
Multiscale Mechanobiology of Primary Cilia

An M. Nguyen

Submitted in partial fulfillment of the

requirements for the degree

of Doctor of Philosophy

in the Graduate School of Arts and Sciences

COLUMBIA UNIVERSITY

2015



©2014

An M. Nguyen

All Rights Reserved



ABSTRACT

Multiscale Mechanobiology of Primary Cilia

An M. Nguyen

Mechanosensation, the ability for cells to sense and respond to physical cues, is a

ubiquitous process among living organisms and its dysfunction can lead to devastating

diseases, including atherosclerosis, osteoporosis, and cancer. The primary cilium is

a solitary, immotile organelle that projects from the surface of virtually every cell

in the human body and can function as a mechanosensor across diverse biological

contexts, deflecting in response to fluid flow, pressure, touch, and vibration. It can

detect urinary flow rate in the kidney, monitor bile flow in the liver, and distinguish

the direction of nodal flow in embryos. In this thesis, we examined the interplay of

biology and mechanics in the context of this multifunctional sensory organelle from

the tissue to subcellular scale.

In the first part of this work, we examined the cilium at the tissue level. Primary

cilia are just beginning to be appreciated in bone with studies recently reporting loss of

cilia results in defects in skeletal development and adaptation. We disrupted primary

cilia in osteocytes, the principal mechanosensing cells in bone, and demonstrated

that loss of primary cilia in osteocytes impairs load-induced bone formation. Over the

course of our work with primary cilia, we also identified the need for more standardized

imaging approaches to the cilium and presented an improvement to distinguishing

proteins within the cilium from the rest of the cell.

In the later part of this work, we examined the primary cilium at the subcellular



level. While deflection is integral to the cilium’s mechanosensory function, it remains

poorly understood and characterized. Using a novel combination of experimental

and computational techniques to capture and determine the mechanical properties

of the cilium, we demonstrated cilium deflection can be mechanically and chemically

modulated. We revealed a mechanism, acetylation, through which this mechanosensor

can adapt and regulate overall cellular mechanosensing. By modifying our combined

experimental and computational approach, we analyzed cilium deflection in vivo for

the first time.

Collectively, this work uncovers new insights across biological scales in the

primary cilium as an extracellular nexus integrating mechanical stimuli and cellular

signaling. Understanding the mechanisms driving cilium mechanosensing has broad

reaching implications and unlocks the cilium’s potential as a therapeutic target to

treat impaired cellular mechanosensing critical to a multitude of diseases.
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Chapter 1

Introduction
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1.1 Mechanosensing

Mechanical signals are critical to many biological processes and the ability

for cells to sense and respond to these signals is termed mechanosensing. At

the organismal level, mechanosensing helps the cardiovascular system maintain and

regulate blood pressure [Tarbell et al., 2014], the skeletal system adapt to its loading

environment [Robling et al., 2006], and the auditory system detect sound waves

[Schwander et al., 2010]. At the cellular level, mechanosensing can direct motility,

differentiation, proliferation, and apoptosis [Janmey and McCulloch, 2007]. At

the subcellular and molecular levels, mechanosensors are the structures that sense

mechanical signals through force-induced conformational or other physical changes.

They can be a small complex of proteins that form focal adhesions to the entire

cytoskeleton that detect forces in the extracellular matrix and neighboring cells

[Hirata et al., 2014]. Not surprisingly, dysfunction in mechanosensing can lead to

devastating diseases, including atherosclerosis, osteoporosis, and cancer [Hoffman et

al., 2011].

1.2 Primary cilia mechanosensing

Previously thought to be of little functional importance [Federman and Nichols,

1974], the primary cilium is now recognized as an emerging mechanosensor. The

cilium is a single, immotile multifunctional sensory organelle that extends from

the cell surface of nearly every mammalian cell. Recently, renewed interest in

this organelle has led to numerous studies and insights into the primary cilium’s
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structure and function. As a mechanosensor, the cilium deflects in response to flow,

pressure, touch, and vibration [Singla and Reiter, 2006]. Primary cilia monitor

bile and urinary flow in the liver and kidney, respectively [Masyuk et al., 2006;

Praetorius and Spring, 2001; Praetorius and Spring, 2003]. In developing nodes,

primary cilia detect the direction of nodal flow [McGrath et al., 2003]. Primary

cilia have recently been implicated in sensing blood flow in blood vessels [Nauli

et al., 2008] and lacunocanalicular flow in bone and cartilage [Malone et al., 2007;

McGlashan et al., 2010; Xiao et al., 2006].

1.3 Ciliopathies

Disorders involving defects in cilia structure and function are now known as

ciliopathies. Not surprisingly, these defects often result in multisystemic dysfunction

due to the cilium found on virtually every cell in the body. Renal disease, retinal

degeneration and cerebral anomalies are common features of ciliopathies [Waters and

Beales, 2011]. Primary cilia have been the most studied in the context of kidney. In

2000, Murcia et al. observed that a mutation in the Tg737 gene resulted in left-right

asymmetry in mice [Murcia et al., 2000]. The same mutation also led to defects in

the cilium. In addition to Ift88, the protein encoded by Tg737, Kif3a, Polycystin 1,

and Polycystin 2, among other ciliary proteins, has been associated with ciliopathies

[Lin et al., 2003; Yoder, 2002].
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1.4 Primary cilia biology

The cilium is a microtubule-based structure, where the axoneme consists of nine

microtubule doublets that extend from the basal body (Fig. 1.1). These doublets

provide the cilium its structural integrity. In contrast to other cellular projections,

the motile cilium and flagellum, the primary cilium lacks two central microtubules

and other axonemal components, including radial spokes, Dynein arms and Nexin

links [Schwartz et al., 1997], that are thought to reinforce the axoneme. Motile cilia

with these components are one order of magnitude stiffer than primary cilia.

Intraflagellar transport (IFT) is the process through which the cilium is formed

and maintained. IFT transports proteins along the axoneme to and from the cell.

Since the cilium lacks the translation machinery to form proteins, proteins found in

the cilium are formed outside of the cilium and IFT transports these proteins to

the cilium. Motor proteins are critical in driving this transport system. Kinesin

2 transports proteins away from the cell body towards the cilium tip while Dynein

transports proteins in the reverse direction. Two proteins implicated in ciliopathies

in an earlier paragraph, Kif3a and Ift88, are also important in IFT. Kinesin 2 consists

of two subunits, Kif3a and Kif3b, [Praetorius and Spring, 2005]. Ift88 forms part of

the protein complex used to transport and carry other proteins along the axoneme

[Kobayashi and Dynlacht, 2011; Lucker et al., 2010].

While primary cilia are found on nearly every cell, the presence of cilia on

these cells depends on the cell cycle. The cilium is assembled and resorbed as a cell

progresses through the cycle. The cilium is assembled during interphase. The basal

4
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Figure 1.1: Microtubule-based structure of primary cilium. The cilium consists of the axoneme
and basal body. Anterograde IFT is driven by Kinesin 2 motors (blue) while retrograde IFT is
driven by Dynein motors (red) along the axoneme microtubules (green). Reprinted with permission
from [Nguyen and Jacobs, 2013].
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body nucleates from the mother centriole and anchors the cilium while the axoneme

is formed through IFT by Kinesin 2. The cilium is resorbed before mitosis and entry

of the cell cycle. The incidence of cilia is highest on cells arrested in G0-G1 [Quarmby

and Parker, 2005; Wheatley et al., 1996].

1.5 Modeling primary cilia mechanics

Primary cilia bending was first modeled by Schwartz et al. where the cilium

was modeled as an elastic beam using the small-rotation Euler-Bernoulli formulation

[Schwartz et al., 1997]. The authors estimated cilium stiffness of rat kangaroo kidney

cells to be on the order of 10−23 Nm2. Building on this model, Liu et al. added a

more accurate description of flow-induced loading using Stokes equations [Liu et al.,

2007] and Downs et al. used a large rotation formulation [Downs et al., 2012]. With

a more sophisticated approach that accounted for rotation at the base of the cilium

and the cilium’s initial configuration, the authors reported stiffness for mouse kidney

cells on the order of 10−22 Nm2, which is an order of magnitude higher than reported

by Schwartz et al. [Schwartz et al., 1997]. Advances in bending analysis of cilia have

suggested that the cilium is a dynamic organelle, capable of structural changes in

response to its environment. Recently, Besschetnova et al. demonstrated cilia length

is modulated by flow [Besschetnova et al., 2010] and Rich and Clark demonstrated

cilia length is modulated by osmolarity [Rich and Clark, 2012].
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1.6 Motivation

Although physical cues are vitally involved in a breadth of physiological

processes, mechanosensing is complex and remains poorly understood. The primary

cilium has recently emerged as a nexus capable of integrating physical signals and

coordinating biochemical responses across biological scales. At the tissue level, bone,

constantly responding and adapting to physical loads, is an exciting context to study

primary cilium mechanosensing. While primary cilia have been implicated in bone

adaptation and formation, it is not known if osteocytes, the principal mechanosensing

cells in bone, use primary cilia in vivo to detect physical loads [Tatsumi et al., 2007].

At the subcellular level, the kidney cilium is the ideal system to study mechanosensing.

Specifically the long kidney cilium’s deflection in response to fluid flow is easily

visualized with fluorescence microscopy [Downs et al., 2012; Mitchell et al., 2009;

Young et al., 2012]. In this context, recent data have suggested the cilium’s capacity

to adapt as a mechanosensor. A greater understanding of the cilium as an extracellular

nexus adapting to and integrating mechanical stimuli and cellular signaling not only

contributes to the primary cilia field but also the broader field of mechanosensing.

With cellular mechanosensing critical to a multitude of diseases and the primary

cilium such a ubiquitous mechanosensor, the cilium is a therapeutic target of high

value.
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1.7 Organization

This dissertation contains four investigations advancing the understanding of

primary cilium mechanosensing across biological scales. In chapter 2, we use a

conditional knockout mouse model to demonstrate the osteocyte primary cilium’s

role in sensing load and coordinating the bone formation response. In chapter

3, we describe the challenges with identifying proteins in the cilium and develop

a method to distinguish ciliary and cytosolic pools of proteins. In chapter 4, we

use combined experimental and computational methods to show the primary cilium

adapts to stimuli through a mechanism involving acetylation. In chapter 5, we apply

our computational method to characterize primary cilia deflection in vivo. This

dissertation concludes with chapter 6 discussing contributions, limitations and future

areas of research motivated by the works discussed in chapters 2-5.
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Chapter 2

Primary cilia mechanosensation in

bone by osteocytes in vivo

9



Collaborators on this project are Marie D. Guevarra, Samuel T. Robinson, X. Edward

Guo, and Christopher R. Jacobs.

2.1 Abstract

Previous studies have demonstrated the primary cilium plays a role in sensing

physical loads in bone. Because findings from these studies were confounded, the

osteocyte primary cilium’s role in vivo remains unclear. Prior studies deleted Kif3a

and though it is a motor protein used in intraflagellar transport, Kif3a also has a

non-ciliary role. In addition, Kif3a was deleted in both osteoblasts and osteocytes.

The goal of this study was to specifically determine the osteocyte primary cilium’s

mechanosensory role. We addressed this by targeting Ift88, a cilia-specific protein

also involved in intraflagellar transport. Using Dmp1-Cre and Ift88 floxed mice,

we developed conditional knockout mice with primary cilia-deficient osteocytes. We

found that this targeted deletion of Ift88 did not affect skeletal development but did

inhibit cilia formation. We then loaded ulnae of 16-week-old mice and measured 47%

reduction in loading-induced bone formation in the conditional knockout mice. These

data provide the first specific in vivo demonstration of the osteocyte primary cilium’s

role in bone mechanosensation.
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2.2 Introduction

As studies have continued to identify new contexts in which primary cilia play

a mechanosensory role, the cilium has emerged as an important mechanosensor in

bone. The concept of the osteocyte primary cilium sensing strain in bone was

first proposed about a decade ago [Whitfield, 2003]. In the past decade, groups

have now identified cilia in bone [Malone et al., 2007; Xiao et al., 2006] and

demonstrated in vitro that cilia are involved in bone mechanotransduction. A study

by Malone et al. showed that flow-induced osteogenic gene expression is reduced

with loss of cilia by siRNA knockdown or chloral hydrate [Malone et al., 2007].

