
CHEMISTRY AND STRUCTURES

The term polycyclic aromatic hydrocarbons (PAHs)
generally refers to a group of chemical compounds
consisting of carbon and hydrogen atoms arranged as
planar compounds whose principal structural feature
is fused rings. Their nomenclature has evolved over
many decades and is complex. A comprehensive listing,
including traditional synonyms and chemical struc-
tures, is given by Sander and Wise (1).

PAHs are produced during the incomplete combustion
of organic material and are among the most ubiquitous
environmental pollutants. The combustion processes that
release PAHs invariably produce a variety of compounds,
and in fact, it is difficult or impossible to ascribe health
effects in humans to particular members of the PAH
family. Hence, PAHs are usually treated as a group for the
purpose of risk assessment. However, the relative amounts
of individual PAHs released vary from one source to
another. The PAH “fingerprint” of diesel exhaust, for
example, is markedly different from that of mainstream
tobacco smoke (2). Thus, environmental concentrations
of PAHs reported in the literature often consist of lists
with varying numbers of compounds. Polycyclic organic
matter is defined as a group of 16 individual PAH
species (acenaphthene, acenaphthylene, anthracene,
benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluo-
ranthene, benzo(ghi)perylene, benzo(k)fluoranthene,

chrysene, dibenz(a,h)anthracene, fluoranthene, fluo-
rene, indeno(1,2,3-cd)pyrene, naphthalene, phenan-
threne, pyrene) that includes a group of seven PAHs (in
bold) that are probable human carcinogens. Figure 81.1
illustrates structures of key PAHs. The best-known PAH is
benzo(a)pyrene (BaP), due to its early identification in
coal tar and later use as a model compound for investigat-
ing the carcinogenic properties of tobacco smoke.

SOURCES OF POLYCYCLIC
AROMATIC HYDROCARBONS
IN THE ENVIRONMENT

PAHs enter the environment through both natural and
manmade processes. The principal natural sources of
environmental PAH are forest fires and volcanic activity
(3,4). Forest fire emissions are particularly severe in
Indonesia, where they are often lit to clear forests in
preparation for agricultural activities. During the 1997
Indonesian haze disaster, concentrations of PAH were
6 to 14 times higher than in unaffected areas (5).
Malaysia, relatively unaffected until recently, has had
severe haze problems. Fires in peat forests in Malaysia
are thought to contribute 25% to 35% of atmospheric
PAH (6). Burning of wood for heating and cooking has
always been an important manmade source of atmos-
pheric PAH. Since the Industrial Revolution there have
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Polycyclic Aromatic Hydrocarbons and Petroleum Industry 1237

been important stationary sources, such as manufacturing
and power generation, and since the early 20th century,
mobile sources in the form of gasoline and, later, diesel-
fueled engines also became important contributors to
total environmental PAHs.

Stationary Anthropogenic Sources of
Polycyclic Aromatic Hydrocarbons Emissions

Stationary sources of anthropogenic PAH emissions
arise from industrial and household activities and
account for about 80% of total annual PAH emissions in
the United States (7). Industrial sources include power
generation, municipal incinerators, and industrial man-
ufacturing processes.

It is difficult to estimate precisely the contribution to
total atmospheric PAH from its many different sources,
and few such estimates are available. A 1982 report by
Ramdahl et al. (8) put the proportion of PAH emissions
in the United States from industrial sources at 41%; res-
idential heating 16%; mobile sources 25%; open burn-
ing 13%; and power generation and incineration 5%
and 1%, respectively. Total PAH emissions were esti-
mated at about 11,000 metric tons. Boström et al. (10)
cite tabulations from the European Environmental
Agency that break down an estimated 1,900 tons of
PAH emissions in 1992 according to emission source:
60% (1,120 tons) was attributed to nonindustrial com-
bustion plants, including domestic wood burning; 20%
(383 tons) was from road transport; and lesser amounts
were from production processes and combustion in
manufacturing industries (9).

Residential heating, including wood burning
Boström et al. (10) note that “residential burning of
wood is regarded as the largest source of PAHs” in both
the United States and Sweden. In Sweden, between
1990 and 1995, domestic heating sources including dis-
trict heating contributed up to one third of total emis-
sions of PAHs to air (101 out of 153 total tons per year
in 1995).

In the United States there has been considerable
progress in improving the efficiency of outdoor wood-
burning furnaces for heating homes and hot water. The
U.S. Environmental Protection Agency (EPA) reported
in 1998 that two different wood furnace designs emit-
ted 0.2 g to 0.4 g PAH per kg wood fuel under various
conditions. Emissions in relation to energy output were
less than 17 mg per MJ input, which was less than a cer-
tified wood stove but several orders of magnitude
greater than a natural gas furnace (11). Measurements of
PAH in domestic wood emissions were dominated by
phenanthrene (690 �g per MJ), followed by fluoran-
thene (148 �g per MJ), pyrene (114 �g per MJ), and
anthracene (97 �g per MJ). BaP content was minor
(10 �g per MJ) (12). Burning of heating oil for home
heating is a minor source of PAH, especially compared
with wood burning (13).

