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Abstract

Background: Dengue fever, a mosquito-borne viral disease, is a rapidly emerging public health problem in Ecuador
and throughout the tropics. However, we have a limited understanding of the disease transmission dynamics in
these regions. Previous studies in southern coastal Ecuador have demonstrated the potential to develop a dengue
early warning system (EWS) that incorporates climate and non-climate information. The objective of this study was
to characterize the spatiotemporal dynamics and climatic and social-ecological risk factors associated with the largest
dengue epidemic to date in Machala, Ecuador, to inform the development of a dengue EWS.

Methods: The following data from Machala were included in analyses: neighborhood-level georeferenced
dengue cases, national census data, and entomological surveillance data from 2010; and time series of weekly
dengue cases (aggregated to the city-level) and meteorological data from 2003 to 2012. We applied LISA and
Moran’s I to analyze the spatial distribution of the 2010 dengue cases, and developed multivariate logistic regression
models through a multi-model selection process to identify census variables and entomological covariates associated
with the presence of dengue at the neighborhood level. Using data aggregated at the city-level, we conducted a
time-series (wavelet) analysis of weekly climate and dengue incidence (2003-2012) to identify significant time
periods (e.g., annual, biannual) when climate co-varied with dengue, and to describe the climate conditions associated
with the 2010 outbreak.

Results: We found significant hotspots of dengue transmission near the center of Machala. The best-fit model to
predict the presence of dengue included older age and female gender of the head of the household, greater access to
piped water in the home, poor housing condition, and less distance to the central hospital. Wavelet analyses revealed
that dengue transmission co-varied with rainfall and minimum temperature at annual and biannual cycles, and we
found that anomalously high rainfall and temperatures were associated with the 2010 outbreak.

Conclusions: Our findings highlight the importance of geospatial information in dengue surveillance and the potential
to develop a climate-driven spatiotemporal prediction model to inform disease prevention and control interventions.
This study provides an operational methodological framework that can be applied to understand the drivers of local
dengue risk.
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Background
Dengue fever is the most significant mosquito-borne viral
disease globally, and has rapidly increased in incidence,
geographic distribution, and severity in recent decades
[1-3]. The disease is caused by four distinct dengue virus
serotypes (DENV 1-4) that are transmitted primarily by
the female Aedes aegypti mosquito, with Aedes albopictus
as a secondary vector. Common disease manifestations
range from asymptomatic to moderate febrile illness, with
a smaller proportion of patients who progress to severe
illness characterized by hemorrhage, shock and death [4].
Integrated vector control and surveillance remain the
principle strategies for disease prevention and control in
endemic regions, as no vaccine or specific medical treat-
ment are yet available. Macro social and environmental
drivers have facilitated the global spread and persistence
of dengue, including growing vulnerable urban popula-
tions, global trade and travel, climate variability, and inad-
equate vector control [5-8]. However, we have a limited
understanding of the relative effects of these drivers at the
local level, restricting our ability to predict and respond to
site-specific dengue outbreaks.
Early warning systems (EWS) for dengue and other

climate-sensitive diseases are decision-support tools that
are being developed to improve the ability of the public
health sector to predict, prevent, and respond to local
disease outbreaks [9,10]. An EWS incorporates environ-
mental data (e.g., climate, altitude, sea surface temperature),
epidemiological surveillance data, and other social-
ecological data in a spatiotemporal prediction model
that generates operational disease risk forecasts, such as
seasonal risk maps. Previous studies have demonstrated
the utility of this approach for vector-borne diseases,
including for dengue [11-13], malaria [14-16] and rift
valley fever [17]. Maps and other model outputs are
linked to an epidemic alert and response systems, trig-
gering a chain of preventive interventions when an alert
threshold is reached.
One of the first steps in developing an EWS is to

characterize the spatiotemporal dynamics and the covar-
iates associated with historical disease transmission. This
is often done by developing GIS base maps of epidemio-
logical, environmental, and social data to identify risk
factors; and through time series analyses of epidemio-
logical and climate data. These analyses require cross-
institutional integration of expertise and data, including
epidemiological and entomological data from ministries
of health, climate information from national institutes of
meteorology, and social-ecological spatial data from
national census bureaus. Previous studies indicate that
associations among climate, socioeconomic indicators
and dengue risk vary by location and time, indicating the
need for analyses of dengue risk that consider the local
context to explain transmission mechanisms [18-24].
Importantly, these analyses also need to consider the
spatial and temporal scales of ongoing data collection
and surveillance activities to ensure that the model out-
puts can support an operational EWS.
The National Institute of Meteorology and Hydrology

(INAMHI) of Ecuador is coordinating efforts with the
Ministry of Health (Ministerio de Salud Pública – MSP) to
develop an operational dengue EWS for coastal regions of
Ecuador, where the disease is hyper-endemic [25]. Our
previous studies in southern coastal Ecuador demon-
strated the potential to develop a dengue EWS that
incorporates climate and non-climate information. We
found that the magnitude and timing of dengue out-
breaks were associated with anomalies in local climate,
the El Niño Southern Oscillation (ENSO), the virus
serotypes in circulation, and vector abundance [26]. Local
field studies showed that dengue risk also depended on
household risk factors (e.g., access to piped water infra-
structure, demographics, water storage behaviors, housing
conditions) [22]. Our recent advances in seasonal climate
forecasts indicate that the forecasts in this region have
considerable skill (i.e., predictive ability) [27,28]. Building
on these previous studies, this study was conducted to
characterize the spatiotemporal dynamics, climatic and
social-ecological risk factors associated with the largest
dengue epidemic (2010) on record in the coastal city of
Machala, Ecuador, an important site for dengue surveil-
lance in the region.

