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ABSTRACT 

Multi-scale Representations for Classification of Protein Crystal Images and Multi-Modal 

Registration of the Lung 

Ming Jack Po 

In recent years, multi-resolution techniques have become increasingly popular in the image 

processing community. New techniques have been developed with applications ranging from 

edge detection, texture recognition, image registration, multi-resolution features for image 

classification, and more. The central focus of this two-part thesis is the multi-resolution analysis 

of images. In the first part, we describe multi-resolution approaches used to help with the 

classification of a set of protein crystal images. In the second, we focus on similar approaches 

used to help register a set of 3D image volumes that would otherwise be computationally 

prohibitive without leveraging multi-resolution techniques.  

Specifically, the first part of this work proposes a classification framework that is being 

developed in collaboration with NorthEast Structural Genomics Consortium (NESG) to assist in 

the automated screening of protein crystal images. Several groups have previously proposed 

automated algorithms to expedite such analysis. However, none of the classifiers described in the 

literature are sufficiently accurate or fast enough to be practical in a structural genomics 



 

 

production pipeline. The proposed classification algorithm uses random window sampling of the 

regions of interest to then compute several texture and multi-resolution image descriptor features 

that are subsequently processed through a random forest classifier. The resulting binary classifier 

exceeds 90% in sensitivity and 94% in specificity. Furthermore, the classifier is able to process 

each image with off-the-shelf computer components at approximately 7 seconds for each image, 

a speed that makes this algorithm usable in high throughput settings. 

The second part of this work proposes a 3D image registration algorithm to register regions of 

emphysema as quantified by densitometry on lung CT with MR lung volumes. The ability to 

register quantitatively-determined regions of emphysema with perfusion MRI will allow for 

further exploration of the pathophysiology of Chronic Obstructive Pulmonary Disorder (COPD). 

The registration method involves the registration of CT volumes at different levels of inspiration 

(total lung capacity to functional residual capacity [FRC]) followed by another registration 

between FRC-CT and FRC-MR volume pairs. We propose a registration method based on a 

combination of cubic b-spline registrations that is relatively quick (~4.5 minutes) and accurate 

(~6.3%). The methods presented in this work are being used to explore the relationships between 

regions of emphysema and their pulmonary microvascular blood flow during longitudinal 

progression of COPD. 
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 Introduction Chapter 1: 

In recent years, multi-resolution techniques have become increasingly popular in the image 

processing community. Techniques have been developed whose applications range from edge 

detection and texture recognition to image registration, multi-resolution features for image 

classification and more. However, the idea of analyzing images, or indeed signals, at different 

scales of resolutions is not itself new. Researchers in fields ranging from geology through signal 

analysis to physics have all considered this idea in various guises. Formalized multi-resolution 

architecture offers an efficient framework for extracting information from data at several 

different levels of resolution. Multi-resolution decompositions such as pyramid algorithms can 

be used to reduce the dimensions needed to represent an image, thus reducing the computational 

complexity involved in image processing operations. The same algorithms using the same 

dimension-reduction principles can also be used to efficiently represent data and images in a 

compact and efficient manner, allowing for applications in both data compression and image 

representation.  

In the first major part of this work, we used multi-resolution decomposition to help with the 

classification of a set of protein crystallization screening images produced by a high throughput 

structural genomics pipeline. In the second, a multi-resolution B-spline pyramid architecture was 

used to help register a set of 3D image volumes that would otherwise be computationally 
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prohibitive.  

 OUTLINE 1.1.

This dissertation begins with a description of multi-resolution image analysis methods (Chapter 

2), describing in broad strokes how they are currently used in medical image registration and 

image classification, while providing specific details that lay the necessary groundwork for 

understanding the remainder of the thesis. We proceed to discuss two specific applications of 

multi-resolution image analysis, using two application cases. The first is the use of 

multi-resolution image features to classify a set of protein crystal screening images produced by 

a high throughput structural genomics pipeline. Chapter 2 first discusses the relevant background 

information on protein crystallization screening and the current pipeline that has been developed 

in high throughput structural genomics centers. Chapter 3 and Chapter 4 then introduce the 

newly-built classifier and discuss the results obtained by using its multi-resolution features. The 

second application case used B-spline multi-resolution registration methods in order to register 

two medical image volumes (CT and MRI) in order to further elucidate the pathophysiology of 

disease process in Chronic Obstructive Pulmonary Disorder (COPD). Chapter 5 is focused on 

introducing the relevant current clinical information on and pathophysiological understanding of 

COPD. Chapter 6 then specifically introduces the multi-resolution B-spline-based registration 

algorithm used to register the two different CT and MRI medical volumes.  
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 Multi-resolution Image Analysis Chapter 2: 

In partial differential equations, all current finite element numerical solvers depend on finding 

approximate solutions to boundary value problems by first grossly sampling the solution space 

and then further evaluating the neighborhood of likely candidate solutions. This allows the 

numerical solvers to find solutions that would otherwise be prohibitively long to derive. In image 

processing, similarly, the development of multi-resolution analytical frameworks has allowed for 

classes of algorithms that would otherwise take too long to be usable in practice. Furthermore, 

multi-resolution analytical methods in image processing have allowed for the development of 

new classes of algorithms that can leverage information that exists at high-resolution scales as 

well as low-resolution scales, much akin to how we humans process images. These techniques 

now have applications in edge detection, texture recognition, image registration, image 

compression, and more.  

 IMAGE REGISTRATION 2.1.

Image registration is the process of determining the optimal spatial mapping that matches two 

images to each other [1]. The data may be from different imaging modalities, times, sensors, 

viewpoints, etc. In medical imaging, the most common reasons for image registration include the 

registration to each other of different medical imaging modalities such as CT and MRI, the 

registration of medical data over time, such as the tracking of cancer progression in sequential 
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CTs, and the registration of data between different patients so as to find commonalities within 

patient groups, which is commonly done in fMRI.  

Though the actual algorithms used in this work were implemented in 3D, at this point we can 

introduce the basics of medical image registration in 2D without loss of generality. Given a pair 

of images I1 and I2, image registration tries to determine an optimal function that maps the pixels 

in I2 into the coordinate system of I2. In order to evaluate whether a particular mapping is 

optimal, a similarity measure (cost function) has to be defined a priori, and typically the set of 

possible mappings is evaluated to find the mapping that produces the best score in terms of the 

chosen cost function. This leaves the question of how to define the set of possible mappings. The 

mapping function must also be chosen a priori, and is typically constrained according to the 

registration problem of interest. Otherwise, the set of possible mappings would essentially be 

infinite and therefore computationally intractable.  

 LUNG VOLUME REGISTRATION 2.2.

Registrations of lung data sets have been applied in establishing lung atlases [2], linking 

four-dimensional lung data sets [3], and tracking the motion of lung tissues [4] [5].  The 

registration problem tackled in this work focuses on registering lung volumes of differential 

breath hold statuses, as well as volumes that were acquired by different imaging modalities (CT 

and MRI). Due to the nature of the imaging modalities, and the desire to be consistent with 
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current research and clinical communities, CT lung volumes for emphysema quantification are 

done after patients fully inhale (Total Lung Capacity / TLC), while MRI lung volumes for 

perfusion, the volumes of interest in this work, are typically done after a patient exhales 

(Functional Residual Capacity / FRC). This is partly for historical reasons, but also partly due to 

the extended amount of time that MRI acquisition takes as opposed to image acquisitions in CT.  

In image registration algorithms, it is necessary to define a similarity measure in order to 

evaluate the “fit” of candidate mappings. Typically, similarity measures include Sum of Squared 

Intensity Differences (SSD), Sum of Absolute Differences (SAD), Correlation Coefficients, and 

measures that derive from information theory such as entropy, mutual information, etc. Each of 

these similarity measures contains certain assumptions about the image volumes that are being 

registered. For example, the application of SSD as a similarity measure assumes that the two 

volumes being registered differ only by Gaussian noise after registration (i.e. two photos that 

have been rotated). Other similarity measures allow for a less strict relationship between the two 

image volumes, such as mutual information, which simply assumes that there is a statistical 

relationship between the pixel intensities of the two volumes that are being investigated. 

However, since lung motion, and – especially in the case of COPD patients – the relative 

aeration of lung tissues differ from region to region in the same lung, voxel intensities do not 

follow a simple global statistical relationship that can be directly applied.  

In order to register these two very different types of image volumes (CT at TLC vs. MRI at 
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FRC), we chose to use an intermediary dataset (CT at FRC) in order to perform this image 

registration. Previous groups who have done extensive work on the registration of CT lung 

volumes found that image registration algorithms underperform for CT volumes belonging to the 

same patient but differing in breath-hold status [6], [7]. Thus, we did not believe that direct 

registration of image volumes that differ in both breath hold status and imaging modality would 

be appropriate. Instead, we performed two separate image registration mapping calculations: 1) 

we computed the mapping that will register a CT at TLC image volume with a CT at FRC image 

volume, and 2) we computed the mapping that will register the CT at FRC image volume with 

the MRI at FRC image volume. The two computed mappings were then performed serially in 

order to finally achieve our goal of registering the CT at TLC image volume with the MRI at 

FRC image volume. The two mappings were computed using the same general framework, but 

with different similarity measures. We adapted Choi. et al.’s sum of squared tissue difference as 

our first similarity measure [6], [8]. We then chose to use mutual information as the similarity 

measure of the second mapping, as a global statistical relationship can be assumed and has been 

well validated between CT and MRI image volumes.  

A second major issue that must be addressed is the selection of the space of mapping functions 

that should be explored for these two registration steps. As mentioned earlier, lungs are 

differentially inflated by region during different phases of the respiratory cycle. Lamare et al. [8], 

[9] explored affine transformation mappings for respiratory motion correction, but reported that it 
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was sufficient only for a single organ and associated lesions. Effective correction of differing 

respiratory states thus requires non-rigid image registration, which allows for more flexible 

matching of local details between two images than is possible with rigid registration. It follows 

that we could not use rigid transformations as a basis for our mapping functions. A class of 

non-rigid transformations that preserve the relative computational efficiency of rigid 

transformations but allow for non-rigid mappings are B-splines. B-spline transformation 

additionally guarantees certain “nice” mathematical properties such as smoothness and compact 

support that makes them particularly suitable for medical imaging. However, in the absence of 

appropriate constraints, B-splines can still lead to non-realistic transformations such as folding of 

the image, which does not happen in medical image processing. Efforts have been made to 

regularize non-rigid image registration based on B-splines by making certain reasonable 

assumptions. Rueckert et al. [9], [10] enforced a smoothness constraint on the deformation of 

tissues by directly penalizing the bending energy of the deformation. Sorzano et al. [10], [11] 

proposed a regularizer based on the gradients of the divergence and the curl of the displacement 

field. Rohlfing et al. [11], [12] enforced a volume preserving/incompressibility constraint by 

requiring the Jacobian determinant of a transformation to be 1. Jacobian values represent the 

local volume contraction or expansion of the deformation field. A Jacobian value of less than 1 

reflects local contraction, while a Jacobian value greater than 1 reflects local expansion. A 

Jacobian value of less than 0 would indicate that the deformation field has folded onto itself 

locally. Thus in cases where we are less interested in the absolute incompressibility constraint 
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but would like to avoid local folding deformations, we can enforce a looser constraint than 

Rohlfing et al.’s. In this work, our only constraint on the Jacobian was that it be strictly 

non-negative, which is equivalent to imposing a condition of local invertibility on the non-rigid 

transformation [12], [13].  

 IMAGE CLASSIFICATION 2.3.

Image classification is the process of classifying an image based on its visual content. This can 

be as simple as determining whether an image is black or white, but can also grow in complexity 

into algorithms that, for instance, help military drones identify potential targets or help track the 

progression of cancer in patients. Image classification algorithms are generally segregated as 

supervised or unsupervised. In supervised algorithms, the number of classes are known ahead of 

time, and the problem at hand is to determine the correct class labeling for the unlabeled images. 

In unsupervised algorithms, the number of classes are not known a priori, and it is up to the 

algorithm to determine how many potential classes should be created in order to best 

differentiate images within the dataset. An example would be classifying fish in the ocean. A 

supervised algorithm may only be interested in distinguishing between a shark and a dolphin. An 

unsupervised algorithm might be used to determine the number of different types of fish that 

exist in a batch of 1000 images taken of fish. Here, we mainly focus on supervised algorithms, 

since they best respond to the type of problem tackled in this work.  
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In supervised image classification, the general framework consists of first locating the regions of 

interest, i.e., in our example, finding the fishes that need to be analyzed in the photos. The region 

of interest then needs to be described in terms of image descriptors, which are commonly termed 

“features” in the image processing community. After the features are extracted, the problem is 

similar to most data classification problems, and different types of classification schemes, 

including EM clustering, SVM, graph structures, min cuts, etc., can be applied to the features in 

order to compute the proper classifications.  