Power Generation
Coal-fired power plants have represented a source of
environmental PAH, at least in the past. In a 1982
study, high concentrations of PAH were reported in sed-
iments taken in southwestern Lake Erie near a large
coal-fired power plant (14). However, increasingly strin-
gent regulations over the years have reduced their
importance (15,16).

Municipal Incinerators
Municipal incinerators are a troublesome source of PAH
emissions, in part because it is difficult for municipal
authorities to exercise stringent control over the content
and composition of the refuse that they must collect
for legal and public health reasons. PAH measured
in fly ash from municipal waste incinerators usually
includes phenanthrene, benzo(g,h,i)perylene, fluoran-
thene, benzo(a)fluoranthene, indeno(1,2,3-c,d)pyrene,
and chrysene (17–19). The relative abundance of spe-
cific PAH has been reported to differ considerably be-
tween incinerators operated in the United States and in
the United Kingdom: Shane et al. (20) reported phe-
nanthrene to be the most abundant and frequently
detected PAHs in samples of fly ash and bottom ash col-
leted from 18 U.S. sites, whereas British data favored
benzo(g,h,i)perylene.

Industrial Manufacturing
Several manufacturing activities have been responsi-
ble for large environmental emissions. These include

Figure 81.1 PAHs.
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manufacture or processing of coal tar, coke, asphalt, and
petroleum catalysts/cracking operations. Coal tars are
byproducts of destructive distillation (carbonization) of
coal to produce coke or gas and may contain hundreds
to thousands of individually identifiable chemicals
(21,22). Coal tars are used in the manufacture of indus-
trial products, including pesticides and pharmaceuti-
cals, and have been used as auxiliary blast-furnace fuels
in the production of steel (23). Coal tars result from the
cooling and purification of manufactured gas, a process
that can also produce waste products known as “purifier
waste,” which could contain sulfur and cyanide impuri-
ties, and may persist in the environment for many years
(24). Coal-tar pitches, which are formed as residues
during distillation of coal tars, are used as a binder in
preparing anodes used in the smelting of aluminum. It
has been noted that in the United Kingdom, aluminum
production and anode baking (part of the anode manu-
facture process) were the largest sources of PAH emissions
until 1996, contributing about half of all emissions.
However, as a result of the 1990 Environmental Pro-
tection Act, which led to heavy investment in abatement
equipment, emissions were eventually reduced to about
5% of the total (25).

Mobile Sources of Polycyclic Aromatic
Hydrocarbon Emissions

Automotive exhaust from cars and trucks is a major con-
tributor to atmospheric PAH, particularly in urban envi-
ronments (26). As Boström et al. (27) note, “vehicle
exhaust is the largest contributor to PAH emissions in
central parts of large cities.” PAH composition varies by
type of vehicle fuel (gasoline vs. diesel) and is further
affected by the presence or absence of a catalytic con-
verter. Furthermore, PAHs are emitted from automobile
exhaust in the vapor phase, as well as in particulate mat-
ter (28). Because some PAHs occur primarily in the
vapor phase (e.g., phenanthrene), whereas others are
almost exclusively bound to particles (e.g., coronene),
characterization of the composition of an atmospheric
mixture is best done by presenting as complete PAH
profiles as possible. Boström et al. (27) compare PAH
emissions by vehicle type, fuel, and catalytic converter
use, for up to 25 individual PAHs, to demonstrate a
decrease in total emissions by a factor of five upon
changing from the nonenvironmentally classified diesel
fuel (MK3) to the environmentally classified fuel
(MK1). They also point out that cold-start emissions
from gasoline vehicles may account for more than 50%
of total PAH emissions from gasoline vehicles (29).

Indoor Environment

Indoor sources of PAH can also contribute to an indi-
vidual’s total air exposure, especially in episodic events,

including smoking (30,31), and for three-ringed PAH
compounds (32). Indoor air concentrations of PAH gen-
erally reflect both indoor and outdoor sources. Data
from the Total Human Environmental Exposure Study,
which examined human exposure to BaP via inhalation
and food pathways for 13 households in Philipsburg,
New Jersey, suggested that up to 50% of the outdoor
particulate concentration of BaP could penetrate indoors
(33). Studies by Sheldon et al. (34,35) also found
outdoor BaP highly correlated with indoor levels in
California, contributing more than 50% on average to
indoor levels. Studies done elsewhere have found similar
results: the contribution of outdoor sources to the heav-
ier PAHs was 63% to 80% for five- to seven-ringed com-
pounds in U.S. cities and 76% for BaP in Japanese cities
(36). In one study, homes with gas heating systems were
found to have higher average indoor PAH than homes
with electric heating systems (37).

