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ABSTRACT

Representation and learning in cerebellum-like
structures

Ann Kennedy

Animals use their nervous system to translate signals from their sensory environment into appropri-

ate behavioral responses. In some cases, these responses are hard-wired through genetic sculpting

of neural circuits, such that certain stimuli drive innate behavioral responses in the absence of

prior experience [Ewert, Burghagen, and Schurg-Pfeiffer 1983; Yilmaz and Meister 2013; Wu et al

2014]. But most often, responses to stimuli are modified over the course of an organism’s lifetime

via associative learning, in which past experience is used to adaptively modify the neural circuits

controlling behavior.

The remarkable regularity of cerebellar circuitry made it an early target of experiments seeking a

link between neural circuit structure and computational function [Eccles, Ito, and Szentágothai,

1967]. These efforts led to a first generation of models describing cerebellar cortex as a device

for associative learning, remarkable for their focus on linking each cell type of cerebellar cortex to

a computational aspect of associative memory formation and adaptive control [Marr 1969; Albus

1971; Ito 1972]. In subsequent decades, specialized neural architecture resembling that of the

cerebellum has been identified in several other brain regions, including the dorsal cochlear nucleus

of most mammals [Oertel and Young, 2004], the mushroom body of the insect olfactory system

[Farris, 2011], and a region evolutionarily and developmentally related to the cerebellum in the

brains of weakly electric fish, the electrosensory lobe [Bell, Han, and Sawtell, 2008]. This has raised

the hope that a similar computational mechanism is at work in these structures.

It is not easy to find behavioral paradigms that isolate learning in the cerebellum, and a complete

mechanistic account of learning during commonly studied behaviors has remained elusive. In this

thesis, I analyze two cerebellum-like structures– the electrosensory lobe of the mormyrid fish and



the mushroom body of the fly olfactory system– in which mapping out associative learning is more

tractable, due to the availability of well-controlled learning paradigms and the development of

powerful biochemical and genetic techniques.

With the help of my experimental collaborators, I constructed computational models of the elec-

trosensory lobe and mushroom body from electrophysiological and anatomical data, and studied

the process of associative learning in these models. In both systems, an initial sensory represen-

tation is first projected up into a high dimensional space, and then read out via convergent input

onto individual neurons. Learning adjusts the input to readout neurons, causing changes in their

responses to future stimuli that alters their drive to downstream nuclei. Two details shape how

each circuit handles associative learning: the way in which sensory inputs are represented, and the

mechanism of learning. Together, these two pieces determine what transformations each circuit is

able to learn and how it generalizes after learning.

In the four chapters of this thesis I present four related projects dealing with sensory representa-

tion and learning in cerebellum-like structures. The first chapter has previously been published

as a paper and describes a model for cancellation of self-generated sensory input in the passive

electrosensory system of the mormyrid fish. In the second chapter, I adapt this model to a more

high-dimensional cancellation problem in the fish’s active electrosensory system, which deals with

the effects of the fish’s body on the electric fields it generates. In the next two chapters, I construct

a network model of odor representation in fly olfactory system, terminating at the mushroom body.

Finally, I use this model in conjunction with recent experimental findings on the output of the

mushroom body, to build a model of associative odor learning in the fly.
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3.5 a. Example firing rate from an efferent cell of the electrosensory lobe before, during,

and after pairing of the EOD command with the externally applied field, as well as

the difference between the firing rate before and after pairing (far right). Firing rates

are averaged over trials in which the tail was at the position highlighted in panel b.

b. Top row: the firing rate of the efferent cell as a function of tail angle, triggered

on the EOD command (x axis on each subplot is time relative to EOD command, as

in panel a.) Middle row: firing of the efferent cell during pairing of an external field

with the EOD command. The amplitude of the field (continued on next page) . . . . 58
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3.6 a. Firing rate of a tonically mossy fiber during sinusoidal movement of the tail by

a manipulator. This mossy fiber responded to contralateral bends; other fibers pre-

ferred ipsilateral bends or had more complicated responses. b. Tuning curves com-

puted from the firing rate in panel a. Tuning was significantly different if computed

from ipsi-to-contra vs contra-to-ispi movements, though this could be an artifact of

how the fish was restrained during tail manipulation. . . . . . . . . . . . . . . . . . . 60

3.7 Intracellular recording from a granule cell receiving input from two mossy fibers,

one conveying proprioceptive information and the other conveying the timing of the

EOD command.Tail position was controlled by a manipulator and is plotted below

the membrane potential, while EOD motor commands were recorded from the EOD

command nucleus, and are indicated with arrows above. The tonic firing rate of the

proprioceptive mossy fiber increases when the tail is ipsilateral, depolarizing the cell

enough that EOD command-driven inputs evokes a spike (red dots). Highlighted in

gray is a magnified portion of the membrane potential trace, showing EPSPs evoked

by spikes in the tonic proprioceptive mossy fiber. The arrow marks the time of an

EOD command, following which the granule cell receives a burst of EPSPs from the

command-driven mossy fiber. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.8 Circuit model for proprioceptive negative image formation, adapting the framework

from the previous chapter. A basis of proprioceptively-modulated EOD command-

driven granule cells (cartooned here in blue) allows the efferent cell to form a negative

image that cancels the effect of tail position on sensory input from mormyromasts. . 62

3.9 In blue, firing rate of a model granule cell plotted against the firing rate of its

mossy fiber input. Superimposed in red is the Bézier spline fit: a cubic Bézier curve

connecting plateaus at rGC = 0 and rGC = 1. Points labeled in red are fit to the

model cell responses, while points in gray control the shape of the spline, and are

fixed based on the values of the red points. . . . . . . . . . . . . . . . . . . . . . . . 66
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3.10 In blue, input-output functions from five example model cells, computed from the

spiking granule cell model using 16 values for tonic mossy fiber firing rates, spaced

evenly from 0 to 200 Hz. The fourth cell from the left received two proprioceptive

inputs, so its response is plotted against the effective mossy fiber firing rate, com-

puted as described above. In red, the Bézier splines fit to each cell, with fit points

marked by dots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.11 Schematic of the mesh model indicating regions of constant conductance, adapted

from [Assad 1997]. I+ and I− are point charges in the fish’s tail which give rise to

the EOD field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.12 Mesh of fish body generated in Blender; the head with chin organ is facing left in

all views. The fins and tail do not affect the electric field of the fish, and were not

rendered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.13 Two example bends of the fish mesh. Left, a single 20◦ bend, right, two 20◦ bends.

Bends appear stiff because single joints are being affected, whereas naturalistic pos-

tures likely involve the correlated bending of multiple joints. Blender also has the

capacity to distribute bends over multiple joints, but because effects on the fish’s

field are likely small, I did not investigate these here. . . . . . . . . . . . . . . . . . . 75

3.14 Top and side views of the 3D model of the fish’s field in a coronal slice, for two

curved bends; color indicates electric potential, hence the boundaries between solid

colored regions are equipotential lines. Contrast is enhanced to make the differences

in the field between the two postures more visible. . . . . . . . . . . . . . . . . . . . 76

3.15 Example tuning curves of recorded mossy fibers, showing firing rate as a function of

tail position. Cells in panels b, d, f, and h are (essentially) monotonic, while cells

in panels a, c, e, and g are non-monotonic. . . . . . . . . . . . . . . . . . . . . . . . 78
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3.16 Externally applied tail angle/EOD amplitude relationships (black) and the resulting

negative image learned by the fish (blue), as functions of tail angle. The upper-

middle plot is the natural EOD relationship: the EOD amplitude is stronger when

the tail is ipsilateral to the recorded cell’s receptive field, and weaker when the tail

is contralateral to the cell’s receptive field. The fish is able to learn a surprising

range of negative images with reasonable accuracy (although it failed to fully learn

the W-shaped relationship on the bottom left.) The bottom center and right plots

are generalization experiments, in which the fish’s tail was only moved through the

indicated region during learning. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.17 Simulated tail angle/EOD amplitude relationships (black) and the negative image

learned by the model granule cell basis (blue), as functions of tail angle. Notable

differences from the experimentally measured negative images are the W-shaped plot

on the bottom left, and the V-shaped generalization experiment on the bottom right,

both of which formed only shallow negative images at extreme bends. . . . . . . . . 80

3.18 Negative images of the upper left and bottom left pairings from Figure 3.18, for

different tail manipulations. Changing the tail movement from a sawtooth to a

sinusoid increased the proportion of learning trials in which the tail was at extreme

positions, and thus increased the magnitude of the negative image at the two bend

extremes for the W pairing. Changing the tail movement to spend less time at

extreme positions (light green line) drove a stronger negative image at small tail

angles. All other pairings were much less affected by these changes, as seen from the

linear pairing in the center plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.19 Left: First five eigenvectors of the learning matrix M, reflecting the five tail an-

gle/field strength relationships learned most quickly by the system. Right: First

25 eigenvalues of M; the magnitude of an eigenvalue determines how quickly its

corresponding eigenvector is learned during negative image formation. . . . . . . . . 82
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3.20 Effects of three example bends on field strength at the fish’s skin, from the 2D mesh

model. In each plot, I bent the fish mesh at the location indicated by the vertical

black line, and measured the modulation in the EOD-generated field at the skin on

one side of the model fish. Green lines show the modulation from bends 20◦ ipsi to

the measurement site, while red lines show modulation from bends 20◦ contra, and

the x axis is aligned with the fish’s body as indicated below the plots. All bends

induced strong modulation rostral of the bend location. Aside from magnifying

effects near the location of the bend, which may depend on the detailed geometry

of the mesh, fold modulation of the fish’s field was roughly constant from the bend

to the head. The field at skin caudal to the bend location was unaffected by the

bend—this makes sense, as the distance from the electric organ to the skin does not

change at these locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.21 Interaction of pairs of bends, at joint angles up to ±20◦, measured at three locations

along the fish’s body; bend and measurement locations are indicated on the fish

schematic. I focused on the interaction of a bend near the fish’s tail with bends

further up the body. The top row shows effect of bend pairs on the field measured

at the blue dot. For all three locations paired with the tail bend, the two bends

summed completely linearly. By contrast, at the pink dot, modulation of the field

was dominated by tail bends, with bends near the head having little effect (similar

to the results from single bends.) At extreme bends, when the two joints are both

bent ipsi or both contra, the strength of the measured field increases. . . . . . . . . . 84

3.22 Negative image formation by a model efferent cell receiving input from a set of model

granule cells, plotted as a function of the number of mossy fiber inputs granule

cells received. The three plots show rate of negative image formation for different

efferent cell receptive fields, from rostral (left) to caudal (right); precise locations are

indicated by colored dots, which correspond to the locations used in Figure 3.21. . . 87
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3.23 Negative image formation as a function of the tuning width of the mossy fiber basis;

receptive field locations are again from Figure 3.21. The learning rate was highest

for narrowly-tuned mossy fibers in model efferent cells with caudal receptive fields,

while efferent cells with rostral receptive fields learned fastest with broadly tuned

mossy fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1 The olfactory processing stream in Drosophila, with all elements of the model marked. 91

4.2 Fit of the dynamic PN model to the Olsen model. Each point is the response of

one PN for one of 110 odors, for the dynamic model vs the Olsen model. To match

the data to which the Olsen model was fit, the response of the dynamic model is

computed as the average firing rate over a 500 ms odor presentation, minus the

average spontaneous firing rate in a 500 ms window prior to odor presentation. The

dynamic model is a good fit to the output of the Olsen model over all tested odors

(note that the Olsen model can’t produce PN responses below baseline firing rates,

giving rise to the vertical excursion at x = 0.) . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Odor representations by model PNs evolve over time. a. Firing rates of the

23 PNs in the dynamic model, in response to four sample odors (each colored line is a

different PN.) Gray regions mark the time of odor presentation, which has duration

of 500 ms unless otherwise noted. Strong public odors like isopentyl acetate, which

activates many glomeruli, show a pronounced onset transient followed by a drop in

firing rate due to lateral inhibition. Private odors like methyl salicylate, which only

activates one glomerulus strongly, drive less lateral inhibition, allowing sustained

responses in a small number of glomeruli. b. Extracellularly-recorded firing rates of

seven example ORNs (green) and their cognate PNs (pink) in response to a 500 ms

presentation of isopentyl acetate, reproduced from Bhandawat et al [Bhandawat et al

2007]. Note odor-evoked inhibition in PNs innervating glomeruli dl1 and va2, as well

as transient onset responses in dm1-dm4. c. Example spike rasters generated from

model PNs innervating glomeruli dl1, vc3, dm4 and vc4, responding to a panel of

five odors. Each row shows the single-trial spiking response of a single PN, with the

odor presentation window marked in gray and responses to different odors delineated

by green lines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xviii



4.4 Temporal effects of odor mixtures. Right: extracellularly-recorded firing rate

response of a PN to 2-butanone, a private odor that only activates one glomeru-

lus strongly; 2-butanone was presented either alone or mixed with the public odor

isopentyl acetate, and each odor diluted to either 10−5 (weak) or 10−3 (strong). The

PN shows sustained firing in response to the private odor alone, but mixing with

a public odor attenuates the sustained portion of the response. Increasing the con-

centration of the private odor reduces the strength of this effect. Left: recreation

of the response transience effect by model PNs. I modeled mixtures of the private

odor 2,3-butanedione with public odor isopentyl acetate, with the two odors at di-

lutions of either 10−4 (weak) or 10−2 (strong), using concentration-dependent ORN

(continued on following page) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.5 a. Representation angle between the dynamic PN population and two alternative

models: one in which lateral inhibition is instantaneous (Olsen model), and one with

no lateral inhibition (Olsen w/o inh); plotted below the time axis is the average

PN response across cells and odors. Two PN populations with responses different

only by a scale factor will have an angle of zero between them, whereas the angle

approaches π/2 for orthogonal PN representations. In the first several hundred

milliseconds, the dynamic model is more similar to the model without any lateral

inhibition. Further into the stimulus period, inhibition begins to be recruited in the

dynamic model, and the representation changes to be more like the Olsen divisive

normalization model. b. I also measured the dimensionality of the dynamic PN

response over the course of a stimulus presentation, using the metric described in

the Methods. While PNs in the dynamic model show complex temporal structure in

their responses, the dimensionality of their representation is stable over the course of

stimulus presentation, and reaches its maximum value before lateral inhibition has

fully kicked in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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4.6 Heavy tails in KC representation of odors, and in odor tuning of KCs. Left. Fraction

of the KC population responding to odors in the Hallem and Carlson dataset, sorted

from smallest population to largest population. The model was tuned so that an

average of either 5% or 10% of KCs responded to each odor. Right. Fraction of

the tested odor ensemble to which each KC responded, sorted from least to most

responsive KC. A substantial portion of KCs were silent for all odors: 32% of cells

in the model with 10% sparsity, and 48% of cells in the model with 5% sparsity. . . . 112

4.7 a. Lifetime sparseness of the model KC and PNs, ie the proportion of odors which

evoke a response in a given cell. Because response sparseness depends on the set of

odors used for testing, I chose to match the experimental data and compute sparse-

ness in sets of 25 odors for KCs and 18 odors for PNs; I then averaged across subsets

to construct the histogram. Plotted for comparison are experimentally measured

lifetime sparseness of a set of 109 KCs and 7 glomeruli [Turner]. The model is tuned

such that an average of 10% of KCs respond to a given odor. b. Lifetime sparseness

of odor representations by the model KC and PN populations, ie the proportion of

cells which respond to an odor. As above, sparseness depends on the size of the

cell population, thus to match the measured values to the Turner data I computed

sparseness on random subsets of 109 KCs or 7 PNs, and averaged across sampled

subsets to construct the histogram. For comparison are experimentally measured

population sparseness of odor representations on a set of 25 odors for KCs and 18

odors for PNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
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4.8 Concentration-dependent activity of the model KC population to ten monomolecular

odors and nine fruit odors. Dashed black line is average across tested odors. Only

monomolecular odors were tested at concentration 10−8, and only fruit odors were

tested undiluted; at other concentrations all odors were used. a. The number of

active KCs increased with concentration for all odors, as is observed experimentally.

Some odors failed to evoke any response in the model at low concentrations (10−8 or

10−6), but this is not out of line with observed odor sensitivity in flies. b. Population

response to odors can also be measured as the total number of evoked spikes in the

population of 2000 KCs. This number also increased with odor concentration, though

not as sharply as the count of active KCs. c. The average number of odor-evoked

spikes in active KCs dropped at higher odor concentrations. (Concentrations which

did not activate any KCs are not plotted.) d. Total excitatory input from PNs to

the KC population, averaged across the 19 tested odors. e. Average KC input to

APL across the 19 odors, used as a proxy for KC population spiking. (Legend is

same as in panel d.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.9 Plot of KC response to 50:50 odor mixtures vs response to each odor on its own.

Each point is a KC, red line is y=x. Model KCs are predominantly sublinear or

linear, and all but two KCs that fired more than one spike in response to the two

individual odors were also active for the mixture of both odors. . . . . . . . . . . . . 119
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4.10 Correlation of odor mixture representations, computed as described in the text. a.

Correlation matrices of three example odor mixtures, computed for ORNs, PNs,

and KCs; refer to panel c for full axis labels and color bar. Note that in KCs the

transition from mixtures resembling A to mixtures resembling B can be quite sharp,

and occurs at different ratios for different odors. The point of transition seems to

be determined by the difference in total ORN activation between the two odors.

b. Plot of mixture correlation in ORNs vs KCs for all 11 mixtures of all 500 odor

pairs (points downsampled for display purposes.) While KC representations are less

correlated than those of ORNs, pairs of mixtures which are highly correlated in ORNs

typically remain so in KCs. c. Average KC correlation matrix over 500 odor pairs,

testing each pair with 11 mixing ratios. d. Plot of D(x) (see text), the average of

terms on the xth diagonal of the covariance matrix. Public odors are more strongly

correlated with each other than the average odor pair, while private odors are less

strongly correlated. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.11 Dimensionality of the KC representation of odors is related to several parameters of

the model; each point is an average over two instantiations of the model. Exper-

imentally determined values of each parameter are indicated by the gray line. a.

Dimensionality as a function of the number of PN-KC connections peaks at around

5-10 connections per KC, then drops off before gradually increasing again. b. Di-

mensionality as a function of KC population sparseness, varied by adjusting KC

spiking thresholds and keeping APL inhibition tuned as described in the methods.

c. Dimensionality obtained when a variable degree of structure is imposed on PN-KC

connectivity. Structure was set by a parameter p, ranging from fully unstructured

(p = 0) to fully structured (p = 1), by restricting PN-KC connections to assigned

groups of glomeruli with probability p. . . . . . . . . . . . . . . . . . . . . . . . . . . 123
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5.1 Gross anatomy of the mushroom body, reproduced from Tanaka et al [Tanaka, Tan-

imoto, and Ito 2008] with addition of compartments and γ-lobe subdivisions from

Aso et al [Aso et al, in preparation]. Dashed lines reflect the compartments defined

by MBON dendrites (some lines obscured). The α and α′ lobes are each divided

into three compartments, β and β′ are each divided into two, γ is divided into five;

there is an additional compartment of α/β Kenyon cell axons in the pedunculus. On

the right are cross-sectional views of the two lobes, showing anterior, middle, and

posterior (a, m, and p) regions of α′/β′ lobes, posterior, surface, and core (p, s, and

c) regions of α/β lobes, and main and dorsal regions of the γ lobe. . . . . . . . . . . 128

5.2 MBON innervation of mushroom body compartments, organized into four groups in

order of increasing complexity of inputs; reproduced from Aso et al [Aso et al, in

preparation]. Compartments are color coded by the type of Kenyon cells they include

(yellow = α/β, gray = α′/β′, purple = γ), and labeled based on their location in

the lobes (lower numbers are more proximal to the pedunculus). MBONs project

from the mushroom body to the lateral horn (LH), to the dopaminergic neuropils

CRE, SMP, SIP, and SLP (labeled collectively as DN), and to other mushroom body

compartments; the targets of each MBON are shown below its name in gray. The

leftmost group of nine compartments are the simplest, having only feedforward input.

The MBON γ412 projects from γ4 to γ1+2 to form the second group. And MVP2

feeds back from γ1 onto all α/β lobe compartments aside from the pedunculus, and

MV2 from β1 additionally feeds back onto all three α lobe compartments, forming the

third and fourth groups. Note that acetylcholine is an excitatory neurotransmitter

in fly, while glutamate can be either excitatory or inhibitory, but appears to be

inhibitory in the mushroom body. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 MBON compartments showing innervation by dopaminergic neurons [Aso et al, in

preparation]. Differences between PAM and PPL1 neurons are discussed below. . . . 130
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5.4 KC-MBON STDP learning rule, reproduced from Cassenaer and Laurent [Cassenaer

and Laurent 2012]. In gray, the normal STDP rule in KC-MBON synapses, where

δt is the time of the postsynaptic spike minus the presynaptic spike, and the y axis

shows the percent change in KC-evoked EPSP size in MBONs following five trials in

which pre- and postsynaptic spikes were paired at the given δt. In blue, the STDP

rule observed when octopamine is injected 1s after pairing. . . . . . . . . . . . . . . 131

5.5 Summary of circuit architecture of the mushroom body, showing innervation of the

mushroom body lobes by MBONs, and feedback via dopaminergic neurons driven

by MBON input. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.6 The basic circuit architecture underlying cerebellar learning, derived from the model

of Medina et al [Medina et al, 2000; Medina, Nores, Ohyama and Mauk, 2000]. The

mechanism by which this circuit drives associative learning is reviewed in depth in

the introduction to this thesis; but in brief: climbing fiber activity evokes dendritic

action potentials called complex spikes in Purkinje cells, triggering synaptic plasticity

at granule cell to Purkinje cell synapses. During learning, an unconditioned stimulus

(eg a shock) modulates climbing fiber spiking, driving either LTD or LTP in synapses

with granule cells activated by the conditioned stimulus (eg a tone or an odor). In the

case of an increase in climbing fiber activity, complex spikes evoke LTD at granule cell

synapses, causing a temporally-specific decrease in the Purkinje cell response to the

conditioned stimulus upon future encounters. The drop in the Purkinje cell response

to the conditioned stimulus disinhibits the DCN, which drives downstream motor

centers to elicit the conditioned response. Increased DCN activity also inhibits the

climbing fiber, balancing the input to the climbing fiber evoked by the unconditioned

stimulus and restoring the climbing fiber to its baseline firing rate. . . . . . . . . . . 133
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5.7 The architecture of the mushroom body, arranged to show parallels with the cerebel-

lum in Figure 5.6. Dopaminergic neurons take the place of climbing fibers in gating

plasticity from KCs to MBONs, which show modified responses to odors following

learning of conditioned avoidance [Séjourné et al 2011]. The lateral horn contains

stereotyped circuits involved in driving innate behaviors [Jefferis et al 2007; Datta

et al 2008] therefore changing MBON input to the lateral horn could activate or

inactivate different motivational states in the fly, or trigger specific behaviors. . . . . 134

5.8 Probability of responding to untrained odors, as a function of the number of trained

odors. While the learning rule performs well on sparse random vectors (red line),

actual KC representations of odors have substantial overlap, and training on a small

set of odor causes substantial overgeneralization to untrained odors. . . . . . . . . . 138

5.9 Learning rule performance in a toy model. Top: timing of odor stimuli. Initially,

odors A and B are presented to the mushroom body model in alternating pulses.

After 50 seconds of stimulation, presentation of odor A is followed after 2 seconds

by presentation of dopamine. At 200 seconds, dopamine signaling is turned off.

Middle: firing rate of the model MBON; responses to odors A and B are connected

by blue and green lines, respectively. In the first 50 seconds, the MBON response to

both odors adapts to the fixed point γ/δ of untrained odors. Upon pairing of odor A

with dopamine, the response of the MBON to odor A drops; the response to odor B is

transiently affected, but is quickly restored to the untrained odor fixed point. When

dopamine is turned off at 200 s, the trained response to odor A is extinguished, and

the MBON response returns to the untrained fixed point for both odors. Bottom:

synaptic weights from KCs to MBONs: in the toy example, one neuron responded

to odor A, one to odor B, and five to both odors. During training, the synaptic

weight from the odor A neuron drops, causing the MBON firing rate to decrease to

the trained fixed point. Mixed neurons are also affected by pairing, but to a lesser

degree, while the odor B neuron increases its synaptic weight to compensate in the

drop in mixed neuron synaptic weights, and bring the MBON response to odor B

back to the untrained fixed point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
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5.10 Probability of overgeneralization, ie responding to odors not in the set A of trained

odors, as a function of the size of set A, plotted for different sizes of set B (legend). I

included both odors in set B and odors not encountered during training when mea-

suring the probability of overgeneralization. The probability of overgeneralization

dropped as the number of odors in set B increased; I found that the model never

overgeneralized to odors in set B, but also that increasing the size of set B decreased

the probability that the model would overgeneralize to odors not encountered during

training. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.11 Calcium imaging of the response of an MBON to three odors (a fourth stimulus

of plain air was included, but is not shown here; MBON responses to the air were

negligible in all blocks). This particular MBON showed an increase in response to all

three odors tested, while other MBONs showed a decrease in response on a similar

timescale [Daisuke Hattori, unpublished observations]. . . . . . . . . . . . . . . . . . 144

5.12 Example activation functions for the DAMB and dDA1 dopamine receptors; param-

eters here are set to θDAMB = 0.35, θdDA1 = 0.75, and m1 = m2 = 15. . . . . . . . . 148

5.13 Example of learning in the DAMB/dDA1 model, using the toy model described in

Figure 5.9; in this case, the learning rule is set to drive a decreased MBON response

to untrained odors (odor B), and an increased response to trained odors (odor A).

Odor, MBON response, and synaptic weights plots are as in Figure 5.9. The middle

plot shows R(t), which is a weighted sum of the MBON firing rate and the external

valence signal. Beneath this is a plot showing the activation of the two dopamine

receptors by R(t). Low values of R(t) only activate DAMB, which drives a decrease

in synaptic weights, while high values of R(t) are strong enough to activate dDA1,

which drives an increase in synaptic weights. The change in MBON response to

the trained odor is not strong enough to drive R(t) past Rcrit, thus after pairing is

turned off at 200 seconds, the response of the MBON to odor A decays back to the

untrained firing rate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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5.14 Example of learning in the negative feedback regime. Prior to pairing with dopamine,

the critical point Rcrit is stable, and MBON firing rates converge to a value at

which
∣∣DAMB(t) · sDAMB(t)

∣∣ =
∣∣dDA1(t) · sdDA1(t)

∣∣. Upon pairing with dopamine,

increased recruitment of dDA1 relative to DAMB drives down the MBON response

to odor A. Because changes in rON counteract changes in R(t), it is difficult to drive

large changes in the MBON response to the trained odor. . . . . . . . . . . . . . . . 151

5.15 dDA1 mutant model: MBON response to all odors decays to the fixed point of

untrained odors, γ/δ, which in this case was zero. . . . . . . . . . . . . . . . . . . . . 152

5.16 DAMB mutant model: the MBON response to the trained odor increases to the fixed

point of the dDA1-mediated learning rule. Because a population of neurons in the

toy model respond to both odor A and odor B, changing the MBON response to odor
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Chapter 1

Introduction and background

The cerebellum has been implicated in motor learning [Llinas and Welsh, 1993], adaptive control

[Dean, Porrill, Ekerot, and Jörntell, 2010], motor timing [Ivry, 1996], and even routing of sensory

information [Bower 1997]. Uniting all of these functions is a characteristic computation performed

by its remarkably regular circuit architecture. Because of its interest to broader neuroscience, I will

frame this computation as a form of associative learning. In this chapter, I will review associative

learning, using a well-studied example from the cerebellar literature for context. I also introduce

the two model organisms I studied during my thesis, and the computational role cerebellum-like

structures play for each of them.

1.1 Associative learning in the cerebellum

In associative learning, a connection between two stimuli is learned, leading to an adaptive modifica-

tion of an organism’s neural (and often behavioral) response. For example, in classical conditioning,

a neutral conditioned stimulus (CS) such as a tone is made to be predictive of a subsequent appeti-

tive or aversive unconditioned stimulus (US), such as food or a shock. Animals that have undergone

associative learning will react to the CS in anticipation of the US.

Associative learning is composed of three parts. First, a neural representation of the sensory

world (and the CS) must acquire valence via association with a behaviorally meaningful US. Next,
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the learned relationship must be stored as a stimulus-independent long-term memory. Finally,

subsequent presentations of the CS alone must recall the stored memory and initiate the appropriate

behavioral response.

1.1.1 A cerebellar mechanism for associative learning

1.1.1.1 Cerebellar anatomy

The cerebellar cortex is a laminar structure composed of a highly stereotyped repeating arrangement

of cells [Eccles, Ito and Szentágothai, 1967]. Sensory information from the brain stem and spinal

cord enter the cerebellum via mossy fibers, which form synapses with cells of the deep cerebellar

nucleus as well as the intrinsic neurons of the cerebellum, called granule cells. Granule cells are

tiny and extremely numerous (there are around 50 billion in the human brain, receiving input

from 200 million mossy fibers). Each granule cell has 4-5 dendrites, each of which terminates in a

dendritic claw that synapses with a mossy fiber. Granule cells project their axons to the upper,

molecular layer of the cerebellum, where they extend as long parallel fibers, forming synapses with

the dendritic arbors of Purkinje cells.

Purkinje cell dendrites form intricate, two-dimensional sheets aligned perpendicular to the parallel

fibers, allowing them to receive massively convergent input from on the order of 200,000 granule

cells. In addition, Purkinje cells receive very strong input from a single climbing fiber. Climbing

fiber spikes trigger complex action potentials in Purkinje cells that propagate through the dendrites.

Climbing fiber spikes play an important role in cerebellar learning: high climbing fiber firing rates

induce LTD at granule cell-Purkinje cell synapses [Sakurai, 1987; Hirano, 1990], while low climbing

fiber firing rates induce LTP [Salin, Malenka, and Nicoll 1996]. Purkinje cells axons inhibit the

deep cerebellar nuclei (DCN), which form the output of the cerebellum and are involved in gating

motor behavior. The DCN also inhibits climbing fiber spikes to gate their control of learning.
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Figure 1.1: Left: Basic anatomy of the cerebellum showing mossy fibers, granule cells, Purkinje

cells and climbing fibers, reproduced from Dean et al [Dean, Porrill, Ekerot and Jörntell, 2010].

Also shown are basket cells, stellate cells, and Golgi cells, inhibitory interneurons which (with the

exception of Golgi cells) I will not discuss here. Right: Cerebellar circuitry and its role in classical

conditioning of the eyeblink response, reproduced from Medina and Mauk [Medina and Mauk 2000].

Mossy fibers (blue) convey information about the conditioned stimulus, in this case a tone, and

the climbing fiber (red) conveys information about the unconditioned stimulus, an aversive air puff

to the eye. Changes in Purkinje cell activity during learning alter activity in the deep cerebellar

nucleus, which after learning resembles a ramping up of activity that drives an eyeblink at the

appropriate time to block the unconditioned stimulus.

1.1.1.2 Cerebellar learning

Eyeblink conditioning is intimately linked with cerebellar inputs and outputs [Gormezano, Schnei-

derman, Deaux, and Fuentes, 1962]. In this paradigm, playing of a tone is followed by an air puff

directed at the eye. At the beginning of training, the air puff drives a reflexive blink response; how-

ever after 100-200 trials of pairing, the tone is sufficient to drive an anticipatory eyeblink timed to

match the presentation of the air puff. Substantial experimental investigation has determined that

mossy fiber inputs to the cerebellum encode information about the tone [Aitkin and Boyd, 1978;
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Steinmetz, Lavond, and Thompson, 1985], and climbing fibers encode timing of the air puff [Sears

and Stenmetz, 1991; Mauk, Steinmetz and Thompson, 1986; McCormick, Stenmetz and Thomp-

son, 1985], while the output of the DCN is required to drive the conditioned eyeblink response

[McCormick, Clark, Lavond, and Thompson, 1982; McCormick and Thompson, 1984].

In a large-scale computational model, Medina and Mauk showed how the components of cerebellar

circuitry could give rise to the conditioned response [Medina and Mauk, 2000]. Among mossy fiber

inputs to the cerebellum are fibers that respond either to the tone onset, or are active for the

duration of the tone. This representation of the tone drives activity of a subpopulation of granule

cells receiving input from one or more tone-driven mossy fibers. Because granule cells receive

combinations of inputs from mossy fibers encoding a variety of sensory stimuli, their responses

are theorized to encode mixtures of stimuli as sparse, high-dimensional patterns of activation, a

phenomenon referred to as expansion recoding [Marr, 1969; Albus, 1971].

When the air puff is presented at the end of the tone, climbing fibers fire a burst of spikes. Granule

cells that are active just before the climbing fiber burst undergo LTD at their synapses onto Purkinje

cells, causing a drop in tone-evoked excitatory drive to Purkinje cells at the time of the airpuff in

future trials. Purkinje cells are spontaneously active at high rates, driven by their granule cell

inputs, thus a drop in granule cell input leads to a transient pause in Purkinje cell activity. This

pause disinhibits the DCN, leading to initiation of a motor response (the conditioned eyeblink).

The increase in DCN activity also inhibits the climbing fibers at the time of the air puff, providing a

feedback mechanism for termination of learning: when DCN inhibition is strong enough to balance

the excitatory drive to climbing fibers elicited by the air puff, climbing fiber modulation of granule

cell-Purkinje cell synapses will cease. At the end of learning, the conditioned eyeblink will be a

purely feedforward response: rather than being initiated by the air puff, presentation of the tone

alone will result in an eyeblink, due to the effect of plasticity on granule cell drive of Purkinje

cells.

