
CLEMONS, T., AND PAGANO, M. (1999), “ARE BABIES
NORMAL?” THE AMERICAN STATISTICIAN, 53, 298–302:

COMMENT BY STELLMAN

Clemons and Pagano (1999) examined the origin of the initially anoma-
lous distribution of birth weights derived from the Centers for Disease
Control’s computerized birth certificate files. They surmised that some
hospitals record birth weights in grams and others in pounds and ounces,
and then showed that this assumption leads to an appropriate choice of
bins for tabulating frequency histograms which reduces or eliminates the
anomaly together with an unusual digit bias. They have thus elegantly
demonstrated that the source of the initial anomaly is an administrative
rather than an inherently statistical one.

They showed also (Figure 7) that the re-binned data produce a normal
Q-Q plot, except for very light and very heavy babies. They cite studies
that tend to explain the deviation from normality at the low end as due to
inclusion of pre-term births, and at the high end as due in part to births to
diabetic mothers.

I wish to suggest that the deviation at the low end may contain an ad-
ditional administrative component. Infant mortality (for which low birth
weight is a major risk factor) is a closely watched health “indicator,” es-
pecially in large cities like New York where municipally funded deliv-
ery of health care and social service resources may be based partly on
neighborhood-specific rates. During 1988–1991, when I served as the New
York City Assistant Commissioner of Health with responsibility for birth
registration (a state function in most other jurisdictions), after closing the
birth registration files for a given year, we searched the medical records
of hospitals in high-risk areas for unreported infant deaths. In a year with
about 135,000 reported live births, it was not uncommon to find up to 50
unreported infant deaths relative to 1,700 initially reported. Many such
unreported deaths were among infants of extremely low birth weight who
expired shortly after birth—sometimes in minutes, or following an abnor-
mally short pregnancy. We learned through discussions that some physi-
cians or hospitals assumed that in these instances births, deaths, or both
were not legally reportable, while others thought they needed only to file
reports of spontaneous terminations of pregnancy. However, the New York
City Health Code defines a live birth in part as “expulsion or extraction
from its mother of a product of conception, regardless of the duration of
the pregnancy, which . . . shows evidence of life, such as breathing, beat-
ing of the heart, pulsation of the umbilical cord, or definite movement of
voluntary muscles . . .” (New York City Department of Health 1990).

On the basis of the legal definition, such births must be counted as live
births, and should therefore have been counted in the histograms presented
by Clemons and Pagano. Our experience suggests that the reporting of
many such births is dependent upon the degree of resources which a given
birth jurisdiction commits to “extra” surveillance over and above the hos-
pital’s legal reporting obligations. Deviation from normality among low-
birth weight infants may be due in part to biased reporting of births due
to lack of complete understanding of the local health code and reporting
requirements on the part of physicians and hospital administrators.

Steven D. STELLMAN
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HENGARTNER, N. W. (1999), “A NOTE ON MAXIMUM
LIKELIHOOD ESTIMATION,” THE AMERICAN

STATISTICIAN, 53, 123–125: COMMENT BY KHATTREE
AND SEN

Hengartner (1999) presented an interesting example of the situation
where the use of additional information results in a maximum likelihood
estimator that is inferior to the one which ignores this additional infor-
mation. This seemingly counterintuitive phenomenon has been observed

earlier in other contexts, as well. For example, Birch and Robertson (1983)
demonstrated that, while estimating the variance σ2 of a Normal popula-
tion with known mean µ based on a random sample X1, X2, . . . , Xn,
the maximum likelihood estimator σ̂2 = 1/n

∑n

i=1(Xi − µ)2 is infe-

rior to the plug-in estimator σ̃2 = 1/n
∑n

i=1(Xi − X)2 (MLE when µ

is unknown), obtained by replacing µ by X , with respect to the mean-
squared error (MSE) criterion. The difference between this case and the
one presented by Hengartner (1999) is that, while in the former the ig-
nored information is that of a parameter of the original population, the
latter deals with the issue of ignoring available information arising from
an additional random sample from a population with a mean shifted with
respect to the original population.

