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ABSTRACT 

 

Influences of behavioral state and developmental vocal learning on neural coding 

in the songbird auditory system 

Joseph W. Schumacher 

 

Vocal communicators such as humans and songbirds rely on their auditory systems to 

learn, recognize, and encode acoustic features of communication vocalizations. Yet it remains 

unclear how varying behavioral, experimental, and developmental contexts impact neural coding 

in the songbird auditory system. In this dissertation I demonstrate that experimental and 

behavioral contexts relating to arousal are sufficient to alter neural excitability in a way that has 

implications for neural coding in the songbird auditory system.  First I show that urethane, a 

common anesthetic used in neurophysiological studies of songbird and mammalian auditory 

neurons, suppresses neural excitability but does not alter spectrotemporal tuning or neural 

discrimination in single auditory midbrain neurons.  Next, I demonstrate that neurons in the 

songbird primary auditory cortical region Field L are sensitive to local concentrations of 

norepinephrine, a neurotransmitter involved mediating changes in arousal and behavioral state. 

Lastly, I report the results of a developmental study that demonstrates experience-dependent 

changes in temporal and spectral tuning in songbird auditory cortical neurons during vocal 

learning.  These developmental effects were found to have region and cell-type specificity, and 

highlight potential functional roles for dorsal and ventral auditory cortical neurons in the 

songbird auditory cortex.  The findings reported here have important implications for future 

studies into the neurophysiology of vocal learning. 
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Figure 2.1: Major ascending auditory pathway and vocal motor pathway depicting subcortical 

regions in grey, primary cortical regions in yellow and orange, and secondary cortical regions in 

red.  Vocal motor output is depicted in blue. 
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Figure 2.1: Neural responses to conspecific song vary across cells and are depressed in 

anesthetized neurons. A.  Stimulus waveforms (top), song spectrograms (middle) and raster plots 

representing 10 cells’ responses to 10 presentations of 2 conspecific songs.  Unanesthetized 

(blue) and anesthetized (red) units each produce robust spiking responses, and show variable 

levels of spontaneous and song-evoked firing. B. Distributions and box plots of spontaneous 

firing rates (top), song-evoked firing rates (middle), and response strength (bottom) plotted as 

overlapping histograms.  Blue histograms indicate unanesthetized units, red histograms indicate 

anesthetized units, and purple areas show distribution overlaps. Blue and red diamonds indicate 

median values for unanesthetized and anesthetized groups, respectively. Anesthetized units (n = 

124) had significantly lower spontaneous firing rates, song-evoked firing rates, and response 

strength than unanesthetized units (n = 85).  * P < 0.05; ** P < 0.0001 
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Figure 2.2: STRF tuning properties.  A.  STRF tuning measures are plotted along the axes of 

representative STRFs estimated from unanesthetized (left) and anesthetized (right) responses to 

conspecific song.  Color denotes excitatory (red) and inhibitory (blue) regions of the STRFs, 

normalized to the peak value of each STRF.  Dashed black lines demarcate the bandwidths 

calculated from spectral (BW) and temporal (tBW) axes.  Red dashed lines illustrate BF and 

LAT relative to the spectral and temporal axes, respectively.  B-E. Tuning parameters are 

displayed as overlapping histograms (unanesthetized = blue; anesthetized = red; overlap = 

purple).  Blue and red diamonds indicate median values for unanesthetized and anesthetized 

groups, respectively. B. BF. C. BW. D. tBW. E. LAT was shorter in unanesthetized neurons than 

in anesthetized neurons, indicating longer response latencies under urethane anesthesia. ** P < 

0.0001  
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Figure 2.3: Neural discriminability performance is not affected by urethane anesthesia.  

Distributions of performance from discriminability metrics are plotted as overlapping 
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histograms. Blue and red diamonds indicate median values for unanesthetized and anesthetized 

groups, respectively. A. K-means % correct did not differ between unanesthetized and 

anesthetized recordings. B. d’ values for single neuron discriminability did not differ between 

unanesthetized and anesthetized recordings.  C.  The relationship between d’ performance and 

driven firing rate is highly linear in both unanesthetized (P < 0.0001; r-square = 0.63) and 

anesthetized (P < 0.0001; r-square = 0.77) recordings, but the two groups share different slopes 

with respect to this relationship.  D. Rate normalized d’, d’spike, was higher for anesthetized 

MLd neurons, indicating that discriminability is more efficient under urethane anesthesia.  ** P 

< 0.0001 
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Figure 2.4 Population responses are time-lagged but show conserved temporal structure under 

anesthesia.  A.  A sample song spectrogram (top; color denotes relative power) is aligned with 

unanesthetized and anesthetized neurograms and their corresponding pPSTHs (blue and red, 

respectively).  Each row of each neurogram represents the log of the instantaneous firing rate of 

an individual neuron (n = 73 per neurogram), arranged in order of their STRF BFs.  Spontaneous 

and driven responses are distributed across the frequency range in both unanesthetized and 

anesthetized units.  The unanesthetized neurogram is characterized by strong driven firing on top 

of considerable noise.  B.  Unanesthetized (blue) and anesthetized (red) pPSTHs for the same 

song shown in A are aligned by subtracting mean spontaneous firing rate.  The red trace follows 

the blue trace with an apparent time lag.  C.  The region delimited by black dashed lines in B is 

expanded. D. The distribution of  values corresponding to the lags in the cross correlation of 

pPSTHs for the 20 song stimuli is entirely below zero, and has a median  of -4 ms (p < 0.0001, 

Wilcoxon signed rank test for zero median).  E.  The distribution of lag-corrected correlation 

coefficients, with a mean of 0.9346 (0.02 s.d.), indicates that the temporal patterns of the 

average neural responses to songs are highly similar in unanesthetized and anesthetized 

populations.  F.  Median d’ values for the unanesthetized population were significantly lower 

than in the anesthetized population, indicating that stimulus representations are more easily 

distinguishable in anesthetized neurons.  ** P  < 0.0001 
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Figure 2.5: Frequency-response area tuning and temporal response profiles in single neurons. A. 

Representative FRA plots for a single unanesthetized (left) and a single anesthetized unit (right).  

Neurons were presented with 220 ms pure tone stimuli at 128 frequency (0.5 to 8 kHz) and 

intensity (20 to 90 dB SPL) combinations.  B. FRAs were computed as color maps of response 

strength and were upsampled 3x in the frequency and intensity dimensions.  Black contour lines 

mark boundaries of significant response strengths (at least 20% of the maximum evoked spike 

rate, above baseline).  Color map FRAs from A are displayed with their measured tuning 

properties.  CF and intensity threshold are plotted as dashed black lines along their respective 

axes.  Spectral bandwidth at 20 dB above threshold is the distance between the two dashed red 

lines in the FRA.  The normalized sum of the FRA along the intensity axis is above the FRA.  A 

dashed red line at the peak along the frequency axis indicates BF.  C. Characteristic temporal 
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response patterns of the two neurons were calculated as the average PSTH at BF.  The 

unanesthetized cell has a primary-like type response, and the anesthetized cell has an onset type 

response. 

Page 42 

 

 

 

Figure 2.6.  Pure tone tuning properties of BF-matched samples of anesthetized (n = 91) and 

unanesthetized (n = 63) MLd neurons.  Tuning property distributions are displayed as 

overlapping histograms and box plots; red histograms indicate anesthetized units, blue 

histograms indicate unanesthetized units, and the purple area indicates overlap in the 

distributions. Blue and red diamonds indicate median values for unanesthetized and anesthetized 

groups, respectively. A. BF.  B. CF.  C. BW at 20 dB above threshold.  D.  BW at 70 dB.  E.  

BW at 90 dB.  Tuning properties in A – E did not differ between unanesthetized and anesthetized 

units in the BF-matched samples.  F.  The average stimulus intensity threshold was lower for 

unanesthetized units than anesthetized units indicating that unanesthetized cells can respond to 

weaker inputs than anesthetized cells.  * P < 0.01 
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Figure 2.7.  Unanesthetized MLd neurons show fewer onset type responses than anesthetized 

neurons.  A.  Representative examples of three temporal response types.  MLd neurons that had a 

characteristic temporal response across intensities at BF were assigned to one of three response 

type groups: onset, primary-like, or sustained. Onset neurons (top) showed a strong onset 

response to pure tones, followed by little or no response.  Primary-like neurons (middle) showed 

an onset response, followed by a lower firing rate sustained response.  Sustained neurons 

(bottom) show a constant firing rate throughout the stimulus presentation.  B.  Onset index (the 

difference divided by the sum of the first and second halves of the characteristic temporal 

response pattern) distributions of BF-matched samples of anesthetized and unanesthetized 

neurons are displayed as overlapping histograms. Blue and red diamonds indicate median values 

for unanesthetized and anesthetized groups, respectively. The onset index was typically smaller 

in unanesthetized neurons than anesthetized neurons indicating that anesthetized units have 

slightly more transient temporal response patterns. * P < 0.05 
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Figure 2.8. Anesthesia increases spike latencies to pure tone stimuli.  Average spike latencies for 

BF matched samples of unanesthetized and anesthetized MLd neurons.  Spike latencies were 

calculated for pure tone stimuli that generated response strengths that were at least 20% of the 

maximum song-driven firing rate.  Distributions of spike latencies are depicted as overlapping 

histograms and box plots. Blue and red diamonds indicate median values for unanesthetized and 

anesthetized groups, respectively. Unanesthetized units had significantly lower spike latencies 

than anesthetized units. * P < 0.01 
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Figure 3.1. NE application depresses firing rates in a dose-dependent manner. a.) An example 

neuron demonstrates the effect of a prolonged 200 mM NE injection.  A single unfamiliar bird’s 

song (top) was repeated 50 times while recording responses (bottom).  Trials 1 through 10 

(baseline) and 36 through 50 (wash) were recorded during vehicle injection.  Trials 11 through 

35 were recorded during NE injection.  b.) Spontaneous and driven firing rates of the same 

neuron are depicted across trials, demonstrating the NE-dependent suppression of excitability.  

c.) Across our population of recordings, high doses of NE (100 or 200 mM) significantly 

suppressed spontaneous firing rates, while low doses (5 mM) did not systematically alter 

excitability.  ***p < 0.0001 
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Figure 3.2: NE-mediated changes in neural excitability are correlated with changes in phase 

locking performance.  a.) Robust responses to click-train stimuli with varied in ICIs in a single 

representative Field L neuron are sensitive to local a NE injection.  During vehicle injection (left) 

the neuron exhibits a high spontaneous firing rate, which is suppressed during injection of 100 

mM NE (right).  b.) Phase locking as measured by vector strength in the example neuron from a. 

(Figure 4.2, cont.) is enhanced for specific ICIs during NE injection (red) compared to baseline 

and washout vehicle injections (black). c.) Modulation of vector strength is strongly correlated 

with SMI for 17 phase-locking Field L neurons. 
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Figure 4.3 Spike timing reliability, but not precision, is altered by NE injections. a.) 1
st
 spike 

jitter, as measured by the standard deviation of first spike times following a click, was not 

significantly different between vehicle or NE injections. b.) The timescale of neural precision, as 

measured by the width of the click-aligned PSTH autocorrelogram, was not different for vehicle 

or NE injections. c.) Spiking event reliability was significantly reduced during NE injections 

compared to vehicle injections in 17 phase locking neurons. * P < 0.01. 
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Figure 4.4: Neural discriminability of birdsong stimuli is diminished during NE injections. a.) 

This schematic illulstrates how spike train distance metrics measure the discriminability of 

individual sounds.  First, a pair of spike trains is convolved with an exponential decay, and then 

subtracted to determine their inter-spike train distance (left).  Neighboring clusters of spike trains 

in a high dimensional “spike train space” can be homogeneously comprised of spike trains from 

an individual song, or heterogeneously comprised of spike trains from different songs.  The 

cartoon example on the left illustrates a good discriminator, while the example on the right 

illustrates a poor discriminator.  b.) K-means discrimination performance did not differ between 

vehicle or NE injection, while c.) d’ discrimination was significantly reduced during NE 

injection. d.) Decreased d’ discrimination was likely due to decreases in intercluster distance, 

which would inhibit discrimination performance.  e.) Spike train cluster size, as measured by 



vii 

 

average spike train distance within clusters, also decreased, but was not sufficient to overcome 

reductions in intercluster distance seen in d.). 
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Figure 5.1: Testing the sensitivity of auditory cortical coding to the onset of sensory learning. 

(a.) We developed an experimental paradigm that allows us to control for the onset of vocal 

learning in juvenile songbirds while recording longitudinally throughout the AC. (b.) A 

schematic of the songbird auditory forebrain shows the basic connectivity of the songbird  AC. 

(c.) Representative reconstructions of electrode paths show electrolytic lesions, indicating an 

electrode track through multiple auditory subregions. Nissl stained sections (top left) and fresh 

wet tissue (top right) reveal relevant lamina and anatomical features for delineating subregions. 

Composite anatomy of recording subjects (bottom) shows individual electrode tracks and lesion 

locations (blue lines). 
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Figure 5.2: Experimental pupils form accurate copies of their tutor’s song.  a.)  Sample song 

spectrograms from subjects in various rearing categories, including one of the subject tutors 

(top).  Colony-reared and experimental pupil spectrograms visually resemble their tutors.  

Isolate-reared pupils and a single failed experimental pupil demonstrate abnormal song learning. 

b.) Song copy similarity scores for individual subjects in four rearing categories.  Box plots 

denote ranges of similarity scores between pairs of song motifs from each tutor and pupil.  

Colony-reared and experimental pupils show comparable levels of song copying, while isolate-

reared and a single failed pupil demonstrate no motif copying.  ANOVA reveals a significant 

main effect for rearing condition (p<0.0001), and post-hoc analysis indicates that colony-reared 

and experimental pupils show enhanced learning compared to isolates and the single failed 

learner (*p<0.01). 
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Figure 5.3: Fast-spiking (FS) neurons in L2 show enhanced onset responses following the onset 

of song learning. (a.) Two distinct cell types, delineated by their action potential shapes, are 

found in all regions of songbird AC.  FS neurons are characterized by narrow action potentials 

and high firing rates.  Regular spiking (RS) neurons are characterized by sparse firing and broad 

action potential shapes. (b.) Example FRA for an onset neuron tuned to 4 kHz.  PSTH plots for 

each frequency/intensity combination, overlaying an interpolated heat map of neural response 

strengths at each frequency intensity combination.  (c.) We quantified the temporal structure of 

each neuron’s tone step response (top) using an onset index (OI). Raster plot of tone-evoked 

activity (middle) and the PSTH (bottom) of the fast spiking cell from (b.) shows strong onset 

responses (orange) and a deminished sustained response (aqua) with an OI of 0.95. (d.) FS 

neurons in L2 have higher OI following the onset relative to early in the pretutoring phase, late in 
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the pretutoring phase, and compared to age matched Ctrl. birds (red bars).  This is not the case in 

RS cells. Bars indicate mean values +/- S.E.M. *p<0.01 
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Figure 5.4: Spike timing precision to tutor song playback increases following tutor onset. a.) 

Raster plots from 5 different L2 FS neurons recorded across multiple post-tutoring days (red) to 

20 repetitions of the same tutor song (top spectrogram).  As post-tutor days progress, spike 

timing precision in L2 FS cells appears more refined.  b.) The PSTH autocorrelogram function 

(red) for the top raster from a. (day T2) is fit with a Gaussian curve (blue).  The Gaussian curve 

is used to measure the half width at half height (HWHH, red dotted line) and sigma (blue dotted 

line).  c.) 20 L2 FS neurons recorded in the days post-tutor onset show an exponential decay in 

both HWHH and sigma, indicating that spike timing precision rapidly increases following the 

onset of tutoring. 
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Figure 5.5.  Tuning coherence increases following tutoring onset in L3 RS cells, and in CSt 

cells. a.) FRA tuning coherence is measured using Geary’s contiguity (C) ratio.  Black and white 

binary matrices illustrate potential Geary’s C values for dispersed values (top left, C = -1), 

randomly scattered values (middle left, C = 0), and clustered values (bottom left, C = 1).  

Representative FRAs are depicted in the right column with their corresponding C values and 

range from randomly arranged (top) to coherently arranged (bottom).  FRAs are plotted in a 3X 

upsampled form, but actual C values are computed on raw FRAs.  b.) Geary’s C values for all 

auditory neurons across all subregions in naïve, untutored birds are shown split in to FS (n = ) 

and RS (n = ) cells.  FS cells had significantly higher C values across all regions.  c.) L3 RS cells 

(left, black bars) display experience-dependent increases in tuning coherence.  Neurons recorded 

following tutor onset (Tut.) were higher than those recorded 10 to 6 days prior to tutoring (Pre-

T1), 5 to 1 day prior to tutoring (Pre-T2), and in age-matched control birds following the day 50 

onset of tutor exposure (Ctrl.).  No differences were observed for different rearing conditions in 

L3 FS cells.  d.) CSt neurons had an experience-dependent increase in coherence following the 

onset of tutoring compared to Pre-T and Ctrl. neurons. Bars in c.) and d.) indicate mean values 

+/- S.E.M.  *P<0.01,  ***P<0.0001 
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Figure 5.6: a.) CM RS neurons (left), but not FS neurons (right) undergo experience-dependent 

decreases in tuning coherence compared to Pre-T and Ctrl. neurons.  b.) Plotting mean coherence 

measures (+/- S.E.M.) across days reveals an approximately week long gradual decrease in 

Geary’s C values. * P < 0.01 
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Figure 5.7: Tutoring experience shapes frequency representation in CM RS cells, but not Field L 

neurons. a.) Tutor song spectrograms (left) and power spectra (right) for the two experimental 

tutors reveal similar spectral characteristic.  Peak power in the frequency distributions is centered 

from 3 – 5 kHz in both birds, with similar frequency roll-offs to neighboring frequencies. b.) 

Best frequency distributions for Pre-T, Tut., and Ctrl. conditions reveal that frequency tuning 

increases in CM RS cells (top) but not FS cells following the onset of tutoring.  This increase in 

BFs shifts the frequency representation of CM RS cells into the range of peak power for the 

tutors’ songs. c.) Neither RS cells (top) nor FS cells (bottom) across subregions of Field L have 

BF differences across rearing conditions.  *P< 0.01 
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Figure 5.8: Dorsal output regions of the songbird auditory cortex are highly sensitive auditory 

behavioral context compared to ventral neurons. a.) An example CM neuron displays robust 

bursts of action potentials aligned to individual syllables of live singing motifs, but fails to 

respond reliably to playback of the same sounds.  The average spectrogram (top) of the 

juvenile’s live singing is aligned by the amplitude envelopes of individual live motifs (second 

row).  Raster plots and PSTHs show profound differences in the firing pattern of vocal auditory 

feedback and song playback in this example neuron.  b.) Groups of neurons recorded at either the 

dorsal extent of the auditory forebrain (CM and L1, red) or ventral extent (L3 and CSt) display 

different sensitivity to live singing vs. playback.  As a population, dorsal neurons were highly 

sensitive to live singing, while ventral neurons responded more linearly between contexts. 
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Table 5.1: Summary of the number of each type of cell recorded during each rearing condition.  

Pre-T1 corresponds to days 10 to 6 prior to tutor onset at P50.  Pre-T2 corresponds to days 5 to 1 

prior to tutor onset.  Tut. corresponds to all recording days following the onset of tutoring.  Ctrl. 

corresponds to days P50+ in age-matched control birds that were never tutored.  In each region, 

other than CSt, we divide our cells into RS and FS subpopulations, with corresponding n’s 

reported.  Neurons in the “other” region were recorded in hippocampus, or anterior to the 

auditory forebrain. 
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Figure A.1: Wiring schematic for the omnetics connector. 
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Figure A.2: Glue 14-pin omnetics connector to the body of the microdrive. 
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Figure A.3: Encase the motor and gearbox with 4mm polymide tubing. 
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Figure A.4: Glue motor in place at the top of the body.  Use the tip to gauge how far the motor 

axis rests within the shuttle guide slot. 
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Figure A.5: Solder motor wires to pins 1, 8, and 9. Glue the wires into place along the junction 

of the body and omnetics connector.  Insert a fixation bar (black pin) through the tip.  
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Figure A.6: Connect the electrode wire to the shuttle, glue it to the top of the shuttle, solder it to 

pin 14, and attach elastic string to the fixation bar and wire to add tension. 
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Figure A.7: Solder the reference wire to pin 11and glue in place. 
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Figure A.8: Attach the ground wire to pin 4, wrap it around the fixation bar, and glue it in place.  
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Figure A.9: Cut electrode to desired length, insert into polymide guide tube, solder to shuttle, 

and fix guidetube to tip with dab of epoxy.  Finally, attach a clear plastic cover to prevent the 

bird from breaking the electrode. 
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Part 1: Probing the behavioral state-dependence of sound coding in the songbird 

auditory cortex.  
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Chapter 1: Introduction 

 

1.1 The songbird as a model for the neurobiology of vocal communication 

 

The transmission of social information between senders and receivers is the goal of 

communication and is shared across animal taxa.  Most sensory modalities are used to receive 

and perceive communication signals. These include vision (e.g. gestures, facial expressions) and 

olfaction (e.g. pheromone detection, predator identification).  Vocal communication signal 

encoding by the auditory system stands out as one of the more sophisticated strategies for 

transmitting diverse and informative signals for identifying and locating conspecifics, territorial 

defense, alerting others to danger, advertising status, and courtship.  Humans and other vocal 

communicators rely on the coordination of auditory coding processes to transduce sound into 

meaningful information, and for controlling vocal-motor behaviors that convey information. The 

neural substrates for encoding vocal communication signals must be precise and robust enough 

to cope with variations in sound source locations, background noise, and other features of the 

acoustic environment that impact the fidelity of signal transmission in the natural world. 

The animal models used to study auditory processing include bats (Pollak and 

Bodenhamer, 1981; Fuzessery and Pollak, 1985; Yan and Suga, 1998; Andoni et al., 2007), 

rodents (Aitkin et al., 1986; Froemke and Dan, 2002; Wehr and Zador, 2003), cats (Schreiner 

and Urbas, 1986; 1988), owls (Knudsen and Konishi, 1979; Pena and Konishi, 2001; Winkowski 

and Knudsen, 2006), songbirds (Gentner, 2004; Theunissen et al., 2008; Woolley et al., 2009), 

frogs (Kelley, 1980; Paton et al., 1982, Elliot et al., 2011), ferrets (Fritz et al., 2003; 2010), and 

primates (Aitkin et al., 1986).  Each model system has unique advantages that make it well suited 

for asking specific questions about neural mechanisms of auditory perception, ranging from 
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spatial localization (Knudsen and Konishi, 1979; Pena and Konishi, 2001) and tonotopy (Aitkin 

et al., 1986), to active sensing and attentional modulation of neural responses (Fritz et al., 2003; 

Winkowski and Knudsen, 2006).  Studies using these models have provided profound insights 

for understanding the processes underlying auditory perception and behavior. 

In humans, speech production and perception are acquired early in life, during known 

critical periods of development. The speech sounds that we encounter as infants influence our 

perceptual skills and behavioral responses to sounds as adults. The most important animal model 

for the study of vocal learning through hearing is the songbird.  Most animals rely on the ability 

to process auditory signals in order to classify the signal, but songbirds (like humans) also rely 

on auditory processing to learn their species-typical vocalizations. Among potential model 

animals for investigating the neurobiology of vocal learning and communication, the songbird’s 

ability to listen, memorize, and copy vocal behaviors from others is special to the songbird. 

 

1.2 The neuroethology of song learning 

 

Most birds vocalize, but only birds in 3 of the 23 major orders learn to produce vocal 

content de novo through experience.  These include parrots (Psittaciformes), hummingbirds 

(Trochiliformes), and songbirds (suboscine Passeriformes).  These vocal learners differ from 

other classes in that they have specialized brain regions that enable the production and perception 

of complex sounds.  The remaining birds rely on basal brain regions to vocalize and use vocal 

signals that are not learned (Jarvis, 2004; Ondracek and Hahnloser, 2014). 

The longstanding hypothesis for how songbirds learn to sing is described as the auditory 

template theory.  Under this model, juvenile birds are born with basic physiological constraints 

that define species-specific features of their songs.  Early in life near the onset of hearing, 
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juvenile males enter into a sensory learning phase, during which they observe and memorize 

songs of their tutors and use these heard sounds to construct an auditory template the tutor 

song(s) (Konishi, 1985).  Juvenile birds then enter a sensory-motor phase of song learning, in 

which they gradually produce more “song-like” vocalizations and use auditory feedback to 

match their own songs to the tutor song memory.   

Juvenile songbirds first produce immature “subsong” vocalizations that are akin to 

human infant babbling (Doupe and Kuhl, 1999).  Gradually, as a young bird continues to shape 

its vocalizations to match the template, syllable structure develops and the bird transitions into 

producing “plastic song”.  Plastic song gradually develops rhythm and a stereotyped syllable 

order.  At sexual maturity (~90 days of age), a bird stabilized its song behavior, producing a 

“crystalized song” that is highly stereotyped, with consistent syllable structures and syllable 

sequences over time. The song of the young adult is acoustically well-matched to the tutor’s 

song. 

The song learning process of sensory experience, memorization, vocal practice and 

refinement depends on auditory feedback instructing motor output.  Illustrating the importance of 

early experience in the formation of song, cross-fostering studies demonstrate that male zebra 

finch chicks can accurately copy Bengalese finch songs  (Immelmann, 1969; Clayton, 1987; 

1989; Woolley et al., 2010). Also, young birds raised in social isolation produce abnormal songs, 

referred to as isolate songs (Marler, 1970).  Furthermore, auditory feedback during vocal practice 

is critical to forming accurate copies of the tutor’s song.  Birds that are deafened after exposure 

to a song model, but before the onset of the sensory-motor phase develop highly abnormal songs 

that show no signs of learning (Konishi, 1965). 
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1.3 The neural substrate for auditory coding in the songbird 

 

The songbird auditory system shares a strong homology with that of the mammal, 

particularly with regards to subcortical auditory regions.  Here I review many of the anatomical 

and functional principles that are observed in the songbird from the cochlea to the cortex.  I will 

then outline some of the important limitations of previous work in the songbird auditory system, 

as well as open questions regarding functional properties of auditory neurons.  For reference, a 

schematic of the major ascending auditory pathway and vocal motor pathway is provided in 

Figure 1.1. 

