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ABSTRACT

Stable Multithreading: A New Paradigm for Reliable

and Secure Threads

Heming Cui

Multithreaded programs have become pervasive and critical due to the rise of multi-core hardware

and accelerating computational demands. Unfortunately, despite decades of research and engi-

neering effort, these programs remain notoriously difficult to get right, and they are plagued with

harmful concurrency bugs that can cause wrong outputs, program crashes, security breaches, and

so on.

Our research reveals that a root cause of this difficulty is that multithreaded programs have

too many possible thread interleavings (or schedules) at runtime. Even given only a single input, a

program may run into a great number of schedules, depending on factors such as hardware timing

and OS scheduling. Considering all inputs, the number of schedules is even much greater. It is

extremely challenging to understand, test, analyze, or verify this huge number of schedules for a

multithreaded program and ensure that all these schedules are free of concurrency bugs. Thus,

multithreaded programs are extremely difficult to get right.

To reduce the number of possible schedules for all inputs, we looked into the relation between

inputs and schedules of real-world programs and made an exciting discovery: many programs

need only a small set of schedules to efficiently process a wide range of inputs! Leveraging this

discovery, we have proposed a new idea called Stable Multithreading (or StableMT) that reuses each

schedule on a wide range of inputs, greatly reducing the number of possible schedules for all inputs.

By addressing the root cause that makes multithreading difficult to get right, StableMT makes

understanding, testing, analyzing, and verification of multithreaded programs much easier.

To realize StableMT, we have built three StableMT systems, Tern, Peregrine, and Parrot,

with each addressing a distinct research challenge. Evaluation on a wide range of 108 popular

multithreaded programs with Parrot, our latest StableMT system, shows that StableMT is simple,



fast, and deployable. Parrot’s source code, entire benchmarks, and raw evaluation results are

available at github.com/columbia/smt-mc.

To encourage deployment, we have applied StableMT to improve several reliability techniques,

including: (1) making reproducing real-world concurrency bugs much easier; (2) greatly improving

the precision of static program analysis, leading to the detection of several new harmful data races

in heavily-tested programs; and (3) greatly increasing the coverage of model checking, a systematic

testing technique, by many orders of magnitudes. StableMT has attracted the research community’s

interests, and some techniques and ideas in our StableMT systems have been leveraged by other

researchers to compute a small set of schedules to cover all or most inputs for multithreaded

programs.

github.com/columbia/smt-mc
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Chapter 1

Introduction

Multithreading has become pervasive and critical because of two major computing trends. First, due

to the physical constraints on circuit speed, computing platforms are having more and more cores

rather than faster and faster single-core. In order to harness the power of multi-core, developers

are writing more and more multithreaded programs on these platforms. Second, the emerging

cloud computing trend requires networking services (e.g., HTTP servers and database servers) to

process more and more requests concurrently, which also pushes developers to write multithreaded

programs. These two trends will continue, and multithreading will become increasingly pervasive

and critical.

Unfortunately, despite decades of effort from both academia and industry, multithreaded pro-

grams remain notoriously difficult to get right, and these programs are plagued with harmful

concurrency bugs that can cause wrong outputs, program crashes, security breaches, and so on.

Our research reveals that a root cause of this difficulty is that multithreaded programs have too

many possible thread interleavings (or schedules) at runtime. Even running on the same input, the

concurrently running threads of a program may interleave in too many different ways, depending

on factors such as hardware timing and OS scheduling. Considering all inputs, the number of

possible schedules is even greater. Chapter 2 will quantify the number of possible schedules in mul-

tithreaded programs running in a traditional multithreading approach. It is extremely challenging

to understand, test, analyze, or verify all these schedules in a multithreaded program and ensure

that they are free of concurrency bugs. Therefore, a concurrency bug within an unchecked schedule

can show up in production runs and lead to severe failures and vulnerabilities.
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To make multithreading easier to get right, researchers have proposed an idea called Determin-

istic Multithreading (or DMT) [12, 21, 34, 66, 80] that always enforces the same schedule on the

same input, greatly improving reliability for a multithreaded program on each input. However,

as we will further analyze in Chapter 2, although DMT is useful, it is not as useful as commonly

perceived. The reason is that a typical DMT system can enforce very different schedules on slightly

different inputs, artificially reducing programs’ robustness on input perturbations, and the number

of possible schedules on all inputs remains enormous. Therefore, multithreaded programs remain

very hard to understand, test, analyze, or verify.

To reduce the number of schedules for all inputs, we looked into the relation between inputs

and schedules of real-world programs and made an exciting discovery: many programs need only a

small set of schedules to efficiently process a wide range of inputs [122]! Leveraging this discovery,

we have invented a new idea called Stable Multithreading (or StableMT) that reuses each schedule

on a wide range of inputs, greatly reducing the huge number of possible schedules for all inputs, the

root cause that makes multithreading difficult to get right. By reusing each schedule on as many

as inputs, StableMT stabilizes program behaviors against small input perturbations. In short, by

greatly reducing the number of possible schedules for all inputs, StableMT addresses at once the

challenges of understanding, testing, analyzing, and verification of multithreaded programs and

makes these programs much easier to get right. Actually, StableMT is complementary to DMT; a

multithreading system can be both stable and deterministic. To fully illustrate the advantages of

StableMT, Chapter 2 will discuss in detail the three types of multithreading approaches: traditional

multithreading, DMT, and StableMT.

To realize StableMT, I have worked with Columbia and CMU researchers to build three StableMT

systems, Tern, Peregrine, and Parrot, with each addressing a distinct research challenge. We

identify and address these three challenges as follows.

Challenge 1: How to compute highly reusable schedules for different inputs? The

more reusable a schedule is, the fewer schedules are needed for all inputs. However, finding highly

reusable schedules is hard with existing static or dynamic techniques because statically computed

schedules are not guaranteed to work at runtime due to the halting problem, and dynamically

computing schedules may cause prohibitive overhead.

To address this challenge, our first StableMT system, Tern (Chapter 3), proposes a technique
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called schedule memoizatoin that memoizes a set of past, working schedules, and then reuses these

schedules on future inputs when possible. This technique is inspired by a real-world analogy that

human and animals tend to migrate along past, familiar routes and avoid possible hazards in

unknown ones. In order to find a schedule suitable for an input, Tern leverages a set of advanced

program analysis techniques to compute input constraints (or preconditions) that match a schedule.

Evaluation on a diverse set of popular programs shows that Tern can reuse a small set of schedules

to process a wide range of inputs. For instance, just 100 schedules for the Apache web server can

process 90.3% of a 4-day trace (122K requests) from the Columbia CS website.

Challenge 2: How to efficiently enforce schedules without deviation? This challenge

has existed in the area of deterministic execution and replay for decades. Existing work typi-

cally enforces two types of schedules: a total order of shared memory accesses (or mem-schedule),

and a total order of synchronization operations (or sync-schedule). Mem-schedules are fully deter-

ministic even with data races, but they are several times slower than traditional multithreading.

Sync-schedules incur only modest overhead because most code is not synchronization and thus can

still run in parallel, but these schedules may deviate if there are data races. Overall, despite much

research effort, people can only choose either full determinism or efficiency, but not both.

To address this challenge, our second StableMT (and also DMT) system, Peregrine (Chap-

ter 4), takes advantage of an observation: although many programs have races, the races tend to

occur only within minor portions of an execution, and the majority of the execution is still race-free.

Therefore, we can enforce a sync-schedule in the race-free portions of an execution and resort to a

mem-schedule only in the racy portions, combining both the efficiency of sync-schedules and the

determinism of mem-schedules. Peregrine implements this form of hybrid-schedule with a new

technique called schedule relaxation: it first records an execution trace of all executed instructions

on a new input, and then relaxes the trace into a highly reusable hybrid-schedule. Evaluation on a

diverse set of programs shows that Peregrine is deterministic and efficient, and it can frequently

reuse schedules for half of the evaluated programs. Peregrine has been featured in sites such as

ACM TechNews, TG Daily, and Physorg.

Challenge 3: How to make StableMT simple, fast, and deployable? In the last five

years, StableMT has achieved promising advances and attracted the research community’s interests.

Several notable StableMT systems [8, 15, 31, 32, 66] have been built, including our Tern and
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Peregrine systems. However, it remains an open challenge that whether StableMT can be made

simple, fast, and deployable. Existing StableMT systems are either fairly difficult to deploy due

to their high complexity (e.g., Tern and Peregrine require sophisticated program analysis), or

they run into slow schedules that serialize parallel computation (e.g., we observed 30× slowdown

when evaluating a notable system [66] in Chapter 5).

To address this challenge, our third StableMT system, Parrot (Chapter 5), presents a simple,

deployable runtime that enforces a well-defined round-robin schedule for synchronization operations,

vastly reducing the number of schedules. To address the serialization problem in StableMT, we

have come up with an insight based on the famous 80-20 rule: most threads spend most execution

time in only a few core computations, and we only need to make these core computations parallel.

Accordingly, we create a new abstraction called performance hints for developers to annotate core

computations. These hints, which just try to get to faster schedules that improve parallelism

of core computations, are not real synchronization, and can be safely ignored without affecting

correctness of a program. Evaluation on a wide range of 108 popular programs (e.g., Berkeley

DB and MPlayer), roughly 10× more programs than any previous StableMT or DMT evaluation,

and about 4× more programs than all previous evaluations combined, shows that, these hints are

easy to add, and they make Parrot fast (merely 12.7% mean overhead on 24-core machines). To

encourage StableMT deployment, we have made Parrot’s source code, entire benchmarks, and

raw evaluation results publicly available at github.com/columbia/smt-mc.

In addition to building StableMT systems, we have applied StableMT to improve the three

following reliability techniques, demonstrating its advantages. First, we have shown that our

StableMT systems consistently avoided or reproduced several real-world concurrency bugs across

different executions [31, 32], while in a traditional Pthreads runtime these bugs showed up ran-

domly. Second, we have applied StableMT to greatly improve the precision of program analysis

and verification, leading to the detection of several new harmful data races in heavily-tested pro-

grams [115]. Third, we have quantitatively shown that StableMT can greatly increase the coverage

of model checking [48, 101, 120], an advanced technique that systematically tests schedules for

concurrency bugs, by many orders of magnitudes [33].

Due to its advantages for improving software reliability, StableMT has attracted the research

community’s interests. For instance, some techniques and ideas in our StableMT systems have been

github.com/columbia/smt-mc
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leveraged by University of Washington researchers to compute a small set of schedules to cover all

or most inputs for multithreaded programs [15].

The rest of the thesis is organized as follows. Chapter 2 presents the motivation and background

of StableMT. Chapter 3 presents the Tern system, and our evaluation results from applying it to

reproduce concurrency bugs. Chapter 4 describes the Peregrine system, and how much it can

improve the precision of existing program analysis techniques as well as reproducing concurrency

bugs. Chapter 5 introduces the Parrot system, and our advances in applying it to greatly improve

the coverage of model checking. Chapter 6 concludes.
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Chapter 2

Motivation and Background of

StableMT

This chapter first points out a root cause that makes multithreading so difficult to get right (§2.1),

and then introduces StableMT, our radical approach to address the root cause (§2.2). StableMT

is not the only approach that aims to make multithreading easier to get right, and previously

researchers have proposed a complementary approach called DMT, so this chapter also clarifies the

differences between StableMT and DMT (§2.3).

2.1 Why is Multithreading So Hard to Get Right?

This section starts with preliminaries, and then points out a root cause that makes multithreading

difficult to get right.

2.1.1 Preliminaries: Inputs, Schedules, and Buggy Schedules

To ease discussion, we use input to broadly refer to the data a program reads from its execution

environment, including not only the data read from files and sockets, but also command line

arguments, return values of external functions such as gettimeofday, and any external data that

can affect program execution. We use schedule to broadly refer to the (partially or totally) ordered

set of communication operations in a multithreaded execution, including synchronizations (e.g.,

lock and unlock operations) and shared memory accesses (e.g., load and store instructions to
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shared memory). Of all the schedules, most run fine, but some trigger concurrency errors, causing

program crashes, wrong outputs, security breaches, and other failures. Consider the toy program

below:

// thread 1 // thread 2

lock(l); lock(l);

*p = . . .; p = NULL;

unlock(l); unlock(l);

The schedule in which thread 2 gets the lock before thread 1 causes a dereference-of-NULL failure.

Consider another example. The toy program below has data races on balance:

// thread 1 // thread 2

// deposit 100 // withdraw 100

t = balance + 100;

balance = balance − 100;

balance = t;

The schedule with the statements executed in the order shown corrupts balance. We call the

schedules that trigger concurrency errors buggy schedules. Strictly speaking, the errors are in the

programs, triggered by a combination of inputs and schedules. However, typical concurrency errors,

such as most errors appeared in previous studies [71, 121], depend much more on the schedules than

the inputs (e.g., once the schedule is fixed, the bug occurs for all inputs allowed by the schedule).

Thus, recent research on testing multithreaded programs (e.g., [77]) is focused on effectively testing

schedules to find the buggy ones.

2.1.2 Root Cause: Too Many Schedules for All Inputs

A typical multithreaded program has an enormous number of schedules. For a single input, the

number of schedules is asymptotically exponential in the schedule length. For instance, given m

threads each competing for a lock k times, each order of lock acquisitions forms a schedule, easily

yielding (mk)!
(k!)m ≥ (m!)k total schedules—a number exponential in both m and k. Aggregated over all

inputs, the number of schedules is even greater. Figure 2.1a depicts the traditional multithreading

approach. Conceptually, traditional multithreading approaches (e.g., the Pthreads runtime) main-

tain a many-to-many mapping from inputs to schedules, where one input may execute under many

schedules depending on factors such as hardware timing and OS scheduling, and many inputs may
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(a) Traditional. (b) Deterministic. (c) Stable (deterministic). (d) Stable (nondeterminis-

tic).

Figure 2.1: Different multithreading approaches. Red stars represent buggy schedules. Traditional

multithreading (2.1a) is a conceptual many-to-many mapping between inputs and schedules. DMT

(2.1b) may map each input to an arbitrary schedule, reducing programs’ robustness on input pertur-

bations. StableMT (2.1c and 2.1d) reduces the total set of schedules for all inputs (represented by

the shrunk ellipses), increasing robustness and improving reliability. StableMT is complementary

to DMT: a StableMT system can be deterministic (2.1c) or nondeterministic (2.1d).

execute under one schedule because a schedule fixes the order of the communication operations but

allows the local computations to operate on any input data.

Finding a few buggy schedules in these exponentially many schedules raises a series of “needle-

in-a-haystack” challenges on understanding, testing, analyzing, and verification of multithreaded

programs. For instance, when facing these excessive number of schedules, developers’ understanding

is prone to mistakes, and we have seen tons of concurrency bug reports sent to the developers’

email lists. Various forms of testing tools also suffer. Stress testing is a common method for

(indirectly) testing schedules, but it often redundantly tests the same schedules while missing

others. To mitigate redundant testing effort, recent advanced testing tools (e.g., [48, 77, 100,

120]) can systematically test schedules, and these tools have included several remarkable reduction

algorithms (e.g., [39, 48]) to avoid testing the same schedules and improve schedule coverage. Recent

advanced program analysis and verification tools (e.g., [48]) also make notable attempts to increase

the number of checked schedules based on these reduction algorithms. These systematic testing,

analysis, and verification tools have effectively found new harmful concurrency bugs in real-world

software. Unfortunately, despite these great effort, these tools still can not cover more than a

tiny fraction of all the exponentially many schedules, and concurrency bugs within an unchecked
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Program Purpose Constraints on inputs sharing schedules

Apache Web server For a group of typical HTTP GET requests,

same cache status.

PBZip2 Compression Same number of threads.

aget File download Same number of threads, similar file sizes.

barnes N-body simulation Same number of threads, same values of

two configuration variables.

fft Fast Fourier transform Same number of threads.

lu cb Matrix decomposition Same number of threads, similar sizes of

matrices and blocks.

blackscholes Option pricing Same number of threads, and the number of

options is no less than the number of threads.

swaptions Swaption pricing Same number of threads, and the number of

swaptions is no less than the number of threads.

Table 2.1: Constraints on inputs sharing the same equivalent class of schedules. For each program,

one schedule out of the class suffices to process any input satisfying the constraints in the third

column under typical setups (e.g., no system call failures or signals). We describe how to compute

such constraints in Chapter 3.

schedule can show up in production runs and lead to severe failures and vulnerabilities. In short,

the exponentially many schedules for all inputs is a root cause that makes a multithreaded program

extremely difficult to get right.

2.2 Shrinking the Haystack with StableMT

To reduce the number of schedules and make multithreading easier to get right, we investigated

a central research question: are all the exponentially many schedules necessary? A schedule is

necessary if it is the only one that can (1) process specific inputs or (2) yield good performance

under specific scenarios. Removing unnecessary schedules from the haystack can make the needles

easier to find.

We investigated this question on a diverse set of popular multithreaded programs, ranging from

server programs such as Apache, to desktop utilities such as parallel compression utility PBZip2,



CHAPTER 2. MOTIVATION AND BACKGROUND OF STABLEMT 10

to parallel implementations of computation-intensive algorithms such as fft. These programs

use diverse synchronization primitives such as mutex locks, semaphores, condition variables, and

barriers. Our investigation reveals the following two insights.

First, for many programs, a wide range of inputs share the same equivalent class of schedules.

Thus, one schedule out of the class suffices to process the entire input range. Intuitively, an input

often contains two types of data: (1) metadata that controls the communication of the execution,

such as the number of threads to spawn; and (2) computational data that the threads locally

compute on. A schedule requires the input metadata to have certain values, but it allows the

computational data to vary. That is, it can process any input that has the same metadata. For

instance, consider the aforementioned PBZip2 which splits an input file among multiple threads,

each compressing one file block. The communication (i.e., which thread gets which file block)

is independent of the thread-local compression. Under a typical setup (e.g., no read failures or

signals), for each different number of threads set by a user, PBZip2 can use two schedules (one if

the file can be evenly divided by the number of threads and another otherwise) to compress any

file, regardless of the file data.

This loose coupling of inputs and schedules is not unique to PBZip2; many other programs also

exhibit this property. Table 2.1 shows a sample of our findings. The programs shown include three

real-world programs, Apache, PBZip2, and aget (a parallel file download utility) and five imple-

mentations of computation-intensive algorithms from two widely used benchmark suites, Stanford’s

SPLASH-2 and Princeton’s PARSEC. (We will describe how to compute the constraints that a

schedule places on the inputs in Chapter 3.)

Second, the overhead of enforcing a schedule on different inputs is often low. Presumably, the

exponentially many schedules allow the runtime system to react to various timing factors and se-

lect an efficient schedule. However, results from the StableMT systems we built invalidated this

presumption. With carefully designed schedule representations (Chapter 4), our systems incurred

less than 15% overhead enforcing schedules on different inputs for most evaluated programs. Rele-

vant systems (e.g., [8, 80]) also show that carefully enforcing schedules can achieve only moderate

overhead. After all, considering the reliability benefits introduced by StableMT, we believe that

this moderate overhead is worthwhile.

Leveraging these two insights, we have invented StableMT, a new multithreading approach that
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reuses each schedule on a wide range of inputs, mapping all inputs to a dramatically reduced set of

schedules. By vastly shrinking the haystack, it addresses all the “needle-in-a-haystack” challenges

in understanding, testing, analyzing, and verification of multithreaded programs at once, making

these programs much easier to get right.

2.2.1 Benefits

By vastly reducing the set of schedules, StableMT brings numerous reliability benefits to multi-

threading. We describe several:

Understanding. Developers now only need to focus on understanding a much smaller set of

schedules to ensure that they are free of concurrency bugs, which can greatly reduce their burden.

For instance, because StableMT stabilizes program behaviors on a set of inputs that can share

the same schedule, then after developers check that the program behavior on one input is correct,

they are sure that all the other inputs within this set (e.g., inputs that control only thread-local

computation) will run the same schedule and thus have the same correct behavior.

Testing. StableMT automatically increases the coverage of schedule testing tools, with coverage

defined as the ratio of tested schedules over all schedules. For instance, consider PBZip2 again which

needs only two schedules for each different number of threads under typical setups. Testing 32

schedules effectively covers from 1 to 16 threads. Given that (1) PBZip2 achieves peak performance

when the number of threads is identical or close to the number of cores and (2) a typical machine

has up to 16 cores, 32 tested schedules can practically cover most schedules executed in the field.

Researchers have computed a small set of schedules to cover all or most inputs for multithreaded

programs [15] by leveraging some techniques and ideas in our StableMT systems [31, 32].

Debugging. Reproducing a bug now does not require the exact input, as long as the original and

the altered inputs map to the same schedule. Users may remove private information such as credit

card numbers from their bug reports. Developers may reproduce the bugs in different environments

or add printf statements. We will describe this benefit in detail in Chapter 3 and Chapter 4.

Avoiding errors at runtime. Programs can also adaptively learn correct schedules in the field,

then reuse them on future inputs to avoid unknown, potentially buggy schedules. We will describe

this benefit in detail in Chapter 3.

Analyzing and verifying programs. Static analysis can now focus only on the set of schedules
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enforced in the field, gaining precision. Dynamic analysis enjoys the same benefits as testing. Model

checking now only need to check drastically fewer schedules, mitigating the so-called “state explo-

sion” problem [28]. We have integrated our Parrot [33] system with an open source model checker

called dbug [101], and Parrot significantly increases the number of programs that dbug can ex-

haust searching schedules under our evaluation settings. More details will be given in Chapter 5.

Interactive theorem proving becomes much easier, too, because verifiers need to prove theorems

only on the set of schedules enforced in the field. We will describe these benefits in detail in

Chapter 4.

2.2.2 Caveats

StableMT is certainly not for every multithreaded program. It works well with programs whose

schedules are loosely coupled with inputs, but there are other types of programs. For instance,

a program may decide to spawn threads or invoke synchronizations based on intricate conditions

involving many bits in the input. The parallel grep-like utility pfscan is an example. It searches for

a keyword in a set of files using multiple threads, and for each match, it grabs a lock to increment a

counter. A schedule computed on one set of files is unlikely to suit another. To increase the input

range each schedule covers, developers can exclude the operations on this lock from the schedule

using annotations.

2.3 Determinism: Not as Good as Commonly Perceived

A multithreaded program is nondeterministic because even with the same program and input,

different executions may still run into different schedules and trigger different behaviors, depending

on factors such as hardware timing and OS scheduling. For instance, the two toy programs in §2.1

do not always run into the bugs. Except for the schedules described, the other schedules lead to

correct executions. Nondeterminism raises many challenges, especially in testing and debugging.

Suppose an input can execute under n schedules. Testing n−1 schedules is not enough for complete

reliability because the single untested schedule may still be buggy. An execution in the field may

hit this untested schedule and fail. Debugging is challenging as well. To reproduce a field failure

for diagnosis, the exact input alone is not enough. Developers must also manage to reconstruct the
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buggy schedule out of n possibilities.

To address the challenges raised by nondeterminism, researchers have dedicated much effort and

built several DMT systems that force a multithreaded program to always run the same schedule

on the same input. This determinism does have value for reliability. For instance, one testing

execution now validates all future executions on the same input, and reproducing a concurrency

error now requires only the exact input.

However, DMT only focuses on reducing the number schedules on each input, and it does not

help much on reducing the excessive number of schedules for all inputs, the root cause that makes

multithreading difficult to get right. We believe the research community has charged nondetermin-

ism more than its share of the guilt and overlooked the main culprit—a rather quantitative cause

that multithreaded programs simply have too many schedules. We argue that, although determin-

ism has value, its value is smaller than commonly perceived: it is neither sufficient nor necessary

for reliability.

Determinism 6=⇒ reliability. Determinism is a narrow property: same input + same program

= same behavior. It has no jurisdiction if the input or program changes however slightly. Yet, we

often expect a program to be robust or stable against slight program changes or input perturbations.

For instance, adding a debug printf should in principle not make the bug disappear. Similarly,

a single bit flip of a file should usually not cause a compression utility to crash. Unfortunately,

determinism does not provide this stability and, if näıvely implemented, even undermines it.

To illustrate, consider the system depicted in Figure 2.1b that maps each input to an arbitrary

schedule. This mapping is perfectly deterministic, but it destabilizes program behaviors on mul-

tiple inputs. A single bit flip may force a program to discard a correct schedule and adventure

into a vastly different, buggy schedule. This instability problem raises new reliability challenges.

For instance, testing one input provides little assurance on very similar inputs, despite that the

differences in input do not invalidate the tested schedule. Debugging now requires every bit of

the bug-inducing input, including not only the data a user typed, but also environment variables,

shared libraries, etc. A different user name? Error report doesn’t include credit card numbers? The

bug may never be reproduced regardless of how many times developers retry because the schedule

chosen by the deterministic system for the altered input happens to be correct. Besides inputs,

näıvely implemented determinism can destabilize program behaviors on minor code changes, so
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adding a debug printf causes the bug to deterministically disappear. Chapter 3 will analyze why

this instability problem is inherent in existing DMT systems and present our evaluation results that

confirms this problem. Because of this problem, when running with DMT, the number of possible

schedules for all inputs remains enormous; therefore, a multithreaded program remains extremely

difficult to understand, test, analyze, or verify.

In practice, to mitigate these problems, researchers have to augment determinism with other

techniques. To support debug printf, some propose to temporarily revert to nondeterministic

execution [34]. DMP [34], CoreDet [12], and Kendo [80] change schedules only if the inputs

change low-level instructions executed. Although better than mapping each input to an arbitrary

schedule, they still allow small input perturbations to destabilize schedules unnecessarily when the

perturbations change the low-level instructions executed (e.g., one extra load executed), observed

in our experiments in Chapter 3.

Reliability 6=⇒ determinism. Determinism is a binary property: if an input maps to n > 1

schedules, executions on this input may be nondeterministic, however small n is. Yet, a nondeter-

ministic system with a small set of total schedules can be made reliable easily. Consider an extreme

case: the nondeterministic system depicted in Figure 2.1d that maps all inputs to at most two

schedules. In this system, the challenges caused by nondeterminism are easy to solve. For instance,

to reproduce a field failure given an input, developers can easily afford to search for one out of only

two schedules. To offer an analogy, a coin toss is nondeterministic, but humans have no problem

understanding and doing it because there are only two possible outcomes.

DMT is complementary to StableMT. StableMT aims to reduce the set of schedules for all

inputs, whereas DMT aims to reduce the schedules for each input (down to one). A StableMT

system may be either deterministic or nondeterministic. Figure 2.1c and Figure 2.1d depict two

StableMT systems: the many-to-one mapping in Figure 2.1c is deterministic, while the many-to-

few mapping in Figure 2.1d is nondeterministic. A many-to-few mapping improves performance

because the runtime system can choose an efficient schedule out of a few for an input based on

current timing factors, but it increases the effort and resources needed for reliability. Fortunately,

the choices of schedules are only a few (e.g., a small constant such as two), so the challenges caused

by nondeterminism are easy to solve. Our Tern, Peregrine, and Parrot systems and others’

DThreads [66] built subsequently to Tern combine DMT with StableMT to frequently reuse
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schedules on a wide range of inputs for stability. Chapter 3–5 will present the three systems we

built.

