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Abstract---We present PANDA, an open-source tool that has

been purpose-built to support whole system reverse engineering.

It is built upon the QEMU whole system emulator, and so anal-

yses have access to all code executing in the guest and all data.

PANDA adds the ability to record and replay executions, enabling

iterative, deep, whole system analyses. Further, the replay log files

are compact and shareable, allowing for repeatable experiments.

A nine billion instruction boot of FreeBSD, e.g., is represented

by only a few hundred MB. Further, PANDA leverages QEMU's

support of thirteen different CPU architectures to make analyses

of those diverse instruction sets possible within the LLVM IR. In

this way, PANDA can have a single dynamic taint analysis, for

example, that precisely supports many CPUs. PANDA analyses

are written in a simple plugin architecture which includes a

mechanism to share functionality between plugins, increasing

analysis code re-use and simplifying complex analysis develop-

ment. We demonstrate PANDA's effectiveness via a number of

use cases, including enabling an old but legitimate version of

Starcraft to run despite a lost CD key, in-depth diagnosis of an

Internet Explorer crash, and uncovering the censorship activities

and mechanisms of a Chinese IM client.

I. Motivation

Reverse Engineering (RE) is the process of discovering

undocumented internal principles of a piece of code. Why

would anyone who is not a criminal want to do that? We

can think of at least three socially acceptable uses for RE.

1) Enable legacy code to continue to function.

2) Identify critical vulnerabilities.

3) Understand the true purpose and actions of code.

It is common for legacy code to stop working as the

software ecosystem surrounding it evolves. In that event, and

when corporate support has also long terminated, RE is the

most cost-effective avenue to continued use. Via RE, the

inputs and outputs, the dependencies and requirements can

be enumerated in detail, and appropriate shims fashioned to

be able to run the old code in a more modern environment.

Accurately identifying vulnerabilities is usually impossible

without detailed RE knowledge. That is, you might be able to
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observe a segmentation violation indicating an out-of-bounds

read or write, but how do you determine if it is exploitable

and therefore a critical vulnerability? The answer is that

you need to determine what is illegally read or written and

often that data is produced and consumed by closed source

programs, libraries, drivers, and kernel. Thus, without either

performing RE or making use of the RE efforts of others, it is

difficult to discriminate between unimportant bugs and critical

vulnerabilities.

Vetting code to determine if it does what it is purported to

do and nothing else is an important and difficult task. This

is obvious and uncontroversial when the code is believed to

be malware. However, we believe that this is an increasingly

fine distinction. Consider a program written by a legitimate,

large, US company. Imagine that this code performs a host

of malicious actions such as stealing personal information

and modifying system settings. None of this behavior is

indicated in the documentation or advertising literature, nor

is it clearly essential for the primary purpose of the software.

How is this code functionally distinct from malware? This is

not simply a thought experiment--in 2005, Mark Russinovich

discovered that Sony BMG audio CDs were installing a rootkit

onto millions of computers [28]. The Sony rootkit recorded

information about users' computers to send back to Sony and

hid every file on the system with a certain prefix; worse, their

uninstaller allowed any web page to download and execute

arbitrary code [17].

If we have the time, inclination, or mission we will want to

RE code to satisfy ourselves that what it does is acceptable to

us. If we were philosophers, we might claim this as a basic

right. Instead, we merely indicate that, in some situations,

it is necessary and important to be able to divine the true

function of closed programs. The only practical way to do

this is through RE.

RE through Dynamic Analysis

Much reverse engineering is done statically. Disassemblers

and decompilers translate binary code into a form more easily

read. Humans painstakingly navigate these representations,

adding extensive annotations to ultimately reassemble a pic-
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Fig. 1: Replay-based Reverse Engineering Workflow.

PANDA's ability to record and replay whole system

executions is the foundation of its use in reverse engineering.

One captures a recording and then iteratively builds one or

more plugins that perform dynamic analyses.
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Fig. 2: PANDA Non-determinism log

ture of how code and data operate at various levels. This

process can be valuable and productive, but it is not the

PANDA model. While it occasionally makes use of offline

static analyses, PANDA is fundamentally a dynamic tool and is

used as depicted in Figure 1. First, one captures a recording of

some whole system execution which one wishes to understand

deeply. Then, one writes analysis code in the form of plugins,

registering callback functions to be called by PANDA at

opportune points such as before a basic block of guest code

executes or at a virtual memory read. These plugins collect

data and consult or control other plugins. Plugins are typically

written quickly and iteratively, running the replay over and

over to construct more and better and deeper understanding

of the important aspects of system execution, given the RE

task. An initial plugin might just get a rough outline of what

processes execute and when key events happen. A second

pass might focus in on the activity of a particular program

or a portion of the replay. Further iterations might invoke

a taint analysis that selectively labels interesting data and

tracks it as it flows around the system. We have found that

this workflow powerfully enables reverse engineering. The

use cases section of this paper will detail three compelling

examples of PANDA's use.

II. PANDA System

In this section, we describe the four main novel aspects of

PANDA: its record/replay facility, its plugin architecture, its

ability to use a single analysis for multiple architectures, and

its ability to emulate Android systems.