 

1.3.1 Subcortical auditory processing: from cochlea to thalamus 

 

The mechanical transduction of sound occurs at the ear. The avian middle ear has a 

similar function to that of its mammalian counterpart, namely the transfer of sound energy from 

vibrations of the tympanic membrane to the oval window of the cochlea.  This is achieved by the 

leverage of a single ossicle, the columella, which is homologous to the mammalian stapes.  The 

middle ear of birds acts as a strong low pass filter.  Some avian species with specialized hearing, 

such as the barn owl, hear up to 11 kHz, while songbirds, such as the zebra finch, hear up to 8 

kHz (Gleich and Manley, 2000). 

The inner ear of birds consists of a cochlear duct, so named despite not having a spiraled, 

snail-like like appearance.  This cochlear duct consists of fluid a filled scala tympani and scala 

vestibuli, which are separated by the basilar membrane, scala media, and basilar papilla 

(homologous to mammalian organ of corti). Hair cells of the basilar papilla belong to two 

populations: tall hair cells located mainly on the neural side of the basilar papilla and the short  
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Figure 1.1: Anatomical distribution of the major ascending auditory pathways (grey), auditory 

cortex (yellow, red, orange) and vocal motor pathway (blue). Dorsal (D) and rostral (R) 

orientations are noted. 

 

hair cells. Tall hair cells provide the afferent projections of the auditory nerve, while short hair 

cells receive efferent input (Fischer, 1994).  Short hair cell motility may allow a selective 

amplification of low-intensity sounds and dampening of high-intensity sounds (Yates et al., 

2000). 

The songbird cochlear nerve consists of roughly 6000 to 9000 afferent fibers whose cell 

bodies reside in an acoustic-vestibular ganglion.  When probed with different frequencies and 

intensities, fibers of the cochlear nerve elicit maximal spiking responses at a characteristic 

frequency (CF).  As in mammals, fibers with synaptic terminals at the apical end of the basilar 
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papilla have low CFs, and fibers originating at the basal end have high CFs.  Auditory nerve 

fibers will phase lock at CF up to 1 kHz (Gleich and Manley, 2000). 

The auditory nerve projects to the ipsilateral brainstem, terminating on nucleus 

magnocellularis (NM) and nucleus angularis (NA).  NM and NA neurons are arranged 

tonotopically, with NA neurons showing a wider band of CFs than NM neurons (Konishi, 1970) 

and project to the ipsi- and contralateral nucleus laminaris (NL) (Krützfeldt et al., 2010). NL 

neurons are sensitive to interaural time differences (ITD) that are important for sound source 

localization.  NA and NL project to the ipsi- and contralateral superior olive (SO) and lateral 

lemniscal nuclei (LL) (Krützfeldt et al., 2010; Wild et al., 2010).  LL neurons display sensitivity 

to interaural level differences (ILD) in the barn owl (Takahashi and Keller, 1992).  SO and LL 

provide feedback projections to the lower four brainstem nuclei, as well as their contralateral 

counterparts (Wild et al., 2010).  LL receives forebrain feedback from song motor nucleus RA 

Cup (Wild, 1993), and features some of the earliest connections to the forebrain, projecting 

bilaterally to the auditory thalamic nucleus ovoidalis (Ov) and thalamic nucleus uvaeformis 

(Uva) (Wild et al., 2010), which has been shown to gate auditory input to the premotor nucleus 

HVC (Coleman et al., 2007). 

The auditory midbrain nucleus Mesencephalicus Lateralus pars dorsalis (MLd) is an 

evolutionarily conserved bottleneck for ascending and converging auditory brainstem nuclei, 

including the SO, LL, NA, and NL (Krützfeldt et al., 2010; Wild et al., 2010).  As a central 

midbrain auditory processing stage, MLd is homologous to the inferior colliculus in mammals, 

and the torus semicircularus in amphibians(Woolley and Casseday, 2004).  MLd is located 

anatomically in the intracollicular complex (ICo), and can be histologically divided into distinct 

inner and outer subregions (Logerot et al., 2011). 
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Electrophysiological studies in MLd have demonstrated important functional 

characteristics for these midbrain neurons.  As in the mammalian inferior colliculus (IC), 

neurons in MLd fall along a noisy tonotopic gradient, with dorsal neurons responding to lower 

frequencies than ventral neurons (Woolley and Casseday, 2004; Woolley and Portfors, 2013).  

Most cells in MLd have classical v-shaped frequency tuning curves, indicating that these neurons 

encode simple subsets of the frequency spectrum (Woolley and Casseday, 2004).  However, even 

at this early processing stage, MLd neurons display context specific tuning capabilities.  

Spectrotemporal receptive fields STRFs estimated from responses to conspecific song have 

wider frequency bandwidths than those estimated from responses to modulation limited (ML) 

noise stimuli (Woolley et al., 2006).  This has been shown to be mediated by extraclassical 

receptive field properties that are engaged by the wider frequency “roll-off” around best 

frequency of song, but not noise (Schneider and Woolley, 2011). 

STRFs estimated from MLd neuronal responses to songs reveal additional 

spectrotemporal functional properties.  A majority of MLd neurons have been shown to be 

excited by wide frequency bands within narrow temporal windows, indicating the most neurons 

have strong onset responses to wide frequency bandwidths (Woolley et al., 2009), indicating that 

MLd neurons are likely to be important for coding the temporal pattern of acoustic features.  

Indeed, neurons in MLd have been shown to accurately discriminate between complex acoustic 

stimuli on the basis of distinct patterns of neural spiking(Schneider and Woolley, 2010), in both 

anesthetized and unanesthetized preparations (Schumacher et al., 2011). 

Thalamic region Ov is the avian analogue to the mammalian medial geniculate body of 

the thalamus.  It consists of a small, dense region of neural clustering that is histologically 

distinct from surrounding tissue, and like MLd, is divided into a shell and core region.  The core 
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receives afferent input from MLd, while the shell receives feedback projections from the area 

surrounding the robust nucleaus of the arcopalium (RA cup), as well as medial portions of MLd 

(Zeng et al., 2004).  Neurons in Ov core comprise the principal thalamocortical (Vates et al., 

1996), while neurons in Ov shell project more diffusely throughout the auditory forebrain (Vates 

et al., 1996; Zeng et al., 2004). 

Similarly to MLd neurons, Ov neurons display robust responses to a wide range or 

stimuli including noise, pure tones, and frequency- and amplitude-modulated sounds.  Unlike 

MLd neurons, a majority of Ov neurons in starlings respond tonically throughout the duration of 

a stimulus, rather than favoring the onset portion of the response (Bigalke-Kunz et al., 1987).  A 

subsequent study by showed however that a majority of STRFs had narrowband temporal 

windows, indicating strong onset responses in these cells(Amin et al., 2010).  This study also 

found that while neurons in Ov seemed to inherit receptive field properties common in MLd 

neurons, new feature selectivity seemed to emerge in Ov, such as selectivity for frequency 

modulated (FM) sweeps.  FM sweeps are common in birdsong, and the emergence of FM sweep 

selectivity indicates a degree of specialization within Ov for processing features of birdsong 

(Amin et al., 2010). 

Another study found that Ov plays an important role in maintaining the structure of song 

in juvenile songbirds (Lei and Mooney, 2010).  White noise perturbations blocking out a portion 

of a live song motif lead to gradual decrystalization of that element, and significantly drive 

multiunit activity in Ov.  Stimulation of Ov during singing was shown to have a similar effect.  

Together, these results indicate that Ov is integral to online maintenance of song during practice 

(Lei and Mooney, 2010). 
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1.3.2 Primary Auditory Cortex: Field L 

 

One century ago, Maximilian Rose (1914) used Nissl staining to first characterize Field L 

based on its distinct cellular organization.  Its functional role was clarified much later when 

Karten (1968) oblated Ov in pigeons, and traced anterograde argyrophyllic degeneration to 

Rose’s Field L.  This region is now considered to be a part of a complex network of subregions 

that together form an analogue to mammalian auditory cortex (Jarvis et al., 2005).  Field L is 

located anatomically in the central telencephalic nidopallium, and can be divided into several 

subregions based on histological assessment of cell body density and axonal projection patterns.  

These include L1, L2a, L2b, and L3 (Bonke et al., 1979; Fortune and Margoliash, 1992).  A fifth 

subdivision, confusingly referred to as L, is used to describe an area where the original 

definitions of Rose (1914) and Karten (1968) do not overlap (Fortune and Margoliash, 1992).  

L2a receives afferent projections from Ov core (Vates et al., 1996), while L2b receives 

projections from Ov shell.  Together, L2 comprises the primary thalamorecipient input area of 

the avian auditory cortex, and shares reciprocal connections with the other subregions of Field L 

(Vates et al., 1996). L1 and L3 are reciprocally connected to L2a and each other, and receive 

projections from Ov shell.  Input from Ov to Field L is subsequently distributed to a number of 

secondary auditory subregions including the caudal mesopalium (CM), the caudomedial 

nidopalium (NCM), the caudal striatum (CSt), and HVC shelf (Kelley and Nottebohm, 1979). 

Field L is tonotopically organized, with caudal neurons responding preferentially to lower 

frequencies and rostral neurons responding to higher frequencies (Zaretsky and Konishi, 1976; 

Müller and Leppelsack, 1985).  Neurons in Field L display responses to a wide variety of stimuli, 

but respond preferentially to complex sounds with temporal modulations, due in part to intrinsic 
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temporal dynamics of excitation and inhibition at the single cell level.  Leppelsack (1974) 

recorded responses to modulated noise and tones, and found that most Field L neurons responded 

with strong onset responses, followed by sustained but weaker tonic firing (so-called “primary-

like” responses), while other neurons featured phasic suppression, tonic suppression, or tonic 

activation throughout a stimulus, often with increases or decreases in firing rate at the offset of a 

stimulus.  Compared to MLd neurons which predominantly encode onsets, and Ov neurons that 

predominantly respond tonically through the duration of a stimulus, Field L neurons display 

features that allow them to encode both onsets and offsets.  The presence of high-density local 

GABAergic neurons in Field L suggest that inhibitory modulation may play a role in these 

temporal dynamics (Pinaud and Mello, 2007). 

The auditory processing of behaviorally relevant sounds, such as a bird’s own song 

(BOS), tutor’s song, conspecific or heterospecific song, and acoustic manipulations of these 

natural stimuli, is a main focus in songbird neuroethology.  Field L neurons in anesthetized 

white-crown sparrows do not demonstrate a firing rate preference for BOS or tutor songs 

compared to conspecific songs (Margoliash, 1986).  Additionally, neurons in Field L of 

anesthetized zebra finches are less sensitive to perturbations of BOS than neurons in HVC, and 

respond equally well to BOS and reversed BOS (Lewicki and Arthur, 1996).  These cells do, 

however, have selectivity for conspecific songs compared to artificial stimuli that match the 

acoustic properties of song (Theunissen et al., 2004), and are predominantly downstream from 

the input region L2 (Grace et al., 2003).  

STRFs estimated from Field L responses illustrate diverse functional response properties 

in these neurons beyond firing rate selectivity.  Broadly these neurons can be grouped as 

broadband onset cells, narrowband cells, and detectors of more complex features like harmonic 
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stacks, offsets, and frequency sweeps (Sen et al., 2001; Nagel and Doupe, 2008; Woolley et al., 

2009; Amin et al., 2010). STRFs estimated from L2 neurons have shorter latencies to excitation 

and integrate inputs much faster than neurons in L1 and L3 (Sen et al., 2001; Nagel and Doupe, 

2008) Furthermore, standard reverse correlation STRF models have greater predictive power in 

L2, suggesting that L2 neurons are more linear than neurons in L1 and L3 (Sen et al., 2001). 

 

1.3.3 Secondary Auditory Cortical Areas 

 

Caudal to L3, NCM is a large anatomical structure receiving input from L2a, L3, and Ov 

shell.  This region shares reciprocal connections with the caudal mesopalium (CM) (Vates et al., 

1996), and receives feedback from paraHVC (Foster and Bottjer, 1998). 

NCM is thought to be involved in the formation of auditory memories, especially with 

respect to a tutor’s song (Hahnloser and Kotowicz, 2010).  Mello et al. (1992) found increased 

expression of the immediate early gene ZENK in response to conspecific song, but much less in 

response to heterospecific song, and none to tones.  Repeated presentations of conspecific song 

cause this ZENK response to habituate to baseline levels over several minutes, but single 

presentations of unfamiliar songs reestablish high levels of ZENK expression (Mello et al., 1995; 

Gentner, 2004).  Blocking ZENK expression in primary and secondary auditory areas prior to 

tutoring suppresses tutor song copying in zebra finches, indicating that ZENK related activity is 

important for auditory memory formation (London and Clayton, 2008).  The habituation of 

ZENK expression is reflected in neuronal spiking responses.  Multiunit response rates rapidly 

habituate to repeated presentations of the same conspecific song, but rebound following the 

presentation of a novel song (Chew et al., 1995; Stripling et al., 1997). Thompson and Gentner 
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(2010) did not find habituation to conspecific song following simple exposure, but only when 

coupled with go/no-go operant-conditioning.  Ventral NCM neurons showed reductions in 

response rates to trained songs, while dorsal neurons showed no habituation.  Adding to the 

evidence that NCM encodes a memory of tutor song, male zebra finches show a behavioral 

preference for hearing tutor song compared to unfamiliar conspecific song, but this preference is 

reduced following lesions of NCM (Gobes and Bolhuis, 2007). 

Recent studies have focused on highly sparse and selective responses to familiar songs in 

NCM as evidence of an efficient coding strategy (Blättler and Hahnloser, 2011; Moore et al., 

2013; Schneider and Woolley, 2013). Interestingly, sparse coding neurons in NCM have been 

shown to be background invariant, and may serve as a neural substrate for extracting 

behaviorally relevant stimuli from noisy environments (Schneider and Woolley, 2013). 

CM is dorsal to Field L, and is delineated by the lamina hyperstriatica.  It is subdivided 

into medial (CMM) and lateral (CLM) portions which are reciprocally connected.  CLM is 

reciprocally connected to the subregions of Field L, and projects to NIf, HVC shelf and RA Cup, 

while CMM is reciprocally connected to NCM (Vates et al., 1996).  Bauer et al. (2008) found 

evidence that CM has direct projections to HVC.  CM has also been shown to receive input from 

Uva and Ov shell (Wild, 1993; Fortune and Margoliash, 1995; Vates et al., 1996). 

Response latencies in CM are longer than in Field L, and STRF estimates are less 

predictive than most Field L neurons, possibly due to lower firing rates or less linear response 

properties (Sen et al., 2001).  Neurons in CM show selectivity for BOS over conspecific song, 

BOS over reversed BOS, and conspecific song over artificial stimuli (Grace et al., 2003; 

Theunissen et al., 2004).  In starlings, neurons in CM are selective for complex acoustic features 

(Meliza et al., 2010), and this feature selectivity can be entrained with operant conditioning.  
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Neurons in CM, especially in CMM, show higher mutual information between firing rates and 

sounds associated with food rewards than sounds that were not associated with rewards (Jeanne 

et al., 2011). 

Recent studies (Meliza and Margoliash, 2012)  have begun to classify CLM as the most 

superficial layer of primary auditory cortex, as axons from Field L appear to form radial columns 

that extend well into CLM.  It is possible that medial regions of the auditory forebrain (NCM and 

CMM) form a network of secondary association areas, while more lateral regions in Field L and 

CLM form a sort of column analogous to primary auditory cortex. 

  

1.3.4 Beyond the classical auditory hierarchy 

 

A number of thalamic, basal ganglia, higher-order cortical regions involved in the 

learning and production of birdsong present interesting auditory phenomena.  The integration of 

sensory and motor information is of particular interest in the songbird, and here I will outline 

some of the major observations of auditory processing beyond the classical auditory hierarchy. 

The interfacial nucleus of the nidopallium (NIf) is a small cluster of neurons located 

between L1 and L2a (Fortune and Margoliash, 1995).  NIf receives input from CLM (Vates et 

al., 1996; Bauer et al., 2008) and Uva (Nottebohm et al., 1982).  NIf neurons display premotor 

activity related to singing (McCasland, 1987), and lesions to NIf in juveniles, but not adult birds, 

can significantly reduce sound quality (Hosino and Okanoya, 2000; Cardin et al., 2005; Naie and 

Hahnloser, 2011).  Auditory responses in NIf are relayed from CLM (Bauer et al., 2008), and are 

dependent on behavioral state (Cardin and Schmidt, 2004a).  NIf auditory neurons are more BOS 
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selective than CM neurons, indicating that this selectivity emerges gradually (Janata and 

Margoliash, 1999; Coleman and Mooney, 2004). 

HVC is one of the most widely studied nuclei in the songbird brain, due to its specialized 

role in the production of song.  It is located in the caudal nidopallium and receives input from 

Uva, NIf, CM, and the medial magnocellular nucleus of the anterior nidopallium (MMAN) 

(Nottebohm et al., 1982; Fortune and Margoliash, 1995; Vates et al., 1997).  HVC is sexually 

dimorphic, appearing 10 times larger in males than females (Nottebohm and Arnold, 1976). The 

size of HVC is positively correlated with the size of song repertoire across species (Devoogd et 

al., 1993).  Bilateral lesions of HVC will abolish crystalized song, but preserve calls and subsong 

(Aronov et al., 2008).  Cooling HVC, but not downstream nucleaus RA, slows the tempo of song 

(Long and Fee, 2008).  HVC is comprised of three principal cell types: RA projecting- (HVCRA), 

Area X projecting- (HVCX), and interneurons (HVCint).  HVCRA and HVCX cells fire sparse 

reliable bursts of spikes while singing, HVCint neurons fire throughout the duration of song 

(Hahnloser et al., 2002; Kozhevnikov and Fee, 2007).  Auditory responses in HVC are gated by 

the behavioral state of the bird.  In zebra finches, HVC neurons respond to auditory playback 

under anesthesia and during sleep, but not while aroused or singing (Schmidt and Konishi, 1998; 

Cardin and Schmidt, 2003; 2004b). This gating is controlled primarily by norepinephrine 

sensitive neurons in NIf (Cardin and Schmidt, 2004a; 2004b).  Deactivation of CM eliminates 

HVC auditory responses (Coleman and Mooney, 2004).  Under conditions that allow for 

auditory responses in HVC, all three principal cell types are highly selective for BOS playback.  

Prather et al. (2008) found precise mirroring of spiking responses to auditory playback and 

singing in HVCX neurons, indicating that these neurons may be specialized to serve as a 

predictive model for auditory feedback. 
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Uva is a multisensory thalamic nucleus that receives bilateral auditory input from LL 

(Wild, 1994; Wild et al., 2010), and projects to NIf and HVC.  Neurons in Uva are sensitive to 

behavioral state, and are capable of gating auditory responses in HVC (Coleman et al., 2007; 

Hahnloser et al., 2008).  Neurons in UVA show unselective auditory responses under anesthesia 

(Coleman et al., 2007). 

RA receives input from HVC both directly and indirectly through the anterior forebrain 

pathway (AFP) (Nottebohm and Arnold, 1976; Bottjer et al., 1989).  It projects ipsilaterally to 

the hypoglossal nucleus, which innervates the muscles of the syrinx, and projects ipsilaterally to 

brainstem nuclei controlling respiration.  RA is required for song production, and neurons in RA 

show auditory selectivity for BOS that is gated by behavioral state (Doupe and Konishi, 1991; 

Dave et al., 1998). 

The AFP is a cortico-basal ganglia-thalamic loop involved in the learning and 

maintenance of song.  HVC projects to Area X, which projects to the medial nucleus of the 

dorsolateral thalamus (DLM).  DLM projects to the lateral magnocellular nucleus of the anterior 

nidopallium (LMAN), which projects back to Area X, as well as RA (Vates and Nottebohm, 

1995).  Area X is a basal ganglia structure that also projects to the ventral tegmental area (VTA) 

via the ventral pallidum (VP).  Dopaminergic neurons in VTA ipsilatterally project back to the 

striatal part of Area X (Gale et al., 2008).  This AFP circuit is not needed for song production in 

adults, but drives song development in juveniles (Scharff and Nottebohm, 1991; Aronov et al., 

2008), and the output of LMAN induces variability in song that may be important for song 

maintenance (Brainard and Doupe, 2000; Kao et al., 2005).  Area X and LMAN respond 

selectively to BOS playback in adult birds, but this selectivity is diminished in juvenile birds 

singing plastic song (Doupe and Konishi, 1991).  Neurons in the MMAN project to HVC and 
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paraHVC (Vates et al., 1997).  Although the source of auditory input to MMAN is unknown, 

MMAN neurons display auditory selectivity to BOS that resemble sparse responses in HVC 

(Williams et al., 2012).  Other AFP regions such as the VTA and VP contain neurons that display 

BOS-selective auditory responses (Gale and Perkel, 2010). 

HVC shelf and RA cup border their respective premotor nuclei, and receive input from 

L1, L3, CM.  RA cup receives projections from HVC shelf, and projects back to Ov shell, MLd, 

and LL (Martin Wild et al., 1993; Mello et al., 1998).  It remains unclear if these regions provide 

input to their premotor nuclei (Fortune and Margoliash, 1995; Vates et al., 1996; Shaevitz and 

Theunissen, 2007). The functional role of this auditory feedback loop running in parallel to the 

premotor nuclei remains unclear. 

Finally, non-specific projections from Field L have been observed terminating in the 

caudal striatum (Kelley and Nottebohm, 1979; Fortune and Margoliash, 1995), a region known 

to exhibit auditory responses (Smith et al., 2006).  The precise connectivity of CSt with other 

auditory regions is unknown. 

 

1.4 Discussion 

 

The songbird is a longstanding model system for understanding the neural basis of vocal 

communication.  Because of the songbird’s well characterized behavioral specialization as a 

vocal learner, auditory and vocal motor neural circuits have provided many insights into the 

mechanisms involved in acquiring vocalizations. The auditory system of the songbird shares 

many similarities with its mammalian counterpart from the cochlea to the cortex, and consists of 

multiple pathways ascending in parallel and converging to endow distinct anatomical nuclei with 

the functional coding properties required to represent information about the external 
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environment.  One important principle illustrated by the complex functional and anatomical 

connectivity patterns of the auditory system is that auditory processing in the songbird is 

intimately intertwined with vocal motor and basal ganglia circuits, which has important 

implications for the nature of auditory processing in vocal learning. 

In both songbirds and mammals, a majority of neurophysiological studies in the auditory 

system have used anesthetized animals. Modern techniques, allow a greater number of 

experiments to be conducted in awake and behaving animals, where neural processes involved in 

attention and behavior can be examined.  Because current experiments and conclusions are 

informed by the results of previous studies and because future studies will likely be conducted 

using a variety of anesthetic and behavioral states, it is important to determine whether and to 

what extent neural response properties are state-dependent.  In chapter 2, I will present a study 

investigating the role of anesthesia in modulating the response properties of songbird auditory 

midbrain neurons.  In chapter 3, I explore the role of the neurotransmitter norepinephrine in 

modulating songbird auditory forebrain neurons.  These studies will inform our understanding of 

the degree to which behavioral state matters for varying experimental contexts, and provide basic 

insights into the role of neural excitability in neural coding. 

Part II of this dissertation concerns the role of experience in shaping the neural coding 

properties of the developing songbird auditory cortex.  Birdsong is a developmentally acquired 

skill, but few studies have examined the coding properties of auditory neurons in juvenile birds 

that are learning to sing.  Chapter 4 will review relevant literature on auditory development, and 

will discuss general developmental principles that can be exploited by studying juvenile 

songbirds.  Finally, in Chapter 5 I will present data demonstrating the effects of developmental 

vocal learning on the coding properties of auditory cortical neurons in the juvenile songbird.  
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Chapter 2: Anesthetic state modulates intrinsic excitability but not spectral tuning 

or neural discrimination in the songbird midbrain 

 

2.1 Abstract 

 

The majority of sensory physiology experiments have used anesthesia to facilitate the 

recording of neural activity. Current techniques allow researchers to study sensory function in 

the context of varying behavioral states.  To reconcile results across multiple behavioral and 

anesthetic states, it is important to consider how and to what extent anesthesia plays a role in 

shaping neural response properties.  The role of anesthesia has been the subject of much debate, 

but the extent to which sensory coding properties are altered by anesthesia remains unknown.  

Here we ask how urethane, an anesthetic commonly used for avian and mammalian sensory 

physiology, affects the coding of complex communication vocalizations (songs) and simple 

artificial stimuli in the songbird auditory midbrain.  We measured spontaneous and song-driven 

firing rates, spectrotemporal receptive fields, and neural discriminability from single auditory 

midbrain neuron responses to songs.  In the same neurons, we recorded responses to pure tone 

stimuli ranging in frequency and intensity.  Finally, we assessed the effect of urethane on 

population-level representations of birdsong.  Results showed that intrinsic neural excitability is 

significantly depressed by urethane, but spectral tuning, single neuron discriminability and 

population representations of song do not differ significantly between unanesthetized and 

anesthetized animals. 

 

2.2 Introduction 
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The majority of studies examining cellular and systems level processing in auditory 

(Knudsen and Konishi, 1978; Nelken et al., 1999; Read et al., 2001; Wehr and Zador, 2005; 

Woolley et al., 2005; Woolley et al., 2006) and visual neurons (Hubel and Wiesel, 1962; Kuffler, 

1953; Rust et al., 2006; Weliky et al., 1996) have used anesthetized animals. Current techniques, 

however, allow a greater number of neurophysiological experiments to be conducted in awake 

animals, where neural processes involved in attention and behavior can be studied (Atiani et al., 

2009; Fritz et al., 2010; Keller and Hahnloser, 2009; Wang et al., 2005; Xie et al., 2007).  

Because current experiments and conclusions are informed by the results of previous studies and 

because future studies will likely be conducted using a variety of anesthetic states, it is important 

to determine whether and to what extent anesthesia alters neural response properties.  

