
Detecting, Isolating and Enforcing Dependencies Between
and Within Test Cases

Jonathan Bell
Columbia University

500 West 120th St, MC 0401
New York, NY USA

jbell@cs.columbia.edu
http://jonbell.net/

ABSTRACT
Testing stateful applications is challenging, as it can be
difficult to identify hidden dependencies on program state.
These dependencies may manifest between several test cases,
or simply within a single test case. When it’s left to develop-
ers to document, understand, and respond to these depen-
dencies, a mistake can result in unexpected and invalid test
results. Although current testing infrastructure does not
currently leverage state dependency information, we argue
that it could, and that by doing so testing can be improved.
Our results thus far show that by recovering dependencies
between test cases and modifying the popular testing frame-
work, JUnit, to utilize this information, we can optimize the
testing process, reducing time needed to run tests by 62%
on average. Our ongoing work is to apply similar analyses
to improve existing state of the art test suite prioritization
techniques and state of the art test case generation tech-
niques. This work is advised by Professor Gail Kaiser.

1. INTRODUCTION
When creating unit and integration tests, engineers create

scripts that setup the application under test and then feed
inputs into units, observing the results. Programs may have
explicit inputs (e.g. for a chat server, the message passed
to the server), or implicit inputs (e.g. for a chat server,
the accumulated state of what users are connected and in
what rooms). Software that is stateful, or in other words,
software that behaves differently according to what actions
have been performed on it in the past, poses many difficulties
for software testing due to its abundance of implicit inputs.
Even if software is intended to be stateless, when testing it
we must still assume that it might be accumulating some
state, in order to test that it is indeed stateless.

We therefore typically rely on pre-test functions in our
testing procedures to bring the system to an acceptable state
(be it a real state, or a simulated“mocked”state) before test-
ing the unit under scrutiny, and post-test functions to clean

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FSE ’14, November 16-22, 2014, Hong Kong
Copyright 2014 ACM X-XXXXX-XX-X/XX/XX ...$15.00.

//Our code under t e s t .
// F i l e : Example . java
pub l i c c l a s s Example{

pub l i c void doStu f f (i n t input) {
i f (S ing l e ton . getFlag ()) crash () ;
. . .

}
}

// Source code f o r ex t e rna l l i b r a r y we use ,
which i s t r ea t ed as a black−box

// F i l e : l i b s / e v i l . j a r
pub l i c c l a s s S ing l e ton {

pr i va t e s t a t i c i n t n = 0 ;
p r i va t e s t a t i c boolean f l a g = f a l s e ;
pub l i c s t a t i c void s t a r tB l o ck ing () {

i f (n > 2) f l a g = true ;
n++;

}
pub l i c s t a t i c void stopBlock ing () {

f l a g = f a l s e ;
}
pub l i c s t a t i c boolean getFlag () {

r e turn f l a g ;
}

}

Figure 1: An example of a state dependency

up any accumulated state. Consider the greatly simplified
code example shown in Figure 1 consisting of two classes:
Singleton and Example. The method Example.doStuff

contains a hidden crash, which occurs only when the ap-
plication is in a specific state: when Singleton.flag is set
to true. Simply calling the method doStuff is insufficient to
fully explore the unit: to expose the hidden crash, we would
first have to call Singleton.startBlocking three times.

If the class Singleton is a black box, third party API,
then it may be challenging for developers to determine the
appropriate set of actions to exercise all of its states — what
we will call a dependency on state within a single test case.
However, there could also be a dependency between test
cases here: with this state stored in a static field, unless it
is explicitly cleaned up, it will remain there even after the
test finishes, until the application is shut down. If multiple
test cases interact with Singleton.startBlocking or Sin-

gleton.stopBlocking and are run in the same JVM, then
the tests may interfere with each other — what we will call
a dependency on state between test cases. Detecting these
dependencies by hand is risky, and prior work has shown
that failing to correctly identify such dependencies can lead

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Columbia University Academic Commons

https://core.ac.uk/display/161449237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to undetected faults, despite the existence of test cases that
seem to be able to detect them [12].