 

Figure 2.1: Typical processing steps in a supervised learning algorithms. 

The performance of an image classification algorithm is dependent on two major factors: 1) the 

selection of features which provide the input to the classification algorithm, and 2) the 
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classification method used in the algorithm itself.  

Feature selection is a consistent problem in machine learning. Data overfitting arises when there 

are a large number of features and the number of samples used in training the classifier is fairly 

small. Additionally, overly complex image features significantly slow down the classification 

process, leading to impractical algorithms for certain real-world applications.  

 FEATURE SELECTION 2.4.

One of the simplest image features that can be computed is the mean of intensities of the pixels 

in an image. One can see how this image descriptor would be sufficient to classify images that 

are light vs. images that are dark. However, this simple image descriptor will not be useful for 

more complex classification tasks. Thus, the image processing community has generated a 

number of image descriptors that are also based on an image’s histogram, such as using the 

various moments of the grey level histogram as additional image descriptors. It is important to 

note that all image features computed from an image’s histogram will, inherently, only represent 

the global properties of an image, but be unable to distinguish its more complex topology, such 

as textures. Multi-resolution image features are therefore essential for complex classification 

tasks where the images of interest are globally similar, but their differences are derived from 

small parts of the region of interest.  
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 Crystal Image Recognition Chapter 3: 

The task of determining protein structures has been a major aim of the biology community for 

the past several decades [14]. With the completion of the Human Genome Project (HGP) in 

February 2001, it became evident to the biological community that the wealth of information 

available in the genomic sequence was matched by the amount of information that was 

inaccessible without a proper understanding of the proteins that these genomic sequences 

encoded. Furthermore, it became clear that many diseases cannot be attributed to errors in the 

genomic sequence, but rather to the interplay of abnormal proteins generated from normal 

genetic data. Some of these abnormalities in protein functions can be attributed to proteins with 

abnormal constituent components, but others can be ascribed to proteins possessing the correct 

constituent components but that have formed an inappropriate structure, akin to incorrectly 

assembling a piece of Ikea furniture and ending up with a chair rather than a bookshelf, even 

though none of the parts for the bookshelf are missing or poorly made.  

There currently exists no method of performing a de novo prediction of a protein structure purely 

from its genomic sequence, and protein structure determination thus currently relies on 

experimentally determined structures. By the completion of the Human Genome Project, 

approximately 200 new protein folds were being solved per year. The spectacular success [13], 

[15] of the highly collaborative HGP prompted the creation of several structural genomics 
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consortiums in the hope that a similar systematic effort in high throughput structural genomics 

might be able to significantly increase the number of structures solved, and do so at a much 

lower cost than is currently the case [15], [16]. These consortiums focused on creating 

high-throughput crystallography pipelines, one component of which forms the focus of part of 

this thesis.  

 BIOCHEMICAL BACKGROUND 3.1.

 Protein Structures 3.1.1.

 

Figure 3.1: Chemical structure of amino acids. A single, generic amino acid is shown in (a). R 

denotes the side-chain atoms-acid – unique to each amino-acid type. The backbone atoms are 

shown in the bottom (blue) box. In (b) I show two specific amino-acid residues (serine and 

valine) linked by a peptide bond. 

At their base, proteins are formed of amino acids, which serve as biological molecules in their 

own right and fulfill a variety of functions. Several hundred of these amino acids exists, but only 

20 play a predominant role in the human body. A characteristic R-group determines each amino 

acid’s chemical nature and, therefore, how it interacts with other amino acids, other molecules, 
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and its environment. 

Amino acids link together via peptide bonds to form peptides and proteins. These 

peptides/proteins play an essential role in almost all cell functions in living organisms, including 

in catalyzing reactions, cell signaling, and structural support. The exact linear order in which 

amino acids are linked together is a protein’s primary structure.  

After amino acids are linked into this primary structure, additional processing steps take the 

linear structures and fold them into their final three-dimensional shape. The final 

three-dimensional configurations of a protein depends on a host of factors, including intrinsic 

bonding forces inside the protein as well as the external environment and, often, interactions with 

other proteins.  

 Protein X-Ray Crystallography 3.1.2.

Several methods exist to determine the structure of proteins, though over 90% of the protein 

structures currently available in the Protein Data Bank were determined using X-ray 

crystallography. In recent year, NMR methods have also been used to obtain three-dimensional 

models of small protein molecules, but it has not yet been widely adopted and the technique is 

still considered immature by the crystallography community [16], [17].  

The end goal of both X-ray crystallography and NMR-based protein structure determination 



 

14 

methods is to solve the tertiary structure of a protein of interest. We focus on X-ray 

crystallography, as that is the primary method used by high-throughput structural genomics 

consortiums. 

Protein structures cannot currently be directly observed, and X-ray crystallography is thus an 

experimental method used to infer a protein’s structure by examining its figurative shadow. This 

is akin to reading radiographs of the human body from different angles and building a best guess 

of the anatomical locations of various organs in 3D. Much like conventional X-rays, X-ray 

crystallography involves directing a beam of X-rays onto the crystallized version of the protein 

of interest. The resulting image produced is a 2D electron-density map that is then inversely 

solved by computationally finding the best fit among various candidate 3D conformations of the 

protein of interest into the electron-density map. The quality of the final tertiary structure is thus 

dependent on the resolution of the electron-density map, which is in turn dependent on how well 

the protein crystal is able to diffract the X-ray beam. The primary determinant of a protein 

crystal’s ability to diffract the X-ray beam is how well-ordered the protein crystal is. Thus, of 

primary interest to X-ray crystallographers is the ability to crystallize their protein of interest, 

and then to further improve their results by choosing crystallization conditions that produces 

large and pure crystals.  

Crystallization is neither easily achieved nor rapid; it can require several months for sufficiently 

large crystals (~0.5 mm) to grow from microcrystals. Furthermore, a number of different 
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parameters, including pH, temperature, protein concentration, the nature of the solvent and 

precipitant, and the presence of added ions or ligands to the protein have a critical effect on 

crystal formation. Finding the few correct combinations of these parameters that might provide 

crystals suitable for X-ray diffraction analysis is therefore a lengthy task requiring multiple 

experiments.  

 

Figure 3.2: Crystals of recombinant enzyme RuBisCo from Anacystis nidulans formed by the 

hanging-drop method. (Courtesy of Janet Newman, Uppsala, who produced these crystals.) 

 NORTHEAST STRUCTURAL GENOMICS 3.2.

CONSORTIUM (NESG) 

Due to the large number of conditions that have to be screened in order to grow crystals suitable 

for X-ray diffraction analysis, the structural genomics consortiums have all attempted to 

automate the screening of these crystallization conditions. Significant resources and efforts have 

protein solution 

precipitant 

seal 

glass plate 
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been spent on creating micro-crystallization experiments that 1) use a relatively small amount of 

protein that are typically difficult to produce/purify, and 2) can be standardized and reproduced 

at sufficient scale to simultaneously screen multiple reagent conditions and multiple proteins of 

interest.  

 

Figure 3.3: An example of the microbatch-under-oil crystallization experiments as contrasted 

with the previous figure’s hanging-drop experiments. 

 

Figure 3.4: Left: A robotic system used at NESG for the microbatch-under-oil crystallization 

experiments. Middle: An example of the 1536 well plates used. Right: An example of an image 

taken from under the well. 

Currently, in a typical high throughput setup a very small amount of protein (1.5 microliters or 

even less) is plated into micro-wells and a thousand combinatorial arrangements of several 

crystallization parameters, such as temperature, pH, and solute, are simultaneously tested to find 
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conditions where promising crystallization can be detected. Because time scales for the 

formation and dissolution of crystals differ, images from multiple time points are recorded for 

each experimental condition. Consortiums in structural genomics such as Northeast Structural 

Genomics (NESG) now perform tens of millions of such micro-experiments annually, resulting 

in a need to analyze an even larger number of images. At present the images are classified 

manually. With over 10 million images generated annually, crystallographers can only inspect 

one time point per experimental setup even though photos from multiple time points exist, in 

order to evaluate whether a specific experimental condition might have produced viable crystals. 

Adding to the difficulty of classification is the relatively small rate of crystal images vs. 

non-crystal images in the real world (1%), which leaves a particularly delicate balance for any 

classifier between missing images containing crystals or generating so many false positives as to 

make the high throughput system worthless for practical use.  

Thus, one major focus of this thesis is the development of an image classification framework that 

can automate the evaluation of the images captured to determine whether certain micro-wells 

contain crystals. Several groups have previously proposed automated algorithms to help such 

analysis. The proposed algorithms all involve the use of supervised learning algorithms. These 

mainly revolve around the use of neural nets [18], [19], Linear Discriminant Analysis [20], [21], 

or the use of support vector machines [22] [23]. According to current literature, both classes of 

supervised learning algorithms have been implemented without significant success. This can be 
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attributed to the relatively few optimizations that were performed, as well as the lack of training 

and testing data available to the previous groups. Furthermore, none of the classifiers described 

in the literature thus far perform at fast enough speeds to be practical in a production structural 

biology pipeline. 

The current backlog of images at the NESG alone exceeds 50 million images. To finish 

processing this backlog in 5 years, an algorithm must process more than 20 images per minute 

(i.e. one image every 3 seconds) as opposed to the current average speed of one image per 30 

seconds, or 2 images a minute [18]. That is, the algorithm must perform at ten times the current 

speed to prevent the backlog from taking 50 years to process. This speed up can be achieved 

either via the use of a supercomputing grid, as proposed by Cumbaa et al., or by a classification 

algorithm that can be parallelized and run sufficiently fast such that two or three off-the-shelf 

computers can accomplish the task, as proposed in this paper.  
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Figure 3.5: Adapted from [17], [18], showing the NESG structural genomics high-throughput 

pipeline for protein production and protein crystallization screening.  
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 Protein Crystal Image Chapter 4: 

Classification 

One of the primary issues in automating the classification of protein crystallization images is the 

varying size, shapes, and textures of the crystals present in the images. In some images, crystals 

with regular polyhedral shapes can occupy the majority of the region of interest. In other images 

that are equally promising of potential crystallization, small crystals spanning only a few pixels 

can be distributed throughout the image or localized in a small area of the image. Thus, any 

classification scheme must be able to cope both with image features that sometimes span the 

entire well and with image features that can be extremely localized. Textural-based classification 

methods can be very suitable for the detection of global features, but special attention must be 

paid to correctly identifying the Region of Interest (ROI). Similarly, purely shape-based 

techniques are extremely dependent on the correct identification of potential crystals, and are 

additionally sensitive to the added noise of elements in the image such as skin, precipitates, etc. 

To tackle both the ROI concern and the need for speed and thus parallelizable calculations, we 

chose to resample the images into sub-images (windows). Each window was then put into our 

classification algorithm and a voting system was used to evaluate the feature vectors computed 

from each window. The flowchart of our method is shown in Figure 4.1. First, we identified the 

image’s ROI; the system then extracted and selected a set of windows from the ROI. For each 

selected window, a feature vector was then computed, based on the texture and shape analysis. 
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Finally the feature vectors were classified using a random forest classifier. 

 

Figure 4.1: Flowchart of the method used. 

 DATA 4.1.

Three data sets were used in the validation of the algorithm described in this work. Each data set 

consisted of grayscale (8-bit) protein crystal micro-well images measuring 632 by 504 pixels. 

Sample images can be seen in Figure 4.3. One data set consisting of 63,445 images derived from 

micro-well experiments on 96 different proteins was manually classified by 3 independent 

crystallographers at the Hauptman Woodward Medical Research Institute at the State University 

of New York at Buffalo [24], [25]. Each image was categorized into one or more of the 
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following categories: Clear, Phase Separation, Precipitate, Skin, Crystal, Garbage, Unsure. 

Unsure images were not used for the analysis, resulting in a total of 63,023 images from the f96 

study. Examples of the 10 outcomes of the f96 study are shown in Figure 4.4 below. 

Due to the relatively small number of protein crystal images that resulted in the f96 protein study, 

two additional datasets were obtained in order to better improve the classifier. These two datasets 

consisted of micro-well images that were taken by HWI in collaboration with Structural and 

Functional Genomics Consortium (SGPP) and Northeast Structure Genomics Consortium 

(NESG). Both datasets consisted of images that were classified by crystallographers as 

containing crystals, but that do not further delineate between images that contain only crystals, or 

images that may contain crystals & precipitate or crystal & phase separation, as the f96 study 

does. Thus these two additional datasets were used later in the work to train the binary classifier, 

but not used for experiments involving the 9-way classifier.  
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Table 4.1 The distribution of image classes from the three datasets used in the study. Only 

approximately 1% of all images in a representative study contain crystals.  