In other studies, loss of cilia by chloral hydrate led to inhibition of flow-induced

mineral deposition [Delaine-Smith et al., 2014] and loss of cilia by siRNA knockdown

inhibited flow-induced cyclic AMP signaling [Kwon et al., 2010]. Recently, studies

have identified the polycystin complex in bone primary cilia [Qiu et al., 2012b;

Xiao et al., 2006]. This complex is made up of Polycystin 1 and 2 and have previously

been implicated in other cilia-mediated mechanosensing contexts, including kidney

and liver. When Pkd1, the gene encoding Polycystin 1, is disrupted in osteoblasts,

osteogenic gene expression and flow-induced cyclic AMP signaling are attenuated

[Qiu et al., 2012b]. Hoey et al. recently suggested that osteocyte cilia are involved in

paracrine signaling that induces osteogensis of mesenchymal stem cells [Hoey et al.,

2011]. When osteocyte cilia are disrupted by knockdown of Ift88, the authors showed

the osteogenic response in mesenchymal stem cells was lost.

While primary cilia in bone have predominantly been studied in vitro, two

recent studies have provided in vivo evidence of the cilium’s role in osteogenesis.
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Both studies targeted Kif3a, which encodes a subunit of Kinesin 2 and is important

in anterograde intraflagellar transport. Conditional knockouts, however, must be

generated because global knockouts of Kif3a are embryonically lethal [Marszalek et

al., 1999; Qiu et al., 2012a; Temiyasathit et al., 2012]. Temiyasathit et al. deleted

Kif3a in early osteoblasts through osteocytes using a 2.3 kb fragment of α1(I)-

collagen promoter to drive Cre expression [Dacquin et al., 2002; Liu et al., 2004;

Temiyasathit et al., 2012]. This conditional knockout of Kif3a resulted in normal

skeletal morphology in mice but attenuated the bone formation response to loading.

Qiu et al. deleted Kif3a in more mature osteoblasts through osteocytes using a

3.9 kb fragment of the osteocalcin promoter [Jiang et al., 2004; Qiu et al., 2012a].

In contrast to the focus on the bone formation response by Temiysathit et al.,

these authors focused on Kif3a’s role in skeletal development and demonstrated that

conditional knockout of Kif3a led to an osteopenic phenotype in 6-week-old mice,

including reduced bone mineral density, bone volume fraction and cortical thickness.

The osteopenic phenotype observed at the tissue level was supported by reduced

osteogenic gene expression in cells from 6-week-old mice. By 24 weeks, skeletal

development recovered and mice no longer had a measureable osteopenic phenotype.

While these data implicate cilia in skeletal development and formation, these data do

not distinguish the role of osteoblast from osteocyte cilia in these processes.

The key mechanosensing cell in bone is the osteocyte and in adult bone,

osteocytes are the predominant cell type [Bonewald, 2011]. By showing that

ablating osteocytes protected mice from unloading-induced bone loss, Tatsumi et

al. established the osteocytes role in bone mechanotransduction [Tatsumi et al.,

2007]. We expand on these findings and hypothesize that the osteocyte can sense

physical loads through the primary cilium. Although previous studies have suggested

12



the osteocyte primary cilium is involved in bone mechanosensing, no study has

demonstrated this in vivo. Findings of previous studies did not distinguish the role

of primary cilia in osteoblasts and osteoblasts and targeted a gene with a role both

inside and outside the cilium [Qiu et al., 2012a; Temiyasathit et al., 2012]. Because

the promoters used in previous studies resulted in Cre recombination in osteoblasts

and osteoblasts mature into osteocytes, loss of Kif3a also occurs in the terminally

differentiated osteocytes. Consequently the contributions of cilia in the previous

studies cannot be discriminated between the osteoblast and osteocyte population.

Additionally, although Kif3a is involved in anterograde IFT, Kif3a is also involved

in Wnt signaling [Corbit et al., 2008]. When Kif3a is disrupted, Dishevelled is

constitutively phosphorylated and β-catenin accumulates in the cytoplasm. This

suggests that in addition to its ciliary role, Kif3a can regulate the Wnt/β-catenin

pathway that is important in skeletal development [Day et al., 2005; Galli et al., 2010;

Holmen et al., 2005; Kramer et al., 2010; Tu et al., 2012]. The osteopenic observations

in 6-week-old mice discussed in the previous paragraph may be attributed to Kif3a’s

non-ciliary role [Qiu et al., 2012a]. By using Dmp1 (Dentin matrix protein1)-Cre and

Ift88 mice to develop a conditional knockout of cilia in osteocytes, we can address

both issues. Dmp1 is specifically expressed in osteocytes [Yang et al., 2005] and Ift88

has a specific ciliary role [Corbit et al., 2008].

Using these mice with an osteocyte-specific deletion of primary cilia, we

examined the osteocyte cilium in loading-induced bone formation. In vivo ulnar

loading is one method in which to study skeletal adaption. With this loading

model, our lab has shown the role of β1 integrins, Kif3a, and adenylyl cyclase

6 in mechanical adaption of bone [Lee et al., 2014; Litzenberger et al., 2009;

Temiyasathit et al., 2012]. A recent study using Dmp1-Cre to delete Pkd1 in

13



osteocytes showed that mice were osteopenic in addition to impaired loading-induced

bone formation [Xiao et al., 2011].

The purpose of this study was to distinguish the osteocyte primary cilium’s

mechanosensory role in skeletal adaptation that had been implicated by previous

studies. Conditional deletion of cilia-specific gene Ift88 resulted in loss of osteocyte

cilia. Because skeletal morphology was not affected by the loss, our data suggest that

osteocyte cilia do not play a role in skeletal development. Our data also show loss of

osteocyte cilia in mice led to impaired skeletal adaptation. Collectively, these data

directly demonstrate the osteocyte primary cilium plays a role in skeletal adaptation

and suggest this organelle may be targeted in treatments for bone loss.
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2.3 Methods

2.3.1 Animals

Dmp1-Cre mice were obtained from Lynda Bonewald at the University of

Missouri-Kansas City [Lu et al., 2007]. Ift88fl/fl and Ift88fl/null mice were obtained

from Bradley Yoder at the University of Alabama at Birmingham [O’Connor et al.,

2013]. Using male Dmp1-Cre and female Ift88fl/null mice, male Dmp1-Cre;Ift88+/null

mice were generated and then crossed with female Ift88fl/fl mice. The Dmp1-

Cre;Ift88fl/null and Ift88fl/+ offspring used in the experiments. To avoid any

potential Cre activity through the female germline, the Cre transgene was transmitted

specifically through the male [Liang et al., 2009; O’Connor et al., 2009]. Genomic

DNA was obtained from tail biopsies and used in PCR analysis to genotype mice

(Table 1). For the Cre PCR reaction, myogenin was used as a positive control. Male

Dmp1-Cre mice and female Rosa26R reporter mice were used to generate Dmp1-

Cre;Rosa26R mice and assess Cre recombination [Lu et al., 2007]. The procedures

performed in this study were in accordance with Columbia University Institutional

Animal Care and Use Committee guidelines.

Primer 5’ to 3’ Sequence

Ift88 common forward GCCTC CTGTT TCTTG ACAAC AGTG
Ift88 floxed & wildtype reverse GGTCC TAACA AGTAA GCCCA GTGTT
Ift88 null reverse CTGCA CCAGC CATTT CCTCT AAGTC ATGTA
Cre forward GAACC TGATG GACAT GTTCA GG
Cre reverse AGTGC GTTCG AACGC TAGAG CCTGT
Myogenin forward TTACG TCCAT CGTGG ACAGC
Myogenin reverse TGGGC TGGGT GTTAG CCTTA

Table 2.1: Custom primers used in PCR-based genotyping. Ift88 primers were used in one set of
reactions while Cre and Myogenin primers were used in a separate set of reactions.
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2.3.2 In vivo axial ulnar loading

At 16 weeks, Dmp1-Cre;Ift88+/null and Ift88fl/+ mice were loaded as previously

described [Lee et al., 2014; Litzenberger et al., 2009; Temiyasathit et al., 2012].

Briefly, with mice under isoflurane-induced anesthesia, right forelimbs were loaded

axially at 120 cycles per day for 3 consecutive days with a 2Hz sine waveform and 3N

peak load using an EnduraTEC-ELF 3200 electromechanical loading system (Bose,

Eden Prairie, MN). The non-loaded left forelimbs were used as internal controls.

Between the loading sessions, normal cage activity was allowed. Fluorochrome

labeling was administered through subcutaneous injections 5 days and 9 days after

the first day of loading, calcein (30 mg/kg body weight; Sigma) and Alizarin Red

S (75 mg/kg body weight; Sigma), respectively. At 12 days after the first day of

loading, mice were euthanized and ulnae were dissected then fixed in 70% ethanol for

processing. Tibiae were also dissected and stored at -20◦C until further analysis.

2.3.3 Dynamic histomorphometry

Ulnae were embedded in methyl methacrylate as previously described [Lee et

al., 2014; Litzenberger et al., 2009; Temiyasathit et al., 2012]. Using an IsoMet

1000 diamond saw (Buehler, Lake Bluff, IL), ulnae were sectioned at the midshaft

and sections were imaged on a confocal microscope (TCS SP5; Leica, Wetzlar,

Germany) with a 20× objective (0.7 NA). Histomorphometric parameters were

measured: bone perimeter (B.Pm), single labeled perimeter (sL.Pm), double labeled

perimeter (dL.Pm), and double label area (dL.Ar). Standard measures of bone

formation were also determined at the periosteal surface using custom Matlab code

16



[Dempster et al., 2013]: mineral apposition rate [MAR (µm/day) = dl.AR/dl.P m
4 days ],

mineralizing surface [MS/BS(%) = 0.5×sL.P m+dL.P m
B.P m

× 100] and bone formation

rate [BFR(µm3/µm2/year) = MAR × MS/BS × 365 days]. Within individual

animals, non-loaded values were subtracted from loaded values to calculate relative

(r) measurements, indicating increases due to mechanical loading.

2.3.4 Micro-computed tomography (µCT) analysis

Using µCT (Scanco vivaCT 40; Scanco Medical AG, Bruuttisellen, Switzerland),

tibiae bone architecture was assessed at 10.5 µm isotropic resolution as previously

described [Lee et al., 2014; Litzenberger et al., 2009; Sabsovich et al., 2008;

Temiyasathit et al., 2012]. To analyze cortical bone, total area, cortical area, cortical

thickness, and minimum and maximum second moments of inertia (Imin and Imax)

was determined at the midshaft. To analyze trabecular bone, bone volume fraction

(BV/TV), connective density (Conn. D.), trabecular number (Tb. N.), trabecular

thickness (Tb. Th.), and trabecular separation (Tb. Sp.) were determined at the

proximal metaphysis [Bouxsein et al., 2010].

2.3.5 Histochemical detection of β-galactosidase activity

At 16 weeks of age, Dmp1-Cre;Rosa26R mice were euthanized and ulnae were

dissected. After removing epiphyses, ulnae were fixed in 0.25% gluteraldehyde for 5

days at 4◦C, decalcified in buffered 0.1M EDTA for 5 days, stained for β-Gal activity

overnight at 37◦C (1 mg/ml X-gal, 5 mM potassium ferricyanide, 5 mM potassium

ferrocyanide, and 1 mM MgCl2), and cryoprotected in 30% sucrose overnight at 4◦C
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[Cho et al., 2010]. Once ulnae were fixed and stained, they were cryosectioned at

10 µm thickness and imaged on an inverted microscope (CKX41; Olympus, Center

Valley, PA) with a 4× objective (0.13 NA).