2.4 Summary

A root cause that makes multithreading difficult to get right is that a program may run into

exponentially many possible schedules for all inputs at runtime. This excessive number of possible

schedules brings a series of “needle-in-a-haystack” challenges for reliability and security, including

the understanding, testing, analyzing, and verification of multithreaded programs.

To address these challenges, we have proposed StableMT, a new approach that reuses each

schedule on a wide range of inputs, greatly reducing the number of possible schedules for all inputs.

By vastly shrinking the haystack, StableMT addresses all the “needle-in-a-haystack” challenges

in understanding, testing, analyzing, and verification of multithreaded programs at once, making

these programs much easier to get right.

StableMT is not the only technique that aims to reduce the number of possible schedules,

and previously a technique called DMT has been proposed to reduce the number of schedules on

each input. Although DMT is useful, we have explained that it is not as useful as commonly

perceived, and that StableMT is better for reliability. StableMT is complementary to DMT, and a

multithreading system can be both stable and deterministic.
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Chapter 3

Computing Highly Reusable

Schedules

This chapter describes Tern, our first StableMT system that addresses the first challenge on build-

ing StableMT: how to compute highly reusable schedules for different inputs? The more reusable

a schedule is, the fewer schedules are needed for all inputs. We also aim to build Tern as a DMT

system because determinism is especially useful in testing and debugging multithreaded programs.

Building a multithreading system that is both stable and deterministic is another significant chal-

lenge: as we describe in Chapter 2, the instability problem in existing DMT systems destabilizes

program behaviors on input perturbations, defeating the stability benefit brought by StableMT.

Tern addresses these two challenges at once with a new technique called schedule memoization.

3.1 Introduction

Tern addresses two crucial research challenges. First, how to compute the set of schedules for

processing inputs? At the bare minimum, a schedule must be feasible when enforced on an input,

so the execution does not get stuck or deviate from the schedule. Ideally, the set of schedules should

also be small for reliability. One possible idea is to pre-compute schedules using static source code

analysis, but the halting problem makes it undecidable to statically compute schedules guaranteed

to work dynamically. Another possibility is to compute schedules on the fly while a program is

running, but the computations may be complex and their overhead may be high.
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Second, how to combine DMT with StableMT? Existing DMT systems [12, 34, 80] constrain

a multithreaded program to always use the same thread schedule for the same input, greatly

increasing testing confidence and making bug reproduction much more easier. Unfortunately, these

DMT systems may defeat the input stability benefit in StableMT: when scheduling the threads to

process an input, existing DMT systems consider only current input and ignore previous similar

inputs. This stateless design makes schedules over-dependent on inputs, so that a slight change

to inputs may force a program to (ad)venture into a vastly different, potentially buggy schedule,

defeating the key stability benefit of StableMT. This problem is defined as the instability problem

in Chapter 2, and it has been confirmed by our results (§3.8.2.1) from an existing DMT system [12].

In fact, even with the same input, existing DMT systems may still force a program into different

schedules for minor changes in the execution environment such as processor type and shared library.

Thus, developers may no longer be able to reproduce bugs by running their program on the bug-

inducing input because their machine may differ from the machine where the bug occurred. §3.2.1

will analyze in detail why this instability problem is inherent in existing DMT systems.

This chapter presents Tern, a schedule-centric, stateful multithreading system that is both

stable and deterministic. It addresses the aforementioned two research challenges with a new idea

called schedule memoization that memoizes past working schedules and reuses them for future

inputs. Specifically, Tern maintains a cache of past schedules and the input constraints required

to reuse these schedules. When an input arrives, Tern checks the input against the memoized

constraints for a compatible schedule. If it finds one, it simply runs the program while enforcing

this schedule. Otherwise, it runs the program to memoize a schedule and the input constraints of

this schedule for future reuse. This schedule-centric approach maps as many as inputs that satisfy

the input constraints to each schedule, greatly reducing the number of schedules required for all

inputs, the central goal of StableMT. This stateful approach stabilizes program behaviors on input

perturbations and avoids the instability problem. In sum, Tern’s schedule memoization is the first

approach that implements StableMT, and the first approach that combines StableMT and DMT,

greatly reducing the number of schedules on all inputs as well as the number of schedules on each

input (down to one) barring some limitations (§3.3.4).

Tern’s schedule memoization approach has two major benefits on software reliability. First,

by reusing schedules shown to work, Tern can avoid potential errors in unknown schedules. This
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advantage is illustrated in Figure 2.1c in Chapter 2. A real-world analogy to schedule memoiza-

tion is the natural tendencies in humans and animals to follow familiar routes to avoid possible

hazards along unknown routes. Migrant birds, for example, often migrate along fixed “flyways.”

We thus name our system after the Arctic Tern, a bird species that migrates the farthest among

all migrants [7]. Second, Tern makes schedules explicit, providing flexibility in deciding when to

memoize certain schedules. For instance, Tern allows developers to populate a schedule cache

offline, to avoid the overhead of doing so online. Moreover, Tern can check for errors (e.g., races)

in schedules and memoize only the correct ones, thus avoiding the buggy schedules and amortizing

the cost of checking for errors.

To make Tern practical, it must handle server programs which frequently use threads for

performance. These programs present two challenges for Tern: (1) they often process client

inputs (requests) as they arrive, thus suffering from input timing nondeterminism, which existing

DMT systems do not handle and (2) they may run continuously, making their schedules effectively

infinite and too specific to reuse.

Tern addresses these challenges using a simple idea called windowing. Our insight is that server

programs tend to return to the same quiescent states. Thus, Tern splits the continuous request

stream of a server into windows and lets the server quiesce in between, so that Tern can memoize

and reuse schedules across windows. Within a window, it admits requests only at fixed schedule

points, reducing timing nondeterminism.

We implemented Tern in Linux. It runs as “parasitic” user-space schedulers within the appli-

cation’s address space, overseeing the decisions of the OS scheduler and synchronization library. It

memoizes and reuses synchronization orders as schedules to increase performance and reuse rates.

It tracks input constraints using klee [24], a symbolic execution engine. Our implementation is

software-only, works with general C/C++ programs using Pthreads, and requires no kernel modi-

fications and only a few lines of modification to applications, thus simplifying deployment.

We evaluated Tern on a diverse set of 14 programs, including two popular server programs

Apache [6] and MySQL [78], a parallel compression utility PBZip2 [89], and 11 scientific programs

in SPLASH-2 [103]. Our workload included a Columbia CS web trace and benchmarks used by

Apache and MySQL developers. Our results show that

1. Tern is easy to use. For most programs, we modified only a few lines to make them work
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with Tern.

2. Tern enforces stability across different inputs. In particular, it reused 100 schedules to pro-

cess 90.3% of a 4-day Columbia CS web trace. Moreover, while an existing DMT system [12]

made three concurrency bugs inconsistently occur or disappear depending on minor input

changes, Tern’s memoized schedules consistently avoided these bugs.

3. Tern has reasonable overhead. For nine out of fourteen evaluated programs, Tern has

negligible overhead or improves performance; for the other programs, Tern has up to 39.1%

overhead.

4. Tern makes threads deterministic. For twelve out of fourteen evaluated programs, the sched-

ules Ternmemoized can be deterministically reused barring the assumption discussed in §3.7.

Our main conceptual contributions are that we addressed the two research challenges on build-

ing a multithreading system that is both stable and deterministic with a new idea called schedule

memoization. To make Tern practically support server programs that have input timing nonde-

terminism and infinite schedules, we proposed another new idea called windowing. Our engineering

contributions include the Tern system and its evaluation on real programs. To the best of our

knowledge, Tern is the first multithreading system that is both stable and deterministic, the first to

mitigate input timing nondeterminism, and the first shown to work on programs as large, complex,

and nondeterministic as Apache and MySQL.

This chapter is organized as follows. We first present a background (§3.2) and a high-level

design of Tern (§3.3). We then describe Tern’s interface (§3.4), schedule memoization for batch

programs (§3.5), and windowing to extend Tern to server programs (§3.6). We then present

refinements we made to optimize Tern (§3.7). Lastly, we show our experimental results (§3.8),

discuss related work (§3.9), and summarize Tern (§3.10).

3.2 Background

This section first explains why the instability problem is inherent in existing DMT systems (§3.2.1),

and then our choice of schedule representation in Tern (§3.2.2).
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3.2.1 The Instability Problem in DMT

A DMT system is, conceptually, a function that maps an input I to a schedule S. The properties

of this function are that the same I should map to the same S and that S is a feasible schedule

for processing I. A stable DMT system such as Tern has an additional property: it maps similar

inputs to the same schedule. Existing DMT systems, however, tend to map similar inputs to

different schedules, thus suffering from the instability problem.

We argue that this problem is inherent in existing DMT systems because they are stateless.

They must provide the same schedule for an input across different runs, using information only from

the current run. To force threads to communicate (e.g., acquire locks or access shared memory)

deterministically, existing DMT systems cannot rely on physical clocks. Instead, they maintain a

logical clock per thread that ticks deterministically based on the code this thread has run. Moreover,

threads may communicate only when their logical clocks have deterministic values (e.g., smallest

across the logical clocks of all threads [80]). By induction, logical clocks make threads deterministic.

However, the problem with logical clocks is that for efficiency, they must tick at roughly the

same rate to prevent a thread with a slower clock from starving others. Thus, existing DMT

systems have to tie their logical clocks to low-level instructions executed (e.g., completed loads [80]).

Consequently, a small change to the input or execution environment may alter a few instructions

executed, in turn altering the logical clocks and subsequent thread communications. That is, a small

change to the input or execution environment may cascade into a much different (e.g., correct vs.

buggy) schedule.

3.2.2 Schedule Representation

Typical StableMT or DMT systems have considered two types of schedules: (1) a deterministic

order of shared memory accesses [12, 34] and (2) a synchronization order (i.e., a total order of

synchronization operations) [80]. The first type of schedules are fully deterministic even if there are

races, but they are costly to enforce on commodity hardware (e.g., up to 10 times overhead [12]).

The second type can be efficiently enforced (e.g., 16% overhead [80]) because most code is not

synchronization code and can run in parallel; however, they are deterministic only for inputs that

lead to race-free runs [80, 95].

Tern represents schedules as synchronization orders for efficiency. An additional benefit is
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that synchronization orders can be reused more frequently than memory access orders (cf next

subsection). Moreover, researchers have found that many concurrency errors are not data races,

but atomicity and order violations [71]. These errors can be deterministically reproduced or avoided

using only synchronization orders.

Although data races may still make runs which reuse schedules nondeterministic, Tern is

less prone to this problem than existing DMT systems [80] because it has the flexibility to select

schedules. If it detects a race in a memoized schedule, it can simply discard this schedule and

memoize another. This selection task is often easy because most schedules are race-free. In rare

cases, Ternmay be unable to find a race-free schedule, resulting in nondeterministic runs. However,

we argue that input nondeterminism cannot be fully eliminated anyway, so we may as well tolerate

some scheduling nondeterminism, following the end-to-end argument.

3.3 High-level Design

Our design of Tern adheres to the following goals:

1. Backward compatibility. We design Tern for general multithreaded programs because of

their dominance in parallel programs today and likely tomorrow. We design Tern to run in

user-space and on commodity hardware to ease deployment.

2. Stability. We design Tern to bias multithreaded programs toward repeating their past,

familiar schedules, instead of venturing into unfamiliar ones.

3. Efficiency. We design Tern to be efficient because it operates during the normal executions

of programs, not replayed executions.

4. Best-effort determinism. We design Tern to make threads deterministic, but we sacrifice

determinism when it contradicts the preceding goals.

The remaining of this section presents architecture (§3.3.1), workflow (§3.3.2), deployment sce-

narios (§3.3.3), and limitations (§3.3.4).
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Figure 3.1: Tern architecture. Its components are shaded.

3.3.1 Architecture

Figure 3.1 shows the architecture of Tern and its five components: instrumentor, schedule cache,

proxy, replayer, and memoizer. To use Tern, developers first annotates their application by

marking the input data that may affect synchronization operations. They then compile their

program with the instrumentor, which intercepts standard synchronization operations such as

pthread mutex lock() so that at runtime Tern can control these operations. (We describe ad-

ditional annotations and instrumentations that Tern needs in §3.4). The instrumentor runs as a

plugin to LLVM [67], requiring no modifications to the compiler.

The schedule cache stores all memoized schedules and their input constraints. This cache can

be marshalled to disk and read back upon program start, so that it need not be repopulated. Each

memoized schedule is conceptually a tuple 〈C, S〉, where S is a synchronization order and C is the

set of input constraints required to reuse S. (We explain the actual representation in §3.5.2).

At runtime, once an input I arrives, the proxy intercepts the input and queries the schedule

cache for a constraint-schedule tuple 〈Ci, Si〉 such that I satisfies Ci. On a cache hit, the proxy

lets the replayer run the program on input I and enforce schedule Si. On a cache miss, it lets the

memoizer run the program on input I to memoize a new schedule.

During a memoization run, the memoizer records all synchronization operations into a schedule

S. It also computes C, the input constraints for reusing S, via symbolic execution [24]. The basic

idea of symbolic execution is to track the outcomes of branches that observe symbolic data, in

our case, the data marked by developers as affecting synchronizations. Once the memoization run

ends, the set of branch outcomes we collected describes the input constraints needed to reuse the

memoized schedule.
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1 : main(int argc, char *argv[ ]) {

2 : int i, nthread = argv[1], nblock = argv[2];

3 : symbolic(&nthread, sizeof(int)); // mark input data

4 : symbolic(&nblock, sizeof(int)); // that affects schedules

5 : for(i=0; i<nthread; ++i)

6 : pthread create(worker); // create worker threads

7 : for(i=0; i<nblock; ++i) {

8 : block = read block(i); // read i’th file block

9 : worklist.add(block); // add block to work list

10: }

11: }

12: worker() { // worker threads for compressing file blocks

13: for(;;) {

14: block = worklist.get(); // get a file block from work list

15: compress(block);

16: }

17: }

Figure 3.2: Simplified PBZip2 code.

For determinism, the memoizer can optionally check a memoization run for data races. If

it detects no races, it simply stores 〈C, S〉 into the schedule cache. Otherwise, it can discard the

memoized schedule and rerun the program with a different scheduling algorithm to memoize another

schedule.

The proxy performs an additional task for server programs to reduce input timing nondeter-

minism and to reuse schedules for these programs. Specifically, it buffers the requests of a server

into a window with a fixed size. When the window becomes full, or remains partial for a predefined

timeout, Tern runs the server to process the window as if the server were a batch program. It then

lets the server quiesce before moving to the next window to avoid interference between windows.

3.3.2 Workflow and An Example

We illustrate how Tern works using PBZip2 as an example. Figure 3.2 shows the simplified code of

PBZip2. Variables nthread and nblock affect synchronizations, so developers mark them by calling

the Tern-provided method symbolic() (line 3 and line 4). This code spawns nthread worker
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// main worker 1 worker 2

9: worklist.add();

14: worklist.get();

9: worklist.add();

14: worklist.get();

Figure 3.3: Synchronization order of a PBZip2 run.

5: 0 < nthread ? true

5: 1 < nthread ? true

5: 2 < nthread ? false

7: 0 < nblock ? true

7: 1 < nblock ? true

7: 2 < nblock ? false

Figure 3.4: Input constraints of a PBZip2 run.

threads, splits the file into nblock blocks, and compresses them in parallel by calling compress().

To coordinate the worker threads, it uses a synchronized work list. (Note Tern tracks low-level

synchronizations such as pthread primitives; we use a work list here only for clarity.)

Suppose we run PBZip2 with two threads on a two-block file. Suppose the schedule cache is

empty and Tern runs the memoizer to memoize a new schedule. As PBZip2 runs, Tern controls

and records the synchronization operations (line 9 and line 14). It also tracks the outcomes of

branch statements that observe symbolic data (line 5 and line 7). At the end of the run, Tern

records a schedule as shown in Figure 3.3. It also collects constraints as shown in Figure 3.4, which

simplify to nthread = 2 ∧ nblock = 2.1 It stores the schedule and the input constraints into the

schedule cache.

If we run PBZip2 again with two threads on a different two-block file, Tern will check if variable

nthread and nblock satisfy any set of constraints in the schedule cache. In this case, Tern will

succeed. It will then reuse the schedule (Figure 3.3) to compress the file, even though the file data

may differ completely.

1Although in this example the constraints are collected from one thread, Tern can actually collect constraints

from multiple threads.
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3.3.3 Deployment Scenarios

We anticipate three ways users may deploy Tern to make their programs stable and deterministic.

Schedule-carrying code. Developers pre-populate a cache of correct, representative schedules

on typical workloads, then ship their program with the cache hardwired and marked read-only.

Online memoization. Users can turn on memoization at their local sites so that Tern can

memoize schedules as the programs run on real inputs.

Shadow memoization. Since tracking input constraints is slow, users can configure Tern to

memoize schedules asynchronously. Specifically, for an input that misses the schedule cache, the

proxy runs the program as is, while forwarding a copy of the input to the memoizer.

Each deployment mode has pros and cons. The first mode makes a program stable and deterministic

across different sites, but may react poorly to site-specific workloads. The second mode updates the

schedule cache based on site-specific workloads, but may be slow because memoization runs tend to

be slow. The last approach avoids the slowdown, but allows a program to run nondeterministically

when an input misses the schedule cache. For server programs with high performance requirements,

we recommend the first and the third modes.

3.3.4 Limitations

Determinism. Tern aims for best-effort determinism for reasons discussed in §3.2.2. If Tern is

unable to find a race-free schedule for an input, the run may be nondeterministic. We foresee several

strategies to handle this corner case while adhering to the other goals of Tern. For instance, we

can instrument the program to fix the detected races or apply one of the existing DMT algorithms

to resolve the races deterministically. The advantage of combining these techniques with Tern is

that we apply these expensive techniques only to a small portion of schedules, and use Tern to

efficiently handle the common case. We leave these ideas for future work.

Applicability. We anticipate our approach will work well for many programs/workloads as long as

(1) they can benefit from determinism and stability, (2) their constraints can be tracked by Tern,

(3) their schedules can be frequently reused, and (4) if windowing is needed, their inputs can be

buffered. For programs/workloads that violate these assumptions, Tern may work poorly. These

programs/workloads may include parallel simulators that require nondeterminism for statistical

results, GUI programs that cannot buffer user actions for latency reasons, randomly generated
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Annotations Inserted by Semantics

symbolic(data, len) Developer

Marks data that may affect schedules. The memoizer

tracks constraints on this data. The replayer checks

this data against the memoized constraints.

begin task()
Developer

Mark the beginning and end of a logical task. Used

to divide the executions of threads in servers. (§3.6).end task()

lock wrapper(l) Developer Synch wrappers used by the memoizer for memoizing

schedules, and by the replayer for reusing schedules.unlock wrapper(l) or Tern

before blocking()

Tern

Inserted before and after blocking system calls for

the memoizer to log the order of these calls, and for

the replayer to enforce the same order of these calls.

after blocking()

Table 3.1: Tern interface. Some annotations are inserted by developers, and others are inserted by the

instrumentor, indicated by Column Inserted By. Both the memoizer and the replayer use this interface,

but they implement this interface differently (§3.5).

workloads that prevent schedule reuses, and programs whose schedules depend on floating point

inputs (which cannot be tracked by Tern’s underlying symbolic execution engine).

Manual annotation. Tern requires manual annotations. However, this annotation overhead

tends to be small. (See §3.7.4 for how Tern reduces this overhead and §3.8.1 for an evaluation of

this overhead). This overhead may be further reduced using simple static analysis.

3.4 Interface

Table 3.1 shows Tern’s annotation interface which developers and the instrumentor use to annotate

multithreaded programs. The annotations fall into four categories: (1) symbolic() for marking

data that may affect schedules; (2) task boundary annotations for marking the beginning and

end of logical tasks, in case threads get reused for different logical tasks (§3.6); (3) wrappers to

synchronization operations (more examples in the next paragraph); and (4) hook functions inserted

around blocking system calls, which Tern memoizes because blocking systems calls are natural

scheduling points.

Tern hooks 28 Pthreads operations (e.g., pthread mutex lock(), pthread create(), and

pthread cond wait()). It also handles common atomic operations such as atomic dec() and
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atomic inc(). It hooks eight blocking system calls (e.g., sleep(), accept(), recv(), select(),

and read()). These hooks are sufficient to run the programs evaluated, and we can easily add

more.

Developers manually insert annotations in the first two categories. They also annotate custom

synchronizations (e.g., custom spin locks). Tern’s instrumentor automatically hooks standard

synchronization and blocking system calls. These annotations allow Tern’s memoizer and replayer

to run as “parasitic” user-space schedulers that oversee the scheduling decisions of the OS and

synchronization library, requiring no modifications to either.

3.5 Schedule Memoization

This section presents the idea of schedule memoization in the context of batch programs. We

describe how Ternmemoizes schedules (§3.5.1), tracks input constraints (§3.5.2), merges a schedule

into the schedule cache (§3.5.3), and reuses schedules (§3.5.4).

3.5.1 Memoizing Schedules

To memoize schedules, the memoizer controls and logs synchronization operations. By default, it

uses a simple round-robin (RR) algorithm that forces each thread to do synchronizations in turn.

One advantage of this algorithm is that independent sites may memoize the same schedules, making

program behaviors deterministic and stable across sites.

The memoizer implements this algorithm by implementing the wrappers in Table 3.1. Figure 3.5

shows the wrappers to pthread mutex lock() and pthread mutex unlock(). The memoizer main-

tains a queue of active threads. Only the thread at the head of the queue “has the turn” (line 4

and 14). Once the thread is done with the operation, it gives up the turn by moving itself to the

tail of the queue (line 7 and 18).

We explain three subtleties of the code. First, to avoid the deadlock scenario when the head of

the queue attempts to grab an unavailable mutex, we call the non-blocking lock operation instead

of the blocking one (line 5). If the mutex is not available, the thread gives up its turn and waits on

a Tern-maintained wait queue (line 10). Tern uses its own wait queues to avoid nondeterministic

wakeup orders in pthread library. Second, we log synchronizations (line 6 and line 17) only when
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1 : queue t activeq, waitq[N];

2 : pthread mutex lock wrapper(pthread mutex t *mutex) {

3 : retry:

4 : while(self()!=activeq.head); // wait for our turn

5 : if(!phtread mutex trylock(mutex)) { // mutex acquired

6 : append(schedule, self()); // add tid to schedule

7 : move(self(), activeq.tail); // give turn to next thread

8 : return;

9 : }

10: move(self(), waitq[mutex].tail); // deterministically wait

11: goto retry; // wait for our turn again

12: }

13: pthread mutex unlock wrapper(pthread mutex t *mutex) {

14: while(self()!=activeq.head); // wait for our turn

15: pthread mutex unlock(mutex); // mutex released

16: wake up(waitq[mutex].head); // deterministically wake up

17: append(schedule, self()); // add tid to schedule

18: move(self(), activeq.tail); // give turn to next thread

19: }

Figure 3.5: The memoizer’s round-robin scheduling algorithm.

the thread has the turn, so that the log faithfully reflects the actual order of synchronizations.

Lastly, we maintain our internal thread IDs to avoid nondeterminism in the OS thread IDs across

runs. Function self() returns this internal ID for the current thread (line 6 and line 17).

The memoizer allows a thread to break out of the round-robin when the thread has waited for its

turn for over a second. The rationale is that if a thread has waited too long, the current schedule will

likely perform poorly in reuse runs. However, such timeouts do not affect nondeterminism, because

the memoizer still logs the order of the occurred operations and the replayer simply enforces the

same order. In our experiments, we never observed such timeouts because most threads synchronize

or call blocking system calls frequently.

Unlike previous DMT systems, Tern has the flexibility to select scheduling algorithms. In

addition to the RR algorithm, it implements a first-come first-served (FCFS) algorithm that lets

threads run as is. If the memoizer detects a race using RR, it can restart the run and switch
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to FCFS. Implementing FCFS requires only minor modifications to the algorithm presented in

Figure 3.5. Specifically, we replace line 4 and line 14 with a lock operation; line 7, line 10, and line

18 with an unlock operation; and line 16 a NOP.

In addition to synchronizations, the memoizer includes the hooks around blocking system calls

(§3.4) in the schedule it memoizes because blocking system calls are natural scheduling points.

However, the replayer will only opportunistically replay these hooks when reusing a schedule because

the returns from blocking system calls are driven by the program’s environment.

3.5.2 Tracking Input Constraints

Given the symbolic data marked by developers, the memoizer tracks the constraints on this data

by tracking (1) what data is derived from the symbolic data and (2) the outcomes of the branch

statements that observe this symbolic and derived data. At the end of this memoization run, the

set of branch outcomes together describe the constraints to place on the symbolic data required

to reuse the memoized schedule. That is, if an input satisfies these constraints, we can re-run

the program in the same way as the memoization run. The constraints collected this way may be

over-constraining if developers annotate too much data as symbolic. We describe a technique to

address this problem in §3.7.4.

Tern leverages klee [24], an open-source symbolic execution engine to track input constraints.

To adapt klee to Tern, we made two key modifications. First, klee works only with sequential

programs, thus we extended it to support threads. Specifically, we modified klee to spawn a new

klee instance for each new thread. At the end of the run, we unify the constraints collected from

each thread as the input constraints of the schedule. Second, we simplified klee to only collect

constraints without solving them, because unlike klee, Tern need not explore different execution

paths.

3.5.3 Merging Schedules into the Schedule Cache

Once Tern memoized a schedule S and its constraints C, Tern stores the tuple into the schedule

cache. Although the schedule cache is conceptually a set of 〈C, S〉 tuples, its actual structure is

a decision tree because a program may incrementally read inputs from its environment, calling

symbolic() multiple times. For example, the code in Figure 3.2 calls symbolic() twice.
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Figure 3.6: Decision tree of Tern’s schedule cache.

Figure 3.6 illustrates how Tern constructs the decision tree of the schedule cache. Given a

〈C, S〉 tuple, Tern breaks it down to sub-tuples 〈Ci, Si〉 separated by symbolic() calls, where Si

contains the synchronization operations logged and Ci contains the constraints collected between

the ith and (i+1)th symbolic() calls. It then merges the sub-tuples into the ith level of the decision

tree.

Tern avoids merging redundant tuples into the cache. That is, if the cache contains a tuple

with less restrictive constraints that the tuple being merged, Tern simply discards the new tuple.