Hypothesis: The testing process will be improved by modify-
ing testing tools to become aware of otherwise hidden state
dependencies.

Once detected, we believe that state dependencies within
individual test cases can be used to guide test case genera-
tion so as to expose software behavior in otherwise hidden
states. Most existing test generation tools for object ori-
ented software rely on purely random [13] or fuzzing based
techniques [21] to generate method sequences, in an attempt
to expose such dependencies.

Sound knowledge of state dependencies between tests can
be used to reduce the time needed to isolate test cases from
each other. The previous mechanism for isolating dependen-
cies between tests in Java required completely restarting the
JVM — our approach instead only reinitializes relevant por-
tions of memory that may be involved in such a dependency,
speeding up test suite execution by 62% on average [2].

While our prior work focused on isolating the dependen-
cies between test cases, consider the case where several test
cases are dependent on each other, intentionally left uniso-
lated: in these cases, we may want to enforce the depen-
dencies. Test suite prioritization is a useful technique that
re-orders the execution of test cases, for example, first exe-
cuting those test cases most effected by a recent code com-
mit. However, if a dependency is expected to occur between
tests, by reordering test cases we may break these dependen-
cies and hence create invalid results. We believe that with
sound and precise knowledge of dependencies between tests
we can improve state of the art test suite prioritization tools
to make them resilient to dependent tests.

2. PRIOR AND RELATED WORK
While we are not aware of any work towards specifically

detecting state dependencies between units in the same test,
systems that perform automated test generation may still
be useful for exposing faults in such software [8, 11, 13, 20].
To test object oriented software specifically, many tools use
novel approaches to generate sequences of methods to invoke
before the actual method under test, in order to bring the
system into an interesting state for testing.

For example, Randoop [13] uses a guided-random approach
to generate sequences of method calls. Harrold and Rother-
mel applied data flow testing to object oriented programs
in order to guide selection of sequences of method calls [9].
Buy, et al. combined data flow analysis with symbolic ex-
ecution and automated deduction to produce method invo-
cation sequences that generate new application states [7].
Palus [21] and OCAT [11] use real-world executions of ap-
plications to identify real-world method sequence or object
states to use to guide input generation. MSeqGen statically
mines codebases to detect sequences of method calls used
to configure objects’ state, and then uses these sequences to
automatically generate a pre-test method before using tra-
ditional dynamic symbolic execution or random testing to
test a given method [16]. Evacon uses an evolutionary test-
ing [17] approach to bring the system to interesting states
before using dynamic symbolic execution to examine a given
method [10].

Our proposal differs from all such work in that we are
searching for more subtle dependencies on internal state
than may be exposed by simply executing several methods in
a sequence, instead looking at broader and more subtle de-
pendencies that may require very complex method sequences
to reproduce.

Test case selection techniques (e.g. those which use algo-
rithms to determine a smaller set of tests to run, or a differ-
ent order to run them in [19]) have long assumed that test
cases are independent of each other. To be sound, such work
often relied on the “Controlled Regression Testing Assump-
tion” — assuming essentially that there are no factors that
may cause tests to behave differently (other than bugs in
the system under test) [14]. Zhang et al. performed a study
showing that violations of this assumption could be very
difficult for developers to detect and could cause non-trivial
consequences, building a tool for detecting dependent tests:
DTDetector [20]. DTDetector unfortunately is not very ap-
plicable to enhance test suite prioritization, as its running
time is significantly longer than the time it would take to
simply run the test suite once. We propose eliminating this
required assumption, instead preserving soundness by au-
tomatically enforcing it. In our recent work on Unit Test
Virtualization, we proposed a new mechanism for detecting
and isolating dependent tests with significantly lower over-
head than the existing mechanism, showing improvements
of on average 62% in testing time [2].

In addition to our relevant prior work that will be dis-
cussed elsewhere in this proposal (Phosphor [1], VMVM [2,3]
and Chronicler [4]), we have also have several other publi-
cations on the unrelated topic of gamification, included here
for completeness: [5, 6, 15].