Replay Instructions Log size Instr/byte

freebsdboot.rr 9.3B 533MB 17

spotify.rr 12B 229MB 52

haikuurl.rr 8.6B 119MB 72

carberp1.rr 9.1B 43MB 212

win7iessl.rr 8.6B 9.4MB 915

Starcraft.rr 60M 1.8MB 33

TABLE I: ND log sizes for various replays

A. Record / Replay

PANDA's record and replay facility is conceptually simple.

The high-level view is depicted in Figure 2. We draw an

imaginary line around the CPU and memory in the guest. At

the beginning of recording, we take a snapshot of the machine

state, which includes the contents of registers and memory.

Then, we proceed to record to an ND log (non-determinism

log) three kinds of inputs when they cross the imaginary line:

1) IN. The data entering the CPU on port input.

2) INT. A hardware interrupt and its parameters.

3) DMA. The data written to RAM during a direct memory

access operation from a peripheral device.

When any of these inputs is written to the ND log, we

also record the trace point which is enough information to

determine when to replay the input. This trace point currently

consists of three values: the program counter, the instruction

count since record began, and the implicit loop variable (ECX
on x86). These three are, in practice, sufficient to disambiguate

trace points [16].

Note that this flavor of record/replay differs in one important

respect from the one that used to be supported by, for instance,

VMWare Workstation. There, the ND log consists of inputs to

devices. Thus, VMWare's ND log can be used, during replay,

to ``go live''. because the entire VM and all of its devices are

always in a consistent state. PANDA does not execute any

device code during replay, so there is no way to go live---

but because our interest is in deep, replay-based analysis, we

have no need to go live. In addition, our style has the virtue

of simplicity, in that new architectures and devices can be

supported with essentially no additional effort.

PANDA's replay is quite stable and effective. We have

tested it on two architectures (32 and 64-bit x86 and ARM)

extensively. It can record boot for a variety of operating

systems, which is challenging given the complexity of that

operation. It is also fairly compact despite the fact that our ND

log must capture the contents of DMA inputs. Table I gives

the ND log sizes for a number of architectures, workflows,

and replay times. From this data, we can see that anywhere

from about 20 to almost 1000 instructions execute per byte

of log data. These replays cover a diverse set of tasks from

booting FreeBSD to running the Carberp malware to installing

Starcraft. The modest size of these files makes them ideal for

sharing, and is thus a major enabler of repeatable experiments.

One of the authors has set up a web site where any of these

and number of other replay files can be downloaded.1

1http://www.rrshare.org



Time Slowdown

Environment in sec wrt Qemu 2.1.0

Qemu 2.1.0 35.6 1.0

PANDA 37.2 1.05

PANDA+record 66 1.85

PANDA+replay 127 3.57

TABLE II: PANDA, record, and replay slowdowns

Furthermore, the full repeatability of replays makes them

incredibly useful for dynamic analysis. Traditionally, manual

dynamic analysis involves running a program inside a debug-

ger and using the debugger to introspect into program state.

However, debuggers largely cannot execute backwards, so in

order to inspect an earlier program state, an analyst must

restart the program from scratch. This will change every heap

address used by the program, and without debugging symbols,

every data structure location will have to be found manually.

With PANDA replays, heap addresses are the same each time,

so information about the state of memory can be built up piece

by piece. This ability greatly accelerates reverse engineering.

Record and replay performance has not been a priority,

as we have been focused on fidelity and system use. Con-

sequently, it is currently fairly slow. We ran the configure and

compile of the software gzip-1.2.4 and the timing numbers

are given in Table II. PANDA itself is about 5% slower than

QEMU 2.1.0. Recording incurs a slowdown of almost 2x, and

replay adds about another factor of 2. Thus, replay is almost

4x slower than standard QEMU. This may seem slow, but

replay is noninteractive, and, in many cases, analysis plugins

incur much larger overheads of 10-100x and so the replay

slowdown is insignificant. The analysis benefits of replay are

dramatic, as will be observed in Section IV.

B. Plugin Architecture

To understand PANDA's plugin system, it is first necessary

to have a basic idea of how QEMU executes code in whole-

system mode. As seen in Figure 3, code from the guest OS

is initially translated by QEMU to an internal representation

called TCG. If LLVM is not enabled, QEMU's JIT compiler

will then generate host code and execute it, caching the

generated code for future executions of the same basic block.

When LLVM is enabled, the TCG IR is also translated to

LLVM and the LLVM JIT can be used to generate and execute

host code.

PANDA plugins take the form of shared libraries that can

be loaded at any time during execution of guest code. When a

plugin is loaded, its init_plugin function will be called to

perform any setup; when the plugin is unloaded or PANDA

exits, uninit_plugin will be called. In between, plugins

are event-driven, performing work in response to things that

happen in guest code.

Inside the initialization function, plugins can specify which

events they want to instrument. The available instrumentation

sites are located at many points throughout this process of

guest code translation and execution. Plugins can be notified

when an individual instruction is translated, and can signal

that they would like to be notified whenever it executes ((1);

labels in this paragraph refer to Figure 3). They can also be

notified before and after translation of a basic block (2), and, if

LLVM is enabled, analyze or transform the generated LLVM

code (3). At runtime, plugins can receive callbacks before and

after basic block execution ((4),(5)), and at memory access (6).

There are a few other callbacks available to plugins, but they

are more rarely used; the interested reader can consult the

PANDA documentation for further details [2].