The learned response is specific to the conditioned tone: other stimuli will activate different sets of

mossy fibers, and thus drive different patterns of granule cell activity. Provided there is little overlap

between the trained set of granule cells and those activated by another stimulus, the Purkinje cell

response to the second stimulus should remain unaltered. Due to the large number of granule cells
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synapsing onto Purkinje cells, and the sparseness of each stimulus-evoked pattern of granule cell

activity, it is assumed that the correlation between granule cell representations of different stimuli

is vanishingly small [Tyrell and Willshaw, 1992; Itskov and Abbott, 2008].

1.1.2 Missing pieces in the learning model

This model relies on the granule cells to provide a sufficient basis for generating a temporally

specific Purkinje cell response: for the eyeblink to occur at/before the offset of the tone, excitatory

input to the Purkinje cell must drop in a window close to tone offset, meaning there must be

granule cells that are active specifically at the end of the tone presentation. The mossy fiber

input to the cerebellum has no representation of time, other than marking tone onset, and granule

cells do not form synapses with each other, thus ruling out feedforward input and granule cell

recurrence as sources of temporal diversity. One hypothesis is that granule cell responses acquire

additional temporal diversity via recurrent inhibition from Golgi cells [Medina and Mauk, 2000].

Unfortunately, the technical challenge of recording granule cell responses has left the nature of

the granule cell basis uncertain in the cerebellum. In the next chapter, I will present a set of

granule cell responses recorded in the electrosensory lobe of mormyrid fish by my collaborator Nate

Sawtell, which suggest that another interneuron, the excitatory unipolar brush cell, is responsible

for creating the necessary temporal diversity in the mormyrid granule cell population.

A second problem deals with specificity of the conditioned response. If the granule cell represen-

tation of stimulus A is highly correlated with that of stimulus B, altering synaptic weights of the

stimulus A cells to change the Purkinje cell response will also affect the cell’s response to stimulus

B. This is not necessarily a bad thing: part of the value of learning is the ability to generalize

from previous experiences. However excessive overlap between stimulus representations will make

it difficult to form a large number of associative memories. In a related problem, different stimulus

conditions have the potential to drive different number of mossy fibers. If some stimuli activate

many more granule cells than others, it becomes difficult for Purkinje cells to maintain a constant

baseline firing rate across stimuli, making changes in Purkinje cell firing rate due to learning diffi-

cult to detect. Marr and Albus hypothesized that recurrent Golgi cell inhibition could normalize

granule cell representations of different stimulus conditions, so that the same number of granule
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cells are active for any given stimulus and patterns of activation have little overlap [Tyrell and

Willshaw, 1992]. This raises the question of how recurrent normalization of stimulus representa-

tions affects generalization during learning. Again, the answer to this question lies in the details of

how mossy fibers and granule cells encode stimuli, information which has been difficult to obtain

through direct experimental study.

Finally, it must be noted that the model of climbing fiber-mediated plasticity at granule cell to

Purkinje cell synapses is an oversimplification of cerebellar plasticity. Climbing fiber activity is not

always correlated with learning, and in some paradigms learning occurs even when climbing fiber

activity is unmodulated [Ke, Guo and Raymond, 2009]. Experimental investigation has turned up

multiple sites of learning in the cerebellum, including plasticity at mossy fiber-DCN synapses that

is gated by Purkinje cell activity [Boyden, Katoh and Raymond, 2004; Medina, Garcia and Mauk,

2001]. Interestingly, Purkinje cells are known to be recurrently connected into inhibitory networks

whose function is unknown; there is evidence that they play a role in cerebellar development [Watt

et al, 2009], however their role in the mature cerebellum is unclear. As I will later discuss, recurrent

networks and multiple sites of plasticity are also found in the mushroom body and the mormyrid

electrosensory lobe, raising the question of whether this conserved anatomy reflects an important

second stage of cerebellar learning.

1.2 Negative image formation in weakly electric fish

The weakly electric mormyrid fish uses its active and passive electrosensory systems to navigate

its environment. While passive electroreception is not uncommon in fish, the mormyrid is one of

a small number of species that also uses electroreception for active sensing, by generating electric

fields using a specialized muscle-like organ in its tail. The active system creates two computational

challenges for the fish: first, the fish’s electric organ creates sensory artifacts that impair the function

of the passive electrosensory system. And second, the sensory image of the world produced by the

active system is distorted by effects of the fish’s posture on the shape of its electric field. The fish

solves both of these problems in the electrosensory lobe, an extension of the cerebellum in which

granule cell representations of the fish’s own movements and electric organ discharge commands

6



are used by Purkinje-like cells to construct “negative images” that cancel self-generated effects in

the electrosensory system.

1.2.1 Anatomy and origin of the passive and active electrosensory systems

The mormyrid fish I study here (Gnathonemus petersii) has two distinct sensory systems that

respond to electric fields. The first of these, called the passive system, is shared with lampreys and

early fish, including sharks, rays, lungfish, and sturgeons. (Dolphins and monotremes also have

a passive electroreceptive system, but this evolved separately.) In early vertebrates, skin-bound

electrosensory structures called ampullary organs are thought to have evolved from the lateral line

system (which senses water currents and vibration) to detect the weak, low-frequency electric fields

generated by the bioelectric processes of other aquatic organisms. Ampullary organs are flask-

shaped ducts filled with conducting jelly, that open to the water via a pore and are lined at the

base with hair-cell-like ampullary cells. Ampullary cells respond to external field frequencies from

DC up to 50 Hz, encoding the amplitude of fields in their firing rates. [Baker, Modrell, and Gillis

2013; Wilkens and Hofmann 2005]

Ampullary organs were lost in teleosts, and are not expressed in most modern fish, but reemerged

independently in two groups: Gymnotiformes in South America, and Mormyriformes in Africa.

In these two groups, reemergence of ampullary organs was followed (or possibly accompanied)

by development of the electric organ. In mormyrids, the electric organ is a muscle-like structure

composed of electrocytes, stocky cylinder-shaped electrically excitable cells arranged in series. Both

faces of electrocytes are innervated by a pool of spinal motorneurons; a burst of spikes in the

motorneuron pool evokes a single simultaneous discharge on one face of each electrocyte; this

discharge subsequently evokes a second discharge on the opposite face, reversing the flow of current

through the electric organ to give the electric organ discharge its characteristic biphasic shape.

(The biphasic waveform reduces the DC component of the EOD waveform, an adaptation that

reduces interference with the passive system, and may also reduce visibility to predators.) [Hopkins

1980]

Development of the electric organ was accompanied by formation of a second electrosensory struc-

ture, the tuberous organs. Similar in structure to ampullary organs, but with some differences in
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shape and a loose plug of epithelial cells covering their pore, tuberous organs are specialized for

detecting signals in the higher frequency range of the electric organ discharge. Together, the electric

organ and tuberous organs constitute the second, active electrosensory system, so called because

the fish uses its electric organ-generated field as read out by the tuberous organs to actively probe

its environment. Thus, unlike the passive system, the active system allows detection of objects that

don’t generate fields on their own. In mormyridae, tuberous organs are further divided into two

types: mormyromasts, used for active electrolocation, and knollenorgans, used for communication;

I will focus only on the former here. Unlike ampullary cells, mormyromasts encode the amplitude

of the local electric field using a latency code, although this signal is converted to a combination

of latency and amplitude encoding in the central nervous system. [Kawasaki 2005]

Knollenorgan Mormyromast

Ampullary organ
(low frequency)

Tuberous organs
(high frequency)

Receptor cells

Support cells

A�erent nerves

Epidermal ‘plug’

Conductive jelly

Dermis

Epidermis

Figure 1.2: Receptors of the passive and active electrosensory systems. Ampullary cells (left) and

mormyromasts (right) will be addressed here.

1.2.2 Function of the passive and active electrosensory systems

In some fish, passive electroreception is also thought to aid in long-distance navigation via detection

of the earth’s magnetic field [Kalmijn 1974; Collin and Whitehead 2004]. More commonly, the

passive electrosensory system is used for prey localization. Aquatic organisms generate weak electric

fields due to muscle and nerve activity, ventilation, and osmoregulation [Bodznick, Montgomery
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and Bradley 1992]. The low-frequency detection range of ampullary cells is tuned to detect these

signals, called bioelectric fields, which are typically DC or low frequency fields.

From a distance, the electric field generated by a fish can be approximated by a dipole, and field

strength drops with distance cubed [Bodznick and Montgomery 2005]. Unlike sound waves, there

is little propagation delay in generated electric fields, and the wavelength of low frequency fields

generated by organisms is extremely large, making direct source localization difficult; instead, the

emphasis of the electrosensory system is on detection of very small fluctuations in field intensity

[Hopkins 2005]. Behavioral analysis in weakly electric fish suggests that they are unable to directly

localize the dipole source of a generated field, but rather that they find field sources by moving

parallel to the local electric field vector, and follow this path to the field source– a behavior referred

to in early literature as galvanotaxis [Fraenkel and Gunn, 1940; Hopkins, Shieh, McBride and

Winslow 1997].

Active electroreception is so called because it is an active sensing system, one in which self-generated

energy is used to probe the surrounding environment. When the fish activates the muscle of its

electric organ, it generates a transient, high-frequency electric field around its body. Objects near

the fish with different conductivity than the surrounding water distort the amplitude of the fish’s

generated field. Conducting objects have lower impedance and thus more current flow than the

water around them, leading to a higher current density at the fish’s skin, making the EOD amplitude

appear larger. Nonconducting objects have the reverse effect, with lower current flow than water

leading to a lower current density at the skin, and smaller observed EOD amplitude.
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Figure 1.3: Electrosensory images of insulating (plastic) and conducting (metal) objects measured

at the fish’s skin; reproduced from von der Emde [von der Emde 1999].
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Figure 1.4: Effect of a resistive object on EOD field modulation at the skin, from a 2d electric

circuit model of the fish’s environment; reproduced from Caputi et al [Caputi, Burdelli, Grant and

Bell 1998]. Both the amplitude and shape of the object image change with distance from the skin.

In behavioral studies, fish have been found to discriminate objects based on their conductivity

[Lissmann and Machin 1958], capacitance [von der Emde 1990], distance, and shape [von der

Emde et al, 1998]. These properties can be extracted from the amplitude, slope, and size of the

electrosensory image.
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Figure 1.5: Proposed mechanisms for feature detection in active electrosensation, reproduced from

von der Emde [von der Emde, 2006].

The fish’s field evokes a burst of spikes in mormyromasts at short latency to the EOD. Modulation

in field amplitude at the skin change the latency of spikes in mormyromasts, which are tuned to

detect signals in the frequency range of the EOD [Bell 1990].

11



1.2.3 Representation of electrosensory information in the central nervous sys-

tem

The first stage of electrosensory processing in the central nervous system is the electrosensory lobe

(ELL), a six layer structure that receives input from all three types of electroreceptors [Meek, Grant,

and Bell 1999]. Inputs from the passive and active system are segregated into different anatomical

regions of the ELL: ampullary cells project to the ventrolateral zone, and mormyromasts to the

dorsolateral and medial zones.

Sensory input to the ELL from mormyromast afferents is processed by an elaborate and poorly-

understood layer of interneurons, depicted in the bottom half of Figure 1.6. The computational

role of these interneurons is unknown, as many have only been identified anatomically, however

they seem to transform the sensory input from mormyromasts from a spike latency code into a

combination of a firing rate and latency code. The transformed sensory input is ultimately received

by the basal dendrites of four key intrinsic cells of the ELL, the Large Ganglionic (LG), first and

second types of Medium Ganglionic (MG1 and MG2), and Large Fusiform (LF) cells; the first two

of these cells are “off” cells that are inhibited by sensory input, while the second two are “on” cells

that are excited by sensory input. The LG and LF cells form the two main outputs of the ELL,

while the two MG cell types are inhibitory interneurons that stabilize the responses of LG and LF

cells. In addition to sensory input on their basal dendrites, all four cell types have extensive apical

dendrites that form 10,000 (for LG and LF cells) to 20,000 (for MG cells) synapses with parallel

fibers from the eminentia granularis posterior (egp), a layer of granule cells that the ELL shares

with the cerebellum. This input plays an important role in sensory processing, as will be discussed

in the next section.

In the active system, the four key intrinsic cells have center-surround receptive fields on the skin,

with center widths averaging around 5.5-6 mm, and max widths averaging 8-11.2 mm; on cells

have slightly larger centers on average and do not always have an inhibitory surround [Metzen et

al 2008]. Receptive field size does not seem to vary along the length of the body, or possibly grows

slightly narrower towards the tail. Mormyromast density varies along the length of the fish, from 65

mormyromasts/mm2 at the tip of the chin organ (which operates as an electric fovea) to 10/mm2

at the head, down to less than 2/mm2 at the back of the fish [von der Emde et al 2008]. Thus the
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number of mormyromasts pooled by an intrinsic cell varies with the location of the cell’s receptive

field.
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Figure 1.6: Intrinsic circuitry of the ELL showing 14 identified cell types, most of which are

interneurons, reproduced from Meek et al [Meek, Grant, and Bell 1999]. Inhibitory cells are shown

in red, and excitatory cells in green; cells with unknown transmitters are indicated in black. Many

of the interneurons have not been characterized extensively, and will not be discussed here. The

four cells highlighted in gray operate akin to Purkinje cells in the cerebellum: from left to right,

they are the Large Ganglionic (LG), first and second types of Medium Ganglionic (MG1 and MG2),

and Large Fusiform (LF) cells. LG and MG1 cells are inhibited by sensory input (as indicated by

the (I) next to their names), while MG2 and LF cells are excited by sensory input. Highlighted in

blue is the mormyromast afferent that relays sensory information from the periphery.

1.2.4 Subtraction of self-generated signals in the electrosensory lobe

The fish’s own actions can hinder the performance of its active and passive electrosensory systems.

In the passive system, the electric organ discharge generates large, ringing fluctuations of ampullary
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cell firing rates that last on the order of 200 ms [Bell and Russell, 1978]. In the active electrosensory

system, changes in the fish’s posture alter the amplitude of the EOD field at the fish’s skin [Sawtell

and Williams, 2008]. A major function of the ELL is to cancel these self-generated artifacts, via

the widely-employed mechanism of corollary discharge [Bell, 1981; Requarth and Sawtell, 2014].

Corollary discharge is a system of motor-to-sensory feedback, proposed as a mechanism for distin-

guishing self- versus externally-generated sensory input [von Holst and Mittelstaedt, 1950; Sperry,

1950]. By keeping track of motor commands, the nervous system can inform the sensory processing

stream about the effects of movements, allowing self-generated inputs to be filtered or ignored by

the sensory system [Crapse and Sommer, 2009].

Figure 1.7: Negative images of externally driven MG cell spiking following a period of stimulation,

reproduced from Bell [Bell, 1981]. At the start of the experiment, the fish’s EOD command is

artificially paired with an externally applied electrical stimulus. While MG cell spiking is initially

strongly affected by the stimulus, the response is reduced following nine minutes of pairing with the

EOD. At the end of pairing, the stimulus is turned off, and a temporally specific negative image of

the paired signal can be seen in the MG cell firing rate.

When the fish discharges its electric organ, it relays a corollary discharge signal from the electric or-
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gan command nucleus to the ELL, via a population of mossy fibers originating in nuclei downstream

of the command nucleus [Meek, Grant, and Bell, 1999]. Like the cerebellum, the four Purkinje-like

intrinsic cells of the ELL (which I will refer to as efferent cells) receive massive convergent input

from a population of granule cells, which each receives input from a small number of mossy fibers

(granule cell-efferent cell synapses are indicated by green dots in Figure 1.6.) Like Purkinje cells,

efferent cells fire both normal action potentials and a second response called a broad spike; rather

than being driven by a climbing fiber as in the cerebellum, efferent cell broad spikes are evoked

by input from the electrosensory system onto the cell’s basal dendrite. If broad spikes evoked

by fluctuations in sensory input are time-locked to the EOD, they will, over time, drive synaptic

depression in granule cell-efferent cell synapses [Bell, Han, Sugawara and Grant, 1997], reducing

granule cell input within a temporally-specific window. Similarly, a drop in broad spike rates that is

time-locked to the EOD will drive potentiation of granule cell synapses. These two effects drive the

formation of stable, temporally-specific negative images of self-generated sensory input, such that

when granule cell and electrosensory input are summed in the efferent cells, only sensory signals

not predicted by the corollary discharge signal remain [Roberts and Bell, 2000; Williams, Roberts,

and Leen, 2003].
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Figure 1.8: Left: Anatomy of the ELL, this time highlighting the inputs to efferent cells that

underlie their role in negative image formation. This circuit will be discussed in more depth in the

next two chapters. Right: Proposed mechanism for cancellation of self-generated sensory artifacts

in the passive electrosensory system, adapted from Roberts and Bell [Roberts and Bell, 2000]. The

granule cells form a set of temporal basis functions (here shown as a hypothesized delay line), that

are sculpted via anti-Hebbian plasticity at their synapses onto efferent cells to form a negative

image of any sensory input that is time-locked to the EOD. This model will be discussed further

in the next chapter.

While the learning mechanism for negative image formation is well understood, the representa-

tion of corollary discharge information by the granule cell population had not been previously

explored: early models relied on idealized assumptions of granule cell responses, such as the de-

lay line portrayed in the right panel of Figure 1.8. In the following chapters, I will discuss two

forms of information represented by the granule cells—temporally-expanded encoding of the EOD

command, and proprioceptive signals—and how the representation of these signals impact negative

image formation by the ELL.
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1.3 Associative odor learning in insects

In chapters 4 and 5 of this thesis, I will discuss another structure involved in associative learning,

the mushroom body of the insect olfactory system. Remarkably, the anatomy of the mushroom

body and its readouts again resembles the architecture of the cerebellum [Farris, 2011]. In these

chapters, I discuss how the canonical associative learning circuit of the cerebellum can be mapped

onto the elements of the mushroom body, and investigate this model as a mechanism for formation

of odor-specific associative memories. Because I focus extensively on the anatomy of the insect

olfactory system in later chapters, I restricted this section to a review of associative conditioning

and olfactory memory in insects.

1.3.1 Classical conditioning with olfactory stimuli in insects

Aside from flies, olfactory learning and memory has been studied in a diverse group of insects,

including honeybees [Giurfa and Sandoz, 2011; Menzel, Erber, and Masuhr, 1974; Müller 2002],

locusts [Laurent and Naraghi, 1994] and cockroaches [Mizunami, Iwasaki, Nishikawa, and Okada,

1997]. Classical conditioning is often studied using the proboscis extension reflex, in which an

olfactory stimulus is followed by a sugar reward; after pairing, the insect learns to anticipate the

reward and will extend it proboscis upon presentation of the olfactory stimulus [Takeda 1961].

A second approach that has seen considerable success in flies is conditioned odor avoidance in a

T-maze, illustrated below [Jellies, 1981; Tully and Quinn, 1985].

1. 2. 3. 4.

Figure 1.9: Flies placed in one arm of a T-maze are presented with one of two behaviorally-neutral

odors, one of which is paired with a shock (panel 1), and the other not (panel 2). Flies are then

moved to the choice point of the T-maze and exposed to both odors (continued on following page)
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Figure 1.9: (continued) (panel 3); flies with working associative memory systems will avoid the arm

with the odor that has been paired with shock. Behavior is measured as the number of flies either

arm of the maze (panel 4).

In addition to conditioned odor attraction and avoidance, several variations of classical conditioning

have been studied in insects, particularly the honeybee. In one such example, the subject is first

presented with odor A paired with shock or reward, until a learned association is formed. The

subject is then presented for a comparable number of trials with a mixture of odors A and B,

followed by the same shock or reward. After pairing, subjects presented with odor B alone will

not exhibit the conditioned response, because they have not learned to associate odor B with

shock/reward. This effect is called blocking. In honeybees, there is some evidence that blocking

between odors in binary mixtures exists [Smith and Cobey, 1994], although it is not found in all

circumstances [Gerber and Ullrich, 1999]; the most recent evidence indicates that the degree of

olfactory blocking that occurs is proportional to the similarity between two odors in a mixture

[Guerrieri, Lachnit, Gerber, and Giurfa, 2005b].

Odor mixtures have also been used to study compound processing, a behavioral take on the XOR

problem [Rescorla and Wagner, 1972; Pearce 1987]. Odor mixtures could be represented in the

brain in two ways: as a sum of their constituent elements, or as a unique sensory object. In

olfactory conditioning experiments, honeybees were able to learn both “negative patterning”, in

which a single odor is rewarded, but not a mixture, and “positive patterning”, in which mixtures

were rewarded and individual odors were not [Deisig, Lachnit, Giurfa, and Hellstern, 2001]. An

investigation using pairs and triplets of odors found that the bee’s performance could be matched

by a model in which mixture representations were given by the sum of the representations of the

mixture elements, plus an extra term unique to the mixture [Deisig et al 2003].

1.3.1.1 Generalization of conditioned responses

In both flies and fish, I will discuss generalization and how it arises from stimulus representations.

Generalization is rarely studied in classical cerebellar learning experiments, although it does occur
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in some instances. For example, in eyeblink conditioning, altering the conditioned stimulus, for

instance by changing the pitch of the tone, will still elicit the conditioned response [Michael Mauk,

private communication]. Other changes of the conditioned stimulus, such as replacing the tone

with a light or changing the duration of the tone, fail to elicit the conditioned response.

Von Frisch observed that freely behaving bees trained to associate an odor with food reward tended

to generalize this association to other odors that, at least to humans, smelled similar [von Frisch

1919]. Systematic study of generalization using the proboscis extension reflex has confirmed that

while the reflex is evoked most strongly by a conditioned odor, bees do generalize the reflex behavior

to chemically similar odors- see Figure 1.10.

Figure 1.10: Probability of generalization of the conditioned proboscis extension reflex by honey-

bees, reproduced from Guerrieri et al [Guerrieri, Schubert, Sandoz, and Giurfa, 2005a]. Bees were

conditioned to produce the proboscis extension reflex to one of a panel of odors (vertical axis), and

then tested with the remaining odors (horizontal axis); the probability that a tested odor elicited

a conditioned response is indicated by color. Odors are arranged into chemically similar groups

(divided by black lines)– the roughly block-diagonal structure of the matrix suggests that bees were

more likely to respond with the conditioned response to chemically similar odors.

A conditioned response should presumably also be preserved when the conditioned odor is presented

at different concentrations, or in different mixtures of odors. Conversely, insects should be able
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to refine the specificity of their behavior: if odor A is consistently associated with reward/shock,

but odor B is not, the insect should be able to learn to respond only to odor A. In chapters 4

and 5, I will discuss how generalization of odor response could relate to their representation in the

mushroom body, and discuss learning rules that lead to stronger or weaker generalization across

odors.

1.3.2 Computational role of the mushroom bodies

Figure 1.11: Anatomy of the drosophila central nervous system showing prominent structures,

adapted from Heisenberg [Heisenberg, 2003]. The mushroom bodies are shown in pink, optic lobes

in green, and antennal lobes in orange. A second key structure of the olfactory processing stream,

the lateral horn, is indicated in blue.

The mushroom bodies are large bilateral structures found in the brains of most insects. They are

the first central stage of olfactory sensory processing, receiving input from the antenna lobe (the

insect equivalent of the olfactory bulb). While predominantly studied in the context of olfaction,

the mushroom body in some insects also receives input from visual, gustatory, mechanosensory and

proprioceptive systems [Farris, 2011], and has been implicated in tasks as diverse as spatial learning

[Mizunami, Weibrecht, and Strausfeld, 1998], temperature preference behavior [Hong et al 2008],

and conditioning of courtship behavior [McBride et al, 1999].
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1.3.2.1 Genetic methods for investigating circuit function in drosophila

Drosophila neuroscience has benefited immensely from the sophisticated genetic methods available

for manipulation of neural activity. In chapter 5 I will discuss one such tool, the GAL4-UAS

transgene system, that allows extremely precise genetic labeling of small populations of neurons.

Unlike mammals, computation in the central nervous system of flies is typically mediated by small

sets of genetically distinct neurons; many neurons in the fly can be individually identified (the

intrinsic cells of the mushroom body, called Kenyon cells, are a rare exception.)

Another genetic tool that has seen great success when used in conjunction with GAL4 lines is the

temperature-sensitive dynamin allele shibire [Kitamoto, 2001]. Dynamin is a protein involved in

synaptic vesicle recycling; the shibire allele ceases to function when flies are exposed to elevated

temperatures (around 29◦ C), causing neurotransmission to cease within 1-2 minutes in all cells

expressing the shibire allele. Restoration to normal temperatures quickly reverses this effect. Se-

lective expression of shibire in a subset of neurons thus allows their function to be studied during

specific stages of learning and memory.

1.3.2.2 Evidence for involvement of the mushroom bodies in associative learning

Chemical ablation of the mushroom bodies in drosophila larva yields adult flies that behave nor-

mally, but are unable to learn conditioned odor avoidance in the T-maze task [de Belle and Heisen-

berg, 1994]. This result was confirmed by a gentler study in which disruption of synaptic transmis-

sion in the mushroom body using the shibire transgene specifically impaired retrieval of memories,

but not memory formation [Dubnau, Grady, Kitamoto and Tully, 2001; McGuire, Le, and Davis,

2001]. Several drosophila mutants showing impaired memory performance, such as dunce, rutabaga,

DC0, PKA-RI, leonardo, Volado, fasciclinII, and pumilio have gene products that are preferentially

expressed within the mushroom bodies [Davis, 2005].

Refinement of genetic targeting to subsets of neurons in the mushroom body suggests that different

populations of Kenyon cells, the granule-cell-like intrinsic neurons that represent odors, are involved

in memory acquisition, consolidation, and retrieval [Krashes et al 2007]. Shibire-mediate disruption

of neurons peripheral to the mushroom body, including a giant serotonergic neuron (DPM) [Keene
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et al 2004; Tanaka, Tanimoto, and Ito 2008] and a giant gabaergic neuron (APL) [Wu et al 2011], has

implicated them in learning and memory as well. I will discuss the hypothesized role of mushroom

body neurons in associative memory formation in depth in chapter 5.
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Chapter 2

Predicting the sensory consequences

of motor commands in the mormyrid

passive electrosensory system

Weakly electric mormyrid fish emit brief EOD pulses for communication and active electrolocation.

However, the fishs own EOD also affects passive electroreceptors tuned to detect external fields.

Previous studies have shown that such interference, a ringing pattern of activation that may persist

for as long as the interval between EODs [Bell and Russell, 1978], is cancelled out in MG cells

through the generation of motor corollary discharge responses that are temporally-specific negative

images of the sensory consequences of the EOD [Bell, 1981]. Elegant theoretical studies [Roberts

and Bell, 2000; Williams, Roberts, and Leen, 2003] have suggested that anti-Hebbian spike timing-

dependent plasticity known to exist at synapses from GCs onto MG cells [Bell, Han, Sugawara

and Grant, 1997] could provide a basis for negative image formation, but this work depends on

the untested assumption that GC corollary discharge responses exhibit a rich temporal structure

spanning the approximately 200 ms period over which negative images can be generated [Bell 1981;

Bell, 1982; Bell, Caputi, Grant, and Serrier, 1993] (Fig. 1a). GCs, located in the eminentia gran-

ularis posterior (EGp) overlying the electrosensory lobe (ELL) molecular layer, receive excitatory

input from extrinsic mossy fibers (MFs) originating from neurons in a number of brain regions and
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from UBCs located within EGp itself (Fig. 1b). Though there are a small number of published

recordings of delayed corollary discharge responses from unidentified elements in the EGp itself

[Bell, Grant, and Serrier, 1992], corollary discharge responses of MFs appear to be extremely brief

and minimally delayed, resembling literal copies of the EOD motor command [Bell, Grant, and

Serrier, 1992; Bell and von der Emde, 1995; Sawtell, Mohr, and Bell 2005; von der Emde and

Bell, 1996]. Moreover, delayed or temporally diverse corollary discharge responses have not been

reported for GCs. Therefore, we set out to determine: 1) whether delayed and temporally diverse

GC responses exist and, if they do, 2) how they are generated and 3) if they are sufficient to support

negative-image formation.

As in previous studies, we take advantage of an awake preparation in which fish continue to emit

the motor command to discharge the electric organ, but the EOD itself is blocked by neuromuscular

paralysis, allowing corollary discharge responses, i.e. neural activity in sensory areas that is time-

locked to the EOD motor command, to be studied in isolation from sensory effects.

2.1 Methods

2.1.1 Classifying Mossy Fibers

The diversity of mossy fiber responses readily suggests division into four categories based on the

timing and reliability of their EOD-triggered responses. We named these categories early, medium,

late and pause, after the timing of their activity relative to the EOD. Two of these categories (early

and medium) have responses which resemble those of cells recorded in two extrinsic sources of

mossy fibers, PCA and PE. The other two categories (late and pause) do not resemble any known

extrinsic regions, but do show strong similarity to responses recorded from unipolar brush cells, an

interneuron located in EGp which also produces mossy fibers that synapse onto granule cells.

To make the mossy fibers classes more concrete, we fit a multinomial logistic regression model to

the EOD-triggered responses of cells recorded in PCA and PE, and non-pausing UBCs, and used

this model to assign labels of early, medium, or late to the recorded mossy fibers (the pause mossy

fibers were hand-classified, as their responses were clearly distinct from the other three.) To train
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the model, we took a set of 12 cells recorded in PCA, 28 from PE, and 10 UBCs, labeling these as

early, medium, and late respectively. We tested several methods of parameterizing cell responses,

and arrived at a set of three parameters which minimized the classifier error on holdout data (2.67%

error in a set of 10 cells.) Specifically, these parameters were:

1. Time of first rise: the fist time relative to the EOD at which the smoothed, trial-averaged

firing rate of the cell achieves 75% of its maximum rate.

2. Half-width of response: the width of the first peak for which the cell’s smoothed, trial-averaged

firing rate is above 50% of its maximum rate.

3. Spiking variability: the total variance of the cell’s spike times across trials and time.

2.1.2 Data Collection and Model Setup

We collected data from 135 mossy fiber and 170 granule cells. For each cell we have two simultaneously-

recorded channels: the first channel contains either spike times of an extracellularly-recorded mossy

fiber or the membrane potential of a patched granule cell, and the second channel contains EOD

command times recorded from the fish’s command nucleus. Mossy fiber spiking was recorded at

40kHz, and granule cell membrane potentials at 20kHz. For the fitting of mossy fiber inputs to gran-

ule cells, we interpolated both sets of recordings up to 200kHz, so as to more accurately simulate

our synaptic filters. During simulation of synthetic granule cells, we precomputed the convolution

of synaptic and membrane filters, and were able to relax our sampling rate back to 20kHz.

For the purposes of this study we will only consider granule cell responses to single EOD commands.

For each recorded mossy fiber and granule cell, we identified EOD command events for which there

were more than 200 milliseconds following and preceding the command. These are termed well-

isolated commands. We broke the mossy fiber/granule cell recordings into segments occurring from

25 milliseconds before to 200 milliseconds after each well-isolated command, and averaged across

segments from each cell to obtain its command-triggered average response. Both mossy fiber and

granule cell responses to the EOD command are highly stereotyped, and granule cell responses

resemble weighted sums of a small number of mossy fiber inputs. This observation is consistent

with the anatomy of granule cells, which have a small number of dendritic claws, each of which
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forms a microglomerulus with a single mossy fiber.

To study negative image formation on the scale of an MG cell, we sought to generate 20,000 model

granule cells with response properties similar to experimentally-recorded granule cells. We first

constructed a current-based integrate-and-fire model granule cell and selected inputs and synaptic

weights to fit its command-triggered average membrane potential to the responses of recorded gran-

ule cells. Model cell inputs were selected from among the population of recorded mossy fibers, allow-

ing up to three inputs to each model granule cell and constraining input weights to be non-negative,

reflecting the strictly excitatory nature of mossy fiber - granule cell synapses. The distribution of

inputs from the four mossy fiber classes to the model fits of recorded granule cells was consistent

with a random mixing model in which each input to the model granule cell was selected indepen-

dently from the pool of recorded mossy fibers, with a fixed probability of input selection from each

of the four mossy fiber classes. We then used the mossy fiber class-dependent input probabilities

and synaptic weights to generate 20,000 synthetic granule cells. Distributions of spikes per EOD

command and time of peak EOD-triggered membrane potential were not statistically different in

recorded and generated cells, supporting the conclusion that the response properties of generated

cells were consistent with those of the recorded cells. We therefore assert that the model granule

cells we developed provide a representative example of the pool of granule cells available to an MG

cell as temporal basis functions for negative image formation.

2.1.3 Fitting the Model to Recorded Granule Cells

Inputs to our model granule cell were selected from the population of recorded mossy fibers so as to

fit the model’s response to the trial-averaged membrane potentials of each of 170 recorded granule

cells. We notionally separate the problem of fitting into the two problems of 1) finding a likely set

of mossy fiber inputs from our population and then 2) determining the weights of the slow and fast

components of each model synapse. Fitting is constrained by the fact that granule cells receive a

small number of inputs (here restricted to 3 or fewer), all of which are excitatory.

A subpopulation of mossy fibers, all of them late-spiking, did not spike on every trial. Similarly, a

small number of recorded granule cells had late EPSPs on a fraction of the total recorded trials; these

late EPSPs often had an impact on the cell’s spiking, but because they were infrequent they were
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difficult to detect in the cell’s trial-averaged membrane potential. To prevent underestimation of

the synaptic weight on these late inputs, we discarded non-spiking trials when computing the trial-

averaged responses of mossy fibers, as well as trials without late input in the affected granule cells.

During simulation of synthetic granule cells with late input, non-spiking trials were included.

