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I. INTRODUCTION 

An empirical regularity in mobility matrices that has 
given rise to a considerable volume of research concerns the phe- 
nomenon of clustering on the main diagonal. The reference model 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 173 

in terms of which this regularity has been identified is the 
discrete-time Markov chain with stationary transition probabil- 
ities. By this model we mean the formal relation between 
stochastic matrices I P(0, k)) k - 1,2... given by 

P(0,k) = P(0,1)k k = 1,2,3,... (1) 

In practice P(0, 1) is usually estimated by P(0, 1), a transition 
matrix constructed in the usual way from observations on a popu- 
lation' at times t = 0,1. Hence P(O, k) is the k-step transition 
matrix predicted via Formulation (1) and obtained by raising the 
observed matrix to the kth power. 

The imagery consistent with the Markov model is one of 
a homogeneous population changing system states (occupations, 
industries, income categories, and so on) in a manner such that 
knowledge of an individual's current state and a matrix of one- 
step transition probabilities convey complete information about 
his subsequent movements. This simple formulation has found 
extensive use, both as a baseline model against which to compare 
more complex formulations (Hodge, 1966; McFarland, 1970; 
McCall, 1973; Coleman, 1964a) and as a method of forecasting 
the evolution of social processes (Rogers, 1966; Tarver and 
Gurley, 1965; Lieberson and Fuguitt, 1967). For further details on 
the mathematics of Markov chains, the reader is referred to Feller 
(1968, chap. 17). 

The phenomenon of clustering on the main diagonal refers 
to the fact that where observations can be taken on a population 
at time k, k = 2, 3, . . ., as well as at times 0 and 1, the main diag- 
onal entries of the observed k-step transition matrix P(0, k) 
frequently bear the following relation to the main diagonal entries 
predicted by the Markov model: 

(P(O, k) ),> [P(O,1)*t i = 1,2, ... r (2) 

where r equals the number of system states. In words, the Markov 
model tends to underpredict the observed main diagonal entries. 

This fact has stimulated considerable research since Blu- 

'By the caret (A) over a matrix or over entries in a matrix we mean esti-. 
mates made directly from observations. Entries without this symbol refer to 
calculations from a mathematical model. 
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174 BURTON SINGER AND SEYMOUR SPILERMAN 

men, Kogan, and McCarthy (1955)-hereafter referred to as 
BKM-first commented upon the phenomenon of clustering. 
BKM and most subsequent authors (Goodman, 1961; Mayer, 
1972; McFarland, 1970; Bartholomew, 1973; Spilerman, 1972a, 
1972b; Singer and Spilerman, 1974, 1976b, 1977) have interpreted 
the presence of clustering as evidence for heterogeneity-the fact 
that the population being observed consists of individuals who dif- 
fer in rate of movement, in proclivity to make certain transitions, 
or in both ways. It has also been remarked that the phenomenon 
(2) can arise in a homogeneous population in which the length of 
stay by an individual in a system state is not exponentially dis- 
tributed (McGinnis, 1968; Ginsberg, 1971; Singer and Spilerman, 
1976b ).2 Finally, Coleman (1964b) has pointed out that clustering 
can occur as a consequence of "response uncertainty"-for our 
purposes, a form of measurement error. 

Given the volume of discussion about clustering on the 
main diagonal and the diverse explanations that have been in- 
voked to account for it, it seems reasonable to pose several ques- 
tions in regard to inequality (2). In particular, we wish to ascer- 
tain which sorts of stochastic processes can produce this 
phenomenon and which sorts of processes cannot. A second ques- 
tion pertains to whether the reverse of inequality (2)-over- 
prediction of the observed main diagonal elements by a Markov 
model-can occur and which processes will generate that regular- 
ity. The value in posing these questions is that they address the 
much neglected task of model discrimination-that is, the construc- 
tion of simple tests for choosing among competing explanations of 
a social process. 

