carbon emissions (excluding agricultural waste) per 1000 sq km land area by country, average for the period
2005–2009 (mapped in deciles).

Figure 4. Percent change in biomass burning emissions (excluding agricultural waste) per land area between 2000–2004 and 2005–2009
(mapped in deciles).
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Overall, the AG identified this as an indicator with high
salience (owing to concern over GHG emissions) and high
robustness that was ready, once some of the above issues are
addressed, to be applied in policy contexts.

5. Coastal water quality

5.1. Background

The flow of nutrients into coastal waters from land-based
sources has seen a worldwide increase over the last decades
(Boesch et al 2009, Glibert et al 2008). A 20 year analysis
(1980–2000) of Coastal Zone Color Scanner (CZCS) and Sea-
viewing Wide Field-of-view Sensor (SeaWiFS) data found
dramatic increases in global average chlorophyll concentra-
tions of close to 22%, particularly in the southern hemisphere
and intertropical regions (Antoine 2005, Antoine et al 2005).
The resulting change in water quality has many potential
impacts on coastal and marine ecosystems. Phosphorus and
nitrogen contribute to enhanced algae growth, and subsequent
decomposition reduces oxygen availability to benthic sea
creatures like fish, shell fish, and crustaceans. Changes to
nutrient loadings can also change the phytoplankton species
composition and diversity. In extreme cases, eutrophication
can lead to hypoxia or oxygen-depleted ‘dead zones’ (Falk-
owski et al 2011) and harmful algal blooms, which have been
spreading (Diaz and Rosenberg 2008, Kahru and Mitch-
ell 2008, Glibert et al 2008). Yet in situ monitoring systems
are even more sparse than for atmospheric pollution con-
centrations (EPA (US Environmental Protection
Agency) 2008).

Given high variability in chlorophyll concentrations in
the coastal zone depending on the type of coastal waters (e.g.,
estuaries or upwelling areas), and even within short distances
in the same waters, it is not easy to determine a suitable target
or threshold for ‘harmful’ chlorophyll concentrations similar
to those that can be established for air pollutant concentra-
tions. Furthermore, bottom reflectance can affect acquisition
of ocean color parameters, rendering a snap shot in time
relatively meaningless. Thus, in consultation with the AG, our
approach to measuring coastal water quality was to measure
trends in chlorophyll-a (chl-a) concentrations from
1997–2007, with the assumption that any increase in con-
centrations is likely to signal a negative change, which is
consistent with the approach taken by others (Antoine 2005,
Antoine et al 2005). While this assumption may not hold in
every coastal area, on a global scale there can be little doubt
that widespread increases would signal important changes in
coastal water quality, which in turn may be related to patterns
of eutrophication or harmful algae blooms. We further assume
that changes in chl-a concentrations are due largely to land-
based practices such as over-fertilization, inadequate sewage
treatment, or other nutrient sources, all of which are amenable
to policy responses. The degree to which this presumption is
justified is further addressed below.

5.2. Methods

Based on recommendations from the AG, we focused on
SeaWiFS Level 3 monthly data acquired from September
1997 to December 2007. The date ranges represent the most
reliable period of SeaWiFS acquisitions; the sensor was
launched in 1997 and after December 2007 the instrument’s
reliability began to decline. This work built on an earlier pilot
efforts in 2007, which examined trends in coastal chlorophyll
concentrations using annual SeaWiFS composites from
1998–2007 (Center for International Earth Science Informa-
tion Network (CIESIN)/Columbia University 2009)6. The
annual composites were deemed to be unsuitable because of
the oversampling during periods with low cloud cover and
undersampling during periods of high cloud cover. It is
known that periods of coastal upwelling in the Pacific
Northwest, for example, are correlated with periods of higher
cloud cover, and hence the sample from which annual com-
posites are drawn is biased.

The work required a number of data transformations. We
limited the spatial extent of the SeaWiFS data based on
country’s Exclusive Economic Zones (EEZs) out to 100 km
based on EEZ boundary data from the Flanders Marine
Institute (VLIZ) Maritime Boundaries Geodatabase. We
eliminated grid cells with less than 45 observations over the
124 months, which effectively excluded many areas of con-
stant cloud cover, especially in the northern latitudes. We also
eliminated monthly averages based on <2 observations. We
exported the data to IBM SPSS predictive analytics software
and ran a regression of chlorophyll-a concentrations against
year with dummy variables for each month to account for
seasonal variability. The end results was a slope coefficient
which measures change in chlorophyll-a by year, as well as a
significance level for the slope.

5.3. Results

Figure 5 presents trend results for the United States and
Mexico, while additional figures for China and the Medi-
terranean are presented in the SOM. All maps depict change
in coastal chl-a in the form of slopes with chl-a as the
dependent variable and year as the independent variable
(controlling for seasonal variation with the month dummies).
Declines in chl-a over the time period 1997–2007 are depicted
in shades of green and increases in chl-a (potential problem
areas) are depicted in shades from yellow to red7. Although
we were unable to perform a validation against external data
sources, the results are nevertheless interesting. Several areas
have seen significantly increasing trends in chl-a concentra-
tions, including Long Island Sound, the Chesapeake Bay,
coastal Texas, and much of the Pacific Northwest.