2.1.4 Finding Synaptic and Membrane Time Constants

Granule cells were modeled as a single-compartment current-based leaky integrate-and-fire neuron

receiving 1-3 excitatory inputs from recorded mossy fibers. The mossy fiber-granule cell synapse

was modeled as a weighted sum of two exponential filters, a fast filter (τfast = 0.2ms) and a

slow filter (τslow = 37.8ms), where the weights on the fast and slow filters were fit independently.

This combination of timescales allowed us to fit both the fast rise of granule cell EPSPs and the

observed integration of tonically-spiking proprioceptive and pause inputs. The values of the two

time constants fit were consistent with other models of granule cell response properties [Schwartz

et al 2012].

We hand-fit the fast synaptic time constant (τfast = 0.2ms) to match the EPSP width in granule

cells receiving input from early mossy fibers: these inputs spiked in high-frequency bursts (∼600Hz)

but individual EPSP peaks could still be readily resolved even in the command-triggered average

granule cell responses. This suggests a fast synaptic time constant of below 1ms; the chosen value

of 0.2ms best fit the shape of the fast early EPSPs.

To fit the slow synaptic time constant, we took single-trial traces recorded from granule cells

receiving input from a single mossy fiber, and inferred the input spike train semi-automatically by

low-pass filtering the second derivative of the membrane potential to identify inflection points arising

from EPSPs; because EPSPs were large and temporally sparse, these points could be identified

with high confidence. Using the inferred spike train as input to our integrate-and-fire model, we

constructed the slow and fast filtered components of the synaptic input for fixed τslow, and weighted

the two components by least-squares to fit the recorded granule cell trace. We repeated this for a

range of τslow in a total of 360 traces from 10 granule cells, and chose for each trace the τslow which

minimized the mean squared error of the fit. The error of the least-squares fit for each trace had a

definite minimum with respect to the time constant τslow; averaging across the 10 fit cells gave our
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τslow of 37.8ms.

The membrane time constant of the recorded granule cells was determined experimentally to be

τmembrane = 8.7ms.

2.1.4.1 Input selection

Restricting the number of mossy fiber inputs to our model granule cell would ideally be accomplished

via L0 optimization, which constrains the number of active (nonzero) inputs, but such an approach is

in general computationally intractable. As a work-around, we use a more tractable L1 optimization

problem to cut our collection of mossy fibers down to a small number of candidate inputs; we may

then solve the L0 problem on this restricted pool through brute force. Defining the membrane

potential of the granule cell we are trying to fit as v(t), we seek up to three mossy fiber inputs xi(t)

and weights wifast and wislow that minimize:

C(wislow, w
i
fast) =

1

2T

T∑
t=0

(
(v(t)− v̄)−

(∑
i

wislow(hislow(t)− h̄islow) +
∑
i

wifast(h
i
fast(t)− h̄ifast)

))2

+α1 ·
(∑

i

|wislow|+
∑
i

|wifast|
)
.

Where hislow/fast(t) = gτmembrane
∗gτslow/fast

∗xi(t), the inputs and outputs have been mean-subtracted,

and T is the length of the trial-averaged membrane potential (here 225 ms sampled at 20kHz.) The

value of α1 determines the magnitude of the L1 penalty on fits; we choose α1 such that we find

up to 10 candidate mossy fiber inputs. We implement the constraint that the weights must be

non-negative using an adjusted Least-Angle Regression (LARS) solution of the LASSO problem

that selects only inputs which are positively correlated with the target granule cell trace.

2.1.4.2 Weight fitting

After using LARS to select up to 10 candidate inputs for each granule cell, we refine the input

weights to produce our final fit. We did not use LARS to choose the 1-3 mossy fiber inputs directly,

because sparse solutions to the cost function above are dominated by the L1 penalty term, which

reduces the number of fit inputs at the cost of overly penalizing the input weight magnitudes and
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therefore yields poor quality fits. By instead using LARS to reduce the pool of candidate inputs

to 10, we can solve our original L0 optimization problem on this restricted pool of possible inputs,

and find the best fit by exhaustively enumerating possible input combinations.

To solve the L0 optimization problem, we enumerate all combinations of one, two, and three

inputs selected from among our 10 candidate mossy fibers. This gives
(

10
3

)
+
(

10
2

)
+
(

10
1

)
= 175

possibilities, and we need a fast method to search through them to find adequate fits to the granule

cell. Consequently, we set up the following objective:

C(wislow, w
i
fast) =

1

2T

T∑
t=0

(
(v(t)− v̄)−

(∑
i

wislow(hislow(t)− h̄islow) +
∑
i

wifast(h
i
fast(t)− h̄ifast)

))2

+α0 ·
∑
i

I
(
|wislow|+ |wifast| > 0

)
.

Where I is the indicator function. Adjusting the value of α0 gives the lowest-MSE model fits that

use one, two, or three mossy fiber inputs. For each granule cell fit, we manually selected the value

of α0 that best captured all features of the recorded cell’s command-triggered response, confirming

the quality of the fit by eye.

2.1.5 Random mixing test

Granule cell categories (E, M, L, P, EM, EL, EP, ML, MP, LP, EML, EMP, ELP, MLP, and N,

where E =is early, M = is medium, L = is late, P = is pause, and N = is none) were assigned to

the 169 recorded granule cells depending on the mossy fibers selected as inputs to the fit model

granule cells. We constructed a random mixing model with the following assumptions: (1) Each

granule cell has three sites for mossy fiber synaptic inputs; (2) The probabilities of a given input

being of E, M, L, and P type are given by PE , PM , PL, and PP , with PE + PM + PL + PP ≤ 1.

(3) The type of input received at one mossy fiber-granule cell synapse is independent of that

received at any other synapse. We fit the input type probabilities to the model granule cell fits

by minimizing the Chichi-squared statistic. The category frequencies included all possible input

combinations that produced a granule cell of a given category; for example, EEM was calculated

as 3P 2
EPM + 3PEP

2
M + 6PEPM (1− PE − PM − PL − PP ).
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2.1.6 Generating model cells

We introduced two sources of variability to our model based on observed sources of variability in

recorded cells. We found trial-to-trial variability in peak height of recorded single EPSPs to be

normally distributed with σ = 0.224 mV; during simulation of model granule cells, we sampled

this distribution for each mossy fiber spike. As shown previously [Sawtell, 2010], in addition to

receiving corollary discharge inputs, some granule cells (84 of 212 recorded in the present study)

also receive input from mossy fibers that fire at high rates, independent of the EOD command.

Many such ’tonic’ mossy fibers convey proprioceptive information [Bell and von der Emde, 1995;

Sawtell 2010]. We added tonic input to our model based on 72 tonic mossy fibers recorded in

a previous study15. The probability of a granule cell receiving tonic input was computed under

the assumption of random mossy fiber mixing, and we set the synaptic weight of tonic inputs to

model granule cells by sampling a Gaussian distribution fit to observed tonic EPSP sizes (2.5 ± 0.9

mV). Using the mossy fiber input probabilities fit from our random mixing model, we randomly

determined whether each “dendrite of a given model granule cell received early (PE = 0.425 ),

medium (PM = 0.075), late (PL = 0.050), pause (PP = 0.050), tonic (PT = 0.157), or no input

(PN = 0.243). We then chose a particular mossy fiber response of the previously-determined class

as the source of input to that “dendrite”; we assumed that a dendrite is equally likely to choose

any of the mossy fibers within a given class. For each synapse, we set the fast and slow components

of the synaptic weight by randomly sampling from the pool of all fast+slow weight pairs obtained

from fitting the granule cell model to recorded granule cell responses. Finally, if a model granule

cell received input from one or more late mossy fibers, we set for each such fiber a probability of

that mossy fiber being active after a given command; this probability was drawn from a uniform

distribution. This choice was motivated by the observation that the probability of spike firing

varied widely across recorded late mossy fibers (unlike the other response classes, which fired after

every command).

We then added a spiking threshold Vthresh to model cells, measured relative to the average granule

cell membrane potential measure before the EOD command, Vrest. In model granule cells receiving

only early, medium and/or late mossy fiber input, Vrest = EL. In model granule cells receiving

pause or tonic input, Vrest = EL+
∑

i r̄
i(wislow

∫
Eslow(t)dt+wiFast

∫
Efast(t)dt, where r̄i is the average
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firing rate of each pause/tonic input. We measured Vrest and Vthresh in 196 granule cells, and fit the

distribution of Vthresh - Vrest with a Gaussian with µ = 20.2 mV, σ = 5.97. To set the threshold

of model granule cells, we calculated Vrest and then sampled granule cell Vthresh = Vrest +N (µ, σ),

resampling if Vthresh < Vrest. Upon spiking, the cell was clamped to EL for 4 ms. To simulate the

activity of our model granule cell on a single trial, we randomly drew one recorded trial (25 ms

before to 200 ms after the EOD command) from each of its presynaptic mossy fibers to be used as

input.

2.1.7 Simulating negative image formation

We modeled the medium ganglion cell as a passive, current-based leaky unit receiving excitatory

input from 20,000 model granule cells (ri(t)) and sensory input (s(t)), with anti-Hebbian spike

timing-dependent plasticity at granule cell-medium ganglion cell synapses (wi), and EPSP (E) fit

to granule cell-evoked EPSPs recorded intracellularly in medium ganglion cells [Grant et al 1998].

Because the timescale of learning is slow, we assumed the wi’s to be constant over a single command

cycle. s(t) was taken from Fig. 1b of Bell and Russell [Bell and Russel, 1978].

The granule cell- medium ganglion cell learning rule has the form L(t) = ∆+−∆−L0(t) where t =

tMG spike−tGC spike and L0(t) determines the time dependence of associative depression. Theoretical

analysis (see section 2.1.8) has shown that negative images are guaranteed to be stable when L0 = E .

The timescale of E agrees learning rules fit to experimental data [Roberts and Bell, 2000], thus we

use here. Scaling of the weights by L was chosen to be multiplicative; because the change in synaptic

weights during negative image formation was small, we simply scale by the weight before learning

(wi0) for each synapse. We set wi0 =
(∑

i(E ∗ ri)(timax)
)−1

where timax = argmaxt(r
i(t)), which

brings the weighted granule cell input to the medium ganglion cell close to constant over time.

Thus, with the approximation of linearizing the medium ganglion cell spiking response about the

equilibrium voltage V0 (see section 2.1.8), wi evolves as dwi/dτ = −wi0(∆+
∫
ri(t)dt−∆−

∫
V (t)(L0∗

ri)(t)dt), where τ is the period of each EOD cycle. We fit ∆+ and ∆− to negative images recorded

experimentally: given experimentally- recorded membrane potential changes ∆VtD(t) induced by a

broad spike at time tD ∈ {0, 25, 50, 75, 100, 125, 150} ms, and predicted membrane potential change

∆ṼtD(t) =
∑

iw
i
0(E ∗ ri)(t)

(
∆+

∫
ri(s)ds+ ∆−

∫
δ(s− tD)(L0 ∗ ri)(s)ds

)
, we chose ∆+ and ∆− to
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minimize C(∆+,∆−) =
∑

tD
minCtD

∫ (
∆VtD(t) − ∆ṼtD(t) + ctD

)2
dt using standard linear least-

squares, where ctD is a constant offset term used to remove the effect of any net drift in membrane

potential.

To monitor the degree of negative image formation during simulation, given a total change to each

weight, ∆wi, we defined the residual signal error as
[ ∫ (

s(t) + ∆wi(E ∗ ri)(t)
)2
dt
]
/
∫
s(t)2dt.

2.1.8 Stability Analysis

We follow the approach of Williams, Roberts, and Leen [William, Roberts, and Leen, 2003]. The

MG cell spiking rate is a function of the MG cell voltage, f(V ), which we linearize around the

steady state value V0 (defined below). V (t) and ri(t) are periodic on a fast time scale (the EOD

response), denoted by t, whereas the wi’s change on the slower timescale of many EODs, denoted

by τ .

We thus obtain the following dynamical system for V (t) and wi over many EODs:

dV (t)

dτ
=
∑
i

(E ∗ ri)(t)
dwi
dτ

(2.1)

dwi

dτ
= −wi0∆−

∫
[f(V (t))− f(V0)](L0 ∗ ri)(t)dt

= − df

dV

∣∣∣∣
V0

wi0∆−
∫

[V (t)− V0](L0 ∗ ri)(t)dt+O((V (t)− V0)2), (2.2)

where V0 = f−1
(
−∆+/(∆−

∫
L0(t) dt)

)
is the voltage at which the nonassociative and associative

plasticities balance4.

To confirm that our system will converge to form a stable negative image, we next generalized a

result proved in 4 for the case of a delay line basis, that negative images are stable when L0 has

the same shape as E , to the case of an arbitrary GC basis.

Given a voltage perturbation V (t) arising from sensory input to the MG cell, we defined Ṽ (t) ≡
V (t)−V0, linearized around V (t) = V0, and substituted equation (2) into (1) to obtain the dynamics

of the voltage perturbation from V0.

dṼ (t)

dτ
= − df

dV

∣∣∣∣
V0

∑
i

wi0∆−(E ∗ ri)(t)
∫
Ṽ (s)(L0 ∗ ri)(s)ds (2.3)

32



In the case that the learning rule matches the shape of the EPSP, i.e. L0 = E , we have

dṼ (t)

dτ
= − df

dV

∣∣∣∣
V0

∑
i

wi0∆−(E ∗ ri)(t)
∫
Ṽ (s)(E ∗ ri)(s)ds

We evaluated the stability by taking the inner product of a displacement from the equilibrium with

the derivative.∫
Ṽ (t)

dṼ (t)

dτ
dt = − df

dV

∣∣∣∣
V0

∑
i

wi0∆−
∫
Ṽ (t)(E ∗ ri)(t)dt

∫
Ṽ (s)(E ∗ ri)(s)ds

= − df

dV

∣∣∣∣
V0

∑
i

wi0∆−
(∫

Ṽ (t)(E ∗ ri)(t)dt
)2

≤ 0 (2.4)

We thus see that any voltage perturbation within the subspace spanned by the EPSP-convolved

firing rates will decay back to the equilibrium (note that ∆− and all wi are positive). Voltage

perturbations outside of this subspace will be left unaltered by the learning rule.

2.1.8.1 Learning Dynamics Analysis

Discretizing t and s, Equation 2.3 may be written

dṼ (t)

dτ
=
∑
s

A(t, s)Ṽ (s) (2.5)

where

A(t, s) = − df

dV

∣∣∣∣
V0

∑
i

wi0∆−(E ∗ ri)(t)(L0 ∗ ri)(s)

The matrix A determines the dynamics by which the voltage perturbation Ṽ decays due to learning.

Eigenvectors of A reflect temporal patterns which can be cancelled by the GC basis {ri}; we

subsequently refer to these as eigenmodes. The eigenvalue corresponding to each eigenmode reflects

the rate at which that pattern is cancelled by the basis, also referred to as its rate of decay.

2.1.8.2 Learning Rate Normalization

On a given trial, the sensory input to the MG cell is a noisy observation h̃(t, τ) of the true EOD-

driven input h(t):

h̃(t, τ) = (E ∗ h)(t) + (E ∗ η)(t, τ)− V0,
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where η is the sensory observation noise that reflects sensory signals and spiking noise uncorrelated

with the EOD. Plugging into the linearized weight dynamics,

dwi

dτ
= − df

dV

∣∣∣∣
V0

wi0∆−
(∫

((E ∗ h)(s)− V0)(L0 ∗ ri)(s)ds+

∫
(E ∗ η)(s, τ)(L0 ∗ ri)(s)ds

)
The first of these terms decays to zero provided (E ∗h)(t) is in the span of {(E ∗ ri)(t)}. The second

term does not decay, but rather introduces a small trial-to-trial fluctuation in the weights wi due

to interaction of η(t, τ) with the learning rule.

We next introduce a positive learning rate λ, substituting ∆+ → λ∆+ and ∆− → λ∆− in the

learning dynamics (note that introducing λ does not change the stability of learning or the value

of V0 provided λ is small). The weight dynamics become

dwi

dτ
= −λ df

dV

∣∣∣∣
V0

wi0∆−
(∫

((E ∗ h)(s)− V0)(L0 ∗ ri)(s)ds+

∫
(E ∗ η)(s, τ)(L0 ∗ ri)(s)ds

)
Smaller values of λ decrease the amplitude of the noise-induced weight fluctuations, but also increase

the number of trials required for negative image formation. Thus given some assumption on the

structure of η (such as its power spectrum), we may choose λ for a given basis such that the

magnitude of noise-induced weight fluctuations is fixed.

2.2 Results

2.2.1 Corollary discharge responses in MFs, UBCs, and Golgi cells

Consistent with previous studies [Bell, Grant, and Serrier 1992; Bell and von der Emde, 1995;

Sawtell, Mohr, and Bell, 2005; von der Emde and Bell, 1996], extracellular recordings from two

midbrain nuclei that are the main sources of corollary discharge input to GCs revealed responses

restricted to short delays after the EOD motor command (Figure 2.1c, PCA, n=12; PE, n=31).

To further characterize corollary discharge inputs to GCs we used high-impedance glass micro-

electrodes to record from putative MF axons within EGp itself (see Methods for details of MF

recordings). Most MFs recorded in EGp exhibited responses restricted to short delays, termed

early and medium, that closely resembled the responses recorded in midbrain neurons that send

MFs to EGp (Figure 2.11d,e; early, n=54; medium, n=28). Thus corollary discharge inputs to EGp
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appear insufficient for canceling the effects of the EOD over their entire duration. However, we also

found other putative MFs within EGp, termed late and pause, that exhibited far more delayed and

diverse corollary discharge responses (Fig. 1d,e; late, n=26; pause, n=27). Late MFs fire bursts or

single action potentials at long delays after the EOD command (>50 ms), while pause MFs show

highly regular tonic firing that ceases abruptly around the time of the command. Resumption of

firing is often marked by precise time-locking of spikes at long delays relative to the EOD command

(Figure 2.1d, bottom).

35



cmnd 200 ms

61

26

10

24

63

182 Hz
early

medium

late

late

pause

pause

U
B

C
G

ol
gi

P
C

A
P

E

d

a b

c

f

cmnd 200 ms

cmnd 200 ms

ea
rly

m
ed

iu
m

la
te

pa
us

e
0 1

e

normalized 
firing rate

GC Golgi

UBC

MG

sensory input

MF

E
LL

E
G

p

cmnd 200 ms

sensory input

cmnd 200 ms

sensory
input

negative
image

sum

MG response

?
GC responses

MG
cell

cmnd 200 ms

Figure 2.1: Corollary discharge responses in MFs, UBCs, and Golgi cells. a) Schematic of negative

image formation and sensory cancellation in an MG cell. The question mark indicates that temporal

patterns of corollary discharge response in GCs are the critical unknown in current models of sensory

cancellation. b. Schematic of the circuitry of the EGp and ELL. Corollary discharge signals related

to the EOD motor command are relayed via several midbrain nuclei (not shown) and terminate in

EGp as MFs. UBCs give rise to an intrinsic system of MFs that provide additional excitatory input

to GCs. Golgi cells inhibit GCs and UBCs. MG cells in ELL receive both sensory input and GC

input via parallel fibers. c. Corollary discharge responses of units recorded in the paratrigeminal

command associated nucleus (PCA) and the preeminential nucleus (PE). Each row shows the

smoothed (5 ms Gaussian kernel) and normalized average firing rate of a single unit. In this and

subsequent figures time is defined relative to the EOD motor command (cmnd), which is emitted

spontaneously by the fish at 2-5 Hz. Color bar in e applies also to c and f. d. Example spike rasters

(grey dots) and smoothed firing rates (black curves) for putative MFs recorded extracellularly in

EGp illustrating four temporal response classes (early, medium, late, and pause). e. Corollary

discharge responses of putative MFs recorded extracellularly in EGp. Each row represents the

smoothed and normalized average firing rate of a single MF, with (continued on following page)
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Figure 2.1: (continued) 10 examples of each class shown. f. Corollary discharge responses of UBCs

(n = 19) and Golgi cells (n = 8) recorded intracellularly. Each row represents the smoothed and

normalized average firing rate of a single cell. Note the similarity with late and pause MFs, shown

in e.

A candidate for the source of late and pause responses recorded in EGp are the UBCs that, in

mormyrid fish as in the mammalian cerebellum and dorsal cochlear nucleus [Mugnaini, Sekerkova

and Martina, 2011], give rise to an intrinsic system of MF axons that provides additional excitatory

input to GCs [Campbell, Meek, Zhang and Bell, 2007]. Whole-cell recordings from UBCs provided

direct support for this idea. UBCs (n=54), GCs (n=184), and Golgi cells (n=11) could be clearly

distinguished on the basis of their electrophysiological properties and morphology. Strikingly, corol-

lary discharge responses in UBCs are delayed and diverse, and they closely resemble late and pause

responses recorded extracellularly (compare Figure 2.1e and Figure 2.1f). An objective classifica-

tion algorithm supports our conclusion that early and medium responses are extrinsic MF axons

originating from midbrain nuclei while late and pause responses are intrinsic MF axons originating

from UBCs.

Possible mechanisms for generating diverse and delayed responses in UBCs were revealed by our

intracellular recordings. Prominent post-inhibitory rebound firing was observed in a subset of UBCs

(Figure 2.2a), so rebound evoked by an inhibitory input arriving at a short delay after the EOD

command (Figure 2.2b) could account for their delayed firing. Suggestive of such a mechanism,

the morphologically identified UBC shown in Figure 2.2a,b fired bursts at a long delay after the

command that were stronger when the preceding membrane potential was more hyperpolarized.

Other UBCs exhibit regular tonic firing that, when terminated by hyperpolarization, is followed by

precisely time-locked spikes (Figure 2.2c). This firing pattern is similar to pause responses recorded

extracellularly and could also be explained by inhibition arriving at a short delay after the command

(Figure 2.2d). Golgi cells respond at short delays after the EOD command (Figure 2.1f) and could

be the source of such inhibition.
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Figure 2.2: Mechanisms for delayed and diverse corollary discharge responses in UBCs. a. Two

overlaid traces illustrating prominent rebound firing in response to hyperpolarizing current injec-

tions (-10 and -20 pA) in a UBC. This cell was filled with biocytin allowing for post-hoc morpholog-

ical identification (inset, scale bar 10 µM). b. Late corollary discharge response in the same UBC

recording shown in a. The strength of late action potentials bursts (bottom traces) is related to the

degree of preceding membrane potential hyperpolarization (top traces), suggesting rebound from

command-locked hyperpolarization as a possible mechanism underlying late responses observed in

UBCs. c. Two UBCs in which a brief hyperpolarizing current injection (-50 pA, top; -200 pA,

bottom) results in an entrainment of tonic firing, similar to temporal patterns of action potential

firing observed in pause MFs. Similar effects were seen in 7 additional UBCs. d. Pause-type corol-

lary discharge response in a UBC, note the small hyperpolarization time-locked to the command

and the entrainment of tonic action potential firing after the pause.

2.2.2 Experimental characterization and modeling of corollary discharge re-

sponses in GCs

We next catalogued corollary discharge responses in a large number of GCs using whole-cell record-

ing. Corollary discharge responses were observed in 170 of 184 GCs and consisted of prominent

depolarizations with temporal patterns that are highly consistent across commands (Figure 2.3a,b-

left). GC depolarizations closely resemble early, medium, late, pause, or in some cases, apparent

mixtures of these responses (Figure 2.3b-right). Action potential firing consistent mainly of sin-

gle spikes (1.25 spikes/command for the roughly 20% of GCs that fired on greater than 10% of
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commands) and always occurred at the peak of the subthreshold membrane potential (Figure 2.4).

These observations led us to hypothesize that the temporal structure of subthreshold GC corollary

discharge responses is shaped primarily by summation of excitatory inputs, rather than by phasic

Golgi cell inhibition or the intrinsic properties of the GCs themselves. To test this, we modeled

GC depolarizations as sums of excitatory postsynaptic potentials (EPSPs) computed from the

spike trains of up to three of the recorded EGp MFs (Figure 2.1e), including UBCs (Figure 2.1f).

The small number of excitatory inputs is consistent with anatomical observations that mormyrid

GCs have, on average, three claw-like dendritic endings [Nate Satell, unpublished observations]

and previous physiological observations indicating that GCs receive other sources of MF input in

addition to corollary discharge, e.g. proprioceptive input from spinocerebellar MFs [Sawtell, 2010].

By choosing an appropriate set of inputs from the recorded data and adjusting their excitatory

synaptic strengths within a reasonable range (Figure 2.3b-right; see Methods), we were able to fit

the membrane-potential responses of the recorded GCs with high accuracy (average MSE = 4.6%,

n = 169; Figure 2.3b-left). This provides strong support for the view of GC recoding as excitatory

input summation stated above.
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Figure 2.3: Experimental characterization and modeling of corollary discharge responses in GCs. a.

Average subthreshold corollary discharge responses of 170 GCs. Responses are grouped by category

(see d) and then sorted by the latency of their peak membrane potential. b. left, examples of

recorded GC subthreshold responses (black trace) and model fits (green). Right, EPSPs computed

from the recorded MF inputs used to fit each GC, labeled according to the class to which they

belong. c. The distribution of response categories assigned to recorded GCs based on model fits

(black bars). Bars labeled E, M, L and P indicate the fraction of early, medium, late and pause

inputs used to fit the recorded GC responses. Mixed bars show these fractions for combinations of

inputs used in the same way. These fractions are consistent with a four-parameter random mixing

model (RMM; parameters are the probability of early, medium, late, and pause inputs) in which

each input to a GC is assigned independently of the others (red bars). This suggests that the

combinations of inputs GCs receive are random. d. Average (continued on following page)
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Figure 2.3: (continued) subthreshold corollary discharge responses of 170 randomly constructed

model GCs selected from a total of 20,000. In this sample, the number of model cells from each GC

category was matched to the experimental data, but the selection process was otherwise random.

Note that the temporal response properties of the model GCs closely resemble those of the recorded

GC shown in a.

The similarity of the constructed and recorded GC responses also provides a powerful tool for

addressing the central question of whether GC responses can support negative image formation and

sensory cancellation. Given the sparseness of GC firing that we observed (both a small percentage

of GCs that fire and a small number of spikes per EOD in those that do), cancellation likely

depends on large numbers of GC inputs; indeed, anatomical estimates are on the order of 20,000

GC inputs per MG cell [Meek et al, 1996]. To expand the data to this number, we constructed

model GCs. This was aided by the fact that the distribution of inputs found in our fits of recorded

GC responses is consistent with a random mixing process in which each GC dendrite samples the

different functional input classes (early, medium, late, and pause) independently (Figure 2.3c).

We extracted the probability of a GC receiving an input from each functional class from these

fits (see Methods). Drawing randomly from these input probabilities and from the distribution of

synaptic weights obtained during fitting allowed us to construct model GCs with corollary discharge

responses that closely match those of the recorded GCs (Figure 2.3d; note that these are not GCs

fit to the data, but randomly constructed and sampled model cells). The remarkable similarity

between these model responses and the data provides additional support for the hypothesis that

GC recoding of corollary discharge inputs can be explained by random mixtures of small numbers

of excitatory inputs conveyed by extrinsic MFs and UBCs.

Spiking in model GCs was implemented by randomly assigning action potential thresholds sam-

pled from a normal distribution fit to the thresholds of the recorded GCs (average distance to

threshold 20.2 5.97 mV). The resulting temporal firing patterns and distribution of average spike

counts per EOD in the model GCs were statistically consistent with those of the recorded GCs

(Figure 2.4).
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Figure 2.4: Patterns of corollary discharge-evoked action potential firing in recorded and model

GCs. a. Corollary discharge responses of four recorded GCs that spiked in response to the EOD

command. GC membrane potentials from several commands are shown overlaid. Spikes are trun-

cated to show details of subthreshold membrane potentials. b. Spiking responses of the recorded

GCs shown in a. Spike trains on 50 individual trials are shown in gray, and the smoothed (5 ms

Gaussian kernel) trial-averaged firing rate of the cell is overlaid in black. c, d. Corollary discharge

responses of four model GCs selected from among the pool of 20,000 generated cells. Displays for

model GCs are the same as for recorded cells. e. Sources of MF input to each model GC, as

computed EPSPs from the trial-averaged MF firing rates. Both subthreshold corollary discharge

responses and spiking in model GCs closely resembles that seen in recorded GCs.

2.2.3 GC corollary discharge responses provide an effective basis for canceling

natural patterns of self-generated input

Previous experimental work has revealed a combination of anti-Hebbian spike-timing dependent

long-term synaptic depression and non-associative long-term potentiation at GC-MG cell synapses

[Bell, Han, Sugawara and Grant, 1997; Han, Grant and Bell, 2000]. To determine whether this

form of plasticity can cancel self-generated sensory input using realistic GC responses, we drove a

passive model MG cell with 20,000 model GC inputs through plastic synapses. The GC to MG cell

synapses were strictly positive and their strengths were initially set so that GC responses in the

42



absence of EOD-driven sensory input generated a roughly flat MG membrane potential, consistent

with recordings from MG cells in regions of ELL involved in passive electrosensory processing [Bell

1981; Bell 1982; Bell, Caputi, Grant and Serrier, 1993]. Next, we added a temporally varying

sensory input to the model MG cell to mimic the responses of passive electroreceptors to the fish’s

own EOD recorded in a previous study [Bell and Russell, 1978] (Figure 2.5a). As in previous

modeling work [Roberts and Bell, 2000], the strength of the GC-MG synapses evolved according

to the experimentally described plasticity rule [Bell, Han, Sugawara and Grant, 1997; Han, Grant

and Bell, 2000]: synaptic strength is increased for each presynaptic action potential, corresponding

to experimentally described non-associative potentiation, and decreased when a postsynaptic ac-

tion potential occurs shortly after a presynaptic action potential, corresponding to experimentally

described associative depression (Figure 2.6c). Over the course of about 1000 EOD commands (ap-

proximately 5 minutes at EOD command rates typical of paralyzed fish), the membrane potential

fluctuation caused by the sensory input is canceled by the corollary discharge inputs conveyed by

GCs (Figure 2.5a), consistent with the time-course over which negative images are formed in vivo

[Bell 1981; Bell 1982]. The resulting negative image closely matches the inverse of the sensory input

(Figure 2.5b) and has small command-to-command variations (Figure 2.5b, blue shading; standard

deviation of ∼1 mV) despite the sparseness of the GC firing. We also confirmed the stability

of negative images formed using the GCs as a temporal basis and that the changes in synaptic

strength underlying negative images were within a physiologically plausible range. Finally, because

our estimates of both the number of GCs active at long delays and the number of command-locked

action potentials fired by GCs were based on limited data, we tested the effects of systematically

varying these properties of the model GCs on negative images and sensory cancellation. Rapid

cancellation and negative images with small command-to-command variations were observed even

when numbers of late and pause inputs used to generate model GCs were reduced and when the

number of action potentials fired by GCs was reduced.
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Figure 2.5: GC corollary discharge responses provide an effective basis for canceling natural patterns

of self-generated sensory input. a. top, Cancellation of the change in membrane potential caused by

sensory input locked to the EOD motor command in a model MG cell. The MG cell receives 20,000

model GC inputs with synaptic strengths that are adjusted by anti-Hebbian spike-timing dependent

plasticity. Bottom, select trials showing the time course of cancellation. The temporal profile of the

sensory input (trial 0) was chosen to resemble the effects of the EOD on passive electroreceptors

recorded in a previous study1. b. The negative image (blue line) effectively cancels the sensory

input (black line), with small command-to-command variability (shaded region shows 1 std across

trials.) c. Different input signals used for the tests of sensory cancellation rates shown in d. The

top trace is the same input used in a resembling natural self-generated inputs due to the EOD. The

blue traces are selected from a set of 1,000 synthesized inputs with the same power spectrum as

the natural input but with randomized phases. d. Comparison of the time course of cancellation

for the natural sensory input (black) versus the synthesized inputs (blue; shaded region is 1 std).

Note that cancellation is faster for the natural input, suggesting that the structure of GC responses

is matched to the temporal pattern of the self-generated signal. Cancellation is also much slower

and less effective if the model GCs are generated without UBC inputs (green line).
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The effectiveness of the cancellation in the model is notable given the highly non-uniform temporal

structure of the GC population response, in particular the fact that most GCs are active at short

delays. Rather than a general-purpose temporal basis, such as the delay-line model considered

in previous theoretical work [Roberts and Bell, 2000], the structure of GC corollary discharge

responses appears to be matched to the temporal patterns of self-generated sensory input that

the fish encounters in nature, i.e. the particular pattern of ringing that the large EOD evokes in

electroreceptors tuned to detect much smaller signals1. To test this idea more directly we generated

synthetic inputs with different temporal profiles but the same power spectrum as the electroreceptor

response (Figure 2.5c). Synthetic inputs are cancelled more slowly than inputs resembling the

electroreceptor response (Figuref 2.5d), suggesting that the structure of GC responses is particularly

suited to natural patterns of self-generated input. Furthermore, the rate and accuracy of sensory

cancelation in the GC basis is comparable to that of an idealized uniform delay line basis with

tuning widths approximately equal to that of GCs receiving medium and late inputs. Finally, we

note that model GC populations lacking late and pause inputs provide a far less effective basis for

cancellation (Figure 2.5d, green line), indicating an important role for the temporally diverse and

delayed corollary discharge responses generated by UBCs.