The particular model types that we shall compare against 
the simple Markov are mixtures of Markov processes and a 
special parametric family of semi-Markov processes. We restrict 
attention to these processes because they provide the simplest 
setting in which to discuss clustering phenomena while still ex- 
hibiting the subtle behavior of more complicated models such as 

2With the discrete-time Markov chain, the waiting time to a move follows 
a geometric distribution. The exponential distribution is the continuous-time 
analog of the geometric in the sense that the conditional probability of an event 
occurring in the time interval (t, t + dt), given that no event occurred prior to 
time t, is independent of the value of t. 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 175 

those incorporating response uncertainty (Coleman, 1964b). It is 
important to emphasize that we are discussing the behavior of 
models per se. Hence, from an empirical point of view, our analy- 
sis is relevant to stochastic matrices generated by a large number 
of observations-enough to make sampling variability unim- 
portant. Although clustering as in (2) can occur under a Markov 
model just due to sampling variability, we do not discuss this 
important aspect of the clustering phenomenon in the present 
study. 

To address the question of which model types satisfy 
inequality (2) and which do not, it is necessary to consider ex- 
plicit formulations of each kind of process. In the next section we 
therefore present two versions of the mover-stayer model, a more 
general formulation of population heterogeneity, and an example 
of a semi-Markov process. All these models have appeared in the 
sociological literature or otherwise make sense for social pro- 
cesses. The discussions will be brief and the reader is referred 
elsewhere for fine details on the mathematics and for estimation 
procedures. In sections III-V we report our main results on the 
phenomenon of clustering in relation to each of the model types. 
In the final pages we provide additional comments on the topic of 
data collection design as it relates to the task of model dis- 
crimination. 

II. MODEL SPECIFICATION 

In this section we outline the structures of four models 
that later are compared with a Markov chain in regard to the 
evolution of the main diagonal elements of the transition matrix 
P(O, t). The initial three models are formulations of population 
heterogeneity; these are appropriate in the many sociological con- 
texts in which it would be simplistic to treat a population as 
homogeneous with respect to the behavior under study. In each 
case, the underlying model for an individual in the population is 
Markovian; heterogeneity is expressed in the way the individual- 
level processes are aggregated. The final model constitutes a semi- 
Markov process; it refers to situations in which one believes an 
assumption of exponential waiting times (no effect of duration in 
current state on an individual's departure rate) to be unrealistic. 
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McGinnis' (1968) formulation of "cumulative inertia" is an in- 
stance in which the theory involved refers to the shape of the wait- 
ing time distribution-in particular, to whether or not it is 
exponential. 

Heterogeneity Formulations 

The heterogeneity models we consider may all be repre- 
sented by the following generic formalism. Denote by PA(O, t) the 
transition matrix for an individual with expected rate of move- 
ment equal to X. (For each individual PA(O, t) is assumed to evolve 
according to a first-order Markov chain with stationary transition 
probabilities.) The observed population-level process may then be 
written as 

P,,(0,t)= fPx(O,t)d,A (X) (3) 

where du (X) is a distribution function that describes the pro- 
portion of type-X individuals in the population and the integral 
sign indicates that we sum the PA(O, t) arrays, each weighted by 
the proportion of type-X individuals in the population, over all 
person types X e A. Different formulations of population 
heterogeneity then amount to different specifications of d1i (X). 

It should be noted that the heterogeneity models we con- 
sider all involve mixtures of Markov processes in which mixing is 
on the rate of movement parameter X. This amounts to specifying 
that all individuals in the population are identical in their pro- 
clivities of transferring to the various destination states when they 
move (we denote this common propensity by the transition matrix 
M) and that population heterogeneity can be expressed entirely 
in terms of individual differences in the expected rate of move- 
ment. While restrictive, this formulation is still sufficiently gen- 
eral to permit the observations we wish to make about model dis- 
crimination and the phenomenon of clustering. There is also 
precedent for this formulation in that it underlies BKM's mover- 
stayer model as well as Spilerman's (1972a) extension of the 
mover-stayer model. 

A second restriction, implicit in (3), on the diversity of 
population heterogeneity is the requirement that the rate of move- 
ment parameter, X, be the same for an individual in all system 
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states. This specification was not made by BKM in their initial 
presentation of the mover-stayer model, though they did propose 
it to make the mathematics of more complex heterogeneity mod- 
els tractable (BKM, 1955, pp. 138-146); further, Spilerman's ex- 
tension (1972a) does utilize this simplification. For ease in com- 
paring the three heterogeneity formulations we outline, the 
common generic structure (3) is retained throughout. 