We submit the following comments to point out that the specific findings
by the author in this case are largely dependent on the chosen criterion
for comparison. In what follows, we explore the same situation the author
has investigated, but on the basis of a probabilistic criterion based on the
notion of Pitman measure of closeness (PC). Given two estimators, T1 and
T2, of a parameter θ, under PC criterion, T1 is said to be better than T2,
if

Pr [|T1 − θ| < |T2 − θ|] >
1
2

. (1)

Following the notation of Hengartner (1999), let X1, . . . , Xn, and
Y1, . . . , Ym be independent random samples from Bin(1, p) and Bin(1, q),
respectively, with q ≤ p. In order to estimate p, the estimators considered
by the author are

p̂ = n−1
n∑

i=1

Xi,

and

p =




p̂, if n−1
∑n

i=1 Xi ≥ m−1
∑m

j=1 Yj(∑n

i=1 Xi +
∑m

j=1 Yj

)/
(n + m),

if n−1
∑n

i=1 Xi < m−1
∑m

j=1 Yj .

In the present context, the roles of T1 and T2 in (1) will be assumed by
p̂ and p̃, respectively, and θ is our parameter of interest p. Note now that
the definition of p̃ entails that

Pr [|p̂ − p| = |p̃ − p|] = Pr

[
n−1

n∑
i=1

Xi ≥ m−1
m∑

j=1

Yj

]
> 0.

Following Nayak’s (1990) suggestion in such cases, we should replace
(1) by a direct comparison of PC(p̂, p̃; p) = Pr[|p̂ − p| ≤ |p̃ − p| and
PC(p̃, p̂; p) = Pr[|p̃ − p| ≤ |p̂ − p|] in order to conclude the superiority
of one estimator over the other. In other words, p̂ will be better than p̃ in
PC sense if

PC(p̂, p̃; p) > PC(p̃, p̂; p). (2)

Preference for p̃ over p̂ is established by the reverse inequality.
Since p̂ ≤ p̃,

PC(p̂, p̃; p) = Pr[(p̂ − p̃)(p̃ + p̂ − 2p) ≤ 0]
= Pr[p̂ − p̃ = 0] + Pr[p̃ + p̂ − 2p ≥ 0]

and similar considerations hold for PC(p̃, p̂; p). Thus, it suffices to compare
the probabilities Pr[p̃ + p̂ − 2p ≥ 0] and Pr[p̂ + p̃ − 2p ≤ 0]. It is easily
seen that, when p > 1/2

Pr[p̃ + p̂ − 2p ≥ 0] = Pr
[

p̃ + p̂

2
≥ p

]
≥ Pr(p̂ ≥ p) >

1
2

, (3)

since in this case distribution of p̂ is negatively skewed. Thus, for p > 1/2,
p̂ is preferred to p̃ in PC sense. This preference region is in stark contrast
to the MSE preference region obtained by the author. It may also be noted
that unlike the MSE criterion, the PC preference region here does not
depend on m and n.
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It may be interesting to establish a sufficient condition under which p̃
is preferred over p̂ in the sense of (2). A calculation similar to (3) shows
that one range of p over which p̃ dominates p̂ is given by the restriction:
p−median(p̃) > 0, which is a highly complex, nonlinear function of both p
and q. It is thus imperative that dominance of one estimator over the other
depends on the chosen comparison criterion and in many cases—including
the present one—may yield completely contradictory results under differ-
ent criteria. It may be pointed out that similar comparison problems under
additional information and under PC criterion have been investigated by
Khattree (1992), Gupta and Khattree (1993, 1994), and Bose, Datta, and
Ghosh (1993).
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DAWSON, K. S., GENNINGS, C., AND CARTER, W. H.
(1997), “TWO GRAPHICAL TECHNIQUES USEFUL IN

DETECTING CORRELATION STRUCTURE IN
REPEATED MEASURES DATA,” THE AMERICAN

STATISTICIAN, 51, 275–283: COMMENT BY KESELMAN,
ALGINA, AND KOWALCHUK

In the article by Dawson, Gennings, and Carter (1997) graphical pro-
cedures were presented intended to help researchers identify the correct
covariance structure of their data in order to arrive at better tests of the
fixed-effects in mixed model analyses of repeated measures data with SAS’
(SAS Institute 1996) PROC MIXED program. That is, one of the newer
approaches to the analysis of repeated measurements is based on a mixed
model approach (see Littell, Milliken, Stroup, and Wolfinger 1996). The
potential benefit of this approach is that it allows a user to model the
covariance structure of the data rather than presuming a certain type of
structure as is the case with the traditional univariate and multivariate test
statistics. Parsimoniously modeling the covariance structure of the data
should result in more efficient estimates of the fixed-effects parameters of
the model and consequently more powerful tests of the repeated measures
effects.