2.2.4 Non-uniform temporal structure of GC responses predicts paradoxical

features of negative images

Our knowledge of the temporal structure of GC responses allowed us to make specific predictions

about the shapes of negative images induced in experiments in which a single dendritic spike in an

MG cell is paired with the EOD command at fixed delays. Previous studies have shown that such

dendritic spikes are the key triggers for associative depression at GC synapses [Bell, Han, Sugawara,

and Grant, 1997; Englemann et al, 2008]. Our predictions based on the measured GC responses

were twofold (Figure 2.6a, green curves). MG cell spikes evoked at short delays should induce a

brief hyperpolarization peaked around the spike time due to associative depression of early GCs

inputs. More complex, bi-phasic changes were predicted for MG cell spikes evoked either at longer

delays or at zero delay. At such delays, associative depression should induce a hyperpolarization

around the MG cell spike time, while non-associative potentiation of the numerous early GC inputs
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should cause a “paradoxical” MG cell depolarization at short delays after the EOD command. In

contrast, a model with a temporally uniform delay line basis predicts that negative images induced

by MG cell spikes at different delays would always have the same shape, determined by the temporal

window of the synaptic plasticity, and differ only by time translation (Figure 2.6a, bottom right,

dashed curve).

To test these model predictions, we recorded intracellularly from MG cells, and compared corol-

lary discharge responses before and after 3 minutes of pairing (approximately 600 commands) with

a brief current injection that evoked a dendritic spike at a fixed delay after the EOD command

(Figure 2.6b). The shapes of the resulting negative images exhibit a strong dependence on the

delay during pairing, in agreement with our qualitative predictions (Figure 2.6a, black traces).

Furthermore, close quantitative agreement between our model and the experimental MG cell re-

sponse changes (Figure 2.6a, compare green and black traces) could be achieved by fitting just

two parameters of the synaptic plasticity rule (Figure 2.6c; see Methods). The similarity of the

modeled and measured changes in MG cell responses indicates that the measured GC responses and

previously measured anti-Hebbian plasticity at GC-MG cell synapses accurately describe negative

image formation.
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Figure 2.6: Non-uniform temporal structure of GC responses predicts specific features of negative

images in MG cells. a. Changes in corollary discharge responses induced by pairing with MG

dendritic spikes at 7 different delays after the EOD command. Green traces are membrane potential

differences derived from the model with fitted values for the magnitudes of associative depression

and non-associative potentiation (panel c). Black traces are experimentally observed membrane

potential differences averaged across MG cells (outlines represent SEM; 0 ms, n = 6; 25 ms, n = 8;

50 ms, n = 6; 75 ms, n = 6; 100 ms, n = 10; 125 ms, n = 4; 150 ms, n = 3). The bottom right panel

compares these predictions with those for a delay line basis (dashed green line). b. Design of the

pairing experiment. Intracellular traces from an MG cell showing the average (black) and standard

deviation (gray outline) of the corollary discharge response before (pre) during (pairing), and after

(post) three minutes of pairing during which a brief (12 ms) intracellular current injection evoked

a dendritic spike at a fixed delay after the EOD command (arrow). The small spikes are axonal

spikes and do not contribute to plasticity5. The bottom trace (post-pre) shows the difference in

the membrane potential induced by the pairing, corresponding to the traces shown in a. Note the

complex pattern of changea relative hyperpolarization around the time of the paired spike as well

as a large relative depolarization just after the command, as predicted by the model. c. Synaptic

plasticity rule and parameters used for the fits shown in a.
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2.3 Discussion

Using intracellular recordings and modeling of GCs in mormyrid fish we provide a relatively com-

plete description of GC recoding, far more complete than that available in other systems. The

remarkably close agreement between recorded and model GCs (shown in Figure 2.3) strongly sug-

gests that the simple rules we used to transform MF inputs into GC responses, i.e. summation

of randomly selected excitatory inputs, are essentially correct and complete. Such a complete un-

derstanding of how inputs are transformed into output in vivo is remarkable in its own right and

places us in a unique position to explore the relationships between input coding, an experimentally

defined synaptic plasticity rule [Bell, Han, Sugawara and Grant, 1997; Han, Grant, and Bell, 2000],

and a well characterized adaptive network output in the form of negative images [Bell 1981; Bell

1982; Bell, Caputi, Grant and Serrier, 1993]. Though input coding and plasticity are the critical

elements for the functioning of many neural circuits, including other cerebellum-like circuits [Bell,

Han, and Sawtell 2008; Farris 2011; Oertel and Young 2004] and the cerebellum itself [Albus 1971;

Marr 1969; Medina and Mauk, 2000; Dean, Porrill, Ekerot, and Jörntell 2010] there are few cases

in which these elements are understood so thoroughly.

The function of EGp circuitry demonstrated here closely parallels longstanding, but still untested,

expansion recoding schemes posited for the granular layer of the mammalian cerebellum [Albus,

1971; Marr, 1969]. Whereas most models of cerebellar granular layer function, posit pivotal roles

for Golgi cell inhibition of GCs in expansion recoding [Medina and Mauk, 2000], our study suggests

a key role for UBCs. Though we had no way to specifically target UBCs and hence cannot provide

a complete account of their properties, our in vivo intracellular recordings suggest that they gen-

erate temporally diverse and delayed responses that are faithfully recoded in GCs. Though in vivo

responses to discrete inputs have yet to be described for UBCs in the mammalian cerebellum or

dorsal cochlear nucleus, in vitro studies have documented a variety of synaptic and intrinsic mech-

anisms capable of generating prolonged and/or delayed responses [Diana et al, 2007; Locatelli et al,

2013; Rossi, Alford, Mugnaini and Slater, 1995; Russo, Mugnaini, and Martina, 2007; Rousseau et

al, 2012]. These include rebound firing [Russo, Mugnaini, and Martina 2007], regular tonic firing

[Russo, Mugnaini, and Martina 2007], and inhibitory synaptic input from Golgi cells [Rousseau et

al, 2012]the key ingredients for delayed responses suggested by our in vivo intracellular recordings.
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Hence the functions for UBCs established here may extend to other circuits in which they are found.

Finally, though the capacity to generate temporally diverse responses in GCs may be useful for a

variety of cerebellar computations, the density of UBCs varies widely across different regions of the

cerebellum and across different species [Mugnaini, Sekerková, and Martina, 2011]. Whether other

circuit mechanisms, e.g. phasic Golgi cell inhibition of GCs, function to generate temporally diverse

GC responses for regions of the cerebellum in which UBCs are scarce is an important question for

future studies.

An unexpected finding of this study is that rather than a general temporal basis, such as delay-line

models considered in previous theoretical work [Roberts and Bell, 2000], the temporal structure of

GC responses is highly non-uniform. Despite the preponderance of GCs active at short delays, our

modeling suggests that they provide a highly effective basis for sensory cancellation. The explana-

tion to this apparent paradox is that the temporal structure of GCs is matched to natural patterns

of self-generated sensory input. How such matching might occur and whether it could be modified

by experience are interesting questions for future investigations. The non-uniform temporal struc-

ture of GC responses also provides a simple explanation for unusual features of MG cell negative

images formed in response to artificial inputs. The ability to accurately predict detailed features of

negative images based on modeled GC responses, and previously described anti-Hebbian plasticity,

also provides an additional experimental validation for the links we establish between input coding,

plasticity, and adaptive network output. Finally, the apparent matching between GC responses

and natural patterns of self-generated sensory input does not imply that the system cannot provide

effective cancellation when conditions change. Indeed, EOD amplitude along with passive electrore-

ceptor responses to the EOD are expected to change on multiple timescales due to growth of the

fish, seasonal changes in water conductivity, and the presence of large nonconducting objects near

the fish. However, as has been shown in a previous study on the effects of water conductivity on

passive electroreceptor responses [Bell and Russell, 1978], such changes will primarily affect the size

rather than the temporal structure of sensory responses to the EOD. Hence the matching between

the temporal structure of GC responses and self-generated sensory input described here is expected

to hold over a wide range of behaviorally relevant conditions.

Though the notion that motor corollary discharge signals could be used to predict and cancel the
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sensory consequences of an animals own behavior has a long history [Sperry, 1950; von Holst and

Mittelstaedt, 1950], there are few cases in which such functions have been characterized at the level

of neural circuits [Crapse and Sommer, 2008]. In particular, it has proven challenging to understand

how copies of motor commands are translated into an appropriate format to cancel sensory inputs.

This problem takes a particularly clear and tractable form in the case of mormyrid ELL, where

copies of a brief, highly stereotyped motor command must be delayed and diversified in order to

provide a basis for cancelling sensory effects that are extended in time. A major contribution

of the present study is to directly demonstrate that such a temporal expansion indeed occurs in

GCs and that, along with previously described anti-Hebbian plasticity [Bell, Han, Sugawara and

Grant, 1997; Han, Grant, and Bell, 2000], is sufficient to account for negative images. Our results

hence provide the critical missing piece in a relatively complete mechanistic account of how motor

commands are used to predict sensory consequences at the levels of synaptic plasticity, cells, and

circuits.

50



Chapter 3

Mechanisms for internal model

learning in an electric fish

Figure 3.1: Mormyrid fish maneuver their electric organ and chin appendage to investigate novel

objects in their environment. The chin appendage is densely packed with electroreceptors, and acts

like a fovea of the electrosensory system.

In active electrosensing, the mormyrid fish uses its electric organ in conjunction with mormyro-

mast electroreceptors to detect objects in its environment that do not necessarily generate their

own electric field. The electric organ discharge (EOD) forms a transient field around the fish’s

body, the amplitude of which is encoded by mormyromasts found throughout the skin of the fish.

Adding a conducting or insulating object to the water surrounding the fish distorts its generated

field, changing field amplitude at the skin. Behavioral studies show that fish can use their active
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electrosensory system to distinguish objects of different sizes, shapes, distances, and conductivities

[von der Emde, Schwarz, Gomez, Budelli, and Grant 1998; von der Emde 1999].

Reliable detection of objects requires mormyromasts to be able to perceive changes of a few percent

in the strength of the field at the skin. In addition to being modulated by objects, the amplitude of

the fish’s field is modulated by the fish’s own movements, which change the location of the electric

organ in the tail relative to the skin. Fish presented with novel objects in their environment

are quite active, and approach the object with different body postures during their investigation,

suggesting that effects of posture on the fish’s field do not interfere with electrosensory perception.

A mechanism for distinguishing self-generated vs external EOD modulations appears to exist in the

fish’s electrosensory lobe: extracellular recordings show that effects of objects and body bends are

comparable in size in mormyromasts- but in the efferent cells of the electrosensory lobe, posture

effects are removed while effects of objects persist.

In this chapter, I set out to determine how complex postures affect the amplitude of the fish’s

field at mormyromasts throughout the body, and whether the model of negative image formation

established in the previous chapter can be extended to account for the transformation from a

posture-dependent sensory response in mormyromasts to a posture-invariant representation of ob-

jects in the efferent cells of the electrosensory lobe. Following a review of the active electrosensory

system, I will incorporate data from posture-encoding mossy fibers into the granule cell model,

and study the capacity of the granule cell basis to form posture-specific negative images in model

efferent cells. I then present an electrostatic model of the fish’s field which I used to study the

effect of posture on sensory representations, and study the capacity of model efferent cells to form

large families of posture-specific negative images.

3.0.1 A note on terminology

As discussed in the previous chapter, EOD corollary discharge and electrosensory pathways converge

in the electrosensory lobe, where the corollary discharge signal is sculpted via synaptic plasticity at

granule cell to MG cell synapses to cancel effects of the EOD from the electrosensory response. This

chapter refers to efferent cells, rather than MG cells, due to a difference in experimental methods.

The electrosensory lobe has four types of Purkinje-like efferent cells: LG, LF, and two types of MG
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cell (called MG1 and MG2, which are inhibited and excited by sensory input, respectively) [Meek,

Grant and Bell 1999]. In the previous chapter, MG cells were recorded intracellularly, allowing cell

type to be verified anatomically; because the experiments in this chapter relied on extracellular

recording, cell type could not always be determined, and I will use the more general term efferent

cell. While negative images formed in the four types of efferent cells are similar, there are some

interesting functional differences between the four cell types. These will not be relevant here, but

I will review them briefly in the general discussion section.

3.1 Introduction: Cancellation of posture effects in active elec-

trosensing

This section reviews experimental study of the active electrosensory system, the computational

challenges body movements introduce for active electrosensing, and the neural mechanism by which

the electrosensory system appears to solve these challenges.

3.1.1 Sensory encoding in the active system

Unlike ampullary cells in the passive system, mormyromasts are specialized to operate in conjunc-

tion with the fish’s EOD. The bioelectric fields generated by organisms in the water typically have

frequencies below 50 Hz, the detection range of ampullary cells. By contrast, mormyromasts re-

spond to frequencies between 50 Hz and 10 kHz, with a preferred frequency of around 2500 Hz,

where the power spectrum of the fish’s EOD waveform peaks [von der Emde 1999; Bell 1990]. They

are therefore much more sensitive to the fish’s own EOD than to external fields generated by other

organisms.
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Figure 3.2: a. Waveform of the electric organ discharge of Gnathonemus petersii, the mormyrid

species used in this study. b. Power spectrum of the EOD waveform. This panel and panel a are

reproduced from [von der Emde 1999]. c. Frequency sensitivity of type A (open dots) and B (filled

dots) sensory cells of mormyromasts, reproduced from [Bell 1990]. Both cell types have a higher

preferred frequency than ampullary cells. (I will disregard differences between type A and B cells

here.)

Objects in the water around the fish change the observed EOD amplitude in nearby portions of the

fish’s skin by distorting the EOD field. Mormyromasts encode local amplitude of the EOD-driven

field via a latency code in which they fire a burst of 2-3 spikes between 3 and 10 ms after the EOD

[Sawtell and Williams 2008]. This activity is translated to a firing rate code in the electrosensory

lobe via a layer of sensory processing neurons prior to the efferent cells [Meek, Grant and Bell 1999;

Metzen et al 2008].
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Figure 3.3: Relationship between EOD amplitude and mormyromast spiking, reproduced from

[Sawtell and Williams 2008]. Left: spiking response of mormyromasts to the fish’s own EOD, as

EOD amplitude is varied. First, second, and third spikes per EOD are colored black, blue and

green respectively. Right: Latency of the first EOD-evoked spike as a function of fold modulation

of the EOD amplitude.

3.1.2 Effects of posture on the EOD field, and their cancellation

In previous work, Sawtell and Williams studied the joint effects of posture and object position

on the amplitude of the EOD-evoked field at the fish’s skin [Sawtell and Williams 2008]. They

found that modulation due to tail bends of ±30◦ were of comparable of greater magnitude than

modulations due to a conducting metal rod placed 5 mm from the surface of the fish’s skin.

Both tail bends and object placement have a strong effect on mormyromast spike latency, as seen

in Figure 3.4d. But in efferent cells of the fish’s electrosensory lobe, which receive both sensory

and corollary discharge input, the effect of tail bends is absent, while the cell remains responsive

to the metal rod. (Note however that the response is not fully independent of tail angle.) This

suggests that the efferent cell is able to form a posture-specific negative image, which cancels EOD

modulation caused by the position of the fish’s tail while leaving intact any modulation arising

from external objects. If the mechanism of posture-specific negative image formation is the same

as the temporally-structured negative image framework introduced in the previous chapter, we

would guess that the efferent cell must receive input from granule cells that encode both the timing

of the EOD command and the position of the fish’s tail.
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Figure 3.4: Combined effects of object location and tail bends on neural representation of objects,

reproduced from [Sawtell and Williams 2008]. a. Experimental setup. A 2mm-diameter metal

cylinder held 5mm from the fish’s skin was moved alongside the head between the tip of the

chin appendage and the gill cover, while the tail was moved between ±30◦. EOD amplitude was

measured using a recording dipole (in red) placed rostral to the fish’s eye. b. The EOD amplitude

at the dipole location as modulated by the metal rod. Each point corresponds to a single tail angle

+ object position pair; the response to the object averaged over tail angles is given by the red line.

c. EOD amplitude at the dipole as modulated by tail movements. The red line is the response to

the tail averaged over object locations. d. Spike latency of a mormyromast near the fish’s head.

Color indicates time from EOD to first spike for each combination of tail angle + object position

tested. There is a clear effect of both the object and the fish’s tail on the mormyromast response.

e. In the firing rate of efferent cells of the cerebellum-like electrosensory lobe, the effects of tail

angle are largely removed, while object location is still reflected.
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3.1.3 Evidence for posture-specific negative images in efferent cells

In his recent thesis work, Tim Requarth investigated formation of negative images that varied in

amplitude as a function of tail position. As in the previous chapter, Tim used an awake preparation

in which the fish continued to issue the EOD command, but the EOD itself was blocked by neu-

romuscular paralysis. At the same time, the EOD-triggered spiking of efferent cells were recorded

extracellularly. With the EOD blocked, the only input to efferent cells in the electrosensory lobe is

from granule cells, which receive corollary discharge input relaying information about the timing of

the EOD command, as well as other sources which will be discussed in the following section. Each

efferent cell receives input from on the order of 20,000 granule cells.

Next, the EOD command was used to trigger an externally-applied electric field mimicking the

fish’s own EOD, restoring sensory input to the efferent cell. While moving the fish’s tail slowly

back and forth, the amplitude of the applied field was scaled as a function of tail angle, recreating

the effect of posture on EOD amplitude. After ten minutes of pairing, the external field was turned

off, and the EOD-triggered spiking of the efferent cell was again measured.

As seen below, pairing evoked a clear tail angle-specific change in efferent cell spiking. Subtracting

the tail angle dependent firing rate of the efferent cell prior to pairing, and summing over time

to get the average number of spikes per command, we obtain the change in corollary discharge-

driven input to the efferent cell due to learning, which forms a negative image of the tail angle/field

strength relationship imposed during pairing.
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Figure 3.5: a. Example firing rate from an efferent cell of the electrosensory lobe before, during,

and after pairing of the EOD command with the externally applied field, as well as the difference

between the firing rate before and after pairing (far right). Firing rates are averaged over trials in

which the tail was at the position highlighted in panel b. b. Top row: the firing rate of the efferent

cell as a function of tail angle, triggered on the EOD command (x axis on each subplot is time

relative to EOD command, as in panel a.) Middle row: firing of the efferent cell during pairing of

an external field with the EOD command. The amplitude of the field (continued on next page)
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Figure 3.5: (continued) was varied as a function of tail angle, driving tail-position-dependent spiking

in the efferent cell. Bottom row: EOD-triggered spiking in the efferent cell after ten minutes of

pairing shows adaptation to the paired signal. c. In black, the amplitude of the externally-applied

field used during pairing, as a function of tail angle. The marked portion of the curve corresponds

to the highlighted plots in panel b. In red, the time-averaged change in EOD-triggered spiking of

the efferent cell is a learned posture-specific negative image of the black trace.

3.1.4 Encoding of posture in mossy fibers and granule cells

Negative image formation in efferent cells is mediated via anti-Hebbian synaptic plasticity on the

set of granule cell - efferent cell synapses [Bell, Han, Sugawara and Grant, 1997; Roberts and Bell

1999]. Thus for negative images to be posture dependent, there must be some encoding of posture

in the granule cell population.

Granule cells receive input from mossy fibers, which enter the electrosensory lobe from a variety of

other brain regions. In addition to the mossy fibers conveying corollary discharge information from

the EOD, previous studies have found tonically active mossy fibers that are unaffected by the EOD

command, but carry information about posture. Some of these mossy fibers relay proprioceptive

information from the spinal cord, and have tonic firing rates that can vary with either tail position or

tail velocity. Other mossy fibers originate from motor control regions and carry corollary discharge

signals of non-EOD-related motor commands [Requarth and Sawtell 2014].
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Figure 3.6: a. Firing rate of a tonically mossy fiber during sinusoidal movement of the tail by a

manipulator. This mossy fiber responded to contralateral bends; other fibers preferred ipsilateral

bends or had more complicated responses. b. Tuning curves computed from the firing rate in panel

a. Tuning was significantly different if computed from ipsi-to-contra vs contra-to-ispi movements,

though this could be an artifact of how the fish was restrained during tail manipulation.

Proprioceptive and EOD-related signals are combined in the granule cells, which receive input from

1-3 randomly selected mossy fibers. Tonic input from proprioceptive mossy fibers is not strong

enough to drive granule cell spiking, but instead the tonic firing rate modulates the membrane

potential of the granule cell. If a granule cell synapsing with both types of mossy fibers receives

EOD command-driven input at a time when the firing rate of the tonic mossy fiber is high, the

combined effect of the two inputs can be sufficient to evoke one or more spikes. Tonic mossy fibers

can therefore modulate granule cell activity to a population of granule cells whose response to the

EOD command is posture-specific.
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Figure 3.7: Intracellular recording from a granule cell receiving input from two mossy fibers, one

conveying proprioceptive information and the other conveying the timing of the EOD command.Tail

position was controlled by a manipulator and is plotted below the membrane potential, while

EOD motor commands were recorded from the EOD command nucleus, and are indicated with

arrows above. The tonic firing rate of the proprioceptive mossy fiber increases when the tail is

ipsilateral, depolarizing the cell enough that EOD command-driven inputs evokes a spike (red

dots). Highlighted in gray is a magnified portion of the membrane potential trace, showing EPSPs

evoked by spikes in the tonic proprioceptive mossy fiber. The arrow marks the time of an EOD

command, following which the granule cell receives a burst of EPSPs from the command-driven

mossy fiber.
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3.1.5 Objectives
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Figure 3.8: Circuit model for proprioceptive negative image formation, adapting the framework

from the previous chapter. A basis of proprioceptively-modulated EOD command-driven granule

cells (cartooned here in blue) allows the efferent cell to form a negative image that cancels the effect

of tail position on sensory input from mormyromasts.

These results from previous studies suggest that sensory consequences of posture are cancelled in

efferent cells via learning of posture-specific negative images from a set of proprioception and EOD

command-driven granule cells. In this chapter, I will test this hypothesis directly by examining

whether the granule cell model developed in the previous chapter provides a sufficient basis for form-

ing posture-specific negative images, when input to model cells is expanded to include recordings

from proprioceptive mossy fibers. This analysis is divided into two parts: first, I compare negative

images formed by the model granule cell population to negative images recorded experimentally

in a preparation similar to that of Figure 3.5, where the tail angle/EOD amplitude relationship

was manipulated artificially. Negative images in the fish were found to be remarkably flexible, and

efferent cells were able to fully or partially learn negative images to sensory input they would never

experience in nature.

Next, I will address the broader role of proprioceptive negative images. It is difficult to experimen-
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tally record EOD amplitude at the skin in freely behaving fish, therefore studies of posture-specific

negative images have predominantly been restricted to single joints. By constructing an electro-

static model of the fish’s field in a manipulable 3D mesh, I explore the effect of more complicated

families of bends on the amplitude of the fish’s field. I then study the capacity of the granule cell

basis to form families of negative images across postures, focusing on the different computational

problems that must be solved by efferent cells with receptive fields at different locations on the

fish’s body.

3.2 Methods: Modeling negative image formation in the active

system

The granule cell model and the model of learning in efferent cells are predominantly the same as

in the previous chapter. In this section I discuss proprioceptive mossy fiber input to granule cells,

as well as a fitting technique I used to find the input-output function of model granule cells. The

large families of postures I wished to study in this chapter would require thousands of simulations

of the model granule cell population; because full simulation was intractable, I fit the input-output

functions of model granule cells using a restricted set of simulations, and used these fits to generate

granule cell activity for study of negative image formation.

3.2.0.1 Granule cell model

The full construction of the granule cell model is described in the previous chapter. Briefly: I

model granule cells as leaky integrate-and-fire cells with three dendritic claws that form synapses

at random with five classes of mossy fiber, early, medium, late, pause, and tonic, named for the time

they spike relative to the EOD (random here means that each synapse is assigned independently).

I fit the model to a population of 170 recorded granule cells by finding the mossy fiber inputs

and synaptic weights that best accounted for the recorded response, obtaining a distribution of

connection probabilities and fast and slow synaptic weights from mossy fibers to granule cells. I

can then sample these distributions to generate an arbitrary number of synthetic granule cells.
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Unlike the passive system, sensory responses to the EOD in the active system are restricted to

short delays. I will therefore ignore medium, late, and pause mossy fibers in this chapter, and only

model granule cells receiving early and tonic input.

3.2.1 Adding proprioceptive mossy fibers as model inputs

The tonic mossy fibers of the first chapter are in reality tonically-active proprioceptive fibers.

Because I only considered negative image formation in a paralyzed, stationary fish, tonic mossy

fiber firing rates did not vary in the model, and they only served to add some variability to granule

cell spiking. Tonic inputs could not be fit in the same way as EOD-triggered inputs to granule cells,

because their effect is washed out in the EOD-triggered average response of recorded cells. Instead,

the probability and strength of tonic input in synthetic granule cells were obtained in two steps.

First, probability of a granule cell getting tonic input was computed from the recorded granule cell

population, in which cells receiving tonic input could be easily identified. And second, mean and

variance of EPSP amplitudes were measured experimentally under postures in which tonic firing

rates were low and single EPSPs were well isolated. To generate fast and slow synaptic weights for a

model tonic input, I first randomly generated an EPSP amplitude from the measured distribution,

then drew a ratio of fast to slow synaptic weights from the distribution of fit weights, and scaled

these to match the drawn EPSP amplitude.

In the previous chapter, granule cell spiking thresholds were measured experimentally from the

baseline membrane potential of the cell- which, if the cell is receiving tonic input, is above its

resting potential. I used this same convention here, and defined granule cell thresholds relative to

the depolarization due to tonic input, calculated using the tonic firing rate when the fish’s tail is

straight. Because proprioceptive input is not observed to drive granule cell spiking on its own, I

discarded model cells in which tonic input drove granule cell spiking (which occasionally happened

if a model cell received very sharply posture-modulated, strong tonic input and had a low spiking

threshold.)
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3.2.2 Fitting granule cell input-output functions using Bézier splines

Simulating spiking responses of granule cells over large families of postures is prohibitively slow:

running enough simulations to get average responses of 20,000 granule cells at a given posture takes

several hours on a desktop computer, and studying interaction of bends at multiple locations and

angles quickly accumulates to thousands of simulations. But because I am not interested in the

temporal aspects of negative images, I can simplify the problem to calculating the granule cells’

spikes per command, a value that depends only on the firing rate of its proprioceptive mossy fiber

input or inputs, a 1-2 dimensional parameter. Rather than re-simulate granule cells at each posture,

I simulated granule cell spiking for a range of proprioceptive mossy fiber firing rates, and use the

results to fit an input-output function for each granule cell. To generate granule cell responses to

arbitrary postures, I then had only to determine the appropriate mossy fiber firing rates at that

posture, and calculate the corresponding granule cell responses from the fit functions.

I reduced the number of simulations to run/parameters to fit further by assuming that in granule

cells receiving input from two tonic mossy fibers, the two inputs could be approximated by a single

effective tonic input, with firing rate given by the sum of the two mossy fibers’ firing rates weighted

by the relative amplitude of their EPSPs. Thus granule cell firing rate at a given posture is simply

a function of the effective mossy fiber firing rate. This assumption seemed to match granule cell

responses well, though the methods described here could be expanded to the case of two-dimensional

inputs if desired.

The model granule cell firing rates were low (typically 0-3 spikes per EOD command), thus their

input-output relationships resemble a monotonically increasing series of plateaus connected by

smooth steps; see Figure 3.10 for examples. I fit these shapes with a set of plateaus of variable

width placed at integer firing rates, connected by cubic Bézier curves, with a few restrictions

imposed to reduce the number of free parameters and ensure the fit granule cell firing rate is a

well-defined function of the input mossy fiber firing rate. Figure 3.9 shows an example with the fit

parameters labeled in red:
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Figure 3.9: In blue, firing rate of a model granule cell plotted against the firing rate of its mossy

fiber input. Superimposed in red is the Bézier spline fit: a cubic Bézier curve connecting plateaus

at rGC = 0 and rGC = 1. Points labeled in red are fit to the model cell responses, while points in

gray control the shape of the spline, and are fixed based on the values of the red points.

Given a set of mossy fiber firing rates rMF ∈ [0, rmax], model granule cell responses fall within a

range rGC ∈ [a, b] with a, b ∈ N0. For each natural number n ∈ [a, b], I define two endpoints x(n,0)

and x(n,1) between which rGC = n. Interpolating between plateaus is a cubic Bézier curve is defined

by the parametric function:

B(t) = (1− t)3P(n,1) + 3(1− t)2tM1 + 2(1− t)t2M2 + t3P(n+1,0) , t ∈ [0, 1]

where

P(n,1) =

 x(n,1)

n

 , P(n+1,0) =

 x(n+1,0)

n+ 1


Points P(n,1) and P(n+1,0) mark the start and end of the curve from the plateau where rGC = n to

the plateau where rGC = n+ 1, while M1 and M2 are points in (rMF, rGC) that control the curve’s

trajectory. To ensure the fit granule cell firing rate is a well-defined function of mossy fiber firing

rate, I define M1 and M2 to be:

M1 =

 (x(n,0) + x(n+1,1))/2

n

 , M2 =

 (x(n,0) + x(n+1,1))/2

n+ 1
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this leaves only the set of points {x(n,0), xn,1}, n ∈ [a, b] to be fit. Restricting the placement of M1

and M2 allows me to convert the parametric function B(t) to a function B(rMF), by solving the

cubic equation

(1− t)3x(n,1) + 3(1− t)2t
x(n,1) + x(n+1,0)

2
+ 2(1− t)t2

x(n,1) + x(n+1,0)

2
+ t3x(n+1,0) = rMF (3.1)

for t, and plugging this value into

rGC = (1− t)3n+ 3(1− t)2tn+ 2(1− t)t2(n+ 1) + t3(n+ 1)

(while not pretty, Equation 3.1 has an analytical solution with a single real root for the restricted

values of M1 and M2 used here.) I initialized values of {x(n,0), x(n,1)}, n ∈ [a, b] near the plateau

endpoints in the input-output function obtained from simulation of granule cell responses, then

fit them by solving for the values which minimized the mean squared error between rGC and the

data. For curves whose endpoints were outside of the simulated range (eg the transition from 1 to

2 spikes/command in the leftmost cell in Figure 3.10), I fit a tanh function to the simulated points,

and used the endpoint of the fit tanh function to initialize the Bézier curve fit.

Example fits in Figure 3.10 show the diversity of nonlinearities in the model granule cell popula-

tion.
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Figure 3.10: In blue, input-output functions from five example model cells, computed from the

spiking granule cell model using 16 values for tonic mossy fiber firing rates, spaced evenly from 0 to

200 Hz. The fourth cell from the left received two proprioceptive inputs, so its response is plotted

against the effective mossy fiber firing rate, computed as described above. In red, the Bézier splines

fit to each cell, with fit points marked by dots.
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3.2.3 Learning rule analysis

This is a simple adaptation of the stability analysis of the previous chapter, to examine how

canceling a sensory perturbation at posture p affects the shape of the negative image at posture p′.

Because I ignore time in this chapter and look only at spikes per EOD command in model granule

cells and efferent cells, the shapes of the efferent cell EPSP and the anti-Hebbian learning rule are

unimportant, and do not factor into the calculation.

Given a vector of synaptic weights w from model granule cells to a model efferent cell, a change ∆w

in synaptic weights yields a change in the membrane potential V (p) of the model efferent cell:

∆V (p) =
N∑
i=1

∆wi · ri(p)

where p is tail angle (posture), and ri(p) is the firing rate of the ith granule cell at posture p. Anti-

Hebbian learning rules drive the efferent cell membrane potential to a stable fixed point [Roberts

and Bell 1999]; when sensory input perturbs the membrane potential from that point, the change

in weights due to cancellation of a perturbation Ṽ (p) is

∆wi ∼ −Ṽ (p) · ri(p)

Plugging in this equation for the effect of a perturbation Ṽ on w, we get the effect of a perturbation

at posture p on the negative image at each other posture p′:

∆V (p′) =
N∑
i=1

Ṽ (p) · ri(p) · ri(p′)

Thus the matrix M(p, p′) =
∑N

i=1 ri(p) · ri(p′) describes the effect of a perturbation at posture p

on the negative image at posture p′.

3.3 Methods: Modeling the fish’s field

Numerous models of the fields of weakly electric fish exist in the literature, though previous studies

have not investigated the effect of body bends systematically [Babineau, Longtin and Lewis, 2006;

Chen, House, Krahe and Nelson 2005; Assad 1997; Englemann et al 2008]. I implemented two
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such models: one which uses point charges to recreate the field at the fish’s skin (Point Charge

model)[Chen, House, Krahe and Nelson 2005], and one which models the fish’s body explicitly as

a high-conductance object containing a charge dipole, separated from its environment by the fish’s

skin, which forms a thin, resistive barrier (Body Mesh model)[Assad 1997].

The two models make very different predictions about the effects of bends on the field at the

fish’s skin. While bend effects have not been exhaustively studied experimentally, the Body Mesh

model seems like a closer fit to available data, and I use this model for all study of negative image

formation unless otherwise noted.

3.3.1 Justification of an electrostatic model

Both the Point Charge and Body Mesh model make the simplifying assumption that the fish’s

field can be modeled as an electrostatics problem. Generally, a time-varying electric field like the

field generated by the EOD induces formation of a spatially-varying magnetic field, which in turn

affects the form of the electric field. The electrostatic approximation assumes that the electric

potential in the fish’s body and surrounding water responds instantaneously to the changes in

charge distribution which constitute the EOD waveform, and that as a result the induced magnetic

field is negligible. While the EOD of mormyrid fish is a narrow pulse with duration of a few

milliseconds, the dielectric relaxation time (the time it takes to respond to an induced field) of

water is still very small compared to the frequency range of the EOD (<10 kHz); therefore the

electrostatic approximation should be appropriate to the field formed by the fish.