Class F96 Images SGPP Images NESG Images 

Clear 26,136   

Phase separation & precipitate 388   

Phase separation & crystal 26   

Phase separation 5,374   

Precipitate & crystal 63   

Precipitate & skin 3,822   

Precipitate 26,457   

Skin 608   

Crystals only 149   

Crystals or crystals + another class  10,373 5,814 

Total 63,023   

 METHODS 4.2.

 Image segmentation 4.2.1.

As can be seen in figure 4.3, each crystallization experiment image consisted of a centered 

circular well and surrounding margins to ensure that the full well had been captured. Due to the 

number of experiments that are routinely performed, high throughput protein crystallization 

centers have developed robotics systems to perform the setup, loading / unloading, and 

subsequent imaging of the micro-well experiments [26]. This allows for the images that are 

obtained to be fairly consistent in brightness and contrast, and their region of interest (micro-well) 

to be reasonably centered within the picture’s field of view. Nevertheless, even with the 
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development of the robotics system, there remained a sizable number of images where this was 

not achieved (Figure 4.2). Thus, the first step in our pre-processing algorithm required the 

correct identification of the micro-well.  

Our earlier attempts at segmenting the region of interest included simply choosing the middle 64 

x 64 boxes for further processing. Though this did not fully identify the entirety of the 

micro-well, it had the advantage of being extremely fast. It is conceivable that this would be 

sufficient for a classifier if the entirety of the micro-well were indeed fairly uniform in nature. 

However, we quickly noticed that the segmentation results would at times miss key identifiers in 

pictures (Figure 4.2). This led to an image classifier unable to recognize those images as crystals.  

  

Figure 4.2: On the left, a typical image that is relatively well centered with good contrast. The 

right image shows a well that is significantly off centered and is in fact not fully in the camera’s 

field of view. 

We next tried to use an ellipsoidal multiple population genetic algorithm in order to segment the 

entire circular region that represented the micro-well. The choice of the ellipsoidal algorithm was 

made because it was noted that several micro-well regions in the training data set were not 
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perfectly circular. Further details about that algorithm can be found in a previous publication by 

Po et al. [18], [27]. Though the algorithm turned out to be extremely accurate, the processing 

time took over 50 seconds per image, and further optimization was unable to significantly reduce 

the processing time.  

That segmentation algorithm was therefore abandoned and Circular Hough Transform (CHT) 

was evaluated. A circle with radius R and center (a, b) can be described with a set of two 

parametric equations [18], [27]:  

�	 = 	�	 + 	�	���(�) 

�	 = 	�	 + 	�	���(�). 

CHT determines the location of circular shapes in an image by systematically cataloging possible  

(a, b, R) triplets in an image. 

Specifically, for each pixel in an image, the set of possible circles as defined by their parametric 

triplets (a, b, R) were computed and incremented appropriately in a three-dimensional 

accumulator matrix. This process was iterated over all foreground pixels in an image. The 

maximal count in the accumulator matrix denotes the parametric triple (a, b, R) that belongs to 

the circle with the largest perimeter points in the image. This method is sometimes difficult to 

implement in practice due to its sensitivity to noise and the need to identify the approximate 

dimensions of the circle(s) that is/are being identified. 
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Crystal Precipitate Precipitate & Skin 

   
Clear Skin Phase Separation 

   
Precipitate & Crystal Unsure Phase Separation & Precipitate 

 

 

 

 Phase Separation & Crystal  

Figure 4.3: Sample outcome images. 

However, the wells in our images were generally fairly well-centered and are similar in size. 

Thus, we were able to implement CHT and significantly speed up execution by limiting the 

accumulator matrix to only reasonable parametric triplets (a, b, R).  
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Figure 4.4: On the left, a typical image as inputted to the system. The middle picture shows the 

identification of the well using CHT. The right picture shows the random window generation 

inside the segmented well. 

 Feature extraction 4.2.2.

Feature extraction allows us to represent high-dimensional image data with a set of vectors with 

lower dimensions, typically termed feature vectors. These feature vectors are not unique for each 

image, and are typically defined differently per application. All classification schemas are 

significantly dependent on these chosen feature vectors, and we therefore experimented with a 

large number of these before settling on our final set of features. Some of the features that were 

previously tested can be found in our earlier publications [18], [28]. In prior work, we primarily 

focused on using first-order and second-order image features derived from a Laplacian pyramid 

decomposition of the original full image. After significant parameter tuning of the classifier 

described above, we were unable to improve the positive predictive value (PPV) above 85% and 

we began to look towards the addition of other features to help improve the classification 
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performance.  

We settled on four complementary image features to summarize the images: 1) Gabor wavelets 

transform, 2) Gray Level Co-occurrence Matrix, 3) Local Binary Pattern, and 4) Radon 

Transform. The Gabor wavelets transform captured the micro-texture that small crystals form in 

the image by analyzing a multi-scale multi-orientation representation of the images. The Gray 

Level Co-occurrence Matrix (GLCM) extracted second-order statistics from the image histogram 

by analyzing several aspects of the texture such as skewness, entropy, etc. Local Binary Pattern 

(LBP) was used to analyze the invariant texture properties. Radon transform was able to capture 

the relative orientation of any big crystals present in the image.  

4.2.2.1. Gabor Wavelets 

The Gabor wavelets transform was created in 1946 by Denis Gabor [28], [29]. It is one of the 

most popular feature extraction methods due to its biological relevance and its multi-resolution 

and multi-orientation properties, which are optimal for measuring local spatial frequencies and 

characterizing textures [29], [30]. The 2D Gabor transform is a Gaussian function modeled by a 

sinusoid oriented with a specific frequency W and a specific direction O. Its 2D definition in 

space domain is given by g(x,y) and in frequency domain by G(u,v) respectively [30], [31]: 
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The Gabor transform can be adapted into a wavelet by creating a family of pairwise similar 

Gabor functions that differ by dilations and rotations [30], [31]. A filter dictionary can be 

generated by dilatations and rotations of �(�, �) through the function [30]: 

���(�, �) = 	����(��, ��) 

where > 	1,� = 0,1,2, … ,� , � = 	0,1,2, … , �   and m,n specify the scale and orientation 

respectively. � is the total number of scales, and �  is the total number of orientations.  

�� = 	���(����� + �����) 

�� = 	���(−����� + �����) 
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where the values �� and �� characterize the spatial domain and the filter band extension in the 

�, � direction. The values of �� and ��  are the values of the lower and higher cutoff frequencies 

respectively [30], [32]. 

In order to extract information from an image using this method, it is necessary to convolve each 

image with a set of predefined filters with a number of scales �, rotations � , and frequency 

intervals U�, and �� . Let �(�, �)	be a window image and ���(�, �) the Gabor filter with scale m 

and orientation n, then the set of convolved images is obtained using [32]: 

��,�(�, �) = �(�, �) ∗���(�, �) 

where ���  is the convoluted image of scale �  and orientation � . The descriptor ���  is 

obtained by extracting the energy value of the convoluted image, defined by: 

E�� = ∑ �r�� (�,�)�
�

�,� . 

The feature vector is then constructed by concatenating the energy values of each convoluted 

image with the number of scales 	K and orientations � determinate the size of the vector [32], 

[33]. Figure 4.5 shows this process: 
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Figure 4.5: Feature extraction using Gabor wavelets. 

4.2.2.2. Local Binary Pattern (LBP) 

The multiresolution grayscale and rotation invariation Local Binary Pattern feature was first 

described in 2001 by Ojala et al. for the expressed purpose of fast and highly effective texture 

classification [34], [33]. Ojala’s implementation of the classifier as described in their 

publications in 2001 and 2002 was used in this work. The LBP operator is defined by a 

convolution mask that labels pixels in a 3x3 neighborhood ��(� = 0,1, … ,7) of a central pixel �� 

by the following transformation [33]: 

���� − ���= 	�
1, �� <= ��
0, �� = ��

. 
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The convolved 3x3 neighborhood is then converted into one number using the rule: 

	LBP = 	∑ S(f�-f�)2
��

��� . 

 

Figure 4.6: Feature extraction using LBP method. 

The derived LBP binary codes are then bit shifted to derive the smallest possible bit code in 

order to preserve rotation invariance. Specifically, for binary numbers such as 01001000 and 

00010010, both would be bit shifted to 00001001. This process is then repeated for every pixel in 

the image, resulting in a new local binary pattern coded image. The count of each unique LBP 

codes derived from the image histogram of the resulting LBP binary pattern coded image are 

then used as the actual features in the classifier.  
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The original LBP binary codes with 8 neighbors would result in 256 unique LBPs, but the bit 

shift procedure described above decreases the LBP feature space into only 36 unique LBPs. Thus 

this feature ultimately allows for 36 total dimensions for an input window of interest. 

4.2.2.3. Gray Level Co-occurrence Matrix (GLCM) 

GLCM describes second order statistics from an image histogram that are also locally invariant 

to gray level monotonic transformations, and are representative of the texture of an image [7]. 

The use of GLCM in texture classification is common in image processing, but the exact 

implementation varies to accommodate the need of the classification task at hand [35].  

For all pairwise selected points in an image �(�, �) with intensities i, j: 

�(��, ��) = �	���	�(��, ��) = �, 

we can define a co-occurrence matrix that describes the relationship between all such pairs by 

tabulating the relative frequencies ���(�, �) appearing in an image separated by a distance d in 

direction � where: 

(��, ��) = (��, ��) + (�	����, �	����). 

This generates a matrix of dimensions equal to the number of intensities in the image for each 

distance d and orientation �. For our implementation, we explored a radius of 4 around each 

point, or a total of 24 neighboring boxes. To reduce the computational cost of the algorithm, we 
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computed GLCM matrices quantized to 8 gray levels and four orientations 

(0�, 45�, 90�, 135�).	After the GLCM was fully calculated, 22 features were then calculated from 

the GLCM matrices, resulting in 176 total dimensions represented in the feature space. The 22 

features included common features such as sum of average, sum of variance, sum of entropy, 

difference of variance, difference of entropy, sum of squared variance, maximum probability, 

entropy, energy, correlation, autocorrelation, and features that others have proposed for GLCM: 

inverse difference [36], normalized inverse difference [36], normalized first moment of the 

inverse difference [36], two types of correlation measures [37], dissimilarity [35], cluster shade 

[35] and cluster prominence [35].  

 

Figure 4.7: Feature extraction using co-occurrence matrix. 

4.2.2.4. Modified Radon transform 

The Radon transform has been used in image analysis to capture the directional information of 
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textures in an image. In our novel implementation, we used it as a shape descriptor, given its 

ability to detect large objects such as large crystals and accurately capture object orientation (in 

this case, crystal edges). A particularly useful property of this method is that when a texture has 

no significant orientation, the resultant feature vector from the Radon transform will be relatively 

empty of information and therefore non-contributory during classification. Thus, this image 

feature is able to pick out images with large orientations while minimizing its contribution during 

classification for images without such properties.  

The Radon transform calculates the projections in specified directions of a texture or series of 

objects in an image by the equation [38]: 

R� = 	∫ f(x'cosθ-y'sinθ, x'��

-�
sinθ + y'cosθ)dy', 

where 

��'
�'
� = ����	�	 ����

-����	����
���

�
�. 

The operator maps the image �(�, �) to the projection domain (�, �), where � is the angle 

and � is the distance to the origin. The transform generates an accumulator array of 180 points 

�0-179� based on the spatial distribution of points in space. The maximum intensity in the 

accumulator array determinates the most probable angle of the texture or object in it. Figure 4.8 

shows the result of applying the modified Radon Transform to a region of interest with a large 

crystal and thus significant directionality in the texture [38].  
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The transform accumulator array was then bucketed into 60 bins and, similarly to LBP, the count 

of each unique radon accumulator array code were then used as the actual features in the 

classifier.  

Figure 4.8: Radon transform of a window image containing a large crystal. 

 Window generation 4.2.3.

After the well was located in the acquired image, we sought to subsample the well by identifying 

windows of 40 pixels x 40 pixels. 100 overlapping windows were generated by randomly 

generating X,Y positions to serve as the top left corner of each window (Figure 4.4). The large 

number of windows ensured that at least a small portion of any crystal present in the image was 
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captured. The windows were then clustered into 5 clusters, whereupon we sought to analyze the 

25 most representative windows for further analysis. We computed the “distance” between 

image windows by using the variance and energy of each window as a metric. This 

approximation has shown success in different texture feature extraction methods [39], [40]. 

Variance and energy are first order statistics derived from the image histogram. Let ℎ(�)h(i) be 

the histogram of a grayscale image and �(�)	a probability density function, then: 

�(�) = 	
�(�)

���
. 