2.3.6 In situ imaging of primary cilia

Epiphyses were removed from previously dissected tibiae of Ift88fl/+ and Dmp1-

Cre;Ift88+/null mice. Samples were then fixed in 10% formalin overnight at 4◦C,

decalcified in RDO Rapid Decalcifier, and cryoprotected in 30% sucrose overnight at

4oC. Samples were cryosectioned at 15 µm in thickness. Sections were permeabilized

for 1 hour in 2% Triton-X and blocked in 10% goat serum for 1 hour. Sections were

then incubated in a primary antibody solution (anti-acetylated α tubulin, C3B9;

Sigma, St. Louis, MO) overnight at 4◦C, followed by a secondary antibody solution

for 1 hour at room temperature (anti-mouse Alexa 488; Life Technologies, Grand

Island, NY), and counterstained with DAPI. A common ciliary marker, acetylated

α-tubulin, was used to visualize primary cilia in the sections by confocal microscopy

(100× objective, 1.46NA, oil immersion, Leica TCS SP5) [Poole et al., 2001].

2.3.7 Primary bone cell isolation

Serial digestion of calvariae from neonatal mouse pups (age 8-10 days) was used

to isolate primary bone cells [Lee et al., 2014]. Briefly, calvariae were dissected and

incubated in 2 mg/mL collagenase type II (Worthington) at 37◦C on an orbital shaker

for 20 minute periods. Cells from the first two periods were discarded. The subsequent

four periods (3-6) were pooled to form the primary osteoblast mixture and the three
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following periods (7-9) were pooled to form the primary osteocyte mixture.

2.3.8 mRNA expression

The isolated primary cells were cultured in growth media with 10% sera.

Once cells were 80% confluent, cells were cultured for 2 days in reduced sera,

1%, to promote cilia formation. Using the Autogen RNA Extraction kit and the

Quickgene Mini80 (Autogen; Holliston, MA), RNA was extracted from cell lysate.

Then using TaqMan reverse transcription kit (Life Technologies, Grand Island,

NY), cDNA was synthesized and analyzed in triplicate by relative quantitative

real-time RT-PCR. Relative quantification of the mRNA expression levels was

determined using the standard curve method with the following primer-probe pairs:

Ift88 (Mm01313467_m1), Dmp1 (Mm01208363_m1), and GAPDH (4352339E) (Life

Technologies, Grand Island, NY). Expression was normalized by housekeeping gene

GAPDH.

2.3.9 Statistical analysis

Data are presented as mean ± standard error of the mean (SEM). To assess

effects of gender and genotype, a 2-way ANOVA was use with a Bonferonni post

hoc test to adjust for multiple comparisons. Statistical significance was considered at

p<0.05.
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2.4 Results

Mice with primary cilia-deficient osteocytes were first generated and identified

by genotyping (Figure 2.1). Dmp1-Cre;Ift88fl/null conditional knockout mice

appeared normal at birth and through development with no significant difference

in body weight between Dmp1-Cre;Ift88fl/null and Ift88fl/+ mice at time of loading

(Table 2.2, p<0.05). Analysis of bone architecture also showed no differences between

Dmp1-Cre;Ift88fl/null and Ift88fl/+ mice (Table 2.3, p<0.05). Since we did not detect

differences in skeletal morphology between Ift88fl/+ and Dmp1-Cre;Ift88fl/null, we

used Ift88fl/+ as our control.

Figure 2.1: Generating an osteocyte-specific deletion of Ift88 in mice. A typical agarose gel of
PCR-based genotyping of DNA from tail biopsies with the following bands: floxed Ift88 at 370 bp,
wildtype Ift88 at 350 bp, null Ift88 at 270 bp, Cre recombinase at 320 bp and myogenin at 250 bp
for a positive control in the Cre PCR reactions.

Genotype Males Females

Ift88fl/+ 29.0 ± 1.8 22.0 ± 0.5 *
Dmp1-Cre;Ift88fl/null 28.6 ± 1.6 22.2 ± 0.4 *

Table 2.2: Body weights of mice measured at 16 weeks. Data presented as mean ± SEM. n =
5 (males), n = 9 (females) for Ift88fl/+ groups and n = 7 (males), n = 8 (females) for Dmp1-
Cre;Ift88fl/null. * p < 0.05 between genders within genotype.
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Figure 2.2: Confirming Cre recombination. Cre recombination was detected by X-gal staining
(blue). Staining was observed in mice with Cre (right) but was not in mice without Cre (left).

Next, we evaluated effectiveness of Cre recombination. To assess its activity,

offspring of the heterozygous Dmp1-Cre and homozygous Rosa26R were stained for

β-Gal activity. Staining was detected in Dmp1-Cre;Rosa26R mice but not in Rosa26R

mice without Dmp1-Cre (Figure 2.2). To assess the specificity of Cre recombination,

we isolated primary bone cells and measured gene expression levels of Dmp1 and Ift88.

High Dmp1 expression is characteristic of osteocytes and was observed in the late

fractions of cells, indicating the population was predominantly primary osteocytes.

Compared to the osteoblasts isolated from the conditional knockout mouse, Ift88

expression in the isolated osteocytes was reduced by 75%. Although not a complete,

Cre recombination in osteocytes of the conditional knockout mouse was robust (Figure

2.3). Staining for ciliary marker acetylated α-tubulin in tibiae showed numerous

ciliated osteocytes in Ift88fl/+ mice compared to few ciliated osteocytes in Dmp1-

Cre;Ift88fl/null mice, suggesting a loss of cilia with deletion of Ift88 (Figure 2.4).

Right forelimbs of conditional knockout and control mice were loaded for

three consecutive days. Increases in bone formation response, rMS/BS, rMAR,

and rBRF/BS, in both conditional knockout and control mice were measured,

demonstrating that load induced bone formation in all mice. However, the bone
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Figure 2.3: Dmp1 (left) and Ift88 (right) expression levels in primary cells were normalized to
housekeeping gene GAPDH. High expression of Dmp1 in primary osteocytes, confirmed osteocytes
were predominant in the later fractions. Significant decrease in Ift88 expression in primary osteocytes
from Dmp1-Cre;Ift88fl/null mice indicated Ift88 deletion occurred specifically in osteocytes. Data
presented as mean ± SEM. n=7 (osteoblasts), n=3 (osteocytes) for Dmp1-Cre;Ift88fl/null and n=6
(osteoblasts), n=3 (osteocytes) for Ift88fl/+ groups. * p<0.05.

Figure 2.4: Effect of Ift88 deletion. Ulnae of Dmp1-Cre; Ift88fl/null mice (right) showed fewer
primary cilia (white arrows) when compared to ulnae of Ift88fl/+ mice (left). Nuclei are stained
with DAPI (blue) and ciliary marker acetylated-α tubulin with C3B9 (green). Scale bar indicates
20 µm.
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Figure 2.5: Skeletally mature Dmp1-Cre;Ift88fl/null mice showed a significantly reduced response
to ulnar loading. (A) Representative images of non-loaded (left) and loaded (right) ulnae of Ift88fl/+

(top) and Dmp1-Cre;Ift88fl/null (bottom) mice with fluorochrome labels (Calcein in green and
Alizarin Red in red). We measured decreased (B) relative mineralizing surface (rMS/BS) and (C)
relative bone formation rate (rMBR/BS) in mice with targeted deletion of Ift88 in osteocytes. Data
presented as mean ± SEM. n = 15 for Dmp1-Cre;Ift88fl/null and n = 14 for Ift88fl/+ groups. * p
< 0.05.

formation response was reduced in the conditional knockout mice by 46% in rMS/BS

and 47% in rBFR/BS (Figure 2.5). We also measured the relative bone formation

response in the other genotypes, Ift88fl/null and Dmp1-Cre;Ift88fl/null, and found no

difference when compared to our control, Ift88fl/+ (data not shown). Similarly, we

did not find that gender had a significant effect and pooled data across genders for

each genotype.
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2.5 Discussion

Our data demonstrate in vivo for the first time that the osteocyte cilium

mediates mechanotransduction in bone. Although this is not the first in vivo study

on primary cilia in bone, previous studies relied on Cre recombination driven by

osteocalcin or Colα1(I) promoters that are expressed in osteoblasts and only one

study has investigated the role of cilia in skeletal adaptation [Qiu et al., 2012a;

Temiyasathit et al., 2012]. The roles of the osteoblast and osteocyte cilium cannot

be distinguished because the recombination in osteoblasts is carried through to

osteocytes as those osteoblasts mature. Prior studies also targeted Kif3a, which has

both ciliary and non-ciliary roles, including Wnt signaling [Corbit et al., 2008].

By demonstrating that ablation of osteocytes inhibited unloading-induced

skeletal adapatation, Tatsumi et al. identified osteocytes as the principal

mechanosensing cells in bone [Tatsumi et al., 2007]. Since then, studies have continued

to support their finding that osteocytes coordinate skeletal adapation in response

to changes in the loading environment. For example, osteocytes are strikingly

more sensitive to their mechanoenvironment than osteoblasts [Kamel et al., 2010;

Santos et al., 2009] and osteocyte apoptsis has been linked to microdamage caused

by bone fatigue [Cardoso et al., 2009; Verborgt et al., 2000]. Findings in this study

both support the paradigm that osteocytes are the principal mechanostransducing

cells in bone and also implicates the primary cilium of the osteocyte in detecting the

mechanical load. Strikingly, when comparing this study to that of studies targeting

primary cilia in osteocytes and osteoblasts, are remarkably similar to that of studies

targeting primary cilia in osteocytes and osteoblasts, the impaired bone formation
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response to load is remarkably similar [Qiu et al., 2012a; Temiyasathit et al., 2012].

When compared to the osteoblast cilium, this suggests that the osteocyte primary

cilium is the main contributor to loading-induced osteogenesis.

Interestingly, previous studies deleting osteoblast and osteocyte cilia reported

reductions in mineral apposition rate, which in turn led to an impaired bone

formation. [Qiu et al., 2012a; Temiyasathit et al., 2012]. These data seem to

contradict results in this study where reductions in mineralizing surface led to the

impaired bone formation. Mineral apposition rate is an indicator of individual cell

activity in contrast to mineralizing surface, an indicator of the number of active cells

in the remodeling process. This discrepancy may be attributed to the conditional

knockout of non-ciliary specific Kif3a used in previous studies. Deletion of Kif3a has

already been demonstrated to affect the Wnt/β-catenin pathway and recently, another

study demonstrated that this pathway can mediate mineral apposition rate [Javaheri

et al., 2014]. It is possible that Kif3a plays a role in two distinct bone formation

mechanisms, one involving cilia and one involving the Wnt pathway. By targeting a

cilia-specific gene, the data in this study suggest that the osteocyte primary cilium

is involved in mediating the number of active cells but not the magnitude of the

individual cell’s activity in the remodeling process.

In this study, we focused on the role of the osteocyte in bone formation and did

not address its role in bone resorption. It is possible that the osteocyte cilium is also

involved in the osteocyte’s mechanosensing, but we suspect it is through a different

mechanism. This difference has been previously observed with β1 integrin. Deleting

β1 integrins from cortical osteocytes led to a reduced loading-induced bone formation

response and no differences in bone geometry [Litzenberger et al., 2009]. In contrast,
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when these mice were hindlimb unloaded, rapid changes in bone geometry occurred

and strengthened the bone [Phillips et al., 2008]. Collectively, these studies show

that β1 integrins play different roles. In skeletal unloading or disuse, β1 integrins

negatively regulate mechanotransduction while in skeletal loading, they positively

regulate mechanotransduction. Here, we show that the osteocyte primary cilium

positively regulates skeletal loading. An unanswered question is if osteocyte cilia

play a role in detecting the unloading and if deleting osteocyte cilia will positively or

negatively mediate the adapation.