6 In contrast to the air quality and biomass burning, it is important to point
out that this indicator is not based on a peer-reviewed data set or a widely
accepted methodology.
7 It is worth noting that the year after SeaWiFS launched, 1998, was an
intense El Niño year, which may have had an effect on the observed trends in
regions where El Nino is associated with warmer than normal surface
temperatures, since particularly warm years would be expected to be
associated with higher concentrations of chl-a.
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5.4. AG review

Although pilot results were promising, the AG members
representing the EPA and MCC found that this would not be
easily used by their agencies because of the still advancing
science on attribution and interpretation of results, and the
high uncertainty in satellite-derived chl-a concentrations in
near coastal regions. Ocean color sensors also detect colored
dissolved organic matter (CDOM), and hence in areas
experiencing heavy sediment loading increases, the signal
needs to be interpreted differently. While AG members
acknowledged that increases in chl-a and CDOM both signal
declining water quality, addressing suspended sediments
requires different policy responses than does reducing nutri-
ent loads. Thus, more research would be required to under-
stand patterns and specific causes (cf Beman et al 2005). For
example, there were increases in the Chesapeake Bay, which
is known to be influenced by nutrient loading from the Sus-
quehanna and Potomac Rivers and urbanization (Kemp et al
2005), but large areas around the Mississippi Delta appear to
have negative slope lines, which is somewhat
counterintuitive.

The AG found that this indicator probably has limited
relevance as a country-level comparative performance indi-
cator. This is owing to the difficulties in (1) interpreting trends
and attributing country responsibility for changes in coastal
water quality, and (2) attributing changes to land-based
activities. There is also no straightforward way to create a
country level indicator representing the balance of positive
and negative trends in the country’s coastal area. Given a
sufficiently long time series, one could conceivably measure
the area of the coastal zone affected by ‘negative’ trends
(positive slopes), but uncertainties are still high.

On balance, however, there was agreement among AG
members that the map outputs can be useful for identifying

changes that warrant further investigation, and may in some
cases point to the need for policy responses.

6. Conclusions

One of the issues that the project team encountered is that the
term ‘indicator’ had a broad range of meanings among AG
members. Scientists tended to define indicators in terms of
their ability to understand cause and effect relationships (i.e.,
being able to attribute environmental changes to certain
causes), and evaluated them in terms of their levels of
robustness and uncertainty. The concern is often to explain
rather than to describe the patterns. Policymakers, on the
other hand, may be satisfied with being alerted that a problem
exists that needs to be further investigated. They also tend to
trust indicators so long as they come from a ‘credible source’,
and are more concerned about timeliness, salience (relevance
to major issues at hand), and legitimacy (that the process for
developing the indicator was transparent or results were peer-
reviewed) (de Sherbinin et al 2013).

In the absence of a single defined purpose and target
audience, input from scientists and policy-makers regarding
the feasibility of the indicators developed by the project team
reflected a range of preferences regarding accuracy, spatial
resolution, comparability across regions, and level of aggre-
gation. Scientific members of the project AG tended to focus
on maximizing indicator accuracy without regard for the
resources, processing costs, and ancillary datasets that are
required to create a useful indicator. For the coastal water
quality indicator, for example, scientific reviewers disagreed
on data and methods, with some contesting and others
endorsing the results. Users of environmental indicators, such
as funding and project implementing agencies, tend to lack
scientific expertise, so they rely on scientists to determine

Figure 5. Slope of the trends in chlorophyll-a concentrations off the coast of the United States and Mexico, 1997–2007.
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whether a given indicator is sufficiently robust—a situation
that possibly puts more weight on the scientists’ viewpoint
than is necessarily warranted. Indeed, in the absence of any
data an indicator may be fit for use that would not pass muster
among scientific audiences. A proposed solution to these
differing perspectives is to open a dialogue between scientists
and policy-makers, such that the purpose and requirements of
the indicator can be agreed upon upfront. Subsequently, sci-
entists can then develop indicators that are ‘fit for use’ while
maintaining necessary scientific rigor.

Decision-makers may still be understandably hesitant to
rely on satellite-based indicators without comparisons to
ground-based measurements in the general region of their
focus, and thus, a concerted effort to produce ground-truth
datasets will bolster the applicability of a satellite-based
indicators. Ultimately, because decision-makers look to the
scientists for assurance of whether the indicator is of sufficient
accuracy, a clear message is needed from scientists on
applications for which the indicators can and cannot be used.
On maps or tabular reports, regions or countries with high
uncertainty may need to be cross-hatched or omitted.

As seen by our three examples, different application
areas and satellite products are at different stages of readiness
for indicator development. It is clearly easiest and most sci-
entifically defensible to develop credible indicators on the
basis of established, peer-reviewed pre-processed remote
sensing data sets. But this implies relying not only on the
sensor’s continued existence, but also on a well-funded
research program based on those data. Indeed, an over-arch-
ing issue with regard to developing environmental indicators
using satellite data is the sustainability of the underlying
satellite dataset. Two of the trend indicators suffered from
arbitrary baselines based on the start of the satellite record as
well as short time series of 10–11 years. Yet by NASA
standards these are long-lived missions. Although the culture
is changing and there is greater concern for societal benefit
areas, NASA traditionally developed satellite missions to
support scientific research with little regard for long term
operational uses. Operational satellites were left to USGS
(Landsat) and NOAA (meteorological satellites). While cross-
calibration has been successful in the ocean color domain to
create long term data sets (e.g., Antoine et al 2005), this will
not be possible in all domains. Thus, in general science teams
are established with relatively short-term funding, which
contrasts with the indicator community’s need for long-term,
consistent indicators. One possible solution is to develop
indicator methods that are flexible and can be applied to new
satellite datasets as they become available.

Results of the PM2.5 indicator for China and India gar-
nered significant media attention when released in the 2012
and 2014 EPIs, including articles in the Economist, The New
York Times, and many Asian newspapers8, suggesting that
there is an appetite for satellite-derived indicators if properly
constructed and sufficiently innovative. The appetite may be

greatest when the data confirm intuitions in regions where
environmental data are poor or kept hidden (Hsu et al 2012)
or when they raise awareness of an issue that has largely been
ignored. Satellites, with their global synoptic views, are ideal
in both cases.
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