3.3.2 The Point Charge model

I first modeled the fish’s field as the sum effect of a set of point charges located inside the fish’s

body, based on the work of Chen et al [Chen, House, Krahe and Nelson 2005]. In this model, the

potential at location p is simply the sum of the potential induced by each point charge:

φ(p) =
∑
i

qi
|p− xi|

where qi is the charge of the ith point charge, and xi is its location (for simplicity, I modeled the

field in a 2d slice and restricted all body bends to the plane of the slice.) The values of the charges
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were constrained according to
∑

i qi = 0, so that the net flux through the fish’s skin fish was zero.

I placed a set of 100 point charges along the midline of the fish, and adjusted their values to fit

measurements of the fish’s field along the length of its body, taken from [Sawtell 2006]. To reduce

the number of free parameters, I adopted the approach used by [Babineau, Longtin and Lewis 2006]

in a similar model, and defined the charge qi as a function of position along the fish’s central axis

using a sum of Gaussians:

qi =
1√
2π

(
σ−1
A e

− (xi−µA)2

2σ2
A + σ−1

B e
− (xi−µB)2

2σ2
B − 2σ−1

C e
− (xi−µC )2

2σ2
C

)
where the parameters µA−C and σA−C were set to match the fish’s field: (µC , σC) defined a narrow

negative Gaussian centered over the electric organ in the fish’s tail, while (µA, σA) and (µB, σB)

characterized the positive charge over the remainder of the fish’s body. I use two Gaussians for

positive charge because I found that in models of charge distribution with a single Gaussian, the

field strength fell off too rapidly in the direction of the fish’s head (the measured field of the fish is

elongated in the direction of the head, due to the fact that the fish’s body has a higher conductance

than the water around it.)

Most experimental measurements of the fish’s field were collected in immobilized fish in a small

recording tank, and the walls of the tank and surface of the water create insulating boundaries

that distort the fish’s field. As in Chen et al, I used the method of image charges [Jackson 1975]

to model the effect of the fish’s tank. This method recreates the effect of planar nonconducting

boundaries by mirroring the charges in the fish’s body across each wall of the recording tank. The

addition of the tank distorted the field close the tank walls and magnified the effect of tail bends

on field strength at the fish’s skin, but otherwise did not alter the bend effects observed in the

tank-free model.

Having placed the set of point charges according to the fish’s posture, the field at the fish’s skin is

determined as follows. First, I computed the electric field generated by the point charges, defined

at a point p to be the negative gradient of the sum of the point charge potentials:

E(p) = −∇φ(p) =
∑
i

qi
|p− xi|3

(p− xi)

Then given the field, the voltage across the fish’s skin is the inner product of the electric field

at the fish’s skin and a vector normal to the skin’s surface, scaled by the ratio of skin and water

70



resistivities, ρskin and ρwater, and the skin thickness t:

V (pskin) = E(pskin) · n̂(pskin)
ρskin

ρwater
t

The mesh developed in the Body Mesh model below could be used here to determine the normal

vector n̂, but for simplicity I assumed that n̂ was orthogonal to the central axis of the fish, and

constrained to the XY plane; this should hold for locations along the side of the fish’s body and

away from the face.

While this model is simple to set up and quick to simulate, it generated complex predictions of

the effect of bends on the fish’s field, which don’t match well with experimental observations (see

Results). Bends in the fish’s body under this model affect the field in two competing ways. First,

a bend simply changes the position of the point charges, which changes the magnitude of φ at the

fish’s skin. And second, bends change the angle the field vector E forms with the fish’s skin, which

depending on bend location can either enhance, cancel, or reverse the first effect. This second

effect seems to be an artifact of the model not representing the fish’s body conductance explicitly:

because the fish’s body conductance is higher than that of the water around it, the electric field

at the skin should in fact be close to perpendicular with the skin, regardless of the fish’s posture.

I therefore switched to the Body Mesh approach described below, which models the effect of the

fish’s body more explicitly.

3.3.3 Electrostatic formulation of Body Mesh model

This model is adapted from Chris Assad’s thesis work[Assad 1997], incorporating adjustments to

make the system solvable using the Finite Element Method, as implemented in the solver environ-

ment GetDP [Dular and Geuzaine, 1997].

As in the previous model, I will work under the assumption that the fish’s field can be approximated

with an electrostatic model. Under these conditions, a distribution ρ of charge in space gives rise

to an electric field, with associated potential φ related to f by Poisson’s equation:

−∇2φ =
ρ

ε
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where ε is permittivity of the medium. Multiplying both sides by the conductance σ gives

−σ∇2φ =
ρσ

ε
= f (3.2)

where f is the current source density. Note here that σ, φ, and f are all spatially-varying functions

(since σ depends on whether a point is inside the fish’s body, in the water, or in the fish’s skin).

I found that the fish’s field could be reasonably approximated by defining f to be a dipole in the

fish’s tail, though a more advanced model of the current source density could also be used with this

approach.

The problem domain over which Eq. 3.2 must be solved consists of two volumes within which the

conductance σ is constant (inside and outside the fish), with constraints on two surfaces (the skin

and the edges of the fish’s tank).

volume Vb with σb

boundary S with σs  and thickness t

volume Vw with σw

boundary B where φ = 0

I−I+

Figure 3.11: Schematic of the mesh model indicating regions of constant conductance, adapted

from [Assad 1997]. I+ and I− are point charges in the fish’s tail which give rise to the EOD field.

The skin was approximated as an infinitely thin, low-conductance boundary between the body and

water, with potential φb at the inner surface of the skin, and φw at the outer surface. The voltage

drop across the fish’s skin is given by Ohm’s law as tσwσs∇φw, where t is skin thickness and tσwσs is

thus the effective resistance of the fish’s skin. This gives the boundary condition

φw − t
σw
σs
∇φw = φb

Noting that σw∇φw = −σb∇φb on S, an equivalent boundary condition is φb− tσbσs∇φb = φw.
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3.3.4 The variational method

To solve Poisson’s equation over the unusually-shaped problem domain of the fish in its environment,

I used Finite Element Methods (FEM), a numerical technique for finding solutions to differential

equations with imposed boundary conditions, using the variational method. The two steps of

FEM are 1) recasting the original differential equation into an equivalent weak formulation in

which continuity requirements on the solution are weakened (see below), followed by 2) discretizing

the problem domain into small regions over which the solution is roughly constant, allowing the

reformulated problem to be solved numerically.

3.3.4.1 Weak formulation of Poisson’s equation

The solution φ to Poisson’s equation is the value of φ that minimizes the electrostatic potential

energy of the system, UE = 1
2

∫
V ρφ dV , where ρ is the charge density. The calculus of variations

deals with problems in which a quantity to be minimized (here UE) appears as an integral [Arfken,

1970]. Assuming a solution to the system exists, we define a test function ψ on the same domain as

φ, and with the same boundary conditions. Then it can be shown that solving the Poisson equation

is equivalent to finding φ such that

〈ψ,−σ∇2φ− f〉 = 0

for all values of ψ, where 〈·, ·〉 denotes the inner product. Here 〈u, v〉 =
∫
V uv dV , giving∫

V
−σψ∇2φ− ψf dV = 0

applying the product rule: −ψ∇2φ = −∇(ψ∇φ)+∇ψ∇φ, and the divergence theorem:
∫
V ∇(ψ∇φ) dV =∮

S ψ∇φdS, yields the weak formulation of Poisson’s equation:∫
V
σ∇ψ∇φdV −

∮
S
σψ∇φdS −

∫
V
ψf dV = 0 (3.3)

I broke this into domains over which σ is constant: the body of the fish and the water surrounding

the fish: ∫
Vb

σb∇ψb∇φb dV −
∮
S
σbψb∇φb dS −

∫
Vb

ψf dV = 0
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∫
Vw

σw∇ψw∇φw dV −
∮
S
σwψw∇φw dS = 0

(since there are no external charges, f is only nonzero inside the body of the fish.) On S we have

boundary condition φw − tσwσs∇φw = φb; or, noting that σw∇φw = −σb∇φb on S, the equivalent

φb − tσbσs∇φb = φw. Plugging this in gives∫
Vb

σb∇ψb∇φb dV −
∮
S
σbψb(

σs
tσb

)(φb − φw) dS −
∫
Vb

ψf dV = 0

∫
Vw

σw∇ψw∇φw dV −
∮
S
σwψw(

σs
tσw

)(φw − φb) dS = 0

Combining these two parts and noting that ψwφw and −ψbφb terms in the two surface integrals

cancel, I arrive at the equation[ ∫
Vb

σb∇ψb∇φb dV −
∫
Vb

ψbf dV
]

+
[ ∫

Vw

σw∇ψw∇φw dV
]
−
∮
S

σs
t

(ψbφw + ψwφb) dS = 0 (3.4)

These integrals can then be passed on to GetDP to solve numerically for φb and φw.

3.3.4.2 Discretizing the problem domain

To describe the geometry of the fish in its recording box, I constructed a 3d mesh of the fish’s body in

the open-source rendering tool Blender [Blender Foundation, 2014] from top- and side-view photos;

I assumed transverse slices of the body were oval-shaped. The resulting mesh contained 1693

vertices and 3382 triangular faces: side, top, and perspective views of the mesh are shown below. I

placed a rectangular box around the fish’s body (not pictured) to represent the tank in which field

measurements were taken, both to capture the effects of the recording box on the fish’s field, and

because this box is used to impose boundary conditions by the FEM solver. I then imported this

mesh into Gmsh, a finite-element grid generator designed to operate in conjunction with GetDP

[Geuzaine and Remacle, 2009]. I used Gmsh to cleanly tile the problem domain with a much

higher-resolution 3d mesh. I then used GetDP to numerically evaluate Equation 3.4 by the finite

element method, in which the test function ψ becomes the interpolating function between nodes in

the 3d mesh (which approaches a delta function as the mesh becomes infinitely dense.)

74



Figure 3.12: Mesh of fish body generated in Blender; the head with chin organ is facing left in all

views. The fins and tail do not affect the electric field of the fish, and were not rendered.

3.3.5 Simulating body bends

Figure 3.13: Two example bends of the fish mesh. Left, a single 20◦ bend, right, two 20◦ bends.

Bends appear stiff because single joints are being affected, whereas naturalistic postures likely

involve the correlated bending of multiple joints. Blender also has the capacity to distribute bends

over multiple joints, but because effects on the fish’s field are likely small, I did not investigate

these here.
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To simulate body bends in the fish, I rigged the Blender mesh to a 16-joint armature, an animation

tool composed of a chain of rigid “bones” connected by ball-and-socket joints. The rigging process

allows bends in the armature to be translated to deformations of the body mesh, producing realistic

bending effects in the body. Pairs of joints were systematically bent through combinations of angles

in the XY plane, and the resulting posed meshes were exported from Blender to Gmsh for modeling

of the fish’s field.

Figure 3.14: Top and side views of the 3D model of the fish’s field in a coronal slice, for two

curved bends; color indicates electric potential, hence the boundaries between solid colored regions

are equipotential lines. Contrast is enhanced to make the differences in the field between the two

postures more visible.
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My original goal was to solve for the fish’s field in the entire 3D mesh, but 3D implementation of

the field model in GetDP proved problematic: while reasonable field predictions could be made

within a single mesh, the solver seemed to encounter local minima that made comparison of results

between meshes difficult. While further work could probably resolve this, the 3D solution was also

very time-consuming to compute, especially given the large number of simulations needed to study

interactions of multiple bends. (For example, testing pairs of bends of ±20◦ among four bend

locations with two-degree resolution requires 2400 simulations.) I therefore reduced the original 3D

mesh to a 2D model, by taking a coronal slice through the midline of the fish mesh, and solving for

the field in this slice. This method neglects some features of the fish’s shape which likely impact

the fish’s field, such as the narrowness of the tail compared to the body, however for a qualitative

estimate of the effects of body bends, I will assume it is sufficient.

3.4 Results

3.4.1 Proprioceptive mossy fiber tuning curves are diverse

The posture dependence of the granule cell basis, and thus the negative image they form, is deter-

mined by the mossy fiber representation of the tail manipulation. Mossy fiber encoding of posture

is not well understood: some cells vary their firing rate monotonically with tail position, while

others seem to have preferred tail angles, or to encode tail velocity. In addition, proprioceptive

mossy fibers are often tuned to a particular bend location; because the tail is being moved by an

external manipulator, it is unclear exactly which joints are being bent, and at what angles.

Instead of trying to construct model mossy fibers with known tuning properties, I extracted tail

angle-dependent tuning curves from recorded responses of a population of mossy fibers during tail

manipulation. The downside of this setup is that I don’t know exactly what the mossy fiber input

to the granule cell basis is encoding. But because the mossy fiber recordings are derived from the

same setup as the measured negative images I will study, I do know that they are the inputs that

shape the granule cell basis during negative image formation. To extract tuning curves, I divided

tail angles into 16 bins, and found the average tonic firing rate of each recorded mossy fiber as

a function of the tail’s location. 60 out of 80 recorded mossy fiber firing rates were monotonic

77



functions of tail position. The remaining 20 were non-monotonic, exhibiting clear peaks or dips in

firing rate at intermediate tail angles. Most fibers’ tuning curves were also direction dependent,

although this could be an artifact of how the fish was restrained during recording (for example,

ipsi→contra bends could have affected joints in a different pattern than contra→ ipsi bends.)

Because an equal number of mossy fibers preferred ipsi- vs contra-directed bends, I arbitrarily

chose to use ipsi-directed tuning curves as input to model granule cells.
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Figure 3.15: Example tuning curves of recorded mossy fibers, showing firing rate as a function of

tail position. Cells in panels b, d, f, and h are (essentially) monotonic, while cells in panels a, c,

e, and g are non-monotonic.

3.4.2 The model granule cell basis can form diverse proprioceptive negative

images

I first tested the ability of the model granule cell basis to recreate experimentally measured negative

images. Using the experimental setup outlined in Figure 3.5, Tim Requarth studied cancellation

of artificial sensory consequences of posture. One advantage of this setup is that the relationship

between tail angle and field strength is controlled experimentally, so it can be changed to take any

form. In the previous chapter, we saw that the shape of the negative image learned to cancel an

artificial sensory signal reflects the shape of the granule cell basis. Therefore by pairing unnatural

sensory signals with posture, Tim sought to test whether posture-specific negative images could

reveal limitations of the granule cell basis.

Strikingly, the fish was able to learn a diverse set of tail angle/field strength relationships. As
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shown in Figure 3.4c, moving the tail contra to ipsi of a receptor near the head normally causes

the EOD amplitude to increase roughly linearly with tail angle. However the fish could also learn

the reverse of this relationship, as well as nonmonotonic relationships between tail angle and field

strength. Moving the tail only on one side of the fish’s body during pairing, or over a restricted

range of bend angles, resulted in negative images that smoothly generalized over bend regions not

seen during training.
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Figure 3.16: Externally applied tail angle/EOD amplitude relationships (black) and the resulting

negative image learned by the fish (blue), as functions of tail angle. The upper-middle plot is

the natural EOD relationship: the EOD amplitude is stronger when the tail is ipsilateral to the

recorded cell’s receptive field, and weaker when the tail is contralateral to the cell’s receptive field.

The fish is able to learn a surprising range of negative images with reasonable accuracy (although

it failed to fully learn the W-shaped relationship on the bottom left.) The bottom center and right

plots are generalization experiments, in which the fish’s tail was only moved through the indicated

region during learning.

I simulated negative image formation in a model efferent cell receiving proprioceptively-modulated

input from a set of model granule cells. The model granule cells received proprioceptive input

from the set of experimentally-recorded mossy fibers discussed in the previous section; synaptic
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weights, inputs per granule cell, and spiking threshold were selected as described in the previous

chapter. The negative images formed by the model were a good match for those in the data, with

the exception of the W-shaped function and the V-shaped generalization function (bottom left and

bottom right of Figures 3.16 and 3.18), in which the model learned the extremes of the negative

image more slowly than was observed in the data.
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Figure 3.17: Simulated tail angle/EOD amplitude relationships (black) and the negative image

learned by the model granule cell basis (blue), as functions of tail angle. Notable differences from

the experimentally measured negative images are the W-shaped plot on the bottom left, and the V-

shaped generalization experiment on the bottom right, both of which formed only shallow negative

images at extreme bends.

The disparity between model and recorded negative images could simply mean that I am not using

the correct mossy fiber basis as input to my model granule cells. The mossy fiber recordings

used in the model were collected several years before the pairing study, and used a different tail

manipulation setup- therefore small differences between mossy fiber input to the model granule cells

and the actual mossy fiber responses during pairing could contribute to the model’s inability to

match the experiment. Alternatively, increasing the granule cells’ thresholds decreases the number

of cells active at central tail positions, and decreases the amplitude of the central peak in the W-
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shaped curve; however making this change also causes the remaining negative images to look less

like the data.

Interestingly, I found that the W-shaped negative image was particularly sensitive to the way the

tail was moved during learning. In Figure 3.18, I simulated a sawtooth movement of the tail during

learning. Modest changes in this movement resulted in substantially different negative images of

the W-shaped pairing; no other pairing showed this extreme sensitivity.
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Figure 3.18: Negative images of the upper left and bottom left pairings from Figure 3.18, for

different tail manipulations. Changing the tail movement from a sawtooth to a sinusoid increased

the proportion of learning trials in which the tail was at extreme positions, and thus increased the

magnitude of the negative image at the two bend extremes for the W pairing. Changing the tail

movement to spend less time at extreme positions (light green line) drove a stronger negative image

at small tail angles. All other pairings were much less affected by these changes, as seen from the

linear pairing in the center plot.

To make sense of this result, I look at the matrix governing the dynamics of learning for this

system, described in Section 3.2.3. This section derives the matrix M(p, p′) that determines how

a voltage perturbation at posture p affects the negative image at posture p′. Figure 3.19 the first

five eigenvectors of M , and the first 25 eigenvalues. eigenvectors with large eigenvalues represent

posture/field relationships that the system can learn quickly. The W-shaped pairing is strongly

correlated with the 5th eigenvector, and weakly correlated with the first and third eigenvectors.

Because the eigenvalue of the 5th eigenvector is very small, it does not have a strong effect on

learning. Instead, depending on how the tail is manipulated during training, either the first or
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third eigenvector will dominate the negative image of the W-shaped pairing, leading to a negative

image that is peaked either at the two extremes (if the first mode dominates) or in the middle (if

the third dominates).
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Figure 3.19: Left: First five eigenvectors of the learning matrix M, reflecting the five tail angle/field

strength relationships learned most quickly by the system. Right: First 25 eigenvalues of M; the

magnitude of an eigenvalue determines how quickly its corresponding eigenvector is learned during

negative image formation.

3.4.3 Single- and double-joint bends and their effect on the fish’s field

Having confirmed that model granule cells could form posture-specific negative images, I set out

to study the effect of posture on the fish’s field more systematically, using the electrostatic model

described in the methods.
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Figure 3.20: Effects of three example bends on field strength at the fish’s skin, from the 2D mesh

model. In each plot, I bent the fish mesh at the location indicated by the vertical black line, and

measured the modulation in the EOD-generated field at the skin on one side of the model fish.

Green lines show the modulation from bends 20◦ ipsi to the measurement site, while red lines show

modulation from bends 20◦ contra, and the x axis is aligned with the fish’s body as indicated below

the plots. All bends induced strong modulation rostral of the bend location. Aside from magnifying

effects near the location of the bend, which may depend on the detailed geometry of the mesh, fold

modulation of the fish’s field was roughly constant from the bend to the head. The field at skin

caudal to the bend location was unaffected by the bend—this makes sense, as the distance from

the electric organ to the skin does not change at these locations.
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Figure 3.21: Interaction of pairs of bends, at joint angles up to ±20◦, measured at three locations

along the fish’s body; bend and measurement locations are indicated on the fish schematic. I

focused on the interaction of a bend near the fish’s tail with bends further up the body. The

top row shows effect of bend pairs on the field measured at the blue dot. For all three locations

paired with the tail bend, the two bends summed completely linearly. By contrast, at the pink dot,

modulation of the field was dominated by tail bends, with bends near the head having little effect

(similar to the results from single bends.) At extreme bends, when the two joints are both bent

ipsi or both contra, the strength of the measured field increases.84



I observed three types of effects in pairs of bends, depending on the relative location of the two

bends, and the location of the receptor (see Figure 3.21). First, bends caudal of the receptor tended

to combine linearly: the field modulation at the receptor was proportional to the sum of the angles

of all tail-ward bends. Second, bends rostral of the receptor only weakly modulated the strength

of the field, as was the case in the single-bend experiment. Finally, for receptors in the caudal

half of the fish, the strength of the measured field increased when both joints were bent in the

same direction. This is most likely caused by the combined effect of the two bends bringing the

fish’s head closer to the skin: because the EOD field propagates along the length of the fish’s body,

the fish’s head is more positively charged than its environment. Thus for extreme bends, and at

receptors near the middle to caudal regions of the fish’s skin, the fish’s own head starts to register

as an object to the electrosensory system.

3.4.4 Forming negative images over families of postures

Using my results from simulations of the fish’s field, I looked at how a model granule cell basis could

cancel effects of pairs of bends at different sensor locations. Preliminary recording of proprioceptive

mossy fibers indicates that they are tuned to a particular bend location along the length of the

fish’s body [Nate Sawtell, unpublished observations]. For bends near a mossy fiber’s preferred bend

location, the fiber’s tonic firing rate is strongly modulated by bend angle, while for bends away

from the preferred location, the fiber’s tonic firing rate is unaffected or only weakly modulated.

Recorded mossy fibers tended to be broadly tuned for bend location.

Based on these observations, I built a simple model of mossy fiber tuning as a function of bend

angle and location. Given a set of bends at locations xi along the fish’s body, with bend angles φi,

I set the response of the model mossy fiber to be the sum of the modulation induced by each bend

individually, thresholded at 0 and with a maximum firing rate of 200 Hz. Mossy fiber responses

were determined by a function s(x) controlling the spatial tuning of each fiber, and a function r0(φ)

of mossy fiber firing rate modulation as a function of bend angle. Bend modulations of mossy fiber

firing rate were relative to a baseline firing rate of the fiber when all joints were straight, f0.

r(x, φ) =
[
f0 +

Njoints∑
i=1

s(xi)r0(φi)
]
+
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I set s(x) to be a Gaussian, and I defined r0(φ) to increase linearly with bend angle, and picked a

preferred body side (ipsi vs contra) at random with equal probability.

s(x)

head tail

bend location (x)

1

0

r0(φ)

100

0

−100
ipsi contra

bend angle (φ
i
)

0

I tested negative image formation at the three receptor locations shown in Figure 3.21, for the

three depicted combinations of tail and body bends, under the assumption that all bend angles

were encountered with equal frequency. I first looked at the rate of negative image formation as a

function of the number of mossy fiber inputs to model granule cells. For simplicity, I assumed that

every granule cell received the same number of mossy fiber inputs, and that mossy fiber tuning

curves spanned approximately a quarter of the fish’s length. I found that learning rates were

highly dependent on the location of the model efferent cell’s receptive field, but that learning at all

receptor locations tested was fastest when the number of mossy fiber inputs to granule cells was

small, between 1 and 2 per cell. Interestingly, granule cell populations receiving only single mossy

fiber inputs learned slower than those receiving two inputs in some conditions—this seems to be

because the granule cell basis is slow to learn nonlinear interactions of bends with only single mossy

fiber inputs.
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Figure 3.22: Negative image formation by a model efferent cell receiving input from a set of model

granule cells, plotted as a function of the number of mossy fiber inputs granule cells received. The

three plots show rate of negative image formation for different efferent cell receptive fields, from

rostral (left) to caudal (right); precise locations are indicated by colored dots, which correspond to

the locations used in Figure 3.21.

Note that a trial in this example corresponds to a single EOD. When at rest, the fish typically

discharges its electric organ at a rate of about 5 Hz. Thus 1000 trials in Figures 3.22 and 3.23 cor-

responds to a little over three minutes of pairing- while 106 trials is on the order of two days.

I next looked at dependence of negative image formation on tuning width of the mossy fibers,

assuming two proprioceptive mossy fiber inputs per granule cell. As with the number of inputs,

learning rates varied as a function of receptor locations. For model efferent cells with receptive

fields near the head, narrowly tuned mossy fibers initially learned at rates comparable to broader

tuned mossy fibers, but their learning rate dropped off with time. This may be due to slower

generalization by these cells, due to sharper tuning of granule cells. Conversely, for efferent cells

with receptive fields near the tail, granule cell bases with narrowly tuned mossy fiber inputs learned

fastest, perhaps due to the greater complexity of negative images formed near the tail.
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Figure 3.23: Negative image formation as a function of the tuning width of the mossy fiber basis;

receptive field locations are again from Figure 3.21. The learning rate was highest for narrowly-

tuned mossy fibers in model efferent cells with caudal receptive fields, while efferent cells with

rostral receptive fields learned fastest with broadly tuned mossy fibers.

3.5 Discussion

In this chapter, I developed a model for proprioceptive negative image formation in the active

electrosensory system, and studied the sensory consequences of posture in a field model of the fish.

By modulating granule cell activation, tonically active proprioceptive mossy fibers create a granule

cell basis that responds to the combined effects of posture and the EOD.

The performance of the granule cell basis is sensitive to the precise representation of posture in

mossy fibers. In Section 3.4.4, I looked at one such factor, the tuning width of mossy fibers. I

assumed the simplest possible mossy fiber tuning, in which effects of separate bends were scaled

according to the fiber’s tuning for bend location and summed linearly, however the actual responses

of mossy fibers could be much more complex. Proprioceptive mossy fibers originate in the spinal

cord, and as was discussed in Section 3.4.1, their response functions are diverse. In addition to

encoding posture, some proprioceptive cells appear to be tuned to specific bend angles, or the

velocity of tail movement.

Incorporating additional mossy fiber tuning properties into the model from Section 3.4.4 could

yield further insight into how the mossy fiber basis can be tuned to increase the rate of negative

image formation. Because the effect of posture varies with the location of an efferent cell’s receptive

88



field, negative image formation may be aided by a body map in the electrosensory lobe, in which

the response properties of mossy fibers innervating the ELL are matched to the receptive fields of

efferent cells. Unlike the model of the previous chapter, which dealt with one-dimensional negative

images in the paralyzed fish, the active system in the behaving fish must be able to form a diverse set

of negative images simultaneously, and respond to changes in these negative images on biologically

relevant timescales (recall that 106 trials in the plots of Section 3.4.4 corresponds to roughly 2 days

of pairing.)

Using the models developed in this chapter, I hope to identify additional ways in which the mossy

fiber basis can be tuned to solve the particular computational problems faced by efferent cells with

different receptive fields. These results should hint at ways in which mossy fiber innervation of

the ELL could be wired to optimize the learning rate of posture-specific negative images. Ideally,

experimental investigation of these predictions could then search for an anatomically-constructed

internal model among mossy fibers, by looking for patterns of mossy fiber tuning that are matched

to the receptive fields of their target efferent cells.
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Chapter 4

Odor representation in the Drosophila

mushroom body

The Drosophila olfactory periphery closely resembles the mammalian olfactory system. Odorants

bind to a set of olfactory receptor neurons in the antenna, which converge on a set of glomeruli

in the antenna lobe, as in the mammalian olfactory bulb. The responses of each glomerulus are

relayed by a set of projection neurons, the equivalent of mitral cells in vertebrates, to two higher

brain regions: the lateral horn and the mushroom body. The lateral horn is associated with innate

behavioral responses to odors, such as sex-specific responses to pheromones during courtship [Datta

et al 2008], whereas the mushroom body is required for learned responses to odors. For instance,

the mushroom body is required in classical conditioning, in which flies learn to avoid or approach

otherwise neutral odors via the pairing of an odor with shock or reward [de Belle and Heisenberg,

1994; Dubnau, Grady, Kitamoto and Tully, 2001; McGuire, Le, and Davis, 2001].

The anatomy of the mushroom body bears strong resemblance to the circuitry of the cerebellum:

signals from the sensory periphery are expanded into a sparse, high-dimensional representation. A

small set of Purkinje-like neurons read out odor representations via a set of synapses that undergo

plasticity during learning. In this and the following chapter, I construct a model of the Drosophila

olfactory system and examine its performance in odor learning tasks. In this chapter I develop the

model, expanding on previous work to more closely match experimental data from the olfactory
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periphery and mushroom body. In the next chapter, I will discuss the circuitry thought to underly

odor learning, and present two hypotheses by which that circuitry could mediate the acquisition of

odor-specific behaviors.

4.1 Anatomy of the fly olfactory system

This section will review olfactory anatomy discussed in the introduction, and introduce terminology

and abbreviations used in the rest of the chapter.

antenna antenna
lobe

mushroom
body

olfactory
receptor
neurons
(ORNS)

glomeruli

APL
(GABAergic)

Kenyon
cells (KCs)

projection
neurons (PNs)

local neurons
(GABAergic)

to lateral
horn

Figure 4.1: The olfactory processing stream in Drosophila, with all elements of the model marked.

Olfactory receptor neurons (ORNs) on the antenna and maxillary palps of the fly each express one

of a family of roughly 50 odorant receptors. Most odors activate several classes of odor receptors

and interaction can either increase or decrease ORN firing rates (ORNs are spontaneously active).

In my model, I take ORN firing rates from a large dataset measuring the responses of 23 ORN

types to a panel of 110 odors [Hallem and Carlson, 2006]. Roughly 30% of odor-ORN interactions

in the dataset are inhibitory, and four odors elicit a purely inhibitory response. Responses of

ORNs to odors are not uniform: some ORNs are characteristically excited by odors, while others

are predominantly inhibited. In addition, odors which strongly drive one type of ORN often also

strongly drive several others. Odors which strongly drive many/most classes of ORNs are called
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“public” odors, and are often fruity odors like isopentyl acetate (banana) or food-related odors like

yeast. Some other odors only activate a single type of ORN at typical tested concentrations; these

are referred to as “private” odors. Example private odors are geranyl acetate (rose) and methyl

salicylate (wintergreen).

ORN axons project to the antenna lobes, which are situated in a similar position to the olfactory

bulbs in vertebrates. The antenna lobes are composed of a set of roughly 50 glomeruli, one for each

ORN class, and all ORNs of the same class converge exclusively onto their designated glomeru-

lus. Each glomerulus is read out by a small number of projection neurons (PNs; roughly five per

glomerulus). Within the antenna lobes are additional local interneurons (LNs) that receive odor-

evoked input, presumably from ORNs, and feed back onto glomeruli. There appear to be several

classes of interneurons, with different patterns of glomerular innervation; LNs are predominantly

inhibitory and GABAergic, though excitatory cholinergic LNs exist as well [Wilson and Laurent

2005; Olsen, Bhandawat, and Wilson, 2007; Shang et al 2007]. Like ORNs, PNs are spontaneously

active and can be either excited or inhibited by odors; however unlike ORNs, odor-mediated inhibi-

tion of PNs can come from two sources: inhibition of the ORN class innervating a PN’s glomerulus

(called the cognate ORN), or lateral inhibition between glomeruli mediated by LNs. As will be

discussed in the model, lateral inhibition is thought to play an important role in normalizing odor

representations in the PNs so that effects of odor intensity are removed from the PN responses,

while information about odor identity is preserved.

Each PN axon bifurcates outside the antenna lobe to innervate two regions, the mushroom body

and the lateral horn (like the antenna lobe, both structures appear bilaterally in the fly brain.)

Relatively little is known about the anatomy of the lateral horn, though the hypothesis that it drives

odor-evoked innate behaviors has some experimental support [Datta et al 2008]. The mushroom

body contains approximately 2000 Kenyon cells (KCs), small granule cell-like neurons. PN axons

form excitatory connections with KC dendrites in the mushroom body calyx. Each KC has around

7 dendritic claws, each of which forms a single synapse with a single PN axon. PN-KC connectivity

is random, in the sense that one KC claw forming a connection with a given PN does not alter the

probability of the KC’s other claws from synapsing with any other PN [Caron, Ruta, Abbott, and

Axel, 2013; Murthy, Fiete, and Laurent, 2008; Honegger, Campbell, and Turner, 2011]. However

92



the distribution of connections is not uniform: some PNs send out more axonal projections and are

more likely to synapse with KCs than others.

All 2000 KCs extend their axons in two structures, the medial and vertical lobes of the mushroom

body. There are three subclasses of KC, distinguished by the order in which they emerge develop-

mentally: α/β, α′/β′, and γ KCs. The α/β and α′/β′ KCs have bifurcating axons which send one

branch to the medial lobe (forming the β and β′ lobes) and one to the vertical lobe (forming α and

α′ lobes). γ KCs have a single axon, which extends only to the medial lobe. There is no difference

in PN-KC connectivity across the three KC classes, and I will treat them interchangeably in this

study. But some differences do exists between KC classes. Physiologically, α′/β′ KCs are slightly

more responsive to odors and are the only KCs which are spontaneously active (albeit at only

around 0.1 Hz) [Turner, Bazhenov, and Laurent 2008]. And in memory tasks, one study found that

neurotransmission from α′/β′ KCs is required for acquisition and consolidation of odor memory,

but not for retrieval, while α/β KCs are required only for retrieval [Krashes et al 2006].

Unlike the ORNs and PNs, KC responses to odors are very sparse, with a typical odor evoking

spikes in 5-10% of KCs, and any given KC responding to 5-10% of odors on average (although

narrowness of tuning varies across cells in the KC population, as will be discussed in the results

portion of this chapter.) Contributing to KC sparseness is a fairly high spiking threshold in KCs,

as well as recurrent inhibition of the KC population by an unusual cell called the Anterior Paired

Lateral neuron (APL). Each mushroom body (in the left and right hemispheres of the fly brain) is

innervated by a single massive APL neuron, which sends processes to the mushroom body calyx as

well as the vertical and medial lobes. While it is tricky to distinguish axons from dendrites in flies,

it appears that the APL receives input from KCs in the vertical and medial lobes, and inhibits KCs

at their dendritic terminals in the calyx. Rather than fire action potentials, APL releases GABA at

a rate proportional to its level of depolarization [Papadoupulou, Cassenaer, Nowotny, and Laurent,

2011]. APL appears to play a role in normalizing KC responses to odors, similar to Golgi cells in

the cerebellum, although some studies have hypothesized a role of APL in the process of learning

itself [Pitman et al 2011].