Note that the tuples may overlap (i.e., one input satisfies more than one set of constraints), and

Tern simply returns the first match if there are multiple matches.

To speed up cache lookup, Tern sorts all 〈Ci, Si〉 tuples within the same decision node based on

their reuse rates, defined as the number of successful reuses of Si over the number of inputs that have

satisfied Ci. Reusing a schedule may fail even if the input satisfies the schedule’s input constraints

(cf next subsection). However, by sorting the tuples based on reuse rates, we automatically prefer

good schedules over bad ones that have many failed reuse attempts. To bound the size of the

schedule cache, Tern can throw away bad schedules based on reuse rates. However, we have not

found the need to do so because the schedule cache is often small.

3.5.4 Reusing Schedules

To reuse a schedule, Tern must check that the input satisfies the input constraints of the schedule.

To do so, it maintains an iterator to the decision tree of the schedule cache. The iterator starts

from the root. As the program runs and calls symbolic(), Tern moves the iterator down the tree.
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pthread mutex lock wrapper(mutex) {

down(sem[self()]); // wait for our turn

pthread mutex lock(mutex);

next = shift schedule; // find next thread in schedule

up(sem[next]); // wake up next thread

}

Figure 3.7: Pseudo code of the replayer.

It checks if the data passed into a symbolic() call satisfies any set of constraints stored at the

corresponding decision tree node and, if so, enforces the corresponding schedule.

The performance of the replayer is crucial because it runs during a program’s normal executions.

To efficiently enforce a synchronization order, the replayer uses a technique we call semaphore

relay. Specifically, the replayer assigns each thread a semaphore. Before doing a synchronization

operation, a thread has to wait on its semaphore for its turn. Once it is done with the operation, it

passes the turn to the next thread in the schedule by signaling the semaphore of the next thread.

Compared to an approach using locks or condition variables, semaphore relay avoids unnecessary

lock contentions. Figure 3.7 illustrates semaphore relay using the replayer’s pthread mutex lock()

wrapper.

We note several subtleties of the pseudo code in Figure 3.7. First, we do not use non-blocking

lock operations (line 3) as in Figure 3.5 because the memoizer only logs successful lock acquisi-

tions. Second, the replayer maintains internal thread IDs the same way as the memoizer to avoid

mismatches. Lastly, the down() (line 2) is actually a timed wait (with a default 0.1ms timeout),

so that a thread can break out of a schedule when the dynamic load mismatches the schedule’s

assumptions. Note that these timeouts merely cause delays and do not affect correctness. They

rarely occurred in our experiments.

3.6 Windowing

Server programs present two challenges for Tern. First, they are more exposed to timing nonde-

terminism than batch programs because their inputs (client requests) arrive nondeterministically.

Second, they often run continuously, making their schedules too specific to reuse.
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Tern addresses these challenges using a simple idea called windowing. Our insight is that

server programs tend to return to the same quiescent states. Thus, instead of processing requests

as they arrive, Tern breaks a continuous request stream down to windows of requests. Within

each window, it admits requests only at fixed points in the current schedule. If no requests arrive

at an admission point for a predefined timeout, Tern simply proceeds with the partial window.

While a window is running, Tern buffers newly arrived requests so that they do not interfere with

the running window. With this approach, Tern can memoize and reuse schedules across (possibly

partial) windows. The cost of windowing is that it may reduce concurrency and degrade server

throughput and speed. However, our experiments show that this cost is reasonable and justified by

the gain in determinism and stability.

To buffer requests, Tern needs to know when a server receives a request and when it is done

processing the request. Inferring these task boundaries based on thread creation and exit is unre-

liable because server programs frequently use thread pools. Thus, Tern currently lets developers

annotate these boundaries using begin task() and end task(). Manually locating task bound-

aries is often easy: a request tends to begin after an accept() of a client connection and ends after

the server sends out a reply.

Exposing hidden states. The assumption of windowing is that a server program returns to the

same state when it quiesces. However, in practice, server states evolve over time. For instance,

when Apache first serves a page, it may load the page from disk and cache it in memory. When

this page is requested again, Apache can serve it directly from its cache.

These state changes may affect schedules. In the example above, Apache will perform different

synchronizations for the two runs. Thus, for Tern to accurately select a schedule to reuse, it

must know the hidden states that affect schedules. Currently Tern lets developers annotate such

hidden states using symbolic(). Doing so is often straightforward. For instance, we inserted a

symbolic() call to mark the return of Apache’s cache find() as symbolic.

Exposing hidden states may not always be easy. We thus created a technique to tolerate missed

symbolic() annotations. The basic idea is to store backup schedules under the same set of input

constraints to tolerate annotation inaccuracy. For instance, suppose a symbolic() had not been

missed, Tern would have memoized two different constraint-schedule tuples 〈C1, S1〉 and 〈C2, S2〉.

However, because of the missed annotation, Tern missed the corresponding constraints, wrongly
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// T1 // T2

++x;

lock(l1);

lock(l2);

++x;

Figure 3.8: A conventional race, not a schedule

race.

// T1 // T2

lock(l1);

a[i]++; lock(l2);

a[j]−−;

unlock(l1);

unlock(l2);

Figure 3.9: A symbolic race that occurs only when

i = j.

collapsing C1 and C2 into the same set C. Now the two original tuples become 〈C, S1〉 and 〈C, S2〉,

which appear redundant. Instead of discarding one of these seemingly redundant schedules, Tern

will store both schedules with the same set of constraints. To select between these schedules, Tern

can select the one with higher reuse rate, which likely matches the hidden state of the program.

3.7 Refinements

This section describes four refinements we made, one for determinism (§3.7.1) and three for speed

(§3.7.2-§3.7.4).

3.7.1 Detecting Data Races

As discussed in §3.2.2, if a memoized schedule allows data races, runs reusing this schedule may

become nondeterministic. Thus, for determinism, we would like to detect races in memoized sched-

ules and discard them from the schedule cache. A general race detector would flag too many races

for Tern because it detects conventional races with respect to the original synchronization con-

straints of the program, whereas we want to detect races with respect to the order constraints of a

schedule [95] (call them schedule races). Figure 3.8 shows a conventional race, but not a schedule

race because the synchronization order shown “kills” the race.

Thus, we built a simple race detector to detect schedule races. It runs with the memoizer and

is happens-before based. It considers one memory access happens before another with respect to

the synchronization order the memoizer records. Sometimes a pair of instructions may appear to

be a race, when in fact their relative order does not alter a run. For instance, a write-write race is
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benign if both instructions write the same value. Similarly, a read-write race is benign if the value

written by one instruction does not affect the value read by another. Our race detector prunes

these benign races.

Our detector also flags symbolic races, the races that are data-dependent on inputs. Figure 3.9

shows an example. Both variables i and j are inputs, and the race occurs only when i = j. The

risk of a symbolic races is that it may be absent in a memoization run and thus skip detection,

but show up nondeterministically in a reuse run. To detect symbolic races, our race detector

queries the underlying symbolic execution engine for pointer equality. For example, to detect the

race in Figure 3.9, it would query the underlying symbolic execution engine for the satisfiability

of &a[i] = &a[j]. It flags a symbolic race if this constraint is satisfiable. Once a symbolic race is

flagged, Tern adds additional input constraints to ensure that the race does not occur in reuse

runs. For Figure 3.9, we would add &a[i] 6= &a[j], which simplifies to i 6= j.

Our race detector can detect all schedule races in a memoization run. It can also detect all

symbolic races if developers correctly annotate all data that affect synchronization operations and

memory locations accessed. If this assumption holds and our race detector reports no races in a

memoization run, Tern ensures that the memoized schedule can be deterministically reused.

3.7.2 Skipping Unnecessary Synchronizations

When reusing a schedule, Tern enforces a total synchronization order according to the schedule.

These Tern-enforced execution order constraints are more stringent than the constraints enforced

by the original synchronizations in the program. Thus, for speed, Tern can actually skip these

unnecessary synchronizations. In our current implementation, we skip sleep(), usleep(), and

pthread barrier wait() because they are frequently used. We found that this optimization was

quite effective and even made programs run faster than nondeterministic execution (§3.8.3).

3.7.3 Simplifying Constraints

To reuse a schedule, Tern must check if the current input satisfies the constraints of the schedule.

The overhead of this check depends on the number of constraints, yet the set of constraints Tern

collects may not always be in simplified form. That is, a subset of the constraints may imply the

entire set. For example, consider a loop “for(int i=0;i!=n;++i)” with a symbolic bound n.
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When running this code with n = 10, we will collect a set of constraints {0 6= n, 1 6= n, ..., 10 = n},

but the last constraint alone implies the entire set.

To simplify constraints, Tern uses a greedy algorithm. Given a set of constraints C, it iterates

through each constraint c, and checks if C/{c} implies {c}. If so, it simply discards c. Our

observation is that constraints collected later in a run tend to be more compact than the earlier

ones. Thus, when pruning constraints, we start from the ones collected earlier. Although we could

have used the underlying symbolic execution engine to simplify constraints, it lacks this domain

knowledge and may perform poorly.

3.7.4 Slicing Out Irrelevant Branches

A branch statement may observe a piece of symbolic data but perform no synchronization operation

in either branch. The constraints collected from this branch are unlikely to affect schedules. If we

include irrelevant constraints in the input constraints of a schedule, we not only increase constraint

checking time, but also preclude legal reuses of the schedule.

To address this problem, Tern employs a simple static analysis to automatically prune likely

irrelevant constraints. At the heart of this technique is a slicing analysis that identifies branch

statements unlikely to affect synchronization operations. Specifically, given a branch statement

s, this analysis computes sd, the immediate post-dominator [2] of s, and marks s as irrelevant

if no synchronization operations are between s and sd. Although simple, this technique reduced

constraint checking time significantly (§3.8.3). However, we note that our analysis is unsound

because it ignores data dependencies. Thus, we plan to implement a sound slicing algorithm [30]

in our future work.

3.8 Evaluation

Our Tern implementation consists of 8,934 lines of C++ code, including 827 lines for the instru-

mentor implemented as an LLVM pass; 5,451 lines for the proxy, schedule cache, memoizer, and

replayer; and 2,656 lines for modifications to klee.

We evaluated Tern on a diverse set of 14 programs, ranging from two server programs, Apache
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and MySQL, to one parallel compression utility, PBZip2, to 11 scientific programs in SPLASH-2.2

Our main evaluation machine is a 2.66 GHz quad-core Intel machine with 4 GB memory running

Linux 2.6.24. When evaluating Tern on server programs, we ran the server on this machine and

the client on another to avoid unnecessary contention. These machines are connected via 1Gbps

LAN. We compiled all programs down to machine code using llvm-gcc -O2 and LLVM’s bitcode

compiler llc.

We focused our evaluation on four key questions:

1. Is Tern easy to use (§3.8.1)?

2. Does Tern make multithreaded programs stable across different inputs (§3.8.2)?

3. Does Tern incur high overhead (§3.8.3)?

4. Does Tern make multithreaded programs deterministic on the same input (§3.8.4)?

3.8.1 Ease of Use

Table 3.2 summarizes the modifications we made to make the programs work with Tern. For each

program but MySQL, we modified only 3-10 lines. For Apache, we marked the HTTP command,

URL, HTTP version, and the return of cache find() as symbolic (§3.6). For MySQL, we marked

the SQL query. For PBZip2, we marked the number of threads and file blocks. (The number of

file blocks is set in two places, contributing two symbolic annotations.) For all these scientific

programs, we marked all input arguments as symbolic except those configuring output verbosity.3

We marked three custom synchronization operations in three SPLASH-2 programs. We made two

miscellaneous changes to Apache and MySQL. The line counts are shown in parenthesis under the

Total column. For Apache, we had to fix an uninitialized memory read in ap signal server() to

make it work with klee. For MySQL, we wrote a 28-line function to mark the numbers in each SQL

query as concrete (i.e., not affecting schedules) to avoid making the input constraints too specific.

2The version of the SPLASH2 [68] we acquired has 12 programs, one of which does not compile on our evaluation

machine.

3Note that we could have used a two-line loop to mark these arguments as symbolic. Instead, we report the total

number of symbolic variables to avoid masking real data.
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Program Size Symbolic Task Sync Total

Apache 464K 4 2 0 6 (+1)

MySQL 1,182K 1 2 0 3 (+28)

PBZip2 1,551 3 N/A 0 3

fft 1,403 4 N/A 0 4

lu 1,265 3 N/A 0 3

barnes 1,954 9 N/A 0 9

radix 661 4 N/A 0 4

fmm 3,208 8 N/A 1 9

ocean 6,494 5 N/A 0 5

volrend 18,082 1 N/A 1 2

water-spatial 1,573 9 N/A 0 9

raytrace 5,808 3 N/A 0 3

water-nsquared 1,188 10 N/A 0 10

cholesky 3,683 3 N/A 1 4

Table 3.2: Statistics of programs evaluated. Size counts the lines of code for each program. Symbolic

counts the symbolic variables we marked. Task counts the task boundary annotations (begin task() and

end task()) we inserted. Sync counts the annotations for custom synchronizations we inserted. The

numbers in parenthesis under Total count miscellaneous changes.

3.8.2 Stability

We evaluated Tern’s stability via two sets of experiments. The first set compares it to an existing

DMT system (§3.8.2.1). The second quantifies how frequently it can reuse schedules on real and

synthetic workloads (§3.8.2.2).

3.8.2.1 Bug Stability

We compared Tern to CoreDet [12] in terms of bug stability : does a bug occur in one run but

disappear in another when the input varies slightly? We ran three buggy SPLASH-2 programs, fft,

lu, and barnes, in three modes: nondeterministic execution (Nondet), with CoreDet, and with

Tern. We varied their inputs by varying the number of threads and the amount of computation.

For each program, execution mode, and input combination, we ran the program 100 times, and

recorded whether the corresponding bug occurred.
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Nondet CoreDet Tern

-p2 ✔ ✔ ✔ ✔ ✖ ✔ ✔ ✔ ✔

-p4 ✔ ✔ ✔ ✖ ✖ ✔ ✔ ✔ ✔

-p8 ✔ ✔ ✔ ✖ ✖ ✖ ✔ ✔ ✔

Args. -m10 12 14 -m10 12 14 -m10 12 14

Table 3.3: Bug stability results on SPLASH-2 fft. The leftmost column and the bottommost row

show the command line arguments. Option -p specifies the number of threads, and -m the amount

of computation (matrix size). Symbol ✖ indicates that the bug occured, and ✔ the bug never

occured.

We present only the fft results; the results of the other programs are similar. Table 3.3 shows

the buggy behaviors of fft. In nondeterministic mode, the bug never occurred, despite that each run

almost always yielded a new synchronization order. With CoreDet, slight changes in computation

made the bug occur or disappear. With Tern, the bug never occurred, and Tern reused only

three schedules for all runs, one for each thread count.

3.8.2.2 Reuse Rates

We also quantified how frequently Tern could reuse schedules. Specifically, we measured the

overall reuse rate, defined as the number of inputs processed using memoized schedules over the

total number of inputs. The higher the reuse rates, the more stable the programs become. Tern

had nearly 100% overall reuse rates for the scientific programs after a small number of memoization

runs. Thus, we focused on Apache, MySQL, and PBZip2 in out experiments.

We used four workloads to evaluate overall reuse rates:

Apache-CS: a real 4-day trace from the Columbia CS website with 122,000 HTTP requests. We

wrote a script to replay this trace at a rate of 100 concurrent requests per second.

SysBench-simple: SysBench [106] in simple mode. This synthetic workload consists of random

select queries.

SysBench-tx: SysBench in transaction mode. This synthetic workload consists of random select,

update, delete, and insert queries.

PBZip2-usr: a random selection of 10,000 files from /usr on our evaluation machine.
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Program-Workload Reuse Rates (%) Schedules

Apache-CS 90.3% 100

SysBench-simple 94.0% 50

SysBench-tx 44.2% 109

PBZip2-usr 96.2% 90

Table 3.4: Tern stability. Column Schedules indicates the number of schedules in the schedule cache.

For each workload, we first randomly selected 1%-3% of the workload and ran the memoizer to

populate the schedule cache. We then ran the entire workload with the replayer and measured the

overall reuse rates. We ran eight worker threads for each program because they performed best

(with or without Tern) with this setting.

Table 3.4 shows the results. For three out of the four workloads, Tern could reuse a small

number of schedules to process over 90% of the inputs. For MySQL-tx, Tern had a lower overall

reuse rate. The reasons are two fold. First, this workload makes it unlikely to reuse schedules

because it mixes many randomly generated queries with different types and parameters. Second,

we annotated only the SQL command as symbolic without exposing the hidden states of MySQL

(§3.6) so that we could measure Tern’s performance in an adversarial setting. Nonetheless, Tern

managed to process 44.2% of inputs with a small number of schedules.

3.8.3 Overhead

We used the following workloads to evaluateTern’s overhead. For Apache, we used ApacheBench [5]

to repeatedly download a 50KB webpage. For MySQL, we used the SysBench-simple workload from

the previous subsection. Both ApacheBench and SysBench are used by the server developers them-

selves. We made these benchmarks CPU bound by fitting the web or database in memory and by

connecting the server and client via a 1 Gbps LAN. For PBZip2, we decompressed a 10 MB file.

For SPLASH-2 programs, we ran them typically for 10-100 ms. We measured the execution time

for batch programs and the throughput (TPUT) and response time (RESP) for server programs.

All numbers reported in this section were averaged over 50 runs.

The most performance-critical component is the replayer because it operates during the normal

execution of a program. Figure 3.10 shows the relative overhead of the replayer over nondeter-
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Figure 3.10: Relative overhead of the replayer over nondeterministic execution. Negative overhead means

speedup.

Program Nondet Memoization Overhead (times)

Apache-TPUT 462.2 req/s 2.1 req/s 219.1

Apache-RESP 0.22 s 3.96 s 17.0

MySQL-TPUT 13779.3 req/s 172.2 req/s 79.0

MySQL-RESP 0.6 ms 61 ms 100.6

PBZip2 0.18 s 15.19 s 83.4

Table 3.5: Overhead of the memoizer.

ministic execution, the smaller the better. For seven out of the fourteen programs, the replayer

performed almost identically to nondeterministic execution. For PBZip2 and barnes, Tern per-

formed better. This speedup came partially from the optimization to remove unnecessary syn-

chronizations, discussed in the next paragraph. Tern’s overhead for MySQL, volrend, raytrace,

water-nsquared, and choleskey is relatively large because these programs performed many synchro-

nization operations over a short period of time. For instance, water-nsquared and cholesky both

call pthread mutex lock() and pthread mutex unlock() in a tight loop.

We also measured the effects of skipping unnecessary synchronizations (§3.7.2). Figure 3.11

shows the results. This optimization significantly reduced the replayer’s overhead for four programs.

Specifically, it made PBZip2 and barnes run faster than nondeterministic execution, and reduced the

overhead of water-nsquared from 172.4% to 39.1%. Its effects on the other programs are negligible

and thus not shown.



CHAPTER 3. COMPUTING HIGHLY REUSABLE SCHEDULES 41

-20

0

50

100

150

180

PBZip2 barnes volrend water-
nsquared

O
v
e
rh

e
a
d
 (

%
)

no opt
skip sync

Figure 3.11: Overhead reduction by skipping unnecessary synchronizations. “no opt” indicates the baseline

overhead.

To reuse a schedule on an input, Tern must check the input against memoized constraints.

Constraint checking can be costly, and Tern provides two optimizations to speed it up (§3.7.3

and §3.7.4). Figure 3.12 shows these optimizations can effectively speed up constraint checking for

Apache, fft, lu, and radix. In particular, they reduced the constraint checking time for lu by 16x.

Compared to the replayer, the memoizer can run offline, thus its performance is not as critical.

Table 3.5 shows that this slowdown can sometimes exceed 200x. The main reason is that klee, the

symbolic engine used, interprets programs instead of running them natively. An instrumentation-

based approach can greatly reduce this slowdown [23], which we plan to implement in our future

work.

3.8.4 Determinism

We evaluated Tern’s determinism via three sets of experiments. The first set checked the memoized

schedules for races (§3.8.4.1). The second evaluated Tern’s ability to deterministically reproduce

or avoid bugs (§3.8.4.2). The third measured how deterministic memory accesses are with and

without Tern (§3.8.4.3).

3.8.4.1 Race Detection Results

When memoizing schedules for each of the 14 programs, we turned on Tern’s race detector. We

found that except for radix and cholesky, the schedules Tern memoized for all other programs were
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Figure 3.12: Optimizations to speed up constraint checking. Note the y-axis is broken. “no opt” indicates

the baseline constraint checking time. “simplify” refers to the optimization in §3.7.3. “slice” refers to the

optimization in §3.7.4.

free of schedule races and symbolic races with respect to the symbolic data we annotated (§3.7.1).

Our race detection result is not surprising because most schedules are indeed race free. It implies

that, for runs that reuse the memoized schedules of all programs but radix and cholesky, Tern

ensures determinism, barring the assumption discussed in §3.7.1.

3.8.4.2 Bug Determinism

We also evaluated how deterministically Tern could reproduce or avoid bugs. Table 3.6 lists five

real concurrency bugs we used. We selected them because they were frequently used in previous

studies [69, 71, 86, 87] and we could reproduce them on our evaluation machine. To measure bug

determinism, we first memoized schedules for programs listed in Table 3.6. We then manually

inserted usleep() to these programs to get alternate schedules. We then ran the buggy programs

again, reusing the memoized schedules. We also injected random delays into the reuse runs to

perturb timing. We found that, Tern consistently reproduced or avoided all five bugs. We verified

this result by inspecting the memoized schedules.

3.8.4.3 Memory Access Determinism

Tern enforces synchronization orders, which should make memory access orders more determinis-

tic. We quantified this effect over Apache and PBZip2. Specifically, we instrumented Apache with
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Program Error Description

Apache Reference count decrement and check

against 0 are not atomic.

PBZip2 Variable fifo is used in one thread af-

ter being freed by another.

fft initdonetime and finishtime are

read before assigned the correct val-

ues.

lu Variable rf is read before assigned the

correct value.

barnes Variable tracktime is read before as-

signed the correct value.

Table 3.6: Concurrency errors used in evaluation.

Program Length Nondet Tern Ratio

Apache 148,058 86,215 10,821 7.97

PBZip2 1,234 161 69 2.33

Table 3.7: Memory access determinism. We traced memory accessed only from PBZip2, not the external

BZip2 library.

LLVM to trace accesses to global variables and the heap, a crude approximation of shared memory.

We ran Apache with Tern to serve five HTTP requests and collected a trace of memory accesses.

We then repeated this experiment 20 times to collect 20 traces, and computed the average pairwise

edit distance [110]. We then measured the same edit distance for Apache in nondeterministic exe-

cution mode and compared the two. We did the same comparison for PBZip2 with a decompression

workload of 2MB. Table 3.7 shows the result. For Apache, runs with Tern were 7.97 times more

deterministic than those without. For PBZip2, Tern was 2.33 times more deterministic, but the

memory trace had only 1,234 accesses on average.
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3.9 Related Work

StableMT and DMT systems. Although Tern provides determinism, it differs from existing

DMT systems [12, 34, 80] by making threads stable, i.e., repeating familiar behaviors across differ-

ent inputs. Another difference is that Tern reduces timing nondeterminism for server programs

through the windowing approach.

The closest system to Tern in this category is Kendo [80], a software-only DMT system that

also enforces synchronization orders instead of memory access orders for efficiency. CoreDet [12]

is another software-only DMT system that enforces deterministic memory access orders. Both

systems are based on logical clocks and have been shown to work on scientific benchmarks, such

as SPLASH-2. The authors of CoreDet have noted that a small modification to the original

program leads to a much different CoreDet-instrumented program, which the idea of schedule

memoization may address. CoreDet is a software implementation (with extensions) of DMP [34],

a hardware DMT system .

Grace [16] proposes a novel approach to making C and C++ programs with fork-join parallelism

behave like sequential programs. It runs each thread within a process and commits memory writes

atomically and deterministically. It detects memory access conflicts efficiently using hardware page

protection. Grace has been shown to perform and scale well on Phoenix benchmarks [93] and a

Cilk [19] benchmark. Unlike Grace, Tern aims to make general multithreaded programs, not just

fork-join programs, deterministic and stable.

Deterministic Replay. Deterministic replay [4, 35, 36, 42, 47, 61, 62, 74, 87, 104, 108] aims

to replay the exact recorded executions, whereas Tern “replays” memoized schedules on different

inputs. Some recent deterministic replay systems include Scribe, which tracks page ownership to

enforce deterministic memory access [62]; Capo, which defines a novel software-hardware interface

and a set of abstractions for efficient replay [74]; PRES and ODR, which systematically search

for a complete execution based on a partial one [4, 87]; and SMP-ReVirt, which uses clever page

protection trick for recording the order of conflicting memory accesses [36].

Concurrency Errors. The complexity in developing multithreaded programs has led to many

concurrency errors [71]. A significant number of them are not data races, but atomicity and order

errors [71], which can be deterministically reproduced or avoided using only synchronization orders.

Much work exists on concurrency error detection [38, 69, 70, 97, 123, 126], diagnosis [85, 86, 99],
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and correction [55, 111]. Tern aims to make the executions of multithreaded programs determin-

istic and stable, and is complementary to existing work on concurrency errors. Specifically, Tern

can use existing work to detect and fix the errors in the schedules it selects. Moreover, even for

programs free of concurrency errors, Tern still provides value by making their behaviors repeatable.

Symbolic Execution. The combination of symbolic and concrete executions has been a hot

research topic. Researchers have built scalable and effective symbolic execution systems to de-

tect errors [23–25, 27, 43–45, 98, 119], block malicious inputs [30], and preserve privacy in error

reports [26]. Compared to these systems, Tern applies symbolic execution to a new domain:

tracking input constraints to reuse schedules.

3.10 Summary

We have presented Tern, the first stable and deterministic multithreading system that makes

general multithreaded programs stable by repeating the same schedules on different inputs. Tern

does so using schedule memoization: if a schedule is shown to work on an input, Tern memoizes

the schedule; if a similar input arrives later, Tern simply reuses the memoized schedule. Tern is

also the first DMT system to mitigate input timing nondeterminism for server programs.

Our Tern implementation runs on Linux. It requires no new hardware, no modifications to the

underlying OS or synchronization library, and only a few lines of modifications to the multithreaded

programs. We evaluated Tern on a diverse set of real programs, including two server programs,

one desktop program, and 11 scientific programs. Our results show that Tern is easy to use,

makes programs more deterministic and stable, and has reasonable overhead (i.e., good efficiency).