HUMAN EXPOSURES

Environmental

Individuals are exposed to complex mixtures of pollu-
tants that may have arisen from a multitude of sources.
It is rarely possible to track down specific atmospheric
sources, especially in urban environments. Attempts
have been made to characterize the relative abundance
or “fingerprints” of atmospheric PAH in a variety of set-
tings. Khalili et al. (2), for example, measured the con-
centration of 20 PAHs near specific sources in the
Chicago metropolitan area. They found two- and three-
ringed PAHs responsible for up to 98% of the total mea-
sured concentration near coke ovens and in highway
tunnels, but for only 73% to 76% of the total in auto
(gasoline) and bus (diesel) garages.

Air Pollution
Besides direct exposure to automotive exhaust, sec-
ondary exposure may occur to PAHs that have been
previously deposited in soils, highways, and other loca-
tions of human activities. Instrumentation and methods
have been developed that make it possible to measure
both PAHs and volatile organic compounds in indoor
air (38). The EPA Toxic Release Inventory for 1992 con-
tained a partial list of releases of anthracene to the envi-
ronment from manufacturing or processing facilities,
showing amounts of up to 11,090 pounds of PAH per
year (39). Besides “ordinary” air pollution, exposure to
PAH may occur following natural or manmade disas-
ters. Pleil et al. (40) reported significant levels of air-
borne PAH associated with the collapse of the World
Trade Center towers on Sept. 11, 2001, as well as from
subsequent use of diesel-powered equipment during
the cleanup operation. For further information on air
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pollution in general, see Chapters 93 to 96, which deal
with outdoor and indoor sources, epidemiology, human
clinical studies, and toxicological studies.

Water Pollution
PAH may be found as contaminants of both surface and
ground water, with atmospheric deposition providing
the major contribution (7,41). The Agency for Toxic
Substances and Disease Registry (ATSDR) Toxicological
Profile for PAH catalogs the following sources of PAH
in surface waters: deposition of airborne PAH, munici-
pal wastewater discharge, urban stormwater runoff,
runoff from coal storage areas, effluents from wood
treatment plants and other industries, oil spills, and
petroleum pressing (7). ATSDR notes that data on PAH
in groundwater are scant, citing an American Petroleum
Institute estimate of 1 to 2 tons of BaP released from
municipal sewage effluents and 0.1 to 0.4 tons of BaP
from petroleum refinery wastewaters for 1977 (42). The
EPA National Urban Runoff Program, which operated
between 1978 and 1983, reported concentrations of
PAH above 1,000 ng per L (43). Reports over the past
several decades have documented the occurrence of
PAH in surface water samples taken from geographically
disparate areas, including four cities in the eastern
United States (Huntington, West Virginia; Buffalo,
New York; Pittsburgh, Pennsylvania; and Philadelphia,
Pennsylvania—with a PAH concentration of 600 ng per
L in Pittsburgh) (44); 11 locations along the Mississippi
River, with the highest concentration of phenanthrene
at 34 ng per L measured near New Orleans (45); and the
St. Lawrence River and tributaries, where Pham et al.
detected phenanthrene, benzo(b)fluoranthene, fluoran-
thene, and pyrene (46). As might be expected, much
higher concentrations of PAH have been found in indus-
trial effluents, such as refinery wastewaters (47,48).

Levels of PAH in finished drinking water are gener-
ally very low, because overall water quality is strictly reg-
ulated and monitored in most heavily populated areas.
Nevertheless, drinking water may occasionally be con-
taminated with PAH or with chlorinated derivates of
naphthalene, phenanthrene, fluorene, and fluoran-
thene, as has been reported in a Japanese study (49).

Soil
Airborne PAH originating in both stationary and mobile
sources may be deposited near the source but can also
travel a considerable distance. Heavy soil contamination
has been documented on current and former industrial
sites, including those of former manufactured gas plants
(50). Contributions to PAH in residential soil are primar-
ily from deposition of particulate matter from highway
traffic, with localized contributions from barbecuing
and operation of gasoline-powered lawnmowers (51).
PAH along highway rights of way are mainly from auto-
motive exhaust as well as from wearing of tires and

asphalt. In a Dutch study, Van Brummelen et al. (52)
sampled four soil layers at 10 sites at increasing distances
from a blast-furnace plant, and were able to estimate the
relative contribution of PAH from the plant and from
“background” sources.

