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ABSTRACT

Learning Structure in Time Series for Neuroscience
and Beyond

David Pfau

Advances in neuroscience are producing data at an astounding rate - data which are

fiendishly complex both to process and to interpret. Biological neural networks are high-

dimensional, nonlinear, noisy, heterogeneous, and in nearly every way defy the simplifying

assumptions of standard statistical methods. In this dissertation we address a number of

issues with understanding the structure of neural populations, from the abstract level of how

to uncover structure in generic time series, to the practical matter of finding relevant biolog-

ical structure in state-of-the-art experimental techniques. To learn the structure of generic

time series, we develop a new statistical model, which we dub the probabilistic deterministic

infinite automata (PDIA), which uses tools from nonparametric Bayesian inference to learn

a very general class of sequence models. We show that the models learned by the PDIA

often offer better predictive performance and faster inference than Hidden Markov Models,

while being significantly more compact than models that simply memorize contexts. For

large populations of neurons, models like the PDIA become unwieldy, and we instead inves-

tigate ways to robustly reduce the dimensionality of the data. In particular, we adapt the

generalized linear model (GLM) framework for regression to the case of matrix completion,

which we call the low-dimensional GLM. We show that subspaces and dynamics of neural

activity can be accurately recovered from model data, and with only minimal assumptions



about the structure of the dynamics can still lead to good predictive performance on real

data. Finally, to bridge the gap between recording technology and analysis, particularly

as recordings from ever-larger populations of neurons becomes the norm, automated meth-

ods for extracting activity from raw recordings become a necessity. We present a number

of methods for automatically segmenting biological units from optical imaging data, with

applications to light sheet recording of genetically encoded calcium indicator fluorescence

in the larval zebrafish, and optical electrophysiology using genetically encoded voltage in-

dicators in culture. Together, these methods are a powerful set of tools for addressing the

diverse challenges of modern neuroscience.
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Chapter 1

Introduction

The White Rabbit put on his spectacles.

“Where shall I begin, please your Majesty?” he asked.

“Begin at the beginning,” the King said gravely,

“and go on till you come to the end: then stop.”

Lewis Carroll, Alice’s Adventures in Wonderland

If one could look in to a brain with perfect electrical knowledge, one would see a

constant stream of spikes. Somehow from this pattern of spiking, the full repertoire of

perception, cognition and behavior emerges. Yet given just this stream of information,

without prior knowledge of the biological structure behind it, it is extremely difficult to

glean any understanding of the underlying computation. This thesis addresses a number

of issues in how to learn from time series data when one does not know the structure of

the process that generates it. In the introduction, we provide an overview of many of the

mathematical ideas that will be used in later sections, primarily how to quantify randomness
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and complexity in time series. We then show how we can do unsupervised learning from

generic time series using these tools, and can learn very compact models from natural data

which still predict very well. These generic methods do not scale well to large populations of

neurons, and so we instead move within the framework of generalized linear models (GLMs),

which is well suited to the particularities of neural data, and show how dimensionality

reduction techniques can be unified with the GLM framework to robustly learn subspaces

and dynamics from populations of neurons. Finally we address some of the practical issues

in experimental neuroscience today around making the dream of recording the activity of

every neuron in a living brain a reality - namely, how to segment the activity of different

neurons automatically at the scale now becoming possible in experimental neuroscience.

The title of this thesis might seem grandly ambitious: “structure” is quite a broad

term. What we mean by that will depend on the context, but a working definition might be

that to learn structure is to find the least complex model in a given class that fits the data well.

Of course, without a a definition of complexity this is an empty statement. One working

definition comes from information theory: a time series can be thought as “complex” if a

large amount of information about the past must be retained to optimally predict the future.

We use this definition and some simple consequences of it to motivate the choice of model

class considered in Chapter 2. In the context of dimensionality reduction “complexity”

is rather easier to define, as more complex data requires a higher number of dimensions

to model it. Because material on information theory and its application to neuroscience

and time series does not fit in naturally into any of the other chapters, we present a brief

review here. Relevant background material particular to the topics in later chapters will

be presented there. Following this review, the thesis is organized thusly: in Chapter 2, we

discuss a nonparametric Bayesian method for learning approximately minimal models of

stationary time series called the Probabilistic Deterministic Infinite Automata, and present
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applications to natural language and neural data with long time scale correlations. In

Chapter 3 we discuss a robust approach to integrating dimensionality reduction into the

generalized linear model (GLM) framework for modeling neural data, along with extensions

to learning dynamics and synaptic connectivity. In Chapter 4 we present methods for

automatically segmenting fluorescent recordings of spontaneous and driven activity in nearly

the whole brain of the larval zebrafish, along with dimensionality reduction analyses not

possible by other means. Finally in Chapter 5 we discuss unifying ideas and future directions.

1.1 Information Theory

The information-theoretic school of neuroscience dates back nearly to the foundation of in-

formation theory itself (Shannon and Weaver, 1949), and in the context of neural coding can

be said to start with Barlow (1961), who hypothesized that the role of sensory coding may

be to reduce the redundancy of external stimuli, defining redundancy in terms of entropy.

While a full review of the application of information theoretic methods in neuroscience is

well beyond the scope of this thesis (see Rieke (1999) for a review up to that point), we

discuss some highlights here. Seminal studies in the fly visual system (Laughlin et al., 1981)

showed that the contrast-response function of early visual neurons matched the statistics

of natural scenes, suggesting that single neurons optimally encode the full range of stimuli

they are exposed to. Foundational work on decoding in the fly visual system (Bialek et al.,

1991) estimated the entropy rate of spike trains emerging from the H1 cell under the as-

sumption of linear coding and Gaussian noise. Later work in the early mammalian visual

system (Atick and Redlich, 1990; Atick, 1992; Atick and Redlich, 1992) extended Barlow’s

redundancy reduction hypothesis to the case of noisy transmission and found that many

response properties of the early visual system are well matched to theoretical predictions.
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Most of these studies were based on analytically tractable models that assumed linear

tuning and Gaussian noise, and analyzed neural responses using standard signal processing

methods like power spectral density. Later work relaxed these assumptions and tried to

estimate information theoretic quantities in as close to a model-free manner as possible

(Strong et al., 1998). For windows of size T and time bins of size ∆t, the number of possible

neural “words” is 2T/∆t, so these methods are only reliable when recordings are long enough

that most words can be observed. This is very difficult if T/∆t > O(20).

A great deal of effort has gone into understanding and improving entropy estimation

in the undersampled limit. Classic work included lower bounds based on coincidence prob-

ability (Ma, 1981), prefix tree constructions (Grassberger, 1989) and correction methods

based on subtracting analytic calculations of the bias (Panzeri and Treves, 1995). The-

oretical results due to Paninski (2003) put a damper on hopes for fully general entropy

estimation. He gave a minimax analysis of entropy estimation and showed that standard

methods for computing confidence intervals typically underestimated the error in the esti-

mates, and that in certain cases (when the number of bins grows at the same rate as the

amount of data), there are in fact no consistent estimators. For the more tractable case of

undersampled data but fixed bin size, there are still no unbiased estimators. He introduced

the best upper bound (BUB) estimator, which is somewhat conservative but still better

behaved than the maximum likelihood estimator and simple extensions.

While the worst case for entropy estimation can be quite bad, empirical evidence

suggests that regularized estimators, including Bayesian estimators, can still work well in

practice. Nemenman et al. (2002) introduced a Bayesian estimator that places a mixture

of Dirichlet distribution prior over the space of neural words, which leads to a nearly flat

prior on the entropy of the resulting distribution. This work was extended to (potentially)

infinite neural vocabularies in Archer et al. (2012) using Dirichlet and Pitman-Yor processes
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(processes which we will use for a different application in Chapter 2), and further extended

to use base distributions that more accurately account for the statistics of neural responses

(Archer et al., 2013). Other work outside the Bayesian framework includes coverage-adjusted

estimators (Chao and Shen, 2003; Vu et al., 2007), James-Stein estimators (Hausser and

Strimmer, 2009) and the “unseen” estimator (Valiant and Valiant, 2013).

Most of this work assumed little about the structure of the underlying neural code

words, that is, if observations were binary vectors of length N , the problem of estimation

treated the different 2N possible words as undifferentiated symbols in an alphabet (though

see Archer et al. (2013)). These N binary observations could be a single neuron across

several time bins, or a population of N neurons at the same time. In the latter context,

a large amount of work has gone into incorporating more structure into models, making

the estimation of relevant quantities more tractable so long as inference in these models is

tractable. Notable examples include the pairwise maximum entropy models, inspired by the

Ising model in statistical physics (Ising, 1925), which fit the maximum entropy model that

captures the empirical pairwise correlations between neurons:

p(x1, . . . ,xn) = 1
Z
e

1
2
∑

ij
sijxixj+

∑
i
hixi (1.1)

which can be quite difficult to fit in practice, due to the intractability of computing the

partition function Z. Despite this, it has been fruitfully applied to modeling the instan-

taneous correlations between neurons in the salamander retina (Schneidman et al., 2006)

and primate retina (Shlens et al., 2006), and more efficient fitting of these models is an

active research area (Sohl-Dickstein et al., 2011). Further research on larger neural pop-

ulations showed that pairwise maximum entropy models do not accurately capture higher

order correlations, while a proposed “reliable interaction” model fits these quite well (Gan-
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mor et al., 2011). Unfortunately this reliable interaction model is not a principled statistical

model, and in fact can potentially assign infinite probability to certain (admittedly unlikely)

configurations of spikes.

Even with the introduction of some assumptions on the structure between neurons,

most of these models do little to model the dynamics of neural activity. While estimating the

joint distribution across T/∆t time steps does give us an order T/∆t− 1 Markov model for

free, as we have discussed, estimating this distribution becomes quite intractable when T/∆t

is large without imposing additional assumptions. Meanwhile maximum entropy models

usually assume a neural ensemble resembles a system in statistical equilibrium. A number of

models incorporating dynamics will be considered in the body of this thesis. Many of these

models are motivated more by computational tractability or prior biophysical knowledge

than by more universal considerations. Before diving into these models, we discuss some

relevant connections between information theory and structure in stochastic time series, and

use these ideas to motivate some of the modeling choices we make in later chapters.

In the context of time series, the typical application of information theory is to

estimating the entropy rate, which quantifies the amount of randomness in a time series.

However, this quantity says nothing about the amount of structure in a time series: a

constant time series has zero entropy rate, while a time series with iid uniform samples has

the highest possible entropy rate for a given set of symbols, yet both would be said to have

almost no “structure”. Is there a definition of structure in time series that is as universal

as the entropy rate is for defining randomness? And can this motivate useful learning

algorithms? We argue that there is, and it can. Our argument closely follows Shalizi and

Crutchfield (2001) and Bialek et al. (2001), and we use it as motivation for the choice of

model class we consider in Chapter 2.

Consider a time series X1,X2, . . . ,Xt, . . ., where Xt is a random variable from some
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set Σ, and let Xt1:t2 be shorthand for the sequence {Xt1 ,Xt1+1, . . . ,Xt2}. As usual, here

capital letters denote random variables and lowercase letters denote observations of those

random variables. We will restrict our attention to stationary time series, that is those with

the property that the probability of observing any particular sequence is invariant with

respect to time shifts1. Formally, for all subsets of times {t1, . . . , tn} and shift k:

Pr[Xt1 = x1, . . . ,Xtn = xn] = Pr[Xt1+k = x1, . . . ,Xtn+k = xn] (1.2)

Then the entropy rate is given by:

h[Xt] = lim
T→∞

1
T
H[X1:T ] (1.3)

= lim
T→∞

H[XT |X1:T−1] (1.4)

= lim
T→∞

1
T

logp(x1:T ) (1.5)

where the three definitions are equivalent for stationary time series (Cover and Thomas,

1991). While this naturally quantifies the amount of randomness per unit time in the time

series, the amount of structure is far harder to pin down. One way of defining structure

might be that it is that part of a time series whose knowledge can help predict other parts.

To make this precise, consider the mutual information between past and future sections of

a time series, called the predictive information (Bialek et al., 2001):
1Of course in practice most data is not stationary. Spike trains, in particular, can change their properties

quite dramatically over time. Indeed, for learning to be possible it’s absolutely necessary that their response
properties adapt with experience. There are two ways that this can be dealt with: either by training models
on smaller chunks of data that are approximately stationary, or by treating the data as stationary but with
extremely long correlation lengths. The latter is is the approach we take in Chapter 2 when learning from
long experiments on cultured neurons.
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Ipred(T, T ′) = I[X1:T ; X−T ′:0] (1.6)

Since mutual information is a difference of entropies, and the time series is stationary, this

can equivalently be written as Ipred(T, T ′) = HT+T ′−HT −HT ′ where HT is the entropy of a

length T block. Taking the limit as either T or T ′ goes to infinity, it is easy to show that the

predictive information converges to the sub-extensive component of the block entropy. This

is intuitively appealing, as it means that the block entropy of a stationary time series can be

decomposed into a “random” component that grows linearly and a “structured” component

that grows sublinearly. Of course, as discussed above, estimating block entropies from data

is extremely challenging, so quantifying predictive information is rarely done in practice.

To account for all of the structure in a time series, ideally we would work with the

predictive information between an infinite future and infinite past: I[X−∞:0; X1:∞]2. It

would make analysis much simpler if we could replace the full history with a summary

statistic. In particular, as noted by Shalizi and Crutchfield (2001), stationary sequences

admit a simple description in terms of minimal sufficient statistics of the past for predicting

the future. Consider an arbitrary mapping T (X−∞:0) of histories into some space. By the

data processing inequality, the mutual information between this statistic and the future is

less than or equal to the predictive information:

I[T (X−∞:0); X1:∞] ≤ I[X−∞:0; X1:∞] (1.7)

Those mappings T ∗ for which Eq. 1.7 is an equality are by definition sufficient statistics

of X−∞:0. Just because a statistic is sufficient does not mean it is useful: the identity is
2As noted in Bialek et al. (2001), for many interesting processes this predictive information is actually

infinite. Since we will always be interested in structures that can be derived from finite amounts of infor-
mation, this will not be a practical issue, and we present things here in the infinite history limit for the sake
of generality.
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trivially a sufficient statistic but does not help model the data at all. What we really want

are the minimal sufficient statistics of the past for predicting the future. That is, we want

some function S such that I[S(X−∞:0); X1:∞] = I[X−∞:0; X1:∞] and if T ∗ is also a sufficient

statistic then there exists a function fT ∗→S such that fT ∗→S ◦ T ∗ = S. In Shalizi and

Crutchfield (2001) they refer to these minimal sufficient statistics of the past for predicting

the future as “causal states” of the system. While we make no claim as to whether these

states really say anything about causality, we will adopt that terminology as it is less of a

mouthful than “minimal sufficient statistics of the past for predicting the future”.

It turns out that describing a stationary process in terms of its causal states leads

to a natural representation of its generative model. Suppose we have two histories x−∞:0

and x′−∞:0 that are mapped to the same causal state: S(x−∞:0) = S(x′−∞:0), and consider

one possible future x1:∞. Given the two histories map to the same state, they must give

equal probability to this future sequence: p(x1:∞|x−∞:0) = p(x1:∞|x′−∞:0), otherwise S would

not be a sufficient statistic. Dividing by p(x1|x−∞:0) and p(x1|x′−∞:0), it is clear that the

conditional probabilities one step into the future must be equal as well: p(x2:∞|x−∞:0,x1) =

p(x2:∞|x′−∞:0,x1), which means S(x−∞:0,x1) = S(x′−∞:0,x1), or S would not be minimal.

Therefore, to fully describe the generative process for this sequence we need two things:

the conditional probability of a symbol given a causal state π(x|S), and a deterministic

transition function δ(x, S) = S ′ that describes how one state transitions to the next given a

single observed symbol. If the space of causal states is finite, this is a kind of probabilistic

model known as a probabilistic deterministic finite automaton (PDFA) (Rabin, 1963). A

PDFA where the states correspond to causal states is referred to as a causal state machine,

or sometimes an ε-machine3.
3One more technical distinction between causal state machines and general PDFAs is that causal state

machines, like other state space models, generally lack a terminating state, because they are meant to model
sequences that can go on for an arbitrary length of time.
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PDFA are just one kind of model within the very general class of state space models,

however they have a number of attractive features that lead us to consider them here. One

is that there is only a single possible state sequence that can generate a given observation.

In fact, one way of defining PDFAs is as the set of Hidden Markov Models for which the

posterior distribution over states always concentrates on a single state sequence. This makes

forward inference very fast. It also makes it possible to compute a convenient upper bound

on the predictive information. As entropy is an upper bound on mutual information, and

sufficient statistics preserve mutual information, it’s clear that the entropy of the random

variable S , S(X−∞:0) is an upper bound on the predictive information. If S were not

a sufficient statistic, as is the case with general state space models, there would be no

particular relationship between H[S] and the predictive information, and if S were any

other sufficient statistic, the bound would be less tight than for a minimal sufficient statistic.

Finally, it may be the case for certain kinds of data that PDFA are more learnable, in a

practical sense, than other state space models. We will see examples in Chapter 2, notably

on natural language data, where learning PDFAs leads to superior predictive models than

standard methods for training Hidden Markov Models.

1.2 Nonparametric Bayes

In Chapter 2, we employ the toolkit of nonparametric Bayesian inference to learn generic

PDFAs. We provide a brief review here of some of the central concepts in nonparametric

Bayesian inference. Bayesian nonparametrics is particularly appropriate for problems where

the space over which inference is being performed is countable but infinite, for instance

clustering models with an infinite number of latent clusters, or topic models with an infinite

number of latent topics. Since the number of states in a PDFA that generates data is not
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known a priori, a nonparametric prior is important. A central object of study in Bayesian

nonparametrics is the Dirichlet process, which can be seen as an extension of the Dirichlet

distribution to infinite and even uncountable base spaces. The basic Dirichlet distribution is

a distribution over discrete distributions with K categories, defined by a vector (α1, . . . , αK),

αk ≥ 0 of parameters that specifies how concentrated draws from that Dirichlet distribution

are around that particular category. Thus if ~π is a multinomial distribution ~π = (π1, . . . , πK),∑K
k=1 πk = 1, the probability of drawing ~π from a Dirichlet distribution with parameters

~α = (α1, . . . , αK) is:

p(~π|~α) = Γ(∑K
k=1 αk)∏K

k=1 Γ(αk)

K∏
k=1

πα−1
k (1.8)

We can split up the parameter vector ~α into a scalar α = ∑K
k=1 αk and a normalized vector

H = (α1/α, . . . , αK/α). H is a base distribution that gives the mean sample from a Dirichlet

distribution with these parameters, while α is a concentration parameter that controls how

close samples are to H.

A Dirichlet process is also a distribution over distributions, parameterized by a con-

centration α and base distribution H. Dirichlet processes generalize Dirichlet distributions

such that the base distribution H can be any probability distribution over any measurable

space, not just multinomial distributions. Formally, let H be a distribution over a base space

Θ, for instance a Gaussian on the real line, let G ∼ DP (α,H) be a sample from a Dirichlet

process with concentration α and base distribution H (and therefore G is a distribution over

Θ), and let (Θ1,Θ2, . . . ,ΘK) be a finite partition of Θ: Θi∩Θj = ∅ ∀i 6= j, ⋃Kk=1 Θk = Θ. A

multinomial distribution can be constructed from any distribution on Θ by adding up the

total probability mass inside one bin of the partition Θk, for instance (G(Θ1), . . . ,G(ΘK)) is

a multinomial distribution. We call this the restriction of G to the partition. A distribution
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over distributions DP (α,H) is a Dirichlet process if, for all finite partitions of Θ, samples

from DP (α,H) restricted to that partition are Dirichlet-distributed with concentration α

and base distribution given by the restriction of H to that partition.

While mathematically precise, this definition is rather abstract and hard to work with

constructively. There is an alternative, algorithmic way of describing a Dirichlet process

known as the stick-breaking construction. In this construction, a draw G ∼ DP (α,H) is

built up from a countable number of atoms:

G =
∞∑
k=1

πkδ(θk) (1.9)

It’s always true that a draw from a Dirichlet process has this form of an infinite sum of delta

functions. The stick breaking process gives a way of constructing the stick lengths πk that

define how much probability is assigned to any point, and stick locations θk ∈ Θ. We start

with a “stick” of length one, and break off a section π1 ∼ Beta(1, α). The remaining stick

clearly has length (1− π1). We repeat this iteratively, sampling a fraction π′k ∼ Beta(1, α)

of the stick to break off, then assigning πk = π′k
∏k−1
i=1 (1 − π′i). This gives us a countable

number of stick lengths that clearly sum to one. The locations of the sticks θk are simply

sampled iid from the base distribution H. This construction is useful if, for instance, one

wishes to generate samples from G without representing the entire distribution, as the stick

never needs to be broken to completion, but only up to some appropriate length.

There is one more construction relevant to Dirichlet processes that is particularly

useful for inference, called the Chinese Restaurant Process. This deals directly with samples

from G while integrating out G itself. It is most clearly constructed by starting in the limit

of finite base space Θ, in which case we reduce back to the case of Dirichlet distributions.

Suppose one has samples x1, . . . , xN from some multinomial distribution ~π, which is itself



13

sampled from a Dirichlet distribution Dir(α,H). Then, integrating out ~π, the conditional

probability of the next observation given the observations that came before it is given by

p(xN+1 = k|x1, . . . , xN , α,H) =
∫
d~πp(xN+1 = k|~π)p(~π|x1, . . . , xN , α,H)

= nk + αk
N + α

(1.10)

If we take all αk to be uniform, so H = (α/K, . . . , α/K), then in the limit as K → ∞,

keeping N and α fixed, p(xN+1 = k|x1, . . . , xN , α,H)→ nk/(N +α) if nk 6= 0. If nk = 0 the

probability vanishes for any particular k, however the total probability that xN+1 is some k

with zero observations does not vanish! Instead, it converges to α/(N +α). This process is

known as the Chinese Restaurant Process with concentration α, or CRP (α), and defines a

distribution over possible ways of partitioning the set {x1, . . . , xN}.