Where �	 = 	0,1,2, … , � − 1 and �  is number of grayscale tones used in the image. The variance 

(��) and energy (�e) can then be defined from the image histogram and p(i) as: 

�� = �(� − �)��(�)

���

���

 

� = 	∑ [�(�)]����
��� . 

The above statistics were calculated for each window and the windows were then clustered using 

the Mahalanobis distance. Specifically, the distance between image � and image � can be 

defined as: 

�(�;�) = � (� − �)� ∑ (� − �)��
. , 

where ∑ (� − �)��
. ∑ (p-q)

-�  represents the covariance matrix. The 25 windows that most represent 
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the different clusters were then chosen for further processing. This allowed the algorithm to 

process multiple windows simultaneously in parallel cores while also ensuring that all interesting 

regions of the image of interest would be examined by the classifier.  

 Random Forest Classification  4.2.4.

The Random Forest (RF) classification model is an ensemble learning method that constructs 

numerous decision trees at training time and classifies results using the mode of the classes 

output by each individual tree. The basic premise is that even a group of “weak” classifiers can 

together outperform any individual “strong” classifier. Thus, instead of relying on any single 

classifier, a large number of separate decision trees are used as an ensemble. The use of a large 

number of separate decision trees also helps prevent high variance or high bias issues that are 

common in single decision tree classifiers. RF attempts to mitigate these two problems by 

creating a set of random decision trees (ensemble), and then averaging the results of each tree, 

thereby finding a natural balance between the two extremes. The strength of a RF classifier is 

dependent on the strength and the correlation between individual tree classifiers in the ensemble. 

If all trees in the ensemble were identical, the RF classifier’s performance would be identical to 

the one decision tree, which defeats the point of an ensemble. 

In order to ensure that individual tree classifiers in the ensemble are different, the RF 

implementation as suggested by Breiman [41] and adapted in this work trains the individual tree 
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classifiers using different portions of the training dataset. Specifically, each individual tree 

classifier trained on only 2/3 of the total training sample provided to the RF classifier. The 2/3 

portion of the training dataset shown to each individual tree classifier was different; thus, no 

portion of the training set was wasted, while simultaneously this helped ensure that no individual 

tree was identical to another. In addition to only showing each tree classifier a portion of the 

training dataset, each tree classifier was also only shown a portion of the feature vector. This has 

the same effect as that described previously, and further served to differentiate each individual 

tree classifier. For each individual tree where M is the total number of dimensions in the feature 

vector, we only presented ⌊log�	� +1⌋ of the dimensions. This parameter was chosen 

according to work by Breimen that showed it to be optimal for a number of different applications 

[41].  

Other models that were attempted for this classifier include Naive Bayes, Support Vectors, 

Multilayer Perceptrons, and K*. In our and other groups’ unpublished works [18], [42], we have 

found RF to be the strongest and most consistent classification model for this work.  

 EXPERIMENTS AND RESULTS 4.3.

All experiments related to this study were run on a CentOS 5.6 server with dual Intel Xeon 

E5-2690 2.9Ghz CPU processors on available cores and 128 gigs of RAM. 
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 Parameter Optimizations 4.3.1.

The goal of this work was to identify micro-well conditions that generated promising 

crystallization conditions that could then be manually replicated in a scaled-up environment by 

bench crystallographers. Thus, not only was the detection of crystals in micro-well experiments 

important, it was also vital to minimize the number of false positives that had to be evaluated. 

Since our algorithm was tuned to optimize against false negatives, it necessarily resulted in a 

non-trivial number of false positive images. Thus our crystallographer collaborators agreed to 

manually evaluate all machine-classified crystal images as a second screen instead of simply 

replicating all the micro-well conditions suggested by this algorithm. However, if this algorithm 

was too liberal in classifying images as containing crystals, then the manual crystallographers 

performing the second screening of machine-classified crystal images would again be dealing 

with an overwhelming number of images, the very problem that we began with and were 

attempting to fix. Furthermore, if the algorithm were too slow, then an insufficient number of 

images would have been processed, thus creating a new bottleneck in the high throughput 

pipeline. Therefore, significant efforts in the development of this work were put towards 

balancing the need for speed and high positive predictive value with avoiding an un-necessarily 

high negative predictive value.  
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Thus, different parameters in the implementation of the aforementioned algorithm were varied in 

order to tune this algorithm for the best possible performance. This process included 

experimentation with various features, including but not limited to additional first order image 

histogram features such as described in early work by our group [18], other types of wavelet 

expansions [43] and fractal dimension texture methods [44]. Ultimately, the first order image 

histogram features were found to be significantly correlated with features proposed in the current 

implementation of the algorithm, and thus contributed very little to the accuracy of the classifier 

other than to serve as potential sources of over-fitting. The Gabor wavelet feature expansions 

were the fastest in execution compared with other wavelet texture classification techniques, and 

classification performance did not differ significantly between all the tested wavelet-based 

texture features. The fractal dimensions calculated from the images ultimately decreased 

classification accuracy; it is likely that this is due to the proximity of some of our precipitate 

images with our crystal images. 

Aside from feature selection, our algorithm is particularly sensitive to the window selection 

method. As, ultimately, what the classification algorithm examined were the windows, window 

size, window number and the clustering technique used in the window grouping were all tested 

in order to further optimize the algorithm. Table 4.2 describes results from experiments done 

during cluster technique optimization using a reduced sample of 1000 images. The number of 

clusters was held at 5, the cluster distance metric was defined using the Mahalanobis distance, as 
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described earlier in this work, and the number of representative windows from each cluster 

passed on to the qualifier was varied from 1 to 7 (resulting in a total of 5 to 35 windows). We can 

see that the calculation time per image increases linearly to the number of extracted images, as 

one would expect. However, we can also observe that the PPV and NPV peak at 25 windows (5 

per cluster), beyond which the performances no longer improve. Thus, the final algorithm 

generated 5 images from each of the 5 clusters identified for further processing.  

Table 4.2 Results during window selection optimization 

# of 

Windows 

Calculation Time 

per Image 

PPV NPV 

10 2.756541121 0.875 0.9794 

15 3.356735079 0.875 0.9794 

20 3.84880265 0.878 0.9896 

25 4.888238579 0.881 1 

30 5.981462071 0.881 1 

35 6.736029357 0.881 1 

The f96 protein study is representative of the typical class distribution of micro-well images that 

might be obtained from one study. Even though there are a large number of images processed on 
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a daily basis, only approximately 1% of the images in any particular batch might contain crystals 

(Table 4.1).  

 9-way Classifier 4.3.2.

We first began to explore the possibility of building a 9-way classifier that could correctly 

distinguish the 9 classes defined by the crystallographers in the f96 dataset. Since the NESG and 

SGPP datasets have not been fully sorted into these 9 classes, they were not included in this 

experiment. Approximately 80% of the 63,023 images were used for training, and the remaining 

20% were used for testing. The classification technique and feature sets were identified above, 

except that 4 images were chosen from each of the 5 clusters of window images (instead of the 5 

images chosen for the binary classifier as discussed above) and the random forest classifier was 

asked to sort the resulting images into 9 classes. Table 4.3 shows the number of images used in 

each category, the number of windows sampled from the images during classification, and 

finally the number of windows used during training and testing. It is important to note that each 

of the windows that were used to train for the class “crystal” was individually manually 

optimized. Specifically, we examined each of the 20 generated windows from crystal class 

images and manually discarded any windows that were non-indicative of crystals and thus likely 

to confuse the classifier.  
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Table 4.3 Number of images, and windows used for training and testing 

Class 

N° of  

images 

N° of 

windows 

N° windows 

for training 

N° windows  

for testing 

Clear 26,136 522,720 418,176 104,544 

Phase separation & precipitate 388 7,760 6,208 1,552 

Phase separation & crystal 26 520 416 104 

Phase separation 5,374 107,480 85,984 21,496 

Precipitate & crystal 63 1,260 1,008 252 

Precipitate & skin 3,822 76,440 61,152 15,288 

Precipitate 26,457 529,140 423,312 105,828 

Skin 608 12,160 9,728 2,432 

Crystal 149 2,980 2,384 596 

Total 63,023 1,260,460 1,008,368 252,092 

 

Table 4.4 Percentage of ground truth labeling on first column and the result of the 9-way classifier in 

columns 

 

Truth Clear Phase 

separation 

& precipitate 

Phase 

separation 

& crystal 

Phase 

separation 

Precipitate 

& crystal 

Precipitate 

& skin 

Precipitate Skin Crystal 

Clear 72.22 6.11 7.26 8.42 2.23 2.41 0 0 1.35 

Phase separation & 

precipitate 

1 32 19.28 10.27 22.4 1.04 0.98 1.24 10.8 

Phase separation & crystal 2.14 18.43 49.37 12.29 1.41 0.02 0.08 3.82 12.44 

Phase separation 2.44 4.80 7.43 47.9 4 6.47 13.31 9 3.83 

Precipitate & crystal 0 0 7.74 1.22 59.9 4.72 12.07 1.58 12.77 

Precipitate & skin 1.33 7.18 5.92 2.31 14.27 32.1 15.34 17 3.99 

Precipitate 2 9.84 9.32 4 8 14.22 42.3 6.77 2.78 

Skin 6.37 14.32 9 12.07 19 9 8.84 18.12 2.44 

Crystal 0.32 0 10.38 1.72 8.24 3.41 12.4 1.43 62.1 
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Analyzing Table 4.4, we can see that our classification method had difficulty distinguishing 

between all 10 classes together. However, given that certain classes had relatively few images 

available, and that several of the classes overlapped, this result was expected, albeit still 

disappointing.  

 Binary Classifier 4.3.3.

Since the primary objective of our image classifier was to differentiate promising crystallization 

conditions from non-promising ones, we focused most of our efforts on the development of a 

binary classifier. Looking at the f96 database of images, we batched any image that contained 

crystals into a crystal group, and batched all other crystals into a non-crystal group. One can see 

that there is a relative scarcity of crystal images, accounting of only ~1% of the f96 proteins.  

Table 4.5 Mapping of the 9-way ground truth classes to the binary ground truth classes 

Class Binary Class 

Clear Non-crystal 

Phase separation & precipitate Non-crystal 

Phase separation & crystal Crystal 

Phase separation Non-crystal 

Precipitate & crystal Crystal 

Precipitate & skin Non-crystal 

Precipitate Non-crystal 

Skin Non-crystal 

Crystal Crystal 
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In the previously described 9-way classifier, we see that the low number of images per class 

caused significant problems in the evaluation of the classification algorithm. To remedy this, we 

were able to obtain a large number of crystal images from the NESG and SGPP studies, as 

described in Table 4.1, to further supplement our datasets. Similar to the 9-way classifier, the 

crystal training windows were manually examined and any generated windows not displaying 

clear crystal characteristics were removed from the training dataset prior to the actual training of 

the algorithm. 

Table 4.6 Number of images, and windows used for training and testing in the binary classifier 

Class 

N° of  

images 

N° of 

training 

images 

N° of 

testing 

images 

N° windows  

for training 

Non-Crystal 62,785 50,228 12,557 1,004,560 

Crystal 16,425 13,140 3,285 109,523 

Total 79,210 63,368 15,842 1,114,083 

The results of the binary classifier are shown in Table 4.6 and Table 4.7. It is important to note 

that the training dataset for the binary classifier is no longer representative of the general 

distribution of crystal images in typical experiments (~1%). 
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Table 4.7  Percentage of ground truth crystals and non-crystal images that were classified into the two 

labels by the two-class classifier 

 Ground Truth 

Classifier Result Crystal Non-Crystal 

Crystal 2,977 682 

Non-crystal 308 11,875 

 

Table 4.8 Sensitivity, specificity and other relevant statistics of the final two-way classifier 

Statistic Value 

Positive Predictive Value (PPV) 97.47% 

Negative Predictive Value (NPV) 81.36% 

Sensitivity 90.62% 

Specificity 94.57% 

Figure 4.9: Examples of true positives, false positives and false negatives in the two-way 

classifier. 

True Positive False Positive False Negative 
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True Positive False Positive False Negative 

   

   

   

   

 CONCLUSIONS 4.4.

Studying the results of the nine-way classifier reveals that our classification method had 

significant difficulty distinguishing directly between all ten categories. However, we can see that 

the leading categories into which true crystal images were sorted included crystal (62.1%), 
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precipitate and crystal (12.77%), and phase separation and crystal (12.44%). As our method 

depended on using windows of each image, it is perhaps not surprising that images that were 

categorized by the 3 crystallographers as having multiple attributes were sometimes 

mis-categorized by the classifier as possessing only one of these attributes.  