3. APPROACH AND CONTRIBUTIONS
At a high level, we will use a variety of program analysis

techniques to detect state dependencies within applications,
and then adapt existing testing infrastructure to take ad-
vantage of this information. These analysis techniques will
include existing analyses such as static control and data flow
analysis, dynamic data flow analysis, and symbolic execu-
tion. We see several key software testing challenges that this
dependency information will help us to overcome, including:

1. Isolating the system state side-effects of test cases is
traditionally very expensive. However, by knowing the
specific dependencies that tests may have on each other,
we can significantly reduce the amount of time needed
to execute test suites [2].

2. Executing intentionally dependent tests in isolation is
complicated. When a test is dependent on some other
test(s), and is normally expected to be executed in
conjunction with these other tests, executing it out-of-
order can lead to unpredictable results. By efficiently
discovering such dependencies, we can allow test selec-
tion techniques to behave soundly, even in the presence
of dependencies between test cases.

3. Creating high quality test cases for stateful software is
difficult. Without knowledge of how components in-
teract, it can be difficult to imagine the combinations
of components that must be tested to expose all possi-
ble software states. Precise dependency and state in-
formation will again help to automatically guide test
generation to increase coverage.

3.1 Identifying Dependencies
In our prior work, we identified dependencies between en-

tire test cases in Java through a combined static and dy-
namic analysis [2]. In the static phase, we soundly identified
all possible memory areas that could cause dependency con-
flicts during execution and inserted guards to support our
dynamic analysis. These dependency conflicts would mani-
fest as one test case writing to an area of memory and the
second test case reading it (without it being re-initialized).
In the dynamic phase, we more precisely identified which of
these regions posed an actual conflict, and then eliminated
the conflict by re-initializing them to their original state.

While these analyses were sound, they were not com-
pletely precise: for our previous purposes, a false positive
(i.e., reporting a dependency when one did not exist) did
not pose a significant risk: the overhead of reinitializing an
extra class was not very high. However, when “enforcing”
these dependencies during test case selection processes, a
high false positive rate may mean that we will group to-
gether many (or all!) of our test cases, essentially defeating
the benefits of the test selection process.

We plan to augment these analyses with more precise con-
trol and data flow information in order to reduce the false
positive rate and to support additional applications (such as
the challenges listed above). To begin this process, we have
constructed a sound and precise dynamic data flow analysis
for Java: Phosphor [1]. Phosphor is the first such analysis
that works on commodity JVMs (such as Oracle’s HotSpot
or OpenJDK’s IcedTea), and has low enough overhead to use
during the testing cycle (on average 53%). We will use Phos-
phor to create a log of variables where we observed reads and
writes that may have been involved in dependencies. Then,
we will combine this log with additional statically mined
control flow information in order to determine which tests
are guaranteed to be independent.

These techniques are oriented to detecting dependencies
between test cases. To begin to classify state dependencies
within a single test case as it executes, we have extended
Phosphor to track path conditions on variables within the
JVM. As variables are created and transformed, Phosphor
tracks these relationships, and when branch statements oc-
cur, Phosphor records a constraint on the condition. These
conditions can therefore be used to succinctly represent the
relevant state of the application. We can then feed these
constraints into an SMT solver and generate concrete in-
puts that satisfy these (or perturbed) conditions, allowing
us to explore uncovered code. Our preliminary results show
somewhat higher overhead from this form of logging, but we
are confident that with some optimization it will be suffi-
ciently performant to use when testing.

Using these tools, we will begin to explore how to effi-
ciently detect relevant software state in order to determine
what dependencies may exist among components within a
given test case. We will begin by considering all data which
is stored on the heap and used in decision making as rel-
evant state. We can imagine several refinements to this
approach to simplify it: for instance, if we are concerned
primarily with configuration state, then perhaps these heap
variables must be written only once (and not updated). We
are also interested in overlaying a control flow graph above
the data flow graph to detect state dependencies between
components, by clustering the control flow nodes to repre-
sent components.

3.2 Using Dependency Information
As described above, we have identified three key areas to

which we will apply this dependency information to improve
software testing.