Tern is the first stable and deterministic multithreading system shown to work on applications as

large, complex, and nondeterministic as MySQL and Apache. It demonstrates that StableMT and

DMT have the potential to greatly improve understanding, testing, and debugging of multithreaded

programs, making these programs much easier to get right.
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Chapter 4

Efficiently Enforcing Schedules

without Deviation

The last chapter presents Tern, the first multithreading system that is efficient, stable, and de-

terministic. However, Tern enforces best-effort determinism, and its executions may deviate from

the memoized schedules when data races exist. Thus, a second challenge on building StableMT

arises: how to efficiently enforce schedules without deviation? This challenge also exists in the area

of deterministic execution and replay for decades. To address this challenge, this chapter presents

Peregrine, our second StableMT (and also DMT) system with a new technique called schedule

relaxation.

4.1 Introduction

As described in Chapter 2, a root cause that makes multithreaded programs so difficult to get right

is: these programs have exponentially many possible schedules for all inputs at runtime. Even

running on the same input, the concurrently running threads of a program may interleave in too

many different ways, depending on factors such as hardware timing and OS scheduling. This is

the so called “nondeterminism.” Considering all inputs, the number of possible schedules is even

greater. It is extremely challenging to understand, test, analyze, or verify all these schedules in a

multithreaded program. Therefore, a concurrency bug within an unchecked schedule can show up

in production runs and lead to severe failures and vulnerabilities.
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To reduce the number of possible schedules and make multithreading easier to get right, two

complementary techniques have been invented by researchers recently. StableMT [8, 31], which is

created by my collaborators and me, aims to reduce the number possibles schedules on all inputs.

DMT [12, 13, 16, 34, 80] addresses the nondeterminism problem, and it focuses on reducing the

number of possible schedules on each input down to one. Notably, our Tern system described in

Chapter 3 is the first multithreading system that is both stable and deterministic. Unfortunately,

despite these effort, an open challenge [14] well recognized by the research community remains: how

to efficiently enforce schedules without deviation for general multithreaded programs on commodity

multiprocessors? When enforcing existing DMT systems’ schedules, program executions either incur

prohibitive overhead, or may deviate from the schedules if there are data races (i.e., these executions

are not fully deterministic).

As mentioned in Chapter 1, existing DMT systems specifically enforce two forms of schedules:

(1) a mem-schedule is a deterministic schedule of shared memory accesses [12, 13, 34], such as

load/store instructions, and (2) a sync-schedule is a deterministic order of synchronization op-

erations [31, 80], such as lock()/unlock(). Enforcing a mem-schedule is fully deterministic even

for programs with data races, but may incur prohibitive overhead (e.g., roughly 1.2×-6× [12]).

Enforcing a sync-schedule is efficient (e.g., average 16% slowdown [80]) because most code does not

control synchronization and can still run in parallel, but a sync-schedule is only deterministic for

race-free programs, when, in fact, most real programs have races, harmful or benign [71, 116]. The

dilemma is, then, to pick either fully determinism or efficiency, but not both.

Our key insight is that although most programs have races, these races tend to occur only within

minor portions of an execution, and the majority of the execution is still race-free. Thus, we can

resort to a mem-schedule only for the “racy” portions of an execution and enforce a sync-schedule

otherwise, combining both the efficiency of sync-schedules and the determinism of mem-schedules.

We call these combined schedules hybrid schedules.

Based on this insight, we have built Peregrine, an efficient DMT system to address the afore-

mentioned open challenge. When a program first runs on an input, Peregrine records a detailed

execution trace including memory accesses in case the execution runs into races. Peregrine then

relaxes this detailed trace into a hybrid schedule, including (1) a total order of synchronization

operations and (2) a set of execution order constraints to deterministically resolve each occurred
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race. When the same input is provided again, Peregrine can reuse this schedule deterministically

and efficiently.

Reusing a schedule only when the program input matches exactly is too limiting, and we aim to

make Peregrine also a StableMT system that can frequently reuse schedules on a wide range of

inputs. Fortunately, the schedules Peregrine computes are often “coarse-grained” and reusable

on a broad range of inputs. Indeed, our previous work has shown that a small number of sync-

schedules can often cover over 90% of the workloads for real programs such as Apache [31]. The

higher the reuse rates, the more efficient Peregrine is.

Before reusing a schedule on an input, Peregrine must check that the input satisfies the input

constraints of the schedule, so that (1) the schedule is feasible, i.e., the execution on the input

will reach all events in the same deterministic order as in the schedule and (2) the execution will

not introduce new races. (New races may occur if they are input-dependent ; see §4.4.1.) A näıve

approach is to collect preconditions from all input-dependent branches in an execution trace. For

instance, if a branch instruction inspects input variable X and goes down the true branch, we collect

a precondition that X must be nonzero. Preconditions collected via this approach ensures that an

execution on an input satisfying the preconditions will always follow the path of the recorded

execution in all threads. However, many of these branches concern thread-local computations and

do not affect the program’s ability to follow the schedule. Including them in the preconditions thus

unnecessarily decreases schedule-reuse rates.

How can Peregrine compute sufficient preconditions to avoid new races and ensure that a

schedule is feasible? How can Peregrine filter out unnecessary branches to increase schedule-

reuse rates? Our previous work, Tern [31], requires developers to grovel through the code and

mark the input affecting schedules; even so, it does not guarantee full determinism if there are data

races.

Peregrine addresses these challenges with two new program analysis techniques. First, given

an execution trace and a hybrid schedule, it computes sufficient preconditions using determinism-

preserving slicing, a new precondition slicing [30] technique designed for multithreaded programs.

Precondition slicing takes an execution trace and a target instruction in the trace, and computes a

trace slice that captures the instructions required for the execution to reach the target with equiv-

alent operand values. Intuitively, these instructions include “branches whose outcome matters”
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to reach the target and “mutations that affect the outcome of those branches” [30]. This trace

slice typically has much fewer branches than the original execution trace, so that we can compute

more relaxed preconditions. However, previous work [30] does not compute correct trace slices for

multithreaded programs or handle multiple targets; our slicing technique correctly handles both

cases.

Our slicing technique often needs to determine whether two pointer variables may point to the

same object. Alias analysis is the standard static technique to answer these queries. Unfortu-

nately, one of the best alias analyses [113] yields overly imprecise results for 30% of the evaluated

programs, forcing Peregrine to reuse schedules only when the input matches almost exactly. The

reason is that standard alias analysis has to be conservative and assume all possible executions,

yet Peregrine cares about alias results according only to the executions that reuse a specific

schedule. To improve precision, Peregrine uses schedule-guided simplification to first simplify a

program according to a schedule, then runs standard alias analysis on the simplified program to

get more precise results. For instance, if the schedule dictates eight threads, Peregrine can clone

the corresponding thread function eight times, so that alias analysis can separate the results for

each thread, instead of imprecisely merging results for all threads.

We have built a prototype of Peregrine that runs in user-space. It automatically tracks main()

arguments, data read from files and sockets, and values returned by random()-variants as input.

It handles long-running servers by splitting their executions into windows and reusing schedules

across windows [31]. The hybrid schedules it computes are fully deterministic for programs that

(1) have no nondeterminism sources beyond thread scheduling, data races, and inputs tracked by

Peregrine and (2) adhere to the assumptions of the tools Peregrine uses.

We evaluated Peregrine on a diverse set of 18 programs, including the Apache web server [6];

three desktop programs, such as PBZip2 [89], a parallel compression utility; implementations of 12

computation-intensive algorithms in the popular SPLASH-2 and PARSEC benchmark suites; and

racey [50], a benchmark with numerous intentional races for evaluating deterministic execution and

replay systems. Our results show that Peregrine is both deterministic and efficient (executions

reusing schedules range from 68.7% faster to 46.6% slower than nondeterministic executions); it can

frequently reuse schedules for half of the programs (e.g., two schedules cover all possible inputs to

PBZip2 compression as long as the number of threads is the same); both its slicing and simplification
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Figure 4.1: Peregrine Architecture: components and data structures are shaded (and in green).

techniques are crucial for increasing schedule-reuse rates, and have reasonable overhead when run

offline; its recording overhead is relatively high, but can be reduced using existing techniques [18];

and it requires no manual effort except a few annotations for handling server programs and for

improving precision.

Our main contributions are the schedule-relaxation approach and Peregrine, an efficient stable

and deterministic multithreading system. Additional contributions include the ideas of hybrid

schedules, determinism-preserving slicing, and schedule-guided simplification. To our knowledge,

our slicing technique is the first to compute correct (non-trivial) preconditions for multithreaded

programs. We believe these ideas apply beyond Peregrine (§4.2.2).

The remainder of this chapter is organized as follows. We first present a high-level design of

Peregrine (§4.2). We then describe its core ideas: hybrid schedules (§4.3), determinism-preserving

slicing (§4.4), and schedule-guided simplification (§4.5). We then present implementation issues

(§4.6) and evaluation (§4.7). We finally discuss related work (§4.8) and conclude (§4.9).

4.2 High-level Design

Figure 4.1 shows the architecture of Peregrine. It has four main components: the instrumen-

tor, recorder, analyzer, and replayer. The instrumentor is an LLVM [67] compiler plugin that

prepares a program for use with Peregrine. It instruments synchronization operations such as

pthread mutex lock(), which the recorder and replayer control at runtime. It marks the main()

arguments, data read from read(), fscanf(), and recv(), and values returned by random()-

variants as inputs. We chose LLVM [67] as our instrumentation framework for its compatibility

with GCC and easy-to-analyze intermediate representation (IR). However, our approach is general

and should apply beyond LLVM. For clarity, we will present our examples and algorithms at the
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source level, instead of the LLVM IR level.

The recorder is similar to existing systems that deterministically record executions [18, 36, 62].

Our current recorder is implemented as an LLVM interpreter. When a program runs, the recorder

saves the LLVM instructions interpreted for each thread into a central log file. The recorder does

not record external input data, such as data read from a file, because our analysis does not need

this information. To schedule synchronization operations issued by different threads, the recorder

can use a variety of DMT algorithms [31].

The analyzer is a stand-alone program that computes (1) a hybrid schedule S and (2) the

preconditions C required for reusing the schedule on future inputs. It does so using a series of

analyses, shown in Figure 4.2. To compute a hybrid schedule, the analyzer first extracts a total

order of synchronization operations from the execution trace. It then detects data races according to

this synchronization order, and computes additional execution order constraints to deterministically

resolve the detected races. To compute the preconditions of a schedule, the analyzer first simplifies

the program according to the schedule, so that alias analysis can compute more precise results.

It then slices the execution trace into a trace slice with instructions required to avoid new races

and reach all events in the schedule. It then uses symbolic execution [59] to collect preconditions

from the input-dependent branches in the slice. The trace slice is typically much smaller than the

execution trace, so that the analyzer can compute relaxed preconditions, allowing frequent reuses

of the schedule. The analyzer finally stores 〈C, S〉 into the schedule cache, which conceptually holds

a set of such tuples. (The actual representation is tree-based for fast lookup [31].)

The replayer is a lightweight user-space scheduler for reusing schedules. When an input arrives,

it searches the schedule cache for a 〈C, S〉 tuple such that the input satisfies the preconditions C. If it

finds such a tuple, it simply runs the program enforcing schedule S efficiently and deterministically.
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Otherwise, it forwards the input to the recorder.

In the remainder of this section, we first use an example to illustrate how Peregrine works,

highlighting the operation of the analyzer (§4.2.1). We then describe Peregrine’s deployment and

usage scenarios (§4.2.2) and assumptions (§4.2.3).

4.2.1 An Example

Figure 4.3 shows our running example, a simple multithreaded program based on the real ones used

in our evaluation. It first parses the command line arguments into nthread (line L1) and size

(L2), then spawns nthread threads including the main thread (L4–L5) and processes size/nthread

bytes of data in each thread. The thread function worker() allocates a local buffer (L10), reads

data from a file (L11), processes the data (L12–L13), and sums the results into the shared variable

result (L14–L16). The main() function may further update result depending on argv[3] (L7–

L8), and finally prints out result (L9). This example has read-write and write-write races on

result due to missing pthread join(). This error pattern matches some of the real errors in the

evaluated programs such as PBZip2.

Instrumentor. To run this program with Peregrine, we first compile it into LLVM IR and

instrument it with the instrumentor. The instrumentor replaces the synchronization operations

(lines L5, L14, and L16) with Peregrine-provided wrappers controlled by the recorder and replayer

at runtime. It also inserts code to mark the contents of argv[i] and the data from read() (line

L11) as input.

Recorder: execution trace. When we run the instrumented program with arguments “2 2 0” to

spawn two threads and process two bytes of data, suppose that the recorder records the execution

trace in Figure 4.4. (This figure also shows the hybrid schedule and preconditions Peregrine

computes, explained later in this subsection.) This trace is just one possible trace depending on

the scheduling algorithm the recorder uses.

Analyzer: hybrid schedule. Given the execution trace, the analyzer starts by computing a

hybrid schedule. It first extracts a sync-schedule consisting of the operations tagged with (1), (2),

..., (8) in Figure 4.4. It then detects races in the trace according to this sync-schedule, and finds

the race on result between L15 of thread t1 and L9 of t0. It then computes an execution order

constraint to deterministically resolve this race, shown as the dotted arrow in Figure 4.4. The
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int size; // total size of data

int nthread; // total number of threads

unsigned long result = 0;

int main(int argc, char *argv[ ]) {

L1: nthread = atoi(argv[1]);

L2: size = atoi(argv[2]);

L3: assert(nthread>0 && size>=nthread);

L4: for(int i=1; i<nthread; ++i)

L5: pthread create(. . ., worker, NULL);

L6: worker(NULL);

// NOTE: missing @pthread join()@

L7: if(atoi(argv[3]) == 1)

L8: result += . . .; // race with line @L15@

L9: printf("result = %lu\n", result); // race with line @L15@

. . .

}

void *worker(void *arg) {

L10: char *data = malloc(size/nthread);

L11: read(. . ., data, size/nthread);

L12: for(int i=0; i<size/nthread; ++i)

L13: data[i] = . . .; // compute using @data@

L14: pthread mutex lock(&mutex);

L15: result += . . .; // race with lines @L8@ and @L9@

L16: pthread mutex unlock(&mutex);

. . .

}

Figure 4.3: Running example. It uses the common divide-and-conquer idiom to split work among

multiple threads. It contains write-write (lines L8 and L15) and read-write (lines L9 and L15) races

on result because of missing pthread join().

sync-schedule and execution order constraint together form the hybrid schedule. Although this

hybrid schedule constrains the order of synchronization and the last two accesses to result, it can

still be efficiently reused because the core computation done by worker can still run in parallel.

Analyzer: simplified program. To improve analysis precision, the analyzer simplifies the pro-
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Figure 4.4: Execution trace, hybrid schedule, and trace slice. An execution trace of the program in

Figure 4.3 on arguments “2 2 0” is shown. Each executed instruction is tagged with its static line

number Li. Branch instructions are also tagged with their outcome (true or false). Synchronization

operations (green), including thread entry and exit, are tagged with their relative positions in the

synchronization order. They form a sync-schedule whose order constraints are shown with solid

arrows. L15 of thread t1 and L9 of thread t0 race on result, and this race is deterministically

resolved by enforcing an execution order constraint shown by the dotted arrow. Together, these

order constraints form a hybrid schedule. Instruction L7 of t0 (italic and blue) is included in the

trace slice to avoid new races, while L6, L4:false, L4:true, L3, L2, and L1 of t0 are included due to

intra-thread dependencies. Crossed-out (gray) instructions are elided from the slice.

gram according to the hybrid schedule. For instance, based on the number of pthread create()

operations in the schedule, the analyzer clones function worker() to give each thread a copy, so
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that the alias analysis separates different threads and determines that the two instances of L13 in

t0 and t1 access different malloc’ed locations and never race.

Analyzer: trace slice. The analyzer uses determinism-preserving slicing to reduce the execution

trace into a trace slice, so that it can compute relaxed preconditions. The final trace slice consists

of the instructions not crossed out in Figure 4.4. The analyzer computes this trace slice using

inter-thread and intra-thread steps. In the inter-thread step, it adds instructions required to avoid

new races into the slice. Specifically, for t0 it adds the false branch of L7, or L7:false, because if

the true branch is taken, a new race between L8 of t0 and L15 of t1 occurs. It ignores branches of

line L12 because alias analysis already determines that L13 of t0 and L13 of t1 never race.

In the intra-thread step, the analyzer adds instructions required to reach all instructions identi-

fied in the inter-thread step (L7:false of t0 in this example) and all events in the hybrid schedule. It

does so by traversing the execution trace backwards and tracking control- and data-dependencies.

In this example, it removes L15, L13, L12, L11, and L10 because no instructions currently in the

trace slice depend on them. It adds L6 because without this call, the execution will not reach

instructions L14 and L16 of thread t0. It adds L4:false because if the true branch is taken, the

execution of t0 will reach one more pthread create(), instead of L14, pthread mutex lock(), of

t0. It adds L4:true because this branch is required to reach L5, the pthread create() call. It

similarly adds L3, L2, and L1 because later instructions in the trace slice depend on them.

Analyzer: preconditions. After slicing, all branches from L12 are gone. The analyzer joins the

remaining branches together as the preconditions, using a version of klee [24] augmented with

thread support [31]. Specifically, the analyzer marks input data as symbolic, and then uses klee to

track how this symbolic data is propagated and observed by the instructions in the trace slice. (Our

Peregrine prototype runs symbolic execution within the recorder for simplicity; see §4.6.1.) If a

branch instruction inspects symbolic data and proceeds down the true branch, the analyzer adds the

precondition that the symbolic data makes the branch condition true. The analyzer uses symbolic

summaries [30] to succinctly generalize common library functions. For instance, it considers the

return of atoi(arg) symbolic if arg is symbolic.

Figure 4.5 shows the preconditions the analyzer computes from the trace slice in Figure 4.4.

These preconditions illustrate two key benefits of Peregrine. First, they are sufficient to ensure

deterministic reuses of the schedule. Second, they only loosely constrain the data size (atoi argv2)
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(atoi argv1 = 2)∧ (atoi argv2 ≥ atoi argv1)∧ (atoi argv3 6=

1)

Figure 4.5: Preconditions computed from the trace slice in Figure 4.4. Variable atoi argvi represents

the return of atoi(arg[i]).

and do not constrain the data contents (from read()), allowing frequent schedule-reuses. The

reason is that L10–L13 are all sliced out. One way to leverage this benefit is to populate a schedule

cache with small workloads to reduce analysis time, and then reuse the schedules on large workloads.

Replayer. Suppose we run this program again on different arguments “2 1000 8.” The replayer

checks the new arguments against the preconditions in Figure 4.5 using klee’s constraint checker,

and finds that these arguments satisfy the preconditions, despite the much larger data size. It can

therefore reuse the hybrid schedule in Figure 4.4 on this new input by enforcing the same order of

synchronization operations and accesses to result.

4.2.2 Deployment and Usage Scenarios

Peregrine runs in user-space and requires no special hardware, presenting few challenges for de-

ployment. To populate a schedule cache, a user can record execution traces from real workloads; or

a developer can run (small) representative workloads to pre-compute schedules before deployment.

Peregrine efficiently makes the behaviors of multithreaded programs more repeatable, even across

a range of inputs. We envision that users can use this repeatability in at least four ways.

Concurrency error avoidance. Peregrine can reuse well-tested schedules collected from the

testing lab or the field, reducing the risk of running into untested, buggy schedules. Currently

Peregrine detects and avoids only data races. However, combined with the right error detectors,

Peregrine can be easily extended to detect and avoid other types of concurrency errors.

Record and replay. Existing deterministic record-replay systems tend to incur high CPU and

storage overhead (e.g., 15X slowdown [18] and 11.7 GB/day storage [36]). A record-replay system

on top of Peregrine may drastically reduce this overhead: for inputs that hit the schedule cache,

we do not have to log any schedule.

Replication. To keep replicas of a multithreaded program consistent, a replication tool often

records the thread schedules at one replica and replays them at others. This technique is essen-
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tially online replay [64]. It may thus incur high CPU, storage, and bandwidth overhead. With

Peregrine, replicas can maintain a consistent schedule cache. If an input hits the schedule cache,

all replicas will automatically select the same deterministic schedule, incurring zero bandwidth

overhead.

Schedule-diversification. Replication can tolerate hardware or network failures, but the replicas

may still run into the same concurrency error because they all use the same schedules. Fortunately,

many programs are already “mostly-deterministic” as they either compute the same correct result

or encounter heisenbugs. We can thus run Peregrine to deterministically diversify the schedules at

different replicas (e.g., using different scheduling algorithms or schedule caches) to tolerate unknown

concurrency errors.

Applications of individual techniques. The individual ideas in Peregrine can also benefit

other research effort. For instance, hybrid schedules can make the sync-schedule approach determin-

istic without recording executions, by coupling it with a sound static race detector. Determinism-

preserving slicing can (1) compute input filters to block bad inputs [30] causing concurrency errors

and (2) randomize an input causing a concurrency error for use with anonymous bug reporting [26].

Schedule-guided simplification can transparently improve the precision of many existing static anal-

yses: simply run them on the simplified programs. This improved precision may be leveraged to

accurately detect errors or even verify the correctness of a program according to a set of schedules.

Indeed, from a verification perspective, our simplification technique helps verify that executions

reusing schedules have no new races.

4.2.3 Assumptions

At a design level, we anticipate the schedule-relaxation approach to work well for many pro-

grams/workloads as long as (1) they can benefit from repeatability, (2) their schedules can be

frequently reused, (3) their races are rare, and (4) their nondeterminism comes from the sources

tracked by Peregrine. This approach is certainly not designed for every multithreaded program.

For instance, like other DMT systems, Peregrine should not be used for parallel simulators

that desire nondeterminism for statistical confidence. For programs/workloads that rarely reuse

schedules, Peregrine may be unable to amortize the cost of recording and analyzing execution

traces. For programs full of races, enforcing hybrid schedules may be as slow as mem-schedules.



CHAPTER 4. EFFICIENTLY ENFORCING SCHEDULES WITHOUT DEVIATION 58

Peregrine addresses nondeterminism due to thread scheduling and data races. It mitigates input

nondeterminism by reusing schedules on different inputs. It currently considers command line ar-

guments, data read from a file or a socket, and the values returned by řandom()-variants as inputs.

Peregrine ensures that schedule-reuses are fully deterministic if a program contains only these

nondeterminism sources, an assumption met by typical programs. If a program is nondeterministic

due to other sources, such as functions that query physical time (e.g., ǧettimeofday()), pointer ad-

dresses returned by m̌alloc(), and nondeterminism in the kernel or external libraries, Peregrine

relies on developers to annotate these sources.

The techniques that Peregrine leverages make assumptions as well. Peregrine computes

preconditions from a trace slice using the symbolic execution engine klee, which does not han-

dle floating point operations; though recent work [29] has made advances in symbolic execution

of floating point programs. (Note that floating point operations not in trace slices are not an is-

sue.) We explicitly designed Peregrine’s slicing technique to compute sufficient preconditions,

but these preconditions may still include unnecessary ones, because computing the weakest (most

relaxed) preconditions in general is undecidable [2]. The alias analysis Peregrine uses makes a

few assumptions about the analyzed programs [10]; a “sounder” alias analysis [49] would remove

these assumptions. These analyses may all get expensive for large programs. For server programs,

Peregrine borrows the windowing idea from our previous work [31]; it is thus similarly limited

(§4.6.3).

At an implementation level, Peregrine uses the LLVM framework, thus requiring that a pro-

gram is in either source (so we can compile using LLVM) or LLVM IR format. Peregrine ignores

inline x86 assembly or calls to external functions it does not know. For soundness, developers have

to lift x86 assembly to LLVM IR and provide summaries for external functions. (The external func-

tion problem is alleviated because klee comes with a Ľibc implementation.) Currently Peregrine

works only with a single process, but previous work [13] has demonstrated how DMT systems can

be extended to multiple processes.

4.3 Hybrid Schedules

This section describes how Peregrine computes (§4.3.1) and enforces (§4.3.2) hybrid schedules.
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pthread_mutex_lock(&m0)

pthread_mutex_unlock(&m0)

pthread_mutex_unlock(&m1)

pthread_mutex_lock(&m1)

thread t0

result += ...

thread t1

result += ...

printf(], result)

Figure 4.6: No Peregrine race with respect to this schedule.

4.3.1 Computing Hybrid Schedules

To compute a hybrid schedule, Peregrine first extracts a total order of synchronization operations

from an execution trace. It considers 28 Pthreads operations, such as pthread mutex lock() and

pthread cond wait(). It also considers the entry and exit of a thread as synchronization operations

so that it can order these events together with other synchronization operations. These operations

are sufficient to run the programs evaluated, and more can be easily added. Peregrine uses a

total, instead of a partial, order because previous work has shown that a total order is already

efficient [31, 80].

For determinism, Peregrine must detect races that occurred during the recorded execution

and compute execution order constraints to deterministically resolve the races. An off-the-shelf race

detector would flag too many races because it considers the original synchronization constraints of

the program, whereas Peregrine wants to detect races according to a sync-schedule [87, 95]. To

illustrate, consider Figure 4.6, a modified sync-schedule based on the one in Figure 4.4. Suppose

the two threads acquire different mutex variables, and thread t1 acquires and releases its mutex

before t0. Typical lockset-based [97] or happens-before-based [63] race detectors would flag a race

on result, but our race detector does not: the sync-schedule in the figure deterministically resolves

the order of accesses to result. Sync-schedules anecdotally reduced the number of possible races

greatly, in one extreme case, from more than a million to four [87].

Mechanically, Peregrine detects occurred races using a happens-before-based algorithm. It

flags two memory accesses as a race iff (1) they access the same memory location and at least

one is a store and (2) they are concurrent. To determine whether two accesses are concurrent,

typical happens-before-based detectors use vector clocks [72] to track logically when the accesses

occur. Since Peregrine already enforces a total synchronization order, it uses a simpler and more
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inst1

inst2

inst4

inst3

thread t0 thread t1

Subsumed

Figure 4.7: Example subsumed execution order constraint.

memory-efficient logical clock representation.

Specifically, given two adjacent synchronization operations within one thread with relative po-

sitions m and n in the sync-schedule, Peregrine uses [m,n) as the logical clock of all instructions

executed by the thread between the two synchronization operations. For instance, in Figure 4.4, all

instructions run by thread t0 between the pthread mutex unlock() operation and the thread exit

have clock [4, 8). Peregrine considers two accesses with clocks [m0, n0) and [m1, n1) concurrent if

the two clock ranges overlap, i.e., m0 < n1∧m1 < n0. For instance, [4, 8) and [5, 6) are concurrent.

To deterministically resolve a race, Peregrine enforces an execution order constraint inst1 →

inst2 where inst1 and inst2 are the two dynamic instruction instances involved in the race.