The mixed approach, and specifically PROC MIXED, allows users to
fit various covariance structures to the data. For example, some of the
structures that can be fit with PROC MIXED are: (a) compound symmet-
ric (CS); (b) unstructured (UN); (c) spherical; (d) first-order autoregressive
(AR); and (e) random coefficients (RC). The spherical structure is assumed
by the traditional univariate F tests in SAS’s GLM program, while the UN
structure is assumed by GLM’s multivariate tests of the repeated measures
effects. AR and RC structures more appropriately reflect that measurement
occasions that are closer in time are more highly correlated than those
farther apart in time. In addition, PROC MIXED allows users to specify,
separately and jointly, between-subjects and within-subjects heterogeneity.
It is suggested that users first determine the appropriate covariance struc-
ture prior to conducting tests of significance for the repeated measures
effects (see Littell et al. 1996). Hence, Dawson et al. (1997) suggested
that researchers use their graphical procedures (i.e., draftman’s display

and parallel axis display) in conjunction with the Akaike (1974) informa-
tion criterion and/or Schwarz (1978) Bayesian criterion values in order to
select the correct covariance structure (see also Littell et al.).

Unfortunately, the research by Keselman, Algina, Kowalchuk, and
Wolfinger (1998, 1999) indicates that the default F tests that SAS uses to
test the within-subjects effects can be moderately biased in certain cases.

In particular, they compared the mixed model approach, the multivariate
Welch–James nonpooled test enumerated by Keselman, Carriere, and Lix
(1993), and the corrected df test (improved general approximation test)
due to Huynh (1978). The tests were compared for unbalanced nonspher-
ical repeated measures designs containing one between-subjects and one
within-subjects variable when the assumptions of covariance homogeneity
and multivariate normality were violated separately and jointly. Specifi-
cally in a 3 × 4 design where the data were generated so that the sphericity
parameter (ε) equaled .75, they varied the: (1) covariance structure (UN,
ARH, and RCH, where H designates between-subjects heterogeneity); (2)
equality (1:1:1)/inequality (1:3:5) of the between-subjects covariance ma-
trices; (3) equality/inequality of the group sizes (unequal group sizes cases
were equal to: (a) 8, 10, 12 and 6, 10, 14 (N = 30), (b) 12, 15, 18 and
9, 15, 21 (N = 45), and (c) 16, 20, 24 and 12, 20, 28 (N = 60)); (4) type
of pairing of covariance matrices and group sizes (positive/negative); and
(5) distributional form of the data (multivariate normal/lognormal).

Their results indicated that the default tests available through PROC
MIXED typically were conservative or liberal when unequal covariance
matrices were paired in either a positive or negative way with unequal
group sizes. In particular, the rates of error were depressed or inflated
when the PROC MIXED tests were based on either the best Akaike or
Schwarz criteria. As well, the rates were liberal when the correct covari-
ance structure was used with the tests of the repeated measures effects.

Thus, whether a covariance structure is selected with graphical methods
and/or with the Akaike (1974) and Schwarz (1978) criteria will not alter
the fact that the default F tests available through PROC MIXED can be
biased under certain conditions. Accordingly, any presumed power ben-
efits must be discounted when the procedure is prone to excessive rates
of Type I error. The liberal nature of many of the PROC MIXED tests
may be due to the fact that the default F approximation is based on the
adjusted residual df. We are currently investigating more conservative ap-
proximations.