PANDA exposes an API that gives plugins access to some

common functionality, including reading and writing memory,

flushing the translated code cache, parsing command line

arguments, and enabling various features such as memory

instrumentation and precise program counter tracking that are

too expensive to run all the time. In addition to this core API,

plugins can call any public function in QEMU.

Many plugins depend on some common functionality. To

avoid duplicating functionality throughout plugins while keep-

ing the core of PANDA simple, we have implemented a

mechanism for plugin-plugin interaction. This allows plugins

to expose a public API that other plugins can call, and to define

their own callbacks that other plugins can use to be notified of

events. Although this functionality could be implemented by

each plugin by using dlopen and dlsym to look up functions

in other plugins, PANDA provides helpers that make exposing

APIs and callbacks to other plugins easier and less error-prone.

Through judicious use of preprocessor macro magic, plugins

can define callbacks in just a few lines of code; other plugins

can then sign up to be notified by invoking a single registration

macro. Plugins can also make functions public by simply

listing them in a specially named header file; PANDA's build

system will then automatically generate an external header that

allows other plugins to call them as though they were local

functions. The precise details of the plugin-plugin interaction

mechanism are available in the PANDA documentation [3].

Plugin-plugin interaction allows complex analyses to be

rapidly built by composing existing plugins. For example,

one can search for points in the execution that use a par-

ticular string using the stringsearch plugin (described in

Section III-A), which defines a callback named on_ssm that

triggers whenever a string match occurs. An analysis plugin

might use this callback to be notified whenever a particular

string (say, a password) is used. It could then taint the string

in memory using the taint plugin (Section III-E) and register

a callback with the syscalls plugin (Section III-B) that fires

whenever sys_send is called in the guest and queries whether

the data written is tainted. This would effectively implement

a detector that could tell when data derived from a user's

password is written to the network. Note the separation of

concerns here: taint tracking, system call analysis, and string

matching are all independent tasks relegated to their own

plugins, while an analysis plugin coordinates their actions.

C. Architecture Neutral Analysis

There are a number of instruction-level dynamic analyses

that are invaluable for reverse engineering. For instance, a



Guest Code

   push ebp
   mov ebp, esp
   mov eax, [edi]

TCG IR

st_i64 tmp12,env,$0xdae0    
ld_i64 tmp12,env,$0xdad0

LLVM IR

%3 = inttoptr i64 %2 to i64*
store i64 218737284, i64* %3

(2)

Host Code

(3)

Basic Block

Basic Block
(4),(5)

(4)

(6)

(5)

(1)

mov    %ebp,(%rdi)
mov    %ebp,%esi
xor    %edx,%edx

and    $0x1fe0,%esi
lea    0x528(%r14),%rsi
jmp    0x41cbf066
callq  ld_mmu

Fig. 3: Overview of PANDA execution and instrumentation. Detailed descriptions of the steps can be found in the main text.

taint analysis, in which data in memory or registers can be

painted with labels and then those labels propagated through

copies and collected in sets to represent computations, can

permit detailed understanding of the true information flow

patterns around and out of a system. But to perform this

feat, dynamic taint requires an additional analysis be specified

and performed alongside every instruction to properly track

labels. Another example would be a dynamic slice of the

sort used by the Virtuoso [15] system to extract operating

system introspection gadgets. This, likewise, necessitates per-

instruction data-flow models. Third, consider the popular sym-

bolic execution techniques, often coupled with SAT-solving.

These are only possible once symbolic execution models

have been implemented for every instruction. The QEMU

emulator, upon which PANDA is built, supports over a dozen

architectures. Completely specifying a taint analysis for just

one of these is a daunting task, especially for x86 with over

a thousand instruction variants.

PANDA avoids this pitfall by allowing every basic block

of emulated code to be rendered in the LLVM intermediate

language and thus for the analysis to take place in that

simplified, but semantically equivalent domain. This means

that, instead of having to write taint models for thousands

of x86 instruction variants, we have to write models for

only the few tens of necessary LLVM instructions. This

is not only easier to get right, it also gives us equivalent

analyses in all the architectures QEMU supports, with no

additional work. LLVM translation is made possible via a

module from the S2E system [8], which, in turn, leverages

QEMU's own TCG intermediate language in which most guest

instructions are implemented. We have modified and extended

this LLVM translation to enable support for x86-64 and ARM

architectures, and to ensure completeness through the inclusion

of complicated instructions.

Many of the more complicated instructions such as MMX

and SSE for x86 and floating point for ARM are actually

relegated to C language ``helper'' functions in QEMU for

performance reasons, and, presumably, because it would be

tiresome to render them as TCG ops. These are potential

analysis gaps which we bridge by generating LLVM for these

functions via the clang compiler, and making those bitcode

representations available for the same analyses as the basic

blocks of emulated code. Thus, effectively all code whose

business is the emulation of the guest can be submitted to

something like a taint or symbolic execution analysis.

LLVM execution is currently slower than standard QEMU

execution (this is also true for S2E, from which our LLVM

execution is derived). We observed a slowdown of around 10x

between a standard PANDA replay and a replay with LLVM

enabled. We believe this could be improved by optimizing the

LLVM code generated from TCG; previous work has even

shown that it is possible to make QEMU faster by translating

to LLVM [20].