Peregrine identifies a dynamic instruction instance by 〈sid, tid, nbr〉 where sid refers to the

unique ID of a static instruction in the executable file; tid refers to the internal thread ID main-

tained by Peregrine, which always starts from zero and increments deterministically upon each

pthread create(); and nbr refers to the number of control-transfer instructions (branch, call,

and return) locally executed within the thread from the last synchronization to instruction insti.

For instance, Peregrine represents the execution order constraint in Figure 4.4 as 〈L15, t1, 0〉 →

〈L9, t0, 2〉, where the branch count 2 includes the return from worker and the branch L7 of thread

t0. We must distinguish different dynamic instances of a static instruction because some of these

dynamic instances may be involved in races while others are not. We do so by counting branches

because if an instruction is executed twice, there must be a control-transfer between the two in-

stances [36]. We count branches starting from the last synchronization operation because the partial

schedule preceding this operation is already made deterministic.

If one execution order constraint subsumes another, Peregrine does not add the subsumed

one to the schedule. Figure 4.7 shows a subsumed constraint example. Algorithmically, Peregrine

considers an execution order constraint inst1 → inst4 subsumed by inst2 → inst3 if (1) inst1 and

inst2 have the same logical clock (so they must be executed by the same thread) and inst2 occurs no
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earlier than inst1 in the recorded execution trace; (2) inst3 and inst4 have the same logical clock and

inst3 occurs no later than inst4 in the trace. This algorithm ignores transitive order constraints, so

it may miss some subsumed constraints. For instance, it does not consider inst1 → inst4 subsumed

if we replace constraint inst2 → inst3 with inst2 → instother and instother → inst3 where instother

is executed by a third thread.

4.3.2 Enforcing Hybrid Schedules

To enforce a synchronization order, Peregrine uses a technique called semaphore relay [31] that

orders synchronization operations with per-thread semaphores. At runtime, a synchronization

wrapper (recall that Peregrine instruments synchronization operations for runtime control) waits

on the semaphore of the current thread. Once it is woken up, it proceeds with the actual synchro-

nization operation, then wakes up the next thread according to the synchronization order. For

programs that frequently do synchronization operations, the overhead of semaphore may be large

because it may cause a thread to block. Thus, Peregrine also provides a spin-wait version of

semaphore relay called flag relay. This technique turns out to be very fast for many programs

evaluated (§4.7.2).

To enforce an execution order constraint, Peregrine uses program instrumentation, avoid-

ing the need for special hardware, such as the often imprecise hardware branch counters [36].

Specifically, given a dynamic instruction instance 〈sid, tid, nbr〉, Peregrine instruments the static

instruction sid with a semaphore up() or down() operation. It also instruments the branch in-

structions counted in nbr so that when each of these branch instructions runs, a per-thread branch

counter is incremented. Peregrine activates the inserted semaphore operation for thread tid

only when the thread’s branch counter matches nbr. To avoid interference and unnecessary con-

tention when there are multiple order constraints, Peregrine assigns a unique semaphore to each

constraint.

Peregrine instruments a program by leveraging a fast instrumentation framework we previ-

ously built [114]. It keeps two versions of each basic block: a normally compiled, fast version, and a

slow backup padded with calls to a slot() function before each instruction. As shown in Figure 4.8,

the slot() function interprets the actions (semaphore up/down) to be taken at each instruction.

To instrument an instruction, Peregrine simply updates the actions for that instruction. This
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void slot(int sid) { // sid is static instruction id

if(instruction sid is branch)

nbr[self()] ++; // increment per-thread branch counter

// get semaphore operations for current thread at instruction sid

my actions = actions[sid][self()];

for action in my actions

if nbr[self()] == action.nbr // check branch counter

actions.do(); // perform up() or down()

}

Figure 4.8: Instrumentation to enforce execution order constraints.

instrumentation may be expensive, but fortunately, Peregrine leaves it off most of the time and

turns it on only at the last synchronization operation before an inserted semaphore operation.

Peregrine turns on/off this instrumentation by switching a per-thread flag. Upon each func-

tion entry, Peregrine inserts code to check this flag and determine whether to run the normal

or slow version of the basic blocks. Peregrine also inserts this check after each function returns

in case the callee has switched the per-thread flag. The overhead of these checks tend to be small

because the flags are rarely switched and hardware branch predication works well in this case [114].

One potential issue with branch-counting is that Peregrine has to “fix” the partial path from

the last synchronization to the dynamic instruction instance involved in a race so that the branch-

counts match between the recorded execution and all executions reusing the extracted hybrid

schedule, potentially reducing schedule-reuse rates. Fortunately, races are rare, so this issue has

not reduced Peregrine’s schedule-reuse rates based on our evaluation.

4.4 Determinism-Preserving Slicing

Peregrine uses determinism-preserving slicing to (1) compute sufficient preconditions to avoid

new races and ensure that a schedule is feasible, and (2) filter many unnecessary preconditions to

increase schedule-reuse rates. It does so using inter- and intra-thread steps. In the inter-thread

step (§4.4.1), it detects and avoids input-dependent races that do not occur in the execution trace,

but may occur if we reuse the schedule on a different input. In the intra-thread step (§4.4.1), the

analyzer computes a path slice per thread by including instructions that may affect the events in
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the schedule or the instructions identified in the inter-thread step.

4.4.1 Inter-thread Step

In the inter-thread step, Peregrine detects and avoids input-dependent races with respect to

a hybrid schedule. An example input-dependent race is the one between lines L8 and L15 in

Figure 4.3, which occurs when atoi(argv[3]) returns 1 causing the true branch of L7 to be taken.

Figure 4.9 shows two more types of input-dependent races.

To detect such races, Peregrine starts by refining the logical clocks computed based on the

sync-schedule (§4.3.1) with execution order constraints because it will also enforce these constraints.

Peregrine then iterates through all pairs of concurrent regions, where a region is a set of instruc-

tions with an identical logical clock. For each pair, it detects input-dependent races, and adds the

racy instructions to a list of slicing targets used by the intra-thread step.

Figure 4.10 shows the algorithm to detect input-dependent races for two concurrent regions. The

algorithm iterates through each pair of instructions respectively from the two regions, and handles

three types of input-dependent races. First, if neither instruction is a branch instruction, it queries

alias analysis to determine whether the instructions may race. If so, it adds both instructions to

slicing targets and adds additional preconditions to ensure that the pointers dereferenced are

different, so that reusing the schedule on a different input does not cause the may-race to become

a real race. Figure 4.9(a) shows a race of this type.

Second, if exactly one of the instructions is a branch instruction, the algorithm checks whether

the instructions contained in the not-taken branch of this instruction may race with the other

instruction (using an interprocedural post-dominator analysis [2]). It must check the not-taken

branch because a new execution may well take the not-taken branch and cause a race. To avoid

// thread t1 // thread t2

a[input1]++; a[input2] = 0;

(a)

// thread t1 // thread t2

if(input1==0) if(input2==0)

a++; a = 0;

(b)

Figure 4.9: Input-dependent races. Race (a) occurs when input1 and input2 are the same; Race

(b) occurs when both true branches are taken.
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// detect input-dependent races, and add involved dynamic instruction instances to slicing targets

// used by the inter-thread step. r1 and r2 are two concurrent regions

void detect input dependent races(r1, r2) {

for (i1, i2) in (r1, r2) { // iterate through all instruction pairs in r1, r2

if (neither i1 nor i2 is a branch instruction) {

if(mayrace(i1, i2))

{ slicing targets.add(i1); slicing targets.add(i2); } // add i1 and i2 to slicing targets

} else if (exactly one of i1, i2 is a branch instruction) {

br = branch instruction in i1, i2;

inst = the other instruction in i1, i2;

nottaken = the not taken branch of br in the execution trace;

if(mayrace br(br, nottaken, inst)) {

taken = the taken branch of br in trace; // add the taken branch of br to slicing targets

slicing targets.add br(br, taken);

}

} else { // both i1, i2 are branches

nottaken1 = the not taken branch of i1 in trace;

nottaken2 = the not taken branch of i2 in trace;

if(mayrace br br(i1, nottaken1, i2, nottaken2) {

taken1 = the taken branch of i1 in trace;

slicing targets.add br(i1, taken1);

}

}

}

}

bool mayrace(i1, i2) { return mayalias(i1, i2) && ((i1 is a store) | | (i2 is a store)); }

bool mayrace br(br, nottaken, inst) { // return true if the not-taken branch of br may race with inst

for i in (instructions in the nottaken branch of br)

if(mayrace(i, inst)) return true;

return false; }

// return true if the not-taken branch of br1 may race with the not-taken branch of br2

bool mayrace br br(br1, nottaken1, br2, nottaken2) {

for inst in (instructions in the nottaken2 branch of br2)

if(mayrace br(br1, nottaken1, inst)) return true;

return false; }

Figure 4.10: Input-dependent race detection algorithm.
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such a race, Peregrine adds the taken branch into the trace slice so that executions reusing the

schedule always go down the taken branch. For instance, to avoid the input-dependent race between

lines L8 and L15 in Figure 4.3, Peregrine includes the false branch of L7 in the trace slice.

Third, if both instructions are branch instructions, the algorithm checks whether the not-taken

branches of the instructions may race, and if so, it adds either taken branch to slicing targets.

For instance, to avoid the race in Figure 4.9(b), Peregrine includes one of the false branches in

the trace slice.

For efficiency, Peregrine avoids iterating through all pairs of instructions from two concurrent

regions because instructions in one region often repeatedly access the same memory locations. Thus,

Peregrine computes memory locations read or written by all instructions in one region, then

checks whether instructions in the other region also read or write these memory locations. These

locations are static operands, not dynamic addresses [22], so that Peregrine can aggressively cache

them per static function or branch. The complexity of our algorithm thus drops from O(MN) to

O(M+N) where M and N are the numbers of memory instructions in the two regions respectively.

4.4.2 Intra-thread Step

In the intra-thread step, Peregrine leverages an algorithm [30] to compute a per-thread path

slice, by including instructions required for the thread to reach the slicing targets identified in

the inter-thread step and the events in the hybrid schedule. To do so, Peregrine first prepares a

per-thread ordered target list by splitting slicing targets and events in the hybrid schedule and

sorting them based on their order in the execution trace.

Peregrine then traverses the execution trace backwards to compute path slices. When it sees

a target, it adds the target to the path slice of the corresponding thread, and starts to track the

control- and data-dependencies of this target.1 Peregrine adds a branch instruction to the path

slice if taking the opposite branch may cause the thread not to reach any instruction in the current

(partial) path slice; L3 in Figure 4.4 is added for this reason. It adds a non-branch instruction to

1For readers familiar with precondition slicing, Peregrine does not always track data-dependencies for the

operands of a target. For instance, consider instruction L9 of thread t0 in Figure 4.4. Peregrine’s goal is to deter-

ministically resolve the race involving L9 of t0, but it allows the value of result to be different. Thus, Peregrine

does not track dependencies for the value of result, and L15 of t0 is elided.
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the path slice if the result of this instruction may be used by instructions in the current path slice;

L1 in Figure 4.4 is added for this reason.

A “load p” instruction may depend on an earlier “store q” if p and q may alias even though

p and q may not be the same in the execution trace, because an execution on a different input

may cause p and q̌ to be the same. Thus, Peregrine queries alias analysis to compute such

may-dependencies and include the depended-upon instructions in the trace slice.

Our main modification to [30] is to slice toward multiple ordered targets. To illustrate this need,

consider branch L4:false of t0 in Figure 4.4. Peregrine must add this branch to thread t0’s slice,

because otherwise, the thread would reach another pthread create(), a different synchronization

operation than the pthread mutex lock() operation in the schedule.

The choice of LLVM IR has considerably simplified our slicing implementation. First, LLVM

IR limits memory access to only two instructions, load and store, so that our algorithms need

consider only these instructions. Second, LLVM IR uses an unlimited number of virtual registers, so

that our analysis does not get poisoned by stack spilling instructions. Third, each virtual register is

defined exactly once, and multiple definitions to a variable are merged using a special instruction.

This representation (static single assignment) simplifies control- and data-dependency tracking.

Lastly, the type information LLVM IR preserves helps improving the precision of the alias analysis.

4.5 Schedule-Guided Simplification

In both the inter- and intra-thread steps of determinism-preserving slicing, Peregrine frequently

queries alias analysis. The inter-thread step needs alias information to determine whether two

instructions may race (mayalias() in Figure 4.10). The intra-thread step needs alias information

to track potential dependencies.

We thus integrated bddbddb [112, 113], one of the best alias analyses, into Peregrine by

creating an LLVM frontend to collect program facts into the format bddbddb expects. However,

our initial evaluation showed that bddbddb sometimes yielded overly imprecise results, causing

Peregrine to prune few branches, reducing schedule-reuse rates (§4.7.3). The cause of the im-

precision is that standard alias analysis is purely static, and has to be conservative and assume all

possible executions. However, Peregrine requires alias results only for the executions that may
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reuse a schedule, thus suffering from unnecessary imprecision of standard alias analysis.

To illustrate, consider the example in Figure 4.3. Since the number of threads is determined

at runtime, static analysis has to abstract this unknown number of dynamic thread instances,

often coalescing results for multiple threads into one. When Peregrine slices the trace in Fig-

ure 4.4, bddbddb reports that the accesses to data (L13 instances) in different threads may alias.

Peregrine thus has to add them to the trace slice to avoid new races (§4.4.1). Since L13 depends

on L12, L11, and L10, Peregrine has to add them to the trace slice, too. Eventually, an imprecise

alias result snowballs into a slice as large as the trace itself. The preconditions from this slice con-

strains the data size to be exactly 2, so Peregrine cannot reuse the hybrid schedule in Figure 4.4

on other data sizes.

To improve precision, Peregrine uses schedule-guided simplification to simplify a program

according to a schedule, so that alias analysis is less likely to get confused. Specifically, Peregrine

performs three main simplifications:

1. It clones the functions as needed. For instance, it gives each thread in a schedule a copy of

the thread function.

2. It unrolls a loop when it can determine the loop bound based on a schedule. For instance,

from the number of the pthread create() operations in a schedule, it can determine how

many times the loop at lines L4–L5 in Figure 4.3 executes.

3. It removes branches that contradict the schedule. Loop unrolling can be viewed as a special

case of this simplification.

Peregrine does all three simplifications using one algorithm. From a high level, this algorithm

iterates through the events in a schedule. For each pair of adjacent events, it checks whether they

are “at the same level,” i.e., within the same function and loop iteration. If so, Peregrine does

not clone anything; otherwise, Peregrine clones the mismatched portion of instructions between

the events. (To find these instructions, Peregrine uses an interprocedural reachability analysis

by traversing the control flow graph of the program.) Once these simplifications are applied,

Peregrine can further simplify the program by running stock LLVM transformations such as

constant folding. It then feeds the simplified program to bddbddb, which can now distinguish
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different thread instances (thread-sensitivity in programing language terms) and precisely reports

that L13 of t0 and L13 of t1 are not aliases, enabling Peregrine to compute the small trace slice

in Figure 4.4.

By simplifying a program, Peregrine can automatically improve the precision of not only alias

analysis, but also other analyses. We have implemented range analysis [96] to improve the precision

of alias analysis on programs that divide a global array into disjoint partitions, then process each

partition within a thread. The accesses to these disjoint partitions from different threads do not

alias, but bddbddb often collapses the elements of an array into one or two abstract locations, and

reports the accesses as aliases. Range analysis can solve this problem by tracking the lower and

upper bounds of the integers and pointers. With range analysis, Peregrine answers alias queries

as follows. Given two pointers (p+i) and (q+i), it first queries bddbddb whether p and q may alias.

If so, it queries the more expensive range analysis whether p+i and q+j may be equal. It considers

the pointers as aliases only when both queries are true. Note that our simplification technique is

again key to precision because standard range analysis would merge ranges of different threads into

one.

While schedule-guided simplification improves precision, Peregrine has to run alias analysis

for each schedule, instead of once for the program. This analysis time is reasonable as Peregrine’s

analyzer runs offline. Nonetheless, the simplified programs Peregrine computes for different

schedules are largely the same, so a potential optimization is to incrementally analyze a program,

which we leave for future work.

4.6 Implementation Issues

This section discusses implementation issues not covered by previous sections.

4.6.1 Recording an Execution

To record an execution trace, Peregrine can use one of the existing deterministic record-replay

systems [18, 36, 62] provided that Peregrine can extract an instruction trace. For simplicity,

we have built a crude recorder on top of the LLVM interpreter in klee. When an program calls

the Peregrine-provided wrapper to pthread create(..., func, args), the recorder spawns a
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thread to run func(args) within an interpreter instance. These interpreter instances log each

instruction interpreted into a central file. For simplicity, Peregrine does symbolic execution

during recording because it already runs klee when recording an execution and pays the high

overhead of interpretation. A faster recorder would enable Peregrine to symbolically execute

only the trace slices instead of the typically larger execution traces. Since deterministic record-

replay is a well studied topic, we have not focused our effort on optimizing the recorder.

4.6.2 Handling Blocking System Calls

Blocking system calls are natural scheduling points, so Peregrine includes them in the sched-

ules [31]. It currently considers eight blocking system calls, such as sleep(), accept(), and

read(). For each blocking system call, the recorder logs when the call is issued and when the call

is returned. When Peregrine computes a schedule, it includes these blocking system call and

return operations. When reusing a schedule, Peregrine attempts to enforce the same call and

return order. This method works well for blocking system calls that access local state, such as

sleep() or read() on local file descriptors. However, other blocking system calls receive input

from the external world, which may or may not arrive each time a schedule is reused. Fortunately,

programs that use these operations tend to be server programs, and Peregrine handles this class

of programs differently.

4.6.3 Handling Server Programs

Server programs present two challenges for Peregrine. First, they are more prone to timing non-

determinism than batch programs because their inputs (client requests) arrive nondeterministically.

Second, they often run continuously, making their schedules too specific to reuse.

Peregrine addresses these challenges with the windowing idea from our previous work [31].

The insight is that server programs tend to return to the same quiescent states. Thus, instead

of processing requests as they arrive, Peregrine breaks a continuous request stream down into

windows of requests. Within each window, it admits requests only at fixed points in the current

schedule. If no requests arrive at an admission point for a predefined timeout, Peregrine simply

proceeds with the partial window. While a window is running, Peregrine buffers newly arrived

requests so that they do not interfere with the running window. With windowing, Peregrine can
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record and reuse schedules across windows.

Peregrine requires developers to annotate points at which request processing begins and ends.

It also assumes that after a server processes all current requests, it returns to the same quiescent

state. That is, the input from the requests does not propagate further after the requests are

processed. The same assumption applies to the data read from local files. For server programs not

meeting this assumption, developers can manually annotate the functions that observe the changed

server state, so that Peregrine can consider the return values of these functions as input. For

instance, since Apache caches client requests, we made it work with Peregrine by annotating the

return of cache find() as input.

One limitation of applying our Peregrine prototype to server programs is that our current

implementation of schedule-guided simplification does not work well with thread pooling. To give

each thread a distinct thread function, Peregrine identifies pthread create(...,func,...) op-

erations in a program and clones function func. Server programs that use thread pooling tend

to create worker threads to run generic thread functions during program initialization, then re-

peatedly use the threads to process client requests. Cloning these generic thread functions thus

helps little with precision. One method to solve this problem is to clone the relevant functions

for processing client requests. We have not implemented this method because the programs we

evaluated include only one server program, Apache, on which slicing already performs reasonably

well without simplification (§4.7.3).

4.6.4 Skipping Wait Operations

When reusing a schedule, Peregrine enforces a total order of synchronization operations, which

subsumes the execution order enforced by the original synchronization operations. Thus, for speed,

Peregrine can skip the original synchronization operations as in [31]. Peregrine skips sleep-

related operations such as sleep() and wait-related operations such as pthread barrier wait().

These operations often unconditionally block the calling thread, incurring context switch overhead,

yet this blocking is unnecessary as Peregrine already enforces a correct execution order. Our

evaluation shows that skipping blocking operations significantly speeds up executions.
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4.6.5 Manual Annotations

Peregrine works automatically for most of the programs we evaluated. However, as discussed

in §4.6.3, it requires manual annotations for server programs. In addition, if a program has non-

determinism sources beyond what Peregrine automatically tracks, developers should annotate

these sources with input(void* addr, size t nbyte) to mark nbyte of data starting from addr

as input, so that Peregrine can track this data.

Developers can also supply optional annotations to improve Peregrine’s precision in four

ways. First, for better alias results, developers can add custom memory allocators and memcpy-like

functions to a configuration file of Peregrine. Second, they can help Peregrine better track

ranges by adding assert() statements. For instance, a function in the FFT implementation we

evaluated uses bit-flip operations to transform an array index into another, yet both indexes have

the same range. The range analysis we implemented cannot precisely track these bit-flip operations,

so it assumes the resultant index is unbounded. Developers can fix this problem by annotating the

range of the index with an assertion “assert(index<bound).” Third, they can provide symbolic

summaries to help Peregrine compute more relaxed constraints. For instance, consider Figure 4.5

and a typical implementation of atoi() that iterates through all characters in the input string

and checks whether each character is a digit. Without a summary of atoi(), Peregrine would

symbolically execute the body of atoi(). The preconditions it computes for argv[3] would be

(argv3,0 6= 49) ∧ (argv3,1 < 48 ∨ argv3,1 > 57), where argv3,i is the ith byte of argv[3] and 48,

49, and 57 are ASCII codes of ‘0’, ‘1’, and ‘9’. These preconditions thus unnecessarily constrain

argv[3] to have a valid length of one. Another example is string search. When a program calls

strstr(), it often concerns whether there exists a match, not specifically where the match occurs.

Without a symbolic summary of strstr(), the preconditions from strstr() would constrain the

exact location where the match occurs. Similarly, if a trace slice contains complex code such as a

decryption function, users can provide a summary of this function to mark the decrypted data as

symbolic when the argument is symbolic. Note that complex code not included in trace slices, such

as the read() in Figure 4.3, is not an issue.
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Program Race Description

Apache Reference count decrement and check against 0 are not atomic, resulting in a program

crash.

PBZip2 Variable fifo is used by one thread after being freed by another thread, resulting in

a program crash.

barnes Variable tracktime is read by one thread before assigned the correct value by another

thread.

fft initdonetime and finishtime are read by one thread before assigned the correct

values by another thread.

lu ncb Variable rf is read by one thread before assigned the correct value by another thread.

streamcluster PARSEC has a custom barrier implementation that synchronizes using a shared

integer flag is arrival phase.

racey Numerous intentional races caused by multiple threads reading and writing global

arrays sig and m̌ without synchronization.

Table 4.1: Programs used for evaluating Peregrine’s determinism.

4.7 Evaluation

Our Peregrine implementation consists of 29,582 lines of C++ code, including 1,338 lines for the

recorder; 2,277 lines for the replayer; and 25,967 lines for the analyzer. The analyzer further splits

into 7,845 lines for determinism-preserving slicing, 12,332 lines for schedule-guided simplification,

and 5,790 lines for our LLVM frontend to bddbddb.

We evaluated our Peregrine implementation on a diverse set of 18 programs, including Apache,

a popular web server; PBZip2, a parallel compression utility; aget, a parallel wget-like utility;

pfscan, a parallel grep-like utility; parallel implementations of 13 computation-intensive algo-

rithms, 10 in SPLASH-2 and 3 in PARSEC; and racey, a benchmark specifically designed to

exercise deterministic execution and replay systems [50]. All SPLASH-2 benchmarks were included

except one that we cannot compile, one that our current prototype cannot handle due to an imple-

mentation bug, and one that does not run correctly in 64-bit environment. The chosen PARSEC

benchmarks (blackscholes, swaptions and streamcluster) include the ones that (1) we can

compile, (2) use threads, and (3) use no x86 inline assemblies. These programs were widely used

in previous studies (e.g., [16, 71, 116]).
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Our evaluation machine was a 2.67 GHz dual-socket quad-core Intel Xeon machine with 24

GB memory running Linux 2.6.35. When evaluating Peregrine on Apache and aget, we ran

the evaluated program on this machine and the corresponding client or server on another to avoid

contention between the programs. These machines were connected via 1Gbps LAN. We compiled

all programs to machine code using llvm-gcc -O2 and the LLVM compiler llc. We used eight

worker threads for all experiments.

Unless otherwise specified, we used the following workloads in our experiments. For Apache, we

used ApacheBench [5] to repeatedly download a 100 KB webpage. For PBZip2, we compressed a

10 MB randomly generated text file. For aget, we downloaded a 77 MB file (Linux-3.0.1.tar.bz2).

For pfscan, we scanned the keyword return from 100 randomly chosen files in GCC. For SPLASH-2

and PARSEC programs, we ran workloads which typically completed in 1-100 ms.

In the remainder of this section, we focus on four questions:

§4.7.1: Is Peregrine deterministic if there are data races? Determinism is one of the strengths of

Peregrine over the sync-schedule approach.

§4.7.2: IsPeregrine fast? For typical multithreaded programs that have rare data races, Peregrine

should be roughly as fast as the sync-schedule approach. Efficiency is one of the strengths of

Peregrine over the mem-schedule approach.

§4.7.3: Is Peregrine stable? That is, can it frequently reuse schedules? The higher the reuse rate,

the more repeatable program behaviors become and the more Peregrine can amortize the

cost of computing hybrid schedules.

§4.7.4: Can Peregrine significantly reduce manual annotation overhead? Recall that our previous

work [31] required developers to manually annotate the input affecting schedules.

4.7.1 Determinism

We evaluated Peregrine’s determinism by checking whether Peregrine could deterministically

resolve races. Table 4.1 lists the seven racy programs used in this experiment. We selected the first

five because they were frequently used in previous studies [69, 71, 86, 87] and we could reproduce

their races on our evaluation machine. We selected the integer flag race in PARSEC to test whether

Peregrine can handle ad hoc synchronization [116]. We selected racey to stress test Peregrine:
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Program Races Order Constraints

Apache 0 0

PBZip2 4 3

barnes 5 1

fft 10 4

lu ncb 10 7

streamcluster 0 0

racey 167974 9963

Table 4.2: Hybrid schedule statistics. Column Races shows the number of races detected according

the corresponding sync-schedule, and Column Order Constraints shows the number of execution

order constraints Peregrine adds to the final hybrid schedule. The latter can be smaller than

the former because Peregrine prunes subsumed execution order constraints (§4.3). Peregrine

detected no races for Apache and streamcluster because the corresponding sync-schedules are

sufficient to resolve the races deterministically; it thus adds no order constraints for these programs.

each run of racey may have thousands of races, and if any of these races is resolved differently,

racey’s final output changes with high probability [50].