Methods
Study Area
Machala, El Oro Province, is a mid-sized coastal port
city (pop. 241,606) [29] located in southern coastal
Ecuador, 70 kilometers north of the Peruvian border and
186 kilometers south of the city of Guayaquil (the epi-
center of historical dengue outbreaks in the region).
Dengue is an emerging disease in this region, with the
first cases of dengue hemorrhagic fever (DHF) reported
in 2005. The disease is now hyper-endemic, with year
round transmission and co-circulation of all four sero-
types. Recent multi-country studies showed that Machala
had the highest Ae. aegypti larval indices of ten sites in
other countries in Latin America and Asia [30,31] Given
the high burden of disease, the high volume of people and
goods moving across the Ecuador-Peru border, and prox-
imity to Guayaquil, Machala is a strategic location to
monitor and understand dengue transmission dynamics.
In 2010, DENV-1 caused the largest dengue epidemic

to date, with over 4,000 cases reported in El Oro prov-
ince [32] (Figure 1A). In Machala, there were 2,019 cases
of dengue fever (and 77 DHF) or an incidence of 84
dengue cases (and 3 DHF cases) per 10,000 population
per year, compared to 25 dengue cases per 10,000 popu-
lation per year from 2003 to 2009. The greatest burden



Figure 1 Time series of dengue and local climate conditions in 2010 and historically in Machala, Ecuador. (A) Weekly reported cases of
dengue in 2010 and weekly average cases from 2003 to 2012; (B) weekly averages of rainfall and minimum air temperature (Tmin) in 2010 compared
to the climatology (1986 to 2013 average conditions).
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of disease (58%) during the epidemic was among individ-
uals under 20 years of age (Figure 2). The number of
cases in older adults (i.e., 11% of cases reported by
people over 50) indicated a strong force of infection, and
that dengue was a relatively new disease in the population.
The epidemic occurred during a wetter than average year,
with elevated vector indices. Cumulative rainfall from
January to April 2010 was 56% above the 1986 to 2009
average. The percent of households with Ae. aegypti
juveniles (House Index) was 21.7 ± 4.11 (mean ± 95%
CI) in 2010 compared to 14.3 ± 4.70 from 2003 to 2009
[33].

Data sources
The following data from Machala were included in ana-
lyses: neighborhood-level georeferenced dengue cases,
national census data, and entomological surveillance
data from 2010; and time series of weekly dengue cases
(aggregated to the city-level) and meteorological data
from 2003 to 2012. These data were examined to identify
potential social-ecological and climate variables associated
with the presence of dengue fever during the 2010 out-
break in Machala, Ecuador. Epidemiological data were
provided by INAMHI through a collaborative project with
the MSP that was sponsored by the Ecuadorian govern-
ment. Accordingly, no formal ethical review was required,
as the data used in this analysis were de-identified and
aggregated to the neighborhood- and city-level, as
described below.

Epidemiological data
INAMHI provided a map of georeferenced dengue cases
from Machala in 2010, de-identified and aggregated to
neighborhood-level polygons (n = 253) to protect the
identity of individuals [34]. This map was generated
from individual records of clinically suspected cases of
dengue fever and DHF (aggregated as total dengue fever)
reported to a mandatory MSP disease surveillance
system, and the map included 83% of all dengue cases
(n = 1,674) reported in 2010. Reported dengue cases
were defined based on a clinical diagnosis. INAMHI
also provided data for weekly dengue cases from
Machala from 2003 to 2012 for the wavelet analysis
described below.

Social-ecological risk factors
We extracted individual and household-level data from
the 2010 Ecuadorian National Census [29] to test the



Figure 2 Dengue incidence (per 10,000 population per year) by age and gender for (A) dengue fever and (B) dengue hemorrhagic
fever in Machala in 2010.
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hypothesis that social-ecological variables were associated
with the presence of dengue (Table 1). We calculated a
composite normalized housing condition index (HCI) for
each household by combining variables for the condition
of the roof (CR), condition of the walls (CW), and condi-
tion of the floors (CF) (Equation 1). Each of the three vari-
ables ranged from 1 to 3, where 3 indicated poor
condition. When summed, the values of the composite
index ranged from 3 (min) to 9 (max), and we normalized
the index from 0 to 1, where 1 indicated the worst housing
condition.