Accordingly, the effects of anesthesia on sensory neural function have been under considerable 

debate (Capsius and Leppelsack, 1996; Franks and Lieb, 1994; Hara and Harris, 2002; Sceniak 

and MacIver, 2006; Ter-Mikaelian et al., 2007). But few studies directly compare the complex 

neural coding properties of sensory neurons in anesthetized and awake animals, and even fewer 

include natural stimuli, which are processed differently from artificial stimuli (Rieke et al., 1995; 

Vinje and Gallant, 2000; Woolley et al., 2006). Of those few studies, none have tested the effects 

of anesthesia on spectrotemporal (auditory) or spatiotemporal (visual) tuning. Here, we 

conducted a detailed comparison of the coding of communication vocalizations by auditory 

midbrain neurons to understand if and how anesthesia alters subcortical excitability, spectral 

coding and temporal response properties.  

Urethane is a common anesthetic for acute electrophysiological recordings in the sensory 

systems of mammals and birds.  In the auditory system, urethane has been used for 

electrophysiology in the midbrain (LeBeau et al., 2001; Nakamoto et al., 2008; Schneider and 
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Woolley, 2010; Woolley and Casseday, 2005; 2004; Woolley et al., 2005; Woolley et al., 2006), 

primary forebrain (Cruikshank and Weinberger, 1996; Sen et al., 2001; Wang et al., 2007; 

Woolley et al., 2005; Woolley et al., 2009), higher-order forebrain regions (Gentner and 

Margoliash 2003; Gill et al., 2008; Nishikawa and MacIver, 2000; Rutkowski et al., 2002) and 

sensorimotor regions (Coleman et al., 2007; Margoliash, 1983; 1986). While urethane has been 

hypothesized to affect synaptic activity less than barbiturates (Franks and Lieb, 1994; Nishikawa 

and MacIver, 2000; Pittson et al., 2004; Scholfield, 1980), it depresses spontaneous and evoked 

firing rates (Albrecht and Davidowa, 1989; Capsius and Leppelsack, 1996), leaving open the 

possibility that urethane influences sensory tuning. While the mechanisms of urethane-induced 

depression have been explored at the cellular and molecular levels (Sceniak and MacIver, 2006) 

it remains unknown to what extent stimulus coding properties are altered by urethane. 

To test how the auditory encoding of complex natural and simple synthetic sounds varies 

depending on anesthetic state, we recorded in vivo electrophysiological responses of single 

auditory neurons in the midbrain nucleus mesecephalicus lateralis pars dorsalis (MLd) to songs 

and pure tones, in urethane-anesthetized and unanesthetized zebra finches. Songbirds are model 

organisms for understanding the neural encoding of acoustically complex, learned 

communication vocalizations (Doupe and Kuhl, 1999; Konishi, 1989; Nottebohm, 1970), and 

their auditory systems are well characterized (Theunissen and Shaevitz, 2006). We measured 

spontaneous and stimulus-evoked firing rates, spectrotemporal receptive fields (STRFs), and 

neural discrimination from midbrain responses to conspecific song.  In the same neurons, we 

recorded responses to pure tone stimuli to test whether spectral tuning, stimulus thresholds, and 

temporal response properties were altered under urethane. Lastly, we compared the 

representations of individual songs between anesthetized and awake neuronal populations. Our 
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results indicate that urethane depresses intrinsic neural excitability, but leaves spectral tuning and 

neural discriminability intact in single neurons. 

 

2.3 Materials and Methods 

 

All procedures were done in accordance with the NIH and Columbia University Animal Care 

and Use Policy.  Adult male zebra finches (Taeniopygia guttata) were used, and were either 

purchased from a bird farm (Canary Bird Farm, Old Bridge, NJ) or were bred and raised in the 

Columbia University zebra finch colony.  Prior to electrophysiological recordings, birds lived in 

a large aviary with other male zebra finches, where they received food and water ad libitum, as 

well as vegetables, eggs, grit and calcium supplements. 

 

Surgery 

 Two days prior to recording, birds were anesthetized with a single intramuscular injection 

of 0.04 cc Equithesin (0.85 g chloral hydrate, 0.21 g pentobarbital, 0.42 g MgSO4, 8.6 ml 

propylene glycol, and 2.2 ml of 100 percent ethanol to a total volume of 20 ml with H2O). 

Following lidocaine application, feathers and skin were removed from the skull and the bird was 

placed in a custom-designed stereotaxic holder with its beak pointed 45 degrees downward.  For 

anesthetized recordings, small openings were made in the outer layer of the skull directly over 

the electrode track locations.  For unanesthetized recordings, full craniotomies were made over 

the electrode tracks.  To guide electrode placement during recordings, ink dots were applied to 

the skull at stereotaxic coordinates (2.7 mm lateral and 2.0 mm anterior from the bifurcation of 

the sagittal sinus). A small metal post was then affixed to the skull using dental acrylic, and a 

grounding wire was cemented in place with its end just beneath the skull, approximately 5 to 10 
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mm lateral to the junction of the midsagittal sinus. After surgery, the bird recovered for two 

days. 

 

Stimuli 

Song stimuli consisted of samples of the songs recorded from 20 different adult male 

zebra finches sampled at 48,828 Hz and frequency filtered between 250 and 8000 Hz. Songs 

were presented from a free field speaker at an average intensity of 72 dB SPL and in 

pseudorandom order for a total of 10 trials each (Fig. 2.1). All songs were balanced for RMS 

intensity. Songs ranged in duration between 1.62 and 2.46 seconds, and a silent period of 1.2 to 

1.6 seconds separated the playback of subsequent songs. All songs were unfamiliar to the bird 

from which electrophysiological recordings were made.  

Pure tone stimuli (0.5 – 8.0 kHz) were presented at sound levels between 20 and 90 dB.  

Tones were 220 ms in duration, including 10 ms cosine ramps at the beginning and end.  Tone 

stimuli were separated by silent periods of 0.4 to 0.5 seconds. 

 

Recordings 

The recording chamber was a walk-in sound attenuation booth (Industrial Acoustics 

Company).  Single neuron activity was recorded extracellularly in MLd using either tungsten 

microelectrodes (FHC, Inc.) or glass pipettes filled with physiological saline (Sutter 

Instruments).  For some recordings, pipette electrodes also contained 0.5% biotinylated dextran 

amine to mark electrode locations by iontophoretic injection.  For both glass and tungsten 

recordings, electrode resistance was between 3 and 20 MOhms (measured at 1 kHz).  Electrode  
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Figure 2.1 Neural responses to conspecific song vary across cells and are depressed in 

anesthetized neurons. A.  Stimulus waveforms (top), song spectrograms (middle) and raster plots 

representing 10 cells’ responses to 10 presentations of 2 conspecific songs.  Unanesthetized 

(blue) and anesthetized (red) units each produce robust spiking responses, and show variable 

levels of spontaneous and song-evoked firing. B. Distributions and box plots of spontaneous 

firing rates (top), song-evoked firing rates (middle), and response strength (bottom) plotted as 

overlapping histograms.  Blue histograms indicate unanesthetized units, red histograms indicate 

anesthetized units, and purple areas show distribution overlaps. Blue and red diamonds indicate 

median values for unanesthetized and anesthetized groups, respectively. Anesthetized units (n = 
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(Figure 2.1, cont.) 124) had significantly lower spontaneous firing rates, song-evoked firing 

rates, and response strength than unanesthetized units (n = 85).  * P < 0.05; ** P < 0.0001 

  

signals were amplified (1000x) and filtered (300-5000 Hz; A-M Systems). During recording, 

voltage traces and action potentials were monitored using an oscilloscope (Tektronix), custom 

software (Python; Matlab, The Mathworks), and an audio amplifier and loudspeaker. Spike times 

were detected using a threshold discriminator and spike waveforms were saved for offline 

sorting and analysis. For offline sorting, spike waveforms were upsampled 4x using a cubic 

spline function (Joshua et al., 2007). Action potentials were separated from non-spike events by 

waveform analyses and cluster sorting using the first three principal components of the action 

potential waveforms (custom software; Matlab, The Mathworks).  

In preparation for anesthetized electrophysiological recordings, the bird was given three 

intramuscular injections of 0.03 ml of 20 percent urethane, separated by 20 minutes. All birds 

were wrapped in a blanket and then head-fixed in a custom stereotaxic device.  For anesthetized 

recordings, the bird’s body temperature was monitored by placing a thermometer underneath the 

wing and was maintained between 38 and 40 degrees Celsius using an electric heating pad (A-M 

Systems).  Restrained birds were placed on a table near the center of the room and a single 

speaker was located 23 cm directly in front of the bird.  Neurons were recorded bilaterally and 

were sampled throughout the extent of MLd, which is located approximately 5.5 mm ventral to 

the dorsal surface of the brain.  We recorded from all neurons within MLd that were driven or 

inhibited by any of the search stimuli.  Isolation was ensured by calculating the signal-to-noise 

ratio of action potential and non-action-potential events and by monitoring baseline firing rate 

throughout the recording session. 
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Amplitude-modulated (AM) white noise was used as a search stimulus while approaching 

MLd.  When background multiunit activity was detected, electrode depths were recorded as an 

approximation of the depth of the dorsal surface of MLd.  Search stimuli including conspecific 

songs, modulation limited noise, and AM white noise were then used to isolate individual 

neurons.  

 

Data analysis 

 Spectrotemporal receptive field estimation.  We calculated spectrotemporal receptive 

field (STRF) by fitting a generalized linear model (GLM), a generalization of the classical linear-

nonlinear-Poisson cascade model (Paninski, 2004).  This approach has been described previously 

(Calabrese et al., 2010).  Briefly, the GLM describes a neuron’s response as a function of the 

stimulus and three sets of fitted parameters: 1) the stimulus filter, or STRF; 2) a post-spike filter 

which captures the dependency of the neural response on spiking history (e.g. refractoriness or 

burstiness); and 3) an offset term that captures the baseline firing of the model. For each neuron, 

a static nonlinear function (exponential) is applied to the filtered stimulus to obtain an 

instantaneous spike rate (Paninski et al., 2007; Truccolo et al., 2005).  To fit the model 

parameters, stimuli were computed as log spectrograms (Gill et al., 2006) and responses were 

binned at 3 ms resolution.  The spectral domain of the stimulus was divided into 20 equally 

spaced bins, which spanned frequencies from 250 to 8000 Hz.  Model parameters were fit to the 

resampled stimuli and responses using custom maximum penalized likelihood algorithms 

(Calabrese et al., 2010). 

 STRF tuning measures.  To compare spectrotemporal tuning under unanesthetized and 

anesthetized conditions, we measured four STRF tuning properties (Fig. 2.2) commonly used to  
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Figure 2.2 STRF tuning properties.  A.  STRF tuning measures are plotted along the axes of 

representative STRFs estimated from unanesthetized (left) and anesthetized (right) responses to 

conspecific song.  Color denotes excitatory (red) and inhibitory (blue) regions of the STRFs, 

normalized to the peak value of each STRF.  Dashed black lines demarcate the bandwidths 

calculated from spectral (BW) and temporal (tBW) axes.  Red dashed lines illustrate BF and 
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(Figure 2.2, cont.)  LAT relative to the spectral and temporal axes, respectively.  B-E. Tuning 

parameters are displayed as overlapping histograms (unanesthetized = blue; anesthetized = red; 

overlap = purple).  Blue and red diamonds indicate median values for unanesthetized and 

anesthetized groups, respectively. B. BF. C. BW. D. tBW. E. LAT was shorter in unanesthetized 

neurons than in anesthetized neurons, indicating longer response latencies under urethane 

anesthesia. ** P < 0.0001 

characterize auditory neurons (Capsius and Leppelsack, 1996; David et al., 2009; Escabi and 

Read, 2003; Woolley et al., 2006): 1) best excitatory frequency (BF), the spectral frequency that 

evokes the strongest neural response; 2) excitatory spectral bandwidth (BW), the range of 

frequencies that are associated with an increase from mean firing rate; 3) excitatory temporal 

bandwidth (tBW), the span of time over which relevant frequencies lead to an increase from 

mean firing rate; and 4) latency to excitation (LAT), the time at which relevant stimulus features 

excite the neuron (response latency).  For the tuning measures, GLM STRFs were up-sampled 

(3x) such that they had 1 ms temporal resolution, and 60 equally spaced spectral bins from 250 to 

8000 Hz.  BF was measured by setting negative STRF values to zero and averaging along the 

time axis. The resulting spectral tuning curve was convolved with a 5-point symmetric Hanning 

window, and the BF was taken to be the position (Hz) of the peak of the smoothed curve. The 

BW was measured from the smoothed curve as the width (Hz) at half-height of the curve. The 

tBW was measured by setting all negative STRF values to zero and averaging along the spectral 

axis. The resulting temporal tuning curve was convolved with a 5-point symmetric Hanning 

window, and the tBW was measured from the smoothed curve as the width (ms) at half-height. 

LAT was measured as the position (ms) of the peak of the smoothed curve. 

 Neurometric analysis.  To quantify the ability of single neurons to discriminate among 

song stimuli, we implemented a K-means neurometric that classifies spike trains into K clusters 

based on their proximity to one another in a high dimensional space, where K is the number of 

stimuli presented (Schneider and Woolley, 2010).  Briefly, as with van Rossum’s (2001) spike 
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train distance metric, the K-means metric uses Euclidean distance to measure spike train 

similarity.  Spike trains were smoothed using an exponential decay (  = 10 ms), and then 

iteratively clustered into K groups (Duda et al., 2001).  Clusters were initially seeded with K 

randomly selected spike trains (1 randomly selected for each stimulus) as cluster centers.  Each 

remaining spike train was assigned a cluster based on the seed with the closest proximity.  After 

this initial clustering, cluster centers were recalculated as the geometric mean of the spike trains 

within that cluster.  Spike trains were then re-clustered with the new cluster centers, and this 

process was reiterated until a set of K clusters was converged upon. A measure of percent correct 

discrimination was calculated by analyzing the spike trains that belonged to each of the K 

clusters.  Clusters were assigned a song label via a voting scheme in which each spike train in the 

cluster voted for the song that evoked it.  Each cluster was assigned to the song that cast the most 

votes, and if more than one cluster had the same number of votes for a song, then the cluster with 

the fewest spike trains from any other song was assigned to the original song, and the other 

cluster was assigned to the song with the second largest spike train representation.  If each 

cluster contained spike trains from a single song, the neuron had 100% correct discrimination.  If 

one or more spike trains were misclassified, percent correct decreased toward chance (100%/K = 

5%). The K-means neurometric was iterated 100 times.  K-means was seeded with a different set 

of spike trains in each iteration.  The resulting discrimination values are the mean performance 

across all 100 iterations.  On a given iteration, if a spike train was equally similar to two or more 

templates, that spike train was scored as misclassified even if one of the templates represented 

the appropriate song category.  We used this assignment criterion because ambiguity suggests 

poor discriminability. 

   

t
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 We also calculated d’ as a measure of discriminability that provided no upper bound to 

the estimate of a neuron’s discrimination performance.  To calculate d’, we first smoothed each 

spike train with an exponential decay (  = 10 ms) and projected the spike trains from two stimuli 

onto a single vector that connected the average neural response for each stimulus, which is equal 

to the average smoothed spike train in response to that song.  We then fit a normal distribution to 

each of the clusters and measured the d’ between the clusters, which is the distance between the 

cluster means normalized by the variance of the clusters (Schneider and Woolley, 2010). For 

each neuron we calculated d’ for every pair of clusters, and averaged across all pairs. 

 Population analysis.  We assessed neural population-level response properties under 

unanesthetized and anesthetized conditions by constructing neurograms and population PSTHs 

(pPSTHs).  Each row of a neurogram consisted of the log of the time-varying PSTH of a single 

neuron for a single stimulus (10 trials per stimulus).  Unanesthetized and anesthetized 

neurograms were matched for BF and contain the same number of cells (73), and neurogram 

rows were ordered by BF. 

 The pPSTHs were calculated for each song stimulus as the average PSTHs for the neural 

responses represented in the neurograms. For each of the unanesthetized and anesthetized 

neuronal populations, there were 20 pPSTHs because there were 20 song stimuli. To evaluate the 

degree of similarity or difference between unanesthetized and anesthetized pPSTHs for a given 

stimulus, we first estimated the time lag between the two by taking the cross-correlation of the 

unanesthetized and anesthetized pPSTHs: 

         [1], 

where x and y are, respectively, the unanesthetized and anesthetized pPSTHs during the duration 

of the stimulus.  The time lag between x and y is then computed as the value of  that maximizes 
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.  Negative values of  indicate that y lags behind x, positive values of  indicate that x lags 

behind y, and  equal to zero indicates no time lag between the two.  We calculated correlation 

coefficients between unanesthetized and anesthetized pPSTHs after correcting for the optimal 

time lag. 

 We assessed stimulus discriminability performance at the population level by again 

calculating d’, however rather than computing d’ within a single cell, we calculated stimulus 

discriminability by comparing the PSTHs between individual neurograms. 

 Frequency response area and tone tuning estimation.  For a subset of the recorded 

neurons, we calculated frequency response area (FRA) functions from responses to repeated 

presentations of pure tones ranging from 500 to 8000 Hz (500 Hz increments) and intensities 

from 20 to 90 dB SPL (10 dB increments), for a total of 128 frequency-intensity combinations.  

These frequency-intensity ranges and increments were chosen based on previous work on tone 

tuning in the auditory midbrain (Woolley and Casseday, 2004).  Frequency-intensity 

combinations were presented in pseudorandom order for 10 repetitions or until enough data were 

collected to acquire well defined FRA plots.  FRA plots depict the average response at each 

frequency-intensity combination. 

 FRAs were upsampled 3X along the frequency and intensity dimensions to increase tone 

tuning resolution.  To derive tone tuning curves from upsampled FRAs, we defined a significant 

excitatory response threshold as being equal to the spontaneous firing rate plus 20% of the peak 

driven firing rate (Sutter and Schreiner, 1991).  Responses to frequency-intensity combinations 

that met this criterion were considered to fall within the tuning curve of the neuron.  We 

measured four response properties from the pure tone tuning curves: 1) characteristic frequency 

(CF) was defined as the frequency (Hz) at which the lowest sound pressure level was necessary 
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to evoke a significant excitatory response; 2) best frequency (BF) was defined as the frequency 

that evoked the largest response when summed across all levels; 3) threshold was defined as the 

minimum intensity to evoke a significant excitatory response; 4) bandwidth (BW) was defined as 

the width in Hz of the tuning curve at 70 dB SPL, 90 dB SPL, and 20 dB above threshold. 

 Matching for BF. We matched unanesthetized and anesthetized units for BF for our 

analysis of tone tuning response properties. First, we compared the distributions of 

unanesthetized and anesthetized BFs using a Mann-Whitney U test.  If this test showed 

significantly different distributions of BFs between groups, then we used this information to 

remove a single data point at random from a specified bin of either the unanesthetized or 

anesthetized populations, depending on the disparity between the two distributions.  This 

iterative process was repeated until the Mann-Whitney U test had a non-significant P value.  

 Temporal response patterns.  We determined temporal response patterns of individual 

neurons by averaging the PSTHs at the BF of the FRA at intensities that evoked a significant 

excitatory response.  We defined the onset period of the response as the first 50 ms of the 

stimulus presentation, and the sustained period of the response as the second 100 ms of the 

stimulus presentation (modified from Wang et al., 2005). Neurons were then classified into three 

categories: 1) onset neurons responded strongly at the stimulus onset, but fired no or few action 

potentials during the sustained period; 2) primary-like neurons fired robustly in the onset period, 

and significantly but less during the sustained period; 3) sustained neurons had consistent firing 

rates during the onset and sustained periods. 

 To quantify the temporal response patterns, we used an onset index, Oindex, defined as the 

onset firing rate minus the sustained firing rate, divided by the sum of the onset and sustained 

firing rates: 
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       [2] 

where values could range from -1 (no onset response, significant sustained response) to 1 

(significant onset response, no sustained response).  Oindex values between 0 and 1 represent a 

spectrum of response types from sustained (Oindex = zero), to primary-like (0 < Oindex < 1), to 

onset (Oindex = 1).   

 

Spike latency.  Because we observed a variety of spontaneous firing rates, the calculation of 

spike latency used a binless algorithm designed to discriminate between spontaneous and 

stimulus-evoked action potentials.  This method has been described previously (Bair and Koch, 

1996) and has been applied to spike trains collected from inferior colliculus neurons (Chase and 

Young, 2007).  Briefly, the algorithm compares the observed spiking activity over several time 

windows with the activity that would be expected if the neuron were firing spontaneously with 

Poisson statistics. The first time at which the spiking activity significantly deviated from 

spontaneous Poisson activity (P < 10
-6

) was considered the latency for the neuron (Bair and 

Koch, 1996; Chase and Young, 2007).  In the event that the threshold was not exceeded in the 

first 50 ms, the latency was undefined.  For each neuron, the value of the first spike latency was 

calculated using all significant 

 

2.4 Results 

 

Urethane depresses firing rate  
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 We recorded extracellular action potentials from 208 MLd neurons.  Eighty five neurons 

were from 9 unanesthetized birds, and 123 neurons were from 31 anesthetized birds.  We refer to 

birds as unanesthetized rather than “awake” because signs of wakefulness, such as eye openings 

and movement, varied throughout recording sessions.  To measure the response properties of 

these neurons to complex time-varying stimuli, we recorded spike trains in response to 10 

repetitions (trials) of 20 different zebra finch songs presented in pseudo-random order.  Robust 

stimulus-locked responses were observed in both anesthetized and unanesthetized recordings 

(Fig. 2.1A). 

 To determine the effect of urethane on auditory responses to complex, natural sounds in 

MLd, we measured spontaneous and song-evoked firing rates during presentations of conspecific 

song.  Anesthetized recordings yielded lower spontaneous (p < 0.0001, Mann-Whitney U Test; 

Fig. 2.1B, top panel) and song-evoked firing rates (p < 0.0001, Mann-Whitney U Test; Fig. 2.1B, 

middle panel).  Response strength, defined as the evoked rate minus the spontaneous rate, was 

also slightly but significantly lower in anesthetized cells (p = 0.039, Mann-Whitney U Test; Fig. 

2.1B, bottom panel).  These results are consistent with previous studies; depression of 

spontaneous and stimulus evoked firing rates has been widely reported in urethane-anesthetized 

preparations (Albrecht and Davidowa, 1989; Capsius and Leppelsack, 1996; Girman et al., 1999; 

Sceniak and MacIver, 2006).  These results indicate that, like most other systems investigated 

under urethane anesthesia, neural excitability is depressed in the anesthetized songbird MLd. 

 

Effect of urethane on spectrotemporal tuning during song coding 
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To determine the effects of urethane anesthesia on spectral and temporal tuning during 

vocal processing, we calculated STRFs from responses to 20 conspecific songs (Calabrese et al., 

2010).  Tuning measures were analyzed only if their GLM-predicted responses matched their 

actual responses with a correlation coefficient of at least 0.3 (unanesthetized n = 73, 82.4%; 

anesthetized n = 110, 88.7%). We then measured spectrotemporal tuning properties including 

BF, BW, tBW, and LAT (Fig. 2.2A). 

 To determine if spectral tuning to complex stimuli differed in unanesthetized and 

anesthetized neurons, we compared BFs and BWs between the two groups. Median values and 

interquartile ranges for the BF of unanesthetized and anesthetized neurons were 2.65 kHz (1.74 – 

4.21 kHz) and 2.48 kHz (1.47 – 3.34 kHz), respectively, and did not differ (p > 0.05, Mann-

Whitney U test; Fig. 2.2B).  This indicates that at the population level, MLd neurons are 

maximally tuned to frequencies that cover most of the range of zebra finch hearing (Okanoya 

and Dooling, 1987) in both anesthetized and unanesthetized birds.  While BF did not differ 

between unanesthetized and anesthetized neurons, Figure 2.2B shows that we recorded a larger 

proportion of neurons tuned to 6 kHz or higher in unanesthetized units.  This is most likely due 

to an anatomical sampling bias; because global activity in MLd is much higher in unanesthetized 

birds, single cell isolation was easiest in ventral regions where cell density is sparsest and 

neurons are tuned to higher frequencies (Woolley and Casseday, 2004).  Median values and 

interquartile ranges for the BW of unanesthetized and anesthetized neurons were 0.95 kHz (0.72 

- 2.27 kHz) and 0.85 kHz (0.69 – 1.71 kHz), respectively, and were not significantly different (p 

= 0.22, Mann-Whitney U test; Fig. 2C). These results indicate that the spectral tuning MLd 

neurons is not altered by urethane anesthesia. 
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Figure 2.3 Neural discriminability performance is not affected by urethane anesthesia.  

Distributions of performance from discriminability metrics are plotted as overlapping 

histograms. Blue and red diamonds indicate median values for unanesthetized and anesthetized 

groups, respectively. A. K-means % correct did not differ between unanesthetized and 

anesthetized recordings. B. d’ values for single neuron discriminability did not differ between 

unanesthetized and anesthetized recordings.  C.  The relationship between d’ performance and 

driven firing rate is highly linear in both unanesthetized (P < 0.0001; r-square = 0.63) and 

anesthetized (P < 0.0001; r-square = 0.77) recordings, but the two groups share different slopes 

with respect to this relationship.  D. Rate normalized d’, d’spike, was higher for anesthetized 

MLd neurons, indicating that discriminability is more efficient under urethane anesthesia.  ** P 

< 0.0001 
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Next we asked if temporal tuning measured from responses to song was affected by 

anesthetic state.  Median values and interquartile ranges for unanesthetized and anesthetized 

tBW were 4.25 ms (3.75 – 5.31 ms) and 4.5 ms (4 – 5.25 ms), respectively, and were not 

significantly different (p = 0.52, Mann-Whitney U test; Fig. 2.2D).  This suggests that the time 

frames over which acoustic stimuli are integrated into excitatory responses are indistinguishable 

for unanesthetized and anesthetized MLd neurons.  However, LAT did differ (p < 0.0001, Mann-

Whitney U test; Fig. 2.2E), indicating that unanesthetized MLd neurons typically responded 

faster to the onset of excitatory acoustic features. Median values and interquartile ranges for 

unanesthetized and anesthetized neurons were 4.75 ms (4 – 6.75 ms) and 6.75 ms (6 – 7.5 ms), 

respectively, suggesting that intrinsic excitability was depressed in anesthetized neurons.   