It has been previously reported that Ift88 and Kif3a deletion disrupt

intraflagellar transport but this disruption may not inhibit cilia formation. Cilia

are formed when cells are arrested in interphase and are resorbed during mitosis

[Kobayashi and Dynlacht, 2011; Quarmby and Parker, 2005; Wheatley et al., 1996].

It is possible that the osteocyte cilium is formed when the cell was an osteoblast

and the cilium is retained through the terminal differentiation. However, by staining

for the cilium in situ, our data shows that deleting Ift88 led to decreased incidence

of cilia. Combined with our data showing this deletion was targeted specifically

to osteocytes, this study demonstrates that conditionally deleting Ift88 using the

Dmp1 promoter prevents cilia formation in osteocytes. This did not prevent all

osteocyte cilia from forming, 25% of Ift88 expression remained and some cilia were

still observed. The remaining Ift88 expression may be explained by the isolation

technique resulting in only an enrichment of osteocytes to approximately 70% [Stern

et al., 2012]. Although the presence of non-osteocytes in the cell population may

explain the remaining Ift88 expression in vitro, this is a less likely explanation for the

presence of cilia in situ, where osteocytes are the predominant cell type accounting

for nearly 95% of cells in bone [Bonewald, 2011]. We attribute the remaining
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incidence of cilia in situ and expression of Ift88 in vitro to incomplete recombination.

The variable effectiveness of Cre has been reported by others [Araki et al., 1997;

Xiao et al., 2010]. Even with the incomplete Cre recombination, it was sufficient to

lead to a marked impairment in skeletal adaptation.

With the potential variation in Cre effectiveness, we generated Dmp1-

Cre;Ift88fl/null mice instead of Dmp1-Cre;Ift88fl/fl mice. With a null allele, Cre

recombination only needs to occur with one floxed allele. With two floxed alleles,

the Cre must recombine both alleles, exacerbating the potential issue of partial

Cre acitivity. This led to three possibilities for controls Ift88fl/+, Ift88fl/null and

Dmp1-Cre;Ift88+/null genotypes. We examined bone architecture between all three

genotypes and because we found no differences in skeletal morphology, we reduced

our comparisons and selected one control, Ift88fl/+.

We did not find any measureable differences in skeletal morphology with

deletion of Ift88 in osteocytes, suggesting osteocyte cilia are not involved in skeletal

development. This supports previous findings from another study in our lab

[Temiyasathit et al., 2012]. Because we only analyzed 16-week-old mice, it is possible

that impairment in skeletal development may have already been corrected. This has

been reported in a bone-specific deletion of Kif3a, where an osteopenic phenotype

at 6 weeks was corrected by 24 weeks [Qiu et al., 2012a]. In other studies, a

bone-specific deletion of Pkd1 and a global inactivation of a Pkd1 allele led to a

measureable deficits in skeletal developments [Qian et al., 2005; Xiao et al., 2011;

Xiao et al., 2010]. The Kif3a findings are not surprising because it has been linked

to Wnt/β-catenin pathway, known to regulate skeletal development. Disruption of

the pathway can impair skeletal development [Day et al., 2005; Galli et al., 2010;

28



Holmen et al., 2005; Kramer et al., 2010; Tu et al., 2012]. In contrast, Polycystin

1, the protein encoded by Pkd1, is expressed throughout the cell [Kodani et al.,

2013; Yoder, 2002] and through differentiation of chondrocytes and osteoblasts

[Lu, 2001]. Measurable effects may be expected with deleting a gene that is so

extensively expressed. Thus the abnormal skeletal morphology observed with the

global inactivation of a single allele of Pkd1 is not surprising [Xiao et al., 2011;

Xiao et al., 2010]. Finally, our report of changes in skeletal remodeling but

not development is not uncommon with transgenic mouse models. For example,

other models reporting impaired skeletal adapation but normal development include

osteopontin [Ishijima et al., 2001], β1 integrin [Litzenberger et al., 2009; Phillips et

al., 2008], and adenylyl cyclase 6 [Lee et al., 2014]. Other groups have reported that

IFT is necessary for normal skeletal development, but in those mouse models, IFT was

impaired globally or early in a cell lineage [Haycraft et al., 2007; Murcia et al., 2000;

Song et al., 2007; Zhang et al., 2003], which extensively affects IFT. While it is

possible that the osteocyte cilium has a role in skeletal development, we found that

it is not to a measureable extent.

Though the impairment in bone formation was striking, this conditional

deletion did not completely inhibit the bone formation response to load. We can

attribute any remodeling in the skeleton as a response to load because the murine

skeleton does not normally remodel [Jerome and Hoch, 2012]. The remaining bone

formation response may be attribute to other cellular mechanosensors. Candidate

mechanosensors in the osteocyte that have been proposed include the cilium, the

cytoskeleton, dendritic processes, and several membrane proteins [Burra et al., 2010;

Cheng et al., 2001; Cherian et al., 2005; Xiao et al., 2011; Xiao et al., 2006;

You et al., 2001]. While we report a significant decrease in loading-induced bone
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formation with loss of osteocyte cilia, the remaining bone formation may be attributed

to other mechanosensing domains of the osteocyte.

Here, we studied the osteocyte cilium in vivo and present for the first time

direct evidence connecting the osteocyte cilium to skeletal adaptation. Our data show

that conditional deletion of Ift88 in osteocytes disrupts cilia formation and results

in impaired loading-induced bone formation. The cilium continues to emerge as a

mechanosensing organelle across a breadth of tissue and cell types. Within bone, the

osteocyte cilium has become increasingly implicated. Elucidating the mechanisms

through which osteocyte cilia mediate bone mechanotransduction will enable this

organelle as a new target for treatments of bone loss disorders.
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Chapter 3

Lateral visualization of the cilium

in assessing protein function
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Collaborators on this project are Kristen L. Lee, Marie D. Gueverra, and Christopher

R. Jacobs.

3.1 Abstract

Proteins localizing to the cilium are often, not surprisingly, critical to ciliary

function. Immunocytochemistry is an important technique used not only to

demonstrate localization of a protein to the cilium but also in determining its role

in ciliary function. The ciliary localization of some proteins can be easily visualized

by traditional epifluorescence microscopy. In contrast, this method can fail to detect

the ciliary localization of other proteins due to the interference by the cell body.

This can then result in an inaccurate and misleading conclusion that a protein is

absent from the cilium. In this study, we classify ciliary localization of proteins as

exclusive, enhanced and inconclusive localization. We then stain MLO-Y4 osteocyte-

like cells for ADP-ribosylation factor-like protein 13b, Polycystin 2 and Piezo1 to

present examples each classifications, respectively. Visualizing the immunostaining

laterally enabled a clear distinction between the ciliary and cytoplasmic localization of

Piezo1. Apical-basal imaging alone may have erroneously excluded this protein from

the cilium. Strikingly, we found 15 out of 23 papers assessing ciliary localization had

excluded proteins soley based on apical-basal imaging. Here, we show the importance

of lateral imaging to confidently exclude proteins from the cilium.
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3.2 Introduction

Cilium-specific and nonspecifically-localized proteins are found in the primary

cilium. Often these proteins are crucial to the cilium’s chemosensory and

mechanosensory roles. For example, Patched-1 is a receptor in the Hedgehog

signaling pathway, a pathway important in development and its localization to

the cilium can inhibit the pathway [Rohatgi et al., 2007]. Polycystin-1 and

Polycystin-2 (PC1/2) form the polycystin complex that mediates the calcium

response in ciliary mechanosensation [Nauli et al., 2003]. ADP-ribosylation factor-

like protein 13b (Arl13b), implicated in a known ciliopathy Joubert Syndrome, is

important for cilia formation and neuron development as well as the previously

mentioned Hedgehog signaling pathway [Higginbotham et al., 2012; Larkins et

al., 2011]. Co-immunostaining for candidate proteins and cilia to determine

whether a protein localizes to the cilium compartment is an important step in

examining a protein’s role in ciliary function. Assessing this immunostaining with

epifluorescence microscopy results in three classifications: exclusive, enhanced, and

non-distinguishable localization (Figure 3.1).

Some proteins can be easily determined to localize to the cilium with traditional

epifluorescence microscopy . However this method can also fail to detect other

proteins that nonspecifically localize to the cilium and are found throughout the

cell. For example, isoforms of adenylyl cyclases (AC2-5, AC7), Nephronophthisis 9

in inversin-deficient cells, and PC1 in Bardet-Biedl syndrome 1-deficient cells were

not found in the ciliary compartment with apical-basal imaging [Choi et al., 2011;

Kwon et al., 2010; Shiba et al., 2010; Su et al., 2014]. Others have reported proteins
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Figure 3.1: Classifications of ciliary protein localization. A) Exclusive localization to the cilium,
B) Enhanced, such that the cilium is distinguishable from the cell body, and C) Inconclusive. Cell
nucleus is depicted in blue, cilium in red, and protein of interest in green.

were absent from the ciliary compartment in protein trafficking studies which required

3-D reconstruction of apical-basal images [Berbari et al., 2008; Corbit et al., 2005;

Geng et al., 2006]. Here, our goal was to identify cases when apical-basal imaging was

and was not sufficient to distinguish protein localization to the ciliary and cytoplasmic

compartments. Apical-basal and lateral images were compared of cells after staining

for ciliary marker acetylated α-tubulin and proteins of interest, Arl13b, PC2, or

Piezo1.
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3.3 Methods

MLO-Y4 osteocyte-like cells were cultured as previously described [Kwon et

al., 2010; Malone et al., 2007]. Briefly, coverslips were coated with collagen and

seeded with cells at 4,000 cells/cm2. Cells were cultured in serum-reduced media

(2.5% FBS, 2.5% CS) for 2 days and then fixed in 10% formalin. Cells were stained

using primary antibodies targeted against acetylated α-tubulin (Abcam, ab24610,

1:1000) and Arl13b (ProteinTech, 17711-1-AP, 1:1000), PC2 (Santa Cruz, sc-25749,

1:500), or Piezo1 (Novus, NBP1-78537, 1:25) followed by appropriate fluorescently-

tagged secondary antibodies. Z-stacks at 0.2 µm-thick intervals of immunostained

cells were captured by a laser scanning confocal microscope (Leica TCS SP5) with a

100× objective (1.46 NA, oil immersion). These were used in a maximum projection

to generate apical-basal images as well as reconstructed laterally using the Leica

Application Suite.
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3.4 Results

Signal from the cell body can overwhelm signal from the cilium and potentially

interfere with visualizing the cilium when imaged in the apical-basal direction. This

can be addressed by also imaging or reconstructing an image laterally. Using multiple

axes to examine immunocytochemistry samples enables ciliary and cytoplasmic

signals to be clearly visualized. Without this additional examination, proteins can be

incorrectly determined to be absent from the cilium. In some cases this additional step

is not necessary. For example, Arl13b and PC2 are easily determined to localize to

the cilium with apical-basal images (Figures 3.2a,b). In contrast, apical-basal images

of Piezo1 staining suggest that was only present in the cytoplasmic compartment

(Figure 3.2c). Examining the lateral images shows that Piezo1 is also present in

the ciliary compartment (Figure 3.3). We then reviewed 23 articles reporting ciliary

localization of proteins and remarkably found 15 articles, including our own, have

excluded proteins from the cilium without lateral imaging (Table 3.1).
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Figure 3.2: Apical-basal images of immunocytochemistry. A) Arl13b has exclusive localization
and B) PC2 has enhanced localization, while C) Piezo1 has non-distinguishable localization. Cells
were stained for DAPI (blue), acetylated α-tubulin (red), and the protein of interest (green). Scale
bar indicates 10 µm.