For each program with races, we recorded an execution trace and computed a hybrid schedule

from the trace. Table 4.2 shows for each program (1) the number of dynamic races detected

according to the sync-schedule and (2) the number of execution order constraints in the hybrid

schedule. The reduction from the former to the latter shows how effectively Peregrine can prune

redundant order constraints (§4.3). In particular, Peregrine prunes 94% of the constraints for

racey. For Apache and streamcluster, their races are already resolved deterministically by their

sync-schedules, so Peregrine adds no execution order constraints.

To verify that the hybrid schedules Peregrine computed are deterministic, we first manually

inspected the order constraints Peregrine added for each program except racey (because it has

too many races for manual verification). Our inspection results show that these constraints are

sufficient to resolve the corresponding races. We then re-ran each program including racey 1000

times while enforcing the hybrid schedule and injecting delays; and verified that each run reused the

schedule and computed equivalent results. (We determined result equivalence by checking either

the output or whether the program crashed.)
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Program
Deterministic?

sync-schedule hybrid schedule

Apache ✔ ✔

PBZip2 ✖ ✔

barnes ✖ ✔

fft ✖ ✔

lu ncb ✖ ✔

streamcluster ✔ ✔

racey ✖ ✔

Table 4.3: Determinism of sync-schedules v.s. hybrid schedules.

We also compared the determinism of Peregrine to our previous work [31] which only en-

forces sync-schedules. Specifically, we reran the seven programs with races 50 times enforcing only

the sync-schedules and injecting delays, and checked whether the reuse runs computed equivalent

results as the recorded run. As shown in Table 4.3, sync-schedules are unsurprisingly determinis-

tic for Apache and streamcluster, because no races are detected according to the corresponding

sync-schedules. However, they are not deterministic for the other five programs, illustrating one

advantage of Peregrine over the sync-schedule approach.

4.7.2 Efficiency

Replayer overhead. The most performance-critical component is the replayer because it operates

within a deployed program. Figure 4.11 shows the execution times when reusing hybrid schedules;

these times are normalized to the nondeterministic execution time. (The next paragraph compares

these times to those of sync-schedules.) For Apache, we show the throughput (TPUT) and response

time (RESP). All numbers reported were averaged over 500 runs. Peregrine has relatively high

overhead on water-nsquared (22.6%) and cholesky (46.6%) because these programs do a large

number of mutex operations within tight loops. Still, this overhead is lower than the reported

1.2X-6X overhead of a mem-schedule DMT system [12]. Moreover, Peregrine speeds up barnes,

lu ncb, radix, water-spatial, and ocean (by up to 68.7%) because it safely skips synchronization

and sleep operations (§4.6.4). For the other programs, Peregrine’s overhead or speedup is within

15%. (Note that increasing the page or file sizes of the workload tends to reduce Peregrine’s
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Figure 4.11: Normalized execution time when reusing sync-schedules v.s. hybrid schedules. A

time value greater than 1 indicates a slowdown compared to a nondeterministic execution without

Peregrine. We did not include racey because it was not designed for performance benchmarking.

relative overhead because the network and disk latencies dwarf Peregrine’s.)

For comparison, Figure 4.11 shows the normalized execution time when enforcing just the

sync-schedules. This overhead is comparable to our previous work [31]. For all programs except

water-nsquared, the overhead of enforcing hybrid schedules is only slightly larger (at most 5.4%)

than that of enforcing sync-schedules. This slight increase comes from two sources: (1) Peregrine

has to enforce execution order constraints to resolve races deterministically for PBZip2, barnes,

fft, and lu ncb; and (2) the instrumentation framework Peregrine uses also incurs overhead

(§4.3.2). The overhead for water-nsquared increases by 13.4% because it calls functions more

frequently than the other benchmarks, and our instrumentation framework inserts code at each

function entry and return (§4.3.2).

Figure 4.12 shows the speedup of flag relay (§4.3.2) and skipping blocking operations (§4.6.4).

Besides water-nsquared and cholesky, a second group of programs, including barnes, lu ncb,
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radix, water-spatial, and ocean, also perform many synchronization operations, so flag relay

speeds up both groups of programs significantly. Moreover, among the synchronization opera-

tions done by the second group of programs, many are pthread barrier wait() operations, so

Peregrine further speeds up these programs by skipping these wait operations.

Analyzer and recorder overhead. Table 4.4 shows the execution time of Peregrine’s various

program analyses. The execution time largely depends on the size of the execution trace. All

analyses typically finish within a few hours. For PBZip2 and fft, we used small workloads (com-

pressing 1 KB file and transforming a 256X256 matrix) to reduce analysis time and to illustrate

that the schedules learned from small workloads can be efficiently reused on large workloads. The

simplification and alias analysis time of fft is large compared to its slicing time because it per-

forms many multiplications on array indexes, slowing down our range analysis. Although lu ncb

0

0.5

1.0

1.5

2.0

2.5

6.0

7.0

  
 A

p
a
c
h
e
-T

P
U

T

  
 A

p
a
c
h
e
-R

E
S

P

  
  
  
  
P

B
Z

ip
2

  
  
  
  
  
a
g
e
t

  
  
  
  
p
fs

c
a
n

  
  
  
  
b
a
rn

e
s

  
  
  
  
  
 f
ft

  
  
 l
u
-c

o
n
ti
g

 l
u
-n

o
n
-c

o
n
ti
g

  
  
  
  
 r

a
d
ix

 w
a
te

r-
s
p
a
ti
a
l

w
a
te

r-
n
s
q
u
a
re

d

  
  
  
  
 o

c
e
a
n

  
  
  
  
  
 f
m

m

  
  
  
c
h
o
le

s
k
y

  
b
la

c
k
s
c
h
o
le

s

  
  
 s

w
a
p
ti
o
n
s

 s
tr

e
a
m

c
lu

s
te

r

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

6.11
Semaphore relay

Flag relay
Skip wait

Figure 4.12: Speedup of optimization techniques. Note that Y axis is broken.
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Program Trace Det Sli Sim Sym

Apache 449 0.4 885.32 n/a 5.8

PBZip2 2,227 0.1 587.9 317.8 19.7

aget 233 0.4 78.8 60.1 13.2

pfscan 46,602 1.1 1,601.4 2,047.9 1,136.6

barnes 324 0.2 300.5 481.5 56.9

fft 39 0.0 2.1 3,661.7 0.4

lu cb 44,799 19.9 1,271.5 124.9 1,126.7

lu ncb 41,302 21.2 1,999.8 14,243.8 1,201.0

radix 3,110 1.5 46.2 96.4 182.9

water-spatial 7,508 1.0 1,407.0 9,628.1 120.6

water-nsquared 12,381 1.7 962.3 1,841.4 215.7

ocean 55,247 26.4 2,259.3 5,902.8 2,062.1

fmm 13,772 8.3 260.5 1,107.5 151.3

cholesky 47,200 28.8 3,102.9 6,350.1 685.5

blackscholes 62,024 16.5 539.9 542.9 3,284.8

swaptions 1,366 0.0 23.2 87.3 1.2

streamcluster 259 0.1 1.4 1.9 4.9

Table 4.4: Analysis time. Trace shows the number of thousand LLVM instructions in the execution

trace of the evaluated programs, the main factor affecting the execution time of Peregrine’s

various analysis techniques, including race detection (Det), slicing (Sli), simplification and alias

analysis (Sim), and symbolic execution (Sym). The execution time is measured in seconds. The

Apache trace is collected from one window of eight requests. Apache uses thread pooling which

our simplification technique currently does not handle well (§4.6.3); nonetheless, slicing without

simplification works reasonably well for Apache already (§4.7.3).

and lu cb implement the same scientific algorithm, their data access patterns are very different

(§4.7.3), causing Peregrine to spend more time analyzing lu ncb than lu cb.

As discussed in §4.6.1, Peregrine currently runs klee to record executions. Column Sym

is also the overhead of Peregrine’s recorder. This crude, unoptimized recorder can incur large

slowdown compared to the normal execution of a program. However, this slowdown can be reduced

to around 10X using existing record-replay techniques [18, 62]. Indeed, we have experimented with

a preliminary version of a new recorder that records an execution by instrumenting load and štore

instructions and saving them into per-thread logs [18]. Figure 4.13 shows that this new recorder

incurs roughly 2-35X slowdown on eight programs, comparable to existing record-replay systems.
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Due to time constraints, we have not integrated this new recorder with Peregrine.

4.7.3 Stability

Stability measures how frequently Peregrine can reuse schedules. The more frequently Peregrine

reuses schedules, the more efficient it is, and the more repeatable a program running on top of

Peregrine becomes. While Peregrine achieves determinism and efficiency through hybrid sched-

ules, it may have to pay the cost of slightly reduced reuse rates compared to a manual approach [31].

A key factor determining Peregrine’s schedule-reuse rates is how effectively it can slice out

irrelevant instructions from the execution traces. Figure 4.14 shows the ratio of the slice size

over the trace size for Peregrine’s determinism-preserving slicing technique, with and without

schedule-guided simplification. The slicing technique alone reduces the trace size by over 50% for all

programs except PBZip2, aget, pfscan, fft, lu ncb, ocean, and swaptions. The slicing technique

combined with scheduled-guide simplification vastly reduces the trace size for PBZip2, aget, fft,

lu cb, and swaptions.

Recall that Peregrine computes the preconditions of a schedule from the input-dependent

branches in a trace slice. The fewer branches included in the slice, the more general the precon-

ditions Peregrine computes tend to be. We further measured the number of such branches in
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Figure 4.13: Overhead of recording load and štore instructions.
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Figure 4.14: Slicing ratio after applying determinism-preserving slicing alone (§4.4) and after fur-

ther applying schedule-guided simplification (§4.5).

the trace slices. Table 4.5 shows the results, together with a upper bound determined by the total

number of input-dependent branches in the execution trace, and a lower bound determined by only

including branches required to reach the recorded synchronization operations. This lower bound

may not be tight as we ignored data dependency. For barnes, fft, blackscholes, swaptions,

and streamcluster, slicing with simplification (Column “Slicing+Sim”) achieves the best possible

reduction. For PBZip2, aget, pfscan, and lu cb, the number of input-dependent branches in the

trace slice is close to the lower bound. In the remaining programs, Apache, fmm, and cholesky also

enjoy large reduction, while the other five programs do not. This table also shows that schedule-

guided simplification is key to reduce the number of input-dependent branches for PBZip2, fft,

lu cb, blackscholes, and swaptions, and to reach the lower bound for blackscholes, swaptions,

and streamcluster.
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We manually examined the preconditions Peregrine computed from the input-dependent

branches for these programs. We category these programs below.

Best case: PBZip2, fft, lu cb, blackscholes, swaptions, and streamcluster. For these pro-

grams, Peregrine computes the weakest (i.e., most relaxed) preconditions. The preconditions

often allow Peregrine to reuse one or two schedules for each number of threads, putting no or

few constraints on the data processed. Schedule-guided simplification is crucial for these programs;

without simplification, the preconditions would fix the data size and contents.

Slicing limitation: Apache and aget. The preconditions Peregrine computes for Apache fix

the URL length; they also constrain the page size to be within an 8 KB-aligned range if the page

is not cached. The preconditions Peregrine computes for aget fix the positions of “/” in the

URL and narrow down the file size to be within an 8 KB-aligned range. These preconditions thus

unnecessarily reduce the schedule-reuse rates. Nonetheless, they can still match many different

inputs, because they do not constrain the page or file contents.

Symbolic execution limitation: barnes. barnes reads in two floating point numbers from a

file, and their values affect schedules. Since Peregrine cannot symbolically execute floating point

instructions, it currently does not collect preconditions from them.

Alias limitation: lu ncb, radix, water-spatial, water-nsquared, ocean, and cholesky. Even

with simplification, Peregrine’s alias analysis sometimes reports may-alias for pointers accessed

in different threads, causing Peregrine to include more instructions than necessary in the slices

and compute preconditions that fix the input data. For instance, each thread in lu ncb accesses

disjoint regions in a global array, but the accesses from one thread are not continuous, confus-

ing Peregrine’s alias analysis. (In contrast, each thread in lu cb accesses a contiguous array

partition.)

Programs that rarely reuse schedules: pfscan and fmm. For instance, pfscan searches a

keyword in a set of files using multiple threads, and for each match, it grabs a lock to increment a

counter. A schedule computed on one set of files is unlikely to suit another.

4.7.4 Ease of Use

Table 4.6 shows the annotations (§4.6.5) we added to make the evaluated programs work with

Peregrine. For most programs, Peregrine works out of the box. Apache uses its own library
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Program UB
Peregrine

LB
Slicing Slicing+Sim

Apache 4,522 624 n/a 56

PBZip2 913 865 101 94

aget 20,826 18,859 9,514 9,491

pfscan 1,062,047 992,524 992,520 992,501

barnes 92 52 52 52

fft 2,266 1,568 17 17

lu cb 2,823,379 2,337,431 131 128

lu ncb 2,962,621 2,877,877 2,876,364 128

radix 175,679 98,750 89,732 75

water-spatial 98,054 77,567 76,763 233

water-nsquared 89,348 76,786 76,242 1,843

ocean 2,605,185 2,364,538 2,361,256 400

fmm 299,816 57,670 56,532 1,642

cholesky 7,459 1,627 1,627 1,233

blackscholes 421,909 409,618 10 10

swaptions 35,584 35,005 21 21

streamcluster 20,851 75 42 42

Table 4.5: Effectiveness of program analysis techniques. UB shows the total number of input-

dependent branches in the corresponding execution trace, an upper bound on the number included

in the trace slice. Slicing and Slicing+Sim show the number of input-dependent branches in the

slice after applying determinism-preserving slicing alone (§4.4) and after further applying schedule-

guided simplification (§4.5). LB shows a lower bound on the number of input-dependent branches,

determined by only including branches required to reach the recorded synchronization operations.

This lower bound may not be tight as we ignored data dependency when computing it.

functions for common tasks such as memory allocation, so we annotated 21 such functions. We

added two annotations to mark the boundaries of client request processing and one to expose the

hidden state in Apache (§4.6.3). PBZip2 decompression uses a custom search function (memstr)

to scan through the input file for block boundaries. We added one annotation for this function

to relax the preconditions Peregrine computes. (Peregrine works automatically with PBZip2
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Program LOC Peregrine Tern

Apache 464 K 24 6

PBZip2 7,371 1 3

aget 834 0 n/a

pfscan 776 0 n/a

barnes 1,954 0 9

fft 1,403 1 4

lu cb 991 0 n/a

lu ncb 1,265 0 3

radix 661 0 4

water-spatial 1,573 0 9

water-nsquared 1,188 0 10

ocean 6,494 0 5

fmm 3,208 0 9

cholesky 3,683 0 4

blackscholes 1,275 0 n/a

swaptions 1,110 0 n/a

streamcluster 1,963 0 n/a

racey 124 0 n/a

Table 4.6: Source annotation requirements of Peregrine v.s. Tern. Peregrine represents the

number of annotations added for Peregrine, and Tern counts annotations added for Tern.

Programs not included in the Tern evaluation are labeled n/a. LOC of PBZip2 also includes the

lines of code of the compression library libbz2.

compression.) We added one assertion to annotate the range of a variable in fft (§4.6.5).

For comparison, Table 4.6 also shows the annotation overhead of our previous DMT system

Tern [31]. For all programs except Apache, Peregrine has fewer number of annotations than

Tern. Although the number of annotations that Tern has is also small, adding these annota-

tions may require developers to manually reconstruct the control- and data-dependencies between

instructions.

In order to make the evaluated programs work with Peregrine, we had to fix several bugs

in them. For aget, we fixed an off-by-one write in revstr() which prevented us from track-
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ing constraints for the problematic write, and a missing check on the return value of pwrite()

which prevented us from computing precise ranges. We fixed similar missing checks in swaptions,

streamcluster, and radix. We did not count these modifications in Table 4.6 because they are

real bug fixes. (This interesting side-effect illustrates the potential of Peregrine as an error de-

tection tool: the precision gained from simplification enables Peregrine to detect real races in

well-studied programs.)

4.8 Related Work

StableMT and DMT systems. Peregrine stabilizes program behaviors over input perturba-

tions by reusing schedules. This method is based on the schedule memoization idea in our previous

system Tern (Chapter 3), but Peregrine largely eliminates manual annotations, and provides

stronger determinism guarantees than Tern.

Peregrine is complementary to other StableMT and DMT systems [8, 12, 31, 34, 66, 80]:

Peregrine can use an existing StableMT or DMT algorithm when it runs a program on a new

input so that it may compute the same schedules at different sites; existing StableMT or DMT

systems can speed up their pathological cases using the schedule-relaxation idea.

Determinator [8] advocates a new, radical programming model that converts all races, including

races on memory and other shared resources, into exceptions, to achieve pervasive determinism.

This programming model is not designed to be backward-compatible. dOS [13] provides similar

pervasive determinism with backward compatibility, using a DMT algorithm first proposed in [34]

to enforce mem-schedules. While Peregrine currently focuses on multithreaded programs, the

ideas in Peregrine can be applied to other shared resources to provide pervasive determinism.

Peregrine’s hybrid schedule idea may help reduce dOS’s overhead. Grace [16] makes multi-

threaded programs with fork-join parallelism behave like sequential programs. It detects memory

access conflicts efficiently using hardware page protection. Unlike Grace, Peregrine aims to make

general multithreaded programs, not just fork-join programs, repeatable.

Concurrent to our work, DThreads [66] is another efficient multithreading system that is

both stable and deterministic. It tracks memory modifications using hardware page protection and

provides a protocol to deterministically commit these modifications. In contrast to DThreads,
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Peregrine is software-only and does not rely on page protection hardware which may be expensive

and suffer from false sharing; Peregrine records and reuses schedules, thus it can handle programs

with ad hoc synchronizations [116] and make program behaviors stable.

Program analysis. Program slicing [107] is a general technique to prune irrelevant statements

from a program or trace. Recently, systems researchers have leveraged or invented slicing techniques

to block malicious input [30], synthesize executions for better error diagnosis [125], infer source code

paths from log messages for postmortem analysis [124], and identify critical inter-thread reads that

may lead to concurrency errors [127]. Our determinism-preserving slicing technique produces a

correct trace slice for multithreaded programs and supports multiple ordered targets. It thus has

the potential to benefit existing systems that use slicing.

Our schedule-guided simplification technique shares similarity with SherLog [124] such as the

removal of branches contradicting a schedule. However, SherLog starts from log messages and tries

to compute an execution trace, whereas Peregrine starts with a schedule and an execution trace

and computes a simplified yet runnable program. Peregrine can thus transparently improve the

precision of many existing analyses: simply run them on the simplified program.

Replay and re-execution. Deterministic replay [4, 35, 36, 42, 47, 61, 62, 74, 87, 104, 108] aims to

replay the exact recorded executions, whereas Peregrine “replays” schedules on different inputs.

Some recent deterministic replay systems include Scribe, which tracks page ownership to enforce

deterministic memory access [62]; Capo, which defines a novel software-hardware interface and a set

of abstractions for efficient replay [74]; PRES and ODR, which systematically search for a complete

execution based on a partial one [4, 87]; SMP-ReVirt, which uses page protection for recording the

order of conflicting memory accesses [36]; and Respec [64], which uses online replay to keep multiple

replicas of a multithreaded program in sync. Several systems [64, 87] share the same insight as

Peregrine: although many programs have races, these races tend to occur infrequently.

Peregrine can help these systems reduce CPU, disk, or network bandwidth overhead, because

for inputs that hit Peregrine’s schedule cache, these systems do not have to record a schedule.

Retro [58] shares some similarity with Peregrine because it also supports “mutated” replay.

When repairing a compromised system, Retro can replay legal actions while removing malicious

ones using a novel dependency graph and predicates to detect when changes to an object need

not be propagated further. Peregrine’s determinism-preserving slicing algorithm may be used
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to automatically compute these predicates, so that Retro does not have to rely on programmer

annotations.

Concurrency errors. The complexity in developing multithreaded programs has led to many

concurrency errors [71]. Much work exists on concurrency error detection, diagnosis, and correction

(e.g., [38, 40, 41, 70, 86, 123, 126, 127]). Peregrine aims to make the executions of multithreaded

programs repeatable, and is complementary to existing work on concurrency errors. Peregrine

may use existing work to detect and fix the errors in the schedules it computes. Even for programs

free of concurrency errors, Peregrine still provides value by making their behaviors repeatable.

4.9 Summary

Peregrine is one of the first stable and fully deterministic multithreading system with good

efficiency. Leveraging the insight that races are rare, Peregrine combines sync-schedules and

mem-schedules into hybrid schedules, getting the benefits of both. Peregrine reuses sched-

ules across different inputs, amortizing the cost of computing hybrid schedules and making pro-

gram behaviors repeatable across inputs. It further improves efficiency using two new techniques:

determinism-preserving slicing to generalize a schedule to more inputs while preserving determin-

ism, and schedule-guided simplification to precisely analyze a program according to a dynamic

schedule. Our evaluation on a diverse set of programs shows that Peregrine is both deterministic

and efficient, and can frequently reuse schedules for half of the evaluated programs.

Peregrine’s system and ideas have broad applications. Our immediate future work is to build

applications on top of Peregrine, such as fast deterministic replay, replication, and diversification

systems. We will also extend our approach to system-wide deterministic execution by computing

inter-process communication schedules and preconditions. Peregrine enables precise program

analysis according to a set of inputs and dynamic schedules. We will leverage this capability to

accurately detect concurrency errors and verify concurrency-error-freedom for real programs.
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Chapter 5

Making StableMT Simple, Fast, and

Deployable

The last two chapters have presented our two systems, Tern and Peregrine, with each addressing

a distinct challenge on building StableMT. Other researchers have also been building and applying

StableMT systems [8, 15, 66] to improve software reliability. However, despite these latest advances,

existing StableMT systems either require sophisticated program analysis (e.g., our two previous

systems), or incur prohibitive performance overhead (e.g., a previous system [66] incurred 30×

slowdown with many programs in our evaluation in §5.7), causing StableMT difficult to be widely

deployed. Thus, a third challenge on building StableMT arises: how to make StableMT simple,

fast, and deployable? To address this challenge, this chapter presents Parrot, a simple, deployable

StableMT runtime system, and its novel programming abstraction called performance hints that

make Parrot’s schedules run fast.

5.1 Introduction

As described in Chapter 2, a root cause that makes multithreading extremely difficult to get right

is that, for decades, the contract between developers and thread runtimes has favored performance

over correctness and grants exponentially many possible schedules for all inputs. In this contract,

developers use synchronizations to coordinate threads, while thread runtimes can use any of the

exponentially many schedules, compliant with the synchronizations. This large number of possible
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schedules make it more likely to find an efficient schedule for a workload, but ensuring that all

schedules are free of concurrency bugs is extremely challenging, and a single unchecked schedule may

surface in the least expected moment, causing critical failures and vulnerabilities [65, 71, 92, 121].

Two recent techniques aim to flip this performance vs. correctness tradeoff by reducing the

number of allowed schedules. First, StableMT [8, 31, 32, 66], which is created by my collaborators

and me, aims to reduce the number possibles schedules on all inputs. Other researchers have also

been building and applying StableMT systems [8, 15, 66] to improve software reliability. These

work have shown to greatly improve the reliability of multithreaded programs, including: (1)

making reproducing concurrency bugs much easier [31, 32], (2) improving the precision of program

analysis [32, 115], leading to the detection of several new harmful data races in heavily-tested

programs, and (3) computing a small set of schedules to cover all or most inputs [15]. Second,

DMT [12, 13, 16, 34, 80] addresses the nondeterminism problem, and it focuses on reducing the

number of possible schedules on each input down to one. DMT is especially useful in testing

and debugging multithreaded programs, however, we have previously stated in Chapter 2 that

DMT is not as useful as commonly perceived, and StableMT is better for improving reliability of

multithreaded programs. StableMT is complementary to DMT, and several multithreading systems

(e.g., [8, 31, 32, 66]) are both stable and deterministic.

However, despite these recent advances, it remains an open challenge that whether StableMT

can be made simple, fast, and deployable on a wide range of multithreaded programs. This challenge

is not helped much by the limited evaluation of previous systems which often used (1) synthetic

benchmarks, not real-world programs, from incomplete benchmark suites; (2) one workload per

program; and (3) at most 8 cores (with three exceptions; see §5.8). For instance, while a previ-

ous system DThreads [66] achieves reasonable performance overhead on 14 scientific benchmark

programs, we observed that this system incurred 30× slowdown with many other programs in our

evaluation (§5.7).

This open challenge comes from the design choices of existing StableMT systems. Reducing

schedules improves correctness but trades performance because the schedules left may not balance

each thread’s load well, causing some threads to idle unnecessarily. Our experiments show that

ignoring load imbalance as in DThreads can lead to pathological slowdown if the order of op-

erations enforced by a schedule serializes the intended parallel computations (§5.7.3). To recover
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performance, one method is to count the instructions executed by each thread and select sched-

ules that balance the instruction counts [12, 34, 80], but this method is not stable because input

or program perturbations easily change the instruction counts. The other method (we proposed)

lets the nondeterministic OS scheduler select a reasonably fast schedule and reuses the schedule on

compatible inputs [31, 32], but it requires sophisticated program analysis, complicating deployment.

To tackle this open challenge, this chapter presents Parrot, our third StableMT (and also

DMT) system, with three contributions. First, Parrot is a simple, practical runtime that effi-

ciently makes threads deterministic and stable by offering a new contract to developers. By default,

it schedules synchronizations in each thread using round-robin, vastly reducing schedules and pro-

viding broad repeatability. When default schedules are slow, it allows advanced developers to add

intuitive performance hints to their code for speed. Developers discover where to add hints through

profiling as usual, and Parrot simplifies performance debugging by deterministically reproducing

the bottlenecks. The hints are robust to developer mistakes as they can be safely ignored with-

out affecting correctness. Like previous systems, Parrot’s contract reduces schedules to favor

correctness over performance. Unlike previous systems, it allows advanced developers to optimize

performance. We believe this practical “meet in the middle” contract eases writing correct, efficient

programs. For this reason, we name this system Parrot, one of the most trainable birds.

Parrot provides two performance hint abstractions. A soft barrier encourages the scheduler

to coschedule a group of threads at given program points. It is for performance only, and operates

as a barrier with deterministic timeouts in Parrot. Developers use it to switch to faster sched-

ules without compromising determinism when the default schedules serialize parallel computations

(§5.2.1). A performance critical section informs the scheduler that a code region is a potential

bottleneck, encouraging the scheduler to get through the region fast. When a thread enters a per-

formance critical section, Parrot delegates scheduling to the nondeterministic OS scheduler for

speed. Performance critical sections may trade some determinism for performance, so they should

be applied only when the schedules they add are thoroughly checked by tools or advanced devel-

opers. These simple abstractions let Parrot run fast on all programs evaluated, and may benefit

other DMT or StableMT systems and classic nondeterministic schedulers [3, 37, 83].

