
Kamino: Dynamic Approach to Semantic Code Clone Detection

Lindsay Neubauer
Columbia University

neubauer@cs.columbia.edu

Abstract
Discovering code clones in a runtime environment helps
software engineers identify hard to find logic-based bugs.
Yet most research in the area of code clone discovery deals
with source code due to the complexity of finding clones in a
dynamic environment. KAMINO manipulates Java bytecode
to track control and data flow dependencies at the method-
level of Java programs during runtime. It then matches simi-
lar flows to find semantic code clones. With positive prelim-
inary results indicating code clones using KAMINO , future
tests will compare the its robustness compared to existing
code clones detection tools.

Categories and Subject Descriptors CR-number [subcat-
egory]: third-level

Keywords code clones, clone detection

1. Background
Discovering duplicate code, or code clones, in large software
systems is useful for bug detection, plagiarism detection, and
code refactoring. Syntactic code clones are sections of code
that are indistinguishable from each other at the source code
level except for minor differences between identifiers, liter-
als, types, whitespace, layout, and comments [13]. Semantic
code clones are sections of code that are functionally similar
but syntactically different [6]. Their discovery is used to fix
redundancy issues including program correctness and main-
tenance [7].

Most of the research in the area of code clones focuses
on static approaches to detection. This simplifies both dis-
covery and validation, and there are numerous findings that
indicate the importance of clone detection using this method
[8]. Selim et al. transform source code into an intermediate
representation before using existing source-based clone de-

[Copyright notice will appear here once ’preprint’ option is removed.]

tection to discover harder to find syntactic clones [16]. Davis
and Godfrey find clones at the assembly language level, an-
alyzing code used in the build process [3]. There is some re-
search that analyzes Java bytecode, using static analysis [9],
process algebras [15] and pattern and content matching [10].
Sæbjørnsen et al. detect clones using binary executables to
cluster normalized assembly instructions [14].

Dynamically discovering code clones is more difficult but
finds clones that are inaccessible using a static approach.
Khan et al. combine source code clones created using static
analysis techniques with execution trace information to find
the extent clones are active during runtime [11]. Some deter-
mine semantic code clones based on input and output be-
havior, using random testing to generate input values [5,
6]. KAMINO aims to dynamically discover semantic code
clones to help software engineers identify harder to find
logic-based bugs.

2. Kamino
This research extends work done by Sethumadhavan and
Demme using λSignatures generated for C programs [4].
λSignatures are used to determine semantic similarity be-
tween basic blocks of code, where a basic block is defined as
a section of code with one entry and one exit point. KAMINO
manipulates Java bytecode using ASM [12] to track control
and data flow between basic blocks at the method level of
a program during runtime. In KAMINO, data flow between
basic blocks is defined as a variable read or write. There are
four types of control flow: Conditional jumps, Unconditional
jumps, Fall throughs, and Exceptions. Currently KAMINO
does not record exceptions, but because exceptions are a
standard workflow in Java they will be added in the future.
KAMINO keeps track of the starting and ending basic blocks
when a control or data flow occurs dynamically, and the dis-
tance between these blocks. In the case of data flows, it also
keeps track of the variable for which the data flow belongs.

KAMINO generates output for Java applications ranging
from a single file to programs that rely on a directory struc-
ture. There are two different output options. It can generate
program dependency graphs similar to those created by [4],
where each basic block is represented as a node and con-
trol and data flows between basic blocks are represented
as weighted edges. This output will be used to approxi-

1 2014/7/10



mately cluster graphs to find program similarity. Alterna-
tively, KAMINO can keep track of control and/or data flows
between basic blocks in a string format. This output is used
with a longest common substring algorithm to compare iden-
tical sequences within a linear execution.

To generate large dynamic program graphs for this project,
as well as for future code clone analysis, I used Apache
Tomcat [1] versions 7 and 8. Tomcat is a large open source
application that implements the Java Servlet and JaveServer
Pages technology [1]. Comparing multiple versions of the
same application should result in a significant number code
clones, working as a ground truth for the validity of our ap-
proach. Previous studies have found that between versions
of Tomcat there are large amounts of duplicate code, which
present as static code clones when compared [17–19].