 

Urethane does not affect neural discrimination of songs in single MLd neurons 

  

To quantify the ability of single neurons to discriminate among song stimuli, we used the 

K-means neurometric and computed d’ for the neurons used in the STRF analysis. Median K-

means performance values and interquartile ranges for unanesthetized and anesthetized neurons 

were 52.43% (22.37% - 90.80%) and 54.36% (25.49% - 98.83%), respectively, and were not 

significantly different (p = 0.31, Mann-Whitney U test, Fig. 2.3A).  Similar results were obtained 

with the d’ metric, where median values and interquartile ranges for unanesthetized and 

anesthetized neurons were 6.71 (4.74 – 9.28, a.u.) and 6.39 (5.08 – 10.18, a.u.), respectively.  

These distributions were not significantly different (p = 0.75, Mann-Whitney U test, Fig. 2.3B). 

 We observed that d’ had a strong positive correlation with song driven firing rate in 

unanesthetized (linear regression: p < 0.0001, r
2
 = 0.63) and anesthetized (linear regression: p <  
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Figure 2.4 Population responses are time-lagged but show conserved temporal structure under 

anesthesia.  A.  A sample song spectrogram (top; color denotes relative power) is aligned with 

unanesthetized and anesthetized neurograms and their corresponding pPSTHs (blue and red, 

respectively).  Each row of each neurogram represents the log of the instantaneous firing rate of 

an individual neuron (n = 73 per neurogram), arranged in order of their STRF BFs.  Spontaneous 

and driven responses are distributed across the frequency range in both unanesthetized and 

anesthetized units.  The unanesthetized neurogram is characterized by strong driven firing on top 

of considerable noise.  B.  Unanesthetized (blue) and anesthetized (red) pPSTHs for the same 

song shown in A are aligned by subtracting mean spontaneous firing rate.  The red trace follows 

the blue trace with an apparent time lag.  C.  The region delimited by black dashed lines in B is 

expanded. D. The distribution of  values corresponding to the lags in the cross correlation of 

pPSTHs for the 20 song stimuli is entirely below zero, and has a median  of -4 ms (p < 0.0001, 

Wilcoxon signed rank test for zero median).  E.  The distribution of lag-corrected correlation 

coefficients, with a mean of 0.9346 (0.02 s.d.), indicates that the temporal patterns of the 

average neural responses to songs are highly similar in unanesthetized and anesthetized 

populations.  F.  Median d’ values for the unanesthetized population were significantly lower 

than in the anesthetized population, indicating that stimulus representations are more easily 

distinguishable in anesthetized neurons.  ** P  < 0.0001 
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0.0001, r
2
 = 0.77) neurons, but the individual “firing rate/ d’ ” regressions had visibly different 

slopes (Fig 3C).  Although neural discrimination did not differ between the two groups, we 

reasoned that this change in slope could indicate differential coding efficiency between groups. 

Figure 2.3C shows that increases in firing rate lead to minimal gains in d’ discriminability in the 

unanesthetized cells compared to anesthetized cells.  To quantify this relationship further, we 

calculated a metric of neural discrimination efficiency, d’spike, in which d’ was normalized by 

driven firing rate.  Median d’spike values and interquartile ranges for unanesthetized and 

anesthetized neurons were 0.47 (0.26 – 0.68, a.u.) and 0.72 (0.56 – 0.92, a.u.), respectively, and 

the difference was highly significant (p < 0.0001, Mann-Whitney U test; Fig. 2.3D).  This 

indicates that, in the context of neural discrimination, unanesthetized neurons are less efficient 

than anesthetized units; the firing of action potentials is metabolically costly for a neuron and for 

unanesthetized neurons.  Interestingly, despite this diminished efficiency in unanesthetized 

comparable levels of spiking activity yield greater discriminability for anesthetized neurons than 

neurons, their higher firing rates lead to no overall difference in neural discrimination 

performance when compared to anesthetized neurons. 

 

Urethane preserves temporal response patterns while inducing a time lag and enhancing 

stimulus discrimination in neural populations 

  

We tested whether urethane anesthesia alters the neural representation of communication 

vocalizations at the population level.  We computed BF- and sample size-matched neurograms 

and pPSTHs for unanesthetized and anesthetized populations (Methods, Fig. 2.4A).  

Unanesthetized neurograms appear noisier, and reflect the higher spontaneous and evoked firing  
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rates reported above.  The average temporal patterns of activation depicted by the pPSTHs were 

strikingly similar between the unanesthetized and anesthetized populations, but anesthetized 

pPSTHs showed visible time lags (Fig. 2.4B, 2.4C).  We computed the time lag, , that 

maximizes the correlation between unanesthetized and anesthetized pPSTHs for each stimulus 

using cross-correlation (Methods).  The median value of the optimal  was -4 ms (P < 0.0001, 

Wilcoxon signed rank test for zero median; Fig. 2.4D). These results correspond with the shorter 

spike latencies observed in anesthetized STRFs (Fig. 2.2E). For each unanesthetized-

anesthetized pPSTH pair, we computed the correlation coefficient, r, after correcting for the 

corresponding time lag.  The mean lag-corrected r-value was 0.9346 (0.02 s.d.) indicating that 

populations of anesthetized and unanesthetized midbrain neurons produce highly similar neural 

representations of communication vocalizations.  

 To quantify stimulus discriminability at the population level, we calculated the d’ values 

between pairs of neurograms within the unanesthetized and anesthetized populations.  Our 

estimate of population d’ was essentially identical for single unit d’, substituting single trials 

within a single cell with PSTHs across multiple cells.  Median and interquartile range values for 

population d’ in unanesthetized and anesthetized populations were 2.02 (1.94 - 2.12) and 2.33 

(2.24 - 2.42) and were significantly different (P < 0.0001; Mann-Whitney U test, Fig. 2.4E), 

indicating that midbrain neural discriminability is enhanced by urethane anesthesia at the 

population level.  This seemingly contrasts with our finding that unanesthetized and anesthetized 

single neurons have comparable neural discriminability at the single unit level, but may indicate 

that aggregate neural activity in unanesthetized birds is noisier than in urethane-anesthetized 

birds.  This is consistent with our finding of differential discrimination efficiency in single units. 
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Urethane does not affect spectral bandwidth in responses to pure tones 

  

We asked if the decreased firing rates in response to song stimuli corresponded to 

changes in responsiveness to simple pure tone stimuli.  For a subset of neurons (65 out of 85 

unanesthetized and 115 out of 124 anesthetized), we recorded responses to pure tones (Methods). 

Responses to pure tones yielded well-defined FRAs for both unanesthetized and anesthetized 

MLd neurons (Fig. 2.5A).  We then used the responses to tones to measure tone tuning (Fig. 

2.5B, 2.6), temporal response profiles (Fig. 2.5C, 2.7A), and spike latencies (Fig. 2.8).  Because 

of the known tonotopy of MLd along the dorsal-ventral axis (Woolley and Casseday, 2004), the 

anesthetized and unanesthetized groups were first matched for BF (Methods) to account for a 

potential anatomical sampling bias between the two groups.  The process of matching for BF 

then reduced our data set to 63 unanesthetized and 91 anesthetized units. After matching for BF 

across the two populations of single neurons, BF and CF (by design) did not differ between 

unanesthetized and anesthetized neurons (p > 0.05, Mann-Whitney U test; Fig. 2.6A, 2.6B).  

Medians and interquartile ranges for unanesthetized and anesthetized tone BFs were 3 (2.33 – 4) 

and 2.5 (2 – 3.63) Hz, respectively.  Median and interquartile range values for unanesthetized 

and anesthetized CFs were 3 (2.33 – 4.17) and 2.5 (2 – 3.75) Hz, respectively. 
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Figure 2.5 Frequency-response area tuning and temporal response profiles in single neurons. A. 

Representative FRA plots for a single unanesthetized (left) and a single anesthetized unit (right).  

Neurons were presented with 220 ms pure tone stimuli at 128 frequency (0.5 to 8 kHz) and 

intensity (20 to 90 dB SPL) combinations.  B. FRAs were computed as color maps of response 

strength and were upsampled 3x in the frequency and intensity dimensions.  Black contour lines 

mark boundaries of significant response strengths (at least 20% of the maximum evoked spike 

rate, above baseline).  Color map FRAs from A are displayed with their measured tuning 

properties.  CF and intensity threshold are plotted as dashed black lines along their respective 

axes.  Spectral bandwidth at 20 dB above threshold is the distance between the two dashed red 

lines in the FRA.  The normalized sum of the FRA along the intensity axis is above the FRA.  A 

dashed red line at the peak along the frequency axis indicates BF.  C. Characteristic temporal 

patterns of the two neurons were calculated as the average PSTH at BF. 
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Figure 2.6.  Pure tone tuning properties of BF-matched samples of anesthetized (n = 91) and 

unanesthetized (n = 63) MLd neurons.  Tuning property distributions are displayed as 

overlapping histograms and box plots; red histograms indicate anesthetized units, blue           
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(Fig. 2.6 cont.) histograms indicate unanesthetized units, and the purple area indicates overlap in 

the distributions. Blue and red diamonds indicate median values for unanesthetized and 

anesthetized groups, respectively. A. BF.  B. CF.  C. BW at 20 dB above threshold.  D.  BW at 

70 dB.  E.  BW at 90 dB.  Tuning properties in A – E did not differ between unanesthetized and 

anesthetized units in the BF-matched samples.  F.  The average stimulus intensity threshold was 

lower for unanesthetized units than anesthetized units indicating that unanesthetized cells can 

respond to weaker inputs than anesthetized cells.  * P < 0.01 

 

 BW at 20 dB above threshold did not differ between unanesthetized and anesthetized 

neurons (P = 0.25 Mann-Whitney U test; Fig. 2.6C), with median and interquartile range values 

of 1 (0.83 – 1.67) and 1.17 (0.83 – 1.92) Hz, respectively.  This was not dependent on the 

method for estimating BW, as neither BW at 70 (P = 0.19) nor 90 dB (P = 0.49) differed 

between unanesthetized or anesthetized neurons. This is consistent with our finding that the 

spectral BW derived from STRFs did not differ significantly between anesthetized and 

unanesthetized neurons. These results indicate that urethane anesthesia did not alter the ranges of 

tone frequencies that drive MLd neurons to fire.  Stimulus level threshold was significantly 

lower in unanesthetized neurons than in anesthetized neurons (P < 0.01, Mann-Whitney U test; 

Fig. 2.6D), indicating that the stimulus intensity required to drive MLd neurons is increased by 

urethane.  Median and interquartile ranges for the threshold in unanesthetized and anesthetized 

units were 40 (33.33 – 46.67) and 46.67 (40 – 53.33) dB, respectively. 

 

Urethane enhances response onsets relative to sustained firing 

 

 Consistent with previous results (Woolley and Casseday, 2004), we observed a variety of 

temporal response patterns in unanesthetized and anesthetized neurons (Fig. 2.5C, 2.7A).  We 

examined the temporal response patterns at BF (Methods) to determine whether urethane alters 

the proportions of onset, primary-like, and sustained responses in MLd neurons (Fig. 2.7A).   
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Figure 2.7.  Unanesthetized MLd neurons show fewer onset type responses than anesthetized 

neurons.  A.  Representative examples of three temporal response types.  MLd neurons that had a 

characteristic temporal response across intensities at BF were assigned to one of three response 

type groups: onset, primary-like, or sustained. Onset neurons (top) showed a strong onset 

response to pure tones, followed by little or no response.  Primary-like neurons (middle) showed 

an onset response, followed by a lower firing rate sustained response.  Sustained neurons 

(bottom) show a constant firing rate throughout the stimulus presentation.  B.  Onset index (the 

difference divided by the sum of the first and second halves of the characteristic temporal 

response pattern) distributions of BF-matched samples of anesthetized and unanesthetized 

neurons are displayed as overlapping histograms. Blue and red diamonds indicate median values 

for unanesthetized and anesthetized groups, respectively. The onset index was typically smaller 

in unanesthetized neurons than anesthetized neurons indicating that anesthetized units have 

slightly more transient temporal response patterns. * P < 0.05 
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Neurons that did not show a consistent response type across intensities at BF were not classified 

(unanesthetized, 6.2%; anesthetized, 13.2%).  Of the remaining classifiable neurons, 

unanesthetized neurons were comprised of 21.3% onset responders, 46.0% primary-like 

responders, and 32.7% sustained responders.  Anesthetized neurons were comprised of 30.4% 

onset responders, 36.6% primary-like responders, and 33.0% sustained responders.  These 

proportions indicate an apparent trade-off between onset and primary-like responders across 

anesthetic states, but sustained responders were similarly represented between the two groups.   

This qualitative classification scheme is useful for capturing the tendencies of neurons to 

show particular response types, but does not fully quantify differences among temporal response 

profiles.  To quantify onset and sustained response characteristics, we used an onset index, Oindex, 

as a metric for onset responsiveness (Methods).  Anesthetized neurons had significantly higher 

Oindex values than unanesthetized neurons (p < 0.05, Mann-Whitney U test) indicating that 

urethane enhances onset responses relative to the sustained portions of responses in MLd (Fig. 

2.5B).  Median and interquartile range values for Oindex in unanesthetized and anesthetized cells 

were 0.24 (0.14 - 0.44) and 0.39 (0.12 - 0.65) respectively. 

 

Urethane increases first spike latency 

 

 Results showing that urethane depressed spontaneous and evoked firing rates, increased 

response thresholds and enhanced onset responses suggested that urethane reduces the intrinsic 

excitability of MLd auditory neurons.  To further explore this possibility, we calculated the first 

spike latency to tone stimuli that evoked significant excitatory responses (Methods).  We 

hypothesized that if urethane depresses intrinsic neural excitability, then neurons should take  
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Figure 2.8. Anesthesia increases spike latencies to pure tone stimuli.  Average spike latencies for 

BF matched samples of unanesthetized and anesthetized MLd neurons.  Spike latencies were 

calculated for pure tone stimuli that generated response strengths that were at least 20% of the 

maximum song-driven firing rate.  Distributions of spike latencies are depicted as overlapping 

histograms and box plots. Blue and red diamonds indicate median values for unanesthetized and 

anesthetized groups, respectively. Unanesthetized units had significantly lower spike latencies 

than anesthetized units. * P < 0.01 

longer to reach spike threshold in response to a given stimulus.  Anesthetized neurons had 

significantly longer first spike latencies than unanesthetized neurons (p < 0.01, Mann-Whitney U 

test; Fig. 2.8).  Median and interquartile ranges of spike latencies for unanesthetized and 

anesthetized cells were 9 (7 – 11) and 10 (9 – 12) ms, respectively.  This indicates that the time 

to reach spike threshold was slightly but significantly increased by urethane, and is consistent 

with our observation of longer STRF latencies and a pPSTH lag in anesthetized units.  

Combined, these results provide strong evidence that intrinsic excitability is decreased by 

urethane. 
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2.5 Discussion 

 

 Understanding the impact of anesthesia on neural coding is crucial for interpreting 

neurophysiological data. We compared the response properties of unanesthetized and urethane-

anesthetized auditory midbrain neurons in the processing of communication vocalizations and 

pure tones in songbirds. An ideal data comparison would have incorporated cells in which 

recordings were made before and after treatment with urethane.  Due to the time course of 

systemic urethane injections, the time required to hold a single cell under our experimental 

conditions would have increased approximately three fold, and complete data recordings would 

not have been likely.  Furthermore, the irreversible effects of systemic urethane treatments 

preclude a washout period in which to verify neural recovery, a standard control for 

pharmacological manipulations. 

 Similar to previous results in other systems, we found that anesthetized neurons had 

significantly lower spontaneous and sound-evoked firing rates, suggesting a decrease in general 

excitability in anesthetized neurons. Despite decreased excitability in anesthetized neurons, we 

found no effects of anesthesia on spectral tuning or neural discriminability at the single neuron 

level, although discrimination efficiency was higher in anesthetized neurons. Neural 

discrimination at the population level was sensitive to differences in firing between 

unanesthetized and anesthetized neurons, and was higher for anesthetized neurons. Small shifts 

in temporal response latency between unanesthetized and anesthetized neurons were consistent 

in single neurons and neuronal populations, as well as in song and tone responses. Temporal 

response patterns to tones also showed small, significant differences in the magnitude of 

response onsets relative to sustained responses.  Furthermore, we observed an apparent trade-off 

between the proportions of onset and primary-like responders across anesthetic states, but the 
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proportion of sustained responders was consistent in unanesthetized and anesthetized 

populations. Despite these differences, population representations of vocalizations were highly 

similar in unanesthetized and anesthetized animals, though population song discrimination was 

enhanced under anesthesia. These findings are consistent with a urethane-induced decrease in 

membrane resistance, which has been shown to be urethane’s primary mechanism of action in 

vitro (Sceniak and MacIver, 2006). Increases in membrane resistance could result in increased 

response latencies and intensity thresholds without inducing changes in the stimulus frequency 

ranges to which neurons respond. This study is the first to compare spectrotemporal tuning to 

complex sounds in unanesthetized and anesthetized neurons and shows that, while intrinsic 

excitability may be depressed by urethane, the midbrain encoding of complex communication 

sounds and simple, synthetic sounds remains largely intact with urethane treatment. 

 

Effects of anesthesia on auditory coding  

 

 Despite its widespread use in neurophysiology, the suitability of anesthesia for collecting 

neural responses to sensory stimuli has been called into question, particularly in the context of 

auditory processing. Others have suggested that anesthesia causes large changes in auditory 

response properties such as spectral tuning (Gaese and Ostwald, 2001; Zurita et al., 1994), 

temporal response patterns (Wang et al., 2008; Wang et al., 2005), and temporal modulation 

tuning (Goldstein et al., 1959; Wang et al., 2008).  For example, while we found comparable 

proportions of sustained responding neurons in unanesthetized and anesthetized neurons, Wang 

et al. (2005) found a prevalence of sustained responses to preferred time-varying stimuli in the 

auditory cortex of awake marmosets, and observed that previous studies in other anesthetized 
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animals reported primarily transient responses (deCharms and Merzenich, 1996; DeWeese et al., 

2003; Schnupp et al., 2001). This may have led to the conclusion that anesthesia limits what can 

be learned about auditory coding by significantly altering neural tuning properties away from the 

properties that underlie normal auditory perception. The effects of anesthesia on auditory coding 

depend on the brain regions that are studied, however. A recent study comparing the response 

properties of unanesthetized and barbituate-anesthetized inferior colliculus (IC) and A1 neurons 

demonstrated that the effects of anesthesia are highly dependent on the brain area under 

investigation (Ter-Mikaelian et al., 2007). Pentobarbitol/ketamine anesthesia decreased trial-to-

trial variability in minimum spike latency in A1, and reduced response reliability. This effect was 

not observed in the anesthetized IC, indicating that subcortical structures may be relatively more 

resistant to anesthesia than cortex. Thus, concerns regarding the use of anesthetized preparations 

should depend on the neural population under investigation. While our study did not compare the 

influence of anesthesia in forebrain and midbrain neurons, we also found that midbrain auditory 

representations are surprisingly stable regardless of anesthetic state; spectral tuning, neural 

discrimination, and the temporal response patterns evoked by songs were not altered by urethane 

in single neurons. 

 Because different anesthetics have different mechanisms of action, some are likely to 

have larger effects on sensory responses than others. The studies that have shown large effects of 

anesthesia on auditory coding used barbiturates, and frequently used ketamine. For example, 

Gaese and Ostwald (2001) showed that Equithesin entirely eliminated responses to pure tones in 

a majority of A1 neurons, but cells that still had well defined tone responses under anesthesia 

showed a decrease in tuning curve sharpness. Zurita et al. (1994) found that ketamine and 

pentobarbital treatment led to changes in tone tuning bandwidth, in a subset of A1 and thalamic 
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recordings. We did not observe changes in frequency bandwidths, in STRFs or in pure tone 

tuning curves.  This difference may be explained by the use of different anesthetics. Barbiturates 

alter the kinetics of synaptic transmission.  For example, pentobarbital lengthens the open time of 

GABA-mediated chloride channels (Macdonald et al., 1989; Nicoll et al., 1975).  Ketamine is a 

noncompetitive NMDA receptor antagonist (Franks and Lieb, 1994), and reduces AMPA-

mediated depolarization (Leong et al., 2004; Ter-Mikaelian et al., 2007).  These effects are not 

observed under other anesthetics, such as urethane. Sceniak and McIver (2006) demonstrated 

that urethane induced depressions in firing rate by decreasing membrane input resistance in 

neurons in vitro. Changes in membrane resistance were caused by an increase in tonic 

background K
+
 conductance, mediated specifically by the selective opening of Ba

2+
-sensitive K

+
 

leak currents, and no influence on excitatory or inhibitory synaptic transmission was found using 

relevant concentrations of urethane. Because anesthesia is advantageous for some intracellular 

and long-duration recordings and is important for maintaining consistent behavioral states in 

some experiments, eliminating anesthesia is not feasible for many in neurophysiology studies. 

The irreversible effects of urethane force experiments to be terminal, and therefore cannot be 

used if repeated recording sessions are required over multiple days from a single animal. In other 

cases, urethane is advantageous for sensory coding studies that require anesthesia because it 

affects auditory coding less than do other anesthetics. 

 

Comparisons to previous auditory coding studies using urethane 

 

 The effects of urethane anesthesia on vocalization coding may to be species-dependent. 

Consistent with our findings, Capsius and Leppelsack (1996) observed substantial urethane-
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induced changes in firing rate and spike latency in subregions of the starling primary auditory 

forebrain (avian homolog of A1). Narayan et al. (2006) found no differences in neural 

discriminability performance among urethane-anesthetized and unanesthetized responses to 

songs in zebra finch primary forebrain neurons. But, Huetz et al. (2009) found that spike-timing 

reliability was higher in unanesthetized than in anesthetized neurons in responses of guinea pig 

thalamic and cortical neurons to vocalizations. Because spike timing reliability and neural 

discriminability are comparable measures, our finding that unanesthetized and anesthetized 

neurons show similar levels of neural discriminability appears contrary to their findings.  The 

differences between the findings of Huetz et al. (2009) and those from songbird studies may be 

attributable to species differences.  

 The use of urethane anesthesia has played an important role in studies on vocal learning 

and sensorimotor integration in songbirds.  Urethane-anesthetized neural recordings in the vocal 

control nuclei HVC and RA show response selectivity for a bird’s own song (BOS), compared to 

conspecific song or reversed BOS (Dave et al., 1998; Doupe and Konishi, 1991; Lewicki, 1996; 

Margoliash, 1983; 1986; Margoliash and Fortune, 1992).  However, this BOS selectivity is 

suppressed when birds are awake (Schmidt and Konishi, 1998).  The gating of HVC BOS 

responses by behavioral state is mediated by the release of norepinephrine in the sensorimotor 

nucleus NIf, which is high in awake conditions and low in anesthetized or sedated conditions 

(Cardin and Schmidt, 2004a; b; 2003).  This implicates attentional mechanisms in mediating the 

flow of auditory information into the song system.  Because the representation of auditory 

information at is stable across anesthetic states in MLd, it is not likely that such attentional 

mechanisms would be triggered by changes in neural activity at the level of MLd or lower 
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brainstem auditory regions, implicating higher order regions in the triggering of attention to gate 

the flow of auditory information to the song system.  

 

Conclusions 

 

 Our results are consistent with previous studies suggesting that urethane decreases the 

intrinsic excitability of sensory neurons through changes in membrane electrical properties, and 

that compared to other anesthetics, urethane has minimal effects on synaptic transmission. 

Despite significant changes in spike rates and response latencies under urethane anesthesia, 

single neuron spectral tuning and neural discriminability performance were not affected. To our 

knowledge, this is the first study to explore the influence of urethane on receptive field structure, 

response reliability, and temporal response properties.  Our results indicate that urethane is 

suitable for studying complex auditory response properties, but important considerations must be 

made when comparing results from studies using different anesthetics and brain regions. 
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Chapter 3: Noradrenergic modulation of auditory coding in the songbird auditory 

forebrain 

 

 

3.1 Abstract 

 

Social communication requires that sensory systems extract and encode behaviorally meaningful 

information from complex environments.   During the processing of complex signals, sensory 

coding can be modulated by behavioral or attentional state. These states may affect neural coding 

through the action of neuromodulators, such as norepinephrine (NE), the release of which is 

linked to arousal and alertness.  The songbird auditory cortex contains markers for NE-related 

activity, but it remains unclear if auditory coding in these neurons is sensitive to local NE.  To 

determine if the response properties of single neurons in the songbird auditory cortex are 

sensitive to changes in local NE, we recorded single unit spontaneous and auditory-evoked 

responses while simultaneously varying the local concentration of NE via iontophoretic 

microinjections near the recording electrode tip.  Spiking during injections of NE or vehicle were 

compared for firing rates, temporal coding performance, spike timing precision and reliability, 

and neural song discriminability.  We found that Field L neurons are sensitive to local NE, and 

that NE largely had a suppressing effect on excitability.  This suppression was associated with 

increases in phase-locking, decreases in trial-to-trial spike reliability, and diminished neural 

discrimination performance.  Together, these results indicate that arousal-related release of NE 

may have a strong impact on the coding properties of Field L neurons. 

 

3.2 Introduction 



55 

 

 

The noradrenergic system is important in regulating neural processes involved in 

optimizing perception and action (Berridge and Waterhouse, 2003; Aston-Jones and Cohen, 

2005).  Noradrenergic activity is mediated via a number of g-protein coupled receptors, and the 

development, projections and receptor distribution of this system are conserved across 

vertebrates (Smeets and Gonzalez, 2002).  As in mammals, the songbird noradrenergic system 

(reviewed in Castelino and Schmidt, 2009) originates from the locus coeruleus (LocC) and the 

subcoeruleus (SCv) in the brainstem.  NE is the signature neurotransmitter of the noradrenergic 

system, and its synthesis from dopamine is catalyzed by the enzyme dopamine-beta-hydroxylase 

(DBH), which is present in all noradrenergic neurons and provides an accurate marker of 

noradrenergic activity.  LocC projects to several song system nuclei that control the acquisition, 

production, and perception of song.  Tract tracing experiments have identified ipsilateral LocC 

projections throughout motor nuclei collectively known as the song control system (Appeltants et 

al., 2000; Appeltants et al., 2002; Castelino et al., 2007).  Measured levels of NE, noradrenergic 

receptor and enzyme distribution reveal LocC projections to forebrain auditory regions Field L, 

NCM, and CMM (Barclay et al. 1992, 1996; Sockman and Salvante 2008; reviewed in Castelino 

and Schmidt, 2009).  Furthermore, DBH-immunoreactivity is high in MLd, Ov, and Field L 

suggesting a noradrenergic component to neural processing in these auditory areas (Mello, 1998; 

Waterman and Harding, 2008).  However, it remains to be seen whether and to what extent NE 

alters the coding properties of auditory neurons in the songbird. 