Our Parrot implementation is Pthreads-compatible, simplifying deployment. It handles many

diverse constructs real-world programs depend upon such as network operations and timeouts.
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Parrot makes synchronizations outside performance critical sections deterministic but allows

nondeterministic data races. Although it is straightforward to make data races deterministic in

Parrot, we deemed it not worthwhile because the cost of doing so outweighs the benefits (§5.6).

Parrot’s determinism is similar to Kendo’s weak determinism [80], but Parrot offers stability

which Kendo lacks.

Our second contribution is an ecosystem formed by integrating Parrot with dbug [101], an

open source model checker for distributed and multithreaded Linux programs that systematically

checks possible schedules for bugs. This Parrot-dbug ecosystem is more effective than either

system alone: dbug checks the schedules that matter to Parrot and developers (e.g., schedules

added by performance critical sections), and Parrot greatly increases dbug’s coverage by reducing

the schedules dbug has to check (the state space). Our integration is transparent to dbug and

requires only minor changes to Parrot. It lets Parrot effectively leverage advanced model

checking techniques [39, 48].

Third, we quantitatively show that Parrot achieves good performance and high model check-

ing coverage on a diverse set of 108 programs. The programs include 55 real-world programs,

such as Berkeley DB [17], OpenLDAP [82], Redis [94], MPlayer [75], all 33 parallel C++ STL

algorithm implementations [105] which use OpenMP, and all 14 parallel image processing utilities

(also OpenMP) in the ImageMagick [52] software suite. Further, they include all 53 programs in

four widely used benchmark suites: PARSEC [88], Phoenix [93], SPLASH-2x [102], and NPB [79].

We used complete software or benchmark suites to avoid biasing our results. The programs to-

gether cover many different parallel programming models and idioms such as threads, OpenMP [20],

fork-join, map-reduce, pipeline, and workpile. To our knowledge, our evaluation uses roughly 10×

more programs than any previous DMT or StableMT evaluation, and 4× more than all previous

evaluations combined. Our experiments show:

1. Parrot is easy to use. It averages only 1.2 lines of hints per program to get good performance,

and adding hints is fast. Of all 108 programs, 18 need no hints, 81 need soft barriers which

do not affect determinism, and only 9 programs need performance critical sections to trade

some determinism for speed.

2. Parrot has low overhead. At the maximum allowed (16–24) cores, Parrot’s geometric

mean overhead is 6.9% for 55 real-world programs, 19.0% for the other 53 programs, and
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12.7% for all.

3. On 25 programs that two previous systems DThreads [66] and CoreDet [12] can both

handle, Parrot’s overhead is 11.8% whereasDThreads’s is 150.0% andCoreDet’s 115.1%.

4. Parrot scales well to the maximum allowed cores on our 24-core server and to at least three

different scales/types of workloads per program.

5. Parrot-dbug offers exponential coverage increase compared to dbug alone. Parrot helps

dbug reduce the state space by 106–1019734 for 56 programs and increase the number of

verified programs from 43 to 99 under our test setups. These verified programs include all 4

real-world programs out of the 9 programs that need performance critical sections, so they

enjoy both speed and reliability. These quantitative reliability results help potential Parrot

adopters justify the overhead.

We have released Parrot’s source code, entire benchmark suite, and raw evaluation results

at github.com/columbia/smt-mc. In the remaining of this chapter, §5.2 contrasts Parrot with

previous systems on an example and gives a high-level design of Parrot. §5.3 describes the perfor-

mance hint abstractions Parrot provides, §5.4 the Parrot runtime, and §5.5 the Parrot-dbug

ecosystem. §5.6 discusses Parrot’s determinism, §5.7 presents evaluation results, §5.8 discusses

related work, and §5.9 concludes.

5.2 High-level Design

This section first compares two previous systems and Parrot using an example (§5.2.1), and then

describes Parrot’s architecture design (§5.2.2).

5.2.1 An Example

Figure 5.1 shows the example, a simplified version of the parallel compression utility PBZip2 [89].

It uses the common producer-consumer idiom: the producer (main) thread reads file blocks, and

multiple consumer threads compress them in parallel. Once the number of threads and the number

of blocks are given, one synchronization schedule suffices to compress any file, regardless of file

content or size. Thus, this program appears easy to make deterministic and stable. However,

github.com/columbia/smt-mc
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1 : int main(int argc, char *argv[ ]) {

2 : . . .

3 : soba init(nthreads); /* performance hint */

4 : for (i = 0; i < nthreads; ++i)

5 : pthread create(. . ., NULL, consumer, NULL);

6 : for (i = 0; i < nblocks; ++i) {

7 : char *block = read block(i);

8 : pthread mutex lock(&mu);

9 : enqueue(q, block);

10: pthread cond signal(&cv);

11: pthread mutex unlock(&mu);

12: }

13: . . .

14: }

15: void *consumer(void *arg) {

16: while(1) {

17: pthread mutex lock(&mu);

18: while (empty(q)) // termination logic elided for clarity

19: pthread cond wait(&cv, &mu);

20: char *block = dequeue(q);

21: pthread mutex unlock(&mu);

22: . . .

23: soba wait(); /* performance hint */

24: compress(block);

25: }

26: }

Figure 5.1: Simplified PBZip2. It uses the producer-consumer idiom to compress a file in parallel.

previous systems suffer from various problems doing so, illustrated below using two representative,

open-source systems.

CoreDet [12] represents DMT systems that balance load by counting instructions each thread

has run [12, 13, 34, 51, 80]. While the schedules computed may have reasonable overhead, minor

input or program changes perturb the instruction counts and subsequently the schedules, desta-

bilizing program behaviors. When running the example with CoreDet on eight different files,

we observed five different synchronization schedules. This instability is counterintuitive and raises
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Figure 5.2: A DThreads schedule. All compress calls are serialized. read block runs much faster

than compress.
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Figure 5.3: A Parrot schedule with performance hints.

new reliability challenges. For instance, testing one input provides little assurance for very similar

inputs. Reproducing a bug may require every bit of the bug-inducing input, including the data a

user typed, environment variables, shared libraries, etc. Missing one bit may deterministically hide

the bug. CoreDet also relies on static analysis to detect and count shared memory load and store

instructions, but the inherent imprecision of static analysis causes it to instrument unnecessary

accesses, resulting in high overhead. On this example, CoreDet causes a 4.2× slowdown over

nondeterministic execution with a 400 MB file and 16 threads.

DThreads [66] represents StableMT systems that ignore load imbalance among threads. It

works by alternating between a serial and a parallel phase, separated by global barriers. In a serial

phase, it lets each thread do one synchronization in order. In a parallel phase, it lets threads run

until all of them are about to do synchronizations. A parallel phase lasts as long as the slowest

thread, and is oblivious to the execution times of the other threads. When running the example
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Figure 5.4: Parrot architecture.

with two threads, we observed the DThreads schedule in Figure 5.2. This schedule is stable

because it can compress any file, but it is also very slow because it serializes all compress calls.

We observed 7.7× slowdown with 16 threads; and more threads give bigger slowdowns.

This serialization problem is not specific to only DThreads. Rather, it is general to all

StableMT systems that ignore load imbalance.

Running the example with Parrot is easy; users do

$ LD_PRELOAD=./parrot.so program args...

During the execution, Parrot intercepts Pthreads synchronizations. Without the hints at lines

3 and 23, Parrot schedules the synchronizations using round-robin. This schedule also serializes

the compress calls, yielding the same slowdown as DThreads. Developers can easily detect

this performance problem with sample runs, and Parrot simplifies performance debugging by

deterministically reproducing the problem and reporting synchronizations excessively delayed by

round-robin (e.g., the return of pthread cond wait here).

To solve the serialization problem, we added a soft barrier at lines 3 and 23. Line 3 informs

Parrot that the program has a coscheduling group involving nthreads threads, and line 23 is the

starting point of coscheduling. With these hints, Parrot switched to the schedule in Figure 5.3

which ran compress in parallel, achieving 0.8% overhead compared to nondeterministic execution.

A soft barrier is different from classic synchronizations and can be safely ignored without affecting

correctness. For instance, if the file blocks cannot be evenly divided among the threads, the soft

barrier will time out on the last round of input blocks. Moreover, for reasonable performance, we

need to align only time-consuming computations (e.g., compress, not read block).
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5.2.2 Architecture

Figure 5.4 shows Parrot’s architecture. We designed Parrot to be simple and deployable. It

consists of a deterministic user-space scheduler, implementation of hints, a set of wrapper functions

for intercepting Pthreads, network, and timeout operations. For simplicity, the scheduler schedules

only synchronizations, and delegates everything else, such as assigning threads to CPU cores, to the

OS scheduler. The wrapper functions typically call into the scheduler for round-robin scheduling,

then delegate the actual implementation to Pthreads or the OS. Synchronizations in performance

critical sections and inherently nondeterministic operations (e.g., recv) are scheduled by the OS

scheduler.

5.3 Performance Hint Abstractions

Parrot provides two performance-hint abstractions: a soft barrier and a performance critical

section. This section describes these abstractions and their usage.

5.3.1 Soft Barrier

A soft barrier encourages the scheduler to coschedule a group of threads at given program points.

It is for performance only, and a scheduler can ignore it without affecting correctness. It operates

as a barrier with deterministic timeouts in Parrot, helping Parrot switch to faster schedules

that avoid serializing parallel computations. The interface is

void soba init(int group size, void *key, int timeout);

void soba wait(void *key);

One thread calls soba init(N, key, timeout) to initialize the barrier named key, logically indi-

cating that a group of N threads will be spawned. Subsequently, any thread calling soba wait(key)

will block until either (1) N-1 other threads have also called soba wait(key) or (2) timeout time

has elapsed since the first thread arrived at the barrier. This timeout is made deterministic by

Parrot (§5.4.1). soba init can be called multiple times: if the number of coscheduled threads

varies but is known at runtime, the soft barrier can be initialized before each use. Both key and

timeout in soba init are optional. An absent key refers to a unique anonymous barrier. An

absent timeout initializes the barrier with the default timeout.
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A soft barrier may help developers express coscheduling intent to classic nondeterministic sched-

ulers [83]. One advantage is that it makes the group of threads and program points explicit. It

is more robust to developer mistakes than a real barrier [37] for coscheduling purposes because

schedulers cannot ignore a real barrier.

5.3.2 Performance Critical Section

A performance critical section identifies a code region as a potential bottleneck and encourages

the scheduler to get through the region fast. When a thread enters a performance critical section,

Parrot removes the thread from the round-robin scheduling and delegates it to the OS scheduler

for nondeterministic execution. Parrot thus gains speed from allowing additional schedules. The

interface is

void pcs enter();

void pcs exit();

The pcs enter function marks the entry of a performance critical section and pcs exit the exit.

5.3.3 Usage of the Two Hints

Soft barrier. Developers should generally use soft barriers to align high-level, time-consuming par-

allel computations, such as the compress calls in PBZip2. A generic method is to use performance

debugging tools or Parrot’s logs to detect synchronizations excessively delayed by Parrot’s

round-robin scheduling, then identify the serialized parallel computations.

A second method is to add soft barriers based on parallel computation patterns. Below we

describe how to do so based on four parallel computation patterns we observed from the 108

evaluated programs.

• Data partition. Data is partitioned among worker threads, and each worker thread computes

on a partition. This pattern is the most common; 86 out of the 108 programs follow this

pattern, including the programs with fork-join parallelism. Most programs with this pat-

tern need no soft barriers. In rare cases when soft barriers are needed, developers can add

soba wait before each worker’s computation. These soft barriers often work extremely well.
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• Pipeline. The threads are split into stages of a pipeline, and each item in the workload flows

through the pipeline stages. ferret, dedup, vips, and x264 from PARSEC [88] follow this

pattern. These programs often need soft barriers because threads have different roles and

thus do different synchronizations, causing default schedules to serialize computations. The

methodology is to align the most time-consuming stages of the pipeline.

• Map-reduce. Programs with this pattern use both data partition and pipeline, so the method-

ology follows both: align the map function and, if the reduce function runs for roughly the

same amount of time as the map function, align reduce with map.

• Workpile. The workload consists of a pile of independent work items, processed by worker

threads running in parallel. Among the programs we evaluated, Berkeley DB, OpenLDAP,

Redis, pfscan, and aget fall in this category. These programs often need no soft barriers

because it typically takes similar times to process most items.

Performance critical section. Unlike a soft barrier, a performance critical section may trade

some determinism for performance. Consequently, it should be applied with caution, only when (1)

a code region imposes high performance overhead on deterministic execution and (2) the additional

schedules have been thoroughly checked by tools or advanced developers. Fortunately, both condi-

tions are often easy to meet because the synchronizations causing high performance overhead are

often low-level synchronizations (e.g., lock operations protecting a shared counter), straightforward

to analyze with local reasoning or model checkers.

Of all 108 evaluated programs, only 9 need performance critical sections for reasonable perfor-

mance; all other 99 programs need not trade determinism for performance. Moreover, Parrot-

dbug verified all schedules in all 4 real-world programs that need performance critical sections,

providing high assurance.

Developers can identify where to add performance critical sections also using performance de-

bugging tools. For instance, frequent synchronizations with medium round-robin delays are often

good candidates for a performance critical section. Developers can also focus on such patterns

as synchronizations in a tight loop, synchronizations inside an abstraction boundary (e.g., lock()

inside a custom memory allocator), and tiny critical sections (e.g., “lock(); x++; unlock();”).
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void get turn(void);

void put turn(void);

int wait(void *addr, int timeout);

void signal(void *addr);

void broadcast(void *addr);

void nondet begin(void);

void nondet end(void);

Table 5.1: Scheduler primitives.

5.4 Parrot Runtime

The Parrot runtime contains implementation of the hint abstractions (§5.4.3) and a set of wrap-

per functions that intercept Pthreads (§5.4.2), network (§5.4.4), and timeout (§5.4.5) operations.

The wrappers interpose dynamically loaded library calls via LD PRELOAD and “trap” the calls into

Parrot’s deterministic scheduler (§5.4.1). Instead of reimplementing the operations from scratch,

these wrappers leverage existing runtimes, greatly simplifying Parrot’s implementation, deploy-

ment, and inter-operation with code that assumes standard runtimes (e.g., debuggers).

5.4.1 Scheduler

The scheduler intercepts synchronization calls and releases threads using the well-understood, de-

terministic round-robin algorithm: the first thread enters synchronization first, the second thread

second, ..., and repeat. It does not control non-synchronization code, often the majority of code,

which runs in parallel. It maintains a queue of runnable threads (run queue) and another queue

of waiting threads (wait queue), like typical schedulers. Only the head of the run queue may en-

ter synchronization next. Once the synchronization call is executed, Parrot updates the queues

accordingly. For instance, for pthread create, Parrot appends the new thread to the tail of

the run queue and rotates the head to the tail. By maintaining its own queues, Parrot avoids

nondeterminism in the OS scheduler and the Pthreads library.

To implement operations in the Parrot runtime, the scheduler provides a monitor-like internal

interface, shown in Table 5.1. The first five functions map one-to-one to functions of a typical

monitor, except the scheduler functions are deterministic. The last two are for selectively reverting
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to nondeterministic execution. The rest of this subsection describes these functions.

The get turn function waits until the calling thread becomes the head of the run queue, i.e.,

the thread gets a “turn” to do a synchronization. The put turn function rotates the calling thread

from the head to the tail of the run queue, i.e., the thread gives up a turn. The wait function is

similar to pthread cond timedwait. It requires that the calling thread has the turn. It records

the address the thread is waiting for and the timeout (see next paragraph), and moves the calling

thread to the tail of the wait queue. The thread is moved to the tail of the run queue when (1)

another thread wakes it up via signal or broadcast or (2) the timeout has expired. The wait

function returns when the calling thread gets a turn again. Its return value indicates how the thread

was woken up. The signal(void *addr) function appends the first thread waiting for addr to the

run queue. The broadcast(void *addr) function appends all threads waiting for addr to the run

queue in order. Both signal and broadcast require the turn.

The timeout in the wait function does not specify real time, but relative logical time that

counts the number of turns executed since the beginning of current execution. In each call to the

get turn function, Parrot increments this logical time and checks for timeouts. (If all threads

block, Parrot keeps the logic time advancing with an idle thread; see §5.4.5.) The wait function

takes a relative timeout argument. If current logical time is tl, a timeout of 10 means waking up the

thread at logical time tl+10. A wait(NULL, timeout) call is a logical sleep, and a wait(addr, 0)

call never times out.

The last two functions in Table 5.1 support performance critical sections and network operations.

They set the calling thread’s execution mode to nondeterministic or deterministic. Parrot always

schedules synchronizations of deterministic threads using round-robin, but it lets the OS scheduler

schedule nondeterministic threads. Implementation-wise, the nondet begin function marks the

calling thread as nondeterministic and simply returns. This thread will be lazily removed from the

run queue by the thread that next tries to pass the turn to it. (Next paragraph explains why the

lazy update.) The nondet end function marks the calling thread as deterministic and appends it

to an additional queue. This thread will be lazily appended to the run queue by the next thread

getting the turn.

We have optimized the multicore scheduler implementation for the most frequent operations:

get turn, put turn, wait, and signal. Each thread has an integer flag and condition variable.
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int wrap mutex lock(pthread mutex t *mu){

scheduler.get turn();

while(pthread mutex trylock(mu))

scheduler.wait(mu, 0);

scheduler.put turn();

return 0; /* error handling is omitted for clarity. */

}

int wrap mutex unlock(pthread mutex t *mu){

scheduler.get turn();

pthread mutex unlock(mu);

scheduler.signal(mu);

scheduler.put turn();

return 0; /* error handling is omitted for clarity. */

}

Figure 5.5: Wrappers of Pthreads mutex lock&unlock.

The get turn function spin-waits on the current thread’s flag for a while before block-waiting on

the condition variable. The wait function needs to get the turn before it returns, so it uses the

same combined spin- and block-wait strategy as the get turn function. The put turn and the

signal functions signal both the flag and the condition variable of the next thread. In the common

case, these operations acquire no lock and do not block-wait. The lazy updates above simplify the

implementation of this optimization by maintaining the invariant that only the head of the run

queue can modify the run and wait queues.

5.4.2 Synchronizations

Parrot handles all synchronizations on Pthreads mutexes, read-write locks, condition variables,

semaphores, and barriers. It also handles thread creation, join, and exit. It need not implement the

other Pthreads functions such as thread ID operations, another advantage of leveraging existing

Pthreads runtimes. In total, Parrot has 38 synchronization wrappers. They ensure a total (round-

robin) order of synchronizations by (1) using the scheduler primitives to ensure that at most one

wrapper has the turn and (2) executing the actual synchronizations only when the turn is held.

Figure 5.5 shows the pseudo code of our Pthreads mutex lock and unlock wrappers. Both are
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int wrap cond wait(pthread cond t *cv,pthread mutex t *mu){

scheduler.get turn();

pthread mutex unlock(mu);

scheduler.signal(mu);

scheduler.wait(cv, 0);

while(pthread mutex trylock(mu))

scheduler.wait(mu, 0);

scheduler.put turn();

return 0; /* error handling is omitted for clarity. */

}

Figure 5.6: Wrapper of pthread cond wait.

quite simple; so are most other wrappers. The lock wrapper uses the try-version of the Pthreads

lock operation to avoid deadlock: if the head of run queue is blocked waiting for a lock before giving

up the turn, no other thread can get the turn.

Figure 5.6 shows the pthread cond wait wrapper. It is slightly more complex than the lock

and unlock wrappers for two reasons. First, there is no try-version of pthread cond wait, so

Parrot cannot use the same trick to avoid deadlock as in the lock wrapper. Second, Parrot

must ensure that unlocking the mutex and waiting on the conditional variable are atomic (to avoid

the well-known lost-wakeup problem). Parrot solves these issues by implementing the wait with

the scheduler’s wait which atomically gives up the turn and blocks the calling thread on the wait

queue. The wrapper of pthread cond signal (not shown) calls the scheduler’s signal accordingly.

Thread creation is the most complex of all wrappers for two reasons. First, it must determinis-

tically assign a logical thread ID to the newly created thread because the system’s thread IDs are

nondeterministic. Second, it must also prevent the new thread from using the logical ID before the

ID is assigned. Parrot solves these issues by synchronizing the current and new threads with two

semaphores, one to make the new thread wait for the current thread to assign an ID, and the other

to make the current thread wait until the child gets the ID.
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5.4.3 Performance Hints

Parrot implements performance hints using the scheduler primitives. It implements the soft

barrier as a reusable barrier with a deterministic timeout. It implements the performance critical

section by simply calling nondet begin() and nondet end().

One tricky issue is that deterministic and nondeterministic executions may interfere. Consider

a deterministic thread t1 trying to lock a mutex that a nondeterministic t2 is trying to unlock.

Nondeterministic thread t2 always “wins” because the timing of t2’s unlock directly influences t1’s

lock regardless of how hard Parrot tries to run t1 deterministically. An additional concern is

deadlock: Parrot may move t1 to the wait queue but never wake t1 up because it cannot see t2’s

unlock.

To avoid the above interference, Parrot requires that synchronization variables accessed in

nondeterministic execution are isolated from those accessed in deterministic execution. This strong

isolation is easy to achieve based on our experiments because, as discussed in §5.3, the synchro-

nizations causing high overhead on deterministic execution tend to be low-level synchronizations

already isolated from other synchronizations. To help developers write performance critical sections

that conform to strong isolation, Parrot checks this property at runtime: it tracks two sets of

synchronization variables accessed within deterministic and nondeterministic executions, and emits

a warning when the two sets overlap. Strong isolation is considerably stronger than necessary: to

avoid interference, it suffices to forbid deterministic and nondeterministic sections from concur-

rently accessing the same synchronization variables. We have not implemented this weak isolation

because strong isolation works well for all programs evaluated.

5.4.4 Network Operations

To handle network operations, Parrot leverages the nondet begin and nondet end primitives.

Before a blocking operation such as recv, it calls nondet begin to hand the thread to the OS

scheduler. When the operation returns, Parrot calls nondet end to add the thread back to

deterministic scheduling. Parrot supports 33 network operations such as send, recv, accept,

and epoll wait. This list suffices to run all evaluated programs that require network operations

(Berkeley DB, OpenLDAP, Redis, and aget).



CHAPTER 5. MAKING STABLEMT SIMPLE, FAST, AND DEPLOYABLE 103

5.4.5 Timeouts

Real-world programs use timeouts (e.g., sleep, epoll wait, and pthread cond timedwait) for

periodic activities or timed waits. Not handling them can lead to nondeterministic execution

and deadlocks. One deadlock example in our evaluation was running PBZip2 with DThreads:

DThreads ignores the timeout in pthread cond timedwait, but PBZip2 sometimes relies on the

timeout to finish.

Parrot makes timeouts deterministic by proportionally converting them to a logical timeout.

When a thread registers a relative timeout that fires ∆tr later in real time, Parrot converts ∆tr

to a relative logical timeout ∆tr/R where R is a configurable conversion ratio. (R defaults to 3

µs, which works for all evaluated programs.) Proportional conversion is better than a fixed logical

timeout because it matches developer intents better (e.g., important activities run more often).

A nice fallout is that it makes some non-terminating executions terminate for model checking

(§5.7.6). Of course, Parrot’s logical time corresponds loosely to real time, and may be less useful

for real-time applications.1

When all threads are on the wait queue, Parrot spawns an idle thread to keep the logical

time flowing. The thread repeatedly gets the turn, sleeps for time R, and gives up the turn. An

alternative to idling is fast-forwarding [13, 120]. Our experiments show that using an idle thread

has better performance than fast-forwarding because the latter often wakes up threads prematurely

before the pending external events (e.g., receiving a network packet) are done, wasting CPU cycles.

Parrot handles all such common operations as sleep and pthread cond timedwait, enough

for all five evaluated programs that require timeouts (PBZip2, Berkeley DB, MPlayer, ImageMagick,

and Redis). Pthreads timed synchronizations use absolute time, so Parrot provides developers a

function set base time to pass in the base time. It uses the delta between the base time and the

absolute time argument as ∆tr.

5.5 Parrot-dbug Ecosystem

Model checking is a formal verification technique that systematically explores possible executions of

a program for bugs. These executions together form a state space graph, where states are snapshots

1 dOS [13] discussed the possibility of converting real time to logical time but did not present how.
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of the running program and edges are nondeterministic events that move the execution from one

state to another. This state space is typically very large, impossible to completely explore—the

so-called state-space explosion problem. To mitigate this problem, researchers have created many

heuristics [57, 76, 117] to guide the exploration toward executions deemed more interesting, but

heuristics have a risk of missing bugs. State-space reduction techniques [39, 46, 48] soundly prune

executions without missing bugs, but the effectiveness of these techniques is limited. They work by

discovering equivalence: given that execution e1 is correct if and only if e2 is, we need check only

one of them. Unfortunately, equivalence is rare and extremely challenging to find, especially for

implementation-level model checkers which check implementations directly [46, 57, 76, 101, 117,

118]. This difficulty is reflected in the existence of only two main reduction techniques [39, 48] for

these implementation-level model checkers. Moreover, as a checked system scales, the state space

after reduction still grows too large to fully explore. Despite decades of effort, state-space explosion

remains the bane of model checking.

As discussed in §5.1, integrating StableMT and model checking is mutually beneficial. By

reducing schedules, StableMT offers an extremely simple, effective way to mitigate and sometimes

completely solve the state-space explosion problem without requiring equivalence. For instance,

Parrot enables dbug to verify 99 programs, including 4 programs containing performance critical

sections (§5.7.6). In return, model checking helps check the schedules that matter for Parrot and

developers. For instance, it can check the default schedules chosen by Parrot, the faster schedules

developers choose using soft barriers, or the schedules developers add using performance critical

sections.

5.5.1 The dbug Model Checker

In principle, Parrot can be integrated with many model checkers. We chose dbug [101] for

three reasons. First, it is open source, checks implementations directly, and supports Pthreads

synchronizations and Linux socket calls. Second, it implements one of the most advanced state-

space reduction techniques—dynamic partial order reduction (DPOR) [39], so the further reduction

Parrot achieves is more valuable. Third, dbug can estimate the size of the state space based on

the executions explored, a technique particularly useful for estimating the reduction Parrot can

achieve when the state space explodes.
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Specifically, dbug represents the state space as an execution tree where nodes are states and

edges are choices representing the operations executed. A path leading from the root to a leaf

encodes a unique test execution as a sequence of nondeterministic operations. The total number

of such paths is the state space size. To estimate this size based on a set of explored paths, dbug

uses the weighted backtrack estimator [56], an online variant of Knuth’s offline technique for tree

size estimation [60]. It treats the set of explored paths as a sample of all paths assuming uniform

distribution over edges, and computes the state space size as the number of explored paths divided

by the aggregated probability they are explored.