The presence of PAH in residential soils does not
automatically imply a specific level of human exposure,
because this would depend on many factors related to
human activities around the home. In recent years
methods have been developed to estimate potential
exposure to PAH from soil that has been brought into
households from outdoors by their occupants. Chuang
et al. (54,55) obtained profiles of PAH in house dust
and tracked-in soil, gathered using a specially designed
vacuum cleaner (high-volume surface sample � HSV3)
(53). They found PAH concentrations greatest in entry-
way soil � house dust � pathway soil � foundation soil
(54,55). Beyea et al. (56) used measurements of yard
soil around the households of participants in a case–
control study of breast cancer to optimize models of
exposure to traffic sources of PAH. Estimates of PAH
exposure using these methods may permit assessment
of risk in future epidemiological studies.

Marine Sediment
Sediments are major sinks for PAH, primarily due to
their low solubility and strong affinity for organic car-
bon in particulate matter (57). Numerous studies of
PAH in sediment cores have been carried out over the
years. Hites et al. (58) identified anthropogenic com-
bustion of fossil fuels as the primary source of PAH in
cores taken to a depth of 42 cm from Buzzard’s Bay,
Massachusetts. Wenning et al. (59) took 13 core sedi-
ments from the Passaic River in Newark, New Jersey,
and concluded that primary sources of PAH, as well as
polychlorinated biphenyls, were discharges of industrial
effluents either directly into the waterway or through
combined sewer overflows. The accumulation of PAHs
and other industrial pollutants in marine sediments is
an important factor contributing to the bioaccumula-
tion of these compounds in fish and shellfish, which are
eventually consumed by humans. Eisler (60) has tabu-
lated bioconcentration factors in selected species of
aquatic organisms for anthracene, BaP, and several other
PAHs, reporting, for example, a factor between 4,400
and 9,200 in rainbow trout.

Personal

Dietary
Food. Exposure to PAH can be through preparation of
food and in the food itself. PAH have been measured in
emissions from charcoal grilling of meat by Dyremark
et al. (61). They identified PAH levels of 23 �g per kg in
the smoke emanating from grilling of minced lean
pork, but attributed most of the PAH in the local air
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environment to combustion of the charcoal rather than
the meat itself, and concluded that the overall contribu-
tion to air pollution of this source was relatively minor.
Kazerouni et al. (62) measured BaP in composite sam-
ples of commonly consumed foods in the second
National Health and Nutrition Examination Survey and
found the highest levels (about 4 ng per g cooked meat)
in grilled/barbecued, very well-done steaks and ham-
burgers and in similarly prepared chicken with skin.
BaP in nonmeat items was low. Consumption of bread/
cereal/grain and grilled/barbecued meat was estimated
to contribute to about one fourth of the mean daily
dietary intake of BaP. The database of PAH measure-
ments in food was later used by Sinha et al. (63) to
relate estimated dietary exposure to risk of colorectal
adenocarcinoma in a clinic-based case-control study,
with a 5-fold risk associated with individuals in the
highest quintile of dietary consumption.

Cigarette Smoking

Cigarette smoke contains an abundance of PAH, which
contribute to its carcinogenic properties. The carcino-
genicity of these PAHs were already well-known at the
time of publication of the landmark 1964 Surgeon
General’s report, which listed the concentration in cig-
arettes, cigars, and pipes of BaP, acenaphthylene, anthra-
cene, and pyrene (64).

Literally thousands of publications since that time
have confirmed cigarette smoking as a cause of many
types of cancer, including lung, larynx, oral cavity, esoph-
agus, bladder, hematopoietic system, and other organ
systems (65). Cigarette smoke is a highly complex
mixture, which includes not only PAHs, but also other
carcinogens such as nitrosamines; aromatic amines;
heterocyclic amines; a variety of other miscellaneous
organic compounds; and heavy metals such as arsenic,
nickel, chromium, cadmium, and lead (66). Conse-
quently, it is not possible to ascribe the carcinogenic
effects of tobacco use to specific PAH, but these un-
doubtedly play a role in human health effects.

Occupation

Exposure to PAH occurs in numerous industries, includ-
ing coke production and downstream industries like
steel manufacture, aluminum, petroleum refining, coal
gasification, and manufacture. The primary routes of
exposure to coal tars and coal-tar products are inhala-
tion, ingestion, and dermal contact. Actual numbers of
exposed workers are difficult to estimate; outdated
estimates from the National Occupational Hazard Sur-
vey and the National Occupational Exposure Survey,
both done in the 1970s, put the number of workers
directly or indirectly exposed to coal tar products at
145,000. Besides in heavy industry such as coke, steel,

and aluminum, exposure occurs in occupations in
which asphalt (also called bitumen) is used, such as
road paving and roofing (68). Burstyn et al. (69) have
developed a methodology for incorporating exposure
measurements among asphalt workers into a database
that is well-suited to epidemiological studies of health
risks. Both professional and volunteer firefighters are
also exposed to PAH in the course of their duties (70),
although such work also entails exposure to many com-
plex mixtures of natural and synthetic combustion
products. Concerns have been raised that military per-
sonnel stationed in Kuwait during the Gulf War experi-
enced lengthy exposures to PAH from the hundreds of
deliberately set oil well fires (71).