Most data relating to noradrenergic action come from experiments in mammals that are 

trained to perform behavioral tasks that have little ethological relevance (Berridge and 

Waterhouse, 2003; Aston-Jones and Cohen, 2005).  However, songbirds offer a model system 
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that is well suited for studying the role of noradrenergic action in a more naturalistic setting: 

during the production and perception of species-specific communication sounds.  Here we asked 

whether the excitability and coding properties of Field L auditory neurons are sensitive to the 

local concentration of NE, which we measured and manipulated using multibarrel pipettes 

attached to carbon fiber recording electrodes. 

 

3.3 Materials and Methods 

 

All procedures were done in accordance with the NIH and Columbia University Animal Care 

and Use Policy.  Subjects were adult male zebra finches (Taeniopygia guttata) that were either 

purchased from a bird farm (Canary Bird Farm, Old Bridge, NJ) or were bred and raised in the 

Columbia University zebra finch colony.  Prior to electrophysiological recordings, birds lived in 

a large aviary with other male zebra finches, where they received food and water ad libitum, as 

well as vegetables, eggs, grit and calcium supplements. 

 

Surgery 

Two days prior to recording, birds were anesthetized with a single intramuscular injection 

of 0.04 cc Equithesin (0.85 g chloral hydrate, 0.21 g pentobarbital, 0.42 g MgSO4, 8.6 ml 

propylene glycol, and 2.2 ml of 100 percent ethanol to a total volume of 20 ml with H2O). 

Following lidocaine application, feathers and skin were removed from the skull and the bird was 

placed in a custom-designed stereotaxic holder with its beak pointed 45 degrees downward.  For 

anesthetized recordings, small openings were made in the outer layer of the skull directly over 

the electrode track locations.  For unanesthetized recordings, full craniotomies were made over 

the electrode tracks.  To guide electrode placement during recordings, ink dots were applied to 
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the skull at stereotaxic coordinates (2.7 mm lateral and 2.0 mm anterior from the bifurcation of 

the sagittal sinus). A small metal post was then affixed to the skull using dental acrylic, and a 

grounding wire was cemented in place with its end just beneath the skull, approximately 5 to 10 

mm lateral to the junction of the midsagittal sinus. After surgery, the bird recovered for two 

days. 

 

Stimuli 

Song stimuli consisted of samples of the songs recorded from 20 different adult male 

zebra finches sampled at 48,828 Hz and frequency filtered between 250 and 8000 Hz. Songs 

were presented from a free field speaker at an average intensity of 72 dB SPL. All songs were 

balanced for RMS intensity. Songs ranged in duration between 1.62 and 2.46 seconds, and a 

silent period of 1.2 to 1.6 seconds separated the playback of subsequent songs. All songs were 

unfamiliar to the bird from which electrophysiological recordings were made.  

Pure tone stimuli (0.5 – 8.0 kHz) were presented at sound levels between 20 and 90 dB.  

Tones were 220 ms in duration, including 10 ms cosine ramps at the beginning and end.  Tone 

stimuli were separated by silent periods of 0.4 to 0.5 seconds. 

Click train stimuli were 1.5 seconds long and consisted of broadband white-noise clicks 

separated by a wide range of inter-click intervals (ICIs: 5 to 30ms in 2.5ms intervals, 30 to 

100ms in 10ms intervals, 100 to 200ms in 50ms intervals, and 200 to 500ms in 100ms intervals).  

Individual clicks were 5ms white noise bursts with 1ms cosine ramps (10 – 90%). 

 

Neural Recordings 
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The recording chamber was a walk-in sound attenuation booth (Industrial Acoustics 

Company).  Single neuron activity was recorded extracellularly in Field L using cabon fiber 

electrodes attached to multibarrel pipettes (Carbostar-4).  For some recordings, pipettes also 

contained 0.5% biotinylated dextran amine to mark electrode locations by iontophoretic 

injection.  Electrode resistance was between 3 and 20 MOhm.  Electrode signals were amplified 

(1000x) and filtered (300-5000 Hz; A-M Systems). During recording, voltage traces and action 

potentials were monitored using an oscilloscope (Tektronix), custom software (Python; Matlab, 

The Mathworks), and an audio amplifier and loudspeaker. Spike times were detected using a 

threshold discriminator and spike waveforms were saved for offline sorting and analysis. For 

offline sorting, spike waveforms were upsampled 4x using a cubic spline function (Joshua et al. 

2007). Action potentials were separated from non-spike events by waveform analyses and cluster 

sorting using the first three principal components of the action potential waveforms (custom 

software; Matlab, The Mathworks).  

In preparation for recordings, birds were wrapped in a blanket and then head-fixed in a 

custom stereotaxic device.  Restrained birds were placed on a table near the center of the room 

and a single speaker was located 23 cm directly in front of the bird.  Neurons were recorded 

bilaterally and were sampled throughout the extent of Field L.  We recorded from all neurons 

within Field L that were driven or inhibited by any of the search stimuli.  Isolation was ensured 

by calculating the signal-to-noise ratio of action potential and non-action-potential events and by 

monitoring baseline firing rate throughout the recording session.  Search stimuli including 

conspecific songs, modulation limited noise, and AM white noise were then used to isolate 

individual neurons.  
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Neural Data analysis 

Vector strength analysis. To assess temporal reliability to periodic click-train stimuli, we 

calculated the vector strength of the neuronal response at each ICI,  

                (
 

 
)   √∑(   (

    
 

))
 

 ∑(   (
    
 

))
 

 

Where   is the number of spikes,    is the time of the i-th spike from click onset, and   is the 

click period.  Statistical significance was assessed using the Rayleigh statistic 

                  , which also takes into account the number of spikes evoked by the 

stimulus (Bartlett and Wang, 2007).  A threshold Rayleigh statistic value of 13.8 was considered 

significant at the p < 0.001 level.  Neurons were considered phase-lockers if they exhibited 

significantly locked responses to one or more click-train stimuli, and a characteristic vector 

strength was assigned to each neuron by averaging the vector strength for all significant click-

trains within a neuron. 

Spike timing and reliability analysis.  To quantify trial-to-trial statistics relating to spike 

timing reliability and precision in phase-locking neurons we used previously described measures 

of spike timing jitter, neural precision, and reliability (Berry et al., 1997; Butts et al., 2007).  

Reliability to click-train evoked spikes was computed by first aligning all neural responses to 

their time relative to the period of significantly phase-lock-evoking stimuli.  First spike jitter was 

defined as the standard deviation of 1
st
 spike times relative to click onset.  Spiking event 

timescales were computed as the width of the central peak of the PSTH autocorrelation at half 

height.  Finally, spiking event reliability was computed as the fraction of clicks that evoked 

spikes within the timescale of each neuron’s spiking events. 
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Neurometric analysis.  To quantify the ability of single neurons to discriminate among song 

stimuli, we implemented a K-means neurometric that classifies spike trains into K clusters based 

on their proximity to one another in a high dimensional space, where K is the number of stimuli 

presented (Schneider and Woolley, 2010).  Briefly, as with van Rossum’s (2001) spike train 

distance metric, the K-means metric uses Euclidean distance to measure spike train similarity.  

Spike trains were smoothed using an exponential decay (  = 10 ms), and then iteratively 

clustered into K groups (Duda et al., 2001).  Clusters were initially seeded with K randomly 

selected spike trains (1 randomly selected for each stimulus) as cluster centers.  Each remaining 

spike train was assigned a cluster based on the seed with the closest proximity.  After this initial 

clustering, cluster centers were recalculated as the geometric mean of the spike trains within that 

cluster.  Spike trains were then re-clustered with the new cluster centers, and this process was 

reiterated until a set of K clusters was converged upon. A measure of percent correct 

discrimination was calculated by analyzing the spike trains that belonged to each of the K 

clusters.  Clusters were assigned a song label via a voting scheme in which each spike train in the 

cluster voted for the song that evoked it.  Each cluster was assigned to the song that cast the most 

votes, and if more than one cluster had the same number of votes for a song, then the cluster with 

the fewest spike trains from any other song was assigned to the original song, and the other 

cluster was assigned to the song with the second largest spike train representation.  If each 

cluster contained spike trains from a single song, the neuron had 100% correct discrimination.  If 

one or more spike trains were misclassified, percent correct decreased toward chance (100%/K = 

5%). The K-means neurometric was iterated 100 times.  K-means was seeded with a different set 

of spike trains in each iteration.  The resulting discrimination values are the mean performance 

across all 100 iterations.  On a given iteration, if a spike train was equally similar to two or more 

   

t
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templates, that spike train was scored as misclassified even if one of the templates represented 

the appropriate song category.  We used this assignment criterion because ambiguity suggests 

poor discriminability. 

 We also calculated d’ as a measure of discriminability that provided no upper bound to 

the estimate of a neuron’s discrimination performance.  To calculate d’, we first smoothed each 

spike train with an exponential decay (  = 10 ms) and projected the spike trains from two stimuli 

onto a single vector that connected the average neural response for each stimulus, which is equal 

to the average smoothed spike train in response to that song.  We then fit a normal distribution to 

each of the clusters and measured the d’ between the clusters, which is the distance between the 

cluster means normalized by the variance of the clusters (Schneider and Woolley, 2010). For 

each neuron we calculated d’ for every pair of clusters, and averaged across all pairs. 

 

3.4 Results 

 

NE application depresses neuronal firing rates in Field L. 

 

To assess whether auditory forebrain neurons are sensitive to local NE, we performed single unit 

recordings (n = 35) in field L of unanesthetized male zebra finches.  During presentations of 

song, click-train stimuli, and tones (section 4.5, Methods and Materials), we measured 

spontaneous and driven firing rates while, in separate trials, iontophoretically injecting high 

concentrations of NE (100 or 200 mM), or saline vehicle only.  Figure 1 depicts a representative 

cell that was presented with 50 playbacks of a single conspecific song bout (Fig. 3.1a).  After the 

first 10 trials of vehicle injection, the ejection current (50 nA) was switched to a pipette barrel 

containing 200mM NE.  Both spontaneous and driven firing rates immediately become  

   

t
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Figure 3.1: NE application depresses firing rates in a dose-dependent manner. a.) An example 

neuron demonstrates the effect of a prolonged 200 mM NE injection.  A single unfamiliar bird’s 

song (top) was repeated 50 times while recording responses (bottom).  Trials 1 through 10 

(baseline) and 36 through 50 (wash) were recorded during vehicle injection.  Trials 11 through 

35 were recorded during NE injection.  b.) Spontaneous and driven firing rates of the same 

neuron are depicted across trials, demonstrating the NE-dependent suppression of excitability.  

c.) Across our population of recordings, high doses of NE (100 or 200 mM) significantly 

suppressed spontaneous firing rates, while low doses (5 mM) did not systematically alter 

excitability.  ***p < 0.0001 

 

suppressed throughout the duration of the injection, and recover within a single trial following a 

switch back to the vehicle injection (Fig. 3.1b).  The population of recordings (n = 35) show that 

this suppressive effect is characteristic of 100 to 200 mM NE injections.  Changes in baseline 

neuronal excitability are summarized by calculating a Spontaneous-Firing Modulation Index 
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(SMI), equal to the difference in NE and vehicle spontaneous firing rates, divided by their sum.  

Ranging from -1 to 1, negative SMI values correspond to cells for which NE suppressed 

spontaneous spiking activity (Fig. 3.1c).  High doses of NE significantly suppressed SMI values 

in field L neurons to less than zero (p<0.0001, Students t-test).  In a smaller population of 

recordings made during low concentrations of NE (5mM), SMI values were not significantly 

different from zero (p=0.34, Students t-test), indicating that this dose was not sufficient to 

systematically drive significant changes across neurons.  These results indicate that field L 

neurons are sensitive to the presence of local NE, but this sensitivity is concentration-dependent. 

 

NE-dependent changes in excitability are correlated to changes in phase locking performance. 

 

To assess the functional role of NE-induced changes Field L neuronal firing rates, we 

compared phase-locking performance of a subset of cells (n = 17) in response to repeated 

playbacks of click-train stimuli in the presence and absence of high NE doses (Fig 3.2).  An 

additional 7 cells failed to phase lock to click-trains under any condition, and were excluded 

from these analyses.  Click-trains were 1.5 seconds long and had interclick intervals ranging 

from 5 to 500 ms (Fig 3.2a.). 

 We assessed phase locking performance by calculating vector strength, a measure of a 

neurons firing precision relative to the phase of the stimulus (section 4.3), Methods and 

Materials).  Phase-locking neurons typically followed the periodicity of click train stimuli 

significantly (as measured by Rayleigh statistics) for multiple click train stimuli (Fig. 3.2b.). We 

quantified the effect of NE injections on vector strength using a vector strength modulation index 

(VMI), which is analogous to the SMI and is equal to the difference in baseline and drug induced 
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Figure 3.2: NE-mediated changes in neural excitability are correlated with changes in phase 

locking performance.  a.) Robust responses to click-train stimuli with varied in ICIs in a single 

representative Field L neuron are sensitive to local a NE injection.  During vehicle injection (left) 

the neuron exhibits a high spontaneous firing rate, which is suppressed during injection of 100 

mM NE (right).  b.) Phase locking as measured by vector strength in the example neuron from a. 



65 

 

(Figure 3.2, cont.) is enhanced for specific ICIs during NE injection (red) compared to baseline 

and washout vehicle injections (black). c.) Modulation of vector strength is strongly correlated 

with SMI for 17 phase-locking Field L neurons. 

 

vector strength divided by the sum of baseline and drug vector strength.  Following injections of 

100 mM NE, VMI values varied as a function of each cell’s SMI (Fig. 3.2c.; p < 0.001; r-square  

= 0.61).  The example neuron in Figure 3.2a and 3.2b demonstrates the effect of enhancing 

vector strength in tandem with a decrease in spontaneous noisy spiking.  These results indicate 

that NE-induced suppression or enhancement of spontaneous firing had a direct functional 

impact on the neuron’s ability to track the periodicity of the stimulus. 

 

NE suppresses reliability in evoked activity without altering the temporal precision of neural 

spiking events. 

 

We found that auditory neurons were sensitive to local concentrations of NE, and that 

NE-induced changes in neural excitability were correlated with changes in a neuron’s ability to 

phase-lock as measured by vector strength.  We then asked whether NE specifically induces 

changes in in the precision of neural spiking events and/or the reliability of evoked spiking 

across trials.  In the same subpopulation of phase-locking neurons, spike times were aligned to 

the period of each click-train that significantly evoked phase locking.  We then computed 1
st
 

spike jitter as the standard deviation of the distribution of 1
st
 spike times for each trial.  NE did 

not significantly change 1
st
 spike jitter relative to control (Fig. 4.3a). 

We then estimated the precision of evoked spiking by computing the autocorrelation of 

the click period PSTH, and measured the width of the central peak of the autocorrelation  
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a.                                 b.                                          c. 

 

Figure 3.3 Spike timing reliability, but not precision, is altered by NE injections. a.) 1
st
 spike 

jitter, as measured by the standard deviation of first spike times following a click, was not 

significantly different between vehicle or NE injections. b.) The timescale of neural precision, as 

measured by the width of the click-aligned PSTH autocorrelogram, was not different for vehicle 

or NE injections. c.) Spiking event reliability was significantly reduced during NE injections 

compared to vehicle injections in 17 phase locking neurons. * P < 0.01. 

 

function at half height.  Similar to 1
st
 spike jitter, NE did not systematically alter PSTH 

autocorrelation width relative to vehicle injections, indicating that the timescale of neural 

precision is preserved in the presence of local NE (Fig. 4.3b). To assess whether trial to trial 

reliability was altered in the presence of NE, we measured the fraction of clicks that evoked a 

spike in phase-locking trials.  Here we found that in the presence of NE injections, the fraction of 

clicks that evoked a spike was significantly decreased relative to vehicle (Wilcoxon signed rank 

test, p<0.05).  This indicates that the spike depressing effects of NE are substantial enough to 

suppress driven firing, in addition to noisy, spontaneous firing.  

 

NE-mediated suppression impairs neural discriminability of birdsongs 
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Figure 3.4: Neural discriminability of birdsong stimuli is diminished during NE injections. a.) 

This schematic illulstrates how spike train distance metrics measure the discriminability of 

individual sounds.  First, a pair of spike trains is convolved with an exponential decay, and then 

subtracted to determine their inter-spike train distance (left).  Neighboring clusters of spike trains 

in a high dimensional “spike train space” can be homogeneously comprised of spike trains from 

an individual song, or heterogeneously comprised of spike trains from different songs.  The 

cartoon example on the left illustrates a good discriminator, while the example on the right 

illustrates a poor discriminator.  b.) K-means discrimination performance did not differ between 

vehicle or NE injection, while c.) d’ discrimination was significantly reduced during NE 

injection. d.) Decreased d’ discrimination was likely due to decreases in intercluster distance, 

which would inhibit discrimination performance.  e.) Spike train cluster size, as measured by 

average spike train distance within clusters, also decreased, but was not sufficient to overcome 

reductions in intercluster distance seen in d.). 

 

The observed decrease in spiking reliability led us to hypothesize that increases in local NE 

would influence song discrimination ability in single neurons.  To quantify the ability of single 

neurons to discriminate among song stimuli, we used spike-distance based discrimination metrics 

(Fig. 3.4) including the K-means neurometric and d’ for a subset of 7 Field L neurons.  K-means 
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performance did not significantly differ between NE and vehicle injections (Fig. 3.4b).  

However, the d’ metric, and unbounded estimate of neural discrimination, was significantly 

lower for NE injection trials than vehicle trials (Wilcoxon signed rank test, p<0.05), and 

coincided with decreases in both spike train intercluster distance and cluster size (Wilcoxon 

signed rank test, p<0.05).  These results indicate that, along with NE-mediated suppression of 

excitability, the ability of single neurons to distinguish between songs based on the structure of 

their evoked spike trains is diminished during NE injections. 

 

3.5 Discussion 

 

Here we tested whether Field L neurons were sensitive to varying the local concentration 

of NE via iontophoretic injections.  High concentrations in the range of 100 to 200 mM NE were 

sufficient to suppress excitability in a majority of Field L neurons.  In phase locking cells, this 

suppression was correlated with changes in stimulus tracking, but did not alter the precision of 

neural spiking events.  Trial-to-trial reliability was diminished by NE injections, as was single 

neuron discrimination of unfamiliar conspecific songs.  These results indicate that arousal related 

neurotransmission is sufficient to alter the excitability and coding properties of neurons in the 

songbird auditory cortex. 

The presentation of song evokes states of arousal and aggressive (male) or sexual (female) 

behavior in songbirds (Catchpole and Slater, 1995).  If social context influences arousal states 

and the coding properties of auditory neurons are state-dependent, then it is possible that changes 

in social context lead to changes in the coding properties of auditory neurons.  There is reason to 

hypothesize that a functional link may exist between auditory processing and socially-driven 

affective mechanisms.  For instance, pharmacological degradation of the noradrenergic system, 
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commonly thought to regulate arousal and modulate sensory processing (Berridge and 

Waterhouse, 2003), changes the patterns of song-induced IEG expression, a marker for neural 

activity, in songbird auditory forebrain areas (Lynch and Ball, 2008).  Furthermore, 

noradrenergic degradation diminishes behavioral responses to presentations of birdsong, and 

alters song preference and discrimination (Appeltants et al., 2002).  These observations implicate 

NE as a potential affective mediator of sensory processing. 

The noradrenergic system has an important role in modulating behavioral state transitions.  

Locus coeruleus is most active when an animal is awake and is least active during REM sleep 

(Cirelli and Tononi, 2000).  LocC also regulates the expression of several genes related to the 

regulation depression and other state-dependent disorders (Cirelli and Tononi, 2004).  NE plays 

an important role in modulating sensory responsiveness across behavioral states.  Increased 

levels of NE can increase the signal-to-noise ratio of sensory responses by increasing evoked 

sensory responses while decreasing spontaneous activity (Hasselmo et al., 1997; reviewed in 

Berridge and Waterhouse, 2003).  NE can also increase sensitivity by increasing the probability 

of neural responses to subthreshold stimuli (Waterhouse et al., 1998; reviewed in Berridge and 

Waterhouse, 2003). 

Activity in LocC shows drastic changes across behavioral states, increasing during 

wakefulness and decreasing during rest, sleep, and anesthesia.  These changes are strongly 

correlated with the release of NE in other parts of the brain (Devilbiss et al., 2006), and this 

noradrenergic activity is involved in attentional modulation (reviewed in Aston-Jones and 

Cohen, 2005).  In mammalian studies, attention-demanding tasks increase locus coeruleus firing, 

and the resulting increase in NE levels is thought to influence sensory responsiveness and 

representations in cortex (reviewed in Berridge and Waterhouse, 2003).  Cortical representations 
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of attended features are often enhanced, while the representations of competing features are 

suppressed.  This phenomenon, known as biased competition (Buehlmann and Deco, 2009), has 

been demonstrated in the visual system (Desimone and Duncan, 1995), auditory cortex 

(reviewed in Fritz et al., 2007), and barn owl auditory spatial maps (Winkowski and Knudsen, 

2007).  Studies have shown rapid task-dependent STRF plasticity that resembles biased 

competition (Fritz et al., 2005), but a relationship with NE has yet to be determined. 

Previous work on the role of NE in regulating auditory responsiveness has been shown in 

the song system.  A famous characteristic of song system neurons is their preferential response to 

a bird’s own song (BOS).  For instance, HVC neurons respond robustly to BOS, but not as much 

to reversed or rearranged BOS, or conspecific vocalizations (Margoliash, 1986).  This BOS 

selectivity is strongly influenced by a bird’s behavioral state.  Sleeping or anesthetized birds 

reveal strong multiunit BOS responses in HVC (Schmidt and Konishi, 1998; Nick and Konishi, 

2001; Dave et al., 1998; Cardin and Schmidt, 2003; 2004a), but awake birds show more variable 

BOS responses.  Awake BOS responses are often weaker or are absent, and are generally not 

stronger than responses elicited by other stimuli (Schmidt and Konishi, 1998; Dave et al., 1998; 

Cardin and Schmidt, 2003).  Neurons in NIf, a sensorimotor input to HVC, show a similar 

pattern, and have been shown to have a strong impact on the auditory responsiveness of HVC 

(Cardin and Schmidt, 2004a). 

NE regulates behavioral state-dependent transitions in the sensory processing of 

mammals (Aston-Jones and Bloom, 1981; Devilbiss et al., 2006; reviewed in Aston-Jones and 

Cohen, 2005), and strong evidence supports the role of NE in songbird sensory processing as 

well.  Cardin and Schmidt (2003; 2004b) conducted a series of studies in which arousing stimuli 

(air puffs) presented before the onset of BOS presentations were shown to suppress auditory 
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responses in NIf and HVC.  Infusions of NE into NIf mimicked this effect in a dose dependent 

manner.  Low concentrations of NE increased auditory responsiveness, while high 

concentrations had a suppressing effect.  This mimics inverted U-shaped response profile of 

LocC activity in mammals, suggesting that LocC-NE release may modulate this state-dependent 

neural coding. 

Other areas that might show noradrenergic-dependent auditory responsiveness include 

MLd and Field L, both of which have high DBH labeling and/or measured levels of NE.  As 

central auditory nuclei, Field L and MLd are critical to the perception and representation of the 

acoustic environment, including birdsong.  Noradrenergic projections to these areas could play a 

role in shaping the auditory representation of social signals. Although, Cardin and Schmidt 

(2003) did not find behavioral-state dependent modulation of BOS responsiveness in Field L 

across the sleep-wake transition, this not surprising considering that Field L is not thought to be 

BOS-selective under any contextual state (Theunissen, 2008). Together with the studies 

reviewed above, our findings confirm that the songbird auditory cortex is indeed sensitive to 

arousal-related neurotransmission mediated by the noradrenergic system.  Future studies will be 

required to determine if these effects are consistent for a wide range of NE concentrations, and 

whether different concentrations can yield varying coding manipulations, as seen in mammals. 
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Part 2: Assessing developmental properties of the songbird auditory cortex. 
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Chapter 4: Dynamic structure and function in the developing auditory system 

 

4.1 The role of experience in the developing brain 

 

Early postnatal experience has lifelong impact on health and behavior in humans and other 

animals.  In rare cases dating from the 14
th

 century to modern time, humans raised apart from 

natural rearing environments, so-called feral children, demonstrate severe behavioral 

abnormalities.  Child psychologists of the early to mid-twentieth century formally demonstrated 

that perceptual and social experiences were required for cognitive development.  Inspired by the 

work of Sigmund Freud, Rene Spitz (1945) conducted a study comparing infants reared in either 

a nursing home attached to a woman’s prison, or a foundling hospital for abandoned children.  

The rearing conditions provided infants with equal nutritional and medical care, but differed in 

that the nursing home infants received parental affection each day and had visual and acoustic 

access to other children from their cribs.  At four months of age, infants in the foundling home 

scored better on developmental tests than those in the prison homes.  However, after the first 

year of life, the children in the prison homes far outscored the foundlings in motor and 

perceptual abilities.  Foundling children developed a withdrawn and depressed phenotype which 

Spitz referred to as hospitalism (now known as anaclitic depression), while the prison children 

developed at a rate consistent with normally reared children. This case study is an early 

demonstration of the human developmental reliance on social and sensory stimulation, and it 

illustrates that healthy developmental trajectories in children emerge over long timescales (Sanes 

and Jessell, 2013). Studies such as Spitz’s have shaped modern ethical perspectives in science, 

which prohibit social deprivation in a child’s environment. 
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Over the past several decades it has become feasible to use animal models to probe the 

neural basis of experience-dependent developmental plasticity in sensory systems.  

Neurophysiological and anatomical studies of the role of experience in sensory development 

have shaped our understanding of the functional properties of sensory neurons.  Here I discuss 

experimental approaches for probing the functional ontogeny of sensory systems, with an 

emphasis on auditory neural processing and perception.  I begin with an overview of behavioral 

assessments of perceptual development, and then provide an overview of sensory development 

from the periphery to the cortex. 