Thus, dense odor codes in the olfactory periphery are transformed to sparse, high-dimensional codes

in the mushroom body. Previous work has established a basic model of odor representation in the
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mushroom body, indicating that KC connectivity and sparseness are tuned to create a maximally

high-dimensional representation of odors among KCs [Caron, Ruta, Abbott, and Axel, 2013; Luo,

Axel and Abbott, 2010; Turner, Bazhenov, and Laurent, 2008]. Here, I refine previous models to

more closely match observed responses in the olfactory periphery and mushroom body, and look at

some properties of odor representation in the new model. In the next chapter, I will discuss evidence

for the role of the mushroom body in odor learning, recent findings regarding neural readout of

odor representations by KCs, and how this readout underlies the acquisition of novel associative

odor memories in the fly.

4.2 Objectives

The goal of this chapter is to develop a dynamic firing rate/spiking model of the fly olfactory system,

from ORNs up through the mushroom body. This work will expand upon a previous model built

using time-averaged responses of olfactory neurons [Luo, Axel, and Abbott 2010]. I will focus on two

key areas for improvement: first, the earlier model did not capture the dynamics of PN responses,

which are shaped by slow lateral inhibition. As described in following sections, the inhibitory LNs

mediating divisive normalization in PNs act on the order of hundreds of milliseconds; models that

disregard this and capture just the time-averaged effect of lateral inhibition overestimate its effect

on the excitatory input relayed by PNs to the mushroom body. And second, I will develop a

more biologically realistic model for APL-mediated inhibition of KCs. In the original model, APL

was effectively implemented by subtracting off the first principal component of PN responses to

odors; as a result, odor representations in KCs were very well decorrelated, and odor learning in

the model was straightforward. However this model of APL leads to several inconsistencies with

recorded KC responses, such as a drop in active cells as odor concentration increases, which is the

opposite of what is seen in vivo. Explicitly modeling APL responses to odors leads to a drop in the

dimensionality of KC responses, as KCs become more correlated across odors, but it also leads to a

distribution of KC tuning curves that is more clearly in line with what is observed experimentally.

In the next chapter, I will discuss learning rules by which the mushroom body may overcome

problematic correlations between odor representations.
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4.3 Methods

4.3.1 Construction of the dynamic mushroom body model

4.3.1.1 Obtaining ORN responses to odors

Previously published data [Hallem and Carlson, 2006] records the response of 23 classes of ORNs

to a panel of 110 different odors, as well as responses to nine fruit odors and ten chemical odors

at each of four concentrations. Each odor was presented for six 500 ms trials, and ORN responses

are reported in spikes per second relative to the baseline spontaneous firing rate of the ORN

(also reported). While most odor-evoked responses were excitatory, approximately one quarter of

odor/receptor combinations showed a drop in ORN firing rate in response to the odor, and four

of the tested odors had purely suppressive effects on ORN firing. Electrophysiological recordings

in ORNs show that odor-evoked spiking undergoes little adaptation [Bhandawat et al 2007], thus

ORN firing rates in the dynamic model were modeled as a simple step response, filtered by the

cell’s synaptic membrane filter (unless mentioned otherwise, all model cells were assumed to have

a membrane time constant of 10 ms):

τm
dORN

dt
= (ORNspont −ORN(t)) + sI(t)

where s is the odor-dependent ORN activation from the Hallem and Carlson data, and I(t) is the

stimulus timecourse, usually a 500 ms step.

In some instances, I generated additional synthetic odors from the Hallem and Carlson dataset. To

study representations of odor mixtures, I assumed for simplicity that ORN activation by the set of

mixed odors was a linear sum of activation by single odors. If odor concentration is not high enough

that odorants are competing for ORN receptors, this assumption should be reasonably accurate.

I also used synthetic odors to study dimensionality of odor representations in different stages of

olfactory processing; I typically generated 4890 synthetic odors, to increase the total number of

odors in the dataset to 5000. For each synthetic odor, I randomly drew a response for each ORN

from its set of responses to the 110 real odors,

Unlike previous work by Luo et al, I chose not to generate synthetic responses for the 18 olfactory

glomeruli not recorded by Hallem and Carlson. While this could diminish the model’s performance
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on odor discrimination tasks, it avoids artificially increasing the dimensionality of odor representa-

tions in the ORNs and subsequent levels of processing. It therefore provides a reasonable baseline

for learning: additional glomerular responses could only improve performance.

4.3.1.2 Modeling projection neuron responses to odors

In previous work, Olsen, Bhandawat and Wilson fit a PN model to two features of the ORN-PN

transformation: first, PNs have a nonlinear input-ouput transformation of their cognate ORNs,

in which the PN amplifies weak ORN responses and saturates at stronger ORN responses [Olsen,

Bhandawat, and Wilson, 2010]. And second, a population of local inhibitory interneurons (LNs)

divisively normalize PN responses by an amount proportional to the total ORN input to the antenna

lobe. LN normalization effectively stretches the input-output function of PNs, such that the more

glomeruli a given odor recruits, the more strongly it must activate a given glomerulus to drive up

the firing rate of its cognate PN. Together, the two effects reduce the effect of stimulus intensity

on the PN population response, and equalize PN input to the mushroom body across odors.

The model exhibited two shortcomings: first, it gave only the average firing rate of the PNs over a

500 ms stimulus presentation, whereas recorded PN spiking exhibits multiphasic structure which is

likely to impact Kenyon cell spiking. And second, the Olsen model was fit using only glomeruli which

were strongly excited by odors, and did not allow PN firing rates to drop below their spontaneous

levels. Like ORNs, PNs are spontaneously active in the absence of odor, and are inhibited during

odor presentation via two mechanisms: either through odor-evoked suppression of their cognate

ORNs, or through lateral inhibition from other glomeruli [Wilson and Laurent 2005].

4.3.1.3 Adding odor-evoked inhibition of projection neurons

I addressed the second shortcoming by building a model that permits odor-evoked inhibition of

PNs. Temporarily ignoring lateral inhibition, odor-evoked PN responses in the Olsen model are

given by:

PN − PNspont = Rmax
(ORN −ORNspont)

1.5

σ1.5 + (ORN −ORNspont)1.5
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where PNspont and ORNspont are the spontaneous firing rates of a given PN and ORN (ie for a

single glomerulus), and Rmax and σ are parameters fit to the data. The 1.5 exponent was also fit

to the shape of the ORN-PN nonlinearity.

To allow PN firing rates to drop below their spontaneous values, I fit this model with a thresholded

tanh function:

PN =
[
Rmax tanh

(
g(ORN −ORNspont + c)

)
+ PNspont

]
+

where Rmax is defined as before. g and c are new parameters of the tanh model, which were fit

using nonlinear least squares to minimize the cost function formed from the difference of the two

models:

C =

∫ xmax

0
dx
(
Rmax

x1.5

σ1.5 + x1.5
−Rmax tanh

(
g(x+ c)

))2

which was evaluated using a rectangle approximation. Note that x replaces ORN−ORNspont; thus

xmax was set to the largest experimentally-observed ORN response.

4.3.1.4 Adding lateral inhibition to the revised model

Lateral inhibition between glomeruli is mediated by a population of GABAergic local neurons (LNs)

in the antenna lobe. LNs are broadly tuned to odors, but their tuning curves are heterogeneous,

as is the spatial extent of their innervation of glomeruli. However, Olsen et al found that the net

effect of the LN population is to divisively normalize PN responses by the total ORN input to the

antenna lobe:

PN − PNspont = Rmax
(ORN −ORNspont)

1.5

σ1.5 + b1.5 + (ORN −ORNspont)1.5

where b = m
∑

i(ORNi − ORNi, spont). I kept this approach in the tanh model, introducing a

divisive inhibition term with additional parameters k1 and k2:

PN =
[
Rmax tanh

(
g(ORN −ORNspont + c)

k1

b+ k2

)
+ PNspont

]
+

(4.1)

k1 and k2 were again fit with nonlinear least squares, by finding values to minimize

C =

∫ bmax

0
db

∫ xmax

0
dx
(
Rmax

x1.5

σ1.5 + b1.5x1.5
−Rmax tanh

(
g(x+ c)

k1

b+ k2

))2

where bmax was the maximum value of b computed from the Hallem and Carlson dataset.
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4.3.1.5 Spontaneous projection neuron activity

For the PN’s threshold (the value of ORN − ORNspont at which PN > 0) to be independent of b

in this model, PNspont should scale like k1/(b+ k2); I therefore set

PNspont = ORNspont
k1

b+ k2

this gives a mean spontaneous firing rate of 14.5 Hz among modeled PNs, compared to 13.3 Hz

in ORNs in the Hallem and Carlson dataset. Complete data on the spontaneous firing rates of

PNs is unavailable, but they are known to show spontaneous activity of several Hz; the value used

here can easily be adjusted in future models if additional information about PN responses becomes

available.

4.3.1.6 Building the dynamic projection neuron model

Experimental evidence suggests that PN responses are shaped by slow lateral inhibition mediated

by LNs. Both LNs and PNs are inhibited by GABA: IPSPs in LNs have a time constant of 100 ms

and are completely abolished by picrotoxin, suggesting they are mediated by GABAA. IPSPs in

PNs are a sum of a fast (τ = 100 ms) picrotoxin-abolished component and a slower component with

τ = 400 ms which was abolished by the GABAB antagonist CGP54626, suggesting a combination

of GABAA and GABAB- mediated inhibition in PNs [Wilson and Laurent, 2005].

I modeled the LN population as a single unit receiving excitatory input from all ORNs, and assumed

threshold-linear GABA release as a function of the LN firing rate. I further assumed that GABA

inhibition of LNs was divisive. With these assumptions, I found that superlinear recruitment of LNs

by the ORNs was needed to match the Olsen model; additional experimental investigation would

help to further constrain the LN model and determine whether this feature is reasonable.

Defining temporary variables IPN and ILN to be the amount of GABA-mediated inhibition of PNs
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and LNs, dynamics of GABA receptor activation and LN and PN responses are given by:

τGABAA/B

dGABAA/B

dt
= −GABAA/B(t) + [LN(t)]+

IPN = wAGABAA + wBGABAB

ILN = GABAA

τm
dPN

dt
=

[
− PN(t) +Rmax tanh

(
g(ORN −ORNspont + c)

k1

IPN + k2

)
+ PNspont

]
+

τm
dLN

dt
=

[
− LN(t) +m

(∑
i

ORNi(t)
)3 k′1
ILN + k′2

]

τGABAA
= 100 ms, τGABAB

= 400 ms, wA = 1
4 and wB = 3

4 were fit to IPSPs recorded in [Wilson

Laurent 2005]. Parameters of the PN equation are taken from Eq. 4.1, with the exception of Rmax.

In the Olsen model, Rmax was the maximum number of spikes fired during a one second stimulus

presentation. In the dynamic model the PN response may transiently exceed this value at odor

onset; I therefore increased Rmax to 200Hz, which is near the peak firing rate observed in PNs. In

the LN model, k′1 and k′2 did not strongly affect PN performance, and for simplicity were chosen to

be similar to k1 and k2. m and the cubic exponential were fit by hand to the Olsen model.

The time-averaged firing rates of PNs in the dynamic model are a close fit to those from the Olsen

model for all odors tested (Figure 4.2).

4.3.1.7 Spiking model

To generate spikes from the dynamic model, PN firing rates were fed into a Poisson process with a

3 ms refractory period; the refractory period was fit to match the mean/variance relationship of PN

spiking reported in [Olsen Bhandawat and Wilson 2010]. Five PNs were modeled per glomerulus,

each with the same underlying firing rate but a different realization of the Poisson process.

For experiments in which PN variability was unimportant, the firing rates of PNs from the dynamic

model were used directly as input to model KCs.
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Dynamic
model

200

200

0

0
Olsen model

Figure 4.2: Fit of the dynamic PN model to the Olsen model. Each point is the response of one

PN for one of 110 odors, for the dynamic model vs the Olsen model. To match the data to which

the Olsen model was fit, the response of the dynamic model is computed as the average firing rate

over a 500 ms odor presentation, minus the average spontaneous firing rate in a 500 ms window

prior to odor presentation. The dynamic model is a good fit to the output of the Olsen model over

all tested odors (note that the Olsen model can’t produce PN responses below baseline firing rates,

giving rise to the vertical excursion at x = 0.)

4.3.1.8 Projection neuron → Kenyon cell connectivity

PN-KC connectivity was derived from the experimental data of Caron et al [Caron, Ruta, Abbott

and Axel 2013], who experimentally measured connection probability between PNs and KCs. Each

KC has a small number of dendritic claws, which synapse with a single PN; the authors verified

that PN-KC connectivity was random, meaning that one KC claw forming a synapse with a given

PN did not affect connection probabilities of the remaining claws– however, some PNs were much

more likely to synapse with KCs than others.

For each model KC, the number of dendritic claws was randomly drawn from a set of 200 experimentally-

measured claw counts (mean 6.8 claws, with max of 11 and min of 2.) PN inputs at each claw were

randomly and independently drawn from a set of 342 measured connections between glomeruli and
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KCs; glomeruli in the set averaged 13.8 connections to KCs, with a max of 33. One glomerulus, da3,

had no observed connections with KCs; other than that, the lowest number of observed connections

was 2. After selecting a glomerulus, one of the five PNs innervating that glomerulus was randomly

selected as input to the given KC claw. PN-KC synaptic weights were assumed to be binary, and

normalized by the number of claws on each KC.

4.3.1.9 Kenyon cell threshold

Unlike PNs, KCs show little to no spontaneous activity: α/β and γ KCs are silent in the absence

of odor, while α′/β′ KCs have a spontaneous firing rate of around 0.1 Hz [Turner, Bazhenov, and

Laurent 2007]. To match this in the model, I set KC thresholds relative to the time-averaged

spontaneous PN input they received. I typically set all KC thresholds to a fixed amount above this

value, although an alternative approach which may also work would be to set the threshold as a

fixed number of standard deviations of the spontaneous PN input to each cell.

The sparsity of odor-evoked responses in model KCs is determined by both the KC spiking threshold

and the strength of recurrent inhibition of KCs by APL (see below). A recent paper indicates that

the number of KCs responding to an odor roughly doubles when APL is silenced [Lin et al 2014],

therefore I set the KC threshold to achieve twice the desired final sparsity across a panel of odors,

then tuned APL inhibition until this response was halved.

4.3.1.10 APL

APL is a single giant interneuron which innervates the entire mushroom body, and releases GABA

in a graded manner proportional to the number of KCs activated by an odor [Papadopoulou et

al 2011]. It extends a putitive dendrite-like process to the lobes of the mushroom body, where

KC axons are found, and an axon-like process to the calyx, where PN axons synapse with KC

dendritic claws. It is therefore hypothesized that APL receives excitatory input from KC axons,

and recurrently inhibits KCs either presynaptically (yielding divisive inhibition) or postsynaptically

(subtractive inhibition) at their claws in the calyx.

The optimum role for APL-mediated inhibition of KCs is unclear. In the Marr-Albus model of the
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cerebellum, recurrent inhibition of the KC-equivalent granule cells normalizes stimulus representa-

tions, but in the fly olfactory system a stage of normalization already occurs in the transformation

from ORNs to PNs, making the need for APL-mediated normalization questionable. In a previous

model of the mushroom body [Luo, Axel, and Abbott 2010], APL was used to remove the first

principal component of PN responses in the 110-odor ensemble; while this approach substantially

improved mushroom body performance on odor learning tasks, it resulted in patterns of KC activity

which did not match well with available data (see Results).

In most models discussed here, I assume that APL receives equal input from all KCs, and inhibits

all KCs with equal weight; inhibition is indicated as either divisive or subtractive. In other instances

I test the effects of plasticity in KC→APL or APL→KC connections, either as a means of altering

the distribution of KCs responding to odors, or as a part of odor learning.

In all these conditions, I assume APL release of GABA is a linear function of its membrane potential,

which evolves as

τm
dAPL

dt
= −APL+

∑
i

KCi

4.3.2 Metrics used in model analysis

4.3.2.1 Lifetime sparseness of model cells and odors

In Figure 4.7, I compute lifetime sparseness of KC tuning as in [Perez-Orive et al 2002] using data

received from Glenn Turner; this metric was taken from [Willmore and Tolhurst 2001, Rolls and

Tovee 1995]. Lifetime sparseness of the ith model KC across an ensemble of odors is given by:

Sp(i) =
1

1− 1
N

(
1−

∑N
j=1(r2

j/N)∑N
j=1(rj/N)2

)
(4.2)

where rj is the response of KC i to odor j, and N is the total number of tested odors. Because the

shape of the distribution depends on the number of odors tested, I matched the data from Turner

and computed sparseness over a set of 25 odors (18 odors for PNs). Unfortunately several of the

odors used by Turner were not in the Hallem and Carlson dataset, so rather than match the odors

directly, I selected random subsets of 25 (or 18) odors from the Hallem and Carlson dataset, and

averaged over multiple odor sets to obtain the data presented in Results.
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The same formulation was used to compute the sparseness of population representations of odors.

For odor i, population sparseness Sp(i) is again given by Eq. 4.2; in this case rj is the response of

KC j to odor i, and N is the total number of simulated KCs. Again, the shape of the distribution

depends on the number of cells used, so I computed population sparseness in a subset of 109 KCs

or 7 PNs to match the sample size of the experimental data. I repeated this computation across

multiple sets of cells and averaged the results to obtain the data in Results.

4.3.2.2 Representation angles

The activity of a population of N neurons can be represented as an N -dimensional vector r =

(r1, r2, . . . , rN ), where ri is the firing rate of the ith neuron – either at a given time t, or averaged

over some time window. To get a sense of how similar two patterns of neural activity are, I

compute the angle between the two r vectors. For example, if rA and rB are the responses of two

N -dimensional neural populations:

θAB = arccos
( rA · rB
|rA||rB|

)
θAB = 0 when rA = rB, and θAB = π/2 when rA ⊥ rB (note that for large N , θAB quickly

approaches π/2 for two random vectors rA and rB.) I typically use representation angles to compare

two similar signals, such as the response of ORNs vs PNs to the same odor.

4.3.2.3 Dimensionality of odor representations

To study the suitability of the mushroom body as a basis for learned odor responses, I analyzed

the dimension of KC responses across a panel of odors, computed as follows. The time-averaged

responses of a set of N neurons to a set of P odors can be summarized by an N × P matrix M .

While multiple metrics for dimensionality of a matrix exist, I calculated dimension in terms of the

singular values {si} of M :

D =
( N∑
i=1

si

)2( N∑
i=1

s2
i

)−1
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Dimensionality reflects the number of patterns of activity needed to account for the population

response across all stimuli. It is a good predictor of network performance on binary odor classi-

fication tasks, in which a linear readout must learn random mappings of odors into categories of

salient (appetitive/aversive) vs neutral. If a neural population’s responses are highly correlated

across odors, the number of mappings a linear readout will be able to learn will be limited, and

correspondingly, dimensionality of matrix M will be low. Conversely, if population responses to

odors are perfectly decorrelated, a linear readout will be able to learn a response to one subset

of odors without altering its response to the other, allowing arbitrary mapping of odors into cat-

egories. With decorrelated population responses, the neural activity pattern representing odor A

will be linearly independent from all other odor representations, therefore the dimension of M will

be high.

4.4 Response properties of the mushroom body model

To get a better understanding of the model, I compared model performance to data from previous

studies of PNs and KCs. The results help to verify that the model is a reasonable representation of

the fly olfactory system, and highlight some features of the transformation of odor representation

from the olfactory periphery to the mushroom body.

4.4.1 PN response dynamics are shaped by slow lateral inhibition

PN responses to odors are scaled by divisive inhibition mediated by a population of GABAergic

interneurons called local neurons (LNs) that receive input from ORNs and are broadly tuned across

odors. PNs express both GABAA and GABAB receptors, which have intrinsic timescales of 100 ms

for GABAA vs 400 ms for GABAB; LNs also recurrently inhibit themselves via GABAA receptors

[Wilson Laurent 2005]. The slow timescale of GABAB inhibition has been cited to explain the

temporal diversity of PN responses: PNs can be inhibited by odors for periods spanning from 100

ms to several seconds, a property not seen in their ORN inputs. PN responses to odors can also be

multiphasic, showing a period of excitation followed by inhibition, or vice versa. Because KCs in

the mushroom body receive input from only a few PNs (7 on average), the dynamics of individual
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PN responses likely have a strong effect on odor representation in their downstream KCs.

I implemented LN-mediated lateral inhibition in my dynamic model of PNs, and adjusted inhibitory

weights to match the divisive inhibition model of Olsen et al (see Methods). Because the timescale

of LN-mediated inhibition is slow, it lags the initial excitatory input from ORNs to PNs, giving

rise to multiphasic responses of PNs to odor inputs. Figure 4.3 shows responses of the model PN

population to 500 ms presentation of several example odors, as well as example traces from seven

recorded PNs for comparison. Typical model PNs have a transient peak in firing rate shortly after

odor onset, which decays as lateral inhibition grows. After odor offset, there is a transient dip in

PN activity, as inhibition decays back to baseline. Lateral inhibition is stronger for public odors

such as isopentyl acetate that activate many glomeruli, whereas private odors that only activate a

single glomerulus strongly drive less inhibition, and evoke more sustained PN responses.
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benzaldehyde
(almond)

ethyl butyrate
(pineapple)

isopentyl acetate
(banana)

methyl salicylate
(wintergreen)

odor (0.5 s)
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Figure 4.3: Odor representations by model PNs evolve over time. a. Firing rates of the

23 PNs in the dynamic model, in response to four sample odors (each colored line is a different

PN.) Gray regions mark the time of odor presentation, which has duration of 500 ms unless oth-

erwise noted. Strong public odors like isopentyl acetate, which activates many glomeruli, show a

pronounced onset transient followed by a drop in firing rate due to lateral inhibition. Private odors

like methyl salicylate, which only activates one glomerulus strongly, drive less lateral inhibition, al-

lowing sustained responses in a small number of glomeruli. b. Extracellularly-recorded firing rates

of seven example ORNs (green) and their cognate PNs (pink) in response to a 500 ms presentation

of isopentyl acetate, reproduced from Bhandawat et al [Bhandawat et al 2007]. Note odor-evoked

inhibition in PNs innervating glomeruli dl1 and va2, as well as transient onset responses in dm1-

dm4. c. Example spike rasters generated from model PNs innervating glomeruli dl1, vc3, dm4 and

vc4, responding to a panel of five odors. Each row shows the single-trial spiking response of a single

PN, with the odor presentation window marked in gray and responses to different odors delineated

by green lines.
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The model PNs show similar responses to recorded PNs, though there is clearly additional temporal

structure in the recorded PN responses that slow lateral inhibition alone cannot account for. Some

of this structure is inherited from ORNs: in the model, ORN input to PNs was a simple step input,

whereas recorded ORNs clearly show a transient spike in firing rate at odor onset, and a drop in

firing rate as time increases, possibly due to adaptation at the receptor. Some ORNs also had

higher affinity for odorants than others, showing sustained firing after odor offset. In addition, the

nonlinear firing rate transformation from ORNs to PNs is known to vary across glomeruli, as can be

seen in Figure 4.3b: PNs innervating glomeruli vm2 and dm3 have different response magnitudes

despite receiving nearly the same excitatory input. While there is not enough data available to

model the full range of effects that shape PN dynamics, incorporating LNs into the model is at

least sufficient to match the general shape of PN responses in a way which is also consistent with

previous models of divisive normalization of PNs.

4.4.2 Lateral inhibition determines PN representation of odors in mixtures

I also verified that slow LN-mediated inhibition in my model could reproduce previous experimental

findings on the role of lateral inhibition in shaping PN responses to odor mixtures. Recordings from

PNs responding to mixtures of public and private odors show that mixing a public odor with a

private odor makes the response to the private odor become more transient, as shown in Figure 4.4

[Olsen Bhandawat and Wilson 2010]. Applying GABA receptor antagonists to the antenna lobe

blocks the increase in transience, suggesting that it is mediated by lateral inhibition in the antenna

lobe rather than odorant competition at the level of the ORNs.

To recreate this study in the dynamic PN model, I presented the model with a private odor (2,3-

butanedione) at low or high concentrations, either by itself or mixed with low or high concentrations

of a public odor (isopentyl acetate), and looked at the response to the private odor (measured in

the glomerulus activated most strongly by that odor.) Because odor concentrations were low, I

assumed linear mixing of odor representations at the level of the ORNs. As in the experiments,

mixing the public odor with the private caused the response to the private odor to become more

transient, due to increased recruitment of lateral inhibition by the public odor. Increasing the

concentration of the private odor also caused the PN response to become more transient, though
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the overall increase in sustained firing for mixtures of strong private with weak/strong public odors

was marginal in the model compared to the data.

The effect of this interaction is to boost representation of public odors in the PNs, and subsequently

in the mushroom body and lateral horn. Public odors, which strongly activate many glomeruli in

the fly, are often innately appetitive fruit odors associated with food sources. Reducing responses

to private odors in mixtures could therefore be an adaptation to enhance the representation of

behaviorally relevant stimuli.

no public odor
weak pub. odor
strong pub. odor

Model PNs Recorded PNs

weak
private

odor

strong
private

odor

160 Hz

200 300

200

odor (0.5 s)

Figure 4.4: Temporal effects of odor mixtures. Right: extracellularly-recorded firing rate

response of a PN to 2-butanone, a private odor that only activates one glomerulus strongly; 2-

butanone was presented either alone or mixed with the public odor isopentyl acetate, and each

odor diluted to either 10−5 (weak) or 10−3 (strong). The PN shows sustained firing in response

to the private odor alone, but mixing with a public odor attenuates the sustained portion of the

response. Increasing the concentration of the private odor reduces the strength of this effect. Left:

recreation of the response transience effect by model PNs. I modeled mixtures of the private odor

2,3-butanedione with public odor isopentyl acetate, with the two odors at dilutions of either 10−4

(weak) or 10−2 (strong), using concentration-dependent ORN (continued on following page)
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Figure 4.4: (continued) responses to the two odors taken from the Hallem and Carlson dataset. As

in the experiment, mixing the private odor with a public odor made the response to the private

odor more transient, while increasing the concentration of the private odor somewhat reduced the

effect of mixing.

4.4.3 The PN representation of odors evolves over time

From a computational perspective, the scaling of PN responses by lateral inhibition is thought to

normalize PN population activity so that the total PN input to the mushroom body is roughly

equalized across odors, removing effects of odor intensity while preserving representation of odor

identity [Olsen Bhandawat and Wilson 2010]. However as noted above, the timescale of lateral

inhibition is slow, and odor presentation drives a transient spike in PN firing rates before lateral

inhibition has had time to kick in. This peak in firing rate can reach up to 300 Hz in experimental

data, and is sufficient to evoke spiking responses in downstream KCs. Divisively normalized odor

representations among PNs may therefore not be representative of the actual stimulus driving KC

activity, at least for the 500 ms pulses of odors studied experimentally.

To get a better understanding of how much PN normalization shapes the input to KCs, I compared

output of the dynamic PN model to that of two alternative models: one in which lateral inhibition

between PNs was instantaneous, and one with no lateral inhibition. At each timestep, I computed

the angle between the odor representation in the dynamic PNs with that of the two models, as

outlined in the Methods. As shown in Figure 4.5, the model with no inhibition is more strongly

correlated with the output of the dynamic model during the first several hundred milliseconds after

odor onset, as indicated by the smaller angle between the two model PN populations. After a

few hundred milliseconds, the effects of lateral inhibition begin to affect the PN response, and the

instantaneous inhibition model becomes the better fit to the dynamic model.
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Figure 4.5: a. Representation angle between the dynamic PN population and two alternative

models: one in which lateral inhibition is instantaneous (Olsen model), and one with no lateral

inhibition (Olsen w/o inh); plotted below the time axis is the average PN response across cells and

odors. Two PN populations with responses different only by a scale factor will have an angle of

zero between them, whereas the angle approaches π/2 for orthogonal PN representations. In the

first several hundred milliseconds, the dynamic model is more similar to the model without any

lateral inhibition. Further into the stimulus period, inhibition begins to be recruited in the dynamic

model, and the representation changes to be more like the Olsen divisive normalization model. b.

I also measured the dimensionality of the dynamic PN response over the course of a stimulus

presentation, using the metric described in the Methods. While PNs in the dynamic model show

complex temporal structure in their responses, the dimensionality of their representation is stable

over the course of stimulus presentation, and reaches its maximum value before lateral inhibition

has fully kicked in.

While normalization changes the representation of odors by PNs, it does not alter the dimensionality

of input to the mushroom body. I computed dimension of the PN response over a set of 1000 real

and synthetic odors, and found that it was unaffected by the dynamics of PN responses during odor

presentation. Because of this effect, as well as the slow timescale of PN inhibition, it seems possible

that normalization among the PNs might not be required for associative learning of odors in the

mushroom body, and could instead provide some more general role in sensory adaptation.

One unexplained feature of the fly olfactory system is that it seems to have two sequential stages
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in which odor representations are normalization via recurrent inhibition: LNs pool activity across

glomeruli to scale PN responses in the antenna lobe, and the giant inhibitory neuron APL pools

activity across KCs to scale KC activation in the mushroom body. While the dynamics of APL-

mediated inhibition have not been studied, it could be that the two stages of normalization act

on two different timescales: APL could facilitate learning by provide rapid normalization of odor

representations in the mushroom body, while LNs help the olfactory periphery adapt its responses

to odor fluctuations on longer timescales.

4.4.4 Odor representations are sparse but not uniform in model Kenyon cells

I next characterized the odor-evoked activity of Kenyon cells in my mushroom body model. In ex-

perimental data, 5-10% of KCs respond reliably to a given odor, and individual KCs are narrowly

tuned, responding to 5-10% of odors on average. To tune the responses of KCs in my model, I

therefore adjusted KC thresholds and APL-mediated recurrent inhibition as outlined in the Meth-

ods, such that an average of either 5% or 10% of KCs responded to odors in the Hallem and Carlson

dataset. For simplicity, I will neglect PN spiking variability in this section, and focus on results

from the rate model.

Population responses to each odor are shown on the left in Figure 4.6, while individual KC tuning

widths (the fraction of odors to which each cell responded) are shown on the right. With the model

tuned for 10% mean sparsity, only one odor (glycerol) consistently failed to evoke a response in

the model KC population, which may be attributed to glycerol’s very weak activation of ORNs.

When sparsity was decreased to 5% (fewer KCs responding), three odors (glycerol, g-decalactone,

and a-humulene) and occasional others failed to evoke a response.
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Figure 4.6: Heavy tails in KC representation of odors, and in odor tuning of KCs. Left. Fraction

of the KC population responding to odors in the Hallem and Carlson dataset, sorted from smallest

population to largest population. The model was tuned so that an average of either 5% or 10%

of KCs responded to each odor. Right. Fraction of the tested odor ensemble to which each KC

responded, sorted from least to most responsive KC. A substantial portion of KCs were silent for

all odors: 32% of cells in the model with 10% sparsity, and 48% of cells in the model with 5%

sparsity.

The tuning width of model KCs was far from uniform, with many KCs responding to none of the

presented odors, and a few generalist KCs that responded to over half of the 110 tested odors. In

the model with 10% sparsity, 32% of KCs failed to respond to any of the presented odors, while 1.7%

of KCs responded to over half of the odors presented. In the model with 5% sparsity, 48% of KCs

failed to respond, while 4% responded to over half of the odors presented. The nonuniformity of KC

responses has important implications for the capacity of the mushroom body to form odor-specific

associative memories, which is discussed below.

It is important to note that the nonuniformity of KC responses depends strongly on the model setup

used, in which all KCs received the same recurrent inhibition from APL, and had the same threshold

relative to their baseline input. I am able to reduce the number of silent and over-responsive KCs

by either tuning KC thresholds or adjusting the weight of APL inhibition onto individual KCs,

producing models in which nearly every KC responds to the target value of 5% or 10% of simulated
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odors. Both adjustments could be viewed as homeostatic effects in KCs: cells that never spike, or

spike too often, scale their synaptic weights to adjust their firing rate.

But comparison with experimental data suggests that real KCs exhibit nonuniform tuning similar

to that of the model KCs in Figure 4.6. In Figure 4.7, I compare sparsity in model KCs to imaging

data from Glenn Turner, using the lifetime sparseness metric from [Perez-Orive et al 2002], after

[Willmore and Tolhurst 2001, Rolls and Tovee 1995]. KC results in this figure come from the model

tuned to 10% sparsity. To confirm my model of the olfactory periphery was reasonable, I also

computed the lifetime sparseness of the 23 simulated PNs, comparing my result to the measured

sparseness in a set of PNs from 7 glomeruli. In a second experiment on a smaller panel of six odors,

a substantial proportion of imaged KCs did not respond to any of the odors presented– on the

order of 50-75% (Turner, private communication). These findings suggest that fine-tuning of KC

thresholds and APL recurrence is not required to create a sparse representation that matches that

of the mushroom body, and that KC responses are predominantly determined by the PN inputs

they receive.
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Figure 4.7: a. Lifetime sparseness of the model KC and PNs, ie the proportion of odors which

evoke a response in a given cell. Because response sparseness depends on the set of odors used

for testing, I chose to match the experimental data and compute sparseness in sets of 25 odors for

KCs and 18 odors for PNs; I then averaged across subsets to construct the histogram. Plotted for

comparison are experimentally measured lifetime sparseness of a set of 109 KCs and 7 glomeruli

[Turner]. The model is tuned such that an average of 10% of KCs respond to a given odor. b.