Occupational exposure to PAH may also affect work-
ers engaged in both diesel and gasoline-powered motor
transport, including automobiles, trucks, heavy equip-
ment such as that used in mining and construction, and
marine. Actual exposures obviously depend upon indi-
vidual circumstances, such as the portion of the workday
spent in or near vehicles, and time spent outdoors versus
indoors, underground, or in tunnels. The number of
workers employed in the trucking industry in the United
States alone is estimated to be more than 9 million, the
largest single employer being the United Parcel Service.
Exposures to such workers do not include additional
exposures off the job. Health consequences of occupa-
tional exposures are discussed later in a separate section.

The Oil-and-Gas Industry and Petroleum Fuels

Many sources of PAH exposure are directly related to the
oil-and-gas industry and the use of petroleum as a fuel.
Petroleum, or crude oil, is the most heavily consumed
form of energy, comprising 42.7% of total world energy
consumption. Petroleum provides gasoline for trans-
portation and heating oil and for a variety of nonenergy
products, such as lubricating oil and chemical feed-
stocks from which plastics are made. PAH, being pro-
duced whenever organic material is combusted, are
emitted in the form of air pollution in either volatile
(gaseous) or particle form.

The petroleum (and gas) industry is divided into two
major segments: the “upstream” (drilling, well servic-
ing, pumping, maintaining collecting systems) and
the “downstream” (refining, product manufacturing,
marketing).

Crude oil is a mixture of more than 1,000 com-
pounds, some of which are PAHs. Quantities of the
single-ring aromatic hydrocarbon benzene, and substi-
tuted and saturated PAHs, called naphthalenes, are pre-
sent in all but the lightest crude oils, and the content of
PAHs increases in heavier crudes to about 7%. Although
a variety of hydrocarbon products produced from petro-
leum have specific toxic effects, the toxicity of crude
petroleum itself to humans is relatively low. Despite this
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relative reduced toxicity, PAHs are responsible for most
of the toxicity of crude oil in the ecosystem when a spill
occurs. After a spill, the volatile hydrocarbons evaporate
quickly, leaving the PAH-enriched heavier fraction
behind. Production water, which is also rich in metals
and brine, also contains PAH and represents a major
disposal problem for the industry.

The downstream segment of the industry is more
likely to present opportunities for occupational expo-
sure to PAH. Refining is a closed process with limited
opportunities for exposure to PAH. Crude petroleum
first is washed with solvent, which removes salts, heavy
hydrocarbons, sulfur compounds, and impurities. Then
it is distilled to recover the lighter, low-molecular-
weight fractions that are used as fuels and lubricating
oils. Cracking is a process that breaks down heavy alkanes
into lighter fractions more suitable as fuels. Thermal
cracking, which is done using heat, generates PAH that
may be left behind in residual material, called coke,
although not in large quantities. The coke itself may be
recycled in the process. Exposure may occur during
maintenance of cracking facilities. Thermal cracking has
been replaced in many applications by steam cracking,
catalytic cracking, and lower-temperature methods.
Cracking is a closed process, and under normal circum-
stances workers are not exposed to PAH, although that
possibility exists during maintenance work.

Asphalt is made from the heavy residual fraction left
and is rich in PAH. Exposure to PAH is a hazard in roof-
ing, street paving, and other activities where asphalt is
applied in open air.

Natural gas provided 16% of energy consumed
worldwide in 1999. It is primarily used for heating, gen-
erating electricity, and industry. Due to its chemical
structure, mostly methane, it produces less carbon diox-
ide for the energy it produces than any other fossil fuel.
Natural gas does not contain PAH. Most of the hydro-
carbon content in natural gas consists of short-chain
alkanes, which are generally not toxic. Excess gas may
be “flared” on site, ignited in a controlled fashion on
top of a stack. When flares burn inefficiently, with rich
mixtures exceeding available oxygen, incomplete com-
bustion occurs, and PAHs are produced.

Coalbed methane is a form of natural gas arising
from coalbeds. Although the gas itself is free of PAH, the
methods used to produce it may result in wastewater
contaminated with PAH, which has raised environmen-
tal concerns.