 

4.1.1 Development of perceptual skills 

 

Human studies of auditory development demonstrate that: 1) perceptual maturation occurs well 

into adolescence;  2) adult-like perceptual abilities emerge at different ages depending on the 

skill; and 3) individual perceptual skills emerge with the maturation of neural coding properties 

in the auditory system (review: Sanes and Woolley, 2011).  For instance, frequency resolution 

(tone detection in the presence of a tone of similar frequency) reaches peak maturity by 6 months 

of age (Spetner and Olsho, 1990; Hall and Grose, 1991), corresponding to the timescale of 

cochlear development.  On the other hand, frequency discrimination does not fully mature for 

over a decade (Maxon and Hochberg, 1982; Moore et al., 2011).  Similarly, human perception of 

temporal cues displays a wide range of developmental timelines.  Sound duration discrimination 

matures at six years of age (Elfenbein et al., 1993; Jensen and Neff, 1993), while detection of 

amplitude modulations such as those in speech, matures at up to 12 years of age (Banai et al., 

2011).  Together these studies indicate that developmental changes in neural coding mechanisms 
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underlie perceptual maturation, and that studies using animal models may lead to the 

identification of these mechanisms (Sanes and Woolley, 2011). 

 

4.1.2 Development of functional auditory circuits 

 

Auditory developmental timelines vary among species.  Rodent auditory systems develops over 

the first postnatal month (review: Sanes and Bao, 2009); hearing onset occurs in rats and mice 

around postnatal day P11 (Geal-Dor et al., 1993) while the human auditory system is functional 

before birth.  A mother’s voice and other auditory stimuli evoke motor responses and changes in 

heart rate in utero (Moore and Fred H Linthicum, 2009).  Heart rate responses also demonstrate 

frequency discrimination in fetal infants (Shahidullah and Hepper, 1994).  Auditory development 

in most animals that have been studied occurs over a prolonged postnatal period of neural and 

perceptual maturation that is thought to allow central auditory neurons and circuits to develop 

under the influence of experience (Keuroghlian and Knudsen, 2007). 

 

Subcortical Development 

Many subcortical auditory structures in the rodent mature in the first few postnatal weeks.  

The cochlear microphonic is detectable in rats as early as P8 (Uziel et al., 2009), and cochlear 

hair cells are spontaneously active between P0 and P10 (Tritsch and Bergles, 2010).  Brainstem 

nuclei that process interaural differences between level (ILD) and timing (ITD), the two principal 

cues used for sound localization, require experience to develop normal stimulus coding 

properties.  For example, gerbils reared in the presence of omnidirectional noise show abnormal 
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ITD coding in the dorsal nucleus of the lateral lemniscus (DNLL) that is likely caused by a 

postnatal failure of inhibitory axons to form precise spatial connections (Seidl and Grothe, 2005). 

The vast majority of auditory projections ascending from the lower brainstem converge 

on the inferior colliculus (IC), along with descending projections from cerebral cortex (Brunso-

Bechtold and Henkel, 2005a).  The mammalian IC generally consists of a central nucleus (CNIC) 

that is surrounded by a dorsal (DIC) and external (EIC) nuclei.  Many of the axonal projections 

to these regions also develop postnatally. Cells in the CNIC are born at E14 in the rat, 3 weeks 

before hearing starts (Altman and Bayer, 1981). Lateral superior olive (LSO) and DNLL 

projections are diffuse throughout the IC in the first week after birth and form banded axonal 

terminations are also present in rats several days before hearing (Gabriele and Brunso-Bechtold, 

2000).  This anatomical development illustrates that mammalian subcortical auditory processing 

is immature at birth, but begins to form functional circuit properties before the onset of sound 

detection. 

The pre- and postnatal maturation of anatomical organization in the IC is paralleled by 

development of functional coding properties such as frequency tuning (Aitkin and Moore, 1975), 

binaural tuning (Aitkin and Reynolds, 1975).  For example in kittens, CNIC tuning curves are 

broadly tuned with high intensity thresholds from P6 to P11, but sharpen, map tonotopically, and 

have lower intensity thresholds by day 21 (Aitkin and Moore, 1975). 

Ascending auditory activity plays a central role in the formation of hindbrain auditory 

and IC circuits.  Studies on the role of sensorineuronal hearing loss (e.g. removing the cochlea) 

or conductive hearing loss (e.g. ossicle removal or ear plugging) indicate that anatomical and 

functional properties of IC depend on experience-dependent brainstem activity to mature 

properly (Brunso-Bechtold and Henkel, 2005b).  Early unilateral cochlear ablation in gerbils and 
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ferrets decreases ipsilateral CN volume and increases the strength of the projection from CN to 

IC on the contralateral side (Moore and Kowalchuk, 1988).  In contrast, bilateral cochlear 

removal does not result in abnormal CN to IC projections, indicating that competition between 

activity from each ear plays a role in developing projections to IC (Moore, 1990).  This binaural 

competition may also play a role in ascending DNLL projections, as early unilateral cochlear 

ablation alters the banding of contralateral and ipsilateral DNLL afferents in IC (Gabriele et al., 

2000). 

The findings reviewed above suggest that the development of the IC is driven by activity 

in ascending and converging auditory pathways during early postnatal life. The IC also 

demonstrates strong experience-dependent plasticity during development.  This is well 

characterized in the barn owl.  Owls raised with prism lenses that shift the visual field show a 

remapping of the auditory spatial map of ITDs in the IC (Brainard and Knudsen, 1993).  Spectral 

processing in IC is also sensitive to experience.  Juvenile rats exposed to a single tone develop an 

over-representation of that tone in the IC (Poon and Chen, 1992), and mouse pups exposed to 

repeated broadband clicks have broadened IC receptive fields (Sanes and Constantine-Paton, 

1983; 1985). 

The role of activity in the brainstem is both trophic (for developing projections) and 

refining (for synaptic specificity).  Interestingly, the synaptic mechanisms responsible for 

activity-dependent changes vary across brain regions (review: Sanes and Bao, 2009).   For 

example, auditory neurons throughout the CNS tend to exhibit enhanced excitability following 

bilateral hearing loss.  Studies in congenitally deaf mice show that in the cochlear nuclei this 

excitability increase is mediated by enhanced excitatory synaptic currents, but in the medial 

nucleus of the trapezoid body (MNTB) this excitability increase is mediated by the down 
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regulation of a potassium channel (Oleskevich and Walmsley, 2002; Leao et al., 2004).  In the 

LSO, inhibitory axon terminals refine their synapses in two stages: 1) a decrease in connectivity 

before hearing; and 2) an elimination of terminal boutons after hearing onset (Anon, 1993; Kim 

and Kandler, 2003).  This second stage of refinement is activity dependent, and may depend on 

inhibitory synaptic long-term depression (Kotak and Sanes, 2000; Kandler and Gillespie, 2005; 

Sanes and Bao, 2009). 

 As for hindbrain projections to the IC, projections from the medial geniculate nucleus of 

the thalamus to primary auditory cortex (A1) emerge in the first postnatal week, and mature 

through P12 (Fathke and Gabriele, 2009).  The development of subcortical auditory circuitry 

during the perinatal period becomes established to a degree that is sufficient for strong tone-

evoked responses in A1 by P14, with cortical development extending well beyond this point. 

 

Cortical Development 

 The development of A1 has largely been explored with respect to neonatal critical period 

plasticity (Hensch, 2005; Sanes and Bao, 2009; Froemke and Jones, 2011).  Rather than being 

poorly structured before maturation, recent evidence suggests that A1 is mapped tonotopically 

shortly after hearing onset, and this tuning becomes somewhat less precise over time (Bonham et 

al., 2004; Insanally et al., 2009).  As described above, neonatal auditory responses in subcortical 

regions become more sharply tuned during development, suggesting that a gradual broadening of 

tuning in cortex reflects cortical developmental processes (Sanes and Bao, 2009). 

 Several important studies demonstrate the critical role of acoustic experience in the 

development of auditory coding.  Merzenich and colleagues report that repeated presentations of 

a given tone led to expanded anatomical representations of that tone in juvenile rodents (Zhang 
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et al., 2001; Chang et al., 2005; de Villers-Sidani et al., 2007).  Han et al. (2007) also showed 

that this experience-dependent, tone-specific cortical expansion is correlated with a decreased 

ability to behaviorally discriminate nearby tones.  They also found that discrimination within 

neighboring tone regions was enhanced, and suggest that early over-exposure results in a neural 

basis for categorical perception (Han et al., 2007). 

 Tonotopic maps emerge with the development of individual tone receptive fields at the 

single neuron level.  In juvenile rats, frequency-intensity tuning is considered adult-like by 

roughly P21 (Froemke and Jones, 2011).  Other response properties emerge over longer periods.  

GABA-mediated, inhibitory sidebands have been reported to be stronger in juveniles than adults, 

with broad two-tone suppression remaining until P45 (Chang et al., 2005). 

 In addition to displaying spectral tuning plasticity, auditory cortical neurons are 

developmentally sensitive to temporally modulated sounds.  In the absence of experiencing 

rapidly repeating sounds, or with over-exposure to slowly modulated sounds, cortical neurons 

show diminished entrainment to high rate stimuli (Chang and Merzenich, 2003; Zhou and 

Merzenich, 2008).  This is also seen in spectrotemporally modulated stimuli; rats reared in the 

presence of repeated frequency sweeps develop A1 neurons with selectivity for those specific 

FM sounds (Insanally et al., 2009). 

 Evidence that the acoustic characteristics of over-exposed sounds alter the timing of A1 

critical periods adds an additional layer of complexity to the story of developmental plasticity in 

A1.  Rearing in continuous white noise, rather than periodic bursts of noise, not only degrades 

cortical tuning, but extends the critical period for plasticity (Chang and Merzenich, 2003; 

Speechley and Hogsden, 2007).  Exposure to a continuous tone stimulus also extends the critical 
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period (Zhou and Merzenich, 2008), while modulated stimuli appear to sufficient to close the 

critical period (Dorrn et al., 2010). 

 In addition to sound evoked activity, development of A1 receptive fields has been studied 

at the synaptic level.  In vitro recordings of rodent A1 demonstrate a maturation of intrinsic 

cellular and synaptic properties in glutamatergic cells, with large changes in postsynaptic 

conductances between P12 and P21, corresponding to the timeline of changes in rodent A1 

frequency tuning (Oswald and Reyes, 2008; Insanally et al., 2009).  Recordings in vivo 

demonstrate that excitatory inputs are tuned to characteristic frequencies by P14, while inhibitory 

inputs remain poorly tuned (Dorrn et al., 2010; Sun et al., 2010).  After three weeks of acoustic 

experience, the tuning of A1 inhibition becomes tuned and scales across stimuli with excitatory 

conductances (Wehr and Zador, 2003; Froemke et al., 2007; Dorrn et al., 2010).  This balance of 

excitation and inhibition may be critical in establishing mature receptive fields (Froemke and 

Jones, 2011). 

 

4.2 Discussion: limitations and future directions in experimental frameworks for probing 

functional auditory development 

 

The research outlined above demonstrates that development throughout the central auditory 

system is sensitive to experience.  Multiple forms of hearing loss are sufficient to induce 

anatomical and functional developmental abnormalities from CN to A1, and continuous over-

exposure to sound reorganize tonotopic maps in the IC and A1.  These developmental 

manipulations can also be observed at the synaptic level, where depending on the region, 

auditory deprivation can modify and refine the strength of synapses or change the intrinsic 

electrical properties of neurons.   
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 It is clear that the timecourse of auditory development varies across auditory regions and 

species, and the development of human perceptual abilities (months to years) does not coincide 

with the auditory properties observed in model systems (days to weeks).  It is also clear that the 

principal manipulations used to probe development in the auditory system are environmental 

disruptions of normal development, either through the over-representation of artificial stimuli in 

postnatal rearing conditions, or the deprivation of sound evoked activity through surgical, 

genetic, or experiential means.  Sanes and Bao (2009) importantly point out that the experiments 

that use these methods have likely provided insights into general principles of normal 

development, but they are limited to the extent that they are: 1) largely performed in anesthetized 

animals or brain slices; and 2) nowhere near representing natural rearing or behavioral conditions 

that the nascent nervous system is likely to encounter.  It is up to experimentalists to derive new 

frameworks for probing auditory development in the context of natural behavior. 

One promising avenue of research that is already providing significant contributions to 

developmental neurobiology is the interaction between vocal behavior and auditory coding.  

Vocal communication is a specialized behavior shared by many species, and neural response 

selectivity for species-specific vocalizations have been observed in several vertebrate groups 

including primates (Glass and Wollberg, 1983; Wang, 2000), bats (Klug et al., 2002), guinea 

pigs (Šuta et al., 2003), frogs (Elliot et al., 2011) and songbirds (Margoliash, 1986; Doupe and 

Konishi, 1991; Grace et al., 2003).  A subset of these model systems, including bats and 

songbirds, learn to communicate vocally during early development.  In these two groups, 

experience with vocalizations shapes auditory response properties during development, and plays 

an important role in the emergence of vocal selectivity. 



82 

 

Bat IC and A1 neurons respond selectively to downward FM sweeps that are intrinsic to 

their echolocation calls, and this is in part mediated by the complex timing of GABA-ergic 

inputs to these cells (Andoni et al., 2007; Fuzessery et al., 2011).  This selectivity emerges 

several weeks after the onset of hearing and experience with sonar behavior, and young bats that 

are vocally impaired and deprived of hearing normal echolocation have diminished FM direction 

selectivity (Razak et al., 2008).  Bats make an ideal system for studying how natural behavioral 

contexts influence neural development, in large part because the circuitry mediating FM sweep 

coding is largely worked out. 

Songbirds provide a model system in which the neural substrate governing the acquisition 

and production of a learned social behavior is well characterized.  Birdsong, like speech, is 

acquired over multiple sensory and sensorimotor critical periods that have distinct temporal 

windows (Doupe and Kuhl, 2003).  The natural rearing conditions of the songbird feature an 

abundance of complex vocalizations and social experience, and provides a surprisingly simple 

framework to test whether vocal learning experience influences auditory coding in juveniles and 

adult birds.  Neurons in the primary auditory cortex of songbirds (Field L) have firing rate 

selectivity for conspecific song over artificial stimuli, and this selectivity is stronger in adults 

than juveniles (Grace et al., 2003; Amin et al., 2004; Amin et al., 2013).  Early isolation from 

song exposure also results in diminished response selectivity as measured by multiunit 

recordings and fMRI (Cousillas et al., 2004; Maul et al., 2010). 

Future studies could continue to test how natural communication signals influence 

songbird auditory development by manipulating the vocal learning conditions in which songbirds 

are raised.  Woolley et al. (2010) found that single auditory neurons displayed higher information 

coding capacities in male zebra finches tutored with conspecific song, compared with male zebra 
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finches tutored with Bengalese finch song.  The mechanisms leading to song selectivity and 

coding capacity remain unknown.  Cross-fostering studies probing the development of receptive 

field properties will provide an answer as to whether the statistics of vocally learned signals 

become preferentially encoded in the auditory system.  Furthermore, chronic recording 

techniques will allow experimenters to probe the physiology of auditory neurons throughout the 

course of vocal learning in juvenile birds, and will provide insights into how natural behavioral 

experience during development is linked with the development of auditory circuits that underlie 

learned vocal communication.  Data presented in chapter 5 will address this topic directly. 
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Chapter 5: Vocal learning drives experience dependent changes in the coding 

properties of auditory cortical neurons in a region and cell-type specific manner. 

 

5.1 Abstract 

 

Auditory neural circuit development relies on experience-dependent mechanisms that operate 

during critical periods.  This enables auditory neurons to optimally encode the acoustic 

environment by acting as matched filters for relevant sound features in the world.  This process 

is important in shaping the coding and perception of sound later in life.  In animals that 

communicate vocally, auditory cortex encodes the complex acoustic features of conspecific 

vocalizations.  Some animals, such as songbirds, learn vocalizations during development by 

imitation. To facilitate vocal learning, early social communication experience may shape 

auditory cortical response properties to accurately encode the acoustic features of the imitated 

model. Here we tested whether the onset of song tutoring during a critical developmental period 

for vocal communication induces changes in the response properties of auditory cortical neurons 

in juvenile male zebra finches.  We performed longitudinal neural recordings along single 

electrode tracks through the auditory cortex before and during song tutoring using chronically 

implanted miniature motorized microdrives.  Here we show that the onset of tutoring is sufficient 

to drive shifts in the temporal and spectral coding properties of auditory cortical neurons in a 

cell-type and region specific manner.  Furthermore, we demonstrate a functional specialization in 

dorsal, but not ventral subregions of the auditory cortex for processing auditory feedback. 

 

5.2 Introduction 
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In humans, vocal learning during childhood plays a major role in speech perception throughout 

life.  Native speakers of a language are more adept at discriminating between and recognizing 

their speech sounds than non-native speakers and prolonged training of non-native speaking 

adults fails to overcome this deficit (reviewed in Kuhl, 1994; Iverson et al., 2003; Kuhl, 2010).  

It is therefore likely that developmental vocal learning modifies the central auditory circuits that 

underlie vocal communication. 

Auditory neural circuit development relies on experience-dependent mechanisms that operate 

during critical periods (Sanes and Bao, 2009).  This is presumed to allow auditory neurons to 

encode the acoustic environment by acting as matched filters for relevant sound features in the 

world.  This process is also important in shaping the coding and perception of sound later in life.  

Disorders of auditory development have profound consequences in the lives of both children and 

adults, and have a complex etiology including genetic factors, prematurity and low birth weight, 

infection, trauma, and epilepsy (Bamiou et al., 2001).  It is therefore important to explore the 

physiology of developing organisms, identify critical periods during which functional properties 

are modifiable, and determine which functional properties are modified by experience. 

Current studies of auditory physiology in juvenile animals are limited.  Juvenile vertebrates 

are often delicate, and are not suitable for many experimental manipulations.  As a result, most 

juvenile physiology data are collected in anesthetized preparations, which alter certain neural 

response properties (Schumacher and Woolley, 2010).  Moreover, the role of auditory experience 

in neural circuit development has been studied primarily in extreme non-natural contexts, such 

deafening or over-exposure to noise or other sounds (Zhang et al., 2001; Chang et al., 2005; de 

Villers-Sidani et al., 2007; Han et al., 2007; Insanally et al., 2009).  These studies certainly 

demonstrate the role of experience in neural development, but it remains unclear how natural 
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behavioral contexts that occur during development shape the coding properties of auditory 

neurons.   This is at least in part due to the scarcity of suitable model systems for studying the 

development of complex perceptual or sensorimotor behaviors. 

Like humans, and unlike the vast majority of animals, songbirds learn to vocalize during 

development by imitating a model, or tutor bird, through observation and vocal practice (Kuhl 

and Doupe, 1999).  In juvenile male zebra finches, forebrain premotor and motor nuclei undergo 

rapid anatomical and physiological changes following exposure to a song model (Roberts et al., 

2010, Shank and Margoliash, 2009).  Previous studies have shown that auditory cortical neurons 

in adult zebra finches have higher firing rates to natural song stimuli than artificial noise stimuli, 

and that this song selectivity emerges developmentally (Grace et al., 2003; Amin et al., 2014).  It 

remains to be seen what, if any, physiological properties of auditory neurons develop in concert 

with periods of vocal learning, and over what timescales those changes may take place.  

Songbirds have well characterized critical periods for sensory acquisition/memorization of a 

song model and for vocal motor practice.  Yet it remains unknown if songbird auditory cortical 

developing occurs in tandem with known song learning critical periods.  To answer these 

questions, we examined the response properties of auditory cortical neurons in juvenile male 

zebra finches before and throughout vocal learning.   Juveniles were raised in the absence of a 

song tutor and implanted with miniature, motorized microdrives carrying extracellular recording 

electrodes to allow chronic recording of auditory neural response properties.  Following 10 days 

of baseline recordings to simple tone stimuli in naïve, untutored birds, experimental subjects 

were given access to a tutor everyday while we continued to record neural responses to tones, as 

well as repeated playbacks of the tutor bird’s song.   
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5.3 Methods 

 

Animal Care and Use 

All procedures were done in accordance with the NIH policies on animal care and were 

approved by the Columbia University Animal Care and Use Committee. Adult zebra finch 

breeders and tutors (Taeniopygia guttata) were either bred and raised in the Columbia University 

zebra finch colony or purchased from a bird farm (The Finch Farm). Breeders lived in a large 

aviary with other zebra finches before mating and producing offspring for this study. Both 

parents raised juvenile subjects in sound proof booths until juveniles were posthatch age (P) 10 

days, when male parents was removed from booths to prevent juvenile exposure to song. 

Subjects were raised by their mother until feeding independently (P32-36), and were then housed 

in singly until implantation with recording microdrives.  All birds had free access to food, water, 

grit, and cuttlebone, and were given supplements of egg and lettuce twice weekly. 

Subjects were implanted with miniature motorized microdrives (Keller and Hahnloser, 

2008) between days P40 and P5, and then placed in a chronic recording enclosure that allowed 

daily presentation of tones and vocalizations and simultaneous recording of sing neurons 

responses along the dorsal-ventral axis of the auditory cortex.  Baseline tone responses were 

measured up to P50, requiring the birds to be teathered for 4 to 10 hours per day.  Subjects were 

allowed free access to food and water, and recordings were suspended during periods of eating or 

movement. 

Tutoring of experimental pupils began after day P50.  Tutoring sessions occurred at 

midday for up to two hours.  Tutors were separated from juveniles by a plastic mesh partition, 

but both birds had visual and acoustic access to one another.  Rare cases in which the tutor would 

not direct singing to the juveniles were remedied by adding a quiet female to the tutor’s cage.  
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Both pupil-directed and female-directed singing were both sufficient to drive song learning in 

pupils. 

 

Surgery and Electrophysiology 

Surgical procedures were similar to what we’ve previously described (Schumacher et al., 

2011), but with minor alterations.  Birds were anesthetized with a single intramuscular injection 

of 0.03 ml Equithesin.  Craniotomies were approximately 0.5 by 0.5 mm squares above the 

intended electrode track (relative to the midsagital sinus: 1.2 to 1.3 mm medial-lateral, 1.2 to 1.3 

mm anterior posterior).  A slight tear in the dura was made with a hypodermic needle, and the 

microdrive was positioned over the center of the surgical area.  Minutien pins were threaded 

through the skull anterior to the surgical area to serve as anchors for dental cement.  A fine 

platinum iridium reference wire was implanted lateral to the electrode, and a ground wire was 

implanted beneath the skull posterior to the implant.  The entire exposed skull and microdrive 

were sealed with dental cement.  Birds typically resumed normal behavior within 8 hours and 

were considered recovered within 24 hours. 

The recording chamber was contained within a custom sound proof booth (ETS-

Lindgren), calibrated to feature a flat frequency response at its center.  The recording cage was 

equipped with a 12 channel commutator to carry electrode, ground, and reference signals to 

custom TDT recording software.  The teather featured a custom headstage with a two channel 

op-amp in a unity gain buffer configuration, which provided initial signal conditioning for the 

electrode and reference channels.  Electrodes (Thomas Recording Co.) were glass coated with 

impedences of 6 to 10 MOhms. 
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When recordings were finished, we made electrolytic lesions by passing 15uA currents 

through the electrode to ground for 15 seconds (Fig. 1).  Multiple lesions along a single track 

allowed for identification of the coordinates of recordings sites. 

 

Stimuli 

All stimuli were presented from a free-field speaker (JBL), calibrated to have a flat 

frequency response at the center for the recording chamber. Pure tone stimuli (0.5 – 8.0 kHz) 

were presented at sound levels between 10 and 90 dB SPL.  Tones were 220 ms in duration, 

including 10ms cosine ramps at the beginning and end.  Tone stimuli were separated by silent 

periods of at least 0.4 s.  Song stimuli consisted of multiple renditions of each subjects tutor 

song, as well as renditions of the subject’s own song, sampled at 24,414 Hz and frequency 

filtered between 250 and 8,000 Hz.  Songs were initially presented at varying sound intensities 

(10 to 90 dB SPL) to gauge the importance of sound level on neural responses, but for most birds 

the tutor song playback was presented at specific intensities around the natural intensity of song 

(70 +/- 10 dB SPL). 

 

Song Analysis 

We quantified song copy performance using similarity scores generated by Sound 

Analysis Pro 2011 (SAP2011) from fifteen asymmetric pairwise comparisons between the 

pupil’s largest common song motif with the tutor’s song motif. Songs were recorded in the 

pupil’s recording chamber with a directional microphone (Sennheiser, ME2). 

 

Neural Data Analysis 
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Spike sorting.  Spikes were sorted offline using the WaveClus automated sorting 

algorithm (Quiroga et al., 2004).  Signal-to-noise was increased prior to sorting using a nonlinear 

filter applied to the bandpass-viltered voltage trace (Hill et al., 2011).  To quantify the electrical 

isolation of each cell, we computed the signal-to-noise ratio comparing spike waveform peaks to 

baseline voltage values (Hill et al., 2011). 

Frequency response area and tone tuning estimation.  For a subset of the recorded 

neurons, we calculated frequency response area (FRA) functions from responses to repeated 

presentations of pure tones ranging from 500 to 8000 Hz (500 Hz increments) and intensities 

from 10 to 90 dB SPL (10 dB increments), for a total of 144 frequency-intensity combinations.  

These frequency-intensity ranges and increments were chosen based on previous work on tone 

tuning in the auditory midbrain (Woolley and Casseday 2004).  Frequency-intensity 

combinations were presented in pseudorandom order for 10 to 20 repetitions or until enough data 

were collected to acquire well defined FRA plots.  FRA plots depict the average response at each 

frequency-intensity combination.  FRAs were upsampled 3X along the frequency and intensity 

dimensions to increase tone tuning resolution.  From the upsampled FRA we measured best 

frequency (BF), which we defined as the frequency that evoked the largest response when 

summed across all levels. 

Temporal response patterns.  We determined temporal response patterns of individual 

neurons by averaging the PSTHs of frequency/intensity combinations that drove a significant 

excitatory.  We defined the onset period of the response as the first 50 ms of the stimulus 

presentation, and the sustained period of the response as the second 100 ms of the stimulus 

presentation (modified from Wang et al., 2005).  To quantify the temporal response patterns, we 
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used an onset index (Schumacher et al.,  2011), Oindex, defined as the onset firing rate minus the 

sustained firing rate, divided by the sum of the onset and sustained firing rates: 

       [2] 

where values could range from -1 (no onset response, significant sustained response) to 1 

(significant onset response, no sustained response).  Oindex values between 0 and 1 represent a 

spectrum of response types from sustained (Oindex = zero), to primary-like (0 < Oindex < 1), to 

onset (Oindex = 1). 