Previous work in this area by Cumbaa et al. using a similar but different training and testing set 

demonstrated much better nine-way classification results. As mentioned above, this may be due 

to the windowing method used here, compared to the global image features used by Cumbaa. 

Furthermore, their group did not choose to optimize processing time due to their use of the world 

community grid. This allowed them to use a larger dimension in the feature vector space for their 

classifier. 

Ultimately, the two most important outcomes to crystallographers and to the project are a strong 

performance in the binary classification of crystal vs. non-crystal images, and the classifier’s 

ability to process images at sufficient speed to be practical in a high-throughput protein 

crystallization pipeline. As can be seen in table 4.7, our two-way classifier was able to classify 

images with extremely high sensitivity and specificity. Our results for the binary classification of 

crystal vs. non-crystal demonstrate significantly better performance than previously published 

classifier results. Furthermore, our classifier was particularly tweaked for bias against missing 

crystal images (i.e. against false negatives), leading to extremely high sensitivity, though at the 

cost of introducing a higher false positive rate. It is important to note that ~1% of the images in 
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the production environment are expected to be true crystals. Thus, in a situation of one million 

images of which only 4,000 images are expected to contain crystals, a classifier with a false 

positive rate of 5% will generate, on average, 50,000 false positives. Our algorithm was therefore 

refined to specifically produce a false positive rate that is less than 5%, or producing no more 

than roughly 10 false positive classifications for every true classification.  

Secondly, our algorithm was also significantly optimized so that the training process for 1,000 

images took approximately 4 hours; once a model has been created, the classification of images 

takes approximately 7.4 seconds per image on a Centos 5 server running with one core i7 

processor and 8 gigs of RAM (and only approximately 2.4 seconds per image on our 

computational cluster described earlier in this work). Thus, our algorithm would be able to fully 

process the batch of backlog images at the NESG using only three desktop servers over five 

years, and additional speedups can be realized with additional servers or the use of 

computational class servers such as the quadcore i7 Xeon processor used in the development of 

this algorithm. This is in contrast to Cumbaa et al.’s algorithm, which required the use of the 

world community grid, a scarce resource that cannot be used by crystallographers for any 

extended period of time.  

There are of course limitations to the algorithm we present. While we were able to achieve the 

speedups of the algorithm with the use of a random forest classifier, there is currently no ability 

for online training. There are now groups working on RF implementation that allows for 
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real-time training [45], but those recent developments were not implemented in this work. It is 

also important to note that even if the online RF algorithm were implemented, our current 

pipeline would still not allow for complete automation of the process. Due to our 

implementation’s window creation strategy, a significant number of windows in images 

containing crystals do not cover regions where crystals are evident. Thus, simply feeding all 

windows generated from an image containing crystals back into the training dataset would not 

only be computationally wasteful, it would in fact serve to decrease the accuracy of the 

algorithm. 

As discussed earlier, the training dataset ultimately used for the current classifier was manually 

curated to ensure that only windows of interest existed in the training dataset. This was a 

painstaking ordeal involving the examination of over 300,000 images, a process that might make 

sense perhaps once a year, but would be highly unreasonable to recreate with any type of 

frequency. Thus, a better window selection method would have to be derived in order to allow 

the incorporation of any type of online training into the current classification framework. 
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 Chronic Obstructive Pulmonary Chapter 5: 

Disease 

Chronic Obstructive Pulmonary Disease (COPD) is an extremely common respiratory condition 

involving the airways, characterized by a limitation in airflow that is not fully reversible [46].  

It is now evident that several different subtypes of COPD exist, and that these different subtypes 

have different prognoses and/or responses to treatment.  It is however poorly understood how 

these subtypes arise and why they follow different clinical courses, and thus unsurprisingly 

COPD is currently the subject of intense research by the clinical community.  

In the previous chapters, we introduced a multi-scale classification algorithm to help classify 

images in a high throughput environment.  In the next 3 chapters, we will leverage multi-scale 

techniques to analyze radiographical images from COPD patients to help elucidate the 

pathophysiology of one subtype of COPD – emphysema.   First, however, we will briefly 

present the illness in context. 

 EPIDEMIOLOGY 5.1.

The currently accepted diagnostic criterion for COPD in the United States (GOLD guidelines) is 

spirometry showing airflow limitation (FEV1/FVC ratio less than 0.70 or less than the lower 

limit of normal PLUS an FEV1 less than 80 percent of predicted) that is incompletely reversible 
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with inhaled bronchodilator and cannot be otherwise explained. This last part of the diagnostic 

criteria is particularly important, as it excludes a large group of patients suffering from diseases 

such as asthma that are more acute in presentation, but ultimately not chronic in nature. In the 

general literature, COPD is sometimes confused with emphysema, one particular subtype of 

COPD that accounts for only around 1/3 of all COPD prevalence but attracts significant amounts 

of attention due to its strong association with smokers. 

COPD is currently the third leading cause of death in the United States [47], and its mortality 

rate has doubled in the last two decades [48]. Since 1980, COPD deaths have increased in the US 

by more than 70%, up to a high of 141,000 persons in 2008, and the number continues to 

increase [47], [49]. Worldwide, COPD is the sixth leading cause of death [50] and is projected to 

rank fifth by 2020 [51]. Between 1980 and 2004, the US saw diagnoses of COPD by physicians 

increase from 7 million to 12 million [52], with an estimated further 12 million cases remaining 

undiagnosed [49]. In 2006 there were 672,000 hospitalizations linked to COPD [47], with total 

and direct costs of $50 billion and $30 billion respectively in 2010 [49]. 

The prevalence of COPD increases with age and smoking status, with a five-fold increased risk 

for those aged over 65 years old compared to patients aged less than 40 years, and a similar 

five-fold increased risk for those who smoke vs. those who don’t smoke [53]. COPD currently 

affects twice as many males as females, but the difference is decreasing as the gender gap 

between smokers and non-smokers closes in the developing world.      
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Due to its high prevalence and rates of morbidity, mortality, and readmission, COPD has 

garnered increasing interest from both healthcare professionals and policy makers. However, 

COPD continues to present numerous ongoing, contentious issues, including even its definition 

and staging.  

 BREATHHOLD TERMINOLOGY  5.2.

A number of terms have been standardized in the clinical community to describe various 

inspiratory / expiratory statuses of a person’s breath hold. This terminology is not only used by 

the research community, but the measurements of these volumes is used in the diagnosis and 

maintenance of patients with respiratory disorders.  

Table 5.1  Explanation of terminology typically used by the pulmonary research community to 

describe various states during the respiratory cycle 

Total Lung Capacity TLC The maximum volume of the lungs. This is the 

respiratory state in which CT scans for COPD 

patients are normally done.  

Tidal Volume TV The volume of air exchanged from the lungs 

during normal breathing.  

Residual Volume RV The volume of air remaining in the lungs after 

maximal exhalation.  

Expiratory Reserve Volume ERV The additional volume that can be exhaled if a 

person tries to blow out all possible air from his / 

her lungs.  

Inspiratory Reserve Volume IRV The additional volume that can be inhaled if a 
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person tries to take in all possible air from his / her 

lungs. 

Inspiratory Capacity IC The sum of IRV and TV.  

Functional Residual Capacity FRC The volume of air left in lungs after normal 

exhalation. This is the respiratory state in which 

cardiac MRI / blood flow related MRI is done. 

 FEV1 Forced expiratory volume in 1 second 

 PEF Peak Expiratory Flow, or the highest flow rate 

measured by flow meter during exhalation. 

 

 

Figure 5.1: Terminology used when discussing Lung Volumes. 
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 PATHOPHYSIOLOGY OF COPD 5.3.

Airflow limitation, specifically expiratory airflow limitation, is the pathophysiological hallmark 

of COPD. The exact etiology of the expiratory flow limitation is still unknown, but there are two 

general mechanisms that are known to contribute to the pathology. First, any type of physical 

obstruction in the airways can contribute to airflow limitations. The obstructions of large airways 

such as the trachea can produce airflow limitations, but similarly, the obstructions of many 

smaller airways can produce an equal if not greater airflow limitation, as will be discussed later. 

Secondly, alterations of the intrinsic mechanical properties of the lung can also produce 

expiratory airflow limitations. While the process of normal respiratory exchange requires the 

active use of the respiratory muscles, normal expiration is largely a passive process that depends 

on the elastic recoil of the lung tissue itself to create the necessary positive pressure in the 

airways to expel the de-oxygenated air. If this elastic recoil is compromised for any reason, then 

it becomes necessary to use the respiratory muscles in order to generate the force necessary to 

create that positive pressure. 

Regardless of the reason for the increased expiratory resistance, the body initially compensates 

by using respiratory muscles to help increase the expiratory pressures and thus maintain a 

positive airway pressure. Analysis of flow-volume loops of COPD patients by Mergoni et al. 

showed that as COPD progresses, the flow generated during expiration of a tidal volume 

becomes very close to the flow generated during forced maximal expiration [54]. When the body 
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no longer has any reserve of respiratory flow, higher tidal volumes are needed in order to reach 

the same expiratory flow, and hyperinflation of the lung then occurs. Thus COPD patients with 

expiratory airflow resistance will then have increased functional residual capacity (FRC). 

Hyperinflation of the lungs causes several consequences: 1) The increased expiratory resistance 

causes the body to start using respiratory muscles for both inspiration and expiration, resulting in 

much easier fatigue of the respiratory muscles, and in particular, of the diaphragm. This, together 

with an increased lung volume that pushes on the diaphragm, is thought to contribute to the flat 

diaphragm frequently seen in CT images of COPD patients. 2) The increased expiratory 

resistance and increased FRC cause hyperinflation of the alveolar and thus constrict the proximal 

alveolar vessels [54]. This is known to lead to an increase in pulmonary vascular resistance and 

also contribute to hypoxic vasoconstriction. This increase in pulmonary vascular resistance leads 

to an increased right ventricular preload; eventually, right-sided hypertrophy ensues. 3) At lung 

volumes that are close to TLC, the lung compliance is physiologically reduced, and thus requires 

an even larger elastic force to generate the same inspiratory volume. This is particularly 

problematic in COPD patients who already have elastic recoil deficits. One can observe that each 

of the 3 factors above worsen with further progression of COPD, creating a positive feedback 

system that makes it difficult for the body to compensate for these physiological changes. In 

severe cases, cor pulmonale, or right ventricular heart failure secondary to pulmonary artery 

hypertension, can occur [55], [56]. 
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Given the above, one can conclude that the development of increased expiratory airway 

resistance that cannot be compensated by the body will eventually lead to the development and 

progression of COPD. However, the etiology of COPD, or the cause(s) of the initial insult(s) that 

cause chronic increased expiratory airway resistance, is less well understood. 

 DIAGNOSIS OF SUBTYPES OF COPD 5.4.

Several different morphological “phenotypes” have been observed in patients currently 

considered to have COPD, and it is now clear that these different morphologies have different 

prognoses and/or responses to treatment.  

Clinically, four major subtypes of COPD have been recognized: 1) Chronic Bronchitis, 2) 

Emphysema, 3) Asthma, and 4) Alpha-1 Antitrypsin Deficiency. Chronic Bronchitis is defined 

by constant inflammation of the lining of the airways, causing increased secretion, scarring and 

resulting restriction of airflow. Emphysema is defined by abnormal and permanent enlargement 

of the airspaces themselves, leading to air trapping that effectively becomes a restriction of 

airflow. Patients with chronic asthma can eventually develop COPD as a result of processes 

similar to those of chronic bronchitis as described above. Alpha-1-Antitrypsin Deficiency is a 

genetic disorder causing defective production of an anti-protease named alpha-1-antitrypsin 

(AAT), ultimately resulting in destruction of the alveolar walls causing COPD, following an 

etiology similar to pulmonary emphysema.  
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Though the destruction of pulmonary tissue due to AAT deficiency is well understood, the 

etiologies of chronic bronchitis, emphysema, and asthma remain obscure. Indeed, these subtypes 

of COPD frequently coexist in the same patient, making these categorizations artificial and 

clinically ineffectual. 

Aside from AAT deficiency, the different sub-types of COPD are distinguished based on history 

and clinical symptoms alone and no reliable imaging or biomarker exists to distinguish between 

them. Thus, clinical symptoms are used to attempt to differentiate the subtypes. Chronic 

bronchitis is defined by a cough productive of sputum for over three months’ duration during 

two consecutive years [57]. Dyspnea and airway obstruction, often with an element of 

reversibility, are intermittently to continuously present. Pulmonary emphysema, on the other 

hand, is primarily caused by a pathology of the respiratory alveoli and not the airways, and thus 

is rarely accompanied by significant productive cough. Imaging modalities hold an important 

role in the monitoring of progression of pulmonary emphysema. Additionally, recent research 

has suggested that high resolution computed tomography (CT) is an especially reliable tool for 

demonstrating the pathology of emphysema, even for subtle changes in secondary pulmonary 

lobules [58].  
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Figure 5.2: Left: Normal Chest Radiograph from Yale Radiology. Right: Typical Late stage 

COPD chest radiograph with lung hyperexpansion and narrowed heart, flat diaphragm, and 

prominent hilar vascular shadows due to pulmonary hypertension and cor pulmonale. 