The Chinese Restaurant Process can be arrived at through Dirichlet Processes by

the following construction. Suppose our observations x1, . . . , xN are sampled from G ∼

DP (α,H). From Eqn. 1.9, it is clear that the values of x1, . . . , xN will cluster together at

the position of the sticks θk, and that the next observation xN+1 may be from some stick

that has not yet been sampled, but as N grows it becomes more likely that it will correspond

to some θk already observed in the data. If we marginalize out G, then the distribution over

partitions of the data is exactly given by CRP (α), while the value of the data in a particular

position is sampled iid from H. Thus the Chinese Restaurant Process allows us to work

with samples from G without having to represent G, at the cost of introducing dependence

between the data, which were iid conditioned on G.

One last construction should be mentioned to give adequate background for the ma-

terial in Chapter 2. Generative models can easily be made hierarchical, by using a sample
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from one level as the parameters for another level. Dirichlet processes are no exception, and

the Hierarchical Dirichlet Process (HDP) has become an extremely useful tool in nonpara-

metric Bayesian modeling in the last decade. The generative model is very easy to describe

- data are assumed to come from different contexts which we index by j, and the data in

each context are assumed to be sampled from Gj, which are samples from the same Dirichlet

process. What makes it a Hierarchical Dirichlet process is that the base distribution for

this Dirichlet process is itself a sample G from a Dirichlet process. What this means is that

there is a sharing of sticks between the different contexts - all Gj will have the same set of

stick locations θkj but a different set of stick lengths. This creates a sharing of statistical

strength between different contexts - in effect it says the data should be somewhat similar

between contexts, but far more similar within contexts. Inference with HDPs can require

very involved bookkeeping, which we will not go into here, but direct the curious reader to

Teh et al. (2006a). There is even a Chinese Restaurant Process equivalent for HDPs that

integrates out both levels of draws from an HDP, called the Chinese Restaurant Franchise,

which is the representation we use for inference in the PDIA model in Chapter 2.

1.3 Dimensionality Reduction

Dimensionality reduction is a vast field - arguably any kind of data processing that outputs

fewer parameters than the dimensionality of the input is a kind of dimensionality reduc-

tion. Even nonparametric models can be viewed as a kind of dimensionality reduction if the

model is properly regularized so that in practice the number of parameters inferred is small.

That is not to say that all useful models do dimensionality reduction - kernel methods, for

instance, work by projecting data into a high-dimensional feature space, at least implicitly

- but whenever data is very high dimensional, it is usually necessary to reduce the com-
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plexity somehow to apply any useful analysis. There are a number of different perspectives

from which common dimensionality reduction techniques can be derived. Here we will use

Principal Component Analysis (PCA) as a starting point to show how the dimensionality

reduction techniques used in this thesis can be derived from a single starting point.

Principal Component Analysis is the grandmother of dimensionality reduction. PCA

finds the orthogonal basis for a given dataset X ∈ RN×T that maximizes the variance of the

data projected onto that basis. This has a number of mathematical properties that makes

it appealing and easy to work with. Despite being a nonconvex problem:

max
U∈RN×k stUTU=I

||UTX||2F (1.11)

PCA admits an exact solution - one of the few nonconvex problems for which this is possible

(Eckart and Young, 1936). Moreover it can be computed using standard linear algebra

methods - the top k principal vectors of the dataset X is given by the top k eigenvectors

of the covariance matrix XXT/N , while the corresponding eigenvalues give the amount

of variance explained by that particular principal component. The principal vectors can

also be computed along with the projection of the data onto those principal components

without having to first compute the covariance by taking the singular value decomposition

(SVD) of the data. This is a consequence of the close connection between the singular value

decomposition of X and eigenvector decomposition of XXT : the left singular vectors of

the former are the eigenvectors of the latter, and the singular values of the former are the

square-root of the eigenvalues of the latter.

There are a number of alternative interpretations of PCA that illustrate the close

connection between different perspectives on dimensionality reduction. One way of gener-

alizing PCA is from the point of view of low-rank matrix approximation. If U , Σ and V



16

give the SVD of X such that UΣV T = X, then the truncated SVD Xk = UkΣkV
T
k that only

keeps the top k singular vectors is the solution to the optimization problem

min
Xk st rank(Xk)=k

||Xk −X||2F (1.12)

That is, for the Frobenius norm, reconstructing the data from the top k principal compo-

nents is equivalent to finding the minimum error rank-k approximation to the data matrix.

Optimizing over rank-k matrices or minimizing the rank of a matrix under other constraints

is generally a hard non-convex problem, but can be solved exactly for the Frobenius norm,

as well as a larger class called unitarily invariant norms (Yu and Schuurmans, 2012). For

more general optimization problems with low-rank matrices, approximations must be made.

There are other problems in matrix analysis that surprisingly admit exact solutions.

For the case of matrix completion, where only m entries from X are observed, then if X

actually is rank k then X can be recovered exactly with high probability if m ≥ Cn1.2klogn,

n = max(N, T ) for some value of C (Candès and Recht, 2009). Algorithmically, this is

achieved by finding the full matrix with entries matching the observed entries of X that

minimizes the sum of singular values or nuclear norm.

min
X̂ st Ω(X̂)=Ω(X)

||X̂||∗ (1.13)

where Ω(X) projects X onto the m observed values. This is a convex heuristic that plays

precisely the same role for matrix completion that the `1 norm does for compressed sensing.

Other applications to dimensionality reduction are possible with the nuclear norm: if we

have full observation of a matrix X that is the sum of a rank-k component L and sparse

noise S, then in certain limits we can exactly separate the two by solving a similar convex

problem:
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min
L
||L||∗ + λ||X − L||1 (1.14)

which trades off between the dimensionality of L and the sparsity of the residual. Even

if these exact conditions are not satisfied, nuclear norm minimization makes it possible to

approximately solve dimensionality reduction problems that would not be possible exactly.

Another perspective on PCA is as maximum likelihood inference in a probabilistic

model (Tipping and Bishop, 1999). In this view, each datum xt ∈ RN is assumed to be

generated from a linear Gaussian model:

xt = Wzt + µ+ εt (1.15)

zt ∼ N (0, Ik) (1.16)

εt ∼ N (0, σ2IN) (1.17)

Here the low-dimensional latent factors zt that generated the data are latent variables, and

the maximum likelihood solution for W spans exactly the same subspace as the top k prin-

cipal components. The advantage of this perspective is that the full toolkit of probabilistic

inference can be brought to bear in the case of missing data, or generalizations and exten-

sions to more complex models. While the matrix factorization community has generalized

PCA in a few ways that still lead to theoretical guarantees of performance, the probabilistic

point of view makes it possible to extend PCA to an almost endless variety of compositional

models with a small number of latent variables, so long as one is willing to accept that

inference will usually be approximate and possibly prone to local minima.

Finally, PCA can be viewed as finding a projection that not just maximizes the
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variance but the mutual information between data in the original high-dimensional space

and the low dimensional space. This is similar to the probabilistic point of view in that

we are assuming a linear Gaussian model behind the data. In this case the data and

projection into lower-dimensional space are jointly Gaussian and the mutual information

has a closed form, which can easily be shown to be maximized when the projection spans

the same space as the top eigenvectors of the covariance. As discussed, nonparametric

estimation of entropy and mutual information is a hard problem, and so this perspective

has not lead to as many developments in the dimensionality reduction field, but it does

provide an illuminating general perspective on dimensionality reduction techniques that

find a parametric projection. The full scope of dimensionality reduction extends far beyond

the techniques discussed here, and relevant methods are introduced throughout the text

where appropriate.
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Chapter 2

Probabilistic Deterministic Infinite Automata1

I once would have inquir’d cooly, what an Automaton might know

of Life, but now I only sat silent...

Thomas Pynchon, Mason & Dixon

We propose a novel Bayesian nonparametric approach to learning with probabilistic

deterministic finite automata (PDFA). We define and develop a sampler for a PDFA with

an infinite number of states which we call the probabilistic deterministic infinite automata

(PDIA). Posterior predictive inference in this model, given a finite training sequence, can

be interpreted as averaging over multiple PDFAs of varying structure, where each PDFA is

biased towards having few states. We suggest that our method for averaging over PDFAs

is a novel approach to predictive distribution smoothing. We test PDIA inference both on

PDFA structure learning and on both natural language and DNA data prediction tasks.

When applied to neural data, the PDIA is able to reproduce long-time scale correlations
1This work has, in part, been published (Pfau, Bartlett and Wood. Advances in Neural Information

Processing Systems,2010)
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better than a generalized linear model. The results suggest that the PDIA presents an

attractive compromise between the computational cost of hidden Markov models and the

storage requirements of hierarchically smoothed Markov models, particularly for data with

long-range temporal correlations.

2.1 Introduction

The focus of this chapter is a novel Bayesian framework for learning with probabilistic

deterministic finite automata (PDFA) (Rabin, 1963). A PDFA is a generative model for

sequential data (PDFAs are reviewed in Section 2.2). Intuitively a PDFA is similar to a

hidden Markov model (HMM) (Rabiner, 1989) in that it consists of a set of states, each

of which when visited emits a symbol according to an emission probability distribution. It

differs from an HMM in how state-to-state transitions occur; transitions are deterministic

in a PDFA and nondeterministic in an HMM.

In our framework for learning with PDFAs we specify a prior over the parameters

of a single large PDFA that encourages state reuse. The inductive bias introduced by the

PDFA prior provides a soft constraint on the number of states used to generate the data.

We take the limit as the number of states becomes infinite, yielding a model we call the

probabilistic deterministic infinite automata (PDIA).

Given a finite training sequence, the PDIA posterior distribution is an infinite mixture

of PDFAs. Samples from this distribution form a finite sample approximation to this infinite

mixture, and can be drawn via Markov chain Monte Carlo (MCMC) (Gelman et al., 1995).

Using such a mixture we can average over our uncertainty about the model parameters

(including state cardinality) in a Bayesian way during prediction and other inference tasks.

We find that averaging over a finite number of PDFAs trained on naturalistic data leads to
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better predictive performance than using a single “best” PDFA.

We chose to investigate learning with PDFAs because they are intermediate in expres-

sive power between HMMs and finite-order Markov models, and thus strike a good balance

between generalization performance and computational efficiency. A single PDFA is known

to have relatively limited expressivity. We show in 2.5 that a finite mixture of PDFAs has

greater expressivity than that of a single PDFA but is not as expressive as a probabilistic

nondeterministic finite automata (PNFA)2 . A PDIA is clearly highly expressive; an infinite

mixture over the same is even more so. Even though ours is a Bayesian approach to PDIA

learning, in practice we only ever deal with a finite approximation to the full posterior and

thus limit our discussion to finite mixtures of PDFAs.

While model expressivity is a concern, computational considerations often dominate

model choice. We show that prediction in a trained mixture of PDFAs can have lower asymp-

totic cost than forward prediction in the PNFA/HMM class of models. We also present ev-

idence that averaging over PDFAs gives predictive performance superior to HMMs trained

with standard methods on naturalistic data. We find that PDIA predictive performance

is competitive with that of fixed-order, smoothed Markov models with the same number

of states. While sequence learning approaches such as the HMM and smoothed Markov

models are well known and now highly optimized, our PDIA approach to learning is novel

and is amenable to future improvement.

Section 2.2 reviews PDFAs, Section 2.3 introduces Bayesian PDFA inference, Section

2.5 discusses related work on PDFA induction and the theoretical expressive power of mix-

tures of PDFAs, and Section 2.6 presents experimental results on DNA, natural language

and neural recordings. In Section 2.7 we discuss ways in which PDIA predictive performance

might be improved in future research.
2PNFAs with no final probability are equivalent to hidden Markov models (Dupont et al., 2005)
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2.2 Probabilistic Deterministic Finite Automata

A PDFA is formally defined as a 5-tuple M = (Q,Σ, δ, π, q0), where Q is a finite set of states,

Σ is a finite alphabet of observable symbols, δ : Q×Σ→ Q is the transition function from

a state/symbol pair to the next state, π : Q × Σ → [0, 1] is the probability of the next

symbol given a state and q0 is the initial state.3 Throughout this chapter we will use i to

index elements of Q, j to index elements of Σ, and t to index elements of an observed string.

For example, δij is shorthand for δ(qi, σj), where qi ∈ Q and σj ∈ Σ.

Given a state qi, the probability that the next symbol takes the value σj is given by

π(qi, σj). We use the shorthand πqi for the state-specific discrete distribution over symbols

for state qi. We can also write σ|qi ∼ πqi where σ is a random variable that takes values in Σ.

Given a state qi and a symbol σj, however, the next state qi′ is deterministic: qi′ = δ(qi, σj).

Generating from a PDFA involves first generating a symbol stochastically given the state

the process is in: xt|ξt ∼ πξt where ξt ∈ Q is the state at time t. Next, given ξt and xt

transitioning deterministically to the next state: ξt+1 = δ(ξt, xt). This is the reason for the

confusing “probabilistic deterministic” name for these models. Turning this around, given

data, q0, and δ, there is no uncertainty about the path through the states. This is a primary

source of computational savings relative to HMMs.

PDFAs are more general than nth-order Markov models (i.e. m-gram models, m =

n + 1), but less expressive than hidden Markov models (HMMs)(Dupont et al., 2005). For

the case of nth-order Markov models, we can construct a PDFA with one state per suffix

x1x2 . . . xn. Given a state and a symbol xn+1, the unique next state is the one corresponding

to the suffix x2 . . . xn+1. Thus nth-order Markov models are a subclass of PDFAs with

O(|Σ|n) states. For an HMM, given data and an initial distribution over states, there is a
3In general q0 may be replaced by a distribution over initial states.
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posterior probability for every path through the state space. PDFAs are those HMMs for

which, given a unique start state, the posterior probability over paths is degenerate at a

single path. As we explain in Section 2.5, mixtures of PDFAs are strictly more expressive

than single PDFAs, but still less expressive than PNFAs.

2.3 Bayesian PDFA Inference

We start our description of Bayesian PDFA inference by defining a prior distribution over

the parameters of a finite PDFA. We then show how to analytically marginalize nuisance

parameters out of the model and derive a Metropolis-Hastings sampler for posterior inference

using the resulting collapsed representation. We discuss the limit of our model as the number

of states in the PDFA goes to infinity. We call this limit the probabilistic deterministic

infinite automaton (PDIA). We develop a PDIA sampler that carries over from the finite

case in a natural way.

2.3.1 A PDFA Prior

We assume that the set of states Q, set of symbols Σ, and initial state q0 of a PDFA are

known but that the transition and emission functions are unknown. The PDFA prior then

consists of a prior over both the transition function δ and the emission probability function π.

In the finite case δ and π are representable as finite matrices, with one column per element of

Σ and one row per element of Q. For each column j (j co-indexes columns and set elements)

of the transition matrix δ, our prior stipulates that the elements of that column are i.i.d.

draws from a discrete distribution φj over Q, that is, δij ∼ [φ1, . . . ,φ|Σ|], 0 ≤ i ≤ |Q| − 1.

The φj represent transition tendencies given a symbol, if the ith element of φj is large

then state qi is likely to be transitioned to anytime the last symbol was σj. The φj’s are
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themselves given a shared Dirichlet prior with parameters αµ, where α is a concentration

and µ is a template transition probability vector. If the ith element of µ is large then

the ith state is likely to be transitioned to regardless of the emitted symbol. We place a

uniform Dirichlet prior on µ itself, with γ total mass and average over µ during inference.

This hierarchical Dirichlet construction encourages both general and context specific state

reuse. We also place a uniform Dirichlet prior over the per-state emission probabilities πqi

with β total mass which smooths emission distribution estimates. Formally:

µ|γ, |Q| ∼ Dir (γ/|Q|, . . . , γ/|Q|) (2.1)

φj|α,µ ∼ Dir(αµ) (2.2)

πqi |β, |Σ| ∼ Dir(β/|Σ|, . . . , β/|Σ|)

δij ∼ φj

where 0 ≤ i ≤ |Q| − 1 and 1 ≤ j ≤ |Σ|. Given a sample from this model we can run the

PDFA to generate a sequence of T symbols. Using ξt to denote the state of the PDFA at

position t in the sequence:

ξ0 = q0, x0 ∼ πq0 , ξt = δ(ξt−1, xt−1), xt ∼ πξt

We choose this particular inductive bias, with transitions tied together within a column of

δ, because we wanted the most recent symbol emission to be informative about what the

next state is. If we instead had a single Dirichlet prior over all elements of δ, transitions to

a few states would be highly likely no matter the context and those states would dominate

the behavior of the automata. If we tied together rows of δ instead of columns, being in

a particular state would tell us more about the sequence of states we came from than the
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symbols that got us there.

Note that this prior stipulates a fully connected PDFA in which all states may tran-

sition to all others and all symbols may be emitted from each state. This is slightly different

that the canonical finite state machine literature where sparse connectivity is usually the

norm.

2.3.2 PDFA Inference

Given observational data, we are interested in learning a posterior distribution over PDFAs.

We do this by Gibbs sampling the transition matrix δ with π and φj integrated out. To

start inference we need the likelihood function for a fixed PDFA; it is given by

p(x0:T |π, δ) = π(ξ0, x0)
T∏
t=1

π(ξt, xt).

Remember that ξt|ξt−1, xt−1 is deterministic given the transition function δ. We can marginal-

ize π out of this expression and express the likelihood of the data in a form that depends

only on the counts of symbols emitted from each state. Define the count matrix c for the

sequence x0:T and transition matrix δ as cij = ∑T
t=0 Iij(ξt, xt), where Iij(ξt, xt) is an indicator

function for the automaton being in state qi when it generates xt, i.e. ξt = qi and xt = σj.

This matrix c = [cij] gives the number of times each symbol is emitted from each state. Due

to multinomial-Dirichlet conjugacy we can express the probability of a sequence given the

transition function δ, the count matrix c and β:

p(x0:T |δ, c, β) =
∫
p(x0:T |π, δ)p(π|β)dπ =

|Q|−1∏
i=0

Γ(β)
Γ( β
|Σ|)|Σ|

∏|Σ|
j=1 Γ( β

|Σ| + cij)

Γ(β +∑|Σ|
j=1 cij)

(2.3)
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If the transition matrix δ is observed we have a closed-form expression for its likelihood given

µ with all φj’s marginalized out. Let vij be the number of times state qi is transitioned to

given that σj was the last symbol emitted, i.e. vij is the number of times δi′j = qi for all

states i′ in the column j. The marginal likelihood of δ in terms of µ is then:

p(δ|µ, α) =
∫
p(δ|φ)p(φ|µ, α)dφ =

|Σ|∏
j=1

Γ(α)∏|Q|−1
i=0 Γ(αµi)

∏|Q|−1
i=0 Γ(αµi + vij)

Γ(α + |Q|) (2.4)

We perform posterior inference in the finite model by sampling elements of δ and the vector

µ. One can sample δij given the rest of the matrix δ−ij using

p(δij|δ−ij, x0:T ,µ, α) ∝ p(x0:T |δij, δ−ij)p(δij|δ−ij,µ, α) (2.5)

Both terms on the right hand side of this equation have closed-form expressions, the first

given in (2.3). The second can be found from (2.4) and is

P (δij = qi′|δ−ij, α,µ) = αµi′ + vi′j
α + |Q| − 1 (2.6)

where vi′j is the number of elements in column j equal to qi′ excluding δij. As |Q| is finite,

we compute (2.5) for all values of δij and normalize to produce the required conditional

probability distribution.

Note that in (2.3), the count matrix c may be profoundly impacted by changing even

a single element of δ. The values in c depend on the specific sequence of states the automata

used to generate x. Changing the value of a single element of δ affects the state trajectory

the PDFA must follow to generate x0:T . Among other things this means that some elements

of c that were nonzero may become zero, and vice versa.

We can reduce the computational cost of inference by deleting transitions δij for which
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the corresponding counts cij become 0. In practical sampler implementations this means

that one need not even represent transitions corresponding to zero counts. The likelihood

of the data (2.3) does not depend on the value of δij if symbol σj is never emitted while

the machine is in state qi. In this case sampling from (2.5) is the same as sampling without

conditioning on the data at all. Thus, if while sampling we change some transition that

renders cij = 0 for some values for each of i and j, we can delete δij until another transition is

changed such that cij becomes nonzero again, when we sample δij anew. Under the marginal

joint distribution of a column of δ the row entries in that column are exchangeable, and so

deleting an entry of δ has the same effect as marginalizing it out. When all δij for some

state qi are marginalized out, we can say the state itself is marginalized out. When we

delete an element from a column of δ, we replace the |Q| − 1 in the denominator of (2.6)

with D+
j = ∑|Q|−1

i=0 I(vij 6= 0), the number of entries in the jth column of δ that are not

marginalized out yielding

P (δij = qi′ |δ−ij, α,µ) = αµi′ + vi′j
α +D+

j

. (2.7)

If when sampling δij it is assigned it a state qi′ such that some ci′j′ which was zero is now

nonzero, we simply reinstantiate δi′j′ by drawing from (2.7) and update D+
j′ . When sampling

a single δij there can be many such transitions as the path through the machine dictated by

x0:T may use many transitions in δ that were deleted. In this case we update incrementally,

increasing D+
j and vij as we go.

While it is possible to construct a Gibbs sampler using (2.5) in this collapsed repre-

sentation, such a sampler requires a Monte Carlo integration over a potentially large subset

of the marginalized-out transitions in δ, which may be costly. A simpler strategy is to pre-

tend that all entries of δ exist but are sampled in a “just-in-time” manner. This gives rise to
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a Metropolis Hastings (MH) sampler for δ where the proposed value for δij is either one of

the instantiated states or any one of the equivalent marginalized out states. Any time any

marginalized out element of δ is required we can pretend as if we had just sampled its value,

and we know that because its value had no effect on the likelihood of the data, we know

that it would have been sampled directly from (2.7). It is in this sense that all marginalized

out states are equivalent – we known nothing more about their connectivity structure than

that given by the prior in (2.7).