Figure 3.3: Lateral images of Piezo1 immunostaining in MLO-Y4 cells. Cells were stained for
DAPI (blue), acetylated α-tubulin (red), and Arl13b (green). Scale bar indicates 10 µm.
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Findings Reference

With corresponding lateral and apical-basal imaging

Somatostatin receptor 1,2,4,5 and Serotonin receptor 7 were excluded from cilium [Berbari et al., 2008]

Smoothened localization is mediated by Hedgehog signaling [Corbit et al., 2005]

Mutations and select fragments of Polycystin 2 sequence and human transferring
receptor do not localize to the cilium

[Geng et al., 2006]

Retinitis pigmentosa 2 localization is mediated by Importin β2 [Hurd et al., 2011]

Select fragments of Cystin sequence in a GFP do not localize to the cilium [Tao et al., 2009]

Mutations of Polycystin 1 sequence were excluded from the cilium [Ward et al., 2011]

Polycystin 1 in human renal cyst epithelial cells has reduced localization to the
cilium

[Xu et al., 2007]

Polycystin 1 in Oak Ridge polycystic kidney cells has reduced expression along the
cilium

[Yoder, 2002]

With apical-basal imaging only

Phosophodiesterase 4C localization required hepatocyte nuclear factor-1β [Choi et al., 2011]

Identification of fibrocystin’s ciliary targeting sequence [Follit et al., 2010]

Targeting of inositol polyphos- phate-5-phosphatase E to the cilium required
Arl13b, prenyl-binding protein phosphodiesterase 6D and centrosomal protein 164

[Humbert et al., 2012]

Enrichment of cyclic nucleotide-gated channel A2 requires B1b [Jenkins et al., 2006]

Adenlyl cyclase 2-5 and 7 do not localize to the cilium [Kwon et al., 2010]

ADP-ribosylation factor domain does not localize to the cilium [Larkins et al., 2011]

Mutations of neuropeptide Y2 receptor prevent localization [Loktev and Jackson, 2013]

Gαs was excluded from the cilium [Masyuk et al., 2013]

Mutations of collapsing response mediator 2’s sequence prevented localization to
the cilium

[Ou et al., 2012]

Proteolytically processed forms of Gli2 do not localize to the cilium [Santos and Reiter, 2014]

Smoothened localization was mediated by Bardet-Biedl Syndrome proteins and
Leucine-zipper transcription factor-like 1

[Seo et al., 2011]

Inversin mediates localization of products of Nephronophthisis type 3 and 9 [Shiba et al., 2010]

Bardet-Biedl syndrome protein 1 was required for Polycystin 1 localization [Su et al., 2014]

Mutations in Nephronophthisis type 9 prevented localization to the cilium [Trapp et al., 2008]

Small molecules inhibited ciliary localization of Smoothen [Wu et al., 2012]

Table 3.1: Findings on protein localization that have been drawn with and without lateral imaging.
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3.5 Discussion

The primary cilium is intrinsically difficult to visualize. Relative to the cell body,

the cilium is a mere 1/30,000 of the cell volume [Mitchell et al., 2009]. Not only is this

organelle small, it can vary in length from 0.2 to over 10 µm [Mitchell et al., 2009;

Uzbekov et al., 2012] and adopt a variety of orientations with respect to the cell body

[Choi et al., 2011]. Not surprisingly, even with advanced techniques, imaging this

organelle is challenging [Wheatley and Bowser, 2000].

For many proteins, ciliary localization can be easily confirmed with traditional

epifluorescence microscopy. However, we show that to determine that a protein does

not localize to the cilium requires visual assessment along multiple axes. Strikingly,

numerous studies have excluded proteins from the ciliary compartment without a

thorough assessment and these proteins ma need to be revisited. Determining whether

a protein is present or absent from the cilium is an integral step in assessing the

cilium as a complex and multifunctional organelle. For example, protein localization

is important in identifying new signal transduction pathways mediated by the

cilium, relating novel mutations to ciliopathies, and directing therapies to the ciliary

compartment. Future studies will continue to improve the efficiency and accuracy in

assessing protein localization, a critical component to understanding the cilium.
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Chapter 4

Primary cilia mechanosensation

adapts and regulates cell signaling
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Collaborators on this project are Yuan N. Young and Christopher R. Jacobs.

4.1 Abstract

A cell’s ability to sense its mechanoenvironment, or mechanosensing, is critical

to its survival. Often the mechanoenvironment can condition cellular sensors and

their adaptation allows them to function in diverse environments. Strikingly, though

sensory adaptation is crucial, the mechanisms responsible are poorly understood.

Primary cilia have recently emerged as mechanosensors that can deflect in response

to its mechanoenvironment. In this study, we demonstrate cilium stiffness can be

modulated mechanically and chemically. Exposure to fluid flow stiffens the cilium,

resulting in smaller deflections to later exposures. Increasing acetylation also stiffens

the cilium and this acetylation-induced stiffening decreases cellular responsiveness

to mechanical stimuli. Collectively, our data demonstrate the cilium is a cellular

mechanosensor with the capacity to adapt and regulate cellular sensitivity to its

mechanoenvironment.
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4.2 Introduction

Sensing and responding to physical cues are critical cellular processes within

living organisms. Their dysfunction can result in diseases, including atherosclerosis,

osteoporosis, and cancer [Hoffman et al., 2011], and cells become bombarded

by stimuli. For example, blood flow becomes disturbed with atherosclerosis,

tissue resorption occurs with osteoporosis, and tissue increasingly stiffens with

tumor progression. These cells must respond and adapt to their changing

mechanoenvironment in order to survive and maintain homeostasis. We introduce

the term sensory adaptation to describe a cellular sensor’s adjustment to its

surrounding environment, allowing a sensor to operate in response to diverse stimuli

[Kurahashi and Menini, 1997]. One example of sensory adaptation is the bacterial

mechanosensitive channel that prevents a cell from rupturing when exposed to

extreme osmotic stress. These channels can be desensitized or inactivated when

exposed to a sub-threshold level of stress [Anishkin and Sukharev, 2009]. Sensory

adaptation in mammalian cells has been best studied in specialized sensory cells,

including those of auditory, olfactory and retinal systems [Condon and Weinberger,

1991; Kurahashi and Menini, 1997; Pugh et al., 1999]. The ligand-gated channels of

olfactory sensory cells are involved in the chemosensing response to odorant stimuli

and can alter its ligand affinity in response to stimuli [Kurahashi and Menini, 1997].

Strikingly, no clear mechanism has been identified in sensory adaptation even in its

most studied context of the bacterial mechanosensitive channels and the evidence for

adaptation remains disputed [Naismith and Booth, 2012].

In addition to ion channels, the most characterized and understood type of
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mechanosensors [Hirata et al., 2014], cells can sense physical cues through non-

channel mechanosensors. A subset of non-channel mechanosensors are structural

mechanosensors, cellular sensors that bear load as well as detect mechanical stimuli.

For example, focal adhesions and the cytoskeleton can function as structural

mechanosensors and have previously been shown to adapt. After mechanical

stimulation, focal adhesions, for example, have been shown to enlarge and thicken

due to recruitment of vinculin [Galbraith et al., 2002]. Though vinculin is thought to

reinforce focal adhesions, this has not been demonstrated experimentally. It also has

not been determined whether vinculin recruitment regulates cellular responsiveness.

In this study, we demonstrate that the primary cilium is a mechanosensor that

adapts and identify a mechanism through which the cilium can regulate cellular

responsiveness to mechanical stimuli. The cilium has been suggested to have the

ability to adapt as a mechanosensor and regulate cellular responsiveness. Cilium

deflection is transduced to a cyclic AMP signaling response [Besschetnova et al., 2010;

Kwon et al., 2010] and this response has been associated with regulating cilium length

[Besschetnova et al., 2010; Ou et al., 2009]. Longer cilia are thought to be more

sensitive to mechanical stimuli [Besschetnova et al., 2010; Rydholm et al., 2010].

Collectively, these data present one mechanism, length, that the cilium can adapt

and affect cellular responsiveness.
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4.3 Methods

4.3.1 Cell culture

Mouse inner medullary collecting duct (IMCD) cells transfected with live cell

ciliary marker somatostatin receptor 3 fused to GFP (gift of Bradley K. Yoder of

University of Alabama at Birmingham) were cultured on fibronectin-coated coverslips

and slides in growth medium (DMEM F-12 with 10% FBS, 1% P/S and 200 µg/mL

geneticin). At 70% confluence, cells were serum-starved for 72 hours (0% FBS)

to promote cilia formation. For the tubacin experiment, cells were cultured as

described above and treated with 0.5 mM of tubacin or niltubacin (Enzo Life Sciences,

Farmingdale, NY) for 4 hours prior to exposure to flow. For the HDAC6 knockdown

experiment, cells were cultured to 60% confluence in growth media and transfected

with scrambled control or HDAC6 siRNA (sc35545; Santa Cruz Biotechnology, Dallas,

TX) using Lipofectamine 2000 (Life Technologies, Carlsbad, CA). Cells were serum-

starved the following day for 72 hours and then used in flow experiments.

4.3.2 Fluid flow

For cilium deflection studies, cells seeded on coverslips were mounted in a

laminar flow chamber (RC-30; Warner Instruments, Hamden, CT). Steady flow at

a rate of 0.5 mL/min, corresponding to 0.25 Pa of wall shear stress used in previous

studies [Downs et al., 2012; Young et al., 2012], was applied with a syringe pump

(GeniePlus; Kent Scientific, Torrington, CT) and a 10 mL syringe (Norm-Ject; Air-
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Tite, Virginia Beach, VA). Flow medium used was DMEM F-12 without phenol red.

For the 2-minute bouts of flow, flow was applied for 2 minutes, stopped for 2 minutes

and applied for another 2 minutes. For the 10 minute bouts, flow was applied for 10

minutes, stopped for 2 minutes and applied for an additional 10 minutes.

For gene expression studies, cells seeded on slides were mounted in large parallel

plate flow chambers as previously described [Jacobs et al., 1998]. Briefly, after slides

were placed in each flow chamber, incubated for 30 minutes and exposed to 1 hour of

oscillatory fluid flow at 1 Hz with a peak shear stress of 1 Pa. Flow parameters were

chosen to correspond to a previous study finding an increase in microtubule density

at the cilium base with flow [Espinha et al., 2014]. Immediately after exposure to

flow, slides were washed with PBS and cells were lysed for RNA extraction.

4.3.3 Imaging and post-processing

A high-speed laser scanning confocal microscope with a 16 Hz bi-directional

resonant scanner and a 100× oil objective (1.46NA) was used to collect 3D images

of primary cilia (512x512 z-stacks, TCS SP5; Leica Microsystems, Buffalo Grove,

IL). Each z-stack was acquired in approximately 3 seconds. Cilia can be visualized

with fluorescence microscopy due to the somatostatin receptor 3 GFP fusion protein

targeted to the organelle (Excitation: 488nm, Emission: 509 nm). Images were post-

processed as previously described [Downs et al., 2012; Young et al., 2012]. Briefly, a

Gaussian filter was applied followed by a threshold. To determine the center of the

cilium within each slice of the z-stack, the x and y coordinates of the pixels with an

intensity value above the threshold were averaged.
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4.3.4 Deflection analysis

The model used to approximate cilium mechanics is described in detail in a

previous paper, where the cilium is represented as a cylindrical elastic beam coupled

to a rotational spring under hydrodynamic load [Young et al., 2012]. Briefly, the

cilium coordinates at rest and under flow were normalized by the length of the cilium

and parameterized as a function of the position along the cilium. The observed cilium

profile is fit to the deflection predicted by the model using the method of least squares

and varying mechanical properties. Specifically, the cilium profile at rest is used to

determine the internal stress within the cilium. The cilium profile with flow at 30

seconds, 2 minutes or 10 minutes is used to extract stiffness at those time points.