Preliminary tests were run using the longest common sub-
string approach. I ran a small number of tests from both ver-
sions 7 and 8 of tomcat and compared them against them-
selves by doing a manual check of each method within the
tests. These tests generated the same strings for each of the
methods tested. I checked the same number of tests from the
tomcat versions and compared them against each other and
did a manual check of each method within the tests. These
tests generated similar strings for each of the methods, in-
cluding those that were exactly the same between versions.
Further tests will be conducted on the longest common sub-
string to determine the slight differences between versions.
Because these test were not conclusive, tests using the ap-
proximate graph clustering approach will be conducted.

3. Research Plan
Once a ground truth is established, I will compare clones dis-
covered with KAMINO in one version of Tomcat to those of
the duplicate code finder provided in the open source devel-
opment tool Checkstyle [2]. Checkstyle, which finds static
syntactic clones, takes a strict approach to code clones by
guaranteeing no false positives [2]. This is ideal for a com-
parison with dynamic code clones because any of the clones
that are found by both approaches are guaranteed to be static
and syntactic clones. Any additional clones that are discov-
ered using the dynamic approach will be inspected to es-
tablish that they are true clones and to determine whether
they are semantic or syntactic. Any clones found by Check-
style [2] that are not found by the dynamic approach will be
considered false negatives. Pending positive results from this
study, I will continue to compare KAMINO to other dynamic
and semantic code clone detectors.

4. Acknowledgments
The author is a member of the Programming Systems Labo-
ratory, which is funded in part by NSF CCF-1302269, CCF-
1161079, NSF CNS-0905246, and NIH U54 CA121852.

References
[1] Apache tomcat. http://tomcat.apache.org, May 2014.

[2] Checkstyle. Duplicate code. http://checkstyle.

sourceforge.net/config_duplicates.html.

[3] I. Davis and M. Godfrey. From whence it came: Detecting
source code clones by analyzing assembler. In Working Con-
ference on Reverse Engineering, 2010.

[4] J. Demme and S. Sethumadhavan. Approximate graph clus-
tering for program characterization. ACM Trans. Archit. Code
Optim., 2012.

[5] R. Elva and G. Leavens. Semantic clone detection using
method ioe-behavior. In International Workshop on Software
Clones, 2012.

[6] L. Jiang and Z. Su. Automatic mining of functionally equiva-
lent code fragments via random testing. In ISSTA ’09.

[7] E. Juergens, F. Deissenboeck, and B. Hummel. Code simi-
larities beyond copy and paste. Software Maintenance and
Reengineering, 2010.

[8] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner. Do
code clones matter? In ICSE ’09.

[9] T. Kamiya. Agec: An execution-semantic clone detection tool.
In ICPC ’13.

[10] I. Keivanloo, C. Roy, and J. Rilling. Java bytecode clone
detection via relaxation on code fingerprint and semantic web
reasoning. In International Workshop on Software Clones,
2012.

[11] M. A. A. Khan, C. K. Roy, and K. A. Schneider. Active clones:
Source code clones at runtime. International Workshop on
Software Clones, 2014.

[12] OW2Consortium. Asm. http://asm.ow2.org, May 2014.

[13] C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. Science of Computer Programming,
2009.

[14] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and Z. Su.
Detecting code clones in binary executables. In ISSTA ’09.

[15] A. Santone. Clone detection through process algebras and
java bytecode. In International Workshop on Software Clones,
2011.

[16] G. Selim, K. Foo, and Y. Zou. Enhancing source-based clone
detection using intermediate representation. In Working Con-
ference on Reverse Engineering, 2010.

[17] F. Van Rysselberghe and S. Demeyer. Reconstruction of suc-
cessful software evolution using clone detection. In Interna-
tional Workshop on Principles on Software Evolution, 2003.

[18] P. Weissgerber and S. Diehl. Identifying refactorings from
source-code changes. In ASE ’06.

[19] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
On refactoring support based on code clone dependency rela-
tion. In Software Metrics, 2005.

2 2014/7/10