3.2.1 Reducing testing overhead
When testing, we typically make an implicit assumption

that the execution of one test case should not effect the exe-
cution of another. In some cases, this assumption is enforced
through the use of pre-test setup and post-test teardown
functions, which attempt to reset the system to a clean state.
However, perhaps because it can be difficult to identify ex-
actly what part of the application’s state needs to be reset
for an individual test case (particularly in the case where
third party libraries are used), we found that in the major-
ity of large Java projects, developers enforce this isolation
by executing each test case in the context a fresh instance
of the application, in its own JVM [2]. The overhead dur-
ing testing of restarting the JVM for every test case can be
tremendous, on average 618% in our study.

Rather than restart the entire JVM for each test case,
we leverage dependency information to identify which test
cases may be dependent on each other, and in particular,
what fields in memory are being shared between test cases.
Knowing which fields in memory are causing these conflicts,
we can greatly improve testing performance by simply re-
setting those fields, rather than the entire JVM. We im-
plemented this approach for Java, finding that it reduced
the time necessary to run the test suites of 20 popular free
open source applications by an average of 62% [2]. Our cur-
rent approach provides isolation equivalent to restarting the
JVM, but does not provide isolation across the filesystem
or through database calls. We are currently interested in
combining VMVM with a copy-on-write filesystem to begin
to provide such isolation.

3.2.2 Executing test cases out-of-order
While our previous work efficiently isolated the depen-

dencies between test cases, we now seek to extend this to
cases where it is necessary to enforce dependencies between
test cases. Consider the case where developers do not want
to isolate their test cases — there are some dependencies
between test cases, and while the developers do not know
exactly what they are, they are allowed to exist. While
some may argue that dependent tests should be found and
removed [20], we have evidence that there are many test
suites which do not isolate their test cases, and hence, may
be allowing their tests to be dependent.

In our previous study, we found that although most large
projects isolate their test cases (71% of the 1,000 free open
source projects surveyed that used JUnit isolated their test
cases), overall, only 41% of the projects isolate their test
cases [2]. However, to be sound, test suite selection tech-
niques rely on the assumption that there is no dependency
between test cases. To remove this assumption and hence
increase the soundness of such techniques when applied to
test suites which may have dependencies, we will efficiently
identify and enforce the dependencies.

Most approaches that we are considering will require ex-
ecuting the test suite in its entirety once, generating pro-
filing data based on data flow, which we will then analyze
to detect dependencies. In contrast, the number of times
that a test suite must be executed by existing approaches to

detect dependencies is exponentially bounded (O(nn) for n
test cases) [20]. Then, when a dependency is detected be-
tween tests B and A, we will enforce that the tests must be
run in their originally specified serial order. By combining
in-memory dependency tracking with a copy-on-write file
system, we can eliminate most of the possibilities for test
cases to be dependent on each other (we are still studying
mechanisms to detect and prevent cross-network dependen-
cies).

3.2.3 Improving testing coverage
Generating meaningful tests for stateful software is chal-

lenging because individual methods can not be simply called
in isolation — it’s necessary instead to call several methods
in sequence in order to ensure that the application is in the
correct state before the target method is called. One promis-
ing approach to generating useful method call sequences is
to record a trace of method calls, infer control dependencies,
then fuzz these sequences to generate new executions [21].
However, a limitation of this approach is that generated se-
quences will be based on existing sequences, rather than
directly searching for new sequences. Some recent work has
shown the practicality of using data flow def-use pairs to gen-
erate tests for such software [18]. We believe that a novel
combination of data flow coverage driven test case genera-
tion (i.e., based on state dependencies) with symbolic exe-
cution may help to improve the state of the art of automatic
test generation for stateful, object-oriented software.

4. RESEARCH PROGRESS AND PLAN
We have already developed a coarse-grained analysis for

detecting dependencies between components, and used this
to significantly speedup the testing process [2]. We evalu-
ated our technique on 20 popular open source applications,
finding that it provided an average 62% speedup in test suite
execution. Towards refining the granularity of this analysis,
we have developed a highly accurate, efficient and portable
data flow analysis for Java [1], which we have since extended
to track path conditions and to solve them for concrete in-
puts using state-of-the-art constraint solvers. Once we have
completed our tool for enforcing dependencies between tests,
we will evaluate its soundness and precision in comparison
to a state-of-the-art tool [20], as well as its runtime overhead
on many free and popular open source applications.