D. Android Support

The Android SDK provided by Google includes a QEMU-

based emulator, which emulates an ARM board named ``Gold-

fish''. This emulator is based on QEMU 0.8 (with some code

backported from QEMU 0.10). We ported the features nec-

essary to emulate Android devices to PANDA, jumpstarting

our effort with the work Patrick Jackson did for the Google

Summer of Code in 2011 attempting to integrate the Android

code into mainline QEMU [21]. Significant additional work

was required to be able to fully support modern Android

emulation (through 4.4), including

• integrating telephony, camera, and ADB support

• integrating SD card support

• input translation for the VNC and SDL interface modes

to Goldfish's input format

• supporting QEMU's QCOW2 disc image format for the

storage devices

• arranging to support our record/replay mechanism

• fixing a video conversion bug

PANDA also incorporates code from the DroidScope

project [35] for Linux/Android introspection. DroidScope is

capable of tracking Linux processes, libraries, and threads,

resolving debug symbols against a running Android system,

and tracing the instructions run by a Dalvik interpreter in

Android 2.3. We integrated the DroidScope code into PANDA

and provided it with the necessary layout information for the

Android 2.3 and 4.2 SDK kernels.
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Fig. 4: Memory accesses made by a program with varying

amounts of context: (a) as a single stream of information from

the CPU to RAM ; (b) split up according to program and

location within program ; (c) split up according to program,

location within program, and calling context. Figure originally

from [14].

See Section IV-C for an example of the kind of deep reverse

engineering of Android apps made possible by its integration

into PANDA.

III. Plugin Details

Here we detail a few specific plugins commonly used when

reverse engineering with PANDA.

A. Tappan Zee (North) Bridge

Reverse engineering tasks often hinge on finding out what

piece of code implements some high level functionality or

handles some particular data. In large programs this can be

quite difficult: in the case where the data is some fixed string

embedded in the program, it is easy enough, but for dynamic

data one must usually laboriously trace the flow of data from

some known input source through a chain of intermediate

functions to where it is finally used. Moreover, in cases where

the data sought is some intermediate value not directly derived

from the input, even this approach may fail.

In previous work [14], we developed a system, Tappan

Zee (North) Bridge (TZB for short), which attempted to

locate points at which to interpose on a system for event

monitoring during virtual machine introspection. We have

since discovered that it is also immensely useful for reverse

engineering.

The central idea of TZB is that memory accesses can

illuminate the internal details of a system. As a program runs,

functions called from different contexts read and write input,

output, and intermediate results to memory. By appropriately

separating out these memory accesses according to program

and calling context (see Figure 4), we obtain coherent streams

of data that can then be searched and analyzed for information

of interest. We term these streams of data accessed at a

particular point in a program tap points as they are places

one might ``tap'' to get useful information from a system.

In the simplest case, we may wish to find out what part of a

program handles a certain bit of data, such as a string we type

into a program, or what function causes a particular string to be

printed to the console or shown in the user interface. For such

tasks we can just search all tap points for some fixed strings,

which will give us a set of functions that were seen to read

or write data matching our search string. To accomplish this

we have created the stringsearch plugin, which tracks all

memory accesses made in the system, splits them up according

to the calling context, program counter, and address space, and

then searches the resulting streams for a list of keywords.

In some cases we may not know the exact format of the data,

but we may know some statistical features of it. For example,

when searching for a DRM decryption function, previous work

from Wang et al. [33] tells us that the inputs to such functions

have high byte entropy and are statistically random (according

to a test such as Pearson's Chi-Squared test), but their outputs

are not random. We recently used this test to locate the DRM

decryption function within Spotify and showed it could be

used to extract unencrypted audio files [13].

To support this latter use case, PANDA can collect un-

igram and bigram statistics about each tap point using the

appropriately named unigrams and bigrams plugins. These

functions collect unigram and bigram histograms for data

read or written at each tap point during an execution; once

this summary data is gathered an analyst can write scripts

to compute measures such as entropy, chi-squared values, or

some distance measure (such as Kullback–Leibler divergence)

to a previously observed distribution.

As we will see in Section IV, the ability to search through

tap points for data of interest can allow a reverse engineer to

quickly zero in on the parts of a program of greatest interest,

or to extract normally unobservable data from a program as

it runs. Note that TZB depends crucially on PANDA's record

and replay functionality: trapping on every memory access and

inspecting its contents on a live execution would cause it to

grind to a halt, but the overhead is not a problem in a replayed

execution.

B. System Calls

The syscalls plugin introspects on system calls in an

emulated x86 or ARM guest. Upon encountering an instruction

initiating a system call, it logs the instruction and system call

number, and then dispatches on the system call number. This

dispatch code is the heart of the plugin and is automatically

generated from system call function prototypes. That is, it

uses the known OS application binary interface along with

the types in the prototype to make system call arguments

available to callbacks for analysis. At each system call, the

plugin logs the system call number and arguments, but then

calls a function handler, passing system call arguments. By

default, this handler is an empty function, but it can be

overridden. For instance, we overrode several default handlers

to build a file descriptor module which maintains a per-process

mapping from open file descriptors to file names for Linux.