Oilsands and oil shale are minerals containing large
quantities of a hydrocarbon substance called bitumen.
These fossil fuels currently have a small share of world
energy consumption but represent a potentially huge
supply, especially in North America, where large deposits
of oilsands exist in western Canada. The content of PAH
in both forms of bitumen and the synthetic hydrocar-
bon product derived from processing bitumen is higher

than in crude oil. The PAH compounds are not neces-
sarily the same as in combustion products, however.
Shale oil was extensively evaluated in the 1980s for
health risks, and the historic industry appears to have
experienced an increased rate of skin cancer. The sites
where oilsands are mined and extracted, as well as oil-
sands processing facilities, do not appear to show
unusually high rates of injury or disease, but a compre-
hensive study has not been performed. Sensitive to the
environmental and human health risks of the product,
the oilsands industry has made a concerted effort to
reduce production of coke and to eliminate sources of
exposure in production. The oilsands are a natural geo-
logical formation that lies exposed on the surface in the
Athabasca region, however, and PAH from bitumen nat-
urally enter some surface waters.

Large oil-and-gas facilities, especially refineries, have
large energy requirements that are met by fossil fuels
and by cogeneration, making them important station-
ary sources of PAH emissions.

HUMAN HEALTH EFFECTS

Because PAH almost always occur in the environment as
mixtures rather than as individual compounds, it is diffi-
cult to ascribe adverse human health effects to individual
compounds. Most assessments of the health risks of expo-
sure to PAH, such as that done by ATSDR, are inferred
from studies involving exposure to complex mixtures,
such as those encountered in occupational settings (e.g.,
coke oven work and roofing) or cigarette smoking (7).

Toxicity

The largest effort by far toward elucidating human
health effects of PAH has been directed toward studies
of carcinogenicity. Considering their near omnipresence
in occupational and environmental settings, there are
surprisingly few available studies of other health effects.
This may due be in large part to the fact that exposure to
PAH often occurs with other toxic substances, making it
difficult to determine the effects of PAH alone. There is
certainly ample evidence of serious adverse health
effects associated with exposure—mostly by inhalation
but by other routes as well—to complex particulate mix-
tures, of which PAHs frequently make up a substantial
proportion. A comprehensive ATSDR toxicological pro-
file of PAH failed to discover specific reports of neuro-
logical, reproductive, or developmental effects in either
animals or humans (7). Szczeklik et al. (72) found a
“marked depression” of mean serum immunoglobulin
G (IgG) and IgA in coke oven workers, with some
decrease in IgM but an increase in IgE. The coke oven
workers had order-of-magnitude-greater measured
exposure to PAH relative to comparison workers.
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There is limited experimental evidence in rats (73)
and cockerels (74) that exposures associated with
PAH-producing industries may affect cardiovascular
function. Few epidemiological studies have reported
PAH-associated cardiovascular risks. In a multicountry
collaborative study Burstyn et al. (75) found a dose-
related increase in fatal ischemic heart disease (IHD) in a
cohort of 12,367 male asphalt workers for whom BaP
could be estimated quantitatively and exposure to coal
tar semiquantitatively. Both cumulative and average
exposure indices for BaP and coal tar were positively
associated with mortality from IHD. The highest relative
risk was observed for average BaP exposures of at least
273 ng per m3 [RR � 1.64; 95% confidence interval
(CI), 1.13 to 2.38].

Carcinogenicity

The International Agency for Research on Cancer (IARC),
in its periodic evaluation of carcinogenic agents and
exposures, has summarized the extensive evidence that
exposure to a number of PAH sources is carcinogenic
(IARC Group I). These include coal tar pitches and coal
tars, which are mixtures of PAH and other compounds,
exposure to industrial processes such as coal gasification
and coke production, aluminum production, iron and
steel founding (76,77), and of course tobacco smoking
(78). Sources judged carcinogenic by IARC also include
mineral oils, shale oils, and soots. Several other sources
of exposure are classified by IARC as “probably carcino-
genic to humans” (IARC Group IIA), including creosote,
diesel exhausts, and petroleum refining (79). Assessment
of human cancer risk to coal tar derivatives is based upon
a number of occupational studies, some dating back
many decades. Lloyd’s (80) classic paper on mortality of
coke plant workers, for example, documents a 10-fold
risk of lung cancer for men employed 5 or more years at
full-time topside jobs (i.e., at or near the tops of the
ovens). Redmond et al. (81) reported increased risk of
cancer of the lung, kidney, and skin in workers exposed
to coal tar pitch volatiles. More recently, Boffetta et al.
(82) reviewed cancer risks associated with PAH exposure
in a variety of occupations, including aluminum produc-
tion, coal gasification, coke production, iron and steel
foundries, tar distillation, shale oil extraction, wood
impregnation, roofing, road paving, carbon black pro-
duction, carbon electrode production, chimney sweep-
ing, and calcium carbide production. They concluded
that “heavy exposure to PAHs entails a substantial risk of
lung, skin, and bladder cancer, which is not likely to be
due to other carcinogenic exposures present in the same
industries.” Target organs were most consistently the
lung, skin, and bladder.