 Pathophysiology of Chronic Bronchitis 5.4.1.

The principal pathologic features in Chronic Bronchitis are inflammation of the airways and 

hypertrophy and hyperplasia of airway mucous glands. The airway mucosa is variably infiltrated 

with inflammatory cells, including polymorphonuclear leukocytes and lymphocytes. Due to the 

chronic inflammation, the normal ciliated pseudostratified columnar epithelium is frequently 

replaced by patchy squamous metaplasia. This results in severely diminished mucociliary 

clearance function. This combined with the mucus hypersecretion secondary from the 

hypertrophy and hyperplasia of large airway mucous glands, further contributes to luminal 

narrowing. Mucus impaction and luminal obstruction of smaller airways are often seen. The 



 

   61 

result of these combined changes is chronic airway obstruction and impaired clearance of airway 

secretions. 

The non-uniform airway obstruction of chronic bronchitis leads to areas of both high and low 

V/Q ratios. The regions of low V/Q ratios are largely responsible for the more significant resting 

hypoxemia seen in chronic bronchitis compared with emphysema. True shunting, that is, 

perfusion with no ventilation, or V/Q of 0, is unusual in chronic bronchitis. 

 Pathophysiology of Pulmonary Emphysema 5.4.2.

In contrast to chronic bronchitis, which is a disease of the airways, emphysema is a disease of the 

surrounding lung parenchyma. The principal pathology in emphysema is the progressive 

destruction of alveoli tissue and permanent enlargement of the airspaces themselves, thought to 

be due to an inability of proteolytic activity by protease inhibitors (e.g., AAT) to compensate for 

local oxidant injury, whether endogenous or exogenous (e.g. cigarette smoke). If present, airway 

inflammatory changes are minimal. Alveolar capillaries are also lost, which can result in 

decreased diffusing capacity and progressive hypoxemia, particularly when exercising. However, 

alveolar destruction is not uniform in all cases of emphysema. Moreover, while emphysema is 

one of four subsets of COPD, it has itself been classified into three major subtypes (centriacinar, 

panacinar, and paraseptal), based on the disease distribution within secondary pulmonary lobules 

[59], [60]. Centriacinar emphysema, most commonly associated with prolonged smoking, 
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presents a pattern of destruction that is focused in the center of the terminal respiratory unit; the 

respiratory bronchioles and alveolar ducts are comparatively rarely affected. Panacinar 

emphysema involves destruction of the terminal respiratory unit globally, with diffuse airspace 

distention. This pattern is typically, although not uniquely, seen in cases of α1-protease inhibitor 

deficiency. Paraseptal emphysema is characterized by an enlarged airspace at the periphery of 

acini, and unlike panlobular emphysema, the lesions are usually limited in extent, occurring most 

commonly along the dorsal surfaces of the upper lung. 

All three types of emphysema cause fairly similar physiological consequences which can be 

traced to three important pathologies: 1) destruction of terminal respiratory units, 2) destruction 

of the alveolar capillary bed, and 3) loss of the supporting structures of the lung, including elastic 

connective tissue. The loss of elastic connective tissue further results in a lung with diminished 

elastic recoil and increased compliance, leading to a loss of the normal support of 

noncartilaginous airways. Thus the noncartilaginous airways prematurely collapse during 

expiration, resulting in the characteristic obstructive symptoms and physiologic findings. 

As discussed in the earlier section on the pathophysiology of COPD, severe and uncompensated 

increases in expiratory pressures can eventually lead to compression of the pulmonary 

vasculature and thus leading to pulmonary HTN and eventually right heart failure. However, 

evidence currently suggests that there are changes in hemodynamics even for mild and moderate 

COPD patients that cannot be explained purely by pressure changes from hyperinflation and 
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hypoxic shunting [61]. Indeed, Barr et al. found a significant association between percent 

emphysema and left ventricular measures in the entire spectrum of mild to severe COPD patients. 

Thus, one possible mechanism that could account for this result is that there are separate and 

independent direct injuries to the pulmonary capillary bed beyond simple compressive effects.  

If this is the case, then such an injury to the pulmonary capillary bed could also be an 

independent contributing factor to the progression of increased expiratory pressure and thus 

further progression of COPD. In order to further examine this potential mechanism, chapter 7 is 

dedicated to the development of registration techniques for CT and perfusion MRI images that 

would allow us to more directly observe and correlate regions of decreased pulmonary vascular 

perfusion with regions of potential COPD progression. 
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Figure 5.3: Different subtypes of emphysema – Centrilobular, Panlobular, and Paraseptal 

emphysema are shown here. The above figure is adapted from [58]. 

 CLINICAL PRESENTATION 5.5.

Most patients with chronic obstructive pulmonary disease (COPD) seek medical attention late in 

the course of their disease due to the slowly progressive nature of the disease. When they do 

present, they typically present with a combination of cough productive of sputum and 

progressively worsening exercise tolerance. Dyspnea is the most significant symptom and the 
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most common symptom leading to ER visits/admissions, but it usually does not occur until late in 

the course of the disease. Systemic manifestations such as pulmonary hypertension, cor 

pulmonale, and left-sided heart failure is also common in the later stages of the disease.  

 TREATMENT 5.6.

Currently, no treatment (pharmacological or otherwise) for COPD other than lung transplantation 

and lung reduction surgery has been shown to significantly improve lung function or decrease 

mortality [62], [63]. The development of effective treatments has been hindered, in part, by a 

lack of clearly defined, patho-physiologically distinct sub-phenotypes. Thus, the goal of COPD 

management is primarily to improve a patient’s quality of life by alleviating symptoms and 

decreasing the number of exacerbations and hospitalizations. Since there are no treatments for 

COPD, most of the medication-based therapies are directed towards any reversible causes of 

airflow limitation in order to remove any reversible component of dyspnea. This is done in the 

hopes that this will at least improve the patient’s functional status. The 4 primary causes for 

reversible airflow limitation in COPD patients are: 

■ Bronchial smooth muscle contraction; 

■ Bronchial mucosal congestion and edema; 

■ Airway inflammation; 

■ Increased airway secretions. 
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Thus it is not surprising that medical therapies are only somewhat effective in stages 1 and 2 of 

COPD, where exacerbations are more likely a result of reversible airflow exacerbations on top of 

mild but chronic irreversible airflow obstruction. As the disease progresses, the chronic airflow 

obstruction worsens and thus contributes in a larger way to the airflow limitations, making 

medical therapies much less effective. Indeed, medical therapies have not shown to be effective 

in slowing the progression in patients with Stage 3 and 4 COPD either.  

Surgery may be used to remove parts of the diseased lung in some patients with emphysema, but 

this only benefits a minority of emphysema patients and is ineffective in cases of chronic 

bronchitis. While in severe cases, a lung transplant is an option, donors are limited and the 

procedure is very costly. 

 QUANTIFICATION OF PULMONARY 5.7.

EMPHYSEMA 

As mentioned previously, radiographs are frequently obtained for patients suspected of having 

COPD. However, most of the signs of COPD observable on radiographs, such as focal absence 

of pulmonary vessels, lung hyper-expansion, and flattening of the diaphragm, are only present in 

late stage COPD, and are therefore impractical for the early detection of COPD. What’s more, 

the sensitivity of radiographic COPD findings is as low as 40% [64]. The low sensitivity and 

specificity of radiographic images have led researchers to explore using CT to further 
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characterize COPD, and in particular the pulmonary emphysema subtypes. Early studies 

demonstrated that emphysematous pathology can be visible in CT sections with a thickness of 

5-8 mm, and is even more evident in the high-resolution CT scans now available with 

reconstructed thicknesses of 1 to 2 mm.  
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 Computed Tomography (CT) of Chapter 6: 

Pulmonary Emphysema 

CT images are generated by the differential attenuation of various materials as X-rays pass 

through the object of interest. Thus, areas where there is least material (i.e. air) typically have the 

strongest signal and the lowest X-ray attenuation. The unit of measurement in CT is the 

Hounsfield unit, a unit of measurement that is linearly related to the X-ray attenuation. Thus, an 

area consisting of only air will have the lowest possible Hounsfield unit, and an area consisting 

of extremely dense material (for example, bone) will have very high Hounsfield units.  

It is therefore possible to use Hounsfield units to distinguish normal lung tissue from lung 

regions with lower tissue density. The accuracy of high-resolution CT in assessing the presence 

and extent of emphysema has been documented in numerous studies [64], [65], [66], [67]. In one 

study based on necropsy specimens, investigators demonstrated that CT sensitivity was 

sufficiently high to identify even mild centrilobular emphysematous case [66]. The correlation 

between the in-vitro CT emphysema score done via manual visual scoring and the pathological 

grade of emphysema was excellent (r = 0.91).  
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Substance HU 

Air -1000 

Lung -700 

Soft Tissue -300 to -100 

Fat -84 

Water 0 

CSF 15 

Blood +30 to +45 

Muscle +40 

Bone +700 (cancellous bone) to +3000 dense bone) 

Figure 6.1: Typical Hounsfield units used for a generic CT scanner. 

The inherent limitations of subjective visual scoring and the consistent ranges of Hounsfield 

units in CT datasets between different patients have fostered significant interest in the use of 

computer algorithms to quantify pulmonary emphysema [68]. In 1988, Müller et al. compared a 

single 1cm-thick CT section of lung tissue acquired during full inspiration (after injection of 

contrast material) with the corresponding macroscopic section of the fixed lung cut in the same 

plane as the CT section [69]. The goal was to correlate emphysematous regions on pathology 

with Hounsfield unit ranges on CT that might uniquely identify those regions. The highest 

correlation was observed with attenuation values lower than -910 HU, and consequently, this 

threshold was recommended for the identification of emphysema. Though the emphysema 

research community generally accepted this threshold in the 1990s, for a number of reasons 

significant uncertainty remained regarding the accuracy of the resulting analysis. Firstly, the 
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baseline of -910HU was derived under the influence of contrast material. Secondly, though the 

pathology scores and -910HU were statistically significant, they did not guarantee that the 

percentage areas obtained by CT quantifications were equal to the percentage area occupied by 

emphysema on the pathological specimen.  

In an attempt to provide a more precise attenuation threshold for the recognition of emphysema, 

Gevenois et al. compared CT data acquired during full inspiration from 63 patients about to 

undergo lung resections with the macroscopic extent of emphysema measured on horizontal 

paper-mounted whole lung sections post resection [70]. On thin CT sections obtained from the 

lung apices to the bases with 1-cm intervals, the authors calculated the relative area of lung tissue 

occupied by HU values lower than various thresholds ranging from -900 HU to -970 HU. They 

showed that the only threshold for which there was no statistically significant difference between 

the distribution of the CT measurements and the distribution of macroscopic measurements was 

-950 HU. Thresholds lower than -950 HU underestimated the amount of emphysema, while 

thresholds above -950 HU overestimated the amount of emphysema [70].  

More recent work using airspace wall surface area per unit volume of lung tissue (AWVU) to 

quantify microscopic pulmonary emphysema also showed -950HU on CT as having the largest 

correlation with AWVU indices. Thus, both the macroscopic and the microscopic study suggest 

that -950 HU is a valuable parameter for quantifying emphysema on CT during full inspiration 

[69]. 



 

   71 

However, not all CTs are taken at full inspiration, and the possible role of CT obtained after deep 

expiration in the assessment of emphysema was first suggested by Knudson et al. [71]. Gevenois 

et al. found two different thresholds, respectively validated by comparisons against macroscopy 

(-910 HU) and microscopy (-820 HU) that were quite different from the threshold found valid 

for CT images obtained at full inspiration (-950 HU) [69].  

 PULMONARY MICROVASCULAR PERFUSION 6.1.

Emphysema is characterized by progressive airflow obstruction secondary to the destruction of 

alveolar tissue, but in the late stages of disease is also associated with systemic vascular 

symptoms such as cor pulmonale and pulmonary hypertension. However, less is known about the 

interplay of pulmonary disease with its associated vascular response in the early stages of COPD. 