We are currently constructing a system for generating sys-
tem states using a combination of data flow analysis, sym-
bolic execution, and static analysis. We will evaluate our
system by comparing the coverage of tests that we gener-
ate to those generated state-of-the-art automatic test suite
generators and those written by human developers. We will
also compare the fault finding ability of these test suites in a
mutation analysis, and in detecting real-world bugs. We will
continue to make our best effort to publicly release our arti-
facts to encourage collaboration and extension (Chronicler,
VMVM and Phosphor are all on GitHub).

5. ACKNOWLEDGMENTS
The author is advised by Prof Gail Kaiser, both of whom

are members of the Programming Systems Laboratory at

Columbia University, funded in part by NSF CCF-1161079,
NSF CNS-0905246, and NIH U54 CA121852.

6. REFERENCES
[1] J. Bell and G. Kaiser. Phosphor: Illuminating

Dynamic Data Flow in the JVM. OOPSLA ’14 (To
Appear).

[2] J. Bell and G. Kaiser. Unit Test Virtualization with
VMVM. ICSE 2014.

[3] J. Bell and G. Kaiser. VMVM: Unit Test
Virtualization for Java (Formal Tool Demonstration).

[4] J. Bell, N. Sarda, and G. Kaiser. Chronicler:
Lightweight recording to reproduce field failures. ICSE
’13.

[5] J. Bell, S. Sheth, and G. Kaiser. Secret ninja testing
with halo software engineering. In Proc. of the 4th
Int’l Workshop on Social Software Engineering, 2011.

[6] J. Bell, S. Sheth, and G. Kaiser. A large-scale,
longitudinal study of user profiles in world of warcraft.
In Proc. of the 5th Int’l Workshop on Web Intelligence
and Communities, 2013.

[7] U. Buy, A. Orso, and M. Pezze. Automated testing of
classes. ISSTA ’00.

[8] C. Csallner and Y. Smaragdakis. Jcrasher: an
automatic robustness tester for java. Software:
Practice and Experience, 34(11):1025–1050, 2004.

[9] M. J. Harrold and G. Rothermel. Performing data
flow testing on classes. SIGSOFT ’94.

[10] K. Inkumsah and T. Xie. Improving structural testing
of object-oriented programs via integrating
evolutionary testing and symbolic execution. ASE ’08.

[11] H. Jaygarl, S. Kim, T. Xie, and C. K. Chang. Ocat:
object capture-based automated testing. ISSTA ’10.

[12] K. Muşlu, B. Soran, and J. Wuttke. Finding bugs by
isolating unit tests. ESEC/FSE ’11.

[13] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. ICSE ’07.

[14] G. Rothermel and M. J. Harrold. Analyzing regression
test selection techniques. IEEE TSE, 1996.

[15] S. Sheth, J. Bell, and G. Kaiser. HALO (Highly
Addictive, sociaLly Optimized) Software Engineering.
In Proc. of the 1st Int’l Workshop on Games and
Software Engineering, 2011.

[16] S. Thummalapenta, T. Xie, N. Tillmann,
J. de Halleux, and W. Schulte. Mseqgen:
Object-oriented unit-test generation via mining source
code. ESEC/FSE ’09.

[17] P. Tonella. Evolutionary testing of classes. ISSTA ’04.

[18] M. Vivanti, A. Mis, A. Gorla, and G. Fraser.
Search-based data-flow test generation. ISSRE ’13.

[19] S. Yoo and M. Harman. Regression testing
minimization, selection and prioritization: a survey.
Software Testing, Verification and Reliability,
22(2):67–120, Mar. 2012.

[20] S. Zhang, D. Jalali, J. Wuttke, K. Muslu, M. Ernst,
and D. Notkin. Empirically revisiting the test
independence assumption. ISSTA ’14.

[21] S. Zhang, D. Saff, Y. Bu, and M. D. Ernst. Combined
static and dynamic automated test generation. ISSTA
’11.