An extensive literature on cancer risks in workers in
various industries involving exposure to PAH has shown
clear excess of lung cancer and suggestive excesses of

bladder cancer (83,84). As noted above and elsewhere
(85), studies of coke oven workers were among the earli-
est to establish PAH mixtures as human carcinogens. In a
study of cancer mortality among European asphalt
workers, Boffetta et al. (86) noted a small excess of lung
cancer in workers employed in road paving, asphalt
mixing, and other jobs involving exposure to bitumen
fumes, although confounding by related exposures such
as to coal tar could not be ruled out. Overall mortality
from head and neck cancer was elevated for bitu-
men workers (87). Exposure to PAH also occurs in the
construction industry. Kurtz et al. (88) have measured
exposure to coal tar pitch volatiles, PAHs, and total par-
ticulates in excess of established standards.

Excess cancer in roofers was first reported by
Hammond et al.(89). There have been subsequent
reports of increased lung cancer risk in roofers [e.g.,
Zahm et al. (90) and Morabia et al.(91)] but few have
been statistically significant. A meta-analysis by Partanen
and Boffetta (92), however, demonstrated an overall sta-
tistically significant excess of lung cancer among roofers
(RR � 1.78; 95% CI,1.5 to 2.1). It is uncertain to what
extent the risk is related to specific exposures, because
such workers were exposed in the past to coal tar and
asbestos, as well as asphalt.

Epidemiological studies have generally characterized
risks according to broad job title or industry, because spe-
cific exposure measurements over workers’ lifetimes are
rarely available. Nevertheless, with reasonable assump-
tions and approximations, it is possible to make lifetime
exposure estimates by gathering and synthesizing indus-
trial hygiene data from a variety of sources. A recent
meta-analysis based upon such a synthesis has been done
by Armstrong et al. (93), who estimated the average
equivalent “unit relative risk” per 100 �g per m3-years of
BaP at 1.20 (95% CI, 1.11 to 1.29). Estimated means in
coke ovens, gas works, and aluminum production works
were similar (95% CI, 1.15 to 1.17). In other industries,
they were much higher, but precision was substantially
poorer (e.g., asphalt, RR � 18; 95% CI, 4 to 73).

Although the cancers most often investigated have
been those traditionally associated with employment in
heavy industry, such as lung and bladder cancer,
el-Bayoumy (94) has pointed out that breast cancer can
also be induced by a number of PAH, including 7,12-
dimethylbenz(a)anthracene, a synthetic compound
used primarily in carcinogenesis research. On the basis
of experimental research and structural grounds, he pro-
posed that PAH and nitro-PAH be considered potential
factors in human breast cancer. Gammon et al. (95)
have investigated this hypothesis in a population-based
case-control study of 576 women with breast cancer and
427 controls conducted in Long Island, New York. Peri-
pheral blood was used for assays of PAH diol-epoxide-
DNA adducts via competitive ELISA. An adjusted odds
ratio of 1.49 (95% CI, 1.00 to 2.21) was observed in the
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highest adduct quintile (�21.9 per 108 nucleotides); no
dose-response was seen.

Mechanisms for PAH carcinogenesis have been inves-
tigated in considerable detail. As with many xenobiotics,
metabolism usually proceeds via an activation phase
with formation of electrophilic intermediates. Conjuga-
tion reactions leading to deactivation of reactive elec-
trophiles may occur in a second phase. The metabolic
activation stage usually proceeds via formation of 7,8-
diol epoxides, catalyzed by enzymes in the cytochrome
P450 family such as CYP1A1, as well as other isoenzymes
such as CYP1A2, CYP1B1, and CYP3A4. Diol epoxides,
in turn, form adducts with DNA, which may give rise to
mutations following DNA replication. A variety of muta-
tion formats has been described, which may vary with
the structure and number of rings of the specific PAH.
Smith et al. (96) mapped the distribution of adducts
induced by diol epoxides of a number of PAHs within the
p53 gene in human bronchial epithelial cells. The
codons most strongly involved in adduct formation were
also those with the highest mutational frequency. An
extensive discussion of mechanisms for adduct forma-
tion and alternative metabolic pathways is given by
Boström et al., and extensive reviews have been presented
by Wogan et al. (97), Baird et al. (98), and Xue and
Warshawsky (99).