The syscalls plugin also has an internal mechanism for



executing callbacks when guest code returns from a system

call. In our file descriptor tracker, this allows us to access

data after it is read from a file to a buffer, detect the return

code from system calls, copy the file descriptor list from a

parent to child after a fork, etc.

C. Shadow Callstack

A common need in reverse engineering is to understand

the context in which an event is happening. In particular, we

often need to obtain the callstack---who called the current

function, who called that function, and so on. In debugging

contexts, this is usually done by walking the stack and recon-

structing saved stack frames. However, this process is highly

architecture and operating-system dependent, and programs

can manipulate the callstack if they want to mislead analysis.

This is even true of non-malicious programs like Windows,

which tries to hide the callstack in its Kernel Patch Protection

module [30].

To satisfy this need we include in PANDA a shadow

callstack plugin named callstack. After each block in a

replay executes, we check if it ended with a call instruction,

and if so we push the return address onto the shadow stack.

Before each block executes, we check to see whether it

matches a return address on the callstack; if so, we know that

the current function has returned and we can pop it from the

stack. This approach requires the ability to disassemble blocks

on a given architecture, but strong library support exists for

that task.

The callstack plugin exports an API that allows other

plugins to obtain the current stack of both return addresses and

function entry points, and to register callbacks for function

calls and returns. Together, these capabilities allow other

plugins to quickly and accurately obtain information about

the shadow callstack; furthermore, because the shadow stack

is outside the control of in-guest programs, it is not susceptible

to manipulation.

D. Scissors

One of PANDA's biggest contributions is the ability to

do offline analysis: to collect a recording of execution at

normal speed and then replay that execution with heavyweight

analyses running, potentially over a long period of time. Still,

though, many analyses are too heavyweight to be tractable

over replays with potentially billions of instructions; examples

include symbolic execution and complex taint analyses. To

address this issue, we created the scissors plugin, which

enables the user to excise smaller portions of replays and

then analyze just the shortened portion. Combined with the

ability of components such as TZB to rapidly locate sections

of interest in the replay, the scissors plugin allows analysts

to focus heavy attention on key events during execution and

ignore everything else.

E. Taint Analysis

We have implemented a dynamic taint analysis as a plugin

for PANDA. It permits precise labeling of data in a number

Time

Environment (seconds)

PANDA+replay : Network 2.24

PANDA+replay+taint : Network 55.4

PANDA+replay : Encryption 2.26

PANDA+replay+taint : Encryption 153

TABLE III: PANDA taint analysis slowdowns

of ways, including file contents, network input, RAM, and

registers. These labels are then tracked automatically, and

stored in a shadow memory that associates tainted physical

addresses, registers, and I/O buffers with label sets. The

propagation of labels is handled by a virtual taint processor

which executes basic blocks of taint operations corresponding

to basic blocks of emulated guest operations. These taint

basic blocks are derived from the LLVM translation described

in Section II-C, via an LLVM ``pass'' which generates taint

operations from intermediate language operations one by one.

This means that our taint analysis is architecture-independent;

we have used it to analyze x86, x86-64, and ARM replays, and

we can trivially extend it to all of the architectures that QEMU

supports. Finally, there are query mechanisms to determine if

data is tainted at some replay point, and, further, to examine

the set of associated taint labels.

Many of the details of how this subsystem was designed and

implemented have been described elsewhere [34]. But there

are few salient and even some new details which we mention

here.

1) Whole-system PANDA's taint tracks labels even if they

flow between processes including the kernel, and is

indifferent to shared memory since the RAM portion of

the shadow memory is in terms of physical addresses.

2) I/O support The shadow memory includes the hard

drive, network card, and associated I/O buffers. This

enables us to precisely introspect into how data prop-

agates through the system at a low level, and properly

track how data moves through these devices.

3) Replay-based Taint is an expensive analysis and for

many platforms such as Android, even pure QEMU-

based execution is barely fast enough to prevent time-

outs. Therefore, the taint plugin can only run during

replay.

4) Detail and fidelity The taint analysis in PANDA is

focused more on the detail that can be obtained from

the analysis rather than fast performance. For instance,

a file can be labeled such that every byte in the file gets

a different label. Further, guest computation is modeled

with high fidelity via set unions. So, if EAX has the label

set 1, 2 associated with it in the shadow memory, and

EDX has 3, then EDX = EAX + EDX will have the label

set 1, 2, 3.
5) Performance Such detailed analysis is inherently heavy-

weight. Table III shows the slowdown of our system for

two representative workloads: tainting 1KB of data that

is then sent over the network, and tainting a 1KB file and

encrypting it with AES-CBC-128. The network work-



load exhibited a 24.7x slowdown over PANDA replay,

while encryption was 67.7x slower. This illustrates the

fact that taint performance is workload dependent: the

network workload is made up mostly of simple copies,

whereas in the encryption workload each byte of output

depends in complex ways on every byte of the input.

6) Interface Taint labeling and querying can be either

event-driven (via callbacks registered with the taint

plugin) or invoked by calling the plugin API.