5.5.2 Integrating Parrot and dbug

A key integration challenge is that both Parrot and dbug control the order of nondeterministic

operations and may interfere, causing difficult-to-diagnose false positives. A näıve solution is to

replicate Parrot’s scheduling algorithm inside dbug. This approach is not only labor-intensive,

but also risky because the replicated algorithm may diverge from the real one, deviating the checked

schedules from the actual ones.

Fortunately, the integration is greatly simplified because performance critical sections make

nondeterminism explicit, and dbug can ignore operations that Parrot runs deterministically.

Parrot’s strong-isolation semantics further prevent interference between Parrot and dbug. Our

integration uses a nested-scheduler architecture similar to Figure 5.4 except the nondeterministic

scheduler is dbug. This architecture is transparent to dbug, and requires only minor changes (243

lines) to Parrot. First, we modified nondet begin and nondet end to turn dbug on and off.

Second, since dbug explores event orders only after it has received the full set of concurrent events,

we modified Parrot to notify dbug when a thread transitions between the run queue and the

wait queue in Parrot. These notifications help dbug accurately determine when all threads in

the system are waiting for dbug to make a scheduling decision.

We found two pleasant surprises in the integration. First, soft barriers speed up dbug ex-

ecutions. Second, Parrot’s deterministic timeout (§5.4.5) prevents dbug from possibly having

to explore infinitely many schedules. Consider the “while(!done) sleep(30);” loop which can

normally nondeterministically repeat any number of times before making progress. This code has

only one schedule with Parrot-dbug because Parrot makes the sleep return deterministically.
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5.6 Determinism Discussion

Parrot’s determinism is relative to three factors: (1) external input (data and timing), (2) per-

formance critical sections, and (3) data races w.r.t. the enforced synchronization schedules. Factor

1 is inherently nondeterministic, and Parrot mitigates it by reusing schedules on inputs. Factor 2

is developer-intended. Factor 3 can be easily eliminated, but we deemed it not worthwhile. Below

we explain how to make data races deterministic in Parrot and why it is not worthwhile.

We designed a simple memory commit protocol to make data races deterministic in Parrot,

similar to those in previous work [8, 16, 66]. Each thread maintains a private, copy-on-write map-

ping of shared memory. When a thread has the turn, it commits updates and fetches other threads’

updates by merging its private mapping with shared memory. Since only one thread has the turn,

all commits are serialized, making data races deterministic. (Threads running nondeterministically

in performance critical sections access shared memory directly as intended.) This protocol may

also improve speed by reducing false sharing [66]. Implementing it can leverage existing code [66].

We deemed the effort not worthwhile for three reasons. First, making data races deterministic

is often costly. Second, many races are ad hoc synchronizations (e.g., “while(flag);”) [116] which

require manual annotations anyway in some previous systems that make races deterministic [16,

66]. Third, most importantly, we believe that stability is much more useful for reliability than

full determinism: once the set of schedules is much reduced, we can afford the nondeterminism

introduced by a few data races. Specifically, previous work has shown that data races rarely occur

if a synchronization schedule is enforced. For instance, Peregrine [32] reported at most 10 races

in millions of shared memory accesses within an execution. To reproduce failures caused by the

few races, we can search through a small set of schedules (e.g., fewer than 96 for an Apache race

caused by a real workload [87]). Similarly, we can detect the races by model checking a small set

of schedules [77]. In short, by vastly reducing schedules, StableMT makes the problems caused by

nondeterminism easy to solve.

5.7 Evaluation

We evaluated Parrot on a diverse set of 108 programs. This set includes 55 real-world pro-

grams: Berkeley DB, a widely used database library [17]; OpenLDAP, a server implementing the
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Lightweight Directory Access Protocol [82]; Redis, a fast key-value data store server [94]; MPlayer,

a popular media encoder, decoder, and player [75]; PBZip2, a parallel compression utility [89];

pfscan, a parallel grep-like utility [91]; aget, a parallel file download utility [1]; all 33 parallel

C++ STL algorithm implementations [105] which use OpenMP; all 14 parallel image processing

utilities (which also use OpenMP) in the ImageMagick software suite [52] to create, edit, compose, or

convert bitmap images. The set also includes all 53 programs in four widely used benchmark suites

including 15 in PARSEC [88], 14 in Phoenix [93], 14 in SPLASH-2x [102], and 10 in NPB [79]. The

Phoenix benchmark suite provides two implementations per algorithm, one using regular Pthreads

(marked with -pthread suffix) and the other using a map-reduce library atop Pthreads. We used

complete software or benchmark suites to avoid biasing our results. The programs together cover a

good range of parallel programming models and idioms such as threads, OpenMP, data partition,

fork-join, pipeline, map-reduce, and workpile. To the best of our knowledge, our evaluation of

Parrot represents 10× more programs than any previous DMT or StableMT evaluation, and 4×

more than all previous evaluations combined.

Our evaluation machine was a 2.80 GHz dual-socket hex-core Intel Xeon with 24 hyper-threading

cores and 64 GB memory running Linux 3.2.14. Unless otherwise specified, we used the maximum

number of truly concurrent threads allowed by the machine and programs. For 83 out of the 108

programs, we used 24. For 13 programs, we used 16 because they require the number of threads

be a power of two. For ferret, we used 18 because it requires the number of threads to be 4n+2.

For MPlayer, we used 8, the max it takes. For the other 10 programs, we used 16 because they

reach peak performance with this thread count. In scalability experiments, we varied the number

of threads from 4 to the max.

Unless otherwise specified, we used the following workloads. For Berkeley DB, we used a

popular benchmark bench3n [11], which does fine-grained, highly concurrent transactions. For

both OpenLDAP and Redis, we used the benchmarks the developers themselves use, which come

with the code. For MPlayer, we used its utility mencoder to transcode a 255 MB video (OSDI ’12

keynote) from MP4 to AVI. For PBZip2, we compressed and decompressed a 145 MB binary file.

For pfscan, we searched for the keyword return in all 16K files in /usr/include on our evaluation

machine. For aget, we downloaded a 656 MB file. For all ImageMagick programs, we used a 33 MB

JPG. For all 33 parallel STL algorithms, we used integer vectors with 4G elements. For PARSEC,
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SPLASH-2x, and Phoenix, we used the largest workloads because they are considered “real” by the

benchmark authors. For NPB, we used the second largest workloads because the largest workloads

are intended for supercomputers. In workload sensitivity experiments, we used workloads of 3 or

4 different scales per program, typically with a 10× difference between scales. We also tried 15

different types of workloads for Redis and 5 for MPlayer. All workloads ran from a few seconds to

about 0.5 hour, using 100 or 10 repetitions respectively to bring the standard error below 1%. All

overhead means are geometric.

We compiled all programs using gcc -O2. To support OpenMP programs such as parallel STL

algorithms, we used the GNU libgomp. When evaluating Parrot on the client program aget and

the server programs OpenLDAP and Redis, we ran both endpoints on the same machine to avoid

network latency. 5 programs use ad hoc synchronization [116], and we added a sched yield to

the busy-wait loops to make the programs work with Parrot. 5 programs use Pthreads timed

operations, and we added set base time (§5.4.5) to them. We set the spin-wait of Parrot’s

scheduler to 105 cycles. We used the default soft barrier timeout of 20 except 3,000 for ferret.

Some Phoenix programs read large files, so we ran them with a warm file cache to focus on measuring

their computation time. (Cold-cache results are unusable due to large variations [84].)

The rest of this section focuses on six questions:

§5.7.1: Is Parrot easy to use? How many hints are needed to make the programs with Parrot

fast?

§5.7.2: Is Parrot fast? How effective are the hints?

§5.7.3: How does it compare to previous systems?

§5.7.4: How does its performance vary according to core counts and workload scales/types?

§5.7.5: Is it deterministic in the absence of data races?

§5.7.6: How much does it improve dbug’s coverage?

5.7.1 Ease of Use

Of all 108 programs, 18 have reasonable overhead with default schedules, requiring no hints. 81

programs need a total of 87 lines of soft barrier hints: 43 need only 4 lines of generic soft barrier
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Program Lines

mencoder, vips, swaptions, freqmine, facesim, 2 each

x264, radiosity, radix, kmeans,

linear-regression-pthread, linear-regression,

matrix-multiply-pthread, matrix-multiply,

word-count-pthread, string-match-pthread,

string-match, histogram-pthread, histogram

PBZip2, ferret, 3 each

kmeans-pthread, pca-pthread, pca, word-count

libgomp, bodytrack 4 each

ImageMagick (12 programs) 25 total

Table 5.2: Stats of soft barrier hints. 81 programs need soft barrier hints. The hints in libgomp

benefit all OpenMP programs including ImageMagick, STL, and NPB.

hints in libgomp, and 38 need program-specific soft barriers (Table 5.2). These programs enjoy both

determinism and reasonable performance. Only 9 programs need a total of 22 lines of performance

critical section hints to trade some determinism for performance (Table 5.3). On average, each

program needs only 1.2 lines.

In our experience, adding hints was straightforward. It took roughly 0.5–2 hours per program

despite unfamiliarity with the programs. We believe the programs’ developers would spend much

less time adding better hints. Parrot helped us deterministically reproduce the bottlenecks and

identify the synchronizations delayed by round-robin. We used Intel VTune [109] and Linux perf [90]

performance counter-based tools to identify time-consuming computations, and usually needed to

align only the top two or three computations. For instance, ferret uses a pipeline of six stages, all

serialized by the Parrot’s default schedules. We aligned only two of them to bring the overhead

down to a reasonable level. Aligning more stages did not help.

5.7.2 Performance

Figure 5.7 compares Parrot’s performance to nondeterministic execution. Even with the maxi-

mum number of threads (16–24), the mean overhead is small: 6.9% for real-world programs, 19.0%

for benchmark programs, and 12.7% for all programs. Only seven programs had over 100% over-

head. The ferret, freqmine, and is benchmarks had dynamic load imbalance even with the start-
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Program Lines Nondet Sync Var

pfscan 2 matches lock

partition 2 result lock

fluidanimate 6 mutex[i][j]

fmm 2 lock array[i]

cholesky 2 tasks[i].taskLock

raytrace 2 ridlock

ua 6 tlock[i]

Table 5.3: Stats of performance critical section hints. 9 programs need performance critical section

hints. The hints in partition are generic for three STL programs partition, nth element, and

partial sort. The last column shows the synchronization variables whose operations are made

nondeterministic.

ing points of the computations aligned with soft barrier hints. ua also had load imbalance even after

performance critical section hints are added. x264 is a pipeline program, and its overhead comes

from the soft barrier timeouts during the pipeline startup and teardown. rtview raytrace and

barnes have low-level synchronizations in tight loops, and their overhead may be further reduced

with performance critical sections. Four programs, mencoder, bodytrack-openmp, facesim, and

linear-regression-pthread, enjoyed big speedups, so we analyzed their executions with profiling

tools. We found that the number of mencoder’s context switches due to synchronization decreased

from 1.9M with nondeterministic executions to 921 with Parrot. The reason of the context switch

savings was that Parrot’s round-robin scheduling reduced contention and its synchronizations use

a more efficient wait that combines spin- and block-waits (§5.4.1). bodytrack-openmp and facesim

enjoyed a similar benefit. So did another 19 programs which had 10× fewer context switches with

Parrot [84]. linear-regression-pthread’s stalled cycles were reduced by 10× with Parrot,

and we speculate that Parrot’s scheduler improved its affinity. (See [84] for all results on microar-

chitectural events.)

Figure 5.8 compares Parrot’s performance with and without hints. For all the 90 programs

that have hints, their mean overhead was reduced from 510% to 11.9% after hints were added. The

four lines of generic soft barrier hints in libgomp (Table 5.2) reduced the mean overhead from 500%

to 0.8% for 43 programs, program-specific soft barriers from 460% to 19.1% for 38 programs, and
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Figure 5.7: Parrot’s performance normalized over nondeterministic execution. The patterns

of the bars show the types of the hints the programs need: no hints, generic soft barriers in

libgomp, program-specific soft barriers, or performance critical sections. The mean overhead is

12.7% (indicated by the horizontal line).

performance critical sections from 830% to 42.1% for 9 programs. Soft barriers timed out on 12

programs (Table 5.4), which affected neither determinism nor correctness. The kmeans experienced

Program Success Timeout

convert shear 725 1

bodytrack 60,071 2,611

ferret 699 2

vips 3,311 6

x264 39,480 148,470

radiosity 200,316 7,266

histogram 167 1

kmeans 1,470 196

pca 119 2

pca-pthread 84 1

string-match 64 1

word-count 15,468 11

Table 5.4: Soft barrier successes and timeouts.
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Figure 5.8: Effects of performance hints. They reduced Parrot’s overhead from 510% to 11.9%.

over 10% timeouts, causing higher overhead. x264 experienced many timeouts but enjoyed partial

coscheduling benefits (§5.3).

5.7.3 Comparison to Prior Systems

We compared Parrot’s performance toDThreads and CoreDet. We configured both to provide

the same determinism guarantee as Parrot,2 so their overhead measured only the overhead to

make synchronizations deterministic. One caveat is that neither system is specially optimized for

this purpose. We managed to make only 25 programs work with both systems because not both of

them support programming constructs such as read-write locks, semaphores, thread local storage,

network operations, and timeouts. These programs are all benchmarks, not real-world programs.

Figure 5.9 shows the comparison results. Parrot’s mean overhead is 11.8%, whereasDThreads’s

is 150.0% and CoreDet’s is 115.1%. DThreads’s overhead is mainly from serializing paral-

lel computations. dedup, ferret, fluidanimate, barnes, radiosity, and raytrace have over

500% overhead. fluidanimate is the slowest, whose threads wasted 59.3% of their time waiting

for the other threads to do synchronizations. Without fluidanimate, DThreads’s overhead is

still 112.5%. (Performance hints may also help DThreads mitigate the serialization problem.)

CoreDet’s overhead is mainly from counting instructions. ferret, fluidanimate, barnes, and

raytrace have over 300% overhead.

2While Kendo’s determinism guarantee is closest to Parrot’s, we tried and failed to acquire its code.
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Figure 5.9: Parrot, DThreads, and CoreDet overhead.

5.7.4 Scalability and Sensitivity

We measured Parrot’s scalability on our 24-core machine. All programs varied within 40.0% from

each program’s mean overhead across different core counts except ferret (57.4%), vips (46.7%),

volrend (43.1%), and linear-regression-pthread (57.1%). Some of these four programs use

pipelines, so more threads lead to more soft barrier timeouts during pipeline startup and teardown.

We also measured Parrot’s scalability on three or four different workload scales as defined by the

benchmark authors. All programs varied within 60% from each program’s mean overhead across

different scales except 14 programs, of which 9 varied from 60%–100%, 3 from 100%–150%, and 2

above 150%. The 2 programs, partition and radiosity, went above 150% because their smaller

workloads run too short. For instance, radiosity’s native workload runs for over 200s, but its

large workload runs for less than 3s and medium and small workloads for less than 0.4s. We also

ran Redis on 15 types of workloads, and mencoder on 5. The overhead did not vary much. To

summarize, Parrot’s performance is robust to core count and workload scale/type. (See [84] for

detailed scalability results.)
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5.7.5 Determinism

We evaluated Parrot’s determinism by verifying that it computed the same schedules given the

same input. For all programs except those with performance critical sections, ad hoc synchro-

nizations, and network operations, Parrot is deterministic. Our current way of marking ad hoc

synchronization causes nondeterminism; annotations [116] can solve this problem. We also eval-

uated Parrot’s determinism using a modified version of racey [50] that protects each shared

memory access with a lock. In racey, each different schedule leads to a different result with high

probability. We executed our modified racey 1,000 times without Parrot, and saw 1,000 different

results. With Parrot, it always computed the same result.

5.7.6 Model Checking Coverage

Bin # of Programs State Space Size with dbug

A 27 1 ∼ 14

B 18 28 ∼ 47, 330

C 25 3.99× 106 ∼ 1.06× 10473

D 25 4.75× 10511 ∼ 2.10× 1019734

Table 5.5: Estimated dbug’s state space sizes on programs with no performance critical section nor

network operation.

To evaluate coverage, we used small workloads and two threads per workload. Otherwise, the

time and space overhead of dbug, or model checking in general, becomes prohibitive. Consequently,

Parrot’s reduction measured with small state spaces is a conservative estimate of its potential.

Two programs, volrend and ua, were excluded because they have too many synchronization oper-

ations (e.g., 132M for ua), causing dbug to run out of memory. Since model checking requires a

closed (no-input) system, we paired aget with lightweight web server Mongoose [73]). We enabled

state-of-the-art DPOR [39] to evaluate how much more Parrot can reduce the state space. We

checked each program for a maximum of one day or until the checking session finished. We then

compared the estimated state space sizes.

Table 5.5 bins all 95 programs that contain (1) no network operations and (2) either no hints

or only soft barriers. For each program, Parrot-dbug reduced the state space down to just one
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schedule and finished in 2 seconds. dbug alone could finish only 43 (out of 45 in bin A and B)

within the time limit.

Table 5.6 shows the results for all 11 multithreaded programs containing network operations or

performance critical sections. For all four real-world programs pfscan, partition, nth element,

and partial sort, Parrot-dbug effectively explored all schedules in seven hours or less, providing

a strong reliability guarantee. These results also demonstrate the power of Parrot: the programs

can use the checked schedules at runtime for speed.

To summarize, Parrot reduced the state space by 106–1019734 for 56 programs (50 programs in

Table 5.5, 6 in Table 5.6). It increased the number of verified programs from 43 to 99 (95 programs

in Table 5.5, 4 in Table 5.6).

5.8 Related Work

StableMT and DMT systems. Implementation-wise, several previous systems are not backward-

compatible because they require new hardware [34], new language [21], or new programming model

and OS [8]. Among backward-compatible systems, some DMT systems, including Kendo [80],

CoreDet [12], and CoreDet-related systems [13, 51], improve performance by balancing each

Program dbug Parrot-dbug Time

OpenLDAP 2.40× 102795 5.70× 101048 No

Redis 1.26× 108 9.11× 107 No

pfscan 2.43× 102117 32, 268 1, 201s

aget 2.05× 1017 5.11× 1010 No

nth element 1.35× 107 8, 224 309s

partial sort 1.37× 107 8, 194 307s

partition 1.37× 107 8, 194 307s

fluidanimate 2.72× 10218 2.64× 10218 No

cholesky 1.81× 10371 5.99× 10152 No

fmm 1.25× 1078 2.14× 1054 No

raytrace 1.08× 1013863 3.68× 1013755 No

Table 5.6: Estimated state space sizes for programs containing performance critical sections.

Parrot-dbug finished 4 real-world programs (time in last column), and dbug none.
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thread’s load with low-level instruction counts, so they are not stable.

Five systems can be classified as StableMT systems. Our Tern (Chapter 3) and Peregrine

(Chapter 4) systems require sophisticated program analysis to determine input and schedule com-

patibility, complicating deployment. Bergan et al [15] built upon the ideas in Tern and Peregrine

to statically compute a small set of schedules covering all inputs, an undecidable problem in general.

Grace [16] and DThreads [66] ignore thread load imbalance, so they are prone to the serialization

problem (§5.2.1). Grace also requires fork-join parallelism.

Compared to Parrot’s evaluation, previous evaluations have several limitations. First, previ-

ous work has reported results on a narrower set of programs, typically less than 15. The programs

are mostly synthetic benchmarks, not real-world programs, from incomplete suites. Second, the

experimental setups are limited, often with one workload per program and up to 8 cores.3 Lastly,

little previous work except ours [31, 32, 115] has demonstrated how the approaches benefit test-

ing or reported any quantitative results on improving reliability, making it difficult for potential

adopters to justify the overhead.

State-space reduction. Parrot greatly reduces the state space of model checking, so it bears

similarity to state-space reduction techniques (e.g., [39, 46, 48]). Partial order reduction [39, 46] has

been the main reduction technique for model checkers that check implementations directly [101,

120]. It detects permutations of independent events, and checks only one permutation because all

should lead to the same behavior. Recently, we proposed dynamic interface reduction [48] that

checks loosely coupled components separately, avoiding expensive global exploration of all compo-

nents. However, this technique has yet to be shown to work well for tightly coupled components

such as threads communicating via synchronizations and shared memory.

Parrot offers three advantages over reduction techniques (§5.5): (1) it is much simpler because

it does not need equivalence to reduce state space; (2) it remains effective as the checked system

scales; and (3) it works transparently to reduction techniques, so it can be combined with them for

further reduction. The disadvantage is that Parrot has runtime overhead.

Concurrency. Automatic mutual exclusion (AME) [53] assumes all shared memory is implicitly

protected and allows advanced developers the flexibility to remove protection. It thus shares a

3Three exceptions used more than 8 cores: [81] (ran a 12-line program on 48 cores), [9] (ran 9 selected programs

from PARSEC, SPLASH-2x, and NPB on 32 cores), and [34] (emulated 16 cores).
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similar high-level philosophy with Parrot, but the differences are obvious. We are unaware of

any publication describing a fully implemented AME system. Parrot is orthogonal to much

previous work on concurrency error detection [38, 69, 70, 97, 123, 126], diagnosis [85, 86, 99], and

correction [54, 55, 111, 114]. By reducing schedules, it potentially benefits all these techniques.

5.9 Summary

We have presented Parrot, a simple, practical Pthreads-compatible system for making threads

deterministic and stable. It offers a new contract to developers. By default, it schedules syn-

chronizations using round-robin, vastly reducing schedules. When the default schedules are slow,

it allows developers to write performance hints for speed. We believe this contract eases writing

correct, efficient programs. We have also presented an ecosystem formed by integrating Parrot

with model checker dbug, so that dbug can thoroughly check Parrot’s schedules, and Parrot

can greatly improve dbug’s coverage. Results on a diverse set of 108 programs, roughly 10× more

than any previous evaluation, show that Parrot is easy to use, fast, and scalable; and it improves

dbug’s coverage by many orders of magnitude. We have released Parrot’s source code, entire

benchmark suite, and raw results at github.com/columbia/smt-mc.

github.com/columbia/smt-mc
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Chapter 6

Conclusion

Multithreading is notoriously difficult to get right, and a root cause is that a multithreaded program

may run into exponentially many possible schedules for all inputs at runtime, which brings a series

of significant reliability and security challenges on understanding, testing, debugging, analyzing,

and verification of multithreaded programs.

To make multithreading easier to get right, we have invented a new idea called StableMT that

reuses each schedule on a wide range of inputs, greatly reducing the number of possible sched-

ules for all inputs. Through building three StableMT systems, Tern, Peregrine, and Parrot,

with each addressing a distinct research challenge, we have shown that StableMT is simple, fast,

and deployable. Through applying StableMT to make reproducing concurrency bugs easier, to

improve the precision of static program analysis, and to increase the coverage of model checking

tools, we have quantitatively demonstrated StableMT’s advantages on improving software reliabil-

ity. StableMT has attracted the research community’s interests, and some techniques and ideas in

our previous systems have been leveraged by University of Washington researchers to compute a

small set of schedules to cover all or most inputs of multithreaded programs. All the source code,

benchmarks, and raw evaluation results of Parrot, our latest StableMT system, are available at

github.com/columbia/smt-mc.

By addressing the root cause that makes multithreading difficult to get right, StableMT has

broad applications on software reliability and security. In the future, we plan to apply StableMT to

make replication and verification of multithreaded programs easier, and to defend against security

attacks that leverage concurrency bugs.

github.com/columbia/smt-mc


BIBLIOGRAPHY 119

Bibliography

[1] http://www.enderunix.org/aget/.

[2] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and

Tools (2nd Edition). Addison-Wesley, 2006.

[3] Jeannie Albrecht, Christopher Tuttle, Alex C. Snoeren, and Amin Vahdat. Loose synchro-

nization for large-scale networked systems. In Proceedings of the USENIX Annual Technical

Conference (USENIX ’06), pages 28–28, 2006.

[4] Gautam Altekar and Ion Stoica. ODR: output-deterministic replay for multicore debugging. In

Proceedings of the 22nd ACM Symposium on Operating Systems Principles (SOSP ’09), pages

193–206, October 2009.

[5] ab - Apache server benchmark. http://httpd.apache.org/docs/2.2/programs/ab.html,

2014.

[6] Apache web server. http://www.apache.org, 2012.

[7] Arctic Terns - Wikipedia. http://en.wikipedia.org/wiki/Arctic_Tern.

[8] Amittai Aviram, Shu-Chun Weng, Sen Hu, and Bryan Ford. Efficient system-enforced deter-

ministic parallelism. In Proceedings of the Ninth Symposium on Operating Systems Design and

Implementation (OSDI ’10), October 2010.

[9] Amittai F. Aviram. Deterministic OpenMP. PhD thesis, Yale University, 2012.

[10] Dzintars Avots, Michael Dalton, V. Benjamin Livshits, and Monica S. Lam. Improving software

http://www.enderunix.org/aget/
http://httpd.apache.org/docs/2.2/programs/ab.html
http://www.apache.org
http://en.wikipedia.org/wiki/Arctic_Tern


BIBLIOGRAPHY 120

security with a C pointer analysis. In Proceedings of the 27th International Conference on

Software Engineering (ICSE ’05), pages 332–341, May 2005.

[11] http://libdb.wordpress.com/3n1/.

[12] Tom Bergan, Owen Anderson, Joseph Devietti, Luis Ceze, and Dan Grossman. CoreDet: a

compiler and runtime system for deterministic multithreaded execution. In Fifteenth Interna-

tional Conference on Architecture Support for Programming Languages and Operating Systems

(ASPLOS ’10), pages 53–64, March 2010.

[13] Tom Bergan, Nicholas Hunt, Luis Ceze, and Steven D. Gribble. Deterministic process groups in

dOS. In Proceedings of the Ninth Symposium on Operating Systems Design and Implementation

(OSDI ’10), October 2010.

[14] Tom Bergan, Joseph Devietti, Nicholas Hunt, and Luis Ceze. The deterministic execution

hammer: how well does it actually pound nails? In The 2nd Workshop on Determinism and

Correctness in Parallel Programming (WODET ’11), March 2011.

[15] Tom Bergan, Luis Ceze, and Dan Grossman. Input-covering schedules for multithreaded pro-

grams. In Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA ’13), October 2013.

[16] E. Berger, T. Yang, T. Liu, D. Krishnan, and A. Novark. Grace: safe and efficient concur-

rent programming. In Conference on Object-Oriented Programming Systems, Languages, and

Applications (OOPSLA ’09), pages 81–96, October 2009.

[17] http://www.sleepycat.com.

[18] Sanjay Bhansali, Wen-Ke Chen, Stuart de Jong, Andrew Edwards, Ron Murray, Milenko
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