FRA tuning coherence.  We measured the structure of tone receptive fields using Geary’s 

Contiguity (C) ratio (Geary, 1954), a measure of spatial autocorrelation within a matrix.  FRA 

tuning coherence was calculated as 
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where n is the number of spatial units indexed by i and j, x is the variable of interest (in this case 

tone evoked firing rates),   is the mean of x, and     is an element of an nxn matrix of spatial 

weights where w for nearest neighbors equals 1, and all other     elements are equal to zero. 

The statistical significance of C is given by a z score: 
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Finally, reported C values are subtracted from 1 to yield a measure varying from 1 (maximal 

positive autocorrelation) to approximately -1 for high negative autocorrelation, however in our 

data set the floor value for C is approximately zero.  We also report z scores multiplied by -1, so 

that positive z scores indicate significant spatial clustering of response strengths in the FRA. 

 

5.4  Results 

 

Juvenile zebra finches learn to accurately copy tutors in a compressed learning paradigm for 

chronic electrophysiology. 

 

Juvenile male zebra finches were raised under conditions that heavily constrained their access to 

vocal tutoring. (Fig. 5.1a).  Subjects were 13 male zebra finches that were nest-reared by their 

both of their biological parents in sound isolation boxes (IAC Acoustics) until posthatch age (P) 
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12 to 14, at which point hearing sensitivity is weak and male zebra finches are not yet acquiring 

a song template from their fathers (Grace et al., 2003).  Fathers were then removed from their 

nest boxes and chicks were reared by their mothers until feeding independently (P31 to P36), at 

which point they were moved into social isolation. At P40, subjects were implanted with 

miniature motorized microdrives that delivered extracellular recording electrodes through the 

extent of the avian auditory cortex (Fig 5.1b,c). The implants provided stable, high signal-to-

noise electrophysiological recordings for up to twenty-five days, and allowed for longitudinal 

sampling from single electrode tracks across days (Fig. 5.1c).  From implantation through the 

duration of recordings, subjects lived in a chronic recording booth where neural responses to 

pure tones were recorded daily. At P50, subjects were split into two groups. 7 birds (Tut. group) 

were given two hours of access to a song tutor per day, while 6 birds continued to live in social 

isolation without tutoring (Ctrl. group), and served as age-matched controls for effects of natural 

maturational processes involved in the development of auditory cortical neuronal physiology. 

Pupils produced accurate copies of their tutor’s song (Fig 5.2), even with limited access to 

tutoring.  Song similarity scores (Sound Analysis Pro 2011) were computed between tutor birds 

and juveniles from multiple rearing conditions. Similarity scores did not differ between our 

experimental pupils and pupils raised in unconstrained conditions in our zebra finch colony by 

the same tutors.  As expected, isolate reared juveniles did not form copies of our experimental 

tutors, indicating that common, species typical song components do not account for the copy 

accuracy of our experimental pupils.   One experimental pupil from the Tut. group did not learn 

the tutor’s song, and had a song similarity score comparable to isolate reared birds.  As a result 

this bird is not considered in our analysis of the neural data. In general we find a main effect for  
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Figure 5.1: Testing the sensitivity of auditory cortical coding to the onset of sensory learning. 

(a.) We developed an experimental paradigm that allows us to control for the onset of vocal 

learning in juvenile songbirds while recording longitudinally throughout the AC. (b.) A 

schematic of the songbird auditory forebrain shows the basic connectivity of the songbird  AC. 

(c.) Representative reconstructions of electrode paths show electrolytic lesions, indicating an 

electrode track through multiple auditory subregions. Nissl stained sections (top left) and fresh 

wet tissue (top right) reveal relevant lamina and anatomical features for delineating subregions. 

Composite anatomy of recording subjects (bottom) shows individual electrode tracks and lesion 

locations (blue lines). 
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Figure 5.2: Experimental pupils form accurate copies of their tutor’s song.  a.)  Sample song 

spectrograms from subjects in various rearing categories, including one of the subject tutors 

(top).  Colony-reared and experimental pupil spectrograms visually resemble their tutors.  

Isolate-reared pupils and a single failed experimental pupil demonstrate abnormal song learning. 

b.) Song copy similarity scores for individual subjects in four rearing categories.  Box plots 

denote ranges of similarity scores between pairs of song motifs from each tutor and pupil.  

Colony-reared and experimental pupils show comparable levels of song copying, while isolate-

reared and a single failed pupil demonstrate no motif copying.  ANOVA reveals a significant 

main effect for rearing condition (p<0.0001), and post-hoc analysis indicates that colony-reared 

and experimental pupils show enhanced learning compared to isolates and the single failed 

learner (*p<0.01). 

 

rearing condition (ANOVA; p<0.0001), and post-hoc analysis reveals significantly higher 

learning for colony-reared and experimentally tutored pupils than for isolates and the single 

failed pupil (Tukey HSD; p<0.01). 

 

Thalamorecipient area L2: rapid song learning coincides with changes in the temporal structure 

of neural responses to tones 

 

To assess whether auditory cortical neurons were sensitive to the onset of vocal learning, we 

longitudinally recorded along single electrode tracks in juvenile male songbirds before and after 
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inducing vocal learning.  Our single unit recordings in 1124 neurons reproduced a previously 

observed bimodal distribution of action potential types (Fig 5.3a).  Action potential width was 

used to separate fast-spiking (FS, putative inhibitory cells) and regular spiking units (RS, 

putative excitatory cells), which are analyzed separately.  Much of our analysis compares cell 

types across multiple subregions of the AC during different recording epochs relating to the 

vocal learning conditions of the subjects.  A summary of our recording populations is available 

in Table 5.1. 

We presented 220ms pure tones varying in frequency (0.5 to 8 kHz) and intensity (10 to 

90 dB SPL) while recording from single units.  Frequency response area (FRA) plots were 

constructed by assessing response strength at each frequency intensity combination (Fig. 5.3b).  

FRAs depict regions of the neurons receptive field that excite of suppress firing in each neuron, 

and are used to compute the features to which each neuron is tuned.  Furthermore, each neural 

step response had a characteristic temporal profile in the peristimulus time histogram (PSTH), 

which we quantified using an onset index (OI), defined as the difference in onset and sustain 

firing rates divided by their sum (Fig. 5.3c.).  To determine if the temporal response dynamics 

were sensitive to the onset of vocal learning, we compared the OI of neurons recorded 10 to 6 

days prior to tutoring (Pre-T1), 5 to 1 day prior to tutoring (Pre-T2), post-tutor onset (Tut.), and 

in control isolate birds that were age matched to the Tut. group (Ctrl.). In thalamorecipient region 

L2, Tut. FS neurons had significantly higher OI measures than PreT1, PreT2, and Ctrl. FS 

neurons (Fig. 5.3d; p<0.01, Tukey-HSD), indicating that the temporal dynamics of the neural  
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Figure 5.3: Fast-spiking (FS) neurons in L2 show enhanced onset responses following the onset 

of song learning. (a.) Two distinct cell types, delineated by their action potential shapes, are 

found in all regions of songbird AC.  FS neurons are characterized by narrow action potentials 

and high firing rates.  Regular spiking (RS) neurons are characterized by sparse firing and broad 

action potential shapes. (b.) Example FRA for an onset neuron tuned to 4 kHz.  PSTH plots for 

each frequency/intensity combination, overlaying an interpolated heat map of neural response 

strengths at each frequency intensity combination.  (c.) We quantified the temporal structure of 

each neuron’s tone step response (top) using an onset index (OI). Raster plot of tone-evoked 

activity (middle) and the PSTH (bottom) of the fast spiking cell from (b.) shows strong onset 

responses (orange) and a deminished sustained response (aqua) with an OI of 0.95. (d.) FS 

neurons in L2 have higher OI following the onset relative to early in the pretutoring phase, late in 

the pretutoring phase, and compared to age matched Ctrl. birds (red bars).  This is not the case in 

RS cells. Bars indicate mean values +/- S.E.M. *p<0.01 
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Region Pre-T1 Pre-T2 Tut. Ctrl. 

CM RS = 78; FS = 31 RS = 55; FS = 16 RS = 40; FS = 34 RS = 25; FS=15 

L1 RS = 28; FS =  8 RS = 36; FS =  7 RS = 12; FS =  6 RS = 13; FS =  4 

L2 RS = 40; FS = 33 RS = 36; FS = 25 RS = 18; FS = 12 RS = 37; FS = 27 

L3 RS = 31; FS = 19 RS = 40; FS = 22 RS = 26; FS = 27 RS = 20; FS = 9 

CST 18 11 30 23 

 

Table 5.2: Summary of the number of each type of cell recorded during each rearing condition.  

Pre-T1 corresponds to days 10 to 6 prior to tutor onset at P50.  Pre-T2 corresponds to days 5 to 1 

prior to tutor onset.  Tut. corresponds to all recording days following the onset of tutoring.  Ctrl. 

corresponds to days P50+ in age-matched control birds that were never tutored.  In each region, 

other than CSt, we divide our cells into RS and FS subpopulations, with corresponding n’s 

reported.  Neurons in the “other” region were recorded in hippocampus, or anterior to the 

auditory forebrain. 

 

response are sensitive to the onset of vocal learning in this region and cell type.  We did not 

observe temporal changes in OI for RS cells in L2 (Fig 5.3d), or in other subregions. 

 

Spike timing reliability to tutor song playback gradually increases following tutoring onset in L2 

FS neurons 

 

The observed increase in OI values for L2 FS cells following the onset of tutoring 

indicates that the onset portion of the step response becomes stronger relative to the sustained 

portion of the response.  We hypothesized that one functional consequence of this would be an 

enhancement of spike timing precision in response to complex stimuli.  To test this hypothesis, 

we presented repeating playbacks of multiple renditions of each Tut. bird’s tutor song to neurons 

throughout the AC (n = 124) following the onset of tutoring. 

Of the 124 neurons for which tutor song responses were recorded, 20 were identified as 

L2 FS neurons.  Figure 5.4a shows 5 representative cells recorded between post-tutor days 2 and 

8.  As vocal learning experience increased across days, we found a refinement of spike timing  
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Figure 5.4: Spike timing precision to tutor song playback increases following tutor onset. a.) 

Raster plots from 5 different L2 FS neurons recorded across multiple post-tutoring days (red) to 

20 repetitions of the same tutor song (top spectrogram).  As post-tutor days progress, spike 

timing precision in L2 FS cells appears more refined.  b.) The PSTH autocorrelogram function 

(red) for the top raster from a. (day T2) is fit with a Gaussian curve (blue).  The Gaussian curve 

is used to measure the half width at half height (HWHH, red dotted line) and sigma (blue dotted 

line).  c.) 20 L2 FS neurons recorded in the days post-tutor onset show an exponential decay in 

both HWHH and sigma, indicating that spike timing precision rapidly increases following the 

onset of tutoring. 

 

precision within this neural subpopulation.  We quantified neural precision by measuring the 

width of the central peak of each cell’s PSTH autocorrelogram.  Our method for assessing 

autocorrelogram width has been described previously, but briefly, we compute a neurons 

autocorrelation function by first averaging spike rates across trials in 1 ms bins (PSTH), and then 

computing the PSTH autocorrelation for time lags extending from -100 to 100 ms.  The width of 

the central peak is assessed as the half width at half height (HWHH) or the standard deviation (σ) 

of a gaussian curve fit to the autocorrelation (Figure 5.4b).  These two measures provide similar 

estimates of the timescale over which neural spiking events occur for each neuron. 

Both the HWHH and σ of the autocorrelation demonstrate an exponential increase in 

spike-timing precision in the first week following the onset of tutoring in L2 FS neurons (Fig. 

5.4c).  Two to three days following the onset of tutoring, precision measures are highly variable, 

but on subsequent days the autocorrelation widths decrease to around 10ms, indicating that the 

timescale of individual firing events gradually becomes compressed with increased vocal 

learning experience.  This is consistent with our finding of enhanced tone onset responses, and 

suggests that increasing exposure to vocal communication learning leads to enhanced patterning 

of neural responses to acoustic stimuli. 
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Figure 5.5.  Tuning coherence increases following tutoring onset in L3 RS cells, and in CSt 

cells. a.) FRA tuning coherence is measured using Geary’s contiguity (C) ratio.  Black and white 

binary matrices illustrate potential Geary’s C values for dispersed values (top left, C = -1), 

randomly scattered values (middle left, C = 0), and clustered values (bottom left, C = 1).  

Representative FRAs are depicted in the right column with their corresponding C values and 

range from randomly arranged (top) to coherently arranged (bottom).  FRAs are plotted in a 3X 

upsampled form, but actual C values are computed on raw FRAs.  b.) Geary’s C values for all 

auditory neurons across all subregions in naïve, untutored birds are shown split in to FS (n = 161 

) and RS (n = 344) cells.  FS cells had significantly higher C values across all regions.  c.) L3 RS 

cells (left, black bars) display experience-dependent increases in tuning coherence.  Neurons 

recorded following tutor onset (Tut.) were higher than those recorded 10 to 6 days prior to 

tutoring (Pre-T1), 5 to 1 day prior to tutoring (Pre-T2), and in age-matched control birds 

following the day 50 onset of tutor exposure (Ctrl.).  No differences were observed for different 

rearing conditions in L3 FS cells.  d.) CSt neurons had an experience-dependent increase in 

coherence following the onset of tutoring compared to Pre-T and Ctrl. neurons. Bars in c.) and 

d.) indicate mean values +/- S.E.M.  *P<0.01,  ***P<0.0001 
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Downstream areas L3 and Caudal Striatum: rapid song learning coincides with enhancement of 

receptive field structural coherence in L3 RS cells striatal neurons. 

 

In addition to measuring experience-dependent changes in the temporal coding properties 

of cortical neurons, we asked if the auditory cortical representation of spectral information was 

sensitive to vocal learning by comparing receptive field structure before and after the onset of 

tutoring.  Receptive field structure was assessed by computing FRA plots (Fig. 5.3b) for each of 

our recorded single units.  Figure 5.5a shows three representative FRAs for neurons recorded in 

the pre-tutoring phase of the experiments.  We found a variable degree to which these cells were 

coherently tuned to a specific subset of frequencies and intensities, and hypothesized that 

incoherently tuned neurons could represent an immature feature of AC neurons that could be 

refined with experience.  We quantified receptive field structural coherence using Geary’s 

contiguity ratio (C statistic), a measure of spatial autocorrelation within a matrix (see Methods 

and Materials).  Geary’s C statistic is an index that quantifies similarity or difference between 

local values within a spatially organized matrix.  This is illustrated in Figure 5a, where binary 

(black and white) matrices illustrate potential values for C.  Perfectly dispersed binary values 

yield a C measure of -1 (Fig. 5.5a, top checkerboard), randomly scattered binary values yield a C 

measure of 0 (Fig. 5.5a, middle checkerboard), and perfectly clustered values yield a C measure 

of approximately 1 (Fig. 5.5a, bottom checkerboard).  The floor value for neural FRA matrices is 

approximately 0, as neurons tend to range from noisy to coherent (Fig. 5.5a, right column). 

 To assess the general coherence of receptive fields in the developing AC, we first 

compared FS and RS cells throughout the subregions of the AC in naïve, untutored birds.  FS  
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Figure 5.6: a.) CM RS neurons (left), but not FS neurons (right) undergo experience-dependent 

decreases in tuning coherence compared to Pre-T and Ctrl. neurons.  b.) Plotting mean coherence 

measures (+/- S.E.M.) across days reveals an approximately week long gradual decrease in 

Geary’s C values. * P < 0.01 

 

neurons throughout the auditory cortex had high FRA coherence compared to RS cells (Fig. 

5.5b).  This suggests that in developing birds, FS cells may serve as a substrate for well-tuned, 

high fidelity auditory input, and may play an important role in early stages of song learning. 

 Although FRA coherence in RS cells was low in the naïve pre-tutoring phase, coherence 

measures showed an experience-dependent increase following the onset of tutor exposure in the 

ventral output region of the auditory cortex.  RS cells in L3 had higher coherence in the Tut. 

condition compared to Pre-T1, Pre-T2, and Ctrl. cells (Fig. 5.5c; p<0.01, Tukey-HSD).  

Experience-dependent changes in coherence were not detected in L3 FS cells or other subregions 

of Field L, but were observed in the caudal striatum (CSt), where neurons had increased 

coherence following tutor onset compared to Ctrl. neurons (Fig. 5.5d, p<0.01 Tukey-HSD).  The 

cell type distribution within CSt is not characterized, and so we do not distinguish between FS 

and RS cells in this region.  CSt is a largely unexplored region in the forebrain, but it has known 

anatomical connectivity with Field L (Kelley and Nottebohm, 1979), and one study suggests that 
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it may form a functional corticostriatal loop with the L3 (Smith et al., 2006) that may be 

important for learning to discriminate sounds (Znameneskiy and Zador, 2013).  The experience-

based increase in L3 and CSt receptive field coherence during song tutoring may lend credence 

to this idea. 

 

Higher order region CM: song learning coincides with a gradual decrease in tone receptive field 

coherence. 

 

An experience-dependent shift in receptive field coherence also occurs in the secondary 

auditory region CM at the dorsal extent of the auditory forebrain axis. Unlike RS cells in L3 and 

neurons in CSt, RS cells in CM show progressively lower receptive field coherence following 

the onset of vocal learning, compared to CM RS neurons recorded from pre-tutored and 

untutored birds (Fig. 5.6a; p<0.01, Tukey-HSD).  As in other regions, this effect of tutoring was 

not seen in CM FS cells (Fig. 5.6a). 

 In general, our recordings were biased toward sampling from CM because it is the most 

dorsal region in the auditory forebrain and spans significant depth.  As a result, we recorded a 

large number of CM cells compared to other regions, allowing us to observe the timecourse over 

which changes in CM receptive field coherence decreases in RS cells.  Figure 5.6b shows that 

compared to RS cells recorded from Ctrl. birds (grey), RS neurons in Tut. pupils (red) decrease 

in tuning coherence over roughly one week compared to baseline recordings.  The week long 

change in CM tuning coherence is consistent with the timecourse of changes that we observed in 

neural precision in L2 FS neurons, suggesting that the mechanisms responsible for the distinct  
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Figure 5.7: Tutoring experience shapes frequency representation in CM RS cells, but not Field L 

neurons. a.) Tutor song spectrograms (left) and power spectra (right) for the two experimental 

tutors reveal similar spectral characteristic.  Peak power in the frequency distributions is centered 

from 3 – 5 kHz in both birds, with similar frequency roll-offs to neighboring frequencies. b.) 

Best frequency distributions for Pre-T, Tut., and Ctrl. conditions reveal that frequency tuning 



106 

 

(Figure 5.7, cont.) increases in CM RS cells (top) but not FS cells following the onset of 

tutoring.  This increase in BFs shifts the frequency representation of CM RS cells into the range 

of peak power for the tutors’ songs. c.) Neither RS cells (top) nor FS cells (bottom) across 

subregions of Field L have BF differences across rearing conditions.  *P< 0.01 

 

changes in different subpopulations of neurons are operating over similar timescales, and are 

stimulated by the experience of adult songs. 

 

Frequency representation in CM, but not Field L, aligns with the acoustics of tutor song in an 

experience dependent way. 

 

 Vocal learning-dependent changes in L3, CSt and CM receptive field structure led us to 

hypothesize that experience of vocal sounds and early social learning contribute to the 

development of auditory coding strategies that represent important acoustic features for learning 

vocal communication signals.  To test this hypothesis, we measured the power spectra of adult 

male tutor birds used in our Tut. rearing condition, and asked whether the distributions of 

frequency tuning in the auditory cortex matched the acoustics of the tutor song power spectra.  

We assessed frequency tuning for individual neurons by summing the response power of each 

FRA over all intensities, and assigned each neuron a best frequency (BF) based on the frequency 

that drove the peak response across summed intensities.  For this analysis, we upsampled each 

FRA 3X to increase frequency resolution prior to assigning a BF (see Methods and Materials). 

 The songs of the two tutor birds had similar spectral acoustics (Fig. 5.7a).  Frequency 

power spectra were computed by first calculating song spectrograms for each tutor (Fig. 5.7a, 

left column), and then averaging the spectrogram across all time points (Fig. 5.7a, right column).  

The song power spectra of the two tutors were each averaged for 5 song renditions, and then 
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normalized by each of their peak frequencies.  In both cases, the highest power in tutors’ songs 

was between 3 and 5 kHz, with gradual power roll-offs to neighboring frequencies. 

We then compared frequency tuning for RS and FS cells in Field L and CM that were 

significantly, coherently tuned based on their Geary’s C measures.  Significant coherence was 

assessed by calculating z-scores for each neuron’s Geary’s C measurement (see Methods and 

Materials).  Neurons with a Geary’s C z-score greater than 1.96 were considered to be 

significantly tuned at the p < 0.05 level, and were included in this BF tuning analysis. 

BF distributions for naïve, untutored RS and FS neurons in CM are skewed toward lower 

frequencies, but the BF distribution for CM RS cells increases into the range of peak tutor song 

power following the onset of tutoring, compared to untutored, age-matched Ctrl. birds (Fig. 5.7b, 

top panel).  This increase in BF was not apparent in our CM FS recordings (Fig. 5.7b, bottom 

panel), nor were changes in BF seen in Field L, which we report here with its subregions 

grouped together (Fig. 5.7c).  This suggests that vocal learning drives the frequency 

representation of well-tuned RS cells in CM to form a match of the frequency distribution of the 

tutor’s song.  Given that we see an overall decrease in the receptive field coherence of CM RS 

cells as a whole, this suggests that neurons tuned for lower frequencies may gradually lose their 

tuning coherence, leaving behind a coherent subpopulation of cells with BFs matched to the 

acoustics of song. 

 

Behavioral-context dependent auditory responses reveal specialization in CM for processing 

vocal output. 
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Our observations led us to hypothesize that dorsal and ventral AC neurons may serve 

distinct functional roles during the vocal learning phase and into adulthood.  Ventral neurons in 

L3 and CSt have enhanced receptive field structure following the onset of vocal learning, while 

dorsalneurons in CM form a tuning distribution that is gradually shaped to match the acoustics of 

song.  Furthermore, CM is a putative input to the song premotor nucleus HVC and may act as an 

important conduit of auditory-vocal mapping during song learning. To test the hypothesis that 

dorsal output of the AC is specialized for processing vocal acoustics, we asked whether neurons 

on opposite poles of the auditory cortical axis responded differently to the behavioral context of 

auditory input.  Following roughly two weeks of acclimation to the recording chamber and 

tutoring paradigm, Tut. birds would begin to sing while electrophysiologically teathered to their 

headstage.  Once the birds began singing repeated motifs, we were then able to record neural 

responses to auditory feedback during singing and subsequently record auditory responses to 

recordings of the bird’s own song.  Previous work has shown that this varying context for a bird 

hearing its own vocalizations can modulate the response properties of auditory cortical neurons  

(Keller and Hahnloser, 2008), but whether different auditory subregions respond differently from 

one another remains unclear.In many cases, auditory neurons in the songbird forebrain were 

highly sensitive to varying the behavioral context.  Figure 5.8a shows a single unit recorded in 

CM during live vocal practice.  We aligned neural responses to repeated live song motifs by 

aligning the amplitude envelopes of individual songs (Fig. 5.8a, second panel).  Amplitude 

envelopes of live song are depicted in black, while song playback is depicted in red.  Despite 

natural variation from rendition to rendition, this alignment is sufficient to reveal rich acoustic 

structure in the average of the aligned song spectrograms (Fig. 5.8a, top panel).  Using these  
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Figure 5.8: Dorsal output regions of the songbird auditory cortex are highly sensitive auditory 

behavioral context compared to ventral neurons. a.) An example CM neuron displays robust 

bursts of action potentials aligned to individual syllables of live singing motifs, but fails to 

respond reliably to playback of the same sounds.  The average spectrogram (top) of the 

juvenile’s live singing is aligned by the amplitude envelopes of individual live motifs (second 

row).  Raster plots and PSTHs show profound differences in the firing pattern of vocal auditory 

feedback and song playback in this example neuron.  b.) Groups of neurons recorded at either the 

dorsal extent of the auditory forebrain (CM and L1, red) or ventral extent (L3 and CSt) display 

different sensitivity to live singing vs. playback.  As a population, dorsal neurons were highly 

sensitive to live singing, while ventral neurons responded more linearly between contexts. 

 

temporally aligned songs, we were then able to compare rasters (Fig. 5.8a, third panel) and 

PSTHs of live singing (black) and song playback (red).  In this example neuron, live singing 

resulted in strong bursts of action potentials corresponding to each unique syllable, while 

playback of the song failed to elicit strong auditory responses. 

We recorded live singing and playback responses from 23 AC neurons, which we grouped 

into dorsal (CM/L1) and ventral (L3/CSt) cohorts.  Neurons in the dorsal group were highly 

sensitive to behavioral context, firing much stronger to live singing than playback.  Neurons in 

the ventral group responded similarly across these two contexts.  This suggests that during vocal 

learning, dorsal output regions are specialized for processing vocal auditory feedback, while 
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ventral output regions respond more linearly.  This may be consistent with differing learning-

dependent effects that we see between these regions. 

 

5.5 Discussion 

 

Here we used a novel experimental framework to study the link between vocal 

communication learning and developmental plasticity in auditory cortical neurons. We found that 

juvenile songbirds deprived of tutoring well into the critical period for tutor song memorization 

showed an ability to rapidly form accurate copies of a tutor’s song, whereas birds reared in 

isolation from adult male song but otherwise similar experimental conditions developed atypical 

vocalizations that did not indicate learning.  This approach supports previous song learning 

findings (Tchernichovski et al., 2001), and shows that song learning can occur in tandem with 

chronic electrophysiology in the auditory forebrain. 