4.3.5 mRNA expression

RNA was extracted from cell lysate using the Autogen RNA Extraction kit and

the Quickgene Mini80 (Autogen; Holliston, MA). The TaqMan reverse transcription

kit (Life Technologies) was used for reverse transcription. Samples were analyzed in

triplicate by relative quantitative real-time RT-PCR and expression was normalized

to that of housekeeping gene GAPDH. Relative quantification of expression levels was

determined using the standard curve method with the following primer-probe pairs:

HDAC6 (Mm01341125_m1), COX-2 (Mm00478374_m1), and GAPDH (4352339E).
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4.3.6 Immunocytochemistry

Cells were fixed in 10% formalin and permeabilized with 0.1% Triton-X. Cells

were then incubated in primary antibody solution, anti-acetylated α-tubulin (Abcam,

6-11B-1, 1:1000), and the secondary antibody solution, anti-mouse Alexa Fluor 568

(Life Technologies, 1:200). Cells were imaged on a laser scanning confocal microscope

(Leica SP5; Leica Microsystems, Buffalo Grove, IL) with a 63x oil objective (1.4NA).

Maximum-intensity z-projections were generated with the Leica software.

4.3.7 Western blots

Cells were lysed in radioimmunoprecipitation (RIPA) buffer (Thermo Scientific;

Waltham, MA) and protein content was measured by bicinchoninic acid assay. Protein

was separated by electrophoresis in 4-12% Bis-Tris polyacrylamide gels (NuPage,

Life Technologies) and transferred to polyvinyl difluoride membranes. Membranes

were probed for acetylated α-tubulin (6-11B-1, 1:1000; Abcam, Cambridge, MA) and

actin (AC-40, 1:2000; Abcam). The bound primary antibodies were detected by

chemiluminescence with HRP-conjugated secondary antibodies (1:10000; Millipore,

Billerica, MA).

4.3.8 Statistical analysis

All data are presented as mean ± SEM and analyzed with GraphPad Prism

(GraphPad Software, Inc., La Jolla, CA). A one-way repeated measures ANOVA was
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used to assess the effects of duration of flow exposure on cilium stiffness with a Dunn’s

post hoc test for multiple comparisons. A two-way ANOVA was used to assess effects

of siRNA-mediated knockdown and flow on mRNA expression followed by Sidak’s

multiple comparisons test. Statistical significance was considered at p < 0.05.
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4.4 Results

In a previous study, we reported that cilia deflected by a bout of flow often

failed to recover to their original positions [Downs et al., 2012]. This suggested the

cilium could adapt structurally to flow. We hypothesized that this was a feature of

the cilium’s sensory adaptation and the cilium may alter its mechanical properties in

response to stimuli. First, we determined ciliary biomechanics by examining changes

in cilium deflection with exposure to flow. To do this, we capture the cilium’s 3D

position at rest and under flow (Figure 4.1A) and use a computational model to

determine its mechanical properties [Young et al., 2012]. We found that after exposure

to 2 minutes of flow the cilium stiffens along the axoneme and at the base, 2.6 ± 0.7

and 3.3 ± 0.6 times (n = 6, Figure 4.1B,C), respectively. Next, we applied longer

bouts of flow for 10 minutes and also found cilia stiffened 1.8 ± 0.4 times along the

axoneme and 4.0 ± 1.5 times at the base (n = 6, Figure 4.1B,C). Interestingly, longer

exposure to flow did not further stiffen cilia. This suggests that adaptation process

is completed on a short time scale. We also examined the cilium’s resting position

before and after flow, introducing the cilium’s protrusion angle to describe the angle

between the cilium and the cell (Figure 4.1A). We confirmed prior observations that

the cilium rotates with flow [Downs et al., 2012]. The protrusion angle decreased 3.9

± 0.6◦ with flow (Figure 4.1D). These data show the cilium can adapt to flow by

altering its stiffness and orientation. Interestingly, these adaptations occurred on a

time scale of minutes in contrast to the 3 hours for flow-induced changes in cilium

length previously reported [Besschetnova et al., 2010]. We did not find any changes in

cilium length, suggesting that cilium adapts over diverse time scales and mechanisms.

This may explain this organelle’s multifunctionality and ability to operate in such a
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range of mechanoenvironments.

After finding that the cilium’s mechanical properties can be modulated, we

suspected these adaptations may be driven in part by biochemical processes.

Microtubule doublets form the cilium’s axoneme and give the cilium its structural

integrity [Schwartz et al., 1997]. In single microtubule studies, groups have reported

changes in stiffness with post-translation modifications of microtubules, including

acetylation [Felgner et al., 1996; Hawkins et al., 2013]. Interestingly, acetylation

has been shown to increase in response to mechanical stimuli [Geiger et al., 2009;

Li et al., 2011]. This suggests that adaptation occurs through a mechanism

involving acetylation. We hypothesized cilium stiffness may also be modulated by

an acetylation-mediated mechanism. To examine this, we used tubacin, a potent

pharmacological deacetylation-inhibiting agent. In contrast to other inhibitors can

also affect chromatin acetylation, tubacin binds the α-tubulin domain of histone

deacetylase 6 (HDAC6) and only affects tubulin acetylation [Haggarty et al., 2003].

We treated IMCD cells with tubacin or niltubacin, an inactive analogue, and exposed

them to flow. We found cilia stiffened 4.0 ± 1.3 times along the axoneme with

tubacin (n = 5 per group, Figure 4.2A) and verified the increased acetylation with

immunocytochemistry and western blot (Figure 4.2B,C). These data show that

increasing tubulin acetylation can stiffen the cilium and present a possible mechanism

for the cilium to modulate its mechanical properties.

We next hypothesized that the cell’s internal mechanisms to regulate acetylation

were sufficient for ciliary stiffening. We transfected IMCD cells with siRNA against

HDAC6, which encodes a microtubule-associated deacetylase [Haggarty et al., 2003],

or with a scrambled control. We found a 2.7 ± 0.9 fold increase in ciliary stiffness
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Figure 4.1: Flow stiffens and repositions primary cilia. (A) Schematic depicting a cilium at
rest (solid green line) and deflecting with flow (dashed green line) with a representative fluorescence
micrograph from which cilium position is determined (inset). The x-axis is positioned at the junction
of the cilium and the cell and the protrusion angle measures the orientation of the cilium with respect
to the cell. Scale bar indicates 2.5 µm. (B) Cilia were exposed to 2-minute (black) or 10-minute
(blue) bouts of flow separated by 2 minutes of rest. Bending stiffness of the cilium shaft was measured
and normalized to the first measurement at 30 seconds (* denotes significant difference, p < 0.05,
n = 6 per group). Stiffness increased with exposure to flow, but the increase is independent of
duration of flow exposure. (C) Similarly, torsional stiffness anchoring the cilium increased after each
rest period independently of flow exposure. (D) The resting position of the cilium with respect to
the cell is reported as protrusion angle. The position changes with exposure to flow, decreasing the
angle between the cilium and the cell membrane. * denotes significant difference from initial resting
position of cilium, p < 0.05, (n = 6 per group). Data presented as mean ± SEM.
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Figure 4.2: Acetylation stiffens primary cilia. (A) Ciliary bending stiffness calculated for the cells
treated with niltubacin (control) and tubacin. Tubacin treatment increased rigidity by 4-fold. Data
presented as mean ± SEM (n = 5 per group). * denotes p < 0.05. (B) Immunostaining against
acetylated α-tubulin (red) with cilia marked by SSTR3-GFP (green). The widespread and strong
increase staining indicates increase in acetylation. Scale bar indicates 10 µm. (C) Protein expression
of acetylated α-tubulin and actin was measured with western blot. Consistent actin bands show the
same amount of protein was loaded while strong acetylated α-tubulin band with tubacin treatment
confirms increased acetylation previously shown with immunocytochemistry.
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with HDAC6 knockdown (n = 5 per group, Fig. 4.3A). We confirmed the knockdown

with real-time quantitative reverse transcription PCR and found a 30.5 ± 8.9%

decrease in HDAC6 expression (n = 10 per group, normalized by housekeeping

gene GAPDH expression, Fig. 4.3B). While not a complete knockdown, we still

observed increased acetylation with immunocytochemistry and western blots (Figs.

3C,D) and not surprisingly, siRNA-mediated acetylation was more modest and less

uniform when compared to tubacin-mediated acetylation. These data show that the

cell’s endogenous regulation of acetylation can modulate cilium stiffness, indicating a

specific mechanism for the cell to adapt cilium-mediated mechanosensing.

Given acetylation can stiffen the cilium, we hypothesized a cellular process

can allow the cell to internally regulate acetylation and in turn, the cilium as a

mechanosensor. We examined this with a siRNA-mediated knockdown of HDAC6.

We found cilia from knockdown cells stiffened 2.7 ± 0.9 times when compared to cilia

of cells transfected with scramble control (n = 5 per group, Figure 4.3A). We analyzed

gene expression and measured a knockdown of 30.5 ± 8.9% in HDAC6 expression (n

= 10 per group, normalized by housekeeping gene GAPDH expression, Figure 4.3B).

While this was a modest knockdown, it was sufficient to increase cilium stiffness and

acetylation (Figure 4.3C,D). Together, these data demonstrate the cell’s internal

mechanisms to regulate acetylation can also regulate cilium stiffness.

Finally, we determined if these acetylation-induced changes also affect cellular

responsiveness. Cyclooxygenase-2 (COX-2) is an inducible enzyme that can be

regulated by flow [Flores et al., 2012] and is implicated in increasing renal blood flow

as well as the glomerular filtration rate [Harris, 2006]. Because of its role in renal

hemodynamics, we used COX-2 expression to indicate a cell’s responsiveness to flow
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Figure 4.3: The cell’s internal mechanism to regulate acetylation can alter cilium stiffness and
decrease mechanosensitivity. (A) Cilium stiffness was measured in cells transfected with HDAC6
siRNA and scrambled control. Knockdown of HDAC6 resulted in a 3-fold increase in stiffness.
(B) HDAC6 mRNA expression normalized by housekeeping gene GAPDH was measured by qPCR
in control and knockdown cells. Transfection resulted in a limited knockdown in HDAC6 mRNA
expression. (C) Immunocytochemistry with acetylated α-tubulin staining (red) and SSTR3-GFP
cilia marker (green). Increased acetylated α-tubulin staining is observed in some cells. Scale bar
indicates 10 µm. (D) Western blot probing for acetylated α-tubulin and actin. The stronger
acetylated α-tubulin band in the knockdown cells confirms increased acetylation. (E) COX-2
expression measured by qPCR with and without flow in cells transfected with HDAC6 siRNA and
scrambled control. A reduction of flow-induced increase in COX-2 expression is indicative of reduced
cell responsiveness with increased acetylation. Data presented as mean ± SEM (n = 5 per group).
* denotes p < 0.05.
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as an indicator of responsiveness to flow. We exposed cells transfected with HDAC6

siRNA to oscillatory fluid flow and knockdown of HDAC6 inhibited flow-induced

increases in COX-2 expression by 55.9 ± 16.3% (n = 5 per group, normalized by

housekeeping gene GAPDH expression, Figure 4.3E). Collectively, our data show

acetylation modulates cilium stiffness and overall cellular responsiveness to flow.
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4.5 Discussion

Here, we propose an acetylation-mediated mechanism that stiffens the cilium

in response to mechanical stimuli and regulates cellular mechanosensitivity. When

the cilium is bent with flow, acetylation increases, stiffening the microtubule-

based axoneme. Strengthening the axoneme results in smaller deflections to

future exposures to flow, which reduces the cell’s overall responsiveness to flow.

Though our data does not directly connect changes in acetylation with flow-induced

deflection, decreases in HDAC6 activity and increases in acetylation with mechanical

stimuli has been reported by other groups [Geiger et al., 2009; Li et al., 2011].