HCI ¼ CR þ CW þ CFð Þ – min½ � = max – minð Þ ð1Þ

Using individual and household census records, we
recoded selected census variables and calculated parame-
ters as the percent of households or percent of the popula-
tion per census sector (n = 558 census sectors). The data
element dictionary of recoded variables in Spanish is pre-
sented in Additional file 1: Table S1. To scale the sector-
level polygon data to neighborhood-level polygons, we
used the ‘isectpolypoly’ tool in Geospatial Modeling Envir-
onment [35,36]. We estimated neighborhood population
by calculating the area-weighted sum, and estimated all
other parameters by calculating area-weighted means. The
neighborhood population estimates were also used to
calculate neighborhood dengue prevalence and population
density parameters.

Entomological data
Vector surveillance data for Ae. aegypti from 2010 was
obtained from the National Service for the Control of
Vector-Borne Diseases of the MSP, and included quar-
terly House Indices (percent of households with Ae.
aegypti juveniles) and Breteau Indices (number of con-
tainers with Ae. aegypti juveniles per 100 households).
The average Breteau Index during the first two quarters
of 2010 (January to June), was the vector index that was
most strongly associated with dengue presence (1) or
absence (0) (Pearson correlation, r = 0.2, p = 0.001) and
this period corresponded with the peak of the epidemic;
accordingly, we selected this variable to test in the multi-
variate model (Table 1).

Climate data
Daily meteorological data (rainfall and minimum air
temperature) during the study period were provided by



Table 1 Social-ecological parameters (mean and standard deviation - SD) tested in logistic regression models to
predict dengue presence (1) and absence (0) at the neighborhood level in Machala in 2010

Parameter Mean SD

Population density

More than four people per bedroom (% households) 14.6% 6.4%

Population density (people per square kilometer) 10,864 5,302

More than one other household sharing the home (% households) 2.2% 1.6%

People per household 3.88 0.52

Demographics

Receive remittances (% households) 10.8% 3.2%

People emigrate for work (% households) 2.2% 1.2%

Mean age of the head of the household (years) 45.2 3.0

Head of the household has primary education or less (% households) 35.9% 12.9%

Afro-Ecuadorian (% population) 9.6% 6.9%

Head of the household is unemployed (% households) 23.0% 5.3%

Head of household is a woman (% households) 30.3% 4.5%

Housing conditions

Housing condition index (HCI), 0 to 1, where 1 is poor condition 0.29 0.10

No access to municipal garbage collection (% households) 8.0% 12.3%

No piped water inside the home (% households) 34.4% 18.7%

No access to sewerage (% households) 22.4% 27.6%

No access to paved roads (% households) 26.7% 22.3%

People drink tap water (% households) 32.8% 11.7%

Rental homes (% households) 24.6% 10.6%

Other variables

Average distance to the central hospital (km) 2.36 1.27

Average Breteau Index during the first two quarters of 2010 28.6 2.15
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the Granja Santa Ines weather station located in Machala
(3°17'16” S, 79°54'5” W, 5 meters above sea level) and
operated by INAMHI. The weekly climatology (1985-
2013) and weather during the study period are shown
in Figure 1B. Weekly average rainfall and minimum
temperature from 2003 to 2012 were included in the
wavelet analysis, since it has been shown that these two
climate variables explain an important part of the total
variance of dengue cases in coastal Ecuador [26].

Statistical analyses
Exploratory spatial analysis
We applied Moran’s I with inverse distance weighting
(ArcMap 10.1) to epidemiological dengue data from
2010 to test the hypothesis that dengue cases were ran-
domly distributed in space. Moran’s I is a global measure
of spatial autocorrelation, that provides an index of
dispersion from -1 to +1, where -1 is dispersed, 0 is
random, and +1 is clustered. We identified the locations
of significant dengue hot and cold spots using Anselin
Local Moran’s I (LISA) with inverse distance weighting
(ArcMap 10.1). The LISA is a local measure of spatial
autocorrelation [37] that identifies significant clusters
(hot or cold spots) and outliers (e.g., nonrandom groups
of neighborhoods with above or below the expected
dengue prevalence). Previous studies have used Moran’s I
and LISA to test the spatial distribution of dengue
transmission [38], including in Ecuador [39], allowing
for comparison between studies.

Social-ecological risk factors
Census data aggregated to the neighborhood-level were
examined to identify potential social-ecological variables
associated with the presence of dengue fever, including
population density, human demographic characteristics,
and housing condition (Table 1). We hypothesized that
the presence or absence of dengue was associated with
one or more of these factors; each factor was presented
as a suite of census variables, representing testable vari-
able ensemble hypotheses in a model selection frame-
work - a modeling strategy that has been previously
described [22]. Variables for the average distance to the
public hospital (Teofilo Davila Hospital, the provincial
hospital located in the city center) and the Breteau
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Index were also tested in the model to assess geographic
differences, potential underreporting, and other factors
(e.g., microclimate, vector control) not captured by the
census variables.
We centered all variables and selected the best-fit models

(GLM, family = binomial, link = logit) using glmulti, an R
package for multimodel selection [40]. All possible unique
models were tested and ranked based on Akaike’s Informa-
tion Criterion (AIC) modified for small sample sizes (AICc)
(Equation 2). We compared the top ranked model to the
global model, which included all proposed variables as
model parameters.