Our neural hypotheses were driven by three previous observations. First, delayed song 

tutoring leads to rapid physiological changes in song vocal-motor nuclei (Roberts et al., 2010; 

Shank and Margoliash, 2008). Second, rapid and accurate song copying can occur with limited 

exposure to a tutor (Tchernichovski et al., 1999).  Rapid neuronal plasticity and learning indicate 

that naive juvenile songbirds are capable of accurately mapping auditory information onto vocal-

motor control circuits.  This would suggest that neurons in the early auditory system are prepared 

to code for important acoustic features in the tutor song.  Third, studies in mammals and zebra 

finches have demonstrated that the neural firing rate selectivity for salient acoustic stimuli is 

sensitive to developmental manipulations (Amin et al., 2007, 2014).  We sought to understand 

these previous results by recording from naïve juveniles before exposure to song and throughout 

vocal learning. 



111 

 

We asked which auditory subregions and cell types featured stability and/or plasticity at 

the onset of tutoring.  We found evidence for an early putative substrate for high fidelity auditory 

mapping into the song motor system in FS neurons, as well as an experience driven 

specialization of two auditory pathways in the songbird auditory cortex: a dorsal pathway for 

song processing, and a ventral region that becomes linearly driven by broad acoustic stimuli with 

experience. 

 We observed that L2 FS neurons develop stronger onset responses following the onset of 

tutoring, but not in age matched controls.  The spike timing precision of these neurons during the 

processing of tutor song also increased in an experience dependent manner.  First time exposure 

to tutoring brings naive juveniles into contact with strongly temporally modulated external 

stimuli.  This finding is complementary to studies in mammals showing that development in the 

absence of modulated sounds, or over exposure to slowly modulated sounds, diminishes the 

ability of cortical neurons to lock to rapidly modulated sounds (Chang and Merzenich, 2003; 

Zhou and Merzenich, 2008).  Together, our results and those of others demonstrate the 

importance of hearing temporally modulated sounds during development.  We cannot say for 

certain whether experience-dependent shifts in spiking precision occur in Field L de novo, or 

whether they are inherited from upstream regions such as the auditory thalamus or midbrain.  

Future studies will be required to determine if lower auditory regions exhibit similar experience-

dependent development. 

We observed that FRA tuning coherence, measured by Geary’s C ratio, shifted following 

the onset of tutoring.  Ventral cortical output region L3 RS neurons and CSt neurons developed 

high coherence with the onset of vocal learning, while dorsal output region neurons in CM 

showed decreases in FRA coherence following the onset of vocal learning. This suggests a 
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potential functional difference in the processing of sounds in these two areas.  One study used a 

computational model to infer functional connectivity between L3 and CSt, and the similar 

experience-dependent increase in receptive field structure in these regions may be parsimonious 

with this hypothesis.  If L3 and CSt comprise a part or whole corticostriatal loop, these regions 

may be important for learning to discriminate between sounds.  Corticostriatal connections play 

an important role in the performance of auditory discrimination tasks in mammals (Znamenskiy 

and Zador, 2013), but their role in the sensory cortex of birds remains unclear. 

CLM projects to the song system premotor nucleus HVC (Bauer et al., 2008), implicating 

CM as an important region for mapping song acoustic information onto motor control circuits.  

The shift in tuning coherence in CM may indicate the development of specialization in this 

structure for vocal-motor imitation, and suggests that nonlinear, song-selective processing in CM 

emerges in an experience-dependent manner during development.  Previous studies have shown 

that neurons in CM have higher firing rates to birdsong than synthetic tone stimuli, and that 

juvenile zebra finches display adult-like song selectivity in CM (Grace et al., 2003). 

We cannot say for certain whether the decrease in FRA coherence corresponds to the 

emergence of song selectivity.  However, we found that significantly tuned neurons in CM had 

best frequency distributions that matched the spectral acoustics of tutor songs following the onset 

of tutoring.  This may indicate that CM takes advantage of experience-dependent plasticity to 

optimally represent the features of tutor songs.  Furthermore, our observation that CM and L1 

neurons exhibit strong behavior-context sensitivity indicates that these regions are particularly 

specialized for processing vocal feedback during song learning.  In total, our results argue that 

CM exists as a higher order, non-linear processing region dedicated to sensorimotor learning. 
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Chapter 6: Concluding remarks 

 

In this dissertation I showed that experimental and behavioral contexts relating to arousal 

are sufficient to alter neural excitability in a way that has implications for neural coding in the 

songbird auditory system.  Urethane, a common anesthetic used in neurophysiological studies of 

songbird and mammalian auditory neurons, suppresses neural excitability, but does not alter 

spectrotemporal tuning or neural discrimination in single auditory midbrain neurons.  

Norepinephrine, a neurotransmitter involved mediating changes in arousal and behavioral state, 

similarly has an overall suppressing effect on neural excitability at certain doses.  This was seen 

to improve phase-locking in a subset of Field L neurons, while simultaneously reducing the 

reliability of evoked spikes and neural discrimination of sounds. 

I then reported the results of a developmental study that demonstrates experience-

dependent changes in temporal and spectral tuning in the songbird auditory cortex during vocal 

learning.  These effects were found to have region and cell-type specificity, and highlight 

potential functional roles for dorsal and ventral auditory cortical neurons in the songbird.  This is 

one of the few studies to exploit naturalistic developmental conditions to probe the developing 

auditory system in juvenile animals. 

Future studies will continue to provide insights into the effects demonstrated here.  It 

remains to be seen if the specific experience-dependent changes observed during vocal learning 

persist into adulthood.  One way to address this issue will be to cross-foster different species that 

have songs with distinct acoustic statistics, and to assess the degree to which non-natural foster 

parents can impart these acoustic features onto a neural representation in their foster offspring. It 

is conceivable that the effects observed as a result of vocal learning are temporary, and are 

altered during specific time points in service of vocal learning during development.  
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Furthermore, it remains to be seen whether experience-dependent plasticity in the songbird 

auditory cortex is purely a result of auditory experience, social arousal, vocal practice, or some 

combination of these distinct aspects of the vocal learning environment. 

To address cellular and molecular level mechanisms involved in the development of the 

songbird auditory system, intracellular recordings of excitatory and inhibitory conductances may 

explain how receptive field coherence emerges over time in ventral cortical regions, while 

diminishing in dorsal regions.  Using modern optical techniques such as 2-photon imaging will 

allow experimenters to track populations of identified neurons over time during development, 

particularly in regions near the surface of the brain, such as CM.  The ability to monitor single 

neurons across days of recordings will add a great deal of explanatory power to the results 

reported in this dissertation. 

In the limit of infinite recordings, it may be possible to link distinct stages of vocal 

learning to the development of auditory cortex.  For instance, it may be possible to observe 

distinct auditory coding signatures associated with subsong, plastic song, and crystalized song.  

Such an analysis would require high temporal resolution that is not possible in limited data sets, 

and could make use of multi-electrode arrays to record neural populations over time, rather than 

single units. 

Future studies into the functional connectivity of genetically distinct cell types will also 

inform the results reported here.  It is presumed that FS and RS neurons correspond to inhibitory 

interneurons and excitatory principle cells, respectively, but this has not been demonstrated 

empirically as of yet.  Despite decades of research, there remain regions of the auditory forebrain 

that are relatively unexplored, including the putative connections between Field L and CSt. 
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Finally, it will be important to try to tie the neural effects of rearing experience to 

perceptual performance.  Birds can be readily trained to perform operant discrimination tasks, 

and it is therefore possible to ask whether effects of rearing conditions reveal themselves in the 

perceptual abilities of juvenile or adults songbirds. 
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Appendix: Protocol for construction and implantation of chronic single channel 

Microdrive 

 

[These notes are modified from the original protocol developed by Keller and Hahnloser (2008).  

The protocol has been adapted for the purposes of the experiments described in Chapter 5, is 

designed to help future Woolley lab members continue this work.] 

 

Tools and materials: 

1) #55 forceps (OK if bent up) 

2) #55 forceps (fine points for wire stripping) 

3) #5 forceps. 

4) 90 degree wire cutters 

5) EREM blue handled wire cutters  

6) feather blade scalpel 

7) Elastic string 

8) 0.001” platinum iridium coated wire 

9) 0.005” silver wire, 0.002” coated 

10) Hard man non-sag epoxy 

11)  Silver bearing solder 

12)  Cerro matrix low temperature solder 

13) Faulhaber minimotors (part number: 0206 A 001 B 021 47:1 Y2825) 

14) Polymide tubing (A-M Systems: 0.0045” ID, 0.0005” Wall; Microlumen 145-1.5) 

15) Minutien pins (use fine pins for surgery, large pins for glue application) 

16) 14-channel banana to omnetics breakout box (custom made) 

 

Getting started, tips and tricks: 

1) Using non-sag epoxy: 

a. The main trick with the non-sag epoxy is to use equal parts of each, but only 

prepare a small amount at a time.  One packet should last for at least 1 entire 

Microdrive assembly, but could easily cover 2 or 3 assemblies.   Once open, the 

package can be used for a long time as long as the two components don’t mix. 

 

b. At the start of a day, place a small amount of each component on a piece of paper.  

When a dab of epoxy is required, use a tooth pick to acquire a small dot of each 

component, and mix it together on an isolated part of the paper.  Repeat whenever 

necessary.  If you cannot accurately apply the epoxy with the toothpick, sharpen it 

with a scalpel, or use a large insect pin. 

 

c. Dry time should be appox. 10 minutes.  Longer dry times indicate that even 

amounts of each component were not used.  Try putting a small dot of pink 

component onto the slowly drying mixture to speed up the process.  If that doesn’t 
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help, add a little clear component.  If that doesn’t work, don’t overload with 

epoxy, just let it dry overnight.  You can test the solidity of the epoxy with a can 

of compressed air.  Wet epoxy will ripple with the air pressure. 

 

 

Figure A.1: Wiring schematic for the omnetics connector. 

 

2) Testing the motor: 
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a. The major concern is to not supply too much voltage or current.  There are limits 

listed on the Faulhaber spec page.  Keep in mind the limits for the motor exceed 

the limits for the gear box in terms of RPMs.  The max RPM for the motor should 

be about 20,000, but the default is 120,000, and the max that you should ever 

drive is approximately 224. 

 

b. Before turning on the power supply, make sure that the motion controller box 

(analog dials) are turned all the way counter clockwise.  The default setting for 

the motion manager software is to use the analog box as a control source (sor 1). 

 

c. Turn on the power source, making sure the voltage is set to 7.0 V (+/- 0.5 V).  

The current should be set to 0.2 A. 

 

d. Open motion manager software and type in the following start-up protocol (“;” 

indicates comments, do not enter into motion manager): 

 

i. sor 0 ;source command for computer control 

ii. lpc 200 ;limit peak current to 200mA 

iii. ov 1000 ;max output voltage set to 1000mV 

iv. sp 224 ;max speed 224 positions per second, approx. 600 um per minute. 

v. ho 0 ;home the motor, set current position to 0 

vi. Drive the motor.  There are a variety of ways to test the motor, depending 

on the goal at hand.  If you just want to make sure the motor isn’t going to 

overheat, try a simple velocity command: 

 

1. v112 ;move approximately 300um per minute, should advance the 

shuttle if the wiring is correct. 

 

2. v -112 ;retract motor 300um per minute 

3. If wiring to the breakout box isn’t driving motor in correct 

direction, simply swap two wires. 

4.  

e. To test positioning, utilize the la (absolute position goal) and lr (relative position 

goal) commands. 

 

i. ho 0 ;home the motor 

ii. lr 99256 ;advance the motor exactly 1 mm at a velocity of sp 

iii. la 0 ;return home (ideally equivalent to lr -99256) 
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iv. The motor does not have a sensor, so if it gets stuck then it will keep 

counting and move to an inaccurate location. 

 

f. Use the above settings for testing the motor at various stages of assembly (before 

mounting on the body, after mounting on the body, especially after connecting to 

omnetics, etc.).  At the above settings the motor should drive smoothly up and 

down the axis, and should not overheat (observable by simply touching the motor.  

Make sure to wire up so that the forward commands move the shuttle forward!  

Try to keep wiring consistant across microdrives and teathers.  This will make life 

easier 

 

g. The motor may start to get hot with the above settings.  This is bad, but not 

necessarily the end of the world.  To prevent over-heating, try using a smaller 

amount of current (lpc 150).  This may fail to drive the motor, but if not, then 

you’re good to go. 

 

Part 1: Assembling the motor/chassis interface 

1) Attach omnetics connector (Fig. A.1, A.2). 

a. Obtain a plastic body component (remove plastic tip component if necessary with 

small screwdriver). 

 

b. Using two small dots of non-sag epoxy, glue a 14-pin male omnetics connector to 

the flat side of the body.  Input face of omnetics should be flush with motor 

mounting face. (Dry time, approx.10 minutes). 

 

c. Now the assembly can be mounted onto the female adapter, which receives power 

from the silver breakout box. 

 

d. Cut the top row of omnetics soldering pins to approx. 1.5 to 2mm.  Bottom row 

should be even with the tip end of the body (need to be trimmed).  Use 90 degree 

forceps to cut the pins. 

 

2) Mount the motor to the body: 

a. Screw a shuttle onto the motor axis.  The shuttle should be fairly loose on the 

threads of the axis from top to bottom.  Wire up the motor directly to the motion 

controller and test to make sure it doesn’t overheat (see motor testing instructions 

above).  Also check to see that the shuttle can be driven up and down the motor  
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Figure A.2: Glue 14-pin omnetics connector to the body of 

the microdrive.  

 

 

 
Figure A.3: Encase the motor and gearbox with 4mm 

polymide tubing.  

 

 

axis without getting stuck!  Use a can of compressed air if plastic flakes are left in 

the threads of the motor axis.  Drive the shuttle up and down until motion is 

completely smooth.  Very important to make sure the shuttle doesn’t stick 

before mounting the motor!  If you are having severe sticking problems, obtain 

the proper threading tool from a machine shop and clean out the shuttle threads. 

 

b. Cut 4mm of MicroLumen polymide tubing (diam. 1.89mm, see components list) 

to encase the junction of the motor and gear box.  The motor and gear box can be 

very easily separated if not secured (Fig. A.3). 

 

c. Remove the shuttle from the motor axis, and insert axis into the polymide tubing.  

Slide the tubing to the junction of the motor and gear box (Fig. A.3). 

 

d. Attach the tip and secure with two screws. 
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Fig. A.4: Glue motor in place at the top of the body.  Use 

the tip to gauge how far the motor axis rests within the 

shuttle guide slot. 

 

 

e. Insert the motor axis into the shuttle such that the axis protrudes approx. 0.5mm.  

Insert the motor/shuttle assembly into the body assembly so that 0.5mm of axis 

are in the whole of the tip, and the polymide tubing should be just touching the 

body assembly. 

 

f. Glue the motor in place by placing a small dab of epoxy at the junction of the 

gearbox, body, and polymide tubing at the start of the shuttle guide slit (see 

Figure 1a).  Be sure not to get any glue on the moving parts (be conservative).  

Dry time approx. 10 minutes (Fig. A.4).  

 

g. Test the motor!  Shuttle should continue to drive smoothly.  If it gets stuck, not all 

hope is lost.  Remove the tip, and push the motor through the polymide tubing 

such that the shuttle protrudes from the body.  Try to loosen up this way and 

reassemble.  

 

h. Solder the motor cables to pins 1, 8 and 9 on the omnetics (see omnetics wiring 

scheme in appendix).  Test for appropriate wiring and that positive v-commands 

advance the motor (Fig. A.5). 

 

i. Glue the motor wires in place.  First, make sure the wires are bundled from the 

motor to the omnetics and are flat against the assembly.  Put non-sag glue on 

along the omnetics/body junction, coating the wires (dry time 10 min). Then 

another dab at the origin of the wires at the motor (dry time 10 min).  Then one 

last dab where the motor and body make a 90 degree angle (dry time 10min; Fig. 

A.4). 

 

3) Insert the lateral positioner screw and a fixation bar (anything that fits into the 0.5mm 

hole in the side of the tip should be fine.  Recommend tungsten wire if available).  Glue 

the fixation bar in place at each of the two holes (Fig. A.6). 
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Figure A.5: Solder motor wires to pins 1, 8, and 9. Glue 

the wires into place along the junction of the body and 

omnetics connector.  Insert a fixation bar (black pin) 

through the tip). 

 

Part 2: wiring up ground and electrode wires to the omnetics connector 

1) Attach the electrode wire: 

a. Cut 3 cm of 0.005” mm diameter coated silver wire (see list of components 

above) and uncoat approx. 3mm on one end.  

 

b. Insert the uncoated end of the silver wire into the whole in the shuttle from below.  

The uncoated end should protrude from the top of the shuttle, and then wrap down 

into the groove of the shuttle.  Glue the protruding uncoated end to the shuttle 

near the top hole (Fig. A.6).  Be sure not to glue the shuttle to the axis or the 

body!  Don’t get too much glue in the shuttle because we need to solder the 

electrode there!  
 

c. Lead the loose end of the wire around the body relatively tightly, cut it to the 

appropriate length to solder it to pin 14 (Fig. A.6). 

 

d. Test the motor!  Make sure the shuttle drives up and down unrestricted by the 

electrode wire.  Also measure the extent of the motor axis from top to bottom.  

Should be longer than 300,000 position units.  After testing, drive the shuttle to 

the motor extent of the assembly. 

 

e. Use a short piece of elastic string to tie the silver wire leading from the shuttle to 

the Omnetics connector, to the fixation bar (see photo above).  I like to do two 

loops around the electrode wire (Fig. A.6).  Shuttle should be at motor end 

while connecting the elastic thread.  Tension should still exist even when the 

shuttle is driven to the other end.  If there is too much slack in the elastic , 

you can get microphonic noise.  If it is too loose, you can make another loop 

(or two) around the fixation bar. 
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Figure A.6: Connect the electrode wire to the shuttle, glue 

it to the top of the shuttle, solder it to pin 14, and attach 

elastic string to the fixation bar and wire to add tension. 

 

 

Figure A.7: Solder the reference wire to pin 11and glue in 

place. 

 

2) Attach the virtual ground (reference electrode): 

a. Cut a 3 cm piece of 0.001 inch diameter coated platinum-iridium wire.  Apply a 

thin coat of solder to virtual ground pin (pin 11) before soldering wire.  Uncoat 

and solder one end to the virtual ground pin with a little more solder.  This takes a 

few tries usually because the silver bearing solder doesn’t adhere well to the 

platinum iridium (Fig. A.7). 

 

b. Lead the wire in a tight angled path to the tip of the assembly, gluing it in three 

separate spaces (1. near the body/tip junction; 2. lateral to screw; 3. At the center  
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Figure A.8: Attach the ground wire to pin 4, wrap it around 

the fixation bar, and glue it in place. 

 

of the tip).  Use normally closed forceps to keep the wire tight during gluing.  

Once the wire is glued in place, encase the whole wire in glue for the extent of the 

chassis tip (Fig. A.7).  

 

c. At the tip, bend and cut it such that the tip of the wire is parallel to the electrode 

guide channel and extends 0.5 to 1 mm from the tip.  Uncoat the wire on the first 

200 um (use cutting forceps, this can be very difficult and annoying).  Think like 

a zen master here. 

 

3) Attach the actual ground (Fig. A.8): 

Cut a 6 cm piece of 0.005” diameter coated silver wire and uncoat the wire 

everywhere except for the first 15mm.  Uncoat another 3 mm from the still coated 

end and solder it to the ground pin (pin 4).  Lead the wire to the end of the 

fixation bar on the opposite side of the silver wire leading to the shuttle and wrap 

it once around, then glue it in place. 

 

4) Make sure shuttle is as close as possible to the motor end of the axis, but keep in mind 

that it can get stuck if it is too far up the axis. 

 

5) Prepare the electrode and guide tube: 

a. Cut ~6.5 mm of polyimide tubing (.004” inner diameter).  The guide tube should 

span the entire length of the electrode guide channel and protrude at the tip by 

about 500 – 1000 microns. 
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Figure A.9: Cut electrode to desired length, insert into 

polymide guide tube, solder to shuttle, and fix guidetube to 

tip with dab of epoxy.  Finally, attach a clear plastic cover 

to prevent the bird from breaking the electrode. 

 

b. Cut the desired electrode to length using the 90 degree cutters of #5 forceps 

(~12.5 mm – measure to adjust this value for every experiment.  Ideally the tip of 

the electrode should be flush with the tip of the guide tube when the shuttle is 

fully retracted.  This prevents damage to the electrode tip during the rest of 

assembly and implantation), then uncoat 1mm of the wire by crushing the glass 

coating with forceps.  This takes practice, so start out by using the back end of the 

extra long electrodes (i.e. cut off some excess electrode, then attempt to cut it to a 

specific length and trim the glass for 1mm).  If you mess up during the actual 

electrode cut, that electrode becomes useless. 

 

c. Carefully slip the guide tube over the back end of the electrode and place it such 

that it covers the tip. 

 

d. Place the electrode/guide tube in the electrode guide channel such that the back 

end rests on the shuttle.  Make sure the electrode lies flat in the electrode guide 

channel, glue the electrode in place on the shuttle and solder the uncoated end of 

the electrode to the silver wire using Cerro matrix (turn the soldering iron all the 

way down).  Fix the guide tube with a small dab of non-sag epoxy in a place at 

the end of the electrode guide channel closer to the shuttle (fixed at the top of 

channel, but still bendable with lateral positioning screw; Fig. A.9). 

 

e. Protect the guide tube from exposure to dental cement: 

i. Take a small ball of wax, chip off a piece, and melt it near the fixation 

point with soldering iron (don’t fill in the entire guide channel with wax, 

only top 25% above positioning screw). 
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ii. When implanting, cover rest of guide channel and positioning screw with 

wax/oil mixture. 

 

6) Cut and bend a piece (~ 4 x 2mm) clear plastic (overhead transparency, or folder tab) to 

shape and glue it to the body to cover the electrode.  The bird can reach this area with its 

foot (Fig. A.9). 

 

7) For implantation, the electrode should extend 200um from the tip of the guide tube, 

unless you’re going to search for neurons during implant, in which case extend 

maximally (Fig. A.9). 

 

Part 3: implantation procedure.  The following assumes basic knowledge of general surgery 

and anesthesia protocols.  Expect the entire procedure to last 2 – 6 hours depending on 

proficiency, not including animal recovery time. 

 

1) Start with normal procedures: 

a. Prepare the animal by fasting for 60 minutes. 

b. Induce anesthesia with 0.3cc equithesin, and boosters as needed (30 min apart). 

c. Remove feathers from scalp, then place in stereotax.  Numb the scalp with 

lidocain, topically and subcutaneously, then make a circular incision and expose 

the bone. 

 

d. Remove first layer of skull to expose y sinus, then using a pipette in the stereotax, 

mark the desired coordinates for craniotomy. 

 

2) Proceed with implantation: 

a. Craniotomy procedure differs for juveniles and adults: 

i. Juveniles: should only have thin layer over forebrain, just cut a small hole 

(.5mm diam) over region of interest.  Cut multiple pairs of holes (1 – 2 

mm apart) around the craniotomy to insert insect pins.  The hole pairs 

should be over 1mm away from craniotomy so that the implant is 

surrounded by pins, not covering them. 

 

ii. Adults: remove the top layer of skull in a 2mm x 2mm square (at least) 

around craniotomy area.  Then remove spicules and small hole in second 

layer for craniotomy.  Insect pins are not needed as anchors, but you 

should make small holes across the 1
st
 layer of skull to allow dental 

cement to seep into the bone. 
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b. Place the microdrive in the sterotax adapter and align the electrode tip to the 

medial edge of the craniotomy.  The lateral positioner screw should be facing the 

midline, so that turning it will move the electrode laterally. 

 

c. Retract microdrive after aligning it to appropriate ml/ap coordinates. 

d. Make a small craniotomy posterior to the y sinus for inserting the ground 

electrode. 

 

e. Use a syringe to fill the electrode guide tube with mineral oil.  Holding a drop of 

oil to the tip of the guide tube should fill it. 

 

f. Poke a hole in the dura with a syringe. 

g. Advance microdrive until the tip of the guide tube is 50 – 200 microns in the 

brain.  Make sure both the guide tube and virtual ground have penetrated the 

brain. 

 

h. Fill the space between the microdrive and brain, surrounding guide tube, with wax 

(60% paraffin wax and 40% mineral oil) to ensure that the electrode and guide 

tube are not cemented in place. 

 

i. Fix the microdrive to the skull with a few drops of dental acrylic, and allow it to 

dry. 

 

j. Trim the ground electrode back so that only 1cm or so sits beneath the skull.  

Insert the ground. 

 

k. Cover the entire area of the exposed skull, including the ground wire, with dental 

cement. 

 

l. When the cement is dry, try to drive the electrode 200um very slowly.  Hopefully 

everything is working at this point. 

 

3) Troubleshooting during recordings: 

a. Large movement artifacts and no neural signal.  Combined with an increase of 

noise RMS, this is a good indication of a broken electrode or loose connection.  

Test by passing a small current in a superficial region with the pulse generator.  If 

there is a broken connection somewhere, try soldering again (add a small amount 

of resin flux to cerro matrix, that has helped in the past).   If the connections are 

good and clean then the electrode might be busted.  This happens commonly on 

implant.  You CAN replace the electrode if you are super careful.  JWS has 

removed the electrode, then put a new one face first through the guide tube.  This 

fixed a problem 2/3 times. 

 



149 

 

b. Periodic signal loss or noise at certain bird positions. This may indicate a bad 

teather/headstage or poor grounding. Grounding sometimes deteriorates over 

time, so if the problem progresses over time this is probably that.  Don’t expect to 

record forever.  If you have multiple teathers, try swapping for a new one. 

 

c. Decent neural signal but huge movement artifacts.  This is most likely due to a 

break in the reference wire if you’re in a differential amplification setup.  See if 

you can resolder the connection of the reference wire at the omnetics.  If it’s 

intact, it’s possible that the wire is broken within the dental cement, in which case 

you will be hard pressed to get a clean recording when the bird moves. 

 

d. Sound (singing or playback) corrupts the electrode signal.  Microphonic noise 

can be reduced by adding tension to the electrode wire.  It is also possible to 

ground the speaker using Faraday shielding. 

 

e. Everything seems fine with the construction, but I’m getting electrical 

interference and movement artifacts.  Oddly, a humidifier sometimes fixes this.  

Place a humidifier next to the recording chamber.  You can also encase the entire 

implant in copper foil and ground it to pin 4.  This is often unnecessary, but 

sometimes fixes a lot of noise problems. 

 

 

 

 

 

 