Lifetime sparseness of odor representations by the model KC and PN populations, ie the proportion

of cells which respond to an odor. As above, sparseness depends on the size of the cell population,

thus to match the measured values to the Turner data I computed sparseness on random subsets of

109 KCs or 7 PNs, and averaged across sampled subsets to construct the histogram. For comparison

are experimentally measured population sparseness of odor representations on a set of 25 odors for

KCs and 18 odors for PNs.
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4.4.5 Kenyon cell responses scale with odor concentration

Calcium imaging in the mushroom body has shown that the number of KCs responding to an

odor increases with odor concentration [Peter Wang, unpublished observations]. ORN population

activity increases with odor concentration, but the representation of the odor also changes: in

addition to having firing rates that are nonlinear with odor concentration, individual ORNs have

different binding affinities for odors, so odors that activate a single ORN at low concentrations could

activate several at higher concentrations. Due to the two stages of normalization in the olfactory

system model (local interneuron-mediated lateral inhibition in PNs and APL-mediated recurrent

inhibition in KCs), it is not clear that increasing ORN recruitment by odors will lead to an increase

in the number of active KCs. Indeed, in the model by Luo et al. [Luo, Axel, and Abbott, 2010] the

number of active KCs dropped with increasing odor concentration, because recruitment of APL

and lateral inhibition between glomeruli together increased more sharply with odor concentration

than did the activation of individual ORNs.

I studied concentration-dependent responses of KCs to ten monomolecular odors at concentrations

of 10−8, 10−6, 10−4, and 10−2, as well as nine fruit odors at concentrations of 10−6, 10−4, 10−2,

and undiluted, using concentration-dependence data from the Hallem and Carlson dataset. While

the number of active KCs in the model does increase with odor concentration, as observed exper-

imentally, the firing rate of active KCs drops on average (Figure 4.8c). This can be attributed

to two effects. First, at higher odor concentration the transient response of PNs becomes larger

relative to the sustained response. I therefore expect there to be an increase in the number of

KCs that are only transiently active, which means that the average firing rate of active KCs will

drop. But in addition, increased recruitment of KCs at odor onset drives stronger APL-mediated

inhibition of KCs, causing KCs that showed sustained firing at low odor concentrations to have

transient responses at high odor concentrations. This effect is evidenced by the drop in KC input

to APL during the second half of the stimulus period in Figure 4.8e, despite PN input to KCs

remaining high during this interval (seen in Figure 4.8d). To confirm that the effect was due to

APL inhibition, I blocked APL output in the model and found that the drop in KC input to APL

was eliminated.
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Figure 4.8: Concentration-dependent activity of the model KC population to ten monomolecular

odors and nine fruit odors. Dashed black line is average across tested odors. Only monomolecular

odors were tested at concentration 10−8, and only fruit odors were tested undiluted; at other

concentrations all odors were used. a. The number of active KCs increased with concentration

for all odors, as is observed experimentally. Some odors failed to evoke any response in the model

at low concentrations (10−8 or 10−6), but this is not out of line with observed odor sensitivity in

flies. b. Population response to odors can also be measured as the total number of evoked spikes

in the population of 2000 KCs. This number also increased with odor concentration, though not

as sharply as the count of active KCs. c. The average number of odor-evoked spikes in active

KCs dropped at higher odor concentrations. (Concentrations which did not activate any KCs are

not plotted.) d. Total excitatory input from PNs to the KC population, averaged across the 19

tested odors. e. Average KC input to APL across the 19 odors, used as a proxy for KC population

spiking. (Legend is same as in panel d.)
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The observed drop in KC firing rates at high odor concentrations could be a useful feature for

preserving learned behaviors across odor concentrations. Without this effect, a higher-order neuron

tuned to respond to odor A would respond non-selectively to other odors at high concentrations,

simply because those odors would elicit a stronger total response. Decreasing the firing rates of

KCs with concentration compensates for the increase in the number of active KCs, to make the

total population firing rate of the KCs more concentration invariant (Figure 4.8b). At the same

time, KCs in the model which were active at low concentrations of an odor almost always remained

active at higher concentrations: only 5.5% of KCs that fired more than one spike in response to an

odor at 10−4 did not respond to that odor at 10−2, and these cells typically turned off due to odor-

driven inhibition of their ORN inputs at the higher concentration, rather than the effects of APL

inhibition. The dynamic model therefore equalizes odor representations across concentrations, while

keeping the KC representation of that odor largely intact, two features which should contribute to

a stable readout of odor identity across concentrations.

The drop in KC firing rates could be checked easily experimentally either by recording odor-

evoked responses of individual KCs or by measuring the total KC input to APL over multiple

concentrations. The experiment simulated above, blocking inhibition of KCs and measuring the

input to APL, would also be informative to recreate as it would help to disentangle the effects of PN

normalization (via lateral inhibition) and KC normalization (via APL) on odor representations in

the mushroom body. APL-mediated normalization of KC responses is one of the least constrained

aspects of the model, due to the lack of detailed knowledge of its connectivity and response to

odors. Thus failure to reproduce the concentration-dependence of KC firing rates experimentally

could suggest useful modifications of the APL model, and lead to a better understanding of the

role of APL in shaping KC representations of odors.

4.4.6 Kenyon cells preserve distance of representations in odor mixtures

The sparse, high-dimensional representation of odors by Kenyon cells is useful for learning odor-

specific behavior: neglecting effects of noise, the dimensionality expansion from PNs to KCs ensures

that the representation of a learned odor will have very limited overlap with representations of other

odors However in the case of odor mixtures, it becomes useful for similarity between stimuli to be
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preserved: for example, a learned association with a pure odor should be recalled if that odor is

presented in a mixture. In a previous imaging study, Campbell, Honegger et al. examined both

correlation between KC representations of odors in different mixture ratios, and the discriminability

of pairs of mixtures in flies [Campbell, Honegger, et al 2013]. Comparing a 0:100 to a 100:0 mixture,

30:70 mixture to a 70:30 mixture, and a 40:60 mixture to a 60:40 mixture, the authors found that

the correlation between KC responses increased as mixtures became more similar. Mixtures of 40:60

and 60:40 could be discriminated just barely above chance by flies, and at chance levels by a linear

classifier trained on imaged KC responses. These results suggest some preservation of distance in

odor representations from ORNs to KCs.

First, to check that the model was performing reasonably, I compared representation of pairs of

odors to the representation of their 50:50 mixture. Previous imaging studies in the mushroom

body report that most KCs respond sublinearly to odor mixtures, meaning the response of a KC

to the mixture of odors A and B is less than the sum of its responses to odors A and B alone. For

simplicity I assumed that ORN responses were weighted sums of the responses to the two odors in

the mixture. While there is not enough data to make a quantitative comparison, model responses

to mixtures were predominantly sublinear, in line with the data. KCs that responded to both of

the mixed odors individually were almost always active in response to the mixture, suggesting that

the representation of the odor mixture maintained some similarity to the representation of the two

mixed odors.
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Figure 4.9: Plot of KC response to 50:50 odor mixtures vs response to each odor on its own. Each

point is a KC, red line is y=x. Model KCs are predominantly sublinear or linear, and all but two

KCs that fired more than one spike in response to the two individual odors were also active for the

mixture of both odors.

To more thoroughly examine the effect of odor mixing on KC representations, I simulated responses

to 500 random pairs of odors in mixing ratios of A : B = {100:0, 90:10, 80:20, 70:30, 60:40, 50:50,

40:60, 30:70, 20:80, 10:90, and 0:100}. For each mixture I computed the N × 1 vector R of the

mean-subtracted firing rates of N KCs (N = 2000 in the model), then calculated the correlation

Ci,j =
Ri·Rj
|Ri||Rj | between each pair of mixtures (i, j). To get a sense of the dependence of representation

distance on mixture similarity, I then computed the average of each diagonal band of C:

D(x) =
( 1

M − |x|
)∑

i

Ci,i+x

where M is the number of mixtures simulated. Hence D(0) is the average of the diagonal of C (so

D(0) = 1), while D(±10) is the average correlation of the 100:0 mix with the 0:100 mix, ie the

average correlation between pure odors in the dataset.

As seen in Figure 4.10a-b, odors evoking strongly correlated activity in ORNs, such as two similar

mixing ratios of an odor pair, also evoke correlated patterns of activity in KCs. Correlation in KCs

falls off much faster than in ORNs or PNs, which gives the correlation matrices in the bottom row

of Figure 4.10a a somewhat block-diagonal structure. Rather than correlate with public or private
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odor mixings, the shape of the blocks in individual correlation matrices seem to be most closely

tied to the binding affinity of the two tested odors for ORNs: for example, ethyl 3-hydroxybutyrate

and ethylcinnamate both have very weak affinity for all ORNs relative to the two odors they are

mixed with. As a result, the model predicts that odors mixed with either of these two should be

identifiable in mixtures even at low mixing ratios.
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Figure 4.10: Correlation of odor mixture representations, computed as described in the text. a.

Correlation matrices of three example odor mixtures, computed for ORNs, PNs, and KCs; refer to

panel c for full axis labels and color bar. Note that in KCs the transition from mixtures resembling

A to mixtures resembling B can be quite sharp, and occurs at different ratios for different odors.

The point of transition seems to be determined by the difference in total ORN activation between

the two odors. b. Plot of mixture correlation in ORNs vs KCs for all 11 mixtures of all 500 odor

pairs (points downsampled for display purposes.) While KC representations are less correlated than

those of ORNs, pairs of mixtures which are highly correlated in ORNs typically remain so in KCs.

c. Average KC correlation matrix over 500 odor pairs, testing each pair with 11 mixing ratios. d.

Plot of D(x) (see text), the average of terms on the xth diagonal of the covariance matrix. Public

odors are more strongly correlated with each other than the average odor pair, while private odors

are less strongly correlated.
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4.4.7 Dimensionality of odor representations is maximized by the mushroom

body

Finally, I examined the relationship between properties of PN-KC connectivity and the dimension-

ality of odor representations, as described in the Methods. The dimensionality is a measure of

the diversity of the KC population’s responses across odors. If KC responses to odors are strongly

correlated, the number of mappings from odor to behavior that a linear readout of KC activity will

be able to form is small, and the dimensionality will be low. This results in poor performance on

odor learning tasks, for which it should be possible to set the response of a linear readout from KCs

to arbitrary values for any given set of odors. If KC responses to different odors are decorrelated,

the dimensionality will be high, and the response of a linear readout to any given odor can be

changed arbitrarily without impacting its response to other odors.

I computed dimensionality of KC responses over a panel of 5000 synthesized odors, using the metric

outlined in the Methods. I examined how three features of PN-KC connectivity contribute to KC

dimensionality: the number of PN inputs to a KC, the amount of structure in PN-KC connections,

and the sparseness of KC responses. To add structure to PN-KC connections, I arbitrarily defined

five groups of glomeruli in the model, and allowed each KC to receive input from only one group. To

vary the degree of structure, I made KC group conformity probabilistic, such that a given PN-KC

connection conformed to the assigned group with probability p, or receive random input from any

glomerulus with probability 1− p, giving connectivity ranging from completely random (p = 0) to

completely structured (p = 1). I found that dimensionality was highest in the completely random

network, and dropped as the degree of structure increased.

I then varied the number of PN inputs to each KC, and varied the sparseness of KC representations

by adjusting the spiking threshold of all KCs uniformly, keeping APL inhibition tuned to roughly

halve the number of active KCs, as described in the Methods. The maximal dimensionality was

observed when KC responses were sparse (10-20%), and with roughly 5-10 inputs per KC. However,

I found that dimensionality continued to slowly rise when the number of inputs was increased to 25

or more. This second, slower increase in dimensionality could be because at high numbers of claws,

all KCs receive roughly the same input, and the representation of odors depends on which subset of

KCs crosses threshold first, activating APL and inhibiting the remainder of the population. Such a
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system could decorrelate KC representations across odors, but it should also be more vulnerable to

noise in the PN inputs to KCs. Measuring the dimensionality of odor representations using spiking

PNs should clarify this question.

Overall, this model shows that the values which maximize dimensionality fall within the ranges

found experimentally in the fly olfactory circuit: PN-KC connectivity is unstructured, odors activate

roughly 10% of KCs, and each KC receives an average of 6.8 PN inputs. These findings suggest

that the KC representation of odors is structured to allow the fly to learn arbitrary and specific

associations of odors with behaviors.

0 15
0

300

di
m

en
si

on
al

ity

claws per Kenyon cell
10−3 10−2 10−1 1

300

0

population sparseness
0 1

0

300

degree of structure

b ca

Figure 4.11: Dimensionality of the KC representation of odors is related to several parameters of the

model; each point is an average over two instantiations of the model. Experimentally determined

values of each parameter are indicated by the gray line. a. Dimensionality as a function of the

number of PN-KC connections peaks at around 5-10 connections per KC, then drops off before

gradually increasing again. b. Dimensionality as a function of KC population sparseness, varied by

adjusting KC spiking thresholds and keeping APL inhibition tuned as described in the methods.

c. Dimensionality obtained when a variable degree of structure is imposed on PN-KC connectivity.

Structure was set by a parameter p, ranging from fully unstructured (p = 0) to fully structured

(p = 1), by restricting PN-KC connections to assigned groups of glomeruli with probability p.

4.5 Discussion

The mushroom body lies at the interface of sensory processing and behavioral control in Drosophila.

Its inputs transform odor representations from a dense code of ORN firing rates to a sparse,
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high-dimensional pattern of Kenyon cell activity. In the following chapter, we will see how this

architecture allows a representation of odor identity to be translated by the mushroom body to a

representation of the odor’s behavioral salience, which in subsequent layers of processing determines

the fly’s response to the odor. Unlike the lateral horn pathway, the mushroom body is special

because Kenyon cell representations impose no particular meaning on odors; instead, meaning is

determined by how those representations are read out. While the neural circuitry that reads out

odor representations from the mushroom body is beginning to be identified, the mechanism by

which these structures modify their responses during learning is still unknown.

Learning behavioral responses to odors is simple in the abstract: by projecting a stimulus up to a

high-dimensional space, a simple linear readout can be trained to map the stimulus to a behavioral

response. But correlations in odor representations degrade the capacity of the readout to form

arbitrary mappings, constraining the capacity of the system to form multiple associations. In order

to get a sense of how big a problem these correlations are for the fly olfactory system, I had to

first build a model which reasonably approximated KC responses. For each piece of the model, I

used a collection of experimental observations to constrain model parameters, and to verify that

the odor-driven activity of model cells was in line with biology. While the model could of course be

refined with additional levels of biological detail, the goal of the model is not to capture every detail

of Kenyon cell responses, but to provide a reasonable estimate of the problems the fly’s learning

circuitry would need to solve in order to keep behavioral responses odor-specific and diverse. In

the next chapter, I will review the challenges to odor learning introduced in the current mushroom

body model, and devise possible solutions by which they can be overcome. These solutions make

testable predictions about the activity of the mushroom body readout circuitry, and can be used

to clarify the mechanism of odor learning from Kenyon cell representations.
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Chapter 5

A circuit mechanism for associative

learning in the mushroom body

While not needed for innate behavioral responses to odors, the mushroom body is required for the

formation and retrieval of odor memories in associative learning [de Bell and Heisenberg, 1994;

Dubnau, Grady, Kitamoto and Tully 2001; Keene, Leung, Armstrong and Waddell 2007]. Associa-

tive learning allows organisms to adapt their response to sensory cues based on prior experience,

by combining a representation of the sensory environment with an internal code of valence based

on the animal’s experiences. During learning, consistent association of a sensory stimulus with

a salient experience forms a stable associative memory. Subsequent presentation of the trained

stimulus retrieves the stored memory, allowing the animal to predict the valence of the stimulus

and produce an appropriate behavioral response.

In the previous chapter, I described how odor representations are transformed from low-dimensional,

anatomically preserved codes in the olfactory periphery to sparse, high-dimensional, and random

patterns of Kenyon cell activation in the mushroom body. In this chapter, I will review the results of

a recent experimental effort that has fully characterized the set of cells peripheral to the mushroom

body, and identified a population of only 34 neurons that form the mushroom body’s only output to

the remainder of the brain. Some of the identified cells have previously been implicated in retrieval

of associative memories [Séjourné et al 2011] and the circuit architecture of the identified cells with
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the mushroom body bears strong resemblance to the canonical cerebellar circuit for associative

learning [Heisenberg, 2003; Farris 2011; Ohyama, Nores, Murphy and Mauk, 2003; Christian and

Thompson 2003].

To examine this theory, I construct a basic model of associative learning using the observed circuitry

of the mushroom body, and study its capacity for learning of odor-specific responses generated by

my mushroom body model. While odor representations in my mushroom body model are less suited

to associative learning than an idealized random representation, I find that a simple modification

of the associative learning rule allows large numbers of associative memories to be stored. Using

two variations on this modification, I make predictions of the responses of neurons peripheral to

the mushroom body over the course of learning, and show some evidence suggesting that a similar

mechanism is at work in the mushroom body.

5.1 Learning circuitry of the mushroom body

A recent investigation fueled by the powerful genetic tools available in fly has uncovered the com-

plete population of neurons innervating the mushroom body. The KC representation of odors is

read out by a population of 34 output neurons, and learning in these output neurons is modulated

by a set of roughly 130 dopaminergic neurons. The connectivity of these neurons readily suggests a

basic circuit for acquisition of conditioned responses in the output neurons, in which dopaminergic

neurons play a key role in driving memory acquisition.

5.1.1 Identification of mushroom body output neurons using split-GAL4 lines

and photoactivatable GFP

As described in the previous chapter, the roughly 2000 Kenyon cells of the mushroom body extend

their axons to form two structures called the medial and vertical lobes. KC axons either bifurcate

to both lobes (α/β and α′/β′ KCs) or go only to the medial lobe (γ KCs); axons in each lobe are

segregated by KC type, thus defining a total of five distinct lobes (α, α′, β, β′, and γ) [Tanaka,

Tanimoto and Ito 2008].
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KCs themselves do not project outside of the mushroom body, and there has been substantial

interest in determining how the KC representation of odors is read out by the fly. In a heroic recent

study by Aso et al, thousands of Drosophila split-GAL4 lines were screened for neurons innervating

the lobes of the mushroom body. The GAL4-UAS system is a powerful biochemical method for

studying gene expression in flies, in which the yeast transcription factor GAL4 is expressed in

genetically distinct neural subpopulations; crossing with a line linking a reporter gene to GAL4’s

target enhancer sequence, UAS, labels all cells expressing GAL4 [Brand and Perrimon 1993]. Split-

GAL4 operates via the same mechanism, but the gene coding for the GAL4 protein is broken into

two pieces that can be linked to separate promoters, causing only cells expressing both pieces to

be labeled [Pfeiffer, Ngo et al 2010; Jenett, Rubin et al 2012].

Aso et al screened 7,000 GAL4 lines and 2,500 split-GAL4 lines, and found over 400 split-GAL4

lines that strongly labeled single cells or small groups of cells innervating the mushroom body. They

verified the GAL4 results in a followup study using photoactivatable GFP, which labels all neurons

innervating an illuminated area. By targeting illumination over the mushroom body, the authors

identified two innervating neurons missed by the original study, which has since been identified

genetically- but otherwise found that the split-GAL4 screen had successfully identified all neurons

innervating the mushroom body [Aso et al, in preparation].

5.1.2 Mushroom body output neurons tile the mushroom body lobes

The innervation pattern of the identified neurons shows remarkable structure. A first class of

neurons, termed mushroom body output neurons (MBONs), have dendrites that characteristically

innervate particular lobes of the mushroom body. The MBON dendrites cleanly divide the two

lobes and the base of the pedunculus into a small number of serial, nonoverlapping compartments,

within which the dendrite densely contacts either all KCs or an anatomically distinct subpopulation

(KC axons in the α′/β′ lobes are clustered into anterior, middle, and posterior groups, in the α/β

lobes into posterior, surface, and core groups, and in the γ lobe into main and dorsal groups.) The

MBONs innervating each compartment are genetically distinct, and each projects characteristically

to other regions of the brain.
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Figure 5.1: Gross anatomy of the mushroom body, reproduced from Tanaka et al [Tanaka, Tani-

moto, and Ito 2008] with addition of compartments and γ-lobe subdivisions from Aso et al [Aso et

al, in preparation]. Dashed lines reflect the compartments defined by MBON dendrites (some lines

obscured). The α and α′ lobes are each divided into three compartments, β and β′ are each divided

into two, γ is divided into five; there is an additional compartment of α/β Kenyon cell axons in

the pedunculus. On the right are cross-sectional views of the two lobes, showing anterior, middle,

and posterior (a, m, and p) regions of α′/β′ lobes, posterior, surface, and core (p, s, and c) regions

of α/β lobes, and main and dorsal regions of the γ lobe.

MBONs project from the mushroom body to several regions. A small number of excitatory neurons

innervating the α or α′ lobes project to lateral horn, a region implicated in control of innate odor-

related behaviors. Other neurons, most likely inhibitory, send their axons to other compartments

of the mushroom body, suggesting they might gate the response of MBONs in those compartments.

And every MBON projects to four neuropils just outside the mushroom body: the crepine (CRE),

the superior medial protocerebrum (SMP) the superior intermediate protocerebrum (SIP) and the

superior lateral protocerebrum (SLP). MBON axon terminals exhibit distinct innervation patterns

within each neuropil, suggesting the presence of stereotyped circuitry.
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Figure 5.2: MBON innervation of mushroom body compartments, organized into four groups in

order of increasing complexity of inputs; reproduced from Aso et al [Aso et al, in preparation].

Compartments are color coded by the type of Kenyon cells they include (yellow = α/β, gray =

α′/β′, purple = γ), and labeled based on their location in the lobes (lower numbers are more

proximal to the pedunculus). MBONs project from the mushroom body to the lateral horn (LH),

to the dopaminergic neuropils CRE, SMP, SIP, and SLP (labeled collectively as DN), and to other

mushroom body compartments; the targets of each MBON are shown below its name in gray. The

leftmost group of nine compartments are the simplest, having only feedforward input. The MBON

γ412 projects from γ4 to γ1+2 to form the second group. And MVP2 feeds back from γ1 onto

all α/β lobe compartments aside from the pedunculus, and MV2 from β1 additionally feeds back

onto all three α lobe compartments, forming the third and fourth groups. Note that acetylcholine

is an excitatory neurotransmitter in fly, while glutamate can be either excitatory or inhibitory, but

appears to be inhibitory in the mushroom body.

5.1.3 Dopamine controls learning in the mushroom body

In addition to the MBONs, each compartment of the mushroom body is innervated by the axons of

a small number of dopaminergic neuron types. Distinct classes of dopaminergic neurons innervate

the same specific compartments in the mushroom body as the MBONs– most target a single specific

mushroom body compartment, though there are several exceptions. 90% of the dendritic arbors of

the dopaminergic neurons reside in the four neuropils targeted by MBON axons: CRE, SMP, SIP,

and SLP, where they appear to make contact with MBON axons.

Previous studies have identified two groups of dopaminergic neurons, PPL1 and PAM, that play a

role in aversive and appetitive odor learning, respectively. Thus far there does not appear to be a
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clear segregation of PPL1 and PAM dendrites among the four neuropils peripheral to the mushroom

body, although this will be clarified in further investigation. There appears to be some stereotyped

connectivity between MBONs and dopaminergic neurons within the peripheral neuropils, although

the full extent of this connectivity is still being determined. The full wiring diagram of MBONs

and dopaminergic neurons is shown below.
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Figure 5.3: MBON compartments showing innervation by dopaminergic neurons [Aso et al, in

preparation]. Differences between PAM and PPL1 neurons are discussed below.

As seen in Figure 5.3 above, dopaminergic neurons have extensive recurrent connections with the

mushroom body. Dopamine in flies was recently found to play a role in learning and memory similar

to its role in vertebrates. Cells in the mushroom body express two forms of dopamine receptors,

DAMB and dDA1, the latter of which has been shown to be required for both appetitive and

aversive memory [Kim, Lee, and Han 2007]. Different subclasses of dopaminergic neurons seem

to signal different kinds of learning signals: the PAM cluster of neurons responds selectively to

sugar rewards, and has been shown to be required for appetitive reinforcement learning [Liu et

al 2012], while PPL1 neurons are sufficient for aversive memory formation [Claridge-Chang et al

2009]. Dopaminergic neurons have also been found to be modulated by motivational state [Krashes

et al 2009]. A subset of PPL1 neurons express receptors for neuropeptide F, a molecule released

during food deprivation that drives prolonged feeding behavior [Wu et al 2003]. Blocking of PPL1

neurons to simulate the effect of neuropeptide F allows appetitive conditioning in satiated flies

(normally appetitive associations can only be formed when the fly is starved), while stimulating

the same neurons suppresses appetitive conditioning in hungry flies [Krashes et al 2009]. This
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suggests that the fly’s motivational state can gate associative learning by suppressing or driving

certain dopaminergic neuron subpopulations.

The mechanism for dopamine’s role in odor learning was hinted at by a recent study in locust

[Cassenaer and Laurent 2012]. The study focuses on octopamine, rather than dopamine, although

at least in flies octopamine is known to act on the mushroom body indirectly, by activating PAM

dopaminergic neurons [Burke et al 2012; Waddell 2013]. The locust study finds that the synapses

between Kenyon cells and MBONs normally obey a Hebbian spike-timing-dependent plasticity

(STDP) rule- however, when KC and MBON spiking is followed by a pulse of octopamine, the

shape of this learning rule is changed to be purely depressive. This suggests that dopamine could

drive odor learning in MBONs by modulating the synaptic weights of their KC inputs.
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Figure 5.4: KC-MBON STDP learning rule, reproduced from Cassenaer and Laurent [Cassenaer

and Laurent 2012]. In gray, the normal STDP rule in KC-MBON synapses, where δt is the time

of the postsynaptic spike minus the presynaptic spike, and the y axis shows the percent change in

KC-evoked EPSP size in MBONs following five trials in which pre- and postsynaptic spikes were

paired at the given δt. In blue, the STDP rule observed when octopamine is injected 1s after

pairing.
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5.1.4 Outline of a learning circuit in the mushroom body

mushroom
body

APL
(GABAergic)

dopaminergic
neurons

Kenyon
cells (KCs)

projection
neurons (PNs)

MBONs

lateral
horn

DN

Figure 5.5: Summary of circuit architecture of the mushroom body, showing innervation of the

mushroom body lobes by MBONs, and feedback via dopaminergic neurons driven by MBON input.

The architecture of the mushroom body and its peripheral neurons bears strong resemblance to

that of the cerebellum, reviewed in Figure 5.6 [Farris 2011; Marr, 1969; Albus, 1971; Ito 1984;

Medina and Mauk 2000]. Intrinsic neurons (Kenyon cells/ granule cells) form a small number

of synapses with incoming fibers (projection neurons/mossy fibers), and transform the densely,

ordered representation in their inputs to sparse, random, and high dimensional patterns of acti-

vation. A population of readout neurons (MBONs/Purkinje cells) receive vastly convergent input

(up to half of Kenyon cells/200,000 parallel fibers from granule cells), and project their axons to a

downstream nucleus (lateral horn/the deep cerebellar nucleus) where they are recombined with pro-

jection neuron/mossy fiber inputs. Another set of “teacher” cells (dopaminergic neurons/climbing

fibers) gates plasticity from intrinsic neurons to readout neurons. The teacher cells respond to

reward/punishment signals, such as food or shocks, and also receive negative feedback from the

output of the system, either directly in the case of MBONs, or indirectly via disinhibition of the

deep cerebellar nucleus in the case of the cerebellum.
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Figure 5.6: The basic circuit architecture underlying cerebellar learning, derived from the model

of Medina et al [Medina et al, 2000; Medina, Nores, Ohyama and Mauk, 2000]. The mechanism

by which this circuit drives associative learning is reviewed in depth in the introduction to this

thesis; but in brief: climbing fiber activity evokes dendritic action potentials called complex spikes

in Purkinje cells, triggering synaptic plasticity at granule cell to Purkinje cell synapses. During

learning, an unconditioned stimulus (eg a shock) modulates climbing fiber spiking, driving either

LTD or LTP in synapses with granule cells activated by the conditioned stimulus (eg a tone or an

odor). In the case of an increase in climbing fiber activity, complex spikes evoke LTD at granule cell

synapses, causing a temporally-specific decrease in the Purkinje cell response to the conditioned

stimulus upon future encounters. The drop in the Purkinje cell response to the conditioned stimulus

disinhibits the DCN, which drives downstream motor centers to elicit the conditioned response.

Increased DCN activity also inhibits the climbing fiber, balancing the input to the climbing fiber

evoked by the unconditioned stimulus and restoring the climbing fiber to its baseline firing rate.
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Figure 5.7: The architecture of the mushroom body, arranged to show parallels with the cerebellum

in Figure 5.6. Dopaminergic neurons take the place of climbing fibers in gating plasticity from KCs

to MBONs, which show modified responses to odors following learning of conditioned avoidance

[Séjourné et al 2011]. The lateral horn contains stereotyped circuits involved in driving innate

behaviors [Jefferis et al 2007; Datta et al 2008] therefore changing MBON input to the lateral horn

could activate or inactivate different motivational states in the fly, or trigger specific behaviors.

The mushroom body both resembles the cerebellar learning circuit physically, and is known to

play a similar role in associative learning, suggesting a common circuit mechanism for associative

learning in the brain [Heisenberg 2003; Farris 2011]. In this chapter, I construct a simple model

of associative memory formation and retrieval by a single MBON, inspired by a classical model of

cerebellar learning [Medina et al, 2000], and discuss the circuit mechanisms by which this model can

form large numbers of associative memories. I then summarize a few possible alternative models

for memory formation, and the predictions made by each. As the interaction of MBONs with

dopaminergic neurons and with the lateral horn becomes better understood, the model developed

here can be expanded to fit the constraints of the observed circuitry, and provide a more complete

picture of the sites of learning in the mushroom body. The complexity of learning uncovered in the

cerebellum [Boyden, Katoh, and Raymond 2004] warns that plasticity on the level of individual

MBONs may be only part of the story of learning in the mushroom body. In particular, the

multilayered interactions between compartments of the mushroom body suggests some form of

gating or hierarchical processing of learned behaviors, and has no direct equivalent in models of

cerebellar learning. But the powerful ensemble of genetic tools available in fly, as well as the
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relatively small number of neurons making up the mushroom body’s inputs and outputs, offer hope

that the complete circuit mechanism underlying the acquisition, storage, and retrieval of associative

memories in the mushroom body can be uncovered.

5.2 Modeling dopamine-mediated odor learning in a mushroom

body output neuron

Having previously developed a model of odor representations in the mushroom body, I asked

whether dopamine-modulated plasticity in a model MBON receiving input from my model KCs

was sufficient to drive acquisition of a conditioned response. MBONs are broadly tuned across

odors; following learning of a conditioned response to an odor, their response to the conditioned

odor is specifically altered, while responses to other odors are unaffected [Séjourné et al 2011]. I

asked whether a dopamine-modulated learning rule could drive a change in the odor-evoked firing

rate of a model MBON that is specific to the conditioned odor. Because the fly should be able to

form multiple associative memories in its lifetime, I also investigated whether dopamine-modulated

learning in KC-MBON synapses could drive learning of multiple odors, without altering MBON

responses to odors not in the training set. For simplicity, I will ignore the effects of feedback inter-

actions between mushroom body compartments. I will first treat dopamine as an external signal

conveying information about the unconditioned stimulus. I will then examine the effects of feedback

connections from the mushroom body, in which dopamine is modulated both by the unconditioned

stimulus and by the odor-evoked response of the model MBON.

5.2.1 Reward-modulated learning framework

In behaving flies, an odor and its associated punishment or reward are often separated in time—

for instance, odor cues signaling nearby food are experience before the reward associated with

finding the food occurs—meaning a mechanism for associative learning should have some capacity

to combine information across time. There is evidence for such a learning mechanism in Cassenaer

and Laurent’s study of octopamine-modulated STDP in locusts [Cassenaer and Laurent 2012], in

which local administration of octopamine one second after spike pairing in KCs and MBONs was
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sufficient to alter the shape of the STDP learning rule at the KC-MBON synapse.

A general model for learning with delays between stimulus and reward is reward-modulated spike-

timing dependent plasticity (R-STDP) [Fremaux, Sprekeler and Gerstner 2010]. In this framework,

a candidate change in synaptic weights derived from an unsupervised learning rule such as STDP

is effective only if it is followed by a reward. Focusing on learning in a single MBON, for a synapse

from the ith KC to the MBON, R-STDP is formulated as:

τs
dsi
dt

= −si(t) + ηULi(t)

dwi
dt

= R(t)si(t)

where R = reward and si is a synaptic eligibility trace that stores candidate weight changes from

the unsupervised learning rule ULi, scaled by an arbitrary parameter η (In following sections I will

typically neglect the subscript i for simplicity.) Biologically, s could correspond to elevated calcium

concentrations in active synapses, or another molecular indicator of recent synaptic activity. The

reward signal R(t) locks in si as an actual change in the synaptic weight wi (which I constrain

to be nonnegative). In keeping with the small number of dopaminergic neurons innervating the

mushroom body, I assumed R to be a global reward signal across all synapses on a single MBON,

rather than being synapse-specific.