AIC ¼ 2k− ln Lð Þ
AICc ¼ AIC þ 2k k þ 1ð Þ

n−k−1
ð2Þ

Where k is the number of parameters in the model,
n is the sample size, and L is the maximized likelihood
function for the model.
Parameter estimates and 95% confidence intervals (CI)

were calculated for variables in the top ranked model
(Table 2 Model A). Variance inflation factors (VIF) were
calculated to assess multi-colinearity and model disper-
sion. We found that inclusion of the parameters for
housing condition and piped water together led to over-
dispersion and highly inflated variance in the best-fit
model (Table 2 Model B). Based on the strong linear
correlation between housing condition and access to
piped water (Figure 3), we replaced these variables with
the residuals of housing condition regressed on access
to piped water, and re-ran glmulti to identify the best-
fit model. The inclusion of this variable enabled testing
Table 2 The parameters included in the best-fit logistic regre
of dengue in neighborhoods in Machala in 2010

Parameter

Model A.

Intercept

Head of household is a woman

Age of head of household

Residual of HCI regressed on households with no access to piped water insid

Distance to central hospital

Model B.

Intercept

Head of household is a woman

Age of head of household

No piped water inside the home

HCI

Distance to central hospital

(Model A.) The best fit model, which included the residual of the HCI regressed on
model is shown with separate parameters for the HCI and no access to piped wate
the model. VIF values indicate a high degree of multicollinearity in model B compa
for the effect of housing condition beyond that which
was explained only by access to piped water.

Wavelet analysis
To understand the time-frequency variability of dengue
and climate during the 2010 epidemic, we conducted a
wavelet analysis of a 10-year time series of weekly inci-
dent dengue cases (2003-2012), rainfall and minimum
temperature (Figure 4A). Wavelet analyses are ideal for
noisy, non-stationary data, such as dengue cases data,
which demonstrate strong seasonality and interannual
variability (yearly changes) [41,42]. These analyses iden-
tify significant temporal scales (i.e., defined here as pe-
riods whose associated wavelet power is statistically
significant for at least two continuous years; Figure 4)
over time for a given variable, such as 2-year cycles or
annual seasonal cycles of dengue transmission. Cross
wavelet and wavelet coherency allowed us to compare
two time series, such as climate and dengue, and to
identify synchronous periods or signals.
The pre-processing of the time series data for Machala

followed a two-step methodology described elsewhere in
detail [27,28,43]. First, we quality-controlled the time
series using a standard R package [44] to identify outliers
and inconsistent values (e.g., minimum temperatures >
maximum temperatures, negative precipitation values or
negative frequency of dengue cases). Outliers were de-
fined as data points at least three standard deviations
above or below the mean. To account for real outliers
(e.g., not artifacts produced by human, instruments, or
transmission errors), we compared suspicious values
with data from nearby climate stations. Entries that we
ssion models to predict the presence (1) or absence (0)

Estimate 95% CI SE VIF P value

0.75 0.46 – 1.05 0.15 < 0.001

7.77 0.73 – 15.17 3.67 1.14 0.034

0.10 0.00 – 0.21 0.05 1.06 0.051

e the home 9.04 3.98 – 14.37 2.64 1.05 < 0.001

−0.0005 −0.0007 – 0.0 0.0001 1.20 < 0.001

−7.59 −14.24 – −1.32 3.28 0.021

7.30 0.11 – 14.83 3.74 1.18 0.051

0.14 0.002 – 0.26 0.07 1.60 0.052

−3.18 −6.08 – −0.4 1.44 3.64 0.027

9.16 4.06 – 14.56 2.66 3.11 0.001

−0.001 −0.001 – 0.0 0.0 1.31 <0.001

the variable for no access to piped water inside the home. (Model B.) The same
r inside the home to indicate the direction of the effects of the parameters in
red to model A. High values of HCI indicate poor housing condition.



Figure 3 Scatter plot and linear fit for the composite normalized
housing condition index (HCI) versus the percentage of households
with no piped water inside the home, for neighborhoods with
cases of dengue (red circle) and without dengue (black triangle) in
Machala in 2010.
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deemed to be uncorrectable were flagged as missing values.
Then we used the R package ‘RHTestsV4’ [45-48] to detect
and correct temporal inhomogeneities in these variables.
The climate time series did not need substantial correc-
tions. Weekly dengue case data were transformed to weekly
Figure 4 Dengue and climate wavelets. (A) Normalized time series of we
2012, and the wavelet power spectrum for (B) dengue incidence, (C) rainfal
2010, when 75% of the cases from the epidemic were reported. Statistically
wavelet plots; and cones of influence (COI), where edge effects increase the
incidence using a linear interpolation of local population
data from the 2001 and 2010 national censuses. The final
step in data pre-processing involved the normalization of
the three variables to constrain variability. Dengue incidence
and rainfall time series had non-normal probability density
functions, thus they were percentile-transformed [34].
The wavelet analysis of dengue and climate data enabled