BIOMARKERS AND BIOMONITORING

During the past several years there has been considerable
progress in development and use of biomarkers for
assessing past exposure to PAH. Although the concentra-
tion of PAH in tissue has occasionally been determined
(100), it is more practical to determine the concentra-
tion of PAH reaction products in urine. The pyrene
metabolite 1-hydroxypyrene (1-OHP), and sometimes
its glucuronidation product, 1-hydroxypyrene glucuro-
nide, are often used to demonstrate past exposure to
PAH and to estimate body burden for use in epidemio-
logical risk analysis. 1-OHP has been measured consis-
tently in the urine of cigarette smokers and has been
used [by Hecht et al. (101), for example] to track the
effects of smoking cessation.

There is increasing use of 1-OHP to assess worker
exposure to PAH in occupational studies. Caux et al.
(102) found elevated levels of 1-hydroxypyrene in the
urine of firefighters exposed to PAH during the course of
their duties, compared with levels in their own urine
after a nonexposed period, and Kang et al. (103) found
1-OHP measurements higher in PAH-exposed steel-
workers than in nonexposed workers. van Schooten et al.
(104) measured urinary 1-OHP in groups of workers in
an aluminum plant but having different measured expo-
sures to PAH. 1-OHP was correlated with PAH exposure
among groups but not at the level of the individual.

Overbo et al. (105) reported a significant increase in
urinary 1-OHP workers exposed to measured PAH in an
electrode paste plant relative to control workers.1-OHP
has also been found to be elevated in the urine of miners
exposed occupationally to diesel exhaust (106). Mea-
surement methods for 1-OHP are now relatively routine
(107). They have been called “robust and nonlaborious
(108) but use of 1-OHP as a quantitative biomarker of
exposure has not yet been established, and health-based
exposure limits cannot yet be set.

PAH-DNA adducts have been used extensively for bio-
monitoring of exposure. As early as 1988, Perera et al.
(109) measured the levels of PAH-DNA adducts in periph-
eral blood cells of 35 Finnish foundry workers with an
enzyme-linked immunosorbent assay using a polyclonal
anti-BaP diol epoxide-I-DNA antibody known to cross-
react with DNA modified by diol epoxides of structurally
related PAH. They found higher levels in exposed workers
compared with controls, and adduct levels were dose-
related to BaP exposure. Their group subsequently used
32P-postlabelling and immunoassay methods to demon-
strate higher adduct levels in residents of a Polish region
heavily polluted by coke plant emissions relative to rural
controls (110). The continuing development of assay
methods has enabled studies in residential groups not
thought to be so highly exposed as industrial workers or
those who live close to industrial sources of PAH pollu-
tion. The majority of nonindustrial exposures comes from
food and motor vehicle exhaust. Shantakumar et al. (111)
recently combined PAH-DNA adduct measurements with
data from environmental home samples of dust and soil,
dietary history data, and PAH exposure estimates based
on geographic modeling of vehicular traffic patterns. They
found a strong association with levels measured in out-
door soil (which reflects in part deposition of vehicle-
related particulate matter) but a negative association with
PAH in indoor house dust.

As adduct measurements become more widespread,
they are being used as dosage markers in a variety of
cancer studies. Adduct levels were associated with risk of
development of lung cancer in a case–control study
nested in the European Investigation into Cancer and
Nutrition study. The overall odds ratio was not statisti-
cally significant, however (odds ratio � 1.86; 95% CI,
0.88 to 3.93) (112). Furthermore, adduct levels were
dichotomized as detectable and nondetectable; when
adduct level treated as a continuous variable to predict
risk, its regression coefficient was not significantly dif-
ferent from zero, and the authors stated that the level of
measurement error “seems to be high.”

DNA-adduct assay results at present still have some-
what limited sensitivity. A set of interlaboratory trials
undertaken between 1994 and 1997 to evaluate interlab-
oratory disparities found substantial differences in re-
ported BaP-DNA adduct levels by different methods, but
also found improved reproducibility after circulation and
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adoption of uniform protocols (113). Schoket et al. (114)
found a lack of correlation between adduct levels and
urinary 1-OHP among workers in a Hungarian alu-
minum plant. Mensing et al. (115) have observed a re-
duction in adduct levels in PAH-exposed factory workers
following a change in production materials (binding
pitch) but found no differences between adducts in cur-
rent smokers compared with nonsmokers. deKok et al.
(116) has noted that the sensitivity of the assay varies
with the method used and stated: “ Recent developments
in the application of capillary electrophoresis in combi-
nation with either immunochemical or mass spectromet-
ric detection techniques may offer new and promis-
ing approaches, with higher selectivity as compared to
TLC-32P postlabeling.”

In a recent review, Vineis and Perera (117) argued
that bulky DNA adducts “express cumulative exposure
to PAHs and other aromatic compounds after the action
of metabolizing enzymes and despite the intervention
of DNA repair enzymes” and, thus, should be consid-
ered to be “markers of cumulative DNA damage” rather
than strictly dosage surrogates.
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