A. Blumen, Kogan, and McCarthy's ( 1955) Mover-Stayer Model. 
This simple formulation of heterogeneity consists of a discrete- 
time process in which it is assumed that the population is built up 
from two types of persons-stayers, who never leave their origin 
states, and movers, who evolve in accordance with a first-order 
Markov chain with stationary transition probabilities. Despite its 
simplicity-perhaps because of it-the mover-stayer model has 
been used widely to accommodate heterogeneity: in studies of in- 
dustry change (BKM, 1955) and income evolution (McCall, 
1973), to cite but two examples. 

Formally, let A be the sampling interval of the process (3 
months in BKM's study). The mover-stayer model then is defined 
for the discrete time sequence T = It : t = kA; k = 0, 1,2, ... .} 
Let A = {A= 0, X2 = 11 = Istayer,moverl and introduce the 
mixing distribution 

if X= XI 

d,u (X) =1 - s if XA= X2 

otherwise 

where s is a scalar, 0 < s < 1. Finally, define a k-step transition 
matrix for each subpopulation according to 

PA 1 (0, kA) = [ PA=(O,A) - - I (stayers) (4a) 

PA2(0, kA) = [PA2(0, A)I] =M (movers) (4b) 

With this specification we obtain for the population-level process 

P,(O,kA) = sI + (1 - s)Mk k = 1,2,... (5) 

which is the familiar mover-stayer model subject to the additional 
requirement that a common fraction of stayers, s, is present in all 
origin states. 
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178 BURTON SINGER AND SEYMOUR SPILERMAN 

B. A Continuous-Time Version of the Mover-Stayer Model. As 
a second specification of heterogeneity, we consider a continuous- 
time version of BKM's model. This formulation will be useful in 
highlighting some implications of continuous-time versus dis- 
crete-time processes in modeling social phenomena. Moreover, as 
we have argued elsewhere (Singer and Spilerman, 1976b), for 
processes that evolve continuously in time, a model having this 
same character has advantages with respect to identification of 
the structure of the evolutionary process. Indeed, for the subject 
BKM studied-industrial mobility-we suggest that it would 
have been advantageous for them to employ a continuous-time 
formulation. 

The continuous-time analog of the mixture (5) can be 
specified by defining T = {nonnegative real numbers} with A and 
,u exactly as before. Then stayers still evolve according to the 
identity matrix 

Ot(M-I) 
PA1(O, t) = e = I (6a) 

while movers evolve according to the continuous-time Markov 
process, 3 

PA2(0, t) - eX2t(M-') (6b) 

In Equation (6b) the rate of movement parameter A2 has the in- 
terpretation 1/X2 = expected waiting time between transitions; M 
is a stochastic matrix that specifies movement probabilities when a 
transition occurs. 

If observations on a continuous-time mover-stayer mixture 

3This formulation arises as follows. Assume that the duration time in a 
state is exponentially distributed with average waiting time equal to 1/X. An 
equivalent statement is that moves occur in time according to a Poisson process 
in which the probability of making exactly k moves during (0, t) is given by 
gk(0, t) = (Xt)ke- X/k!, k = 0, 1, 2, .... If M is the transition matrix followed 
at each move, then P(O, t), the transition matrix that represents population 
movements between times 0 and t, can be viewed as a weighted average of the 
terms M*, k = 0, 1, 2,. .., in which the weights are given by gk (0, t). That is, 

P(0, t) = gk(?, t)Mk =J3 [(At)k eI]M I/k! 
k=0 k=0 

= e E (XtMI)k/k! = e-XteXtM =eX(M- ) 
k =0 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 179 

are taken at times tk = kA, k = 0, 1, 2, . . ., and if A is set equal to 
1/X (as in BKM's analysis), then the observed transition matrices 
can be represented by the recipe 

P (O, kA) = sI + (1 - s) ek(M-I) (7) 

which is the continuous-time analog of (5). 
C. A Continuous Distribution of Types of Individuals. We now 

specialize Equation (3) to mixtures of a continuous type: 
rX 

PM (O,t) = jPx(O,t)dyu(X) (8) 

As in the preceding model, each individual in the population is 
assumed to evolve according to a continuous-time Markov process 

PA(O, t) = eXt(MJI) t > 0 (9) 

where M is a stochastic matrix that describes movement prob- 
abilities when a transition occurs. 