us to identify common periodicity patterns (e.g., annual or
biannual signals) and anomalous climate conditions dur-
ing the 2010 outbreak. We used Morlet wavelets in Matlab
[49] to compute the time series’ wavelet power spectrum
and to identify significant periods for each variable, cross-
wavelet power to identify periods where dengue-rainfall
and dengue-temperature had high common power, and
the coherence spectra to identify local co-variability of
dengue-rainfall and dengue-temperature [50]. Significance
testing (p ≤ 0.05) was conducted using an AR1 back-
ground noise for the first two spectra, and a Monte Carlo
approach to compute the significance levels in the coher-
ence spectrum. Statistically significant regions are dis-
played enclosed by a solid black line in the wavelet plots;
and cones of influence (COI), where edge effects increase
the uncertainty of the analysis, are shown as a lighter
shaded region (Figures 4, 5 and 6). The arrows represent
the relative phase, which is indicative of the lags between
the two time series, as determined by frequency and time
[51].The direction of the arrows can be used to quantify
the phase relationship: arrows pointing horizontally to the
ekly dengue incidence, rainfall, and minimum temperature from 2003-
l, and (D) minimum temperature. The black box indicates weeks 1-15 in
significant regions are displayed enclosed by a solid black line in the
uncertainty of the analysis, are shown as a lighter shaded region.



Figure 5 As in Figure 4, but for the cross wavelet power spectrum for (A) dengue-rainfall and (B) dengue-minimum temperature.
Arrows pointing horizontally to the right (left) indicate that the two variables are in (anti-) phase.
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right (left) indicate that the two variables are in (anti-)
phase. When the signals of two time series are in phase,
their maximum amplitudes occur simultaneously.

Results
Spatial analyses and social-ecological risk factors
Average neighborhood dengue incidence in 2010 was
76.7 ± 14.3 (95% CI) per 10,000 population (range: 0 to
775.8) (Figure 7A). The distribution was heavily left
Figure 6 As in Figure 5 but for wavelet coherence spectrum for (A) d
skewed, with 35% of neighborhoods (n = 89) reporting
zero cases (Additional file 2: Figure S1). Dengue cases
during the epidemic were significantly clustered (Moran’s
I = 0.03, p <0.001). Findings from the LISA analysis indi-
cated that there were significant dengue hotspots (n = 15
high-high neighborhoods) in west-central Machala, and a
smaller number of significant outliers (n = 2 high-low
neighborhoods, n = 5 low-high neighborhoods) (p <0.05,
Figure 7b).
engue-rainfall and (B) dengue-minimum temperature.



Figure 7 The spatial distribution of dengue transmission in Machala, Ecuador in 2010: (A) Dengue incidence (cases per 10,000
population in 2010) per neighborhood, and (B) significant hot spots (high-high) and outliers (high-low and low-high) identified
through LISA analysis (p ≤0.05).
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The top ranked model to predict the presence of dengue,
identified through the multimodel selection process, was a
better fit than the global model that included all of the
proposed social-ecological variables (global model AICc =
311, top ranked model AICc = 291.3, ΔAICc = 19.7). The
top ranked model included the residual of the HCI regressed
on no access to piped water, distance from the central
hospital, and demographics of the heads of households (i.e.,
older age, female gender) (Table 2 Model A, Figure 8,
Additional file 3: Figure S2). We also presented the model
with the HCI and access to piped water as separate variables,
to indicate the direction of the effect of each variable (Table 2
Model B). Neighborhoods were more likely to report dengue
if they had poor housing condition and had greater access to
piped water inside the home. When we compared neighbor-
hoods with similar housing conditions, neighborhoods were
more likely to report dengue cases if they had greater access
to piped water inside the home (Figure 3). Inclusion of the
residual variable in the model (Table 2 Model A) reduced
multicollinearity, as indicated by the low VIFs.



Figure 8 Social-ecological parameters from the 2010 census that were included in the top logistic regression model to predict the
presence of dengue, clockwise from top left: the average age of the head of the household, the housing condition index, distance to
the central hospital, the percent of households with a female head of household, the percent of households with no piped water
inside the home.
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Multiple best-fit models were within the predetermined
threshold criteria of ΔAICc ≤2 of the top model and
weights greater than 1.5% (Additional file 4: Table S2). In
addition to the parameters included in the top model, the
following variables were included in competing best-fit
models: Breteau Index, population density, households
with people who emigrate for work, and households
without access to paved roads.