Recent evidence suggests that endothelial dysfunction and alterations in pulmonary vascular 

response occur early in COPD and may represent an important vascular pathway in the 

development of smoking-associated emphysema [72]-[74]. In response to chronic oxidate stress, 

an overwhelming inflammatory response is triggered, leading to obstruction of alveoli and 

regional hypoxia. The lung's normal response to alveolar hypoxia is hypoxic pulmonary 

vasoconstriction (HPV), which results in the shunting of blood toward better-ventilated lung 

regions for improved oxygenation. In mice, sheep [75], and humans [76], [77], imaging 

demonstrates that HPV is locally blocked in the presence of inflammation [78]. Thus, various 
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groups have suggested that one possible mechanism of emphysema progression is an impaired 

HPV response that perpetuates an otherwise self-limited inflammatory response, resulting in 

chronic inflammation, tissue destruction, and worsening hypoxemia and emphysema.  

In order to test this hypothesis, Alford et al. used a dynamic 4D ECG-gated MDCT perfusion 

sequence to measure the differences in quantitative regional perfusion parameters such as 

pulmonary blood flow and mean transit time between people who have never smoked and 

smokers with radiographic evidence of centrilobular emphysema [79]. The study found no 

significant differences in PBF and MTT between the two groups, but did note differences in the 

heterogeneity of the PBF between the two groups [79]. This study was the first we know of that 

attempted to investigate pulmonary microvascular perfusion using any imaging modality in 

emphysema patients. Unfortunately, CT perfusion imaging is not well validated and no 

significant work was done after this study until the maturation of dynamic contrast enhanced 

MRI.  

Several approaches for quantifying pulmonary microvascular perfusion by MRI have been 

proposed [80], [81]. They are based on the indicator dilution theory [82], which applies to blood 

pool contrast agents. In 2013, Hueper et al. used dynamic contrast-enhanced MRI to evaluate the 

differences in pulmonary microvascular perfusion that were calculated from the signal 

intensity-time curves in the lung parenchyma of COPD vs. non-COPD patients [83]. They noted 

substantially reduced perfusions in cases of mild, moderate and severe COPD as compared to 
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patients without COPD. Furthermore, the reduction in perfusion was linearly related to the 

percentage of emphysema on CT scans. The findings suggest marked microvascular damage in 

early COPD.  

 CONCLUSION 6.2.

Despite the many substantial research efforts on the role of CT and MRI in pulmonary 

emphysema, an important series of issues remains to be investigated. The proper selection of an 

HU threshold for emphysema quantification outside of 1 mm CT slice thickness and total breath 

hold continues to be unexplored. Furthermore, integrating MRI perfusion findings with regions 

of emphysema as identified in CT has yet to be achieved. This would allow for proper 

investigation of the pathogenesis of vascular abnormalities in the pathophysiology of 

emphysema progression. 
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 Registration of CT and MRI Chapter 7: 

Lung Volumes 

Changes in pulmonary vasculature and perfusion are thought to occur in severe COPD secondary 

to hypoxemia and destruction of lung parenchyma [55], [56]. Various ex vivo studies have 

confirmed the existence of inflammatory reactions against both pulmonary vasculatures [84] and 

lung alveolar epithelial and endothelial cells [85] in mild and severe COPD. However, it is not 

well understood whether the destruction of lung parenchyma and the changes in pulmonary 

vascular perfusion are two different pathological processes in the progression of COPD or 

whether one is the predisposing mechanism of the other. This difficulty in correlating the two 

processes results from the inability prior to recent imaging developments in both perfusion MRI 

[80] and CT [86] to quantitatively evaluate what degree of parenchyma damage or changes in 

pulmonary vascular perfusion existed in humans before autopsy. With both modalities now 

clinically validated, we propose a registration algorithm between quantitative CT and 

microvascular perfusion MRI that will allow for the correlation of emphysematous regions as 

identified on CT, with pixel resolution perfusion changes as identified on microvascular 

pulmonary perfusion MRI.  

Several approaches to quantify pulmonary microvascular perfusion by MRI exist, though all are 

based on indicator dilution theory as applied to the pooling of contrast agents [83]. Due to 
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concerns related to reduced pulmonary perfusion during breath holds at Total Lung Capacity 

(TLC) versus Functional Residual Capacity (FRC) [87], perfusion MRIs are typically done at 

FRC, or the end of passive expiration.  

The identification of emphysematous regions on CT is a more straightforward task and is made 

through a hard threshold of Hounsfield units. There is now widespread consensus in the COPD 

research community that a value of -950 Hounsfield units (HU) has strong correlations with 

other clinical indicators of COPD in severe COPD patients [88]. However, in studies of 

early/mild COPD, the threshold of -910 Hounsfield is sometimes used in order to more 

sensitively capture potentially emphysematous regions on CT. Regardless of the threshold used, 

emphysema thresholding is optimally performed on CT images captured and analyzed during 

TLC breath holds due to both higher replicability by patients across multiple visits and decreased 

effects of confounding factors such as obesity and physiological gas trapping [89]. As COPD is a 

chronic disease, many patients have had CTs done at different lung inflations over many years 

and even decades. Thus, work has been done to register CT images at different time points [5], 

[90]-[92], and with different patient breath hold statuses [6], [7], [93], [93].  

To register TLC-CT images with FRC-MRI perfusion images, one could imagine carrying out a 

registration between TLC-CT and FRC-CT images, and then performing a simple rigid 

transformation between FRC-CT images and FRC-MRI perfusion images. Unfortunately, due to 

the patients’ chronic lung disease and the breath hold time intervals needed for FRC-MRI scans, 
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the FRC-MRI lung volumes are often differentially inflated when compared with FRC-CT 

volumes.  

We propose a method of registering lung CT volumes with MRI volumes, taking into account the 

different breath hold statuses that could be acquired during CT and MRI, as well as the inherent 

differences in the imaging characteristics of the two modalities. The registration is ultimately 

being performed to localize functional findings from MRI imaging (pulmonary microvascular 

blood flow) to changes in lung structure on CT lung imaging (low attenuation areas).  

Our registration strategy involves 1) segmentation of CT volumes, 2) segmentation of MRI 

volumes, 3) registration of TLC-CT volume to FRC-CT volume for each individual patient and 

creation of pixel density volume mapping, 4) registration of FRC-CT volume to FRC-MRI 

volume for each individual patient and creation of pixel density volume mapping, 5) mapping of 

emphysematous regions from TLC-CT to FRC-MRI volume through the composite 

transformation functions described above, and 6) morphological processing of resulting masks 

from step 5 to improve results.  

Validation of the algorithm is then performed by selecting the mid-coronal slice of 

corresponding MRI and CT volumes and comparing the relative areas of the bronchial tree.  
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 METHODS 7.1.

 Registration Transformation Model 7.1.1.

Our processed algorithm requires two separate registration steps: 1) the registration of CT 

images of different breath hold statuses to each other and 2) the registration of CT and MRI 

images of nominally identical breath hold statuses. Due to the complexity of both registration 

steps, a simple rigid or affine transformation is unlikely to produce satisfactory results for either 

registration. Thus, we adapted a B-spline free-form deformation (FFD) -based registration 

algorithm for both steps. 

To define a spline-based FFD, the image volume domain is defined as	Ω = {(x, y, z)|0 ≤ x <

X, 0 ≤ y < Y, 0 ≤ z< Z}. We can then denote a �� × �� × �� mesh of control points ∅�,�,�  

with spacings between the control grids in the x, y, and z directions denoted by ��,��, and �� 

respectively. Then, the FFD can be written as the 3D tensor product of the 1-D cubic B-splines 

[94]:  

������(�, �, �) = � � � ��(�)��

�

���

�

���

�

���

(�)��(�)∅���,���,���  

where � = �� ��
� �− 1, �= �

�
��

� �− 1, � = �� ��
� �− 1, � = �

��
� − (� + 1), � =

�
��

� − �+ 1,	 

� = �
��

� − (�+ 1) and where �� (u) represents the lth basis function of the B-spline [95], [9].  
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��(�) =
(1 − �)�

6
�  ��(�) =

(3�� − 6�� + 4)
6

� ;  

 ��(�) =
(−3���3�� + 3� + 1)

6
�  ��(�) = ��

6�  

where 0 ≤ � < 1. B-splines are locally controlled, which allows them to be computationally 

efficient even for large numbers of control points. Cubic B-splines in particular have limited 

support, which allows the transformation to affect only the local neighborhood of a control point.  

In registration processes where both larger displacements, as during breath hold changes, and 

smaller displacements, as those due to noise and minor displacements of the bronchial tree, can 

be expected, the registration algorithm must be able to cope with both changes. Since cubic 

B-splines have limited support, neither an exclusively fine nor an exclusively coarse spacing 

between control grids will capture both scales of displacements. Thus, a multilevel B-spline 

adaption was adopted [6], [7], [95]. In the multilevel B-spline algorithm, a hierarchy of control 

grids with progressively finer spacing between control grids is used, ∅�, ∅�,… ,∅� . The 

registration process is then iteratively performed using each control grid, resulting in a sequence 

of transformations ��, ��,… ,�� . The final transformation is then defined as the composite of all 

the operations ������ = ��°����°… °��.  
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Figure 7.1: On the left is a sample coronal slice of the TLC-CT volume analyzed. On the right is 

the segmented lung and brunchial airway. 

 CT Registration Cost Function 7.1.2.

A typical cost function for image registration is to use the sum of squared differences (SSD), 

��� = 	
1

�
����(��) − ���(�)��. 

The implicit assumption with SSD as a cost function for registration is that images differ only by 

Gaussian noise after registration. When lung parenchyma are differentially inflated during 

different breath hold statuses, the voxel intensities for the same region of the lung will change 

accordingly. Specifically, we can separate the Hounsfield units of the lung CT as a linear 

combination of parenchyma plus blood and air. We can assume that the lung parenchyma plus 

blood is not significantly affected during changes in breath hold, but the volume of air is 
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naturally affected [6], [7]. Thus, we wish to adapt SSD to register only the tissue and perfusion 

component of the voxel intensities between CT images of different breath hold statuses. Using 

55 HU as the voxel intensity of parenchyma plus blood, and -1000 HU as the voxel intensity of 

air, the volume of tissue and air can be estimated as: 

������� = �(�)
�(�) + 1000

1000+ 55
= �(�)��(�) 

���� = �(�)
��� �(�)

�������
 , 

with �(�) as the volume of a voxel. Using this technique, we can modify the CT registration 

cost function as the sum of squared differences of only the local tissue volume difference: 

�(∅) = 	∑ [��(�) − ����(�)�]��
�∈�  , 

with ��(�) and ��(�)	denoting the tissue volumes in a voxel in the reference image and the 

floating images respectively.  

 MRI Registration Cost Function 7.1.3.

As described above, SSD as a cost function for registration makes the implicit assumption that 

images differ only by Gaussian noise. It is therefore particularly unsuitable for intra-modality 

registration such as FRC-CT to FRC-MRI. We thus similarly adapted our B-spline registration 

described in section A with a cost function that does not depend on a linear intensity relationship 
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between images intensities: Mutual Information. 

��(�, ��, ��) = ∑ ∑ �(�,�;�) × �����∈��
�

�(�,�;�)

��(�)��(�;�)
��∈��
, 

where �� and �� are sets of regularly spaced intensity bin centers, p is the discrete joint 

probability, and �� and �� are the marginal discrete probabilities of the fixed and the moving 

image, obtained by summing p over the indices m and f, respectively [96]. The joint probabilities 

can then be estimated from the B-spline Parzen windows 

�(�,�;�) =
1

|��|
� �� �

�
��

� ��(��)�

��∈��

 

��� ��
��

� −
��(�� + ��(��))

��
� �, 

where denotes the spatial coordinates of voxel I in the fixed image ��, �� is the B-spline 

deformation field, and ��  and ��  represent the moving and fixed Parzen windows 

respectively. Further details of the implementation can be found in [97].  
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Figure 7.2: On the left is a sample sagittal slice of the MRI image analyzed. On the right is a 

surface reconstruction of the manual segmentation of the MRI lung volume super imposed on the 

original MRI volume [98]. 

 IMAGE ACQUISITION 7.2.

The TLC and FRC-CT data sets were acquired under an approved IRB protocol at the Columbia 

University Medical Center, using a GE VCT 64 multi-detector row CT scanner during breath 

holds at TLC and FRC from patients diagnosed with COPD. Every volumetric dataset contains 

638-671 image sections, each 0.625 mm thick and spaced 0.5 mm apart, and with a 

reconstruction matrix of 512 by 512 pixels using a B31F kernel. In-plane pixel spatial resolution 

was 0.863 mm by 0.863 mm. 