IV. Case Studies

In this section, we present three compelling RE use cases

for PANDA. In the first, an old version of Starcraft for

which the CD key has been lost is rapidly made whole again

by locating the key verification code and harnessing it to

produce keys on demand. In the second, a Windows Internet

Explorer vulnerability is diagnosed in depth from a whole-

system replay, indicating not merely that it is a use-after-free

bug but pointing the finger at a precise CVE number. In the

third, a Chinese IM client suspected of censoring messages is

quickly determined to be doing so via a blacklist which is also

readily extracted. Note that, while we end up using many of

the plugins mentioned in Section III, no attempt was made to

cover all of them with our use cases. Rather, we allowed the

task at hand to drive the plugins employed.

A. Reviving Legacy Code

We used PANDA to find and rapidly reverse engineer the

26-character CD-key validation algorithm for StarCraft. First,

we collected a recording of the StarCraft installer rejecting a

random sequence of letters and numbers. We then provided

both this incorrect key sequence and the text of the rejection

dialog as searches to PANDA's TZB, which promptly found

both in the replay. This focused our attention on about 200,000

instructions out of 60M in the complete replay (a reduction of

300x), and we used the scissors plugin to extract just this

operative segment containing the validation algorithm.

Via manual static analysis of the code in the remaining

replay segment, we ascertained that the installer decrypts the

CD-key and checks the high-order bits of the resulting 120-

bit integer against a fixed value. This magic number is not

immediately apparent in the disassembly, but a trivial plugin

was rapidly fashioned that printed it out when read from

memory while running on the scissored replay. The magic

number turns out to be 23. Manual reverse engineering from

there easily revealed the complete key computation algorithm.

Some additional mathematical analysis indicated a very low

key density: only 1 in 27,000 of the possible keys are actually

valid.

We then proceeded to extract source code for the key

computation function, as the low key density indicated that

harnessing it and trying random keys would be successful.

QEMU's physical memory dump feature run at the end of

replay plus the Volatility Framework [5] easily extracted the

installer binary. IDA Pro's HexRays decompiler was then used

to recreate source code which required only light editing and
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Fig. 5: Measure of tainted computation as a function of in-

struction count reveals where CD key validation computation

occurs.

some error correction to compile. This extracted function we

harnessed as an oracle in a small C program, feeding it random

keys to find valid ones, which we then verified successfully

unlocked the installer. It should be noted that, even without

any manual reverse engineering, it would have been feasible

in this case to generate a random key in this way. However,

that might not have been the case. If the CD-key system had

been designed for a lower key density, we would have had

to invert the decryption algorithm. In StarCraft's case, that

would not be terribly difficult, but for other games it might be

impossible. Binary patching or similar techniques would then

have been necessary in order to play the game, which would

be easy given the RE knowledge already assembled in this

effort.

This RE effort was very successful. PANDA allowed us to

extremely rapidly locate the code of interest, as well as find the

comparison value of the test. The scissors plugin enabled

us to reduce the replay to a size where complicated analysis

was immediately tractable.

Additionally, we tried using a more complicated taint-based

series of plugins for this RE task with very good results. We

used TZB to apply taint labels to the CD key and then compute

a measure of how much computation has taken place with

tainted data. This measure is plotted in Figure 5 as a function

of the instruction count in a portion of the replay for Starcraft

install, and it clearly indicates a very small replay region of

about 20,000 instructions where the key is decrypted and some

bit-spreading takes place. Further, if we ask the taint system

to identify the code responsible for those computations, the

result is just twenty basic blocks of code. Of these, the block

that performs the most computation is the one that decrypts

the key. This taint-based analysis is powerful but it is not fast.

The 4-second scissored replay that contains everything from

first TZB match of CD key to seeing the invalid key dialog

takes over 400 seconds to analyze and produce the graph in

this paper.

B. Deep Vulnerability Diagnosis

Vulnerabilities often have deep causes, where the underlying

bug can occur well before a potential crash or exploit. One



classic example is the use-after-free bug in which a program

retains a dangling pointer referencing freed memory, derefer-

encing it much later. Frequently this dereference will cause

the program to crash by corrupting program or heap data

structures, but the crash itself will give no hint about the

dangling pointer---where it was created, when the memory

was freed, or even that the bug involved a use-after-free at

all.

As an exercise, we had one team member prepare a replay

containing a triggered vulnerability. This replay was then given

out with no information other than that an application crashed

with the standard Windows error message, ``Application has

stopped working.'' First, we used the replaymovie plugin to

make a series of captures from the video card framebuffer

and stitch them together into a video of replay execution. This

indicated that the failing process was Internet Explorer, and

that the vulnerability was triggered by loading an HTML file.

We then used TZB to search for ``<HTML'' and ``has stopped

working''; this gave us temporal bounds in the replay for where

the bug must be. The scissors plugin enabled us to reduce

the size of the replay and make heavier analyses. Using TZB

again, we extracted all further output at the <HTML tap point,

which was exactly the full HTML which triggered the bug.

The HTML indicated that the vulnerability was probably a

use-after-free.

We then wrote a custom use-after-free detector plugin for

PANDA to locate the use-after-free. The detector was written

for Windows, but could easily be adapted for other operating

systems. It tracks calls to Windows's low-level RtlAllocate-

Heap, RtlFreeHeap, and RtlReAllocateHeap, and it maintains

shadow lists of allocated and freed memory. When a pointer

to freed memory is dereferenced, a use-after-free has occurred

and the plugin detects it. This approach produces some false

negatives (since a new allocation may have since occupied

the free space), but in this case it successfully detected the

use-after-free bug. Looking up the relevant function using

Windows debug symbols quickly identified the bug as CVE-

2011-1255.