Temporal climate analyses
We found that multiple temporal scales were involved in
local dengue transmission dynamics, as shown in the
wavelet power spectrum for dengue incidence (Figure 4B).
In wavelet analyses, strong significant signals at a certain
frequency are associated with persistent (quasi) periodic
cycles in the time series (e.g., a 1-year band indicates pres-
ence of annual cycles). There was a strong and significant
signal for the ~2-year periodic band for dengue incidence.
There was also a significant signal for the ~1-year periodic
band, although it was less frequent (e.g., 2003, 2006,
and 2011). Signals around and above the 4-year periodic
band were not considered, as they fell inside of the COI
(Figure 4B). These results suggest that dengue period-
icity in this locality is not only annual (~1 year), but that
there is also an important biannual cycle (~2 year), that
may reflect typical time scales of extrinsic (e.g., climate)
and intrinsic (e.g., immunologic) processes involved in
the occurrence of dengue for this region.
The rainfall and minimum temperature spectra in

Figure 4C,D demonstrated a strong annual signal (1-year
periodic band), in agreement with the annual dengue cycle
in the region. There was no evidence of relevant changes
in variability for minimum temperature; the correspond-
ing signal in the power spectrum is continuous around
the annual band. In contrast, there were fluctuations in
the ~1-year band for precipitation, likely associated with
periods of low precipitation. Beginning around 2006,
both climate variables demonstrated significant power
around the 2-year band, a feature that is most notice-
able in the rainfall data, particularly in recent years.
The cross-wavelet power spectra for dengue and rainfall

(Figure 5A), and dengue and minimum temperature
(Figure 5B) showed regions in the time-frequency space
with high common power in the 1-year and 2-year bands,
suggesting a relationship between climate and dengue
incidence at both time scales. The corresponding wavelet
coherence spectra, however, indicated that the dengue and
rainfall co-vary mostly in the 2-year band (Figure 6A), while
dengue and minimum temperature co-vary mostly in the
1-year band (Figure 6B). This suggests that temperature
and rainfall have well-differentiated roles in dengue trans-
mission. The directions of the arrows in the plots indicate a
slow change of phase in the co-variability of dengue and
rainfall in the 2-year band, approaching in-phase behavior
in late 2009, and we observed synchronized co-variability
for the 1-year band in 2009 and at the start of 2010. These
results highlight the distinct roles of these climate variables
in dengue transmission at different temporal scales, and the
importance of the phase and timing of climate variables
with respect to dengue transmission.
We found that the 2010 epidemic episode could be

characterized by a combination of annual and bi-annual
signals in dengue transmission and climate variables. The
outbreak was characterized by a combination of in-phase
variability of above normal minimum temperatures, and
quasi-in-phase above normal rainfall episodes associated
with the late 2009 to early 2010 moderate El Niño event
(see arrows pointing right along the 1-year band at the
bottom of Figures 5 and 6). The times series (1995-2010)
of monthly anomalies in dengue cases from El Oro
province, ENSO, temperature and rainfall have been
previously described (See Figure 2 in Stewart Ibarra &
Lowe 2013) [26]. This analysis demonstrated that the
observed effect (quasi-simultaneity in the variability of
dengue, temperature and rainfall) was present in early
2010, but not in any other year of the period under study
(Figures 5 and 6).

Discussion
Dengue is the most important mosquito-borne viral
disease globally, and has increased in incidence and distri-
bution despite ongoing vector control interventions
during the last three decades [1-3]. To date, we have a
limited understanding of the spatiotemporal dynamics of
dengue transmission, particularly at the local scale, due to
the complex, non-stationary relationships among dengue
infection, climate, vector, and virus strain dynamics
[41,52-54]; and the geographic and temporal variation in
the social-ecological conditions that influence risk [18-21].
More robust analysis tools, such as wavelet analyses and
multimodel inference, and the increasing availability of
geospatial epidemiological, climate, and social-ecological
data have increased our ability to explore these dynamics.
Studies such as this provide critical information to im-
prove disease surveillance and to develop an EWS and
other evidence-based interventions.
In this study, we found that neighborhoods with certain

social-ecological conditions were more likely to have cases
of dengue during the largest outbreak to date in El Oro
Province. Dengue cases were clustered in neighborhood-
level transmission hotspots near the city center during the
epidemic. Risk factors included poor housing condition,
greater access to piped water inside the home, less
distance to the central hospital, and demographics of the
heads of households (i.e., older age, female gender). In
analyses of 10 years of weekly epidemiological and climate
data, we found that dengue, rainfall and minimum
temperature co-varied and had common power at 1-year
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and 2-year cycles, with quasi-synchronized higher than
average rainfall and minimum temperatures likely contrib-
uting to the 2010 dengue outbreak. This study contributes
to ongoing efforts by INAMHI and the MSP of Ecuador
to develop a dengue prediction model and early warning
system. Findings from this study will inform the
development of dengue vulnerability maps and climate-
driven dengue seasonal forecasts that provide the MSP
with information to target high-risk regions and seasons,
allowing for more efficient use of scarce resources [9].