On the other hand, the tests enumerated by Keselman et al. (1993), and
Huynh (1978), were generally able to control their rates of Type I er-
ror even when asssumptions were jointly violated. The Welch–James test,
however, required a larger sample size to achieve robustness. Based on the
results reported by Keselman et al. (1998, 1999), Keselman et al. (1993),
and Algina and Keselman (1998) we recommend the Welch–James test
for analyzing effects in repeated measures designs. The Welch–James test
typically will not only provide a robust test of repeated measures effects
but as well will generally provide a more powerful test of nonnull effects
compared to Huynh’s (1978) improved general approximation test, in re-
peated measures designs. Indeed, Algina and Keselman found—when Type
I error rates were controlled—power differences in favor of Welch–James
as large as 60 percentage points! However, if sample sizes are smaller than
values recommended to ensure robustness, we suggest users adopt the im-
proved general approximation test. (The second author will provide upon
request SAS/IML programs for obtaining numerical results.)

Finally, in addition to power benefits, Lix and Keselman (1995) pre-
sented a SAS/IML program that enables users to compute between-
subjects and within-subjects Welch–James tests for omnibus as well as
subeffect tests (e.g., contrasts among the repeated measures main and/or
interaction means); users need only input the data, sample sizes, and a
contrast matrix or vector to obtain numerical results.
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HAMMER, H. (1997), “SYMBOLIC EXCLUSION IN
STATISTICAL LITERATURE: THE IMPACT OF

GENDERED LANGUAGE,” THE AMERICAN
STATISTICIAN, 51, 13–19: COMMENT BY HAMER AND

JONES

We agree with Hammer (1997) that the use of male pronouns when
referring to statisticians or scientists has become inappropriate. Thus, it
is fair for her to cite examples of such usage in recent statistics books to
sensitize today’s authors to this issue.

Hammer errs, however, in citing “Thurstone (1965, xi)” as an exam-
ple of “statisticians who chose to carry on in the tradition of excluding
women . . . (d)uring the late 1960s and early 1970s.” L. L. Thurstone was
a psychologist rather than a statistician; he died in 1955. The sole citation
to Thurstone in Hammer’s reference list is to Thurstone (1947), Multiple-
Factor Analysis. On page xi of his preface, Thurstone did refer to “the
scientist,” as “he.” At the time Thurstone wrote, the pronoun “he” often
was used to represent a person of unspecified gender. Today, most authors
are more sensitive because they recognize the value of choosing gender-
free pronouns. Unfortunately, when writing in English in the singular case,
we still need the somewhat awkward “he or she.”

The ease with which men are able to work for and with women, while
not a perfect indicator of a freedom from sexist attitudes, nonetheless
may be suggestive. About Thurstone, we note the following: He reached
the mandatory retirement age of 65 at the University of Chicago in 1952.
He considered offers from the University of California, Berkeley, the Uni-
versity of Washington, and the University of North Carolina (UNC). He
moved with his wife to UNC because, of the three opportunities, this was
the only one to offer professorial appointments both to him and to his wife,
Thelma Gwinn Thurstone. He was recruited by the chair of the psychology
department, Dorothy Adkins. His recruitment was strongly supported by
Gertrude Cox, Director of the Institute of Statistics, which included fac-
ulty members from a department of mathematical statistics at UNC and an
applied statistics department at North Carolina State University (NCSU).
Thurstone’s coauthor in a number of undertakings was his wife, for whose
scholarship he expressed great respect.

In her critique of the use of gendered pronouns, it would have been better
for Hammer to focus exclusively on current literature. It is particularly
unfortunate that Thurstone (1947) was mistakenly characterized as a more
recent publication.

Robert M. HAMER
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UMDNJ Robert Wood Johnson Medical School
Piscataway, NJ 08854
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DRISCOLL, M. F. (1999), “AN IMPROVED RESULT
RELATING QUADRATIC FORMS AND CHI-SQUARE

DISTRIBUTIONS,” THE AMERICAN STATISTICIAN, 53,
273–275: COMMENT BY HARVILLE AND RELPY

Having (like Professor Driscoll) made repeated attempts at devising
proofs (for the standard results on the distribution of quadratic forms)
that will be palatable to students, I have the following reactions.