For the MH sampler, denote the set of non-marginalized out δ entries δ+ = {δij : cij >

0}. We propose a new value qi∗ for one δij ∈ δ+ according to (2.7). The conditional posterior

probability of this proposal is proportional to p(x0:T |δij = qi∗ , δ
+
−ij)P (δij = qi∗|δ+

−ij). The

Hastings correction exactly cancels out the proposal probability in the accept/reject ratio

leaving an MH accept probability for the δij being set to qi∗ given that its previous value

was qi′ of

α(δij = qi∗|δij = qi′) = min
(

1,
p(x0:T |δij = qi∗ , δ

+
−ij)

p(x0:T |δij = qi′ , δ
+
−ij)

)
. (2.8)

Whether qi∗ is marginalized out or not, evaluating p(x0:T |δij = qi∗ , δ
+
−ij) may require rein-

stantiating marginalized out elements of δ. As before, these values are sampled from (2.7)

on a just-in-time schedule. If the new value is accepted, all δij ∈ δ+ for which cij = 0 are

removed, and then move to the next transition in δ to sample.

In the finite case, one can sample µ by Metropolis-Hastings or use a MAP estimate as

in (MacKay and Peto, 1995). Hyperparameters α, β and γ can be sampled via Metropolis-

Hastings updates. In our experiments we use Gamma(1,1) hyperpriors.
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2.3.3 The Probabilistic Deterministic Infinite Automaton

We would like to avoid placing a strict upper bound on the number of states so that model

complexity can grow with the amount of training data. To see how to do this, consider

what happens when |Q| → ∞. In this case, the right hand side of equations (2.1) and (2.2)

must be replaced by infinite dimensional alternatives

µ ∼ PY(γ, d0, H)

φj ∼ PY(α, d,µ)

δij ∼ φj

where PY stands for Pitman Yor process and H in our case is a geometric distribution over

the integers with parameter λ. The resulting hierarchical model becomes the hierarchical

Pitman-Yor process (HPYP) over a discrete alphabet (Teh, 2006). The discount parameters

d0 and d are particular to the infinite case, and when both are zero the HPYP becomes the

well known hierarchical Dirichlet process (HDP), which is the infinite dimensional limit of

(2.1) and (2.2) (Teh et al., 2006b). Given a finite amount of data, there can only be nonzero

counts for a finite number of state/symbol pairs, so our marginalization procedure from

the finite case will yield a δ with at most T elements. Denote these non-marginalized out

entries by δ+. We can sample the elements of δ+ as before using (2.8) provided that we can

propose from the HPYP. In many HPYP sampler representations this is easy to do. We use

the Chinese restaurant franchise representation (Teh et al., 2006b) in which the posterior

predictive distribution of δij given δ+
−ij can be expressed with φj and µ integrated out as

P (δij = qi′|δ+
−ij, α, γ) = E

[
vi′j − ki′jd
α +D+

j

+ α + k·jd

α +D+
j

(
wi′ − κi′d0

γ + w·
+ γ + κ·d0

γ + w·
H(qi′)

)]
(2.9)
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where wi′ , ki′j, κi′ , w· = ∑
iwi, k·j = ∑

i kij, and κ· = ∑
i κi are stochastic bookkeeping

counts required by the Chinese Restaurant franchise sampler. These counts must themselves

be sampled (Teh et al., 2006b). The discount hyperparameters can also be sampled by

Metropolis-Hastings.

2.4 Posterior Inference over PDFAs

We perform posterior inference by sampling assignments for δij individually. Rather than

ordinary Gibbs sampling, we use a mixed Gibbs/Metropolis-Hastings update. To see why,

consider the following case: δij is the only sampled element of δ that is assigned to the state

qi′ . When we removed δij from the counts to sample it, the probability of assigning it back

to qi′ becomes zero, and even if it is assigned to some new state qi′′ , the probability that

δi′j = δi′′j for all j visited by the data is low. We do not want to forget a good sample, so

instead we propose a new δij and accept or reject according to the usual Metropolis-Hastings

ratio.

Samples from the CRF are exchangeable, so we can remove δij and propose a sample

δij∗ according to the CRF given δT−ij, the elements of δ visited by x0:T excluding δij. This

is the prior probability excluding the data, which cancels with the equivalent term in the

posterior, meaning that the accept probability α(δij, δ∗ij) is given by the ratio of the likelihood

of the data

α(δij, δ∗ij) = min
(

1,
p(x0:T |δ∗ij, δT−ij)
p(x0:T |δij, δT−ij)

)

In general the numerator cannot be evaluated because changing δij means changing

the entire sequence of states visited by the data after δij is first visited. In practice we

estimate the numerator by Monte Carlo approximation, sampling elements of δ according
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to the CRF as they are first visited by the data. Changing one element of δ means many

already-sampled state/symbol pairs may never be visited by the data, and have no effect

on the likelihood. The posterior probability of any value for these elements of δ is the same

as the prior, and therefore we may remove them from δT after accepting a new δij.

2.5 Theory and Related Work

Despite a wealth of research on both the theory and practice of learning PDFAs, the work

presented here is, to our knowledge, the first algorithm to generate samples from a posterior

over automata rather than returning a deterministic estimate. Prior work has focused on

greedy algorithms, which work by either merging or splitting elements of Q according to

some statistical test. Theoretical work has shown that PDFAs are both identifiable in the

limit and, with a few restrictions on the model class4, are also PAC-learnable5 using KL

divergence between automata as a measure of accuracy.

2.5.1 Mixtures of PDFA

The PDIA posterior distribution takes the form of an infinite mixture of PDFAs. In practice,

we run a sampler for some number of iterations and approximate the posterior with a finite

mixture of PDFAs. For this reason, we now consider the expressive power of finite mixtures

of PDFAs. Mixtures of PDFAs are strictly more expressive than PDFAs, but strictly less

expressive than hidden Markov models. Probabilistic non-deterministic finite automata

(PNFA) are a strictly larger model class than PDFAs. For example, the PNFA in 2.1(a)
4A polynomial number of states in the true automata, a minimum divergence between the distribution

over strings that follow two states, and a polynomial bound on the probability of generating strings above
a certain length

5A model class is said to be PAC-learnable if there is an algorithm that will return, in time polynomial
in 1

δ , 1
ε and |D|, an estimate within an accuracy ε of the true model from |D| examples with probability

1− δ.
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Figure 2.1: Two PNFAs outside the class of PDFAs. (a) can be represented by a mixture of
two PDFAs, one following the right branch from state 0, the other following the left branch.
(b), in contrast, cannot be represented by any finite mixture of PDFAs.

cannot be expressed as a PDFA (Dupont et al., 2005). However, it can be expressed as

a mixture of two PDFAs, one with Q = {q0, q1, q3} and the other with Q = {q0, q2, q3}.

Thus mixtures of PDFAs are a strictly larger model class than PDFAs. In general, any

PNFA where the nondeterministic transitions can only be visited once can be expressed as

a mixture of PDFAs. However, if we replace transitions to q3 with transitions to q0, as in

2.1(b), there is no longer any equivalent finite mixture of PDFAs, since the nondeterministic

branch from q0 can be visited an arbitrary number of times.

2.5.2 State Merging Algorithms

A variety of algorithms work by starting with the trivial automata built from the prefix

tree of the data, and generalizes by merging states that pass a similarity test. Merging

two states is not trivial: if δ(q1, sj) 6= δ(q2, sj), then merging q1 and q2 will produce a state

with nondeterministic transitions. This is avoided by recursively merging the states δ1j and

δ2j until the resulting automata is deterministic. The result is a quotient automata of the

original. One of the earliest algorithms to use this method is ALERGIA (Carrasco and

Oncina, 1994), which uses a test based on the Hoeffding bound to decide whether to merge

states, and was proven to converge to the true automata in the limit of infinite data.
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Later algorithms have mostly focused on improving the state merging test. MDI

uses a test based on the KL divergence between automata, and penalizes automata with

many states. Thus it can be interpreted as a greedy maximum posterior estimator with a

minimum description length prior. Empirically, it has better predictive performance than

ALERGIA on natural language data.

(Clark and Thollard, 2004) presented a state-merging algorithm for cyclic PDFAs that

is PAC-learnable given very few restrictions on the model class. While the emphasis was on

theoretical rather than empirical performance, it was also shown to work well from small

data. Further work has improved upon these results (Castro and Gavaldà, 2008), making

the theoretical bounds tighter, using measures of similarity other than KL divergence, and

also showing superior results from small samples.

2.5.3 State Splitting Algorithms

State splitting algorithms, by contrast, start with the most general single-state automata and

become more selective by adding more states. (Ron et al., 1996) learned a variable-order

Markov model using a state-splitting algorithm, where a state corresponding to a string

suffix was split into states corresponding to longer suffixes according to some test. Splitting

might occasionally produce nondeterministic transitions. For example, after splitting the

context 01 into 001 and 101, the context 0 and symbol 1 might transition to either one,

unless the context 0 is also split into 10 and 00, but these probabilistic suffix trees could be

mapped onto PDFAs after learning.

CSSR (Shalizi and Shalizi, 2004) took a similar approach, but with a model class

that contains all PDFAs. Their philosophical motivation, similar to ours, is to learn the

minimal sufficient statistics for predicting the future given the past. Given a stationary

sequence with infinitely long past and future, those statistics form a PDFA, which they call
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a causal state machine. Each state is a set of suffixes, rather than a single suffix, which

means the model class includes all PDFAs. If the predictive distribution for a suffix passes

a Kolmogorov-Smirnov test, that state is split in two and suffixes in the original state are

divided. Nondeterministic transitions are removed recursively by backing up to the states

preceding a split state and splitting in the natural way, much like the reverse of how states

are merged when forming quotient automata.

2.5.4 Spectral Methods

In recent years spectral methods have also been applied to the problem of automata learning,

paralleling a broad resurgence in interest in the machine learning community. Much of this

interest is likely attributable to their speed and ease of implementation, and theoretical

results guaranteeing consistency. The downside of these methods is that they generally

require a much larger sample size than those that directly fit a generative model. Inspired

by classic work in system identification on spectral methods for learning linear Gaussian

systems (which we discuss in Chapter 3) Hsu et al. (2012) introduced a simple algorithm for

learning hidden Markov models directly from the SVD of matrices of 3rd-order statistics.

Further developments have produced spectral methods for a large class of sequence models

such as weighted automata (Bailly, 2011; Balle and Mohri, 2012; Balle et al., 2013), finite

state transducers (Balle et al., 2011) and even context free grammars (Cohen et al., 2012).

2.5.5 Applications to Neuroscience

Others have looked at learning PDFA models of neural activity, most notably (Haslinger

et al., 2010), who applied the Causal State Splitting Reconstruction (CSSR) algorithm

(Shalizi and Shalizi, 2004) to evoked spike trains from the rat barrel cortex, and were able
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to automatically uncover simple features of spiking neurons, such as refractory periods.

They also decompose the total entropy of the generative process (states and observations)

over a finite window of time into a complexity term (the entropy of the latent state), an

internal entropy rate (the entropy rate of the latent state) and a “residual randomness”

(the entropy of the observation given the state). The complexity term is a constant while

the latter two terms grow linearly with the length of the data, thus the complexity term

captures the subextensive entropy of the generative process. One downside of CSSR is that,

as it is based on frequentist statistical methods, it can be prone to overfitting without some

kind of regularization. Our method is, to our knowledge, the first that uses fully Bayesian

methods to learn PDFAs.

While it is interesting that methods like CSSR can automatically discover refractory

periods, there are many other statistical models that can capture this particular feature of

neural activity. As is well known, adding a linear spike history filter to a linear-nonlinear-

Poisson model is sufficient to model a number of history-dependent effects of neural activity,

including refractory periods (Paninski et al., 2004). In our analysis of neural data we are

more interested in capturing long-range temporal correlations, which is far more difficult to

do with spike history terms.

2.6 Experiments and Results

2.6.1 Synthetic Grammars

To test if we can learn the generative mechanism given our inductive bias, we trained the

PDIA on data from three synthetic grammars: the even process (Shalizi and Shalizi, 2004),

the Reber grammar (Reber, 1967) and the Feldman grammar (Feldman and Hanna, 1966),

which have up to 7 states and 7 symbols in the alphabet. In each case the mean number
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of states discovered by the model approached the correct number as more data was used in

training. Results are presented in Figure 2.2. Furthermore, the predictive performance of

the PDIA was nearly equivalent to the actual data generating mechanism.
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Figure 2.2: Three synthetic PDFAs: (a) even process (Shalizi and Shalizi, 2004), (b) Reber
grammar (Reber, 1967), (c) Feldman grammar (Feldman and Hanna, 1966). (d) posterior
mean and standard deviation of number of states discovered during PDIA inference for vary-
ing amounts of data generated by each of the synthetic PDFAs. PDIA inference discovers
PDFAs with the correct number of states

2.6.2 Natural Language and DNA

To test our PDIA inference approach we evaluated it on discrete natural sequence prediction

and compared its performance to HMMs and smoothed n-gram models. We trained the

models on two datasets: a character sequence from Alice in Wonderland (Carroll, 1865) and

a short sequence of mouse DNA. The Alice in Wonderland (AIW) dataset was preprocessed

to remove all characters but letters and spaces, shift all letters from upper to lower case,
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PDIA PDIA-MAP HMM-EM bigram trigram 4-gram 5-gram 6-gram SSM
AIW 5.13 5.46 7.89 9.71 6.45 5.13 4.80 4.69 4.78

365.6 379 52 28 382 2,023 5,592 10,838 19,358
DNA 3.72 3.72 3.76 3.77 3.75 3.74 3.73 3.72 3.56

64.7 54 19 5 21 85 341 1,365 314,166

Table 2.1: PDIA inference performance relative to HMM and fixed order Markov models.
Top rows: perplexity. Bottom rows: number of states in each model. For the PDIA this is
an average number.
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Figure 2.3: Subsampled PDIA sampler trace for Alice in Wonderland. The top trace is the
joint log likelihood of the model and training data, the bottom trace is the number of states.

and split along sentence dividers to yield a 27-character alphabet (a-z and space). We

trained on 100 random sentences (9,986 characters) and tested on 50 random sentences

(3,891 characters). The mouse DNA dataset consisted of a fragment of chromosome 2 with

194,173 base pairs, which we treated as a single unbroken string. We used the first 150,000

base pairs for training and the rest for testing. For AIW, the state of the PDIA model was

always set to q0 at the start of each sentence. For DNA, the state of the PDIA model at

the start of the test data was set to the last state of the model after accepting the training

data. We placed Gamma(1,1) priors over α, β and γ, set λ = .001, and used uniform priors

for d0 and d.

We evaluated the performance of the learned models by calculating the average per
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character predictive perplexity of the test data. For training data x1:T and test data y1:T ′

this is given by 2− 1
T ′ log2 P (y1:T ′ |x1:T ). It is a measure of the average uncertainty the model has

about what character comes next given the sequence up to that point, and is at most |Σ|.

We evaluated the probability of the test data incrementally, integrating the test data into

the model in the standard Bayesian way.

Test perplexity results are shown in Table 2.1 on the first line of each subtable. Each

sample passed through every instantiated transition. Every fifth sample for AIW and every

tenth sample for DNA after burn-in was used for prediction. For AIW, we ran 15,000 burn-

in samples and used 3,500 samples for predictive inference. Subsampled sampler diagnostic

plots are shown in Figure 2.3 that demonstrate the convergence properties of our sampler.

When modeling the DNA dataset we burn-in for 1,000 samples and use 900 samples for

inference. For the smoothed n-gram models, we report thousand-sample average perplexity

results for hierarchical Pitman-Yor process (HPYP) (Teh, 2006) models of varying Markov

order (1 through 5 notated as bigram through 6-gram) after burning each model in for one

hundred samples. We also show the performance of the single particle incremental variant

of the sequence memoizer (SM) (Gasthaus et al., 2010), the SM being the limit of an n-gram

model as n→∞. We also show results for a hidden Markov model (HMM) (Murphy, 2005)

trained using expectation-maximization (EM). We determined the best number of hidden

states by cross-validation on the test data (a procedure used here to produce optimistic

HMM performance for comparison purposes only).

The performance of the PDIA exceeds that of the HMM and is approximately equal

to that of a smoothed 4-gram model, though it does not outperform very deep, smoothed

Markov models. This is in contrast to (Thollard, 2001), which found that PDFAs trained

on natural language data were able to predict as well as unsmoothed trigrams, but were

significantly worse than smoothed trigrams, even when averaging over multiple learned
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PDFAs. As can be seen in the second line of each subtable in Table 2.1, the MAP number

of states learned by the PDIA is significantly lower than that of the n-gram model with

equal predictive performance.

For natural language, we can also assess the quality of model fit by looking at data

generated from learned PDFA. Some example synthetic data:

what a mushroom very softly have the the way either little about a deal she

what to kept i to when b...

what you her and took when pim bill alice himself ignvy conversationer after

treat eye going very to...

seside must upon to the a othering in for the the i of i him of hrisall a is

either mock turtle and...

however nor rats come perself for everywheelsome something ll in hoor of but

her said you heople was...

whistled inqueer hersonate it doing daiek the ll the she be away the the queen

than of that miss pea...

Data sampled from the model are a mixture of recognizable words, entire phrases memo-

rized from the dataset (e.g. “mock turtle”) and nonsense words that still resemble English

at the level of syllables (e.g. “everywheelsome”). This is not quite at the level of more

recent advances in using recurrent neural networks to model natural language (Sutskever

et al., 2011; Hermans and Schrauwen, 2013), where sampled data typically reproduce entire

grammatically-sensible phrases (if not full sentences), but those models are trained on three

to four orders of magnitude more data, and the state space is significantly larger. We find

it remarkable that this much information about the statistics of natural language can be

captured by a character-level model with only a few hundred states trained on only 105
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characters.

Unlike the HMM, the computational complexity of PDFA prediction does not depend

on the number of states in the model because only a single path through the states is

followed. This means that the asymptotic cost of prediction for the PDIA is O(LT ′), where

L is the number of posterior samples and T ′ is the length of the test sequence. For any single

HMM it isO(KT ′), where K is the number of states in the HMM. This is because all possible

paths must be followed to achieve the given HMM predictive performance (although a subset

of possible paths could be followed if doing approximate inference). In PDIA inference we

too can choose the number of samples used for prediction, but here even a single sample

has empirical prediction performance superior to averaging over all paths in an HMM. The

computational complexity of smoothing n-gram inference is equivalent to PDIA inference,

however, the storage cost for the large n-gram models is significantly higher than that of

the estimated PDIA for the same predictive performance.

2.6.3 Neural Data

We assess how effective the PDIA is at capturing complex temporal dynamics in single

neurons, which are well suited for modeling by PDFAs because of the small space of obser-

vations (binary, if one is only measuring the presence or absence of a spike) but possible

long-time scale correlations.

We run our analysis on data from (Gal et al., 2010). In that study rat cortical neu-

rons were grown in culture, synaptically blocked and stimulated extracellularly for up to

55 hours. They found that, if stimulated at high frequency, neurons will enter an intermit-

tent state where spike responses become unreliable and chaotic, possibly because there is

insufficient time for ionic gradients to recover. On long time scales, the response proper-

ties of neurons change dramatically, switching between long silent periods and periods of
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variable responsiveness. The statistics of these long time series show power law correlations

by a number of measures. Here we investigate whether the PDIA can learn models that

reproduce these power laws statistics.

We train a PDIA on data from a single neuron that was stimulated at 20 Hz for

24 hours. Each observation in the time series records whether or not the recorded neuron

spiked after stimulation. For the first several minutes the neuron reliably spiked after every

stimulation, but eventually settled into an intermittent state where it fired apparently at

random following stimulation. After several hours of stimulation the neuron would then slip

into long quiescent periods of no firing at all. This can be seen in Figs. 2.4, 2.5 and 2.6.

The full training set consisted of 1727707 time bins, the full 24 hours of recording. We ran

MCMC for 1000 samples and generated data from the last sample.

Time [hours]
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10

20

30

40

50

60

70

80

90

100

Figure 2.4: Response of a cultured neuron to periodic stimulation on long time scales, from
Gal et al. (2010). The segments of data show in Fig. 2.5 and Fig. 2.6 are outlined in red.

As a control, we also fit a generalized linear model with logistic link function and
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Time [sec]
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Figure 2.5: Early response of a cultured neuron to periodic stimulation. The neuron spikes
intermittently but with consistent probability.

Time [sec]
196010 196020 196030 196040 196050 196060 196070 196080 196090 196100

Figure 2.6: Late response of a cultured neuron to periodic stimulation. Not only does the
neuron spike intermittently, but it also frequently flips into a quiescent state.
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Bernoulli noise model:

p(xt|xt−1, . . . ,xt−k) =
[

1
e−
∑k

τ=1 xt−τ θτ−b + 1

]xt [ 1
e
∑k

τ=1 xt−τ θτ+b + 1

]1−xt

(2.10)

where the parameters {θτ}kτ=1 and b are fit by maximum likelihood. We refer to this model

with history length k as GLM(k). We trained the Bernoulli GLM with history lengths of

20, 50 and 100 time bins. Beyond this length the qualitative behavior of the data did not

change.

Qualitatively, data generated from a trained PDIA closely resembled the original

data on medium-length time scales on the order of minutes (Fig. 2.7), though it seemed

to lack some of the very-long-time-scale features of the original data. The data generated

by the GLM was high variable depending on the history length. Shorter histories matched

the average firing rate but did not find medium-time-scale structures, while histories on the

order of 50 time bins alternated between active and quiescent periods much like the real

data, but the active periods were saturated well above actual values, while very long history

dependencies led to the firing rates saturating uniformly.

To quantify this observation, we reproduced the spectral analysis of Gal et al. (2010)

on model data (Fig. 2.9(a)). Consistent with our qualitative observations, the power spectral

density of model data from the PDIA most closely tracked the true PSD across a range of

frequencies. Only below 10−2 Hz did the two diverge noticeably. Data from GLM(50), which

exhibited the most interesting long-time-scale correlations, actually exceeded the ground

truth in power at very low frequencies. We also looked at the distribution of lengths of

sequences of all spikes or all silences. Due to the presence of very long quiescent periods,

there are a small number of sequences that are extremely long, and plotted on a log-log plot
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the ground truth looks roughly like a power law (though we did not quantify this). The

PDIA data closely matched this distribution for all but the very longest sequences, while

none of the GLM data reproduced the spread of long but rare quiescent periods (Fig. 2.9(b)).

Sequences of contiguous spikes more closely followed an exponential distribution, and again

were most closely matched to the PDIA (Fig. 2.9(c)). Overall this shows that the PDIA

is able to capture structure on time scales up to nearly 1000 time steps, and by almost

all measures outperforms models with a simple linear dependence on the past. A similar

modeling study was performed by Soudry and Meir (2014), based on a biophysical model

with slow and fast variables, showing that correlations on long time scales (days) can be

produced by neurons that only integrate information on a much shorter time scale (minutes).