In a real situation, the analyst would usually be given an

HTML file which triggered the bug, but we felt this example

would illustrate how PANDA's built-in plugins integrate well

with custom analyses to give deep insight into system be-

havior. One person wrote the use-after-free detector in about

15 hours of working time and about 300 lines of code as

measured by sloc. Further work could easily add full tracking

infrastructure for dangling pointers, from creation to use. This

addition would enable the detection of exploits as well as

crashes.

In this case study, the repeatability of PANDA replays was a

key advantage. It is much easier to write custom plugins when

they are written to target a specific replay, as the author does

not have to worry about writing the plugin in full generality;

instead, they can hardcode addresses and trace points to gather

information at key events.

C. Uncovering Censorship Blacklists

As we discussed in Section I, we cannot always trust that the

software we use is acting in our interests. For example, many

instant messaging clients actively censor the chats of Chinese

users [29], [25]. Such censorship can either be done at the

server or by using a client-side blocklist that is periodically

updated. In the former case PANDA can be of no help, since

there is no code available to run and examine in vivo; however,

in the latter we can use PANDA to extract a list of censored

words from the client. We examined LINE messenger, which

has been found [18] to censor Chinese users. The CitizenLab

analysis was done on version 3.8.5; we used the most recent

version available, 4.5.4, which we downloaded from Google

Play.

After installing LINE inside PANDA, we found that the

registration process requires SMS verification; because we did

not have access to a Chinese mobile number, we signed up

using a US phone number, which causes LINE to bypass its

censored word checks. Referring to CitizenLab's previously

published analysis, we were able to modify LINE's sqlite
settings database and change our region to CN. Had we been

able to obtain a Chinese phone number (region code 86)

capable of receiving SMS messages, this step could have been

skipped.

Once our region was correctly set to China, we created a

recording in which we launched the LINE messenger and sent

an instant message to another user. The message sent did not

include any content we thought might be censored. Simply by

sending the IM, we supposed that LINE would still have to

load its censored words list and check our message against it,

which would leave it open to extraction by PANDA.

To find the encrypted wordlist, we employed TZB, de-

scribed in Section III-A. Guessing that a censorship list for

China might contain terms such as ``Falun'' (法轮) and

``Tiananmen'' (天安门), we searched all memory reads and

writes made by LINE for the UTF-8 encoded versions of

these words. This gave us a set of tap points that contained

the sensitive words. As we suspected, the words we sought

were indeed included in LINE's list of censored words: four

separate tap points contained both Falun and Tiananmen, along

with 534 other words.

Because applications on Android are written in Java and

JITed using the Dalvik virtual machine, the location of the

code that handled the censorship blacklist was not particularly

illuminating; in addition, the data passing through the tap point

included a large amount of irrelevant data. To extract just the

censored word list, we instead looked at the address of the

memory that was accessed, and wrote a new plugin called

bufmon that records every read and write to a given memory

region. We then ran the replay a second time, providing

bufmon the memory range we saw the censorship list being

written to, and from its output obtained the full list without

any extraneous information.2 To save space, the censorship

2We also verified that the extracted list was correct by manually analyzing

a decompiled version of LINE.



blacklist itself is omitted from this paper, but can be found at:

http://cc.gatech.edu/~brendan/line.txt

Had the words we thought of not been present in the

censorship blacklist, we could have proceeded with a more

sophisticated analysis. PANDA's record and replay function-

ality and plugin system allow us to run analyses of increasing

sophistication over the same execution, zeroing in on the

desired functionality or data present in the program we are

reverse engineering. Such iterative analyses are tremendously

simplified in PANDA compared to traditional, non-replay

based dynamic analysis; for example, both the censorship

wordlist buffer and the JITed Dalvik code stayed at the same

memory address throughout the entire analysis, making it

trivial to apply analyses to the same objects each time.

We also sidestepped some challenges by focusing on a

dynamic analysis: LINE's censorship lists are encrypted with

AES, and a static approach would have had to find the key

embedded in the program in order to get the cleartext list.

By looking at memory accesses, we were effectively able to

ignore the encryption altogether. In all, once the region was

correctly set in LINE, the entire analysis took about four hours,

including the time to write and debug the bufmon plugin.

Reproducing these Results

We have designed PANDA so that analyses can be shared

with others. Accordingly, we have made the replay logs

available on rrshare.org, included the analysis plugins in our

GitHub repository [1], and posted instructions for running

PANDA to reproduce the use cases in this section at

http://cc.gatech.edu/~brendan/panda_re_repro.html

V. Related Work

We believe that PANDA's combination of repeatable dy-

namic analysis, powerful architecture-neutral analyses, and

modular architecture form a uniquely powerful environment

for reverse engineering. However, the individual components

of PANDA are built on a rich body of work on dynamic binary

instrumentation, record and replay, and taint analysis, which

we survey in this section.