In contrast with the earlier models, we assume now that 
instead of two types of persons, or n types, there is a continuous 
distribution of individuals identified by their expected rate of 
movement. In particular, we specify heterogeneity according to 
the two-parameter family of gamma distributions: 

dji(X) = faXaI-'e -dX /F(a) a,f3, \ > 0 (10) 

This function is a very general one and is able to accommodate a 
variety of unimodal shapes. 

If observations on this continuous-time process are taken 
at the instants tk = kA, k = 0, 1, 2,..., and if A is identified with 
1/X for ease of comparison with the preceding models, the present 
heterogeneity formulation may be written as (Spilerman, 1 972a): 

P(0, kA) = ( 0 + [iI (- I+kA)M (11) 

Semi-Markov Processes 

In the preceding models, each individual-level process was 
first-order Markov. This specifies, first of all, that an individual's 
past locations are immaterial to understanding his future moves; 
only current state is pertinent. It is this feature of Markov chains 
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that is usually articulated when the assumptions underlying the 
process are explained (see, for example, Tarver and Gurley, 1965; 
Hodge, 1966; Lieberson and Fuguitt, 1967). Yet there is a further 
strong assumption in the Markov model-namely that duration 
time X in state i follows an exponential distribution (and is inde- 
pendent of duration times in prior states): 

Prob.(r < t) = Fi(t) = 1 - e-A I = 1,2,.. ., r (12) 
Use of the exponential distribution4 amounts to stating that the 
probability of departing from state i during the infinitesimal in- 
terval (t, t + dt), conditional on being in state i at time t, equals 

r,(t)d =f(t)dt = XeXldt 
X Adt i = 1,2,..., r T~()dt= 

F-F(t) 
I - (1 -(13) 

where fi(t) is the density function corresponding to Fi(t). Sub- 
stantively, this result says that there is no impact of duration in a 
system state on the probability of leaving. Individuals neither 
settle down (in an occupation or residence location) nor grow 
weary of the setting. 

It has been pointed out (Massy and others, 1970; Mc- 
Ginnis, 1968; Land, 1969) that this assumption of a constant de- 
parture rate is untenable for many social processes. Indeed, 
McGinnis' (1968) "axiom of cumulative inertia" speaks directly 
to this point; he contends that individuals are more likely to re- 
main at a residence location, or in a job, the longer they have been 
there. To model such a process, we would need to have ri(t) in 
Equation (13) appearing as a decreasing function of time rather 
than as a constant. 

Semi-Markov models constitute a class of stochastic 
processes which maintain the assumption that past locations are 
immaterial to future states given current location, while permit- 
ting the duration-time distribution to be more general than ex- 
ponential. We require the following terminology for this model 
class. Let M be a stochastic matrix of transition probabilities that 
describe the propensity to move to particular states when a transi- 
tion occurs. Let P(0, t) be the transition matrix constructed from 
observations on a population at times 0 and t. Finally, let Fi(t), 

4The parameter X is not indexed by system state since we have assumed 
that Xi = X, i = 1, 2,. _. , r. 
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i = 1, 2, .. ., r, be a distribution function that has the interpreta- 
tion "probability that a move has occurred by time t "; we assume 
it has a density function f2(t). 

The mathematical formalism of semi-Markov processes 
that we use in the final two models derives from the system of 
integral equations 

pij(O, t) = jj[l - Fi(t)] + i, fijfi(s)m:*pkj(O, t - s) ds (14) 
k=10 

where bij = 1 if i =j, 0 if i ?j; and 1 < i, j < r. These expres- 
sions, known as the backward equations for a continuous-time 
semi-Markov process (Feller, 1971, pp. 483-497), are amenable to 
the following interpretation: (1) When i ? j, p(O, t) consists of 
the sum of products of three factors: the probability of a first de- 
parture from state i at time s, the probability of a state i to state k 
transition at that instant, and the probability of transferring to 
stagej by some combination of moves in the interval t - s. The 
summation is over all intermediate states k and over all time divi- 
sions s in the interval (0, t). (2) When i = j, in addition to the 
preceding term there is the possibility of not transferring out of 
state i during (0, t). This probability is given by the first term. 