1. Sufficiency. Sufficiency can be proved rather simply as follows. Let
A represent a p × p symmetric matrix of rank r, and let x ∼ Np(µ,V),
where µ is a p×1 vector and V a p×p positive definite matrix. Observe,
also, that there exists a nonsingular matrix U such that V = UU′. Now,
suppose that AV is idempotent, in which case

A = AVV−1 = AVAVV−1 = AVA;

implying (since AVA = A′VA) that A is nonnegative definite and
hence that U′AU is nonnegative definite, so that there exists a p × r

matrix R such that U′AU = RR′. Furthermore, let L = R′U−1,
and define z = Lx. Then, observing that A = L′L and further that

LVL′ = (LL′)−1LAVAL′(LL′)−1

= (LL′)−1LAL′(LL′)−1 = I,

we find that x′Ax = z′z and z ∼ Nr(Lµ, I). Assuming that we have
defined the chi-square distribution to be the distribution of a sum of in-
dependent unit-variance normal random variables, which is perhaps the
most common definition and the one I favor, or alternatively that we have
derived the moment generating function (MGF) of such a sum—this is a
rather elementary derivation—and have defined the chi-square distribution
to be the distribution with that MGF, the proof is complete upon observing
that z′z ∼ χ2(r, γ) (noncentral chi-square with degrees of freedom r and
noncentrality parameter γ), where γ = (Lµ)′Lµ = µ′Aµ.

This proof is similar to one given by Hocking (1985, p. 28), except it
avoids use of the spectral decomposition of U′AU—the very existence
of the spectral decomposition is a deep result. It has significant advantages
over the proof given by Driscoll in that it does not require knowledge of
the general formula for the MGF of a quadratic form or of results on
the eigenvalues of idempotent matrices; and depending on how we have
defined the noncentral chi-square distribution, it avoids using the rather
deep result that identity of MGF’s implies identity of distributions.

2. Necessity. An appealing alternative to Driscoll’s proof can be ob-
tained by examining the behavior of the MGF at points away from the
origin. Define A, x, and U as in the proof of sufficiency, and observe
that there exists a matrix P with r [= rank(A)] orthonormal columns
and an r × r diagonal matrix Λ = diag(λ1, . . . , λr), with λ1 ≥ · · · ≥ λr ,
such that U′AU = PΛP′ (the spectral decomposition of U′AU).
Furthermore, let K = P′U−1, and define z = (z1, . . . , zr)′ = Kx and
ω = (ω1, . . . , ωr)′ = Kµ. Then, x′Ax = z′Λz =

∑r

i=1 λiz
2
i , and

z ∼ N(ω, I). And, letting I1 represent the interval (`, u), where ` = −∞
or ` = 1/(2λr), depending on whether λr > 0 or λr < 0, and similarly
where u = ∞ or u = 1/(2λ1), depending on whether λ1 < 0 or λ1 > 0,
the MGF, say m1(•), of the distribution of

∑r

i=1 λiz
2
i (and hence of

x′Ax) is expressible as

m1(t) =

[
r∏

i=1

(1 − 2tλi)−1/2

]

× exp

{
−(1/2)

r∑
i=1

ω2
i

[
1 − (1 − 2tλi)−1

]}
(t ∈ I1),
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as can easily be verified from first principles.
Now, suppose that x′Ax ∼ χ2(d, γ) for some d and γ. And, letting

I2 represent the interval (−∞, 1/2), recall that the MGF, say m2(•), of
χ2(d, γ) is expressible as

m2(t) = (1 − 2t)−d/2 exp{−(1/2)γ[1 − (1 − 2t)−1]} (t ∈ I2).

Setting [m2(t)]−2 = [m1(t)]−2 gives (for t ∈ I1 ∩ I2)

(1 − 2t)d exp{γ[1 − (1 − 2t)−1]}

=

[
r∏

i=1

(1 − 2tλi)

]
exp

{
r∑

i=1

ω2
i [1 − (1 − 2tλi)−1]

}
. (1)

Let c represent the number of elements in the set {λ1, . . . , λr} that
equal one. The remainder of the proof consists of using equality (1) to
show that c = r—implying (since λ1, . . . , λr are the nonzero eigenval-
ues of U′AU) that U′AU is idempotent and hence that (AV)2 =
(U′)−1(U′AU)2U′ = (U′)−1U′AUU′ = AV (i.e., AV is idem-
potent). We have that 0 < λi ≤ 1 (for i = 1, . . . , r)—since if λi < 0 for
some i, the limit (as t ↓ `) of the right side of equality (1) is 0 while that of
the left side is nonzero; and similarly if λi > 1 for some i (in which case
u < 1/2), the limit (as t ↑ u) of the right side is 0 while that of the left
side is nonzero—with the implication that I1 ∩ I2 = I2 = (−∞, 1/2).
Furthermore, d = c and γ =