A number of systems have approached the problem of

instrumenting binary programs at runtime. At the level of

an individual program, systems such as Pin [26] and Dy-

namoRIO [7] use dynamic binary translation to provide an

API similar to PANDA's that allows users to instrument basic

block execution, memory accesses, and so on. At the whole-

system level, the BitBlaze project [31] (and in particular its

TEMU component), S2E [8], and DECAF [19] are all QEMU-

based and have functionality that overlaps with pieces of

PANDA (indeed, some parts of PANDA are directly derived

from these projects: our LLVM translation comes from S2E,

and some of the Android introspection code is derived from

DroidScope, the progenitor of DECAF). PANDA's novelty and

effectiveness come from the focus on providing repeatable,

modular analyses that can draw on sophisticated techniques

such as taint without perturbing execution.

Record and replay itself is a well-studied research area in

software engineering. The idea that replay can allow analyses

to be decoupled from execution was first recognized by Chow

et al. in Aftersight [9]; this insight is crucial to PANDA's

model for reverse engineering. There have been a number of

whole-system record and replay efforts prior to PANDA; the

most prominent of these are VMWare's (now discontinued)

record and replay system [32], TTVM [23], and ReVirt [16].

To the best of our knowledge, however, PANDA is the first

open-source, widely available system that supports record and

replay of multiple CPU architectures and provides compact

recording logs that can be shared and reproduced on other

machines.

The basic principle of tainting data and then following

its propagation through a system has been explored at least

since Perl's introduction of the ``-T'' flag to enable tainted

variable checking in 1989 [4]. Under a somewhat broader

interpretation of taint analysis, one could argue that earlier

information flow models of security such as Bell-LaPadula [6]

foreshadowed more recent analyses. The modern strain of

research in taint analysis, however, begins in 2004, when sev-

eral papers independently proposed tracking the flow of input

data to detect exploitation of software vulnerabilities [10],

[12], [27]. Subsequent research has focused on improving

the efficiency and precision of taint analysis [22], [11]. Most

recently, several of the authors of this paper designed the

architecture-neutral taint analysis system used in PANDA [34].

Independently, Henderson et al. have also proposed a QEMU-

based architecture-neutral taint analysis system [19]; PANDA's

differs mainly in being based on LLVM rather than QEMU's

own TCG and in its ability to follow taint through QEMU's

``helper functions'', which are implemented in C. This dif-

ference vastly enlarges the space of programs PANDA can

analyze, as it can process floating point instructions and other

processor extensions.

VI. Limitations and Future Work

PANDA currently has a number of limitations that we hope

to address in future work. This section gives an overview of

its main deficiencies and our plans to address them.

Performance: PANDA's responsiveness when interacting

with a guest virtual machine during record has so far been

adequate for our purposes, and its replay-based analyses do

not require interaction. Nevertheless, we do hope to reduce

record-time overhead. The primary source of overhead is the

need to keep track of the number of instructions executed

and the current program counter at the instruction level. It

would be a moderate engineering effort to address this. A

much more significant speedup could be achieved by recording

under hardware virtualization via KVM [24] and only using

CPU emulation during replay. This would require a significant

implementation effort, however, as KVM does not natively

support the mechanisms of our record / replay. Other inef-

ficiencies might be more important to address, such as the

10x slowdown for execution under LLVM translation and the

25-100x penalty for taint analysis.



Architecture Support: Although PANDA is in principle

architecture-neutral, there are a number of features that have

not yet been ported to all architectures. The most significant of

these is record / replay: although in principle supporting more

architectures should be a simple matter of determining the

architectural sources of nondeterminism and wrapping them in

our existing record and replay mechanisms, we have not yet

made this effort on all architectures. The highest priority cases

are MIPS and PowerPC, as these CPUs are used extensively in

embedded devices that we wish to analyze. LLVM translation

is also not currently enabled for all architectures, but this will

require much less work, as there are a relatively small number

of changes needed to support LLVM translation and execution

on other architectures.

Introspection: Some analyses may require additional,

higher-level information about the state of the running system.

For example, an analysis plugin might wish to restrict its

attention to just one program or one module within a program;

this requires some level of OS knowledge. We plan to create

new plugins that encapsulate the domain-specific knowledge

necessary to retrieve useful information about various guest

OSes and expose that state via a public API, either by

leveraging existing introspection tools such as Volatility [5] or

relying on small custom-built introspection code of our own.

Truth be told, it is most likely that we will produce more

analysis plugins to support interesting and complex reverse

engineering scenarios before we address the above limitations.

While it would be nice to have a slightly faster and more

featureful PANDA, these limitations do not currently represent

``pain points'' that hamper our daily work, and we are far more

interested in new applications of PANDA. Of course, as an

open source project we welcome any contributions from the

community.

VII. Conclusion

We have been actively using PANDA for the past two years

to quickly reverse engineer large, real-world binary systems.

In that time, we have found it to be invaluable for speeding

up reverse engineering, in most cases either entirely obviating

the need for manual analysis, or precisely directing human

attention to the critical portions of a large code base.

The academic study of reverse engineering has been stalled

by the widespread view that reverse engineering is a less

than legitimate field of inquiry. It is our hope that with

this paper we can begin the rehabilitation process. We have

presented several compelling prosocial use cases for reverse

engineering and provided a powerful new tool to facilitate

good work. In doing so, we hope to encourage further research

into tools and techniques that automate RE or make manual

RE more effective. More fundamentally, though, we want to

demonstrate that RE is a powerful tool for investigating the

critical but opaque programs that increasingly run our world.
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