5.2.1.1 Choice of UL

In selecting UL, I chose to ignore timing components of KC and MBON responses, and focus on

learning a change in the time-averaged odor-evoked firing rate of MBONs. I used a simple unsu-

pervised learning rule with two terms reflecting nonassociative (α) and associative (β) components

of learning:

ULi = αrKCi − βrKCirON

where rKCi is the total odor-evoked activity of the ith KC, and rON is the odor-driven firing rate

of the MBON. Ignoring the effect of the reward term, the unsupervised learning rule has a fixed
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point (ULi = 0) at

r∗ON =
α

β

that is stable when (α > 0, β > 0), and unstable when (α < 0, β < 0).

5.2.2 Using dopamine to encode odor valence

The most straightforward role of dopaminergic neurons is to encode the valence of odor stimuli—ie

whether it is followed by a reward or shock. I refer to odors paired with an odor or shock “trained”

odors, and odors that are not paired “untrained” odors, and set the dopamine signal R(t) as:

R(t) = 0 untrained odor

1 trained odor

Under these conditions, MBON responses to trained odors will converge to the fixed point of the

unsupervised learning rule, r∗ON = α/β.

To test performance of the learning rule, I simulated learning of random sets of odors from the

Hallem and Carlson dataset [Hallem and Carlson 2006]. I initialized MBON responses to all odors

to be equal, then divided the odors into two sets: of trained odors, A, and untrained odors, B. I

drove the mushroom body model with an alternating train of odor pulses, drawing the first from

set A, second from set B, and so on, selecting the stimulus odor from each set at random each

time (I excluded five odors from the dataset that activated fewer than 0.5% of KCs.) Odors were

followed after 2 seconds by a pulse of dopamine, of amplitude determined by R(t) (ie 1 for odors in

set A, and zero for odors in set B). I set synaptic eligibility traces to zero before each odor pulse,

to simulate the effect of long delays between odor presentations.

After training, I set a threshold equal to the minimum change in MBON response to the trained

odors in set A, and counted the fraction of odors not in set A for which the readout neuron response

crossed the threshold. These are false positives, or cases of overgeneralization, in which training

the MBON to respond preferentially to some odors causes it to also respond to odors not in the

training set.
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Figure 5.8: Probability of responding to untrained odors, as a function of the number of trained

odors. While the learning rule performs well on sparse random vectors (red line), actual KC repre-

sentations of odors have substantial overlap, and training on a small set of odor causes substantial

overgeneralization to untrained odors.

The valence-based learning rule quickly overgeneralized as the number of trained odors increased

(Figure 5.8): when the size of the training set reached only five odors, the MBON responded

incorrectly to 25% of untrained odors. This is mainly due to overlap in KC representation of odors:

if KC representation of two odors is very similar, changing the MBON response to the first odor

will significantly modify its response to the second, potentially leading to the second odor evoking

a false positive response. To verify that overlapping representations were at fault, and not the

number or sparseness of KCs, I replaced KC responses with random binary vectors of the same

mean sparsity; I found that with the random KC responses, MBON performance in the associative

learning task was vastly improved (Figure 5.8, red line).

Thus, correlations between odor representations in the KCs seems to impair learning of odor-specific

responses. There are two ways this problem could be solved. First, I could adjust my model of

the olfactory periphery. In particular, I had little information about the response properties and

connectivity of the normalizing GABAergic neuron APL. It could be that APL connectivity with

Kenyon cells is finely tuned to decorrelate representations of odors prior to learning. Alterna-

tively, a more carefully tuned learning rule could reduce the extent of overgeneralization by the

MBONs.
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Adjusting the learning rule is preferable to trying to decorrelate odor representations completely.

While correlated odor representations interfere with learning of odor-specific responses, there are

cases in which they may also be helpful for the fly. For example, odors in nature are not usually

encountered at consistent concentrations and mixing ratios. In the previous chapter, I showed that

my model KCs preserve similarity between different mixing ratios in binary odor mixtures, as has

been previously observed experimentally [Glenn Turner, private communication]. This preservation

of similarity means that associative memories formed from one mixture containing an odor are more

likely to also be recalled by other, similar mixtures with that odor. More stringent decorrelation of

odors will disrupt this preservation of odor similarity, impairing generalization in cases where it is

useful to the fly. Instead, I use a more flexible learning rule that allows MBON responses to familiar,

non-salient odors to be kept distinct from responses to behaviorally meaningful odors.

5.2.3 Adding a second fixed point of learning reduces overgeneralization

Overgeneralization occurs because modifying MBON responses to some odors alters their responses

to other odors. This can be avoided by designing a learning rule that controls the MBON response

to both trained and untrained odors. To achieve this in the odor valence model, I added a second

term to the learning rule:

τs
ds

dt
= −s(t) + αrKC(t)− βrKC(t)rON(t)

dw

dt
=

(
R(t)s(t)

)
+
(
γrKC(t)− δrKC(t)rON(t)

)
R(t) = {0 for untrained odors, 1 for trained odors}

For untrained odors, the first term of dw/dt is zero and the learning rule has a single fixed point

governed by the second term; this fixed point is stable when γ > 0, δ > 0, and unstable otherwise.

But for odors paired with reward, both terms of learning are nonzero, and the fixed point of learning

moves to a new value. The learning rule therefore has two effective fixed points for trained and

untrained odors:

r∗ON = γ/δ untrained

(γ + e−∆t/τsα)/(δ + e−∆t/τsβ) trained
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where ∆t is the time between odor presentation and reward, so that e−∆t/τs is the decay of the

synaptic eligibility trace at the time the reward is presented. (If α/β = γ/δ the two fixed points

are the same, but this case is easily avoided.) If the fly is trained to respond to odor A, its

ongoing exposure to other odors in its environment will cause this learning rule to selectively

strengthen readout from KCs that are highly specific to odor A, leaving the response to other odors

unaffected. I tested this in a toy example with two odors A and B, and seven KCs—one specific

to odor A, one to odor B, and five responding to both odors. I use learning rule parameters of

α = 0, β = −4, γ = 5, δ = 1—so that learning decreased the MBON response to the trained odor.

In preliminary investigation of MBONs during learning, some cells increased their response to odors

after learning, while others decreased their response [Daisuke Hattori, unpublished observations];

the different directions of firing rate change following learning could reflect different roles of MBONs

in modulating downstream circuitry, but so far not enough is known about downstream targets of

MBONs to draw conclusions.

As seen below, the model MBON is able to learn a specific response to odor A while preserving its

baseline response for odor B. The synaptic weights from KCs that respond to both odors (mixed

neurons) are not strongly affected by learning: presentation of odor B drives a decrease in synaptic

weight that counteracts the increase evoked by the pairing of odor A with dopamine.
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Figure 5.9: Learning rule performance in a toy model. Top: timing of odor stimuli. Initially, odors

A and B are presented to the mushroom body model in alternating pulses. After 50 seconds of

stimulation, presentation of odor A is followed after 2 seconds by presentation of dopamine. At

200 seconds, dopamine signaling is turned off. Middle: firing rate of the model MBON; responses

to odors A and B are connected by blue and green lines, respectively. In the first 50 seconds, the

MBON response to both odors adapts to the fixed point γ/δ of untrained odors. Upon pairing

of odor A with dopamine, the response of the MBON to odor A drops; the response to odor B is

transiently affected, but is quickly restored to the untrained odor fixed point. When dopamine is

turned off at 200 s, the trained response to odor A is extinguished, and the MBON response returns

to the untrained fixed point for both odors. Bottom: synaptic weights from KCs to MBONs: in

the toy example, one neuron responded to odor A, one to odor B, and five to both odors. During

training, the synaptic weight from the odor A neuron drops, causing the MBON firing rate to

decrease to the trained fixed point. Mixed neurons are also affected by pairing, but to a lesser

degree, while the odor B neuron increases its synaptic weight to compensate in the drop in mixed

neuron synaptic weights, and bring the MBON response to odor B back to the untrained fixed

point.

5.2.3.1 Exposure to multiple untrained odors increases specificity of learned re-

sponses

I next tested odor learning as in the previous section, by simulating learning of random sets of

taken from 105 odors in the Hallem and Carlson dataset [Hallem and Carlson 2006]. As before, I

define a set of trained odors, A, and of untrained odors, B, and drove the mushroom body model
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with alternating pulses of odors drawn from the two sets. I found that if I divided the entire dataset

between groups A and B, the MBON responded to trained odors without any instances of overgen-

eralization. When I decreased the size of set B the probability of overgeneralization rose, though

it did so gradually, such that encountering a limited example set of untrained odors decreased the

probability of overgeneralizing even for odors not encountered during learning. For example, given

set A = 25 odors and set B = 50 odors, approximately 17% of odors not encountered during learning

evoked false positive responses, as opposed to 40% in the original learning formulation.
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Figure 5.10: Probability of overgeneralization, ie responding to odors not in the set A of trained

odors, as a function of the size of set A, plotted for different sizes of set B (legend). I included

both odors in set B and odors not encountered during training when measuring the probability

of overgeneralization. The probability of overgeneralization dropped as the number of odors in

set B increased; I found that the model never overgeneralized to odors in set B, but also that

increasing the size of set B decreased the probability that the model would overgeneralize to odors

not encountered during training.
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5.2.3.2 Mushroom body output neurons show evidence for slow adaptation

As seen in the toy example, this learning rule causes a slow adaptation of the MBON to untrained

odors. Upon first presentation of an odor the MBON response is small, given the randomly ini-

tialized synaptic weights from activated KCs; in subsequent trials, the response increases to the

fixed point γ/δ. Interestingly, a similar slow adaptation is observed in MBON responses to odors

presented without training [Daisuke Hattori, unpublished observations]. In the figure below, the

fly was presented with stimulus blocks of four odors; each odor was presented once in a block,

as a train of ten one-second pulses of odor. The block of four odors was then repeated several

times—thus for any particular odor, there was a delay of a few minutes from its presentation in

block n to its presentation in block n + 1, during which other odors were being presented. From

the first to the fourth such block, the average MBON response to each odor increased, suggesting

a slow adaptation to odors on a timescale of minutes. (KC representations of odors show no such

adaptation under these conditions.)
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Figure 5.11: Calcium imaging of the response of an MBON to three odors (a fourth stimulus of

plain air was included, but is not shown here; MBON responses to the air were negligible in all

blocks). This particular MBON showed an increase in response to all three odors tested, while

other MBONs showed a decrease in response on a similar timescale [Daisuke Hattori, unpublished

observations].

In the valence model I have presented in this section, this adaptation could be a signature of the

MBON evolving to a fixed firing rate for untrained odors, as a means of preserving specificity of

learned responses.
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5.2.4 Predictions about learning from the modified valence model

5.2.4.1 Dopamine changes the shape of the KC-MBON learning rule

In this model, the value of R(t) reflects the presence or absence of dopamine in the system.

Consistent with the findings of Cassenaer and Laurent in locust, dopamine effectively changes

the KC-MBON learning rule, from γrKC(t) − δrKC(t)rON(t) in the absence of dopamine to (γ +

e−∆t/τsα)rKC(t)− (δ + +e−∆t/τsβ)rKC(t)rON(t) in the presence of dopamine.

5.2.4.2 The learned MBON response depends on the timing of the dopamine sig-

nal

The response of the MBON after learning, r∗ON = (γ+e−∆t/τsα)/(δ+e−∆t/τsβ), depends on the value

of ∆t, the time between odor presentation and dopamine response. The model assumes that the

synaptic eligibility trace decays exponentially following odor presentation, which is not necessarily

the case in the mushroom body– but independent of the exact form of decay, the learned MBON

response should have some dependence on ∆t. This could be tested experimentally by repeating the

experiment of Cassenaer and Laurent with different delays between spike pairing and application

of dopamine: my model predicts that the shape of the learning rule should smoothly evolve as ∆t

is increased, converging in the limit of large ∆t at the original learning rule shape observed in the

absence of dopamine.

5.2.4.3 Persistent presentation of dopamine is required to maintain the learned re-

sponse

The fixed point of r∗ON is controlled by the presence or absence of dopamine. As a result, trained

odors should continue to evoke a dopamine response, even after the trained response has been

learned. Additionally, blocking activity of dopaminergic neurons should lead to forgetting of the

learned response, because the fixed point of the learning rule will return to its untrained value.

This prediction conflicts with the results of Berry et al, in which blocking dopamine lead to reduced

forgetting of learned responses in flies [Berry, Cervantes-Sandoval, Nicholas, and Davis 2012]. I will
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discuss a possible solution to this conflict in the following section.

5.2.4.4 Learned changes in MBON responses cannot be bidirectional

The valence model predicts that individual MBONs will either always increase or always decrease

their responses to learned odors. The fixed point for learned odors is determined by the timing of

dopamine ∆t and by the learning rule parameters α, β, γ, and δ, which are not odor-dependent—

therefore it is impossible to have r∗ON > γ/δ for learned response A and r∗ON < γ/δ for learned

response B. MBON learning has not been studied using large panels of trained odors—it will be

informative to see whether the prediction of this model holds, or whether the effect of learning on

MBON firing rates is more flexible than this learning rule permits.

5.3 A possible biological mechanism for valence learning without

forgetting

The valence model presented above fails to replicate one previous experimental result, which finds

that neither learning or forgetting can occur in the mushroom bodies in the absence of dopamine

[Berry, Cervantes-Sandoval, Nicholas, and Davis 2012]. Because the valence model depends on he

presence of dopamine to keep rON at the fixed point for learned odors, blocking dopamine will lead

to forgetting of learned associative memories, as the MBON response decays back to the untrained

fixed point for all odors.

To fix this contradiction, I made an adjustment to the valence model based on a hypothesis presented

by Berry et al, that learning and forgetting are mediated by separate dopamine receptors in the

mushroom body. The mushroom body expresses two types of dopamine receptor: DAMB, which

has a high affinity for dopamine and thus a low threshold for activation [Han, Millar, Grotewiel, and

Davis 1996], and dDA1, which has a low affinity for dopamine, thus a high threshold for activation

[Kim, Lee, and Han 2007]. I designed a modified learning rule incorporating these two receptor
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classes:

τs
dsdDA1

dt
= −sdDA1(t) + αrKC(t)− βrKC(t)rON(t)

τs
dsDAMB

dt
= −sDAMB(t) + γrKC(t)− δrKC(t)rON(t)

dw

dt
= DAMB(t) · sDAMB(t) + dDA1(t) · sdDA1(t)

where DAMB(t) and dDA1(t) are activation levels of DAMB and dDA1 receptors. The learning

rule works similarly to the previous model—at low concentrations of dopamine only the DAMB

receptor is activated, and learning evolves to the fixed point of the first unsupervised learning rule,

r∗ON = γ/δ. At high concentrations of dopamine both receptors are activated, and learning evolves

to the fixed point of the combined learning rules, r∗ON = (γ + kα)/(δ + kβ), where k depends on

the strength of activation of the two receptors. I gave both receptor classes sigmoidal activation

functions,

DAMB(t) = (1 + e−m1(θDAMB−R(t))))−1

dDA1(t) = (1 + e−m2(θdDA1−R(t)))−1

parameterized by activation thresholds θDAMB and θdDA1 that determine the value of R at which

receptors are 50% activated, and slopes m1 and m2 that determine rate of activation around that

threshold. For learning to be successful, I found that the linear portions of the dDA1 and DAMB

activation functions had to be well separated, so that each was saturated near the other’s activation

threshold, as in the following example.
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Figure 5.12: Example activation functions for the DAMB and dDA1 dopamine receptors; parame-

ters here are set to θDAMB = 0.35, θdDA1 = 0.75, and m1 = m2 = 15.

To reproduce the results of the previous valence model, I set R(t) according to:

R(t) ≈ θDAMB untrained

> θdDA1 trained

This formulation works exactly like the previous valence model, except R(t) is now some small,

nonzero value for untrained odors. Setting R(t) = 0 to recreate the effect of blocking dopamine

causes activation of both dDA1(t) and DAMB(t) to approximately zero, thus blocking all changes

in synaptic weights in the absence of dopamine as observed in Berry et al [Berry, Cervantes-

Sandoval, Nicholas, and Davis 2012].

5.3.0.5 MBON feedback onto dopaminergic neurons

I have so far neglected MBON feedback onto dopaminergic neurons, and set R(t) using the va-

lence of the odor stimulus. To determine whether the dDA1/DAMB model could still work when

dopaminergic neurons were driven by MBONs, I modified R(t) to include a component driven by

the MBON response:

R(t) = c · rON + A untrained

= c · rON +B trained
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where c is a scalar weight, A is the externally-driven activation of dopaminergic neurons for

untrained odors, and B is the externally-driven activation of dopaminergic neurons for trained

odors.

Momentarily ignoring A and B, the dynamics of dw/dt are driven by R(t), and have a critical point

at the value Rcrit, where

∣∣DAMB(t) · sDAMB(t)
∣∣ =

∣∣dDA1(t) · sdDA1(t)
∣∣

(recall that DAMB(t) and dDA(t) are both functions of R(t).) For R(t) < Rcrit, the effects of

DAMB dominate and rON is driven to γ/δ, while for R(t) > Rcrit, effects of dDA1 dominate and

rON is driven to (γ + α)/(δ + β). When R(t) is itself a function of rON, this leads to positive or

negative feedback in learning, depending on the sign of c and the two fixed points of dw/dt:

c > 0; γ/δ < (γ + α)/(δ + β) positive feedback

c < 0; γ/δ > (γ + α)/(δ + β)

c > 0; γ/δ > (γ + α)/(δ + β) negative feedback

c < 0; γ/δ < (γ + α)/(δ + β)

Positive feedback

In the case of positive feedback, the Rcrit point is unstable. Consider the case where c > 0, γ/δ <

(γ+α)/(δ+β). If R(t) < Rcrit, learning drives rON down towards γ/δ; the decrease in rON causes a

further drop in R(t), leading to a further decrease in rON. When R(t) > Rcrit, learning drives rON

up towards (γ + α)/(δ + β), an increase that causes a further increase in R(t) above Rcrit.

For the system to learn in the presence of positive feedback, I set A and B such that c·rON+A < Rcrit

for untrained odors, and c · rON + B > Rcrit for trained odors. If MBON feedback is strong, ie

learning alters rON to the extent that c · rON + A > Rcrit, the learned response will persist in

the absence of the reinforcing signal. This formulation is also susceptible to false positives: if a

random untrained odor drives the MBON enough to push c · rON +A above Rcrit, positive feedback

will drive the MBON response to the trained fixed point upon repeat presentations of the odor.

Alternatively, MBON feedback could be kept weak enough that R(t) can only exceed Rcrit when

an odor is paired with reward/shock– that is, c · rON + A < Rcrit for all attainable values of rON.
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This setup is more robust against false positives, but learned responses will not be preserved if an

odor ceases to be paired with the reinforcing signal.
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DAMB activation
dDA1 activation

Figure 5.13: Example of learning in the DAMB/dDA1 model, using the toy model described in

Figure 5.9; in this case, the learning rule is set to drive a decreased MBON response to untrained

odors (odor B), and an increased response to trained odors (odor A). Odor, MBON response, and

synaptic weights plots are as in Figure 5.9. The middle plot shows R(t), which is a weighted sum of

the MBON firing rate and the external valence signal. Beneath this is a plot showing the activation

of the two dopamine receptors by R(t). Low values of R(t) only activate DAMB, which drives a

decrease in synaptic weights, while high values of R(t) are strong enough to activate dDA1, which

drives an increase in synaptic weights. The change in MBON response to the trained odor is not

strong enough to drive R(t) past Rcrit, thus after pairing is turned off at 200 seconds, the response

of the MBON to odor A decays back to the untrained firing rate.

Negative feedback

With negative feedback, the critical point at Rcrit is stable, and changes in R(t) driven by valence

cues are opposed by the resulting changes in rON. For learning to create significant changes in rON,

the effect of valence cues on R(t) must be large compared to the effects of rON. At the same time,

the model’s ability to adjust synaptic weights is limited, because the fixed point Rcrit usually occurs
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on the linear portion of the dDA1 activation function, at which point DAMB is not sensitive to

changes in R(t) (see activation functions in Figure 5.12). I found learning more difficult to control

as a result, although further study could turn up parameter settings in which the negative feedback

regime offers better control of the MBON response.
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Figure 5.14: Example of learning in the negative feedback regime. Prior to pairing with dopamine,

the critical point Rcrit is stable, and MBON firing rates converge to a value at which
∣∣DAMB(t) ·

sDAMB(t)
∣∣ =

∣∣dDA1(t) · sdDA1(t)
∣∣. Upon pairing with dopamine, increased recruitment of dDA1

relative to DAMB drives down the MBON response to odor A. Because changes in rON counteract

changes in R(t), it is difficult to drive large changes in the MBON response to the trained odor.

5.3.0.6 Increased overgeneralization of learning in DAMB mutants

An interesting prediction from this model is the effect of mutations in dDA1 and DAMB receptors

on learning. I focused on the positive feedback model for R(t), though these effects should hold in

models without MBON feedback onto dopaminergic neurons as well.

dDA1 mutant flies have previously been found to be incapable of both aversive and appetitive

learning [Kim, Lee and Han 2007]. Using learning parameters from the toy learning example of
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Figure 5.13, I created a dDA1 mutant by setting the dDA1 activation function to zero for all values

of R(t). The MBON response decays to the fixed point of the DAMB-mediated learning rule, and

is not affected by external input to R(t):
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Figure 5.15: dDA1 mutant model: MBON response to all odors decays to the fixed point of

untrained odors, γ/δ, which in this case was zero.

Similarly, I created DAMB mutant flies by setting the DAMB activation function to zero for all

values of R(t). These models were able to learn in the presence of dopamine, however without

the dDA1-mediated adaptation to untrained odors, they were much more prone to generalizing to

other odors. It would be interesting to test this prediction experimentally, to determine whether

DAMB does indeed play a role in preserving specificity of learned behavior in flies.
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Figure 5.16: DAMB mutant model: the MBON response to the trained odor increases to the

fixed point of the dDA1-mediated learning rule. Because a population of neurons in the toy model

respond to both odor A and odor B, changing the MBON response to odor A also alters the MBON

response to odor B. Without DAMB-mediated adaptation, this model predicts that the MBON will

rapidly overgeneralize as was observed in Figure 5.8.

5.4 Using R(t) to encode readout error

In classical models of cerebellar learning, climbing fibers are used to encode error signals [Marr,

1969; Albus, 1971; Ito 1972; Miles and Lisberger 1981]. While this theory has its holes—for exam-

ple, cerebellar learning can occur even in training conditions that do not modulate climbing fiber

activity [Ke, Guo and Raymond 2009]—using R(t) as an error signal also fixes the overgeneraliza-

tion problem encountered in the original odor valence formulation. As with the modified valence

formulation, this approach creates two fixed points for trained and untrained odors.

In the error signal approach, the firing rate of dopaminergic neurons encodes the difference between

the odor-evoked MBON response and some target firing rate:

R(t) = rtarget − rON
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where rtarget takes one value by default, and switches to a different value when an odor is paired

with reward or shock. The full reward-modulated learning rule is thus

τs
ds

dt
= −s(t) + ηUL

dw

dt
=

(
rtarget − rON

)
s(t)

which has fixed points rON = {rtarget, α/β}. Stability of the two fixed points of learning depend on

their relative placement, and on the sign of α and β:

0
rON

α/β

0
rON

α/β rtarget

rtarget

1. α > 0 ,  β > 0

rtarget0
rON

α/β

0
rON

α/βrtarget

2. α < 0 ,  β < 0

where filled circles mark stable fixed points, and open circles unstable fixed points. (Learning rules

in which the signs of α and β do not match have only the rtarget fixed point greater than zero, with

stability determined by which of α or β is positive.) By having rtarget be nonzero for untrained

(not paired with reward or shock) odors, the MBON response to untrained odors evolves according

to the effect of the unsupervised learning rule, either to the fixed point of the learning rule or to

zero/infinity. If rtarget is set as follows, rON will evolve towards α/β over repeat presentations of

an odor; when that odor is paired with a reward, rON will adjust up/down to rtarget for the paired

odor.

1) α > 0 β > 0 untrained: rtarget > α/β

trained: rtarget < α/β

2) α < 0 β < 0 untrained: rtarget < α/β

trained: rtarget > α/β
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5.4.1 Predictions about learning

5.4.1.1 Dopamine signal should go to zero once a conditioned response has been

learned

In the error signal model of learning, dopaminergic neurons encode a distance of the MBON response

from a target value. Thus for trained odors, the dopamine response will go to zero once the response

has been learned (that is, once rON = rtarget). For untrained odors, the dopamine response should

not quite reach zero, as learning drives rON → α
β , and the output neuron never precisely reaches

rtarget. This unusual feature could be avoided by simply setting rtarget = α
β for untrained odors. This

is a clear point of different with the valence model, in which dopamine signals must be maintained

in order to preserve the learned MBON response.

5.4.1.2 Blocking dopamine should prevent all changes in synaptic weights

Because all synaptic weight changes are gated by R(t), blocking dopamine (setting R(t) to zero)

should block synaptic plasticity, consistent with the results of Berry et al [Berry, Cerbantes-

Sandoval, Nicholas, and Davis 2012].

5.4.1.3 Learned changes in MBON responses cannot be bidirectional

As with the valence model, this model imposes some limitations on the fixed points of learning:

if α > 0, β > 0, the value rtarget for learned odors must always be less than the fixed point α/β

to ensure its stability; similarly if α < 0, β < 0, rtarget for learned odors must always be greater

than α/β. In either case, changes in MBON firing rate due to learning cannot be bidirectional: an

MBON should either always decrease or always increase its response to trained odors.

5.4.1.4 Dopamine must be able to modulate synaptic weights bidirectionally

Error-based learning requires the dopamine signal to convey both positive and negative values. A

mechanism for encoding negative values has been described in previous models of cerebellar learning
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[Medina et al 2000], in which climbing fibers are tonically active. In these models, climbing fiber

activity controls the sign of bidirectional plasticity at the granule cell-Purkinje cell synapse: an

increase in climbing fiber firing rates induces LTD at granule cell-Purkinje cell synapses, while a

drop in climbing fiber firing rate below baseline induces LTP, thus allowing the climbing fiber signal

to flip the sign of changes in synaptic weight [Hirano 1990; Sakurai 1986; Salin, Malenka, and Nicoll

1996].

The climbing fiber error model has often been challenged in the cerebellum literature—not only

because it is unclear that climbing fibers control learning [Ke, Guo, and Raymond 2009], but

because tonic firing rates of climbing fibers are very low (around 1Hz), making precise encoding

of error signals questionable. Similar problems face the mushroom body: if we consider R(t) as

dopamine concentration relative to baseline, the baseline response of dopaminergic neurons to odors

must still be high enough for negative values of R(t) to be encoded.

The bidirectionality of learning is also key to this formulation: below-baseline dopamine levels must

flip the direction of the unsupervised learning rule. The two dopamine receptors DAMB and dDA1

could provide a mechanism for bidirectionality, although their concentration dependence may make

error-based learning more difficult to implement.

5.4.1.5 Dopaminergic neurons need a memory trace to compute the error signal

Finally, it is important to note that the error signal is a difference between the MBON response

to an odor and the observed reward, two events that can be separated in time by several seconds.

For the error signal to be computed, either MBON responses to odors must be sustained, or a

memory trace of recent inputs must be stored in the dopaminergic neurons. Recorded responses

of dopaminergic neurons and MBONs both seem to be time locked to the odor stimulus [Daisuke

Hattori, private communication], but little is known about the dynamics of dopaminergic neuron

responses during odor learning.
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5.4.1.6 Dopamine changes the shape of the KC-MBON learning rule

This result does not emerge as naturally from the error model as it does from the valence model,

but it can be produced. In the error model R(t) encodes rtarget − rON, so an injection of dopamine

following odor presentation is equivalent to setting a high value of rtarget. If the unsupervised

learning rule satisfies α < 0, β < 0, setting rtarget > α/β flips the sign of the unsupervised

learning rule. This might account for the changed in learning rule shape observed experimentally

by Cassenaer and Laurent [Cassenaer and Laurent, 2012].

5.5 Discussion

In this section, I studied formation of multiple associative memories in a single MBON and found

that, with an appropriate choice of learning rule, many associative memories can be stored. The

actual associative memory capacity of the fly is extremely difficult to measure experimentally, as it

would require many training and test sessions on large sets of odors. However by assuming a high

memory capacity is important and looking at the conditions this imposes on the form of associative

learning, I can still make predictions about activity patterns of MBONs and dopaminergic neurons

during learning, as well as the effect of mutations in the dopamine receptor machinery.

There are a few other learning alternatives I did not explore in this chapter. First, I have not

discussed the role of the giant inhibitory neuron APL, which previous studies have found to be re-

quired for associative learning [Pitman et al 2011]. Another similarly large neuron, the serotonergic

DPM, is gap-junction coupled with APL and extensively innervates the mushroom body [Tanaka,

Tanimoto, and Ito, 2008]. It has also been suggested as a mediator of learning, on its own [Krashes

et al, 2007] or in conjunction with APL [Wu et al 2011]. I found that APL-KC plasticity could

help to make KC representations of learned odors less variable, by weakening inhibition of KCs

responding to learned odors and making them more likely to respond, providing a form of pattern

completion. However I have not systematically investigated the memory capacity of this system,

or its susceptibility to overgeneralization.

Finally, models of cerebellar learning suggest another alternative site of associative plasticity, in
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the lateral horn. As was shown in Figure 5.7, projection neurons extend processes to both the

mushroom body and the lateral horn. Similarly in Figure 5.6, mossy fibers project to both granule

cells and the deep cerebellar nucleus (DCN). Studies of cerebellar learning have found that mossy

fiber synapses with the DCN are also plastic, and that their plasticity is gated by Purkinje cells

[Raymond, Lisberger and Mauk 1996; Mauk 1997]; this plasticity has been hypothesized to underly

effects such as savings, in which a conditioned response that is trained, extinguished, and then

trained again is learned faster the second time [Medina, Garcia and Mauk, 2001]. The interaction

of MBONs and projection neurons in the lateral horn has not been studied, but a similar two-stage

learning process could also be at work in flies. In this case, the overgeneralization problem I observe

in my mushroom body model could be overcome by the gradual re-writing of acquired memories

from the mushroom body to the lateral horn. In this case, changes in MBON responses to odors

might only last for a short period until a more robust and specific memory can be written to the

lateral horn. Further study of the downstream targets of MBONs will be needed for this hypothesis

to be investigated experimentally.
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Chapter 6

General discussion

Associative learning makes the implicit assumption that an experience from the past provides

predictive information about the future that can be applied to the present. This assumption has

a physical underpinning: when a sensory stimulus is linked to a salient experience, the readout of

a neural population encoding that stimulus is altered via synaptic plasticity, producing a stable,

long-lasting change in the stimulus-evoked response of downstream circuitry. For learning to be

useful, it must incorporate additional assumptions about how to relate previous experiences to the

present context—for example, if odor A has been predictive of reward in the past, what does it

mean if odor A is encountered in a mixture with odor B?

With the right neural representation of sensory stimuli, a simple learning rule can produce a learned

response that generalizes in a behaviorally useful way. In the passive and active systems of the

electric fish, the set of granule cell basis functions available to efferent cells determines the shape

of the negative images efferent cells can form. We found that the precise shape of the basis in the

passive system is tailored to the family of signals the fish encounters in nature, allowing negative

images of these stimuli to form more rapidly. Future experimental work should determine whether

similar adaptations exist in the active system, where rapid formation of negative images is important

due to the large set of posture-specific sensory effects that must be canceled.

In fly, the mushroom body does not maximally decorrelate odors, but instead preserves similarities

of odor representations that emerge in the olfactory receptors (Figure 4.8). Thus a learned response
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to odor A is likely to also be evoked by the mixture of odor A and B, due to overlapping odor rep-

resentations in the mushroom body. Learning rules that drive output neuron responses to separate

fixed points for trained and untrained odors can ensure that this useful property is preserved while

preventing overgeneralization to unrelated odors.

Cerebellum-like structures are a special case of learning, in which individual readout neurons play

identifiable roles in mapping sensory stimuli to behavioral responses. But sensory representations

shape the learning capacity of systems in a more general context. Deep belief networks with many

layers of nonlinear transformations vastly outperform comparably-sized neural networks with fewer

layers [Bengio 2009]. After training on object recognition tasks, units in the uppermost layers of

deep networks show tuning for remarkably complex features, such as faces and parts of vehicles

[Sermanet et al 2014]. No one layer of deep belief nets is essential for their success; rather, their

multilayered structure converts sensory input into a representation of the most relevant features for

object recognition, allowing for more robust performance. The visual processing stream works in a

similar way, gradually transforming small features of the visual scene into abstract and condition-

invariant representations of objects; learned associations that would be impossibly complex in

primary visual cortex become far easier to implement using representations in higher areas.

All of the models in this thesis have focused on learning in single neurons, either MG cells, efferent

cells, or MBONs. In the previous chapter, I discussed a hypothesis by which plasticity at KC-to-

MBON synapses may lead to more lasting and stable modifications of the projection neuron input

to the lateral horn. This hypothesis is based on a similar circuit in cerebellum, in which Purkinje

cells gate plasticity from mossy fibers to the deep cerebellar nucleus. Likewise, there is a two-stage

learning process in the ELL, in which MG1, MG2, LG, and LF cells are all recurrently connected,

but only LG and LF cells have processes that leave the electrosensory lobe. Both MG cells and

LF/LG cells form negative images from their granule cell inputs, although learning is usually easier

to drive in MG cells than LF/LG cells [Nate Sawtell, private communication]. An exciting future

challenge will be to use the models established here to look at how learning occurs on the population

level, and how multiple sites of plasticity benefit adaptive control of behavior.
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