The novelty of our result is in the ability to learn the correlation structure on long time

scales without any prior biophysical knowledge, as there is absolutely nothing in our learning

algorithm that incorporates domain knowledge about ion channels or other neuronal biology.

This could be useful in neural engineering applications where the biophysical details of a

new system might not be known a priori and would have to be learned after a device is

implanted.
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Figure 2.7: Data sampled from a PDIA trained on 24 hours of the data in 2.4. Left: long
time scale patterns in the data. Right: medium time scale patterns in the data. The PDIA
is able to learn patterns on the order of hundreds to thousands of time bins, or several
minutes of recorded data.
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Figure 2.8: Data sampled from Bernoulli GLM trained via maximum likelihood on 24 hours
of the data in 2.4. Left: long time scale patterns in the data. Right: medium time scale
patterns in the data.
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Figure 2.9: Data generated from a PDIA reproduces long time scale correlations better
than data generated from generalized linear models. (a) Power spectral density for real and
model data. Up to less than 10−2 Hz, the PDIA spectral density closely matches the ground
truth. (b) The distribution of lengths of consecutive bins without a spike. The PDIA most
closely matches the ground truth, only deviating noticeably at the bottom right (rare, long
silences).(b) The distribution of lengths of consecutive bins with a spike. Again the PDIA
most closely matches the ground truth.



47

2.7 Discussion

Our Bayesian approach to PDIA inference can be interpreted as a stochastic search proce-

dure for PDFA structure learning where the number of states is unknown. In Section 2.5 we

presented evidence that PDFA samples from our PDIA inference algorithm have the same

characteristics as the true generative process. This in and of itself may be of interest to the

PDFA induction community.

We ourselves are more interested in establishing new ways to produce smoothed pre-

dictive conditional distributions. Inference in the PDIA presents a completely new approach

to smoothing, smoothing by averaging over PDFA model structure rather than hierarchi-

cally smoothing related emission distribution estimates. Our PDIA approach gives us an

attractive ability to trade-off between model simplicity in terms of number of states, com-

putational complexity in terms of asymptotic cost of prediction, and predictive perplexity.

While our PDIA approach may not yet outperform the best smoothing Markov model ap-

proaches in terms of predictive perplexity alone, it does outperform them in terms of model

complexity required to achieve the same predictive perplexity, and outperforms HMMs in

terms of asymptotic time complexity of prediction. This suggests that a future combination

of smoothing over model structure and smoothing over emission distributions could pro-

duce excellent results. PDIA inference gives researchers another tool to choose from when

building models. If very fast prediction is desirable and the predictive perplexity difference

between the PDIA and, for instance, the most competitive n-gram is insignificant from an

application perspective, then doing finite sample inference in the PDIA offers a significant

computational advantage in terms of memory.

We indeed believe the most promising approach to improving PDIA predictive per-

formance is to construct a smoothing hierarchy over the state specific emission distributions,
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as is done in the smoothing n-gram models. For an n-gram, where every state corresponds

to a suffix of the sequence, the predictive distributions for a suffix is smoothed by the pre-

dictive distribution for a shorter suffix, for which there are more observations. This makes

it possible to increase the size of the model indefinitely without generalization performance

suffering (Wood et al., 2009). In the PDIA, by contrast, the predictive probabilities for states

are not tied together. Since states of the PDIA are not uniquely identified by suffixes, it

is no longer clear what the natural smoothing hierarchy is. It is somewhat surprising that

PDIA learning works nearly as well as n-gram modeling even without a smoothing hierar-

chy for its emission distributions. Imposing a hierarchical smoothing of the PDIA emission

distributions remains an open problem.
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Chapter 3

Robust Learning of Low-Dimensional Dynamics From
Large Neural Ensembles1

And even as we, who are now in Space, look down on Flatland

and see the inside of all things, so of a certainty there is yet above

us some higher, purer region...some yet more spacious Space,

some more dimensionable Dimensionality, from the

vantage-ground of which we shall look down together upon the

revealed insides of solid things

Edwin Abbott Abbott, Flatland

Recordings from large populations of neurons make it possible to search for hypoth-

esized low-dimensional dynamics. Finding these dynamics requires models that take into

account biophysical constraints and can be fit efficiently and robustly. Here, we present an

approach to dimensionality reduction for neural data that is convex, does not make strong
1This work has, in part, been published (Pfau, Pnevmatikakis and Paninski. Advances in Neural

Information Processing Systems,2013)
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assumptions about dynamics, does not require averaging over many trials and is extensible

to more complex statistical models that combine local and global influences. The results can

be combined with spectral methods to learn dynamical systems models. The basic method

extends PCA to the exponential family using nuclear norm minimization. We evaluate the

effectiveness of this method using an exact decomposition of the Bregman divergence that

is analogous to variance explained for PCA. We show on model data that the parameters

of latent linear dynamical systems can be recovered, and that even if the dynamics are not

stationary we can still recover the true latent subspace. We also demonstrate an extension

of nuclear norm minimization that can separate sparse local connections from global latent

dynamics. Finally, we demonstrate improved prediction on real neural data from monkey

motor cortex compared to fitting linear dynamical models without nuclear norm smoothing.

3.1 Introduction
Progress in neural recording technology has made it possible to record spikes from ever larger

populations of neurons (Stevenson and Kording, 2011). Analysis of these large populations

suggests that much of the activity can be explained by simple population-level dynamics

(Okun et al., 2012). Typically, this low-dimensional activity is extracted by principal com-

ponent analysis (PCA) (Briggman et al., 2005; Machens et al., 2010; Stopfer et al., 2003),

but in recent years a number of extensions have been introduced in the neuroscience litera-

ture, including jPCA (Churchland et al., 2012) and demixed principal component analysis

(dPCA) (Brendel et al., 2011). A downside of these methods is that they do not treat either

the discrete nature of spike data or the positivity of firing rates in a statistically principled

way. Standard practice smooths the data substantially or averages it over many trials, losing

information about fine temporal structure and inter-trial variability.
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One alternative is to fit a more complex statistical model directly from spike data,

where temporal dependencies are attributed to latent low dimensional dynamics (Paninski

et al., 2010; Yu et al., 2009). Such models can account for the discreteness of spikes by

using point-process models for the observations, and can incorporate temporal dependencies

into the latent state model. State space models can include complex interactions such

as switching linear dynamics (Petreska et al., 2011) and direct coupling between neurons

(Kulkarni and Paninski, 2007). These methods have drawbacks too: they are typically fit

by approximate EM (Smith and Brown, 2003) or other methods that are prone to local

minima, the number of latent dimensions is typically chosen ahead of time, and a certain

class of possible dynamics must be chosen before doing dimensionality reduction.

In this chapter we attempt to combine the computational tractability of PCA and

related methods with the statistical richness of state space models. Our approach is convex

and based on recent advances in system identification using nuclear norm minimization

(Fazel et al., 2001; Liu and Vandenberghe, 2009; Liu et al., 2013), a convex relaxation

of matrix rank minimization. Compared to recent work on spectral methods for fitting

state space models (Buesing et al., 2012), our method more easily generalizes to handle

different nonlinearities, non-Gaussian, non-linear, and non-stationary latent dynamics, and

direct connections between observed neurons. When applied to model data, we find that:

(1) low-dimensional subspaces can be accurately recovered, even when the dynamics are

unknown and nonstationary (2) standard spectral methods can robustly recover the param-

eters of state space models when applied to data projected into the recovered subspace (3)

the confounding effects of common input for inferring sparse synaptic connectivity can be

ameliorated by accounting for low-dimensional dynamics. In applications to real data we

find comparable performance to models trained by EM with less computational overhead,

particularly as the number of latent dimensions grows.
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This chapter is organized as follows. In Sec. 3.2 we introduce the class of models we

aim to fit, which we call low-dimensional generalized linear models (LD-GLM). In Sec. 3.3

we present a convex formulation of the parameter learning problem for these models, as

well as a generalization of variance explained to LD-GLMs used for evaluating results. In

Sec. 3.4 we show how to fit these models using the alternating direction method of multipliers

(ADMM). In Sec. 3.5 we present results on real and artificial neural datasets. We discuss

the results and future directions in Sec. 3.6.

3.2 Low dimensional generalized linear models
Our model is closely related to the generalized linear model (GLM) framework for neural

data (Paninski et al., 2004). Unlike the standard GLM, where the inputs driving the neurons

are observed, we assume that the driving activity is unobserved, but lies on some low

dimensional subspace. This can be a useful way of capturing spontaneous activity, or

accounting for strong correlations in large populations of neurons. Thus, instead of fitting a

linear receptive field, the goal of learning in low-dimensional GLMs is to accurately recover

the latent subspace of activity.

Let xt ∈ Rm be the value of the dynamics at time t. To turn this into spiking activity,

we project this into the space of neurons: yt = Cxt+ b is a vector in Rn, n� m, where each

dimension of yt corresponds to one neuron. C ∈ Rn×m denotes the subspace of the neural

population and b ∈ Rn the bias vector for all the neurons. As yt can take on negative values,

we cannot use this directly as a firing rate, and so we pass each element of yt through some

convex and log-concave increasing point-wise nonlinearity f : R→ R+. Popular choices for

nonlinearities include f(x) = exp(x) and f(x) = log(1+exp(x)). To account for biophysical

effects such as refractory periods, bursting, and direct synaptic connections, we include a
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linear dependence on spike history before the nonlinearity. The firing rate f(yt) is used as

the rate for some point process ξ such as a Poisson process to generate a vector of spike

counts st for all neurons at that time:

yt = Cxt +
k∑
τ=1

Dτst−τ + b (3.1)

st ∼ ξ(f(yt)) (3.2)

Much of this chapter is focused on estimating yt, which is the natural parameter for the

Poisson distribution in the case f(·) = exp(·), and so we refer to yt as the natural rate to

avoid confusion with the actual rate f(yt). We will see that our approach works with any

point process with a log-concave likelihood, not only Poisson processes.

We can extend this simple model by adding dynamics to the low-dimensional latent

state, including input-driven dynamics. In this case the model is closely related to the

common input model used in neuroscience (Kulkarni and Paninski, 2007), the difference

being that the observed input is added to xt rather than being directly mapped to yt. The

case without history terms and with linear Gaussian dynamics is a well-studied state space

model for neural data, usually fit by EM (Chornoboy et al., 1988; Smith and Brown, 2003;

Macke et al., 2011), though a consistent spectral method has been derived (Buesing et al.,

2012) for the case f(·) = exp(·). Unlike these methods, our approach largely decouples the

problem of dimensionality reduction and learning dynamics: even in the case of nonstation-

ary, non-Gaussian dynamics where A, B and Cov[ε] change over time, we can still robustly

recover the latent subspace spanned by xt.
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3.3 Learning

3.3.1 Nuclear norm minimization

In the case that the spike history termsD1:k are zero, the natural rate at time t is yt = Cxt+b,

so all yt are elements of some m-dimensional affine space given by the span of the columns

of C offset by b. Ideally, our estimate of y1:T would trade off between making the dimension

of this affine space as low as possible and the likelihood of y1:T as high as possible. Let

Y = [y1, . . . , yT ] be the n×T matrix of natural rates and let A(·) be the row mean centering

operator A(Y ) = Y − 1
T
Y 1T1TT . Then rank(A(Y )) = m. Ideally we would minimize

λnT rank(A(Y )) − ∑T
t=1 log p(st|yt), where λ controls how much we trade off between a

simple solution and the likelihood of the data, however general rank minimization is a hard

non convex problem. Instead we replace the matrix rank with its convex envelope: the

sum of singular values or nuclear norm ‖ · ‖∗ (Fazel et al., 2001), which can be seen as the

analogue of the `1 norm for vector sparsity. Our problem then becomes:

min
Y
λ
√
nT ||A(Y )||∗ −

T∑
t=1

log p(st|yt) (3.3)

Since the log likelihood scales linearly with the size of the data, and the singular values

scale with the square root of the size, we also add a factor of
√
nT in front of the nuclear

norm term. In the examples in this chapter, we assume spikes are drawn from a Poisson

distribution:

log p(st|yt) =
N∑
i=1

sit log f(yit)− f(yit)− log sit! (3.4)

However, this method can be used with any point process with a log-concave likelihood.

This can be viewed as a convex formulation of exponential family PCA (Collins et al., 2001;

Solo and Pasha, 2013) which does not fix the number of principal components ahead of
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time.

3.3.2 Stable principal component pursuit

The model above is appropriate for cases where the spike history terms Dτ are zero, that is

the observed data can entirely be described by some low-dimensional global dynamics. In

real data neurons exhibit history-dependent behavior like bursting and refractory periods.

Moreover if the recorded neurons are close to each other some may have direct synaptic

connections. In this case Dτ may have full column rank, so from Eq. 3.1 it is clear that yt is

no longer restricted to a low-dimensional affine space. In most practical cases we expect Dτ

to be sparse, since most neurons are not connected to one another. In this case the natural

rates matrix combines a low-rank term and a sparse term, and we can minimize a convex

function that trades off between the rank of one term via the nuclear norm, the sparsity of

another via the `1 norm, and the data log likelihood:

min
Y,D1:k,L

λ
√
nT ||A(L)||∗ + γ

T

n

k∑
τ=1
||Dτ ||1 −

T∑
t=1

log p(st|yt) (3.5)

s.t.Y = L+
k∑
τ=1

DτSτ , with Sτ = [0n,τ , s1, . . . , sT−τ ],

where 0n,τ is a matrix of zeros of size n× τ , used to account for boundary effects. This is an

extension of stable principal component pursuit (Zhou et al., 2010), which separates sparse

and low-rank components of a noise-corrupted matrix. Again to ensure that every term in

the objective function of Eq. 3.5 has roughly the same scaling O(nT ) we have multiplied

each `1 norm with T/n. One can also consider the use of a group sparsity penalty where

each group collects a specific synaptic weight across all the k time lags.
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3.3.3 Evaluation through Bregman divergence decomposition

We need a way to evaluate the model on held out data, without assuming a particular form

for the dynamics. As we recover a subspace spanned by the columns of Y rather than a

single parameter, this presents a challenge. One option is to compute the marginal likelihood

of the data integrated over the entire subspace, but this is computationally difficult. For

the case of PCA, we can project the held out data onto a subspace spanned by principal

components and compute what fraction of total variance is explained by this subspace. We

extend this approach beyond the linear Gaussian case by use of a generalized Pythagorean

theorem.

For any exponential family with natural parameters θ, link function g, function

F such that ∇F = g−1 and sufficient statistic T , the log likelihood can be written as

DF [θ||g(T (x))] − h(x), where D·[·||·] is a Bregman divergence (Bregman, 1967; Banerjee

et al., 2005): DF [x||y] = F (x) − F (y) − (x − y)T∇F (y). Intuitively, the Bregman diver-

gence between x and y is the difference between the value of F (x) and the value of the

best linear approximation around y. Bregman divergences obey a generalization of the

Pythagorean theorem: for any affine set Ω and points x /∈ Ω and y ∈ Ω, it follows that

DF [x||y] = DF [x||ΠΩ(x)] +DF [ΠΩ(x)||y] where ΠΩ(x) = arg minω∈ΩDF [x||ω] is the projec-

tion of x onto Ω. In the case of squared error this is just a linear projection, and for the

case of GLM log likelihoods this is equivalent to maximum likelihood estimation when the

natural parameters are restricted to Ω.

Given a matrix of natural rates recovered from training data, we compute the fraction

of Bregman divergence explained by a sequence of subspaces as follows. Let ui be the ith

singular vector of the recovered natural rates. Let b be the mean natural rate, and let y(q)
t
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be the maximum likelihood natural rates restricted to the space spanned by u1, . . . , uq:

y
(q)
t =

q∑
i=1

uiv
(q)
it +

k∑
τ=1

Dτst−τ + b

v
(q)
t = arg max

v
log p

(
st

∣∣∣∣∣
q∑
i=1

uivit +
k∑
τ=1

Dτst−τ + b

)
(3.6)

Here v(q)
t is the projection of y(q)

t onto the singular vectors. Then the divergence from the

mean explained by the qth dimension is given by

∑
tDF

[
y

(q−1)
t

∣∣∣∣∣∣y(q)
t

]
∑
tDF

[
y

(0)
t

∣∣∣∣∣∣g(st)
] (3.7)

where y
(0)
t is the bias b plus the spike history terms. The sum of divergences explained

over all q is equal to one by virtue of the generalized Pythagorean theorem. For Gaussian

noise g(x) = x and F (x) = 1
2 ||x||

2 and this is exactly the variance explained by each

principal component, while for Poisson noise g(x) = log(x) and F (x) = ∑
i exp(xi). This

decomposition is only exact if f = g−1 in Eq. 3.4, that is, if the nonlinearity is exponential.

However, for other nonlinearities this may still be a useful approximation, and gives us a

principled way of evaluating the goodness of fit of a learned subspace.

3.4 Algorithms
Minimizing Eq. 3.3 and Eq. 3.5 is difficult, because the nuclear and `1 norm are not differ-

entiable everywhere. By using the alternating direction method of multipliers (ADMM), we

can turn these problems into a sequence of tractable subproblems (Boyd et al., 2011). While

not always the fastest method for solving a particular problem (in particular, for large-scale

problems online methods are often preferable), we use it for its simplicity and generality.

Here X i denotes the ith row of the matrix X.
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3.4.1 Alternating Direction Method of Multipliers

ADMM is a method for solving problems of the form:

min
Y
f(Y ) + g(Y ) (3.8)

where f(·) and g(·) are both convex, but not necessarily differentiable everywhere. We

introduce an auxiliary variable Z, a Lagrange multiplier Λ, and an augmented term that

depends on a learning rate ρ to form the augmented Lagrangian:

Lρ(Y, Z,Λ) , f(Y ) + g(Z) + 〈Λ, Y − Z〉+ ρ

2 ||Y − Z||
2
F (3.9)

If we minimize Lρ with respect to Y and Z the result is a concave function of Λ (the

convex conjugate or Legendre-Fenchel transform), and the value of Y at the solution to

maxΛ infY,Z Lρ is also the solution to Eq. 3.8. At this solution the augmented term ρ
2 ||Y −

Z||2F vanishes; it is there to guarantee that infY,Z Lρ is well behaved before convergence.

ADMM does not directly maximize infY,Z Lρ. Instead, it alternates between mini-

mizing Y , minimizing Z, and gradient ascent on Λ:

Yk+1 = arg min
Y
Lρ(Y, Zk,Λk) (3.10)

Zk+1 = arg min
Z
Lρ(Yk+1, Z,Λk) (3.11)

Λk+1 = Λk + ρ(Yk+1 − Zk+1) (3.12)

This is guaranteed to converge to the global solution of Eq. 3.8.
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3.4.2 Nuclear norm minimization

To find the optimal Y we alternate between minimizing an augmented Lagrangian with

respect to Y , minimizing with respect to an auxiliary variable Z, and performing gradient

ascent on a Lagrange multiplier Λ. The augmented Lagrangian is

Lρ(Y, Z,Λ) = λ
√
nT ||Z||∗ −

∑
t

log p(st|yt) + 〈Λ,A(Y )− Z〉+ ρ

2 ||A(Y )− Z||2F (3.13)

which is a smooth function of Y and can be minimized by Newton’s method. The gradient

with respect to Y at iteration k is

∇YLρ = −∇Y

∑
t

log p(st|yt) + ρA(Y )−AT (ρZk − Λk) (3.14)

while the Hessian of Eq. 3.13 with respect to Y is given by

∇2
YLρ = −∇2

Y

∑
t

log p(st|yt) + ρATA (3.15)

where AT (·) is the transpose of the operator A(·) and ATA is the product of the operator

and its transpose written in matrix form. The Newton search direction −(∇2
YLρ)−1∇YLρ

can be computed efficiently by exploiting the structure of the Hessian. The Hessian of the

log likelihood term is diagonal, since the likelihood of the data sit for neuron i at time t

only depends on yit. Moreover, if vec(·) denotes the vectorizing operator then the mean

centering operator A(·) can be expressed as

vec(A(Y )) =
(
InT −

1
T

(1T ⊗ In)(1T ⊗ In)T
)

vec(Y ), (3.16)
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It follows that A is self-adjoint and idempotent, and the Hessian simplifies to

∇2
YLρ = −∇2

Y

∑
t

log p(st|yt) + ρInT − ρ
1
T

(1T ⊗ In)(1T ⊗ In)T (3.17)

which is the sum of a diagonal term, −∇2
Y

∑
t log p(st|yt) + ρInT , and the term, −ρ 1

T
(1T ⊗

In)(1T ⊗ In)T , which is only rank n rather than nT . Let D be the diagonal part of the

Hessian

D = −∇2
Y

∑
t

logp(st|yt) + ρInT . (3.18)

Using the Woodbury lemma we have

(∇2
YLρ)−1 = D−1+D−1(1T⊗In)((T/ρ)In−(1T⊗In)TD−1(1T⊗In))−1(1T⊗In)TD−1. (3.19)

Now let d = diag{D−1} and ∆ the n×T matrix such that vec(∆) = d. A quick calculation

shows that the matrix (1T⊗In)TD−1(1T⊗In) is diagonal, with its diagonal equal to ∆1T . It

follows that the Newton direction −(∇2
YLρ)−1∇YLρ can be computed efficiently in O(nT )

time and with O(nT ) memory requirements, without having to explicitly construct the

Hessian.