Spatial dynamics and social-ecological risk factors
In Machala, a relatively small and heterogeneous city,
there was evidence of unequal exposure or unequal
reporting of dengue. During the epidemic, dengue trans-
mission was focused in hotspots in the west-central urban
sector, a middle- to low-income residential area with mod-
erate access to urban infrastructure. Although people had
access to basic services, our previous studies suggest that
dengue control in these communities may be limited by
the cost of household vector control, lack of social
cohesion, and limited engagement with local institutions
[55]. Previous studies that used spatial clustering statis-
tics also found evidence of significant clustering of den-
gue transmission across the urban landscape [18,56-58].
A previous study in Guayaquil, Ecuador, identified
neighborhood-level dengue hot and coldspots, and found
that the location of hotspots shifted over the 5-year
period, highlighting the spatially dynamic nature of den-
gue risk and the importance of multiyear studies [39].
Longitudinal field studies in Thailand found evidence of
fine-scale spatial and temporal clustering of dengue virus
serotypes and transmission at the school and household
levels [59,60]. Focal transmission patterns are likely
associated with the limited flight range of the Ae. aegypti
mosquito. Recent studies in Peru demonstrated the im-
portance of human movement patterns in determining
spatial dengue transmission dynamics within an urban
area [61,62]. At a regional scale, dengue outbreaks are
likely influenced by human movement north and south
along the Ecuador-Peru border. Future studies should
continue to investigate the regional effects of cross-border
movement of people and goods, and the local effects of
intra-urban movement between work, school, and home
to better understand the spatial dynamics of dengue
transmission.
We found that the combination of HCI and access to

piped water was the most important risk factor for dengue
transmission, as indicated by the magnitude of the best-fit
model parameter estimate (Table 2 Model A); this param-
eter was also a significant variable in all other top models
(Additional file 4: Table S2). Neighborhoods were more
likely to report dengue if they had poor housing condi-
tions (likely associated with lower income) and greater
access to piped water inside the home (likely associated
with older, established communities with access to urban
infrastructure). This apparent paradoxical relationship
suggests that household water storage behaviors played an
important role in the 2010 dengue outbreak. In our
experience low-income households in Machala with
access to piped water tend to store water in containers in
the patio as a secondary water source, since water supply
interruptions are common. These secondary water con-
tainers are often uncovered, and the containers become
ideal Ae. aegypti larval habitat during the rainy season. In
contrast, low-income households without access to piped
water are likely to store water in containers as their
primary water source (e.g., 55 gallon drums), frequently
filling and emptying the containers and thus preventing
Ae. aegypti from developing into adult mosquitoes.
Neighborhoods were also at greater risk of dengue if

they were closer to the central hospital, reflecting either
spatially biased reporting and/or a true increase in
transmission near the city center. This variable was also
significant in all of the top models (Additional file 4:
Table S2). Given the small size of the city of Machala
(~5 km across) and easy access to low-cost public
transportation, travel time to the hospital was not likely to
be a limiting factor. However, people from lower income
communities may be less likely to seek medical care due
to the cost of medicine and the high cost of missing work,
leading to underreporting from the urban periphery. It is
also possible that people residing near the city center in
Machala were at greater risk because they may have been
less willing to cooperate with vector control technicians
(E. Beltran, pers. comm.), due in part to the misconception
that dengue is a problem of poor communities at the
urban periphery [55]. Households in these areas may also
be at greater risk because they store water as a secondary
water source, as described above. These findings highlight
the complexity of the cultural and behavioral factors
influencing dengue risk and the importance of local-level
studies that consider the social context.
Our findings are consistent with a previous longitudinal

field study of household risk factors for Ae. aegypti in
Machala, where it was found that poor housing condition
and access to piped water inside the home were positively
associated with the presence of Ae. aegypti pupae [22]. This
prior study found that Ae. aegypti were more abundant in
the central urban area that had better access to infrastruc-
ture than in the urban periphery [22]. Interestingly, the
same risk factors emerged in the study presented here and
the prior field study despite differences in rainfall (i.e., the
field study was conducted one year after the epidemic,
during a drier than average year) and differences in spatial
scale (i.e., household- versus neighborhood level). These
findings indicate that high-risk households could be identi-
fied and targeted using a combination of census data and
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a locally adapted rapid survey of housing conditions,
similar to the Premise Condition Index, an aggregate
index measuring house condition, patio condition, and
patio shade, which has been validated in other countries
[63,64]. The HCI and the combined HCI-water access
variables developed in this study should be explored and
validated as dengue predictors in future studies in this region.
Ae. aegpyti juvenile indices were included in two of the

top seven best-fit models to predict the presence of
dengue in neighborhoods (Additional file 4: Table S2). A
previous study in El Oro Province found that Ae. aegypti
indices (House Index) were positively associated with
dengue outbreaks at the province level [26]. Although
pupal or adult indices are considered better predictors of
dengue risk than larval indices [65], our findings suggest
that larval indices may have some predictive power in this
region. In Ecuador, entomological surveillance is limited
to larval indices, and neighborhoods are rarely sampled in
consecutive periods in a given year due to limited re-
sources. These findings highlight the need for additional
studies of the vector-dengue dynamics in this region and
local evaluations of the robustness of vector abundance
measures in order to strengthen cost-effective entomo-
logical surveillance systems.