Although this is not the most general formulation of semi- 
Markov processes (see Pyke, 196 1a, 1961b; Ginsberg, 1971; 
Singer and Spilerman, 1974, for more detailed statements), it is a 
convenient starting point for our purposes. If we make the further 
assumption that Fi(t) = F(t)) i = 1)2) ... . r-in keeping with 
our earlier discussion concerning state independence of the wait- 
ing-time distribution-then the semi-Markov model has a simple 
representation in matrix form: 

P(O, t) = E [Fn(t) - Fn+1 (t) ] Mn (15) 
n =O0 

where Fn(t) denotes the n-fold convolution of F(t) with itself.5 This 
formulation often, permits tractable representations to be con- 

5Fn(t) represents the probability that the waiting time for n events to oc- 
cur is less than t; that is, Fn(t) = Eg=ngk(, t), where gk(O, t) is the probabil- 
ity of exactly k events in the interval (0, t). Thus Fn(t) - Fn+1 (t) = 
Eno gk (0, t) - En; 1 gk (0, t) = gn (0, t), and Equation 15 can be viewed as a sum 
of probabilities for making k = 0, 1, 2, . . . transition events, each weighted by 
Mk, the transition matrix followed when making k moves. 
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structed once F(t) is specified. Note, incidentally, that if F(t) is 
specified by Equation (12), the semi-Markov model (15) reduces 
to the familiar continuous-time Markov chain P(O, t) - eA t(M-I) 

(see footnote 3). 
D. A Semi-Markov Model with Increasing Departure Rate. 

This formulation would pertain to processes in which the prob- 
ability of a move increases with duration in the state. Substantive 
contexts in which this specification makes sense are the stage mod- 
els of developmental psychologists (among them Kohlberg, 1973; 
Piaget, 1954; Loevinger, 1966). The basic notion here is that an 
individual passes through a more or less ordered sequence of states 
(developmental stages) the onsets of which depend on age. For 
some behaviors or abilities (such as psychosexual stages), duration 
at a particular developmental level may be programmed geneti- 
cally into the organism. For other phenomena (such as cognitive 
stages), experience through interaction with the environment 
plays a more central role in preparing an individual for entering 
the next developmental level. 

In stage theories, then, there is a basic notion that the 
probability of departure increases with duration in a state. We can 
formalize this assumption by specifying F(t) to be a gamma dis- 

Figure 1. Rate of movement function r(t) for different waiting-time distributions. 

r(t) 

r(t) = A 

_ L Time 

NOTE: r(t) = A for exponentially distributed waiting times. r(t) = A2t/[l + At] for gamma 
distributed waiting times. 
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tribution (Equation 10), with a = 2 and f = X > 0 arbitrary: 

Prob (r < t) = F(t) = ueA udu = 1 - (1 + Xt)e (16) 

Here the rate of movement out of state i, i = 1, 2,..., r, is given 
by r(t) = X2t/[1 + Xt], which increases monotonically to an 
asymptote r ( oc ) = X (Figure 1). Specific theories as to stage se- 
quences could be built directly into the M matrix of Equation 
(15); see Singer and Spilerman (1978) for details. 

With the specification of F(t) in Equation (16), the differ- 
ence between the n-fold and (n + 1)-fold convolution is 

F ,2n (fl) 2n~ 1 
Fn (t) - Fn+l(t) = e (2n + (17) 

L(2n)! (2n + 1)!]_ 17 

Substituting (17) into (15) and evaluating the resulting power 
series yields6 

P(0, t) = e -#[cosh 3kAM1/2 + M-1/2 sinh JkAM 2] (18) 

in which cosh and sinh are hyperbolic functions of matrix argu- 
ment. Equation (18) is the transition matrix for a semi-Markov 
process in which the probability of a state change increases with 
duration in the state. 