Groups have also linked acetylation with microtubule stiffness [Felgner et al., 1996;

Hawkins et al., 2013] and our findings support this paradigm. While acetylation

remains to be directly connected to mechanical properties [Howes et al., 2014], groups

have proposed several mechanisms. Though acetylation does not seem to affect

tubulin morphology or polymerization [Howes et al., 2014; Soppina et al., 2012],

interactions between tubulin subunits may be affected by acetylation. Acetylation

might also affect the recruitment of microtubule-associated proteins (MAPs). Their

binding have been shown to stiffen microtubule nearly 4-fold [Felgner et al., 1997].

To investigate this, future studies may use multiscale modeling to gain insights into

the coupling of acetylation and mechanical properties. Previous studies have used

coarse-grained simulations of tubulin dimers to determine tubulin hydrolysis leads to

changes in tubulin conformation and deformation patterns [Mitra and Sept, 2008].

Although cilium stiffening can be attributed to acetylation, the changes in

cilium orientation are likely explained by a different mechanism. During formation

56



of the cilium, the mother centriole seeds the cilium and later becomes the basal

body with several anchoring appendages, including basal feet and striated rootlets

[Kobayashi and Dynlacht, 2011]. These structures have been shown to determine the

position of the mother centriole and are also thought to determine the orientation

of the cilium [Farnum and Wilsman, 2011]. Varying the number and distribution

of these anchoring structures are proposed to regulate cilium anchorage stiffness

and orientation [Boisvieux-Ulrich and Sandoz, 1991; Kwon et al., 2011]. The flow-

induced changes in cilium protrusion may be attributed to these anchoring structures.

Though the basal body’s relation with the cellular microtubule network is not well

understood, the cytoskeletal microtubules are likely more important to the nucleation

and formation of the cilium. This network has been shown to increase in density at

the basal body with flow [Espinha et al., 2014]. Another mechanism that may regulate

the mechanical properties of the cilium anchorage is increasing the microtubule

attachments.

In summary, our data presents a new potential mechanism for the

mechanosensory adaptation of the primary cilium. We show that cilium stiffness

can be mechanically and chemically regulated. We also show acetylation is a process

through which the cell can modulate its cilium stiffness, which also modulates the

cellular mechanosensitivity. Our data also demonstrate that the cilium adapts

quite rapidly. This short time scale is appealing when considering treatments for

disorders with dysfunctional cellular mechanosensing. Future studies should elucidate

acetylation’s role in cellular mechanosensing, unlocking acetylation’s potential as a

therapy for these disorders.
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Chapter 5

Analysis of primary cilia

mechanosensation in vivo
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Collaborators on this project are Yuan N. Young, Erik B. Malarkey, Bradley K. Yoder,

and Christopher R. Jacobs.

5.1 Abstract

Several mathematical models have been developed to describe primary cilium

deflection important in cellular mechanosensations and have reported the cilium’s

mechanical properties. However, until recently, cilium deflections have only been

examined and described in vitro. Using a CiliaGF P mouse allowing direct in vivo

visualization of primary cilia, we present the first computational analysis of in vivo

primary cilia deflection. Our stiffness findings are consistent with previously reported

in vitro values. In contrast to in vitro bending behavior, in vivo cilia have a consistent

rigid, non-bending base. Interestingly, we found cilium bending stiffness was strongly

correlated with length. This novel combination of experimental and computational

techniques provides a quantitative in vivo assessment of cilia behavior.
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5.2 Introduction

Praetorius and Spring provided the first evidence of the cilium deflecting

and connected this deflection to downstream biochemical signaling [Praetorius and

Spring, 2001; Praetorius and Spring, 2003]. In addition to Praetorious and Spring’s

work in the kidney, other groups have now demonstrated primary cilia-mediated

mechanosensation in the liver, bone, cartilage, vascular endothelium and embryonic

node [Malone et al., 2007; Masyuk et al., 2006; McGrath et al., 2003; Nauli et al., 2008;

Wann and Knight, 2012]. The primary cilium has additionally been implicated in

diseases with impaired mechanosensation and disorders linked to cilium dysfunction

are now classified as ciliopathies [Fliegauf et al., 2007].

Surprisingly, although cilium mechanosensing

has significant clinical implications, the mechanical behavior of the primary cilium

remains poorly understood. Schwartz et al. first modeled the primary cilium as an

elastic beam undergoing small deflections [Schwartz et al., 1997]. Resnick and Hopfer

similarly modeled the cilium exposed to rotational flow via an orbital shaker [Resnick

and Hopfer, 2007]. Studies by Liu et al. and Rydhom et al. improved previous models

by using more accurate descriptions of the load deflecting the cilium [Liu et al., 2005;

Rydholm et al., 2010]. Our group has advanced these models by accounting for the

initial position of the cilium and the contribution of the cilium’s basal body [Downs et

al., 2012; Young et al., 2012]. Although these studies have made promising advances,

to date, all descriptions of cilia mechanical behavior have been reported from in vitro

experiments.
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In this study, we examined, for the first time, primary cilia deflections in vivo.

We accomplished this by applying our modeling techniques to the recently generated

CiliaGF P mouse that allows direct visualization of primary cilia in vivo [O’Connor

et al., 2013]. Here, we report the first cilia stiffness measurements in vivo and

confirmed in vitro measurements previously reported by our lab and others. We also

revealed a surprising relationship between cilium bending stiffness and length. This

novel combination of a mouse model and computational analysis provides a valuable

technique to gain new insights into the primary cilium’s mechanosensory function in

physiologically relevant contexts.
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5.3 Methods

5.3.1 In vivo imaging of renal cilia

This study was carried out in accordance with the guidelines of the University

of Alabama at Birmingham Institutional Animal Care and Use Committee and the

National Institutes of Health Guide for the Care and Use of Laboratory Animals.

The mouse and in vivo imaging are previously described in detail [O’Connor et al.,

2013]. Briefly, under continuous anesthesia, the kidney of a CiliaGF P mouse was

exposed through a dorsal incision. The mouse positioned so that the kidney was on

a coverslip over the objective (60× oil immersion, 1.49NA). Images were captured

on a high-speed confocal microscope using fluorescein isothiocyanate filter (Chroma

Technology, Rockingham, VT) with excitation by a 488 nm Argon laser (Melles Griot,

Carlsbad, CA) (Figure 5.1). Using ImageJ, the coordinates of 26 primary cilia at

rest and under flow in the kidney proximal tubule were determined and used for

subsequent analysis.

5.3.2 Computational analysis

Each cilium was modeled as an elastic beam under hydrodynamic load and

anchored by a torsional spring as previously described [Young et al., 2012]. The

cilium coordinates were normalized by the length of the cilium and parameterized as

a function of the position along the cilium. The cilium position at rest was used to

determine the internal stress within the cilium. The cilium position under flow was
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Figure 5.1: Fluorescent cilia in the kidney proximal tubule in an anesthetized mouse. Average
fluorescence over 30 seconds illustrates the full bending behavior of each cilium. Strikingly, each
cilium has a bending and non-bending portion. Scale bar indicates 10 µm.

used to determine the bending stiffness with a least squares fit. Glomerular filtration

rate was used to approximate flow rate and the shear rate was determined assuming

a Newtonian fluid within a pipe [Schnermann et al., 2013]. A Pearson’s r correlation

analysis was performed between stiffness and length. Outliers were excluded by robust

regression and outlier detection (Q = 1%; GraphPad, La Jolla, CA) [Motulsky and

Brown, 2006]. All data are presented mean ± SEM.
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5.4 Results

CiliaGF P mice constitutively express a cilia marker, somatostatin receptor 3

fused to green fluorescent protein, that enabled cilia to be easily visualized. We first

measured cilia length, 7.1 ± 0.3 µm (Figure 5.2A). Using a similar cilia-marker,

in vitro studies have reported lengths of 5.2 ± 1.3 µm and 3.9 ± 0.8 µm in mouse

inner medullary collecting duct cells [Downs et al., 2012; Young et al., 2012]. The

difference in cilium length is likely attributed to the striking contrast between in vivo

and in vitro conditions. Several factors influencing cilia length have been specifically

identified, including mechanical stimuli and pharmacological agents [Miyoshi and

Kasahara, 2011]. In contrast to in vitro studies, primary cilia in live mice exhibited

a remarkably consistent non-bending region that extended 1.9 ± 0.1 µm from the

base and accounted for 20 to 55% of the total cilium length (Figure 5.2B). While

this may be attributed to cilium’s molecular structure, including transition zone and

ciliary pocket, the proximal tubule is abundant with microvilli [Guo et al., 2000]. In

the proximal tubule, the brush border microvilli are 2-3 µm projections and several

orders of magnitude stiffer than primary cilia. The stiff microvilli surrounding each

primary cilium may prevent the lower portion of each cilium from bending and thus,

explain the rigid lower region of each cilium.

Here, we report the first stiffness measurements of primary cilia in vivo. We

segmented each cilium into a bending and non-bending region and subsequently

analyzed the bending region. We found bending stiffness of the ciliary axoneme

to be 7.3 ± 0.1 × 10−23 Nm2 and torsional stiffness anchoring the cilium to be 2.7

± 0.7 × 10−8 Nm/rad (Figure 5.3). The in vivo bending stiffness was surprisingly
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Figure 5.2: Distribution of primary cilium length in the kidney proximal tubules. The average
total length of primary cilia was 7.1 ± 0.3 µm and the average length of the non-bending region was
1.9 ± 0.1 µm. We suspect this surprisingly consistent rigid region is due to microvilli.

consistent with the in vitro stiffness, 8.4 × 10−23 Nm2, reported in our prior in vitro

study [Young et al., 2012]. We expected torque to be correlated to cilium length but

did not find a significant correlation. Because a longer cilium is exposed to more fluid

flow and must resist this larger load, we expected increased torque at the base of the

cilium but found torque, rotational deflection, and torsional stiffness were consistent

across lengths. Interestingly, we instead found a strong positive correlation between

length and bending stiffness (r = 0.55, p < 0.01) (Figure 5.4). This is the first

report that bending stiffness varies with length. We hypothesize that this may be to

maintain consistent deflection and membrane strain across cilia in proximal tubules.

Mechanosensitive channels found in the cilium, including Polycystin 1, Trpv4, and

Piezo1, are activated by increases in membrane tension [Patel, 2014]. The increased

membrane tension is believed to stretch or open these channels. In order to maintain

consistent activation of these channels in a changing environment, the cilium may

adapt its structural properties. For example longer cilia are exposed to more luminal

fluid flow and may be stiffer to maintain a consistent degree of deflection when

compared to shorter cilia in the same environment. With the recent development

of techniques to measure membrane strain in live cells [Tabouillot et al., 2011], we
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Figure 5.3: Distribution of primary cilia mechanical properties within the kidney proximal tubule.
A) Bending stiffness of the ciliary shaft averaged 7.3 ± 0.1 × 10−23 Nm2, excluding one outlier at
4.8 × 10−23 Nm2. B) Torsional stiffness anchoring the cilium averaged 2.7 ± 0.7 × 10−8 Nm/rad,
excluding four outliers between 1.8 and 4.1 × 10−23 Nm2.
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Figure 5.4: Correlation of primary cilia stiffness with length. Bending stiffness was strongly
correlated with bending cilium length, r = 0.55 (n = 25, p < 0.01). This may be a result of cilia
adapting to maintain consistent membrane strain with deflection. One outlier was removed using
the robust regression and outlier removal method (Q = 1%)

will soon be able to determine how cilia deflection relates to ciliary membrane strain

and if strain is consistent across a population of cilia.

5.5 Discussion

While the combination of our computational approach with this experimental

data presents novel findings in primary cilia behavior, the study is not without its
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limitations. We performed the analysis in two dimensions with epifluorescence images

rather than three dimensions with z-stacks of confocal images as with prior in vitro

studies. Although the loss of a dimension led to approximations in cilium position

and flow, the agreement between the findings in this study with our previous in

vitro studies suggests that the two-dimensional approach is sufficient. In addition,

though we modeled flow as unidirectional and constant, there is suggestive evidence

that renal tubular flow is not constant and can be pulsatile [O’Connor et al., 2013].