The minimum of Eq. 3.9 with respect to Z is given exactly by singular value thresh-

olding:

Zk+1 = USλ√nT/ρ(Σ)V T , (3.20)

where UΣV T is the singular value decomposition of A(Yk+1)+Λk/ρ, and St(·) is the (point-

wise) soft thresholding operator St(x) = sgn(x)max(0, |x| − t). Finally, the update to Λ is

a simple gradient ascent step: Λk+1 = Λk + ρ(A(Yk+1) − Zk+1) where ρ is a step size that

can be chosen.
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Algorithm 1 Alternating Direction Method of Multipliers for Nuclear Norm minimization

without connectivity (Eq. 3.3)
input Matrix of spike counts S, learning rate ρ, parameter λ

Y ← log(S + 1), Z ← 0,Λ← 0

while rp > εp and rd > εd do

while (∇YLρ)T (∇2
YLρ)−1(∇YLρ) > ε do

∇YLρ , −∇Y
∑
t logp(st|yt) + ρA(Y )−AT (ρZ − Λ)

∇2
YLρ , −∇2

Y

∑
t logp(st|yt) + ρInT − ρ 1

T
(1T ⊗ In)(1T ⊗ In)T

Y ← Y − (∇2
YLρ)−1∇YLρ

end while

UΣV T , SVD(A(Y ) + Λ/ρ)

Z ′ ← USλ√nT/ρ(Σ)V T

Λ← Λ + ρ(A(Y )− Z ′)

rp ← ||A(Y )− Z ′||F

rd ← ρ||AT (Z − Z ′)||F

εp ←
√
nTεabs + εrel max(||A(Y )||F , ||Z ′||F )

εd ←
√
nTεabs + εrel||AT (Λ)||F

Z ← Z ′

end while

return Y

3.4.3 Stable principal component pursuit

To extend ADMM to the problem in Eq. 3.5 we only need to add one extra step, taking the

minimum over the connectivity matrices with the other parameters held fixed. To simplify

the notation, we group the connectivity matrices into a single matrix D = (D1, . . . , Dk),
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and stack the different time-shifted matrices of spike histories on top of one another to form

a single spike history matrix H. The objective then becomes

min
Y,D

λ
√
nT ||A(Y −DH)||∗ + γ

T

n
||D||1 −

∑
t

log p(st|yt) (3.21)

where we have substituted Y −DH for the variable L, and the augmented Lagrangian is

Lρ(Y, Z,D,Λ) = λ
√
nT ||Z||∗ + γ

T

n
||D||1 −

∑
t

log p(st|yt) (3.22)

+〈Λ,A(Y −DH)− Z〉+ ρ

2 ||A(Y −DH)− Z||2F

The updates for Λ and Z are almost unchanged, except that A(Y ) becomes A(Y −DH).

Likewise for Y the only change is one additional term in the gradient:

∇YLρ = −∇Y

∑
t

log p(st|yt) + ρA(Y )−AT (ρZ + ρA(DH)− Λ) (3.23)

Minimizing D requires solving:

arg min
D

γ
T

n
||D||1 + ρ

2 ||A(DH) + Z −A(Y )− Λ/ρ||2F (3.24)

This objective has the same form as LASSO regression. We solve this using ADMM as well,

but any method for LASSO regression can be substituted.
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Algorithm 2 Alternating Direction Method of Multipliers for Nuclear Norm minimization

with connectivity (Stable Principal Component Pursuit) (Eq. 3.21)
input Matrix of spike counts S and spike histories H, learning rate ρ, parameters λ, γ

Y ← log(S + 1), Z ← 0, D ← 0, Λ← 0

while rp > εp and rd > εd do

while (∇YLρ)T (∇2
YLρ)−1(∇YLρ) > ε do

∇YLρ , −∇Y
∑
t logp(st|yt) + ρA(Y )−AT (ρZ + ρA(DH)− Λ)

∇2
YLρ , −∇2

Y

∑
t logp(st|yt) + ρInT − ρ 1

T
(1T ⊗ In)(1T ⊗ In)T

Y ← Y − (∇2
YLρ)−1∇YLρ

end while

D ← arg minD γ Tn ||D||1 + ρ
2 ||A(DH) + Z −A(Y )− Λ/ρ||2F (See Alg. 3)

UΣV T , SVD(A(Y −DH) + Λ/ρ)

Z ′ ← USλ√nT/ρ(Σ)V T

Λ← Λ + ρ(A(Y )− Z ′)

rp ← ||A(Y −DH)− Z ′||F

rd ← ρ||AT (Z − Z ′)||F

εp ←
√
nTεabs + εrel max(||A(Y −DH)||F , ||Z ′||F )

εd ←
√
nTεabs + εrel||AT (Λ)||F

Z ← Z ′

end while

return Y
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Algorithm 3 Alternating Direction Method of Multipliers for Updating D (Eq. 3.24)
input Variables from Alg. 2, learning rate α

E ← D, Γ← 0

while rp > εp and rd > εd do

for i = 1→ n do

Di ← (AT (A(Y i)− Zi + Λi/ρ)HT + αEi − Γi)(A(H)A(H)T + αInk)−1

end for

E ′ ← SγT/nρα(D + Γ/α)

Γ← Γ + α(D − E ′)

rp ← ||D − E ′||F

rd ← α||E − E ′||F

εp ←
√
n2kεabs + εrel max(||D||F , ||E ′||F )

εd ←
√
n2kεabs + εrel||Γ||F

E ← E ′

end while

return D

3.4.4 Fitting Linear Dynamical Systems

It is not immediately obvious that we should fit linear dynamical systems by the particular

subspace method used in this chapter, or that we should minimize the nuclear norm of

A(Y ) instead of Y . Here we show empirical results on model data with two methods for

fitting linear dynamical systems, and minimizing ||A(Y )||∗ versus ||Y ||∗, for a total of 4

combinations. The first method for fitting linear dynamical systems is perhaps the easiest.

Let X = (x1, . . . , xT ) be the matrix of latent states, just as Y = (y1, . . . , yT ) is the matrix
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of natural rates, and suppose xt is generated by a linear dynamical system:

xt+1 = Axt + εt (3.25)

E[εt] = 0

First we take the singular value decomposition of A(Y ), so that UΣV T = A(Y ). Since

A(Y ) = CX, the left and right singular vectors should be equal to C and X up to some

arbitrary rotation M :

U
√

Σ = CM

√
ΣV T = M−1X (3.26)

where
√

Σ takes the element-wise square root of the diagonal matrix of singular values.

It is clear that X2:T = (x2, . . . , xT ) = AX1:T−1 +E = A(x1, . . . , xT−1)+(ε1, . . . , εT−1),

that is each column of X is a noisy linear mapping of the column to the left of it. That

suggests we could estimate A by doing regression between past and future columns of X,

or by proxy,
√

ΣV T :

Â =
(
V 2:T
√

ΣT
) (
V 1:T−1

√
ΣT
)†

(3.27)

here X i:j denotes the ith to jth rows of X, while Xi:j denotes the ith to jth columns. We

refer to this method of fitting linear dynamical systems as past-future regression. While this

estimate of A is off by a change of coordinate, the eigenvalues should on average be the

same as the true A if our estimator is unbiased. We find that this is not the case.

Alternately, we use a variant of the Multivariable Output Error State sPace (MOESP)
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method for fitting linear dynamical systems, a type of subspace identification (Van Overschee

and De Moor, 1996). Our implementation of MOESP works as follows: take the covariance

between Y one and two time steps into the past and one and two time steps into the future:

Γ =

 Y3:T−1

Y4:T


 Y1:T−3

Y2:T−2


T

(3.28)

where the matrix on the left is known as the block-Hankel matrix of future outputs and

the matrix on the right is the block-Hankel matrix of past outputs in the terminology of

subspace identification. The number of block-rows can be greater than 2, but as long as the

number of latent dimensions is less than the number of observed dimensions, only two are

needed.

From Eqs. 3.1 and 3.25 we can expand out yt as CAkxt−k+∑k
τ=1CA

k−τ εt−τ and plug

this into the true past-future covariance to find:

Cov


 yt

yt+1

 ,
 yt−2

yt−1


 =

 C

CA


 CCov[xt]A2T

CACov[xt]A2T + CCov[εt]AT


T

(3.29)

of which Γ/(T − 2) is the maximum likelihood estimate. We can then say the left singular

values of Γ should asymptotically be equal to

 C

CA

 up to a rotation, and we estimate

Â by doing least squares regression between the top n rows and bottom n rows of the left

singular vectors of Γ. As with the past-future regression method described above, we find

it useful to scale the left singular vectors by the square root of the singular values.

In the experiments on model data, we know the true dimensionality m, and truncated

Σ so that all singular values after the mth are set to 0. On real data we would use some
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heuristic, such as truncating everything below the geometric mean of the first and last

singular value. If we had access to known input as well, we would also include a projection

onto the orthogonal subspace of the input, and include past inputs in the right-hand matrix

in Eq. 3.28.

3.5 Experiments

We demonstrate our method on a number of artificial datasets and one real dataset. First,

we show in the absence of spike history terms that the true low dimensional subspace can

be recovered in the limit of large data, even when the dynamics are nonstationary. Second,

we show that spectral methods can accurately recover the transition matrix when dynamics

are linear. Third, we show that local connectivity can be separated from low-dimensional

common input. Lastly, we show that nuclear-norm penalized subspace recovery leads to

improved prediction on real neural data recorded from macaque motor cortex.

Model data was generated with 8 latent dimension and 200 neurons, without any

external input. For linear dynamical systems, the transition matrix was sampled from a

Gaussian distribution, and the eigenvalues rescaled so the magnitude fell between .9 and

.99 and the angle between ± π
10 , yielding slow and stable dynamics. The linear projection C

was a random Gaussian matrix with standard deviation 1/3, and the biases bi were sampled

from N (−4, 1), which we found gave reasonable firing rates with nonlinearity f(x) = log(1+

exp(x)). To investigate the variance of our estimates, we generated multiple trials of data

with the same parameters but different innovations.
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3.5.1 Recovering Subspaces

We first sought to show that we could accurately recover the subspace in which the dynamics

take place even when those dynamics are not stationary. We split each trial into 5 epochs

and in each epoch resampled the transition matrix A and set the covariance of innovations

εt to QQT where Q is a random Gaussian matrix. We performed nuclear norm minimization

on data generated from this model, varying the smoothing parameter λ from 10−3 to 10, and

compared the subspace angle between the top 8 principal components and the true matrix

C. We repeated this over 10 trials to compute the variance of our estimator. We found that

when smoothing was optimized the recovered subspace was significantly closer to the true

subspace than the top principal components taken directly from spike data. Increasing the

amount of data from 1000 to 10000 time bins significantly reduced the average subspace

angle at the optimal λ. The top PCs of the true natural rates Y , while not spanning exactly

the same space as C due to differences between the mean column and true bias b, was still

closer to the true subspace than the result of nuclear norm minimization.

We also computed the fraction of Bregman divergence explained by the sequence of

spaces spanned by successive principal components, solving Eq. 3.6 by Newton’s method.

We did not find a clear drop at the true dimensionality of the subspace, but we did find

that a larger share of the divergence could be explained by the top dimensions than by PCA

directly on spikes. Results are presented in Fig. 3.1.

3.5.2 Learning Linear Dynamical Systems

To show that the parameters of a latent dynamical system can be recovered, we investigated

the performance of spectral methods on model data with linear Gaussian latent dynamics.

As the model is a linear dynamical system with GLM output, we call this a GLM-LDS
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Figure 3.1: Recovering low-dimensional subspaces from nonstationary model data. While the
subspace remains the same, the dynamics switch between 5 different linear systems. Left top:
one dimension of the latent trajectory, switching from one set of dynamics to another (red line).
Left middle: firing rates of a subset of neurons during the same switch. Left bottom: covariance
between spike counts for different neurons during each epoch of linear dynamics. Right top: Angle
between the true subspace and top principal components directly from spike data, from natural
rates recovered by nuclear norm minimization, and from the true natural rates. Right bottom:
fraction of Bregman divergence explained by the top 1, 5 or 10 dimensions from nuclear norm
minimization. Dotted lines are variance explained by the same number of principal components.
For λ < 0.1 the divergence explained by a given number of dimensions exceeds the variance
explained by the same number of PCs.
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model. After estimating natural rates by nuclear norm minimization with λ = 0.01 on 10

trials of 10000 time bins with unit-variance innovations εt, we fit the transition matrix A by

subspace identification (SSID) (Van Overschee and De Moor, 1996). The transition matrix

is only identifiable up to a change of coordinates, so we evaluated our fit by comparing the

eigenvalues of the true and estimated A. Results are presented in Fig. 3.2. As expected,

SSID directly on spikes led to biased estimates of the transition. By contrast, SSID on the

output of nuclear norm minimization had little bias, and seemed to perform almost as well

as SSID directly on the true natural rates. We found that other methods for fitting linear

dynamical systems from the estimated natural rates were biased, as was SSID on the result

of nuclear norm minimization without mean-centering (Fig. 3.3).
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Figure 3.2: Recovered eigenvalues for the transition matrix of a linear dynamical system from
model neural data. Black: true eigenvalues. Red: recovered eigenvalues. (a) Eigenvalues recovered
from the true natural rates. (b) Eigenvalues recovered from subspace identification directly on spike
counts. (c) Eigenvalues recovered from subspace identification on the natural rates estimated by
nuclear norm minimization.
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Figure 3.3: A comparison of the eigenvalues of the transition matrix A recovered by different

methods of fitting linear dynamical systems to model data. True eigenvalues in black,

estimates over different trials in red. 200 neurons, 10000 time bins, 8 latent dimensions,

10 trials. Top row: Results of estimating A by past-future regression (Eq. 3.27). Bottom

row: Results of estimating the transition matrix by the MOESP subspace identification

method. Left column: Nuclear norm minimization directly on the matrix Y . Right column:

Nuclear norm minimization on the mean-centered matrix A(Y ). In both cases the mean of

Y was subtracted before estimating the transition matrix. Note that both mean-centering

and subspace identification are necessary to arrive at unbiased estimates of the transition

matrix.

We incorporated spike history terms into our model data to see whether local connec-

tivity and global dynamics could be separated. Our model network consisted of 50 neurons,

randomly connected with 95% sparsity, and synaptic weights sampled from a unit variance
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Gaussian. Data were sampled from 10000 time bins. The parameters λ and γ were both

varied from 10−10 to 104. We found that we could recover synaptic weights with an r2 up

to .4 on this data by combining both a nuclear norm and `1 penalty, compared to at most

.25 for an `1 penalty alone, or 0.33 for a nuclear norm penalty alone. Somewhat surpris-

ingly, at the extreme of either no nuclear norm penalty or a dominant nuclear norm penalty,

increasing the `1 penalty never improved estimation. This suggests that in a regime with

strong common inputs, some kind of correction is necessary not only for sparse penalties to

achieve optimal performance, but to achieve any improvement over maximum likelihood. It

is also of interest that the peak in r2 is near a sharp transition to total sparsity.
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Figure 3.4: Connectivity matrices recovered by SPCP on model data. Left: r2 between true and

recovered synaptic weights across a range of parameters. The position in parameter space of the

data to the right is highlighted by the stars. Axes are on a log scale. Right: scatter plot of true

versus recovered synaptic weights, illustrating the effect of the nuclear norm term.

3.5.3 Optimizing Smoothing Parameters

The only free parameter in our minimization is λ, which controls the tradeoff between the

data likelihood and nuclear norm penalty. As λ→∞, the natural rates are forced to a low-

rank solution, and eventually to the mean of the data (after being passed through the inverse

nonlinearity) if the mean-centering operator is included, or zero if not. At the other extreme,
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the nuclear norm penalty vanishes as λ → 0 and the natural rates go to the maximum

likelihood solution. We demonstrate the effect of varying the nuclear norm penalty on the

spectra of the natural rates and the eigenvalues of the recovered transition matrix and

show that the nuclear norm penalty leads to less biased estimates of the transitions. As λ

increases the quality of the estimates improves, until the rank of the natural rates is forced

to below the actual number of latent dimensions. In a nutshell, the solution should be as

low rank as possible, but no lower.
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Figure 3.5: Effect of varying the smoothing parameter λ on the recovered transition matrix

eigenvalues. True values in black, recovered in red. The nuclear norm term helps reduce

the variance of the estimates, but the results quickly degenerate when λ is too large. Note

that the results are robust across a wide range of values of λ, from roughly 0.001 to 0.03.

Model data, 200 neurons, 1000 time bins, 8 latent dimensions, 5 trials.
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Figure 3.6: A simultaneous comparison of the eigenvalues of A and singular values of Y

for various values of λ on the same data as Fig. 3.5. Note that with no smoothing, the

top singular values of the recovered Y closely match the true values, but the noise leads to

biases in the recovered A. At the other extreme, the quality of the recovered A degrades

rapidly if the smoothing forces the rank of Y to be smaller than the true rank.

3.5.4 Predicting Dynamics of Real Neural Populations

Finally, we demonstrated the utility of our method on real recordings from a large population

of neurons. The data consists of 125 well-isolated units from a multi-electrode recording in

macaque motor cortex while the animal was performing a pinball task in two dimensions.

Previous studies on this data (Lawhern et al., 2010) have shown that information about arm

velocity can be reliably decoded. As the electrodes are spaced far apart, we do not expect



75

any direct connections between the units, and so leave out the `1 penalty term from the

objective. We used 800 seconds of data binned every 100 ms for training and 200 seconds

for testing. We fit linear dynamical systems by subspace identification as in Fig. 3.2, but

as we did not have access to a “true” linear dynamical system for comparison, we evaluated

our model fits by approximating the held out log likelihood by Laplace-Gaussian filtering

(Koyama et al., 2010). We also fit the GLM-LDS model by running randomly initialized
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Figure 3.7: Log likelihood of held out motor cortex data versus number of latent dimensions for
different latent linear dynamical systems. Prediction improves as λ increases, until it is comparable
to EM.
EM for 50 iterations for models with up to 30 latent dimensions (beyond which training

was prohibitively slow). We found that a strong nuclear norm penalty improved prediction
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by several hundred bits per second, and that fewer dimensions were needed for optimal

prediction as the nuclear norm penalty was increased. The best fit models predicted held

out data nearly as well as models trained via EM, even though nuclear norm minimization

is not directly maximizing the likelihood of a linear dynamical system.

3.6 Discussion
The method presented here has a number of straightforward extensions. If the dimensional-

ity of the latent state is greater than the dimensionality of the data, for instance when there

are long-range history dependencies in a small population of neurons, we would extend the

natural rate matrix Y so that each column contains multiple time steps of data. Y is then a

block-Hankel matrix. Constructing the block-Hankel matrix is also a linear operation, so the

objective is still convex and can be efficiently minimized (Liu et al., 2013). If there are also

observed inputs ut then the term inside the nuclear norm should also include a projection

orthogonal to the row space of the inputs. This could enable joint learning of dynamics and

receptive fields for small populations of neurons with high dimensional inputs.

Our model data results on connectivity inference have important implications for

practitioners working with highly correlated data. GLM models with sparsity penalties

have been used to infer connectivity in real neural networks (Pillow et al., 2008), and in

most cases these networks are only partially observed and have large amounts of common

input. We offer one promising route to removing the confounding influence of unobserved

correlated inputs, which explicitly models the common input rather than conditioning on it

(Harrison, 2012).

It remains an open question what kinds of dynamics can be learned from the recovered

natural parameters. In this chapter we have focused on linear systems, but nuclear norm
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minimization could just as easily be combined with spectral methods for switching linear

systems and general nonlinear systems. We believe that the techniques presented here offer

a powerful, extensible and robust framework for extracting structure from neural activity.
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Chapter 4

Separating Biologically Relevant Signals From Optical
Imaging Data1

Dear friend, all theory is grey,

And green is the golden tree of life.

Johann Wolfgang von Goethe, Faust

That’s all well and good in practice...

...but how does it work in theory?

Anonymous

The previous chapters focused on statistical methods derived from theoretical con-

siderations first. When dealing with practical data, other considerations must often be
1This work represents preliminary work in collaboration with Daniel Soudry, Yuanjun Gao, Jeremy

Freeman, Yu Mu and Misha Ahrens
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taken into account before these methods can be usefully applied. A number of techno-

logical avenues are being developed that can help bridge the divide between theory and

practice. Optical recording technologies in particular are an essential part of the push to-

wards recording from very large populations of neurons. Converting raw recording data to

neurons and spike times typically involves a laborious manual process of annotating regions

of interest (ROIs), along with ad hoc heuristics for extracting time series from those ROIs.

For very large populations of neurons, it becomes impractical to hand-label all neurons,

and automated methods are highly desirable. Here we describe a number of approaches to

automatically extracting regions of interest from the cutting-edge of optical imaging tech-

nology. First we describe an online clustering algorithm for region of interest detection for

whole-brain calcium recordings from larval zebrafish that can run on a single machine. We

present analyses on the time series extracted from these regions of interest that cannot be

performed on a pixel-by-pixel basis. We then describe a method for analyzing regions of

interest that is based on a more principled generative model of imaging data and can be

solved efficiently by convex optimization, which we call convolutional group lasso. For large

datasets such as those generated by light-sheet imaging, these methods can be applied on

individual patches. Finally we switch from large-scale calcium imaging to voltage imaging at

in culture, where the challenges are instead due to low signal-to-noise ratio and the multiple

scales of imaging. We show that independent component based methods can be effective

when proper pre- and post-processing is applied, and can be used as an important step in

a fully automated pipeline for all-optical electrophysiology.
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4.1 Introduction

It is a long-standing goal of neuroscience to be able to record every spike from every neuron

in a large population or even entire animal. Optical imaging has the potential to make this

a reality, but there are many challenges in translating raw data into a raster of spikes and

neurons2. Much like in the last chapter, this can be viewed as a dimensionality reduction

problem, as there are far fewer neurons than pixels in most recordings. However, in this

case there is a very particular structure imposed by prior knowledge of the shape of neural

structures and dynamics of neural and fluorescent indicator activity. These two kinds of

structure lead to two orthogonal problems: that of calcium deconvolution, which aims to

recover spike times from noisy calcium indicator data, and region of interest detection, which

separates the imaging field into biologically relevant units (neurons, neuropil, etc). In this

chapter we are concerned strictly with the latter problem, as the data we are dealing with

lacks the temporal resolution to resolve single spikes.

While optical imaging is a broad field, nearly all neuroscience applications work by

loading an indicator whose fluorescence depends on some biophysical parameter into neu-

rons, exciting the fluorescent indicators by laser light and recording from a large field of

view (Yuste and Konnerth, 2004). The indicators may be synthetic dyes (Baker et al., 2005)

or engineered proteins, and sensitive to intracellular calcium concentration or transmem-

brane voltage. At present, great strides have been made in improving both the speed and

signal-to-noise ratio of genetically encoded calcium indicators (GECIs) such that they are

now often preferred to synthetic dyes (Sun et al., 2013). While not as mature a technology a

GECIs, the field of voltage-sensitive fluorescent proteins is also advancing quickly (Barnett

et al., 2012; Kralj et al., 2012; Akemann et al., 2013; Cao et al., 2013; Gong et al., 2013;
2Though note, in many cases, we may be interested in functional units smaller than a neuron, such as

dendritic spines (Yuste and Denk, 1995)
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Storace et al., 2013).