∑c

i=1 ω2
i . To see this, observe that (for

t < 1/2)

(1 − 2t)d−c exp

{(
γ −

c∑
i=1

ω2
i

)
[1 − (1 − 2t)−1]

}

=

[
r∏

i=c+1

(1 − 2tλi)

]
exp

{
r∑

i=c+1

ω2
i [1 − (1 − 2tλi)−1]

}
,

(where if c = r, the right side of this equality is to be interpreted as 1) and
that if d 6= c or γ 6=

∑c

i=1 ω2
i , the limit (as t ↑ 1/2) of the left side of this

equality is 0 or infinity, while the limit of the r.h.s. is nonzero and finite.
And, upon setting d = c and γ =

∑c

i=1 ω2
i , we obtain (for t < 1/2) the

equality

1 =

[
r∏

i=c+1

(1 − 2tλi)

]
exp

{
r∑

i=c+1

ω2
i [1 − (1 − 2tλi)−1]

}
,

from which it follows that c = r—since if c < r the limit (as t ↑ 1/2) of
the right side of this equality is less than 1.

Not only is this proof relatively straightforward, it does not assume
familiarity with cumulants or with the general formula for the MGF of
the distribution of a quadratic form.

3. Laha’s lemma. In previous (coauthored) articles, Driscoll has dis-
cussed a “lemma” (on polynomials) stated (but not proved) by Laha (1956,
p. 791), and has considered its use in establishing the necessity of the nec-
essary and sufficient conditions for the independence of quadratic forms.
As he indicated in his 1999 article, this lemma can also be used to con-
siderable advantage in establishing the necessity of the conditions under
which a quadratic form has a noncentral chi-square distribution. In partic-
ular, if we make use of Laha’s lemma, we have as an almost immediate
consequence of equality (1) that

(1 − 2t)d =
r∏

i=1

(1 − 2tλi). (2)

This equality holds for all t in the nondegenerate interval I1 ∩ I2 and
hence (since both sides are polynomials) for all t. Then, upon observing
that λ1 = · · · = λr = 1 [since if λi 6= 1 for some i, the right side of
equality (2) has a root at t = 1/(2λi), while the left side does not], the
proof is essentially complete.

Should we use Laha’s lemma or not? That (in Driscoll’s words) “this
is a deep result whose proof is difficult” is a compelling reason to avoid
its use. However, a case can also be made for taking advantage of this
lemma. Harville and Kempthorne (1997) gave a proof of the one-variable
version of the lemma—which is all that is really needed in its application
to the distribution of quadratic forms—that while somewhat tedious and
not especially intuitive, is accessible even to those with no knowledge of
the theory of functions of complex variables. Moreover, if the lemma is to
be invoked in establishing results on independence (as is commonly done),

there would seem to be less reason to resist its use in establishing results
on “chisquareness.”

4. Terminology. Driscoll adheres to Johnson, Kotz, and Balakrishnan’s
(1995, p. 433) usage of the term noncentrality parameter, and seems to
regard Searle (1971, p. 49, and 1987, p. 228) as something of a maverick
in asserting that he “defined the noncentrality parameter as one-half the
noncentrality parameter used by others.” The reality is that Searle has
considerable company in his usage of this term; company that includes
Christensen (1996, p. 406), Hocking (1985, p. 22), and Myers and Milton
(1991, p. 58). Presumably, the dual usage arose and persists because which
usage is most convenient depends on the circumstances. In any case, it has
caused more confusion than can possibly be justified by any conceivable
advantage. I suggest that we settle on a single usage. I do not think it much
matters which one, but for definiteness I suggest that we follow Driscoll
and conform to Johnson, Kotz, and Balakrishnan’s usage.

David A. HARVILLE
Mathematical Sciences Department

IBM Thomas J. Watson Research Center
Yorktown Heights, NY 10598–0218
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RESPONSE

I appreciate Professor Harville’s pertinent and thorough comments. I
would agree that a given presentation of results about independence and
distribution of quadratic forms in normal variates should be based either
on Laha’s lemma or on the cumulant arguments that I have advanced (with
others), or on the approach that Professor Harville has demonstrated here.