With this more complex flow profile, the stiffness measurements reported are likely

an over-approximation.

In this study, we combined experimental and computational techniques for a

novel approach to describe primary cilia mechanical behavior and provide the first

report of primary cilia stiffness in vivo. We found a strong agreement between these

in vivo findings with prior in vitro measurements. This exciting investigational tool

enables cilia mechanosensing to be quantified in vivo for the first time. Coupling

this tool with disease models, we may quantitatively assess ciliary dysfunction in

ciliopathies and in parallel, evaluate therapies that may restore this function.
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Chapter 6

Conclusions

6.1 Summary

Mechanosensation is a ubiquitous process among living organisms and its

dysfunction can lead to devastating diseases, including atherosclerosis, osteoporosis,

and cancer. The primary cilium is an emerging mechanosensor already implicated in

numerous biological contexts. The overarching objective of this dissertation was to

characterize the mechanobiology of the cilium as a mechanosensor across biological

scales. Collectively, our data suggest that the primary cilium is a complex signaling

center that not only integrates mechanical signals and coordinates the biochemical

responses, but is also able adapt in response to these signals. Specific contributions

of this work are discussed below.

68



6.1.1 Primary cilia mechanosensation in bone by osteocytes

in vivo

In chapter 2, we developed a conditional knockout mouse with primary cilia-

deficient osteocytes and showed deleting primary cilia from osteocytes in mice leads

to an impaired bone formation response to load. By deleting a gene with both ciliary

and non-ciliary roles and targeting osteoblasts [Corbit et al., 2008; Qiu et al., 2012a;

Temiyasathit et al., 2012], prior studies had implicated osteocyte primary cilia

but never directly examined osteocyte primary cilia in vivo. By targeting a cilia-

specific gene, this study generated the first primary cilia-specific knockout in bone

and by targeting osteocyte primary cilia specifically and examining them in situ, it

presented the first evidence that deletion of a primary cilia gene led to loss of cilia

in osteocytes. Prior studies had shown this loss occurred in vitro [Qiu et al., 2012a;

Temiyasathit et al., 2012] but it remained unclear if a cilium present on an osteoblast

remains as the osteoblast terminally differentiates into an osteocyte. Together, our

data show in vivo that the primary cilium is an important sensing apparatus for the

osteocyte, the principal mechanosensing cell in bone.

6.1.2 Lateral visualization of the cilium in assessing protein

function

In chapter 3, we uncovered the need to standardize detection of ciliary proteins.

We developed a classification system for proteins in the cilium and found for proteins

present in the cilium and the rest of the cell, lateral imaging in addition to apical-basal
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imaging is needed to distinguish proteins in the cilium from those in the rest of the cell.

The majority of studies in our literature review only used apical-basal imaging and

had erroneously excluded proteins from the cilium, suggesting that these proteins may

need to be re-examined. Although this study was focused on immunocytochemistry,

the conclusion to image cilia along multiple axes is an important consideration when

imaging cilia in any context, including immunohistochemistry and in vivo imaging

with the fluorescent cilia of the recently developed CiliaGF P mouse [O’Connor et al.,

2013].

6.1.3 Primary cilia mechanosensation adapts and regulates

cell signaling

In chapter 4, we use a combined experimental and computational approach to

quantify the effect of mechanical and chemical stimuli on cilium deflection. Although

prior studies had suggested the cilium’s capacity to adapt [Besschetnova et al., 2010;

Downs et al., 2012; McGlashan et al., 2010], our study quantified these changes in the

cilium’s mechanical properties and identified a potential mechanism involved in the

adaptation. We found that cilia stiffened in response to exposure to flow and with

increased acetylation. We also found that increased acetylation decreases downstream

cell signaling responses to flow. Together these data suggest that the cilium is

a mechanosensor capable of structural adaptation and this adaptation mechanism

involves acetylation. This is exciting for not only the cilia field but also the greater

mechanosensing field, where sensory adaptation has remained controversial even in

the most studied mechanosensors, ion channels.
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6.1.4 Analysis of primary cilia mechanosensation in vivo

In chapter 5, we adapted our approach to analyze primary cilia deflection in

vivo. CiliaGF P mouse had recently been developed where primary cilia express a

fluorescent marker [O’Connor et al., 2013]. With fluorescence microscopy, we captured

primary cilia deflection in the kidney proximal tubules of an anesthetized mouse. We

found cilia had a consistent non-bending region that we attribute to the orders of

magnitude stiffer microvilli. We calculated cilia bending stiffness and found our in

vivo measurements were consistent with previous in vitro reports in the literature

[Schwartz et al., 1997; Downs et al., 2012; Young et al., 2012]. Even more compelling

than this being the first analysis of in vivo primary cilia mechanics is the quantitative

assessment of ciliary dysfunction in diseased mouse models now possible with this

approach.
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6.2 Future Directions

The studies presented in this dissertation have advanced our understanding of

primary cilia as mechanosensors and their function across biological scales. While

broadening our understanding of this organelle, our findings and the techniques

developed have identified areas within this interplay of biology and mechanics to

study further.

6.2.1 In situ analysis of primary cilia in bone

In chapter 2, we identified osteocyte primary cilia as a mechanosensing

apparatus within bone. The pericellular space between the osteocyte body and

lacunar wall is approximately 1 µm or less [Wassermann, 1965] while primary

cilia from cultured osteocytes can be 2-9 µm in length [Malone et al., 2007;

Xiao et al., 2006]. It remains unclear if the tight pericellular space allows for the

primary cilia deflection observed in vitro [Downs et al., 2012; Malone et al., 2007;

Praetorius and Spring, 2001; Schwartz et al., 1997]. The goal of this future study

would be to characterize primary cilia in bone. The increased penetration of the

C3B9 antibody directed against acetylated α-tubulin [Poole et al., 2001] and the

CiliaGF P mouse [O’Connor et al., 2013] provide two different methods to visualize

primary cilia in situ. An especially intriguing question is how are cilia distributed

within bone. Previous reports of primary cilia incidence in bone have ranged from 4%

[Baker et al., 2003] to nearly 100% [Uzbekov et al., 2012]. Leveraging our findings and

methods on imaging cilia in chapter 3, this study may address the current controversy

in bone primary cilia incidence. Another interesting question in bone is how are cilia
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oriented within bone. Several studies in other tissues have suggested cilia orientation

is influenced by load. For example, the orientation of cilia in load-bearing regions of

cartilage was found to be consistent in contrast to non-load-bearing regions where the

consistency is lost [Farnum and Wilsman, 2011]. Similarly, primary cilia are found

to be highly oriented in tendon [Donnelly et al., 2010]. Describing and characterizing

the osteocyte primary cilium in situ will begin to answer how the osteocyte primary

cilium senses load in the lacunar-canalicular system, a complex network of caverns

and channels within bone.

In a second study, the goal would be to analyze osteocyte primary cilium

deflection in situ. Our work in chapter 5 showed that primary cilium deflection in

the kidney is easily visualized with the CiliaGF P mouse. Preliminary work with bones

harvested from this mouse reveal that it is possible to visualize the cilium but it is

not without challenges. The osteocyte primary cilium is nearly an order of magnitude

shorter than kidney primary cilium and is embedded in bone matrix. Recently,

calcium signaling within osteocytes had been recorded in situ in bone [Ishihara et

al., 2012; Jing et al., 2014], suggesting that although challenging, it may be possible

to capture cilium deflection in situ. The recent development of these tools to visualize

primary cilia in situ may finally answer the long-held questions about primary cilia

in bone and further elucidate primary cilia-mediated mechanosensing in bone.
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6.2.2 Primary cilia mechanosensation and adaptation in

other cell types

In chapters 4 and 5, we analyzed renal primary cilia deflection in vitro and

in vivo, respectively. Although deflection in response to flow has been observed in

vitro with cilia from other cell types [Jensen et al., 2004; Malone et al., 2007], cilia

deflection has not been quantitatively characterized outside of the kidney. A challenge

with analyzing deflection is visualizing primary cilia. Directing fluorescent proteins

to the cilium has proved to be problematic. In spite of many groups’ efforts, only one

cell line has been developed, the IMCD cells used in this work. However, it may now

be possible to visualize primary cilia in other live cells using those isolated from the

CiliaGF P mouse. Thus, the goal of this study would be first, to quantitatively assess

the deflection of cilia in other cell types and second, to determine if cilia of other cells

also adapt. This can be done by isolating different cell types with fluorescing cilia

from the CiliaGF P mouse and applying similar techniques from our work in chapter

4. Our hypothesis is that cilia mechanical properties may vary from cell to cell but

sensory adaptation is conserved.

6.2.3 Role of acetylation in primary cilia

Our data from chapter 4 strongly implicates acetylation in the stiffening of

primary cilia. However, acetylation is poorly characterized and understood. The

goal of this study would be to determine how acetylation modulates primary cilia

stiffness. Acetylation does not affect the gross morphology but has been hypothesized

to affect tubulin subunit interactions, limit access to the microtubule lumen, and
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recruit microtubule-associated proteins [Felgner et al., 1997; Howes et al., 2014;

Soppina et al., 2012]. With the current technology, we are limited in experimentally

exploring the relationship between acetylation and cilium stiffness. However, using

modeling, it is possible to model acetylation and test the above hypothesis of

acetylation affecting the subunit interactions. Coarse-graining can reduce the

complexity of the model while still providing insights. For example, one study used

coarse-graining of tubulin dimers and found that hydrolysis of tubulin led to a bend in

the dimer [Gebremichael et al., 2008]. Coarse-graining of the atoms within tubulin led

to insights into the deformation patterns of each subunit. Using a similar approach

and comparing to experiments of individual microtubules [Felgner et al., 1997;

Felgner et al., 1996], a future study may determine if acetylation modulates cilia

stiffness by altering tubulin subunit interactions.

6.2.4 Analysis of primary cilium membrane mechanics

Although the works in chapter 4 and 5 contribute to a greater understanding

of primary cilia mechanosensing, many questions remain unanswered in the

mechanics of primary cilia mechanosensing. For example, stretch-activated membrane

channels found on the cilium are believed to play a critical role in cilia-mediated

mechanotransduction [Gradilone et al., 2007; Nauli et al., 2003], suggesting cilium

membrane tension is a critical component of mechanosensing. The goal of the future

study would be to quantify cilia membrane tension under flow. This may be done

using a recently developed technique that correlates the dynamics of fluorescent dyes

introduced into the lipid bilayer with membrane tension [Muddana et al., 2011].

While this has only been accomplished in the cell membrane, similar dyes have been

75



used to visualize membranes of motile cilia [Deiner et al., 1993].We hypothesize that

cilium membrane tension measurements will confirm suggestions from previous papers

that membrane tension is highest at the base of the cilium [Rydholm et al., 2010;

Young et al., 2012], where some stretch-activated channels have been found in higher

concentrations [Fernandes et al., 2008; Siroky et al., 2006].
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6.3 Concluding Remarks

The goal of this dissertation was to advance our understanding of the primary

cilium as a mechanosensor by investigating the cilium’s role in mechanosensing at

the tissue level and the mechanics of the mechanosensing at the subcellular level.

This was achieved through the experimental investigation and computational analysis

where many of the tools and methods developed in the course of this work enable the

pursuit of new areas in the study of primary cilia. This work has provided a clear

demonstration of the cilium’s role in the bone mechanosensing. Most importantly,

this work has demonstrated the capacity of the cilium to adapt as a mechanosensor,

quantified it and proposed a mechanism enabling the adaptation. This brings a

new perspective to the primary cilia and the broader mechanosensing fields with

potential implications to the treatment of the many diseases with impaired cellular

mechanosensing.
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