A wide variety of microscopy techniques can be used to image this fluorescent activity,

most commonly two photon microscopy (Denk et al., 1990; Svoboda and Yasuda, 2006), but

also selective plane illumination or “light-sheet” microscopy (Holekamp et al., 2008) and

light field microscopy (Levoy et al., 2006; Broxton et al., 2013), both of which can image

volumes of tissue with single-photon optics.

The volume of data being generated by these methods is often staggering. For in-

stance, in (Ahrens et al., 2013) the authors image an 800x600x200 µm3 volume at 0.8 Hz

with 41 image planes and an effective lateral resolution of 0.65 µm, meaning that an hour of

continuous recording amounts to nearly 1 TB of data. Clearly this presents a challenge for

analysis. One possibility is to take advantage of distributed computing (Attiya and Welch,

2004), applying operations in parallel to each time series and collecting the results. In par-

ticular, the MapReduce framework (Dean and Ghemawat, 2008) has become a standard in

the last decade. One downside of the MapReduce framework is that only a single function

can be applied (mapped) before the output is collected (reduced). For machine learning and

optimization applications, where operations have to be applied iteratively, this can be quite

slow. To address this issue, the Spark framework (Zaharia et al., 2010) was developed, in

which distributed data can be acted on multiple times before results are collected. Already

a number of standard tools in neural data analysis have been ported to Spark under the

Thunder library (Freeman et al., 2014). Alteratively, one could take advantage of online

methods, that operate on manageable chunks of data sequentially, updating parameters of a

model as they go along. This has the advantage that it can be executed on a single machine,

rather than requiring a distributed cluster. However the speed of reading data sequentially

is still significantly slower than reading in parallel, so distributed methods are preferable

when available.
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Ultimately what one would like to read out from this data is the spike time from every

visible neuron. For Ca2+ imaging data, a significant amount of effort has been applied both

to the problem of separating spatial signals (region of interest detection) and inverting the

filtering effects of both Ca2+ transients and Ca2+ indicator dynamics (spike deconvolution).

Calcium deconvolution in particular has matured significantly in recent years. Early work

on calcium imaging showed that individual spikes could be detected so long as they were

well separated in time (Smetters et al., 1999), but for practical experiments new methods

had to be developed. A wide variety of techniques have been developed, sometimes suited to

the quirks of the data in that lab, sometimes built around more principled biophysical con-

siderations. Kerr et al. (2005); Greenberg et al. (2008) used a template matching approach

that approximates a complicated nonconvex optimization to find calcium transients, while

Holekamp et al. (2008) and Yaksi and Friedrich (2006) used linear methods to deconvolve

calcium signals, and Sato et al. (2007) took a clustering approach based on the magnitude

of response when combined with a template. Sasaki et al. (2008) used a supervised learning

approach combining PCA for feature extraction with a linear SVM. In Grewe et al. (2010)

they develop a “peeling” approach to detecting spikes at rates up to 20 Hz, which closely

resembles matching pursuit (Mallat and Zhang, 1993), and Oñativia et al. (2013) uses tools

from finite rate of innovation theory (Vetterli et al., 2002). Other work has focused on fitting

more principled generative models that take into account biophysical knowledge (Vogelstein

et al., 2009) and algorithmic advances that make inference faster (Vogelstein et al., 2009),

or integrate information across many pixels to jointly deconvolve spikes and demix regions

of interest (Pnevmatikakis et al., 2013).

Recording technology has now advanced to the point where it is possible to record

from nearly the whole brain of small animals (Ahrens et al., 2013; Prevedel et al., 2014).

Even in larger animals, recording from thousands of neurons simultaneously is becoming
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more common. At this scale it is no longer practical to manually identify regions of interest,

and automated techniques become very valuable. Optical recording is now common enough

that a comprehensive review of the literature is outside the scope of this thesis, but most

prominent studies that established optical imaging of large populations used manual (Göbel

et al., 2007; Dombeck et al., 2007; Kerr et al., 2005; Niell and Smith, 2005) or semiautomated

(Ohki et al., 2005; Ozden et al., 2008; Junek et al., 2009; Dorostkar et al., 2010) methods

for identification.

A variety of automated ROI detection methods have been developed, similar to the

situation in calcium deconvolution, where there is a mix of principled statistical methods and

effective heuristics. One prominent approach to automated ROI detection is the CellSort

ICA algorithm (Mukamel et al., 2009), which applies spatiotemporal independent compo-

nent analysis (Stone et al., 2002) to principal components of videos of calcium activity,

followed by a postprocessing step that identifies morphologically distinct regions. To work

well, this approach depends critically on the number of principal components being near the

number of distinct functional components, as well as overlapping neurons having distinct

activity (though not necessarily independent activity). Many other approaches also fit into

the matrix factorization framework. A number of groups have had success using extensions

of nonnegative matrix factorization that include some prior structure (Soelter et al., 2014;

Maruyama et al., 2014) as well as sparse structured principal component analysis (Diego

et al., 2013) and hierarchical extensions (Diego and Hamprecht, 2013). Other groups have

taken advantage of machine learning techniques outside the matrix factorization framework:

Valmianski et al. (2010) use a mix of supervised learning techniques to train a classifier for

neuronal morphology. Rather than relying entirely on the fluorescence signal, Miri et al.

(2011) regresses the fluorescence signal against stimulus information to find relevant pixels,

then uses custom morphological techniques to segment the resulting maps. Lastly, purely
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morphological approaches that throw away the majority of neural activity can be effective,

so long as regions of interest are well separated in the signal of choice (usually mean or max

fluorescence). For instance, convolutional sparse coding methods that learn a dictionary

of ROI shapes have been shown to be effective on some calcium imaging and Nissl-stained

data (Pachitariu et al., 2013), even when the indicator is expressed cytosolically, leading to

densely packed “donut”-like shapes that have to be separated.

Most of these methods have been applied to what might be called “medium-scale”

recordings - in the range of dozens to a thousand regions of interest. For whole-brain record-

ings in larval zebrafish, where nearly 100,000 neurons are being imaged simultaneously, the

complexity of data analysis has limited the applicability of some of these region of interest

detection methods. Most analyses have been applied to individual voxels or “supervoxels”

that are soma-sized cubes of data (Ahrens et al., 2013). In Portugues et al. (2014) they ap-

ply a local correlation based region of interest detection method to find anatomical regions

correlated with optokinetic response. While more likely to separate out individual neurons

than supervoxels, the method still misclassifies overlapping regions, which may confound

analysis of neurons that are strongly selective with very different response properties from

their neighbors.

This chapter is organized as follows. We present two algorithms for separating single

units from calcium fluorescence data that can be applied to very large scale recordings.

In 4.2.1 we present an online greedy clustering algorithm tailored to the specific statistics

of fluorescent imaging noise. In 4.2.3 we apply this method to whole-brain recordings of

spontaneous activity in the larval zebrafish brain (Ahrens et al., 2013) and show results

of analyses that could not be performed without first reducing the dimensionality of the

data. This algorithm contains a number of heuristics, and we present in 4.3 a more elegant

algorithm based on an explicit convex optimization problem, which requires fewer heuristics
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than the online greedy approach, and can easily be adapted to a distributed computing

implementation, making it possible to run analyses in minutes instead of hours.

4.2 Online Region of Interest Detection for Whole Brain

Recordings

One strategy for handling data at this scale is to process each frame sequentially. Since

a single frame of data can fit in memory on a single machine even when the full dataset

cannot, this is an effective strategy when distributed computing resources are not readily

available. In addition, if the signal-to-noise ratio is high enough, regions of interest can

be picked out from a single frame. ROI detection is then divided into the problem of

processing single frames, and clustering the results across many frames, since neurons may

drop in and out across various frames. We present an online algorithm that processes single

frames based on standard image processing methods and a fast online clustering method to

decide which ROIs are matched across frames. Due to the scale of the problem, whenever

possible we choose to optimize for speed over statistical correctness. We applied this method

to recordings of spontaneous activity in a larval zebrafish expressing GCaMP5 and were

able to separate several thousand regions of interest, the majority of which agreed with

human identification of neuronal cell bodies. Applying nonlinear dimensionality reduction

techniques to this data sorts the ROIs into distinct but overlapping populations, while

neither PCA nor nonlinear methods applied to downsampled data were able to reveal these

populations.
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4.2.1 Online Greedy Clustering

Our approach to online ROI detection splits the problem into two parts: first, identify all

the regions of interest in a single frame, second, decide which ROIs from the current frame

should be merged with already-identified ROIs from previous frames. Since we don’t update

assignments after the fact, this is a greedy method, so we will refer to it as online greedy

clustering throughout this chapter, in contrast to other ROI detection methods presented

later. Let us introduce some notation: throughout this chapter, a frame of data shaped

as a 2D or 3D array will be denoted in uppercase, and the same data as a vector will be

denoted in lowercase, that is vec(X) = x. Let R denote the range of indices, D the number

of dimensions in one frame (2 or 3 in all real data), K be the total number of ROIs, and

let Yt be the observed calcium fluorescence at time t, so that yt is a vector in R|R|. We

assume a very simple generative model for the data, so that learning is fast. Let Xk be the

shape of the kth region of interest, X =
(
x1,x2, . . . ,xK

)
be the full matrix of ROI shapes,

and let rt ∈ RK be the level of fluorescence signal across ROIs at time t. Then we model

one frame of data as

yt|X ∼ N
(
Xrt, σ2I + ρdiag

(
I(X)rt

))
(4.1)

where σ is a baseline variance, I is an indicator function I(0) = 0, I(x) = 1 otherwise,

applied elementwise, and ρ is a factor that determines the linear dependence of the variance

on the level of calcium activity. We have found that this linear dependence of variance on

fluorescence level is necessary to make the ROI merging step robust, which likely reflects

the fact that the largest source of noise in calcium imaging is photon shot noise, which is

Poisson distributed. In later sections we will drop this linear dependence of variance on rate,
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as it has not been necessary for other methods to work well. We assume a maximum size

of Sd along dimension d for any ROI, and at each step maintain an estimate of the location

of the ROIs, along with the posterior mean µtk ∈ RS1×...×SD and variance ηtk ∈ RS1×...×SD of

each voxel in that ROI:

xk|y1, . . . ,yt ∼ N
(
µtk, diag(ηtk)

)
(4.2)

While there is definitely significant covariance between voxels in a single ROI (otherwise,

neurons would have no recognizable shape), we find that the signal to noise ratio is usually

high enough in the data we are looking at that the shape of neurons can be accurately

estimated without assuming any covariance between pixels, and learning is significantly

faster because the number of parameters to track is lower and updates to the posterior do

not require a full matrix inversion.

To identify regions of interest in a single frame, we use a simple, standard image

processing pipeline. A soma can very roughly be approximated as a Gaussian bump3,

so finding regions of an image likely to contain a neuron can be approximated as finding

parts of the image that match a Gaussian bump template. We convolve each frame with a

Gaussian bump and keep anything that crosses a threshold as a potential region of interest.

This is equivalent to keeping anything that has a high enough correlation with a Gaussian

template. We then divide the areas above threshold into separate watershed regions, and

identify each watershed region as one ROI. We also took advantage of GPU-optimized

routines in MATLAB to accelerate this step. The Gaussian template size and threshold are

parameters that must be chosen.

We decide whether or not to merge an ROI from one frame with ROIs from previous
3For fluorescent indicators localized in the cytosol, soma often appear more “donut” shaped, but we

still find a Gaussian template works well in practice. Learning an optimal template or template basis for
activity-based methods remains an open problem.
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frames by seeing if the residual within a watershed region exceeds a threshold once the

influence of already-detected ROIs has been subtracted off. To compute this residual, we

have to estimate the fluorescence activity rt given our posterior probability of ROI shape

p(xk|y1, . . . ,yt−1) = N (xk|µtk, diag(ηtk)2). From Eqn. 4.1 and Eqn. 4.2, we have that the

marginal distribution of the data at time t given the past is given by

yt|y1, . . . ,yt−1, rt ∼ N
(

K∑
k=1

rtkµ
t
k, σ

2I +
K∑
k=1

ρdiag
(
I(xk)rtk

)
+ diag

(
rtkη

t
k

)2
)

(4.3)

To estimate rt we simplify considerably by dropping the dependence of the variance on rt,

reducing the problem to least squares regression.

Once we have estimated r̂t = arg minrt ||yt−µtrt||22, the residual yt−µtr̂t should be a

sample from a zero-mean Gaussian with variance given above. Let Ωt
j be the support of the

jth watershed region in frame t, and let PΩtj be the projection onto that watershed region.

Then the squared scaled residual inside the watershed should be χ2 distributed with |Ωt
j|

degrees of freedom:

∥∥∥∥∥∥PΩjt

(σ2I +
K∑
k=1

ρdiag
(
I(xk)rtk

)
+ diag

(
rtkη

t
k

)2
)−1/2

(yt − µtr̂t)
∥∥∥∥∥∥

2

2

∼ χ2(|Ωt
j|) (4.4)

If the scaled residual error inside a watershed is highly unlikely under this distribution,

that means that the residual is far above what we’d expect if we’d detected all the ROIs

already. Therefore this watershed region likely corresponds to a new region of interest,

and we create a new ROI accordingly, with µtK+1 set to the value of the residual within

the watershed and zero outside, and ηtK+1 set to the background variance. Generally we
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set this threshold very high, in practice we found a cumulative probability on the order

of 1 − 10−14 worked well. If the residual is consistent with background noise, then that

particular watershed region is assigned to the the ROI with maximum power in that region:

arg maxk ||PΩtj(µ
t
kr
t
k)||2, and the posterior distribution is updated. For simplicity, and to

keep the number of parameters manageable, we ignore cross-terms between ROIs in the

posterior update. This could be considered a variational approximation to the true posterior,

albeit a trivial one. In practice this does not strongly affect the inferred ROI shapes. For

the sake of clarity, let Σ = σ2I + ρdiag(I(X)rt), then the posterior update takes the form:

diag(ηtk) = ((rtk)2Σ−1 + diag(ηt−1
k )−1)−1 (4.5)

µtk = diag(ηtk)(rtkΣ−1PΩtj(y) + diag(ηt−1
k )µt−1

k ) (4.6)

We tested this model on a small sample of data from the optic tectum to validate

the approach. We chose the threshold and template width by inspection on the first few

frames, while σ and ρ were fit automatically: since a large number of ROI were constant

across frames, if the regional maxima between two frames was within 3 pixels the ROI were

automatically merged, and by comparing the residual variance between the two frames, σ

and ρ could be fit by linear regression. We compared the results on this data sample to

human annotators (Fig. 4.1) and found that false positives and negatives were on the order

of 5-10%, comparable to the difference in judgements between annotators. We also looked

at a sample of data across z-planes that includes structured background artifacts due to

refraction of the laser pencil (Fig. 4.2). This leads to a streaky moving shadow in a line

across the data, which can be misinterpreted as an ROI. While there do seem to be slightly

more false positives in the section of the data crossed by this artifact, ROI detection is
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mostly robust.

It is because we simply choose the ROI with the highest power that we call this online

greedy clustering. Alternatively, one could do something like online inference in a Dirichlet

process mixture model. However, the Dirichlet process prior leads to a rich-gets-richer effect

regardless of where the data is located, making it uniformly less likely for a new ROI to be

inferred no matter where in the image one looks. This nonlocal effect is not desirable. One

could also use a prior on ROI locations such as a determinantal point process (Borodin,

2009), however efficient inference with DPPs is still an ongoing area of research, and while

the greedy clustering approach is somewhat heuristic it generally worked well in practice.

In the next section we will present a model with a simple but principled sparsity prior on

ROI locations that also works well.

4.2.2 Applying Online Greedy Clustering to Whole Brain Activ-

ity

We applied online greedy clustering to a set of data from the larval zebrafish brain. GCaMP5

was expressed cytosolically and 1000 frames of spontaneous activity from 80% of the brain

were recorded by light-sheet microscopy at 0.8 Hz while the animal’s head was suspended

in agarose gel. More details on the experimental preparation and recording can be found in

Ahrens et al. (2013). Applying the Gaussian convolution to one frame of data took 30s on

a desktop CPU, but only 1-2 seconds on a Tesla K20 GPU. Both the size of the Gaussian

template and the threshold were chosen by hand by looking at 2-3 frames of data. The

slowest step at each iteration was the regression to compute the fluorescence activity of

existing ROIs: r̂t = arg minrt ||yt − µtrt||22, which took on the order of dozens of seconds,

even with custom code that takes into account the fact that µt is zero outside a small region.
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Figure 4.1: Comparison of human and automated ROI detection. ROI centers found by
online greedy clustering are in red, human annotation is in green. The ROI shapes are
plotted underneath, where the hue is chosen randomly for each ROI, the mean of each pixel
µk is given by the saturation and the precision of each pixel 1/ηk is given by the value. That
is, in bright regions we are highly confident about the shape of that ROI, and in colored
regions we believe that there is a high amount of calcium-dependent fluorescent activity.
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Figure 4.2: Comparison of human and automated ROI detection for one z-slice of 3D data
with “penciling” artifact. The pencil artifact goes vertically through the data about one
third of the way from the left side of the frame. The color scheme is the same as for Fig. 4.1
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Overall, depending on where the threshold was set, one complete run of the algorithm on

an HP SL250 Gen8 node (64 GB) with dual Intel E5-2650L Processors (1.8 GHz) took

between 8 hours and a day, with the overall number of ROIs found varying between 2,300

and 6,000. At the high end of where the threshold was set, visual inspection shows that

some neurons are clearly being missed, while at the low end, a noticeable fraction appear to

be false positives. The rest of the analysis in this section is with the threshold at its lowest

reasonable value, yielding 2,331 regions of interest.

The distribution of ROIs can be seen in Fig. 4.3. The number is dramatically smaller

than the total number of neurons in the field of view, estimated to be closer to 80,000. There

are two likely factors contributing to this: when the animal is not behaving, many neurons

are never active and will not be detected, and the threshold is higher than necessary, to

avoid false positives (for instance, visual inspection of the optic tectum shows some very

sparsely active neurons that are missed). However, we believe that we detect almost all of

the easily visible neurons.

Focusing in more closely on a small number of regions reveals that the detected

ROIs are mostly consistent with what can be seen by eye, despite the diversity of neural

morphology in different regions. In Fig. 4.4 we show detail from a number of different brain

regions, with ROI in color overlaid on the mean fluorescence image. In the right habenula

(Fig. 4.4(a)) the neurons are very densely packed and have diverse (and diffuse) shapes. ROI

detection mostly separates these neurons, though two neurons are occasionally erroneously

merged together. In Fig. 4.4(b) we look at the optic tectum, where neurons are much more

sparsely distributed, and find ROI are well-isolated. There is also a large amount of active

neuropil in the data, and we identify that as ROIs as well, as in Fig. 4.4(c), which divides

an axon tract heading to the spinal cord into many ROI.

Looking at the time course of fluorescence activity also helps to evaluate the per-
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A (still evolving!) implementation of this pipeline can be found at:

http://github.com/dpfau/altai
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Because this algorithm operates on one frame at a time, it can be accelerated 
by using a GPU to parallelize analysis of each image. For example, the image 
blurring step completes in nearly 0.8s on an nVidia Tesla K20 GPU, compared 
to 30s on a CPU. Run time for the entire analysis pipeline on 1000 time 
frames, each including 41 planes of ~1000 x 2000 pixel images, with 
2300 ROIs total, was 8 hrs.

To incorporate shape into our model, we apply a standard pipeline for 
morphological image analysis to each frame: find cell bodies by blurring, 
thresholding and watershedding. This dramatically reduces the search space 
of possible ROIs in one frame, from O(107) to O(102) 

If the squared error exceeds a threshold determined by the Chi square 
probability, create a new ROI, otherwise merge this watershed into an existing 
ROI

Even with a conservative threshold for detection, we find ~2300 active ROIs in spontaneous data from whole-
brain zebrafish recordings (3). The actual number of active neurons is likely larger but the firing rates are 
below the threshold set by artifacts in the data.

100µm

Comparison of ROIs and anatomical image. Each ROI is assigned a unique color and plotted on top of the 
maximum df/f signal. Left: Forebrain. Center: Optic Tectum. Right: Spinal Cord. Note that neurons can be 
reliably identified despite the variety of ROI shapes across anatomical regions.

Individual ROI shapes, compared against mean fluorescence, along with the time course of 
dF/F0 signal recovered by least squares regression. Some ROIs clearly match the mean 
image, some clearly have meaningful activity but fire too sparsely to be visible in the mean 
image, and some are artifact.

We are limited in how far we can lower the threshold by artifacts due to the animal 
moving. Can we filter out these artifacts, potentially doubling the number of ROIs?

Implement detection on a distributed system (e.g. Spark: http://freeman-
lab.github.io/thunder/), could potentially cut analysis time from hours to minutes.

Unify the morphological and matrix factorization approaches to activity-based ROI 
detection. Group lasso with convolutional basis?

Quantitative comparison against anatomical methods for ROI detection and human 
annotation

Compare voxel-wise analyses to ROI-based analyses

Use ROI responses for analyses that are impractical or impossible with voxels

Coronal and sagittal view of GCamp5 expression in a larval zebrafish, with identified ROI locations overlaid in 
red. The location of the details below are given by the blue squares. Both views show the projection of all 
ROIs, while the details below only show ROIs in a single z plane.
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Figure 4.3: Location of regions of interest found by online greedy clustering superimposed
over mean fluorescence image of the larval zebrafish. The blue boxes give the location of
the details in Fig. 4.4.
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Because this algorithm operates on one frame at a time, it can be accelerated 
by using a GPU to parallelize analysis of each image. For example, the image 
blurring step completes in nearly 0.8s on an nVidia Tesla K20 GPU, compared 
to 30s on a CPU. Run time for the entire analysis pipeline on 1000 time 
frames, each including 41 planes of ~1000 x 2000 pixel images, with 
2300 ROIs total, was 8 hrs.