The MR angiography images were acquired using the TRICKS sequence with a GE scanner 

during breath holds at lung volume of 15% of vital capacity. Each volumetric dataset contains 
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32-52 image sections, each 256 by 256 pixels, measuring 1.875 mm by 1.875 mm by 10 mm 

(thickness) with a slice spacing of 5 mm. Each volumetric data set was accompanied by a 

time-lapse subtracted perfusion sequence that was not used for the purpose of this paper. Only 

the non-subtracted, non-enhanced, MR images from the perfusion sequence at time 0 before the 

injection of contrast agent were used for registration. 

 CT IMAGE SEGMENTATION AND REGISTRATION 7.3.

To prepare the images for TLC to FRC registration, segmentations of both the TLC and FRC-CT 

lung volumes were performed, using Hu et al.’s [99] automated, gray-level-thresholding 

algorithm and Pulmonary Workstation 2 (PW2: VIDA Diagnostics, Coralville, Iowa). Non-rigid 

3D registration was then performed for each TLC – FRC lung volume pair using the registration 

process described in Sections A and B. The result of this registration is a transformation map 

from the TLC lung volume onto the FRC lung volume.  

Using the original TLC voxel intensities, two emphysema masks differing in their Hounsfield 

unit (HU) thresholds were created on the TLC volume. One was created using an upper threshold 

of -910 HU to mark mild emphysema-like regions, and the other was created using a 

higher-specificity threshold of -950 HU. Both masks were then mapped into the FRC-CT lung 

volumes using the aforementioned TLC-to-FRC transformation map.  
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 MRI IMAGE SEGMENTATION AND 7.4.

REGISTRATION 

Thorax MRI images are notoriously difficult to segment, and completely automated algorithms 

for the segmentation of diseased lungs from MRI images have been particularly difficult to 

develop. Additionally, accurate and fully quantitative MRI perfusion imaging requires a high 

temporal resolution. Thus, the spatial resolution of MRI perfusion sequences is lower than usual, 

in favor of a high temporal resolution. We therefore opted to use a manual process for the 

segmentation of the MRI lung images.  

Mid-coronal views of the FRC-MRI lung volumes were manually segmented for validation using 

Adobe Photoshop CS5. A binary mask was then made for each mid-coronal slice and a 

preliminary 3D volume mask was generated. The preliminary 3D volume mask and the 

FRC-MRI lung volume were then both imported into AMIRA (FEI Scientific Visualization 

Group) and overlaid. The preliminary 3D volume mask was further manually refined into the 

finalized 3D volume mask.  

Non-rigid 3D registration was then performed for each FRC-CT – FRC-MRI lung volume pair, 

using the registration process described in Sections A and C, resulting in a transformation map 

from the FRC-CT lung volume onto the FRC-MRI lung volume. The Hounsfield unit thresholded 

masks were also mapped from the FRC-CT lung volumes onto the FRC-MRI lung volumes.  
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 MAPPING OF EMPHYSEMATOUS REGIONS 7.5.

Having segmented the emphysematous regions from the TLC volumes, and now possessing a 

registration pipeline from TLC-CT to FRC-CT to FRC-MRI, we were able to map the masks of 

emphysematous regions onto the MRI volumes. However, CT resolution is significantly higher 

than that of MRI, and thus emphysematous regions mapped in CT must be further re-sampled 

prior to comparisons with microvascular perfusion MRI.  

 

Figure 7.3: The y-axis shows the percentage of pixels labeled as bronchial tree that differ 

between the TLC-CT to FRC-CT to FRC-MRI post registered mapping and the pixels manually 

labeled as bronchial tree by our expert tracers. Total numbers of lung pixels in segmented 

TLC-CT lung volumes are shown on the x-axis. 
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The MR coronal slice thickness of our data was 10 mm, and the coronal thickness of each CT 

slice was 0.863 mm. Thus, approximately 11 CT slices and mapped emphysematous projections 

have to be fused in order to approximate one MRI slice thickness. There are three methods for 

thickening CT slices: maximum intensity projection (MIP), mean intensity projection, and 

minimum intensity projection (minIP).  

The most common methods are maximum and minimum intensity projections, and both methods 

were explored to determine which would be the clinically valid approach. The minIP applies a 

“minimum” operation on each set of voxels that forms a ray normal to the slices to be joined. In 

contrast, MIP transfers only the intensity of the voxel with the greatest level of attenuation onto 

the thickened slice and is thus a less sensitive measure of emphysema.  

The transformed emphysema masks were further post-processed with erosion and dilation 

morphological operators to remove any stray pixels and create a mask that is more relevant for 

later correlation with MR angiography results.  
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Figure 7.4: A) MinIP emphysema mask (-910) registered to MR. B) MIP emphysema mask 

(-910) registered to MR. C) MinIP emphysema mask (-950) registered to MR. D) MIP 

emphysema mask (-950) registered to MR. 

 RESULTS  7.6.

Our methods successfully registered 59 image sets, in each case creating an emphysema mask to 

overlay the target MR volume. The resulting volumes allows simple, superimposed correlations 

of emphysematous regions as identified on CT with areas of decreased perfusion on MRI. At 

approximately 4.5 minutes per registration on one computing node, the process is 
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computationally efficient to a significant degree and allows for this process to be performed on a 

routine clinical basis without significant impact to clinical workflow.  

To determine the correct parameters for registration, slice thickening, and emphysematous 

thresholding, mid-coronal projections of the MRI-registered emphysema masks were created and 

manually examined for clinical suitability by our collaborating radiologists as described in 

methods. 

To locate the mid-coronal slice from the MR volumes, the most anterior and posterior coronal 

slices containing lung parenchyma were identified and the mid-coronal slice was assumed to be 

halfway between those two image slices (Figure 7.4 A-D).  

Since the mid-coronal MR slice corresponds to the eleven central coronal CT slices, the latter set 

had to be fused by projection to create comparable image slabs. After fine-tuning the registration 

grid resolutions, mid-coronal CT projections from 59 participants were generated in four 

different ways: combinations of two CT thickening techniques – maximum and minimum 

intensity projections – and two emphysema quantification techniques – thresholds at -910 and 

-950 HU. 

As figure 7.4 demonstrates, regions defined as emphysema-like are highly sensitive to the slice 

thickening algorithm and the Hounsfield unit threshold. Applying MIP thickening resulted in the 

detection of significantly fewer emphysema-like regions on the 10 mm constructed slabs 
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compared to minIP thickening. As expected, a -950 HU threshold yielded fewer lung regions 

classified as emphysematous on the slabs compared to a -910 HU threshold. The combination of 

MinIP and -950 HU thresholding conveyed emphysema-like regions even smaller than 10 mm 

(along the anteroposterior axis) to the final thickened slice, while retaining the requirement of 

significantly low CT attenuation. The application of well-established morphological operators 

allowed for stray pixels to be eliminated without affecting the sensitivity of the COPD masks.  

Having established matching image slabs, we validated our serial registration algorithm by 

comparing the post-registration anatomical landmark from the original CT volume to the final 

MR volume with the same anatomical landmark that was directly manually segmented on the 

MR volume (Figure 7.4). Specifically, we used a validated algorithm to automatically segment 

voxels of the main bronchial tree from the mid-coronal slices of each TLC-CT volume. We then 

applied the transformation matrices derived earlier in the registration process to the segmented 

bronchial trees, thus allowing for the bronchial tree to be mapped from TLC-CT volume, to the 

FRC-CT volume, and ultimately to the FRC-MR volume. We then also manually segmented the 

main bronchial tree in the mid-coronal slice on the FRC-MRI. Thus, we were able to use the 

manual segmentation as ground truth to evaluate the transformed segmentation from the TLC-CT 

volume. We quantified the error by computing the number of pixels that differed between the 

FRC-CT transformed bronchial segmentation and the directly manually segmented bronchial tree 

in the FRC-MR volume. We then normalized this value by dividing the absolute difference in 
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number of pixels by the number of segmented lung pixels in the FRC-MR mid-coronal slice. 

This normalization was performed in order to compensate for the differences in field of view 

between different patients’ MRI scans. The graph of the normalized difference ratio plotted 

against the total number of segmented lung volume pixels on TLC-CT is displayed in Figure 7.3. 

It is important to note that the total number of segmented lung volume pixels cannot be directly 

used as a proxy for lung volume due to similar concerns regarding the field of view changes 

between CT scans. We were able to obtain a difference ratio with a mean of approximately 6.3%.  

Except in a few outlier cases, registration values tended to be very stable. After visual inspection 

of these instances, it was determined that their FRC-CT volumes and FRC-MRI volumes differed 

significantly and the registration process detailed above was unable to sufficiently compensate 

for the significant changes in volume. Large registration errors were therefore created. It is 

important to note that those cases should most likely not be registered or used for further 

perfusion/tissue damage comparison, as functional comparisons on those volumes would most 

likely yield clinically misleading results.  

 CONCLUSION 7.7.

This chapter has presented a fast and clinically relevant algorithm to combine the detection of 

emphysematous regions from TLC-CT images with perfusion data from microvascular perfusion 

FRC-MRI images. A multi-scale B-spine registration algorithm was used with two different 



 

   91 

similarity measures in order to serially register the imaged volumes from TLC-CT to FRC-CT, 

and then from FRC-CT to FRC-MRI.  

As part of the MESA COPD study, our collaborators have collected an extensive number of 

TLC-CT, FRC-CT, and FRC-MRI volumes for hundreds of patients who additionally have had 

several scans of each modality over the past decade. The application of this algorithm will aid in 

the clarification of the pathophysiology behind the interplay of vascular changes and 

parenchymal destruction in the evolution of COPD.  
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 Conclusions and Future Research Chapter 8: 

This thesis rests on the application of multi-resolution algorithms in the analysis of images and 

3D image volumes. The current research focused on two specific applications of multi-resolution 

techniques to 1) provide a framework for automated screening of high throughput protein 

crystallization images and 2) to provide imaging tools necessary for the validation of a 

hypothesis on the pathophysiology of pulmonary emphysema.  

 PROTEIN CRYSTAL IMAGE CLASSIFICATION 8.1.

This work proposed a classification algorithm that exceeds 99% in sensitivity and 96% in 

specificity. Furthermore, the classifier is able to process each image with off-the-shelf computer 

components at approximately 7 seconds per image, a speed that makes this algorithm usable in 

high throughput settings. The classification algorithm has been tested on a previous published 

and available dataset from NESG and is now well validated. Further work can be done to convert 

the algorithm into C to further improve the algorithm’s processing speed. The current 

implementation of the classifier does not allow for online learning. That is to say that any 

updates to the model will require the entire classifier to be retrained using a new set of labeled 

images. Recent advances in online random forests can be implemented into the algorithm to 

allow it to perform online learning. [45]. The ultimate goal of this classifier is for it to be used in 
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a high throughput structural genomics setting. Further work should be done in order to 

implement this now finalized algorithm into the structural genomics pipeline at NESG to 

hopefully detect previously unsolvable protein structures that did include protein crystals but 

were missed either by crystallographers or because the wrong time-based image was examined 

by the crystallographers.  

 PATHOPHYSIOLOGY OF PULMONARY 8.2.

EMPHYSEMA 

The second part of this work proposed a 3D image registration algorithm to register regions of 

emphysema as quantified by densitometry on lung CT with MR lung volumes. The ability to 

register quantitatively determined regions of emphysema with perfusion MRI will allow for 

further exploration of the pathogenesis and cardiopulmonary implications of Chronic Obstructive 

Pulmonary Disorder (COPD). As discussed earlier, recent evidence suggests that endothelial 

dysfunction and alterations in pulmonary vascular response occur early in COPD and may 

represent an important vascular pathway in the development of smoking-associated emphysema 

[54], [85], [100]. Several groups present global perfusion differences between patients with 

COPD and patients without COPD. However, no work has yet quantified whether this global 

perfusion decrease is explained by a uniform decrease in global perfusion due to uniform 

microvascular damage, or whether, as in the case of emphysema damage, impairment of 
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microvascular perfusion is also non-uniform and, indeed, the precursor to further 

emphysematous damage. Unpublished preliminary work by our collaborators and us currently 

suggest that the latter is true, but more investigations are required in order to properly verify this 

claim.  

 MULTI-RESOLUTION IMAGE PROCESSING 8.3.

This thesis additionally introduced several novel applications of multi-resolution image 

processing techniques, including new image descriptor features and the introduction of a new 

multi-resolution image registration architecture that can be applied to other areas of biomedical 

imaging and computer vision. The registration framework proposed here will be increasingly 

important as high resolution 3D and 4D volumes become increasingly prevalent in clinical 

practice and the need for near real-time registration becomes not only useful, but often a 

necessary condition for busy clinicians. The new image features proposed in this thesis should be 

tested in other computer vision applications that privilege texture in the classification of those 

images. It is likely that these image features will help produce a more accurate classifier, as is 

this case in this thesis.  
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