Climate and dengue periodicity
The wavelet analysis in this study provided a nuanced
understanding of the relationships among local dengue
transmission and climate variables at multiple temporal
scales. The analysis of 10 years of weekly epidemiological
and climate data from Machala provided evidence of
significant 1-year and 2-year cycles in dengue, rainfall and
minimum temperature. The 1-year cycles of minimum
temperature and rainfall likely contributed to the annual
dengue cycles observed in the power spectrum. This find-
ing was expected, as previous studies have documented
significant annual dengue cycles in this region [26]. Inter-
estingly, we also found evidence of 2-year cycles in the
rainfall wavelet power spectrum that were likely associated
with biannual cycles of dengue transmission, a pattern
that was previously undocumented in Ecuador.
Indeed, our analyses suggest that the 2010 dengue

epidemic could be related to a timely coincidence of above
normal minimum temperatures and above normal rainfall
episodes during the moderate 2009 to 2010 El Niño event.
Previous studies in this region have shown that Ae. aegypti
abundance is associated with rainfall and minimum
temperature [22]. In 2010, rainfall from February and
March, the peak of dengue season, was almost double the
long-term average (89% and 81% above average, respect-
ively), likely increasing the availability of mosquito larval
habitat. Temperature and temperature fluctuations influ-
ence rates of mosquito development and virus replication
[66-71]. The slow rate of climate phase change observed
in this analysis suggests the potential to monitor the
climate in this region to identify future time periods with
synchronous climate conditions similar to 2010, that may
increase the risk of a dengue outbreak.
Our results indicate that the 2-year band in precipitation

is an important component in the co-variability of dengue
incidence for the period under study, although its role in
the 2010 dengue epidemic requires further investigation.
This periodic band is not unique to Machala. Two to
three-year cycles of dengue transmission have been
reported in other parts of the world [41,53], particularly in
years associated with El Niño events. The statistically
significant 2-year band is present in the dengue power
spectrum for the entire time series. This is not true for
rainfall or minimum temperature, whose variability in the
region is strongly associated with El Niño-Southern
Oscillation (ENSO). This suggests that although ENSO
has a strong influence in the occurrence of dengue epi-
demics in coastal Ecuador, other variables (e.g., immunity)
are also involved in the process and/or that there is a
persistent mechanism for the climate’s biannual contribu-
tion in the dengue spectrum. It is interesting to note that
similar 2-year cycles have been reported for dengue and
malaria in mountain locations in Peru [72], but not along
the Peruvian Coast or Amazon [73]. We hypothesize that
the biannual signal found in Peru and Machala is related
to an additional climate mode present over the Andes in
this region [28] in addition to ENSO. Machala may be
uniquely situated to capture climate signals from ENSO
and the so-called [28] Andean mode, given its proximity
to the Andean foothills and the strong coupled climate-
ocean system (i.e., teleconnections) present in the region.

Limitations
Although this study revealed patterns of climate and social-
ecological conditions as important drivers of dengue
transmission, this study has some limitations. It should be
noted that non-climate factors that were undocumented in
this study (e.g., population immunity, vector control
interventions) are also key drivers of interannual variability
in dengue [26,74,75] and most likely influenced the 2010
outbreak. The 1-year of spatially explicit epidemiological
data constrained our ability to assess whether the social-
ecological factors associated with the spatial distribution of
dengue transmission were consistent in time. The 10-year
time series of weekly dengue data was not available at the
appropriate spatial scale for this analysis. With multiple
years of data, we could evaluate whether dengue transmis-
sion at the beginning of the dengue season or at the
beginning of an epidemic is more likely to begin in neigh-
borhoods with similar characteristics, to assess whether
there are persistent high-risk, hotspot neighborhoods that
trigger outbreaks. The analyses were also limited by a lack
of laboratory confirmation for cases or information about
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the immune, nutritional, or health status of the population.
We are currently collaborating with the MSP to improve
dengue diagnostic infrastructure in the region and to
reduce the time lag between epidemiological reporting and
vector control interventions. Importantly, the MSP is
undergoing a reorganization and decentralization process
to merge the health and vector control divisions at the local
level, with the goal of improving information flows and
linking responses to evidence-based interventions.

Conclusions
The results of this study highlight the importance of incorp-
orating climate and social-ecological information with
georeferenced and clinically validated epidemiological data
in a dengue surveillance system. Investigators in Ecuador
are exploring the development of web-based GIS for na-
tional dengue surveillance using open-access software. GIS
is an effective tool to integrate diverse data streams, such as
dynamic, real-time epidemiological and climate data with
static vulnerability maps generated from census data. Open
access tools are especially important in resource-limited set-
tings, and analysis packages targeted to dengue are becom-
ing available [76]. Web-based GIS tools have been
developed for global dengue surveillance, such as the CDC’s
DengueMap, and for local dengue surveillance research
projects [77,78]. National-level dengue GIS initiatives have
been developed in countries such as Mexico [79], where
Ministry of Health practitioners and software developers
jointly designed the software platform. This collaborative ap-
proach to integrate diverse data streams will ideally provide
public health decision-makers with information to assess
intervention programs, allocate resources more efficiently,
and provide the foundation for an operational dengue EWS.
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