To incorporate shape into our model, we apply a standard pipeline for 
morphological image analysis to each frame: find cell bodies by blurring, 
thresholding and watershedding. This dramatically reduces the search space 
of possible ROIs in one frame, from O(107) to O(102) 

If the squared error exceeds a threshold determined by the Chi square 
probability, create a new ROI, otherwise merge this watershed into an existing 
ROI

Even with a conservative threshold for detection, we find ~2300 active ROIs in spontaneous data from whole-
brain zebrafish recordings (3). The actual number of active neurons is likely larger but the firing rates are 
below the threshold set by artifacts in the data.

100µm

Comparison of ROIs and anatomical image. Each ROI is assigned a unique color and plotted on top of the 
maximum df/f signal. Left: Forebrain. Center: Optic Tectum. Right: Spinal Cord. Note that neurons can be 
reliably identified despite the variety of ROI shapes across anatomical regions.

Individual ROI shapes, compared against mean fluorescence, along with the time course of 
dF/F0 signal recovered by least squares regression. Some ROIs clearly match the mean 
image, some clearly have meaningful activity but fire too sparsely to be visible in the mean 
image, and some are artifact.

We are limited in how far we can lower the threshold by artifacts due to the animal 
moving. Can we filter out these artifacts, potentially doubling the number of ROIs?

Implement detection on a distributed system (e.g. Spark: http://freeman-
lab.github.io/thunder/), could potentially cut analysis time from hours to minutes.

Unify the morphological and matrix factorization approaches to activity-based ROI 
detection. Group lasso with convolutional basis?

Quantitative comparison against anatomical methods for ROI detection and human 
annotation

Compare voxel-wise analyses to ROI-based analyses

Use ROI responses for analyses that are impractical or impossible with voxels

Coronal and sagittal view of GCamp5 expression in a larval zebrafish, with identified ROI locations overlaid in 
red. The location of the details below are given by the blue squares. Both views show the projection of all 
ROIs, while the details below only show ROIs in a single z plane.
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Because this algorithm operates on one frame at a time, it can be accelerated 
by using a GPU to parallelize analysis of each image. For example, the image 
blurring step completes in nearly 0.8s on an nVidia Tesla K20 GPU, compared 
to 30s on a CPU. Run time for the entire analysis pipeline on 1000 time 
frames, each including 41 planes of ~1000 x 2000 pixel images, with 
2300 ROIs total, was 8 hrs.

To incorporate shape into our model, we apply a standard pipeline for 
morphological image analysis to each frame: find cell bodies by blurring, 
thresholding and watershedding. This dramatically reduces the search space 
of possible ROIs in one frame, from O(107) to O(102) 

If the squared error exceeds a threshold determined by the Chi square 
probability, create a new ROI, otherwise merge this watershed into an existing 
ROI

Even with a conservative threshold for detection, we find ~2300 active ROIs in spontaneous data from whole-
brain zebrafish recordings (3). The actual number of active neurons is likely larger but the firing rates are 
below the threshold set by artifacts in the data.
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Comparison of ROIs and anatomical image. Each ROI is assigned a unique color and plotted on top of the 
maximum df/f signal. Left: Forebrain. Center: Optic Tectum. Right: Spinal Cord. Note that neurons can be 
reliably identified despite the variety of ROI shapes across anatomical regions.

Individual ROI shapes, compared against mean fluorescence, along with the time course of 
dF/F0 signal recovered by least squares regression. Some ROIs clearly match the mean 
image, some clearly have meaningful activity but fire too sparsely to be visible in the mean 
image, and some are artifact.

We are limited in how far we can lower the threshold by artifacts due to the animal 
moving. Can we filter out these artifacts, potentially doubling the number of ROIs?

Implement detection on a distributed system (e.g. Spark: http://freeman-
lab.github.io/thunder/), could potentially cut analysis time from hours to minutes.

Unify the morphological and matrix factorization approaches to activity-based ROI 
detection. Group lasso with convolutional basis?

Quantitative comparison against anatomical methods for ROI detection and human 
annotation

Compare voxel-wise analyses to ROI-based analyses

Use ROI responses for analyses that are impractical or impossible with voxels

Coronal and sagittal view of GCamp5 expression in a larval zebrafish, with identified ROI locations overlaid in 
red. The location of the details below are given by the blue squares. Both views show the projection of all 
ROIs, while the details below only show ROIs in a single z plane.
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Because this algorithm operates on one frame at a time, it can be accelerated 
by using a GPU to parallelize analysis of each image. For example, the image 
blurring step completes in nearly 0.8s on an nVidia Tesla K20 GPU, compared 
to 30s on a CPU. Run time for the entire analysis pipeline on 1000 time 
frames, each including 41 planes of ~1000 x 2000 pixel images, with 
2300 ROIs total, was 8 hrs.

To incorporate shape into our model, we apply a standard pipeline for 
morphological image analysis to each frame: find cell bodies by blurring, 
thresholding and watershedding. This dramatically reduces the search space 
of possible ROIs in one frame, from O(107) to O(102) 

If the squared error exceeds a threshold determined by the Chi square 
probability, create a new ROI, otherwise merge this watershed into an existing 
ROI

Even with a conservative threshold for detection, we find ~2300 active ROIs in spontaneous data from whole-
brain zebrafish recordings (3). The actual number of active neurons is likely larger but the firing rates are 
below the threshold set by artifacts in the data.
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Comparison of ROIs and anatomical image. Each ROI is assigned a unique color and plotted on top of the 
maximum df/f signal. Left: Forebrain. Center: Optic Tectum. Right: Spinal Cord. Note that neurons can be 
reliably identified despite the variety of ROI shapes across anatomical regions.

Individual ROI shapes, compared against mean fluorescence, along with the time course of 
dF/F0 signal recovered by least squares regression. Some ROIs clearly match the mean 
image, some clearly have meaningful activity but fire too sparsely to be visible in the mean 
image, and some are artifact.

We are limited in how far we can lower the threshold by artifacts due to the animal 
moving. Can we filter out these artifacts, potentially doubling the number of ROIs?

Implement detection on a distributed system (e.g. Spark: http://freeman-
lab.github.io/thunder/), could potentially cut analysis time from hours to minutes.

Unify the morphological and matrix factorization approaches to activity-based ROI 
detection. Group lasso with convolutional basis?

Quantitative comparison against anatomical methods for ROI detection and human 
annotation

Compare voxel-wise analyses to ROI-based analyses

Use ROI responses for analyses that are impractical or impossible with voxels

Coronal and sagittal view of GCamp5 expression in a larval zebrafish, with identified ROI locations overlaid in 
red. The location of the details below are given by the blue squares. Both views show the projection of all 
ROIs, while the details below only show ROIs in a single z plane.
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(c) Hindbrain

Figure 4.4:
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The latest advances in calcium imaging make it possible to monitor responses in tens of 
thousands of neurons simultaneously. At this scale, it is impractical to hand-label every 
neuron. Many methods for automatic region of interest (ROI) detection either ignore most 
spatial structure (like ICA (1)), making it difficult to scale to very large fields of view, or ignore 
temporal information (2) meaning sparsely firing or overlapping neurons may be missed. We 
develop a method for online automated cell body detection that scales to very large datasets 
and can run in less than a day on a single GPU-enabled machine.

t

i

X

⇡

We are interested in the regime where the number of neurons is larger than the number of time 
steps in the experiment, so low-rank matrix approximation methods are inappropriate. Instead we 
focus on morphology-based methods that scale to very large fields of view but still use all 
available temporal information.
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A (still evolving!) implementation of this pipeline can be found at:

http://github.com/dpfau/altai
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Because this algorithm operates on one frame at a time, it can be accelerated 
by using a GPU to parallelize analysis of each image. For example, the image 
blurring step completes in nearly 0.8s on an nVidia Tesla K20 GPU, compared 
to 30s on a CPU. Run time for the entire analysis pipeline on 1000 time 
frames, each including 41 planes of ~1000 x 2000 pixel images, with 
2300 ROIs total, was 8 hrs.

To incorporate shape into our model, we apply a standard pipeline for 
morphological image analysis to each frame: find cell bodies by blurring, 
thresholding and watershedding. This dramatically reduces the search space 
of possible ROIs in one frame, from O(107) to O(102) 

If the squared error exceeds a threshold determined by the Chi square 
probability, create a new ROI, otherwise merge this watershed into an existing 
ROI

Even with a conservative threshold for detection, we find ~2300 active ROIs in spontaneous data from whole-
brain zebrafish recordings (3). The actual number of active neurons is likely larger but the firing rates are 
below the threshold set by artifacts in the data.

100µm

Comparison of ROIs and anatomical image. Each ROI is assigned a unique color and plotted on top of the 
maximum df/f signal. Left: Forebrain. Center: Optic Tectum. Right: Spinal Cord. Note that neurons can be 
reliably identified despite the variety of ROI shapes across anatomical regions.

Individual ROI shapes, compared against mean fluorescence, along with the time course of 
dF/F0 signal recovered by least squares regression. Some ROIs clearly match the mean 
image, some clearly have meaningful activity but fire too sparsely to be visible in the mean 
image, and some are artifact.

We are limited in how far we can lower the threshold by artifacts due to the animal 
moving. Can we filter out these artifacts, potentially doubling the number of ROIs?

Implement detection on a distributed system (e.g. Spark: http://freeman-
lab.github.io/thunder/), could potentially cut analysis time from hours to minutes.

Unify the morphological and matrix factorization approaches to activity-based ROI 
detection. Group lasso with convolutional basis?

Quantitative comparison against anatomical methods for ROI detection and human 
annotation

Compare voxel-wise analyses to ROI-based analyses

Use ROI responses for analyses that are impractical or impossible with voxels

Coronal and sagittal view of GCamp5 expression in a larval zebrafish, with identified ROI locations overlaid in 
red. The location of the details below are given by the blue squares. Both views show the projection of all 
ROIs, while the details below only show ROIs in a single z plane.
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Figure 4.5: Shape and fluorescence time course of a random sampling of ROI. Some ROI both
match the anatomy and show complex fluorescence dynamics (e.g. top middle, bottom left),
while others show complex dynamics but do not match anything in the mean fluorescence
(e.g. top right), and yet others are likely artifact (e.g. bottom right).

formance of ROI detection, and gives a sense of how diverse neural activity is across the

zebrafish brain. In Fig. 4.2.2 we look at both the shape and time course of a number of

individual ROIs. Some closely match the mean fluorescence image (where neurons can be

distinguished by dark spots, since GCaMP is not expressed in the nucleus of these animals),

while others are so sparsely active that they are not visible at all in the mean image, though

the activity is clearly not random. Others are likely artifact, judging by the fact that they

only cross a threshold for detection once, which is a useful heuristic for being discarded.

4.2.3 Visualizing Spontaneous Activity with Nonlinear Dimen-

sionality Reduction

Once we have reduced the data from raw voxels to activity in regions of interest, the range

of possible analyses becomes much wider. In particular, nonlinear dimensionality reduction

techniques can be practically applied to data at this scale which could not be applied to raw
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voxels, even with the use of distributed clusters. Nonlinear dimensionality reduction en-

compasses a wide range of techniques in machine learning, including classic algorithms such

as multi-dimensional scaling (Kruskal and Wish, 1978) and modern algorithms like Isomap

(Tenenbaum et al., 2000), Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Lapla-

cian Eigenmaps (Belkin and Niyogi, 2003), Hessian Eigenmaps (Donoho and Grimes, 2003),

Semidefinite Embedding (SDE) (Weinberger and Saul, 2006b), and Maximum Variance Un-

folding (MVU) (Weinberger and Saul, 2006a) among others. For a review of the nonlinear

dimensionality reduction literature, we direct the reader to (Lee and Verleysen, 2007).

Nonlinear dimensionality reduction techniques mostly require the construction of a

pairwise similarity matrix, and for this reason scale at least as O(N2) unless approxima-

tions are used, making them difficult to implement in distributed systems. However, for

medium-scale problems they present an attractive approach to exploratory data analysis, as

they can produce visualizations that much more cleanly separate interesting structure than

linear methods like PCA. For instance, in (Stopfer et al., 2003), applying LLE to multiu-

nit recordings from projection neurons in the locust antennal lobe clearly reveals distinct

trajectories of population activity in response to different odorants, and a change in the

structure of these trajectories in response to changes in intensity, thus showing that both

odor intensity and identity are encoded in a separable way at the population level.

We chose to apply t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der

Maaten and Hinton, 2008) to the extracted calcium activity time courses. While many

standard nonlinear dimensionality reduction techniques are not robust to noise and work

well when the data comes from a single manifold, t-SNE is particularly well adapted to the

case when the data contains groups or clusters that exist on many separate manifolds, for

instance multiple handwritten digits, or facial expressions from many individuals. In the

case of whole-brain calcium recordings, different brain regions contain qualitatively different
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kinds of neurons and patterns of activity, while the activity of neurons within those regions

are likely to be similar but still fall on some low-dimensional manifold. Conceptually, t-SNE

works by defining, for every pair of data points, a conditional probability that one point is

the neighbor of another point, and then finding points in a low dimensional space such that

the probability distributions are well matched. In the original paper on Stochastic Neighbor

Embedding (Hinton and Roweis, 2002), the probability of having a neighbor at a certain

distance was taken to be a Gaussian in both the high and low dimensional space. However,

this led to the problem of “crowding”, where most data points were mapped into tight clumps

in the center of the low dimensional space. By replacing the Gaussian distribution with a

Student-t distribution for the low dimensional mapping, the low dimensional embeddings

can “spread out” more, in practice leading to improved visualization.

We looked at t-SNE and PCA applied to 2331 regions of interest recovered by online

greedy clustering. When mapped into the space of principal components, neurons were

largely clumped together and difficult to distinguish, with the exception of two large lobes

that roughly correspond to the hindbrain oscillator and hindbrain-spinal circuit (Fig. 4.8).

This can be more clearly seen if the regions of interest are plotted by position in the zebrafish,

and colored based on position in principal component space, so that ROIs further from the

center have brighter hue (Fig. 4.7). Again, the hindbrain oscillator and hindbrain-spinal

circuit stand out but other anatomical regions are not clearly distinguished. By contrast, t-

SNE projected the regions of interest into a number of groups. The left and right parts of the

hindbrain-spinal circuit were cleanly separated from the rest of the regions of interest, and

functionally distinct regions of the zebrafish brain were far easier to distinguish. This shows

that nonlinear dimensionality reduction techniques, which cannot be applied on a voxel-by-

voxel basis even using distributed algorithms, can be a powerful tool for exploratory data

analysis in whole brain recordings.
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Figure 4.6: Top 3 principal components of spontaneous activity in regions of interest in the
larval zebrafish brain. Color corresponds to the position of each region in the fish (Red:
mediolateral axis. Green: rostrocaudal axis. Blue: dorsoventral axis.)
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Figure 4.7: (a) Regions of interest in the larval zebrafish brain, colored by location of
spontaneous activity projected into principal component space. The coordinate of the 3D
embedding for each ROI is given by the red, green and blue values for each point. The
hindbrain oscillator (A) and hindbrain-spinal circuit (B) can be distinguished by eye but
other anatomical regions are less clear. (b) Sagittal view. (c) Horizontal view.
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Figure 4.8: t-SNE applied to spontaneous activity in regions of interest in the larval zebrafish
brain. Color corresponds to the position of each region in the fish (Red: mediolateral axis.
Green: rostrocaudal axis. Blue: dorsoventral axis.)
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Figure 4.9: (a) Regions of interest in the larval zebrafish brain, colored by location of
spontaneous activity in t-SNE embedding space. The same embedding color scheme is used
as in Fig. 4.7. (b) Sagittal view. (c) Horizontal view.
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It is possible that similar results using t-SNE could be achieved with much simpler

region of interest detection. To see if online greedy clustering really does find a more inter-

pretable, meaningful representation of the data, we applied the same analysis to supervoxels

generated by downsampling the data in the x and y direction. Voxels are separated by 406.25

nm in the x and y direction and roughly 5 µm in the z direction, and were downsampled

by a factor of 12.5 in x and y, so that each supervoxel is roughly 5 µm on a side. We then

discarded any supervoxel where the variance of fluorescence activity did not cross a thresh-

old so that the number of supervoxels was of the same order of magnitude as the number of

regions of interest (3079 total). Applying t-SNE to each supervoxel time series clustered the

data into nearly uniform anatomical group (Fig. 4.10), as opposed to the embedding found

on the results of online greedy clustering, which finds widely spatially distributed ROIs

with correlated activity. This reflects the fact that downsampling the data mixes the signal

between adjacent neurons together, so that neighboring supervoxels will almost always be

correlated and be far more likely to fall into the same cluster. Fine details of the circuitry

are lost, for instance a single neuron that is highly correlated with a distant region of the

brain will have its activity mixed together with neighboring neurons, making it far more

difficult to distinguish.Thus naive methods for reducing the dimensionality of the data can

throw away useful information, making the next stage of analysis far less informative.

4.3 Convolutional Group Lasso

The online greedy clustering method presented in the last section is effective at finding a

large fraction of active neurons in whole-brain recordings, but has a number of flaws. It

has several free parameters that need to be tuned, relies on a number of heuristics that

make implementation complicated, and still takes a large fraction of a day to run even with
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(a)
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Figure 4.10: (a) Supervoxels in the larval zebrafish brain, colored by location of spontaneous
activity in t-SNE embedding space. The embedding color scheme is the same as that used
in Fig. 4.7. (b) Sagittal view. (c) Horizontal view.



104

state-of-the-art GPU technology (though it could likely be optimized further). If we pursue

a distributed rather than online algorithm, this frees us to pursue a much wider range of

models, some of which could be considerably easier to implement. In this section we describe

one such model that is simple but still effective, which we refer to as convolutional group

lasso. The basic idea behind the convolutional group lasso is that most regions of interest

can be approximated by a simple template, only a small number of locations in the field

of view will be at the center of a region of interest, and that while the intensity of that

template may change over the course of recording, the location will not (so long as the data

are well aligned). Once the location of the ROIs are found, the shape of the ROIs can be

approximated by fitting a constrained least squares problem that is easily implemented by

alternately taking the first principal component in an ROI, conditioned on the influence of

any overlapping ROIs having already been subtracted off.

4.3.1 Finding ROI Locations with Group Lasso

Let the range of indices in one frame of data be denotes by the set R, the template for the

shape of an ROI be denoted ψ ∈ R|R|, where |R| is the number of voxels in one frame of the

video, let Z = {zk|k = 1, . . . , K} ⊂ R denote the set of region of interest locations, and let

rkt denote the intensity of fluorescence activity from ROI k at time t, and as a convention

let xi denote the ith column of a matrix X, while xj denotes the jth row. Finally let a

column of a matrix reshaped as a 2D or 3D array in the shape of one frame of video data

be denoted by a capital letter with a superscript, so Xt is just xt reshaped. Then a single

frame of the calcium fluorescence video at time t can be modeled as
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Yt =
(
ψ ∗ xt

)
+ Et (4.7)

Xt
zk

= rkt ∀k = 1, . . . , K (4.8)

Xt
z = 0 if z 6∈ Z (4.9)

Et ∼ N (0, σ2I) (4.10)

This differs from the model used in online greedy clustering. Instead of x denoting the shape

of an ROI, the full array X stores the location of ROIs and intensity of calcium fluorescence

as a large sparse array. If we can recover the matrix X =
(
x1, . . . ,xT

)
we will have full

knowledge of the location and activity rate of all ROIs (though not detailed knowledge

of their shape). For the rest of this chapter however we will work in vectorized notation

wherever possible. Since convolution is a linear operation we can represent it as a matrix:

let Aψ ∈M|R|×|R| be the square matrix that performs 2- or 3-dimensional convolution with

the template ψ. There are two critical things to note about the above generative model: xt

is extremely sparse (for instance, for whole-brain zebrafish data one frame is on the order of

108 voxels but 104 regions of interest), and for an index z 6∈ Z, xtz = 0 for all times t. Thus

to recover X, we should penalize the rows of the matrix (corresponding to the same voxel

in each frame over time) such that the matrix X is not only sparse, but if one entry in X is

pushed to zero, then all entries in that row are pushed to zero. That is exactly the structure

induced by using a group sparsity penalty (Huang and Zhang, 2010), which generalizes

the `1 penalty to groups of entries in a vector that should be made sparse together. The

objective we seek to minimize is given by:

min
X

[
‖AψX−Y‖2 + λ

∑
z

‖xz‖2

]
. (4.11)
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where the sum is taken over all rows z of the matrix X, corresponding to the same voxel in

each frame.

This is a group-sparse optimization problem with a convolutional basis. Exactly re-

covering sparse (or in this case group-sparse) solutions is often difficult with a convolutional

basis, as the basis elements are highly correlated. Trying to recover a sparse vector from a

convolutional basis by `1 minimization approaches will lead to the solution being “smeared

out” due to correlations in the basis. If the regions of interest are well-separated, matching

pursuit (Mallat and Zhang, 1993) can be an effective approximation. For sparse recovery

of continuous-valued locations, continuous basis pursuit is another possibility (Ekanadham

et al., 2011). In practice we find that, despite the smearing inherent in using a generalization

of the `1 penalty for sparse recovery, the ROIs are generally well-separated enough that a

simple threshold-and-regional-maximum step at the end finds good locations.

We solve Eqn. 4.11 by fast iterative soft-thresholding (FISTA) (Beck and Teboulle,

2009). FISTA is a variant of iterative soft-thresholding (ISTA), which is a very simple

algorithm for minimizing convex functions that are the sum of a smooth and nonsmooth

term. Because iterative soft thresholding algorithms only require the computation of the

gradient of the smooth term and the proximal operator of the nonsmooth term, they can

be applied to very large scale problems. However their convergence can be quite slow -

sublinear in the worst case. FISTA extends ISTA to include a momentum term in the

updates, and provably accelerates convergence from O(1/k) to O(1/k2) in the number of

iterations k. There are also extensions to ISTA that under certain conditions can lead

to exponential convergence rates, namely approximate message passing (AMP) (Donoho

et al., 2009), however those conditions are not met when the basis is convolutional, and in

empirical experiments AMP did not fare well compared to FISTA.