Michael F. DRISCOLL
Department of Mathematics

Arizona State University
Tempe, AZ 85287-1804

AHMAD, I. (1996), “A CLASS OF
MANN–WHITNEY–WILCOXON TYPE STATISTICS,” THE
AMERICAN STATISTICIAN, 50, 324–327: COMMENT BY

ADAMS, ADAMS, CHANG, ETZEL, KUO, MONTEMAYOR,
AND SCHUCANY; AND REPLY

As a team project, our Spring 1997 class in nonparametric theory read
with interest the note by Ahmad (1996). We recognized that the consis-
tency class for the Mann–Whitney–Wilcoxon (MWW) test is succinctly
specified in terms of the functional

∫
F (x)dG(x). The notion of compar-

ing the maxima of subsets is an attractive one, because their distributions
are powers of the respective cdfs. Thus, it is a reasonable extension to
consider δr,s =

∫
F r(x)dGs(x). It seems to be a nice idea to investigate

the existence of tests that are more efficient than r = s = 1.
However, the article should not equate the von Mises statistic (from

plugging in the empiricals for F (x) and G(y)) with the corresponding U
statistic. These V statistics are generally not equal to the related U statis-
tics unless the degree(s) of the kernel is (are) 1 (Sen and Singer 1993, pp.
210–211. This appeared to be for ease of motivation, but not a necessary
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step in the author’s development. It is quite satisfactory and pedagogically
sound to go directly to the U statistic (2.4) as the “empirical” version.

There are some minor errors in the details in the examples. Theorem
2.1 should actually require m/(m + n) → λ. The author suppressed the
factor of λ(1 − λ) in all of the expressions for PAE(r, s) in Section 2.2.
This is inconsequential provided that the ARE comparisons are to be made
only among various values of r and s. In the normal example the familiar
3/π is the ARE relative to the Student t and not PAE(1,1) as stated.

There are some pleasant surprises in the results. In particular the MWW
is best in this large collection of tests for all of the two-sample examples
except the uniform. In the numerical example the author evidently again
“modified” the statistic to agree with the usual MWW counts, W = 48.
We were unable to confirm the value of 49.5. It was disconcerting that
the pattern of superiority of the MWW did not appear to hold true for
the logistic in the one-sample case. Indeed, the correct expression for the
derivative there is 2r/(r + 1)(r + 2). Squaring these and dividing by the
null variance, the correct PAE is not increasing in r and the first few values
are 1/3, 1/3, .3316, and .3203. Therefore, the patterns are in fact the same
for the corresponding one-sample examples.

Bryan E. ADAMS

Amber G. ADAMS

Hui-Min CHANG

Carol ETZEL

Jo-Kang KUO

Jorge MONTEMAYOR

William R. SCHUCANY

Statistical Science Department
Southern Methodist University

PO Box 750332
Dallas, TX 75275

REFERENCES

Sen and Singer (1993), Large Sample Methods in Statistics, New York:
Chapman Hall.

RESPONSE

The comments of Professor Schucany and his students center around
three points. First, yes, a U statistic and a corresponding V statistic need
not be identical. To answer their comment here, Equation (2.4) has some
missing parts. It should read

δ
(r,s)
m,n =

∫ ∞

−∞
F r

m(x)dGs
n(x) = (mrns)−1

m∑
i1=1

. . .

m∑
ir=1

n∑
j1=1

. . .

n∑
js=1

I (max (Xi1 , . . . , Xir ) < max (Yj1 , . . . , Yjs )) ,

which is asymptotically equivalent to the following U statistic

U
(r,s)
m,n =

[(
m
r

)(
n
s

)]−1∑
C

I (max (Xi1 , . . . , Xir )

< max (Yj1 , . . . , Yjs )) , (2.6)

Second, in the statement of Theorem 2.1, the ratio (m/n) should read
(m/(m + n)), this is just a misprint.

Third, they are correct in their derivation of the PAE for the logistic
distributions, but their last two numeric values should be .3 and .2667
instead of .3316 and .3203.
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