FISTA solves the following minimization problem:
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x∗ = min
x∈Rn

[f (x) + λg(x)] . (4.12)

where f(x) is a smooth function with a Lipschitz-continuous gradient: ∃L s.t. ||∇f(x) −

∇f(y)|| ≤ L||x − y|| ∀x,y ∈ R|R| and g(x) is a convex function with a proximal operator

Tt(x) , arg minz g(z) + 1
2t ||x− z||22, via the following iterative algorith:

Algorithm 4 Fast Iterative Soft Threshold (FISTA)
Input Smooth function f(x), gradient ∇f(x), convex function g(x), proximal operator

Tt(x), Lipschitz constant L of ∇f , initial point x0 ∈ R|R|

Output Solution x∗ to Eqn. 4.12

y1 = x0, t1 = 1, µ = λ/L

while ||xk − xk−1|| > ε do

xk = Tµ
[
yk − 2

L
∇f(yk)

]
tk+1 =

(
1 +

√
1 + 4t2k

)
/2

yk+1 = xk + tk−1
tk+1

(xk − xk−1)

end while

x∗ = xk

For the convolutional group lasso problem, the proximal operator for the group spar-

sity penalty has a simple closed form:

[Tt(X)]z =
(

1− t

‖xz‖2

)
+

xz (4.13)

That is, an entire group is scaled by the same factor 1 − t
‖xz‖2

unless this factor is less

than zero, in which case the group is set to zero. The gradient of the smooth part of the

objective is also simple: ∇f(X) = AT
ψ(AψX −Y), which has a Lipschitz constant (equal
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to the maximum eigenvalue of AT
ψAψ) of 2 if the template ψ is normalized, leading to the

following algorithm:

Algorithm 5 FISTA for Convolutional Group Lasso
Input Convolutional template ψ, data Y ∈M|R|×T , initial point X0 ∈M|R|×T

Output Solution X∗ to Eqn. 4.11

W1 = X0, t1 = 1, µ = λ/2

while ||Xk −Xk−1|| > ε do

Xk = Tµ
[
Wk − ATψAψWk + AT

ψY
]

tk+1 =
(
1 +

√
1 + 4t2k

)
/2

Wk+1 = Xk +
(
tk−1
tk+1

)
(Xk −Xk−1)

end while

X∗ = Xk

Note we replace y in Alg. 4 with W to avoid confusion with the data Y. Since Aψ

is a convolution operator, AT
ψ = Aψ and AT

ψAψ = Aψ∗ψ. One natural choice of template

is a Gaussian kernel with covariance Σ: ψ(x) = 1√
2π|Σ|exp(−1

2xTΣ−1x). Then applying

the convolution twice is the same as applying a convolution with a Gaussian kernel with

covariance 2Σ. Moreover, the matrix Aψ never has to be explicitly stored in memory, and

multiplication can be implemented using a fast Fourier transform, meaning one iteration of

FISTA can be run in O(|R|log|R|) time. Moreover, for very large fields of view we can split

the data into patches with a border around them, run FISTA on each patch and stitch the

results back together, so if the data is split into K patches, each step is only O( |R|
K

log|R|).

So long as the border is as wide as the support of the filter applied twice ψ ∗ ψ, the results

will not change. This is exactly the strategy for distributed optimization we will adopt.

There are various ways of extending this basic algorithm to be more robust and
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automated. For instance, we may also want to subtract off a constant background signal u,

in which case the objective becomes:

min
X,u

[∥∥∥∥AψX−Y + 1
T

u1TT
∥∥∥∥2

+ λ
∑
z

‖xz‖2

]
. (4.14)

the Lipschitz constant becomes 2(1 + T−1) as the derivative depends on u as well, and

FISTA can be extended to handle this case as follows:

Algorithm 6 FISTA for Convolutional Group Lasso with Bias
Input Convolutional template ψ, data Y ∈ M|R|×T , initial points X0 ∈ M|R|×T , u0 ∈

R|R|

Output Solution X∗ to Eqn. 4.14

W1 = X0, v1 = u0, t1 = 1, µ = λ
2(1+T−1)

while max(||Xk −Xk−1||, ||uk − uk−1||) > ε do

Xk = Tµ
[
Wk − T

1+T AT
ψAψWk − 1

1+T AT
ψvk1TT + T

1+T AT
ψY

]
uk+1 = vk − 1

1+T

(
AT
ψWk + vk1TT − Y

)
1TT

tk+1 =
(
1 +

√
1 + 4t2k

)
/2

Wk+1 = Xk +
(
tk−1
tk+1

)
(Xk −Xk−1)

vk+1 = uk +
(
tk−1
tk+1

)
(uk − uk−1)

end while

X∗ = Xk, u∗ = uk

4.3.2 Automatically Tuning the Sparsity Parameter

The only free parameters in Eqn. 4.11 are the template ψ and sparsity parameter λ. We

have developed a method for automatically tuning λ by estimating the background noise

and updating λ by gradient descent until the residual variance matches our estimate of σ
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in Eqn. 4.10.

If we have found all regions of interest using group lasso, the the residual is just white

noise:
1
T
‖AψX−Y‖2 = 1

T
‖E‖2 = 1

T

T∑
t=1
‖Et‖2 a.s.−−→ E[‖Et‖2] = |R|σ2 (4.15)

where the limit is taken as T →∞. Therefore, if we denote

X∗ (λ) = argminX

[
‖AψX−Y‖2 + λ

∑
z

‖xz‖2

]
(4.16)

then we would like to choose λ according to λ∗ = argminλ
(
‖AψX∗ (λ)−Y‖2 − |R|Tσ2

)2
.

Note that this estimate of λ would be good, if the data model (Eqn. 4.10) is correct.

However, in order to do this we need to find ‖E‖2 ≈ |R|Tσ2. Denoting r and k to be 2D or

3D indices in R and IYt (k) to be periodogram (an estimator of the power spectral density)

of Yt

IYt (k) = 1
|R|

∣∣∣∣∣∑
r∈R

(
Yt
)

r
e2πi(r·k)

∣∣∣∣∣
2

(4.17)

= 1
|R|

∣∣∣∣∣∑
r∈R

(
AψXt + Et

)
r
e2πi(r·k)

∣∣∣∣∣
2

(4.18)

= 1
|R|

∣∣∣∣∣∑
r∈R

(
AψXt

)
r
e2πi(r·k)

∣∣∣∣∣
2

+ 1
|R|

∣∣∣∣∣∑
r∈R

(
Et
)

r
e2πi(r·k)

∣∣∣∣∣
2

(4.19)

+ 2
|R|

(∑
r∈R

(
AψXt

)
r
e2πi(r·k)

)(∑
u∈R

(
Et
)

u
e2πi(u·k)

)
(4.20)

≈ 1
|R|

∣∣∣∣∣∑
r∈R

(
AψXt

)
r
e2πi(r·k)

∣∣∣∣∣
2

+ σ2 (4.21)

Where in the last line we used the fact that Et is a white noise process, which is uncorrelated

from the spiking process: therefore the second term can be approximated as the constant
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|R|σ2 ≈ ‖Et‖2, and the last term (the interaction term) can be neglected. The first term

represent the power spectral density of the region of interest shapes scaled by calcium

activity, which is small in high frequencies. Empirically, we notice that this high frequency

range covers most of the indices in R. Therefore, a simple estimator of ‖Et‖2 would be the

median of IYt (k). And an estimate of σ2 would be σ̂2 = 1
T

∑
t median [IYt (k)].

To summarize, we aim to reach λ = λ∗ (from Eqn. 4.16). If we solved Eqn. 4.16 by a

homotopy or active set method such as LARS that constructs the full regularization path,

we could simply run such a method until the desired residual variance is reached and stop.

However, for the mixed `1/`2 norm, no exact homotopy method exists (though approximate

homotopy methods do exist (Bach et al., 2004), as well as exact homotopy methods for the

mixed `1/`∞ norm (Zhao et al., 2009)). Thankfully, in practice we find good performance by

a much simpler method: we adapt λ during FISTA using a gradient descent rule interleaved

with the FISTA updates: λk+1 = λk + η
(
‖AψXk (λk)−Y‖2 − |R|T σ̂2

)
where η is some

learning parameter, tuned so we obtain convergence. Note that this converge can occur only

if the estimate σ̂2 is indeed the desired level of MSE. This could be wrong in two cases: (1)

there is non-white noise (which is often the case, for instance noise due to scattering of the

laser pencil as it passes through tissue in light-sheet microscopy) (2) AψXt cannot actually

match the shape of the signal at a reasonable sparsity level, for instance if ψ is a Gaussian

filter which is too broad to be able to reconstruct neuronal shapes. Conversely, we would

not want to make the template width too small, since the shape of a single neuron would

then be fit to several disconnected components in Xt.

4.3.3 Finding ROI Shapes with Alternating SVD

In the ideal case, the fluorescence activity of each neuron is just given by the appropriate

row of X. Many factors make this more complicated in practice. First, when the basis
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for the data is convolutional, sparse or group-sparse penalties do not give sharp solutions,

meaning that the nonzero rows of X∗ will be “smeared out” in relation to the true X, even

when the data is generated from the model. In addition, for real data neuron shapes are

not exactly matched to the template. We can approximately find the center of a region of

interest by taking the norm of each row of X∗ to get an activity map, and taking the ROI

centers to be located at regional maxima. The fluorescence activity of each ROI can then

be taken to be the average of the rows of X∗ within some distance of each peak. However, if

we really want to accurately separate the signals from neighboring or overlapping neurons,

we’d like a more detailed dictionary of neuron shapes, as we have with the greedy clustering

method of Sec. 4.2. This may also be useful if we are interested in classifying different cell

types based on morphology, among other things. We can use the ROI locations as a seed

for a simple algorithm for finding the detailed shape of a neuron.

Suppose we are given a set of masks Ω1, . . . ,Ωk, where Ωk is the support of the kth

ROI. Then we would like to find a dictionary of neuron shapes µ1, . . . , µK and fluorescence

time courses r1, . . . , rK that capture as much variance of the data as possible given the

constraint that µk is zero outside of Ωk:

min
µ1,...,µK ,r1,...,rK

∥∥∥∥∥Y −
K∑
k=1

µkrk
∥∥∥∥∥

2

F

given P⊥Ωk(µ
k) = 0 (4.22)

where P⊥Ω is the projection onto all indices not in Ω.

Starting from initial estimates µ1, . . . , µK ∈ R|R| and r1, . . . , rK we can alternately

minimize the objective for each k keeping all other parameters fixed. Separating k from the

rest of the indices in Eqn. 4.22 gives

min
µk,rk

∥∥∥∥∥∥
Y −

∑
k′ 6=k

µk
′rk′

− µkrk
∥∥∥∥∥∥

2

F

given P⊥Ωk(µk) = 0 (4.23)
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or equivalently

min
µk,rk

∥∥∥∥∥∥PΩk

Y −
∑
k′ 6=k

µk
′rk′

− PΩk

(
µk
)

rk
∥∥∥∥∥∥

2

F

(4.24)

which can be solved exactly by setting PΩk(µk) and rk to the first left and right singular

vector of PΩk

(
Y −∑k′ 6=k µ

k′rk′
)
, with the appropriate scaling. Thus we can locally descend

the objective function Eqn. 4.22 by alternately taking the top singular vector or principal

component of the residual within each ROI conditioned on all other ROI shapes. This is

very similar in spirit to the K-SVD algorithm for dictionary learning (Aharon et al., 2006),

which learns dictionary elements by alternately taking the top singular vector over all data

that currently have that dictionary element as active. In our case, the “active” elements are

voxels in the support of the kth ROI, and do not change after the group lasso step.

One further extension that has proven useful is to add a nonnegativity constraint to

µk and rk, since both the firing rate of a neuron and level of GCaMP expression must be

positive. This also helps to force regions with no GCaMP expression or times with zero

firing rate to zero. In this case Eqn. 4.24 is no longer solved by the top singular vectors,

but by alternately solving a least squares problem with soft threshold:

PΩk(µk) ←
[
PΩk

(
Y rTk
‖rk‖2

)]
+

(4.25)

rk ←
[
µTk Y

‖µk‖2

]
+

(4.26)

repeating these two steps until a desired convergence is reached. While slower than SVD,

the reconstructed ROIs and time series do look significantly cleaner using this technique.
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4.3.4 Results

We applied convolutional group lasso to data from larval zebrafish expressing nuclear-

localized GCaMP. At regular intervals the fish was shown a drifting grating moving upward

from the fish’s point of view. On some trials this triggers the optomotor response, a reflex

in which the fish orients itself in parallel with the direction of visual motion. We chose this

data over the spontaneous data in the previous section for two reasons. First, neurons ex-

pressing nuclear-localized GCaMP are much better approximated by a Gaussian template,

and the lack of dendritic or axonal processes means a single template does a better job of

capturing the range of morphologies. Secondly, the addition of stimulus and behavior means

a much richer set of questions can be asked about the data once we have regions of interest

in hand. We did not apply alternating SVD, as we generally found the regions of interest

were well-separated enough to get a good estimate of the fluorescence activity for each cell

body. In total we found 31345 regions of interest from this dataset. From visual inspection,

a large fraction correspond to cell bodies from the most active neurons (Fig. 4.11), and the

ROIs had a consistent shape for all but the thousand or so least active (Fig. 4.12).

The most prominent feature of the fluorescence activity from this data is that the

majority of ROIs were significantly correlated with behavior. In this case the behavior con-

sists of the total tail deflection, which was triggered on some presentations of the drifting

grating but not others. Just taking the instantaneous correlation between behavior and

fluorescence, 22112 of 31345 ROIs had significant (p<1e-6) correlation with behavior. The

correlated ROIs were distributed almost uniformly through the brain, except in the fore-

brain, where correlation declined moving in the anterior direction, until the correlation was

no longer significant (Fig. 4.15). Among ROIs correlated with behavior, a large number

had negative correlation with behavior, and these ROIs were mostly located in two anatom-

ical regions: two small regions bilaterally in the posterior hindbrain, and two large regions
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bilaterally at the lateral anterior hindbrain.

Looking at the fluorescence activity from different ROIs reveals a rich diversity of

dynamics. The ROIs most strongly correlated with behavior were very well approximated

by filtered versions of the behavior itself (Fig. 4.14(b)), so much so that over 90% of the

variance in fluorescence is accounted for by a linear model driven by behavior. Behavioral

activity was very sparse (Fig. 4.13(a)), and ROI negatively correlated with behavior were

almost always silent during behavior. In particular the ROI in the medial posterior region

of the hindbrain displayed “ramping” activity, where they were silent following a bout of

activity, ramped up to a constant level of activity afterward and then immediately silenced

at the start of behavior (Fig. 4.14(d)). ROIs uncorrelated with behavior naturally showed

a variety of patterns, but the most active ROIs uncorrelated with behavior, particularly

in the forebrain, generally showed long time scale persistent activity not clearly initiated

by anything behavioral (Fig. 4.14(f)). There are also ROIs correlated with the stimulus,

though the neural response is typically more filtered, so instantaneous correlation is not as

good a measure of how “sensory” a neuron is (Fig. 4.14(h)).

Having reduced the data down from hundreds of millions of voxels to tens of thou-

sand of ROIs makes it possible to try analyses that would not scale to raw data. We

applied t-distributed stochastic neighbors embedding (t-SNE) Van der Maaten and Hinton

(2008), a nonlinear dimensionality reduction technique, to the top 5000 ROIs. t-SNE, like

many nonlinear dimensionality reduction techniques, finds a low-dimensional embedding of

high-dimensional data that preserves pairwise distances. Because it builds off of pairwise

information between time series, it scales at least as O(N2) where N is the number of data,

and thus can’t be practically applied to raw voxels, at least without significant approxima-

tion. t-SNE is particularly well suited to data that is naturally structured into clusters, but

still has nonlinear low-dimensional structure within the clusters.
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Because so many ROI were strongly correlated with behavior, we deliberately sub-

tracted off any correlations with behavior before doing dimensionality reduction. In partic-

ular, we projected the data orthogonally to many time-shifted versions of the data, as the

fluorescence activity was often somewhat lagging behavior due to filtering of the calcium

signal. As a control, we applied PCA to the same data (Fig. 4.16). Projecting ROIs onto

the top 3 principal components, there was no apparent clustering of ROIs into different

functional groups. To make comparison to anatomy easier, we also visualized ROIs by lo-

cation in the fish and colored each ROI based on its position in embedding space. ROIs

were roughly evenly distributed through the embedding space, with the most noticeable

feature being some separation along the anterior-to-posterior axis, likely reflecting the fact

that neurons in the forebrain have qualitatively different firing patterns than neurons in the

hindbrain and midbrain.

t-SNE, by contrast, grouped ROIs into a number of clusters, making it signifi-

cantly easier to distinguish functionally distinct regions (Fig. 4.17). ROIs clumped together

throughout the embedding space, and when used to label ROI in anatomical space, several

features are easy to spot. For instance, a large region of the left medial midbrain clearly

stands out in orange. Looking at the fluorescence activity of a number of neurons in that

group reveals they are highly correlated, and not closely locked to behavior (Fig. 4.18).

Regions in the left and right lateral forebrain can clearly be seen to be highly correlated, as

they both stand out in light blue. While drawing conclusions from a single dataset is diffi-

cult, and clearly these analyses would need to be repeated on data from other animals and

experiments under similar conditions, this does show the feasibility of extracting interesting

information using more complicated analyses that can only be applied to data at the scale

of ROIs.
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Figure 4.11: Top: 90th percentile image of fluorescence activity in the zebrafish forebrain.
Middle: contrast normalized image. Bottom: Regions of interest found by convolutional
group lasso superimposed on contrast normalized image. Color indicates magnitude of
fluorescence activity, blue is high activity and red is low activity.
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Figure 4.12: Shapes and fluorescence activity of regions of interest arranged by magnitude of
activity. ROIs 101-120 (a),(b), 1001-1020 (c),(d), 10001-10020 (e),(f), 31001-31020 (g),(h).
Only near the very end does the quality of ROI degrade significantly.
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Figure 4.13: Diversity of neural responses in the larval zebrafish. (a) Time course of drifting
grating stimulus (blue) and two measures of tail deflection (red and green). (b) Fluores-
cence activity of the 100 most active ROIs, showing the mixture of behavior-correlated and
uncorrelated ROIs. (c) Histogram of correlations between fluorescence and behavior, with
gaussian mixture model fit on top. The data is clearly trimodal. (d) histogram of correla-
tion with stimulus. The lack of strongly correlated ROIs is likely due to the filtered nature
of the responses.
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(a) (b)
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(g) (h)

Figure 4.14: A selection of neural activity. Location of ROI on the left, fluorescence (green)
superimposed over behavior or stimulus (blue). (a),(b) The ROI most correlated with
behavior. (c),(d) The ROI most negatively correlated with behavior. Note that activity is
suppressed even after the end of behavior. (e),(f) An ROI not significantly correlated with
behavior. A large fraction of these are located in the forebrain. (g),(h) An ROI in the optic
tectum correlated with the stimulus. Note the response is heavily temporally filtered.
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Figure 4.15: Transverse view of the ROIs in the larval zebrafish brain found by convolutional
group lasso. ROIs not significantly correlated with behavior (p>1e-6) are in green, while
those significantly correlated with behavior are colored according to the instantaneous corre-
lation coefficient between behavior and fluorescence activity. Anatomical regions negatively
correlated with behavior are circled.
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Figure 4.16: PCA applied to fluorescence activity of ROIs. Left: projection of ROIs into
principal component space, colored by anatomical position (red: anterior-posterior. green:
medial-lateral. blue: dorsal-ventral). Right: ROIs colored by position in principal compo-
nent space.
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Figure 4.17: t-SNE applied to fluorescence activity of ROIs. Left: projection of ROIs into
principal component space, colored by anatomical position (red: anterior-posterior. green:
medial-lateral. blue: dorsal-ventral). Right: ROIs colored by position in embedding space.
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Figure 4.18: Fluorescence traces from ROI in the medial midbrain patch in Fig. 4.17
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Chapter 5

Conclusions

If an eternal traveler should journey in any direction,

he would find after untold centuries that the same volumes

are repeated in the same disorder

– which, repeated, becomes order

Jorge Luis Borges, The Library of Babel

It is said that for every question answered in science, ten new questions are intro-

duced. It certainly feels that way at the completion of this thesis. Is it really possible - or

desirable - to create a truly “black box” model for sequential information? Can we make

models that are scalable, robust and also fit nonlinear dynamics? Even if we can accurately

predict the dynamics of a system, what have we actually learned about how it works? And

how can we bridge the gap between rich, powerful statistical models of systems and the

current best methods we have for measuring said systems?

Many of the questions raised by this thesis are paralleled in the ongoing debate
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happening now over “big data” outside the walls of academia. On many real-world machine

learning challenges, state-of-the-art prediction can be achieved with models that have no

domain knowledge built into them - in fact often models perform better without domain

knowledge. This situation is not new in machine learning: Frederick Jelinek, a pioneer of

natural language processing, once famously remarked that “every time a linguist leaves my

group, the recognition rate goes up.” This scenario is in many ways deeply troubling - if

we can learn models directly from data that are able to predict just as well as models with

detailed biophysical knowledge, did we really need the detailed biophysical knowledge in

the first place?

We are not quite so radical as to suggest that knowledge of mechanism is unnecessary.

While we have shown that it is possible to learn good models of how a neuron in culture will

respond to prolonged stimulation, nothing about that model tells you how it will change if

one performs some novel manipulation, say, changing the concentration of some ion in the

medium. Only an understanding of the underlying causes for some phenomenon can achieve

that. And prediction alone is not the only use of a model. Inferring known latent structure

is often just as important, as in most decoding applications, where domain knowledge does

have to be built in. And to actually make a novel scientific discovery, one must already have

a good grasp of what is or is not known about a system, so no black-box algorithm could say

how unexpected some particular dynamics are. Actually extracting scientific insight from

data will continue to be a job for the creative human mind long after most other analytic

tasks have been automated.

There is little doubt that we are moving into an age of “big data” neuroscience.

While many of the advances brought by this will be thanks to existing approaches scaled

up - compute all the receptive fields! - there are surely qualitative changes in the kinds of

insights we can glean from data at this scale. There remains much to be done to develop
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the technology to make these insights possible, and further refine these technologies to make

heroically difficult tasks into everyday lab work. We may soon be in the envious position of

being able to look in to a brain with perfect electrical knowledge. Then the real fun begins.
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