III. MOVER-STAYER MODELS AND CLUSTERING 

Eigenvalue Conditions 

We will have at our disposal some powerful mathematical 
machinery if we alter the definition of clustering very slightly. In 
particular, the specification introduced by BKM (1955, pp. 79- 

6The power series is initially constructed in scalar argument: 

u(t, 6) = [[Fn(t) -Fn+l(t)] n 

e E (#3tx)2n/ (2n)! + (1/x/)Z, (#,t'\-)2n+l/ (2n + 1)!] 

e [cosh ,3tx/I + (1/v4) sinh 3tVb] 
This scalar-valued analytic function can be extended to an analytic function of 
matrix argument by any of the procedures in Singer and Spilerman (1 976a). 
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95) and used by subsequent researchers iS7 

(P(0, A))II < (P(O, kA)) I i = 1,2,..., r (19) 

In other words, it is required that each diagonal element of the 
Markov model underpredict the corresponding entry of the ob- 
served process. The formulation of clustering we propose instead 
is 

r r Z 
(pk(o A)) 

< E (P(o, kA)) (20) 
i=1 i=1 

Equivalently, 

trace pk (0, A) - trace P, (0, kA) < 0 (21) 

Thus the inequality is assumed to hold between the sums of main 
diagonal elements, though not necessarily for each pair indi- 
vidually. We shall indicate momentarily the mathematical advan- 
tage of this specification. First, we show that it is a reasonable 
definition of clustering. 

If Equation (19) is satisfied for a mobility process, then 
(21) will also hold. Thus, in this most common situation, the two 
formulations will yield identical results. Similarly, if the reverse of 
inequality (19) is satisfied (overprediction by the Markov model), 
then the reverse of (21) will hold. Only in instances where some 
main diagonal elements satisfy (19), while others do not, are the 
two formulations in potential disagreement. Yet, in this case, 
under (19) there is no explicit criterion as to when an inference of 
clustering can be made; for example, do one or two reversals 
among main diagonal entries in a large matrix invalidate such a 
conclusion? BKM (1955, pp. 60-64), incidentally, exhibited as 
evidence of clustering matrices in which one reversal often was 
present. In summary, inequality (21) does not alter the character 
of the traditional formulation and has the advantage of providing 
explicit criteria under which clustering can be asserted when (19) 
is an excessively stringent requirement. 

7The matrices P(O, kA), k = 1, 2, .. ., in (19) to (21) refer to transition 
matrices constructed from an arbitrary discrete-state stochastic process. In par- 
ticular, the notions of clustering defined in (19) to (21) make sense for general 
discrete-state processes. The matrices defined by (3) and (18) are specializations 
to mixtures of Markov chains and to a special parametric family of semi-Markov 
processes, respectively. 
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For mathematical purposes the attractiveness of inequality 
(21) is that it enables a relation between clustering and the eigen- 
value properties of matrices to be established. In particular, let 

31 ~~~0 

D= | (22) 

0 
r__ 

be the array of eigenvalues corresponding to some matrix P. It is 
well known (see, for example, Bellman, 1970, p. 96) that 

r r 

trace P - (P)22 = Z 3i 
That is, the sum of the main diagonal elements of a matrix is equal 
to the sum of its eigenvalues. Thus if 3, is an eigenvalue of 
P,,(0, kA) and b' is an eigenvalue of Pi(0, A), an equivalent ex- 
pression to (21) is 

r r 

Eb-Eb. < 0 (23) 

Mover-Stayer Mixtures 

Now consider a transition matrix P, (0, kA) constructed 
from observations at t = 0 and t = kA on BKM's mover-stayer 
model (5): 

P, (0,kA) = sI + (1 - s)Mk (24) 

If the eigenvalues of P,,(0, kA) are represented by matrix D in (22) 
and the eigenvalues of M by an analogous diagonal matrix V = 
v.), then each eigenvalue 3i may be expressed as 

3, = s + (1 - s)v. i = 1, 2, ..., r (25) 

To see this, assume that H is a matrix whose columns are eigen- 
vectors of P (0, kA) in (24). Then 
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186 BURTON SINGER AND SEYMOUR SPILERMAN 

D = H-1 P,(O,kA)H 

= H-1[sI + (1 - s)Mk]H = sI + (1 - s)H-IMkH (26) 

= sI + (1 - s)[H-IMH]k 

Since D is a diagonal matrix, H-'MH must also be a diagonal 
matrix call it V and its entries are the eigenvalues of M. Equa- 
tion (25) follows from this argument. 

By similar reasoning it can be shown that each eigenvalue 
of pk(O, tA) has the form 

= [s + (1 - s)v]k (27) 

With the preceding mathematical equipment at hand, the cluster- 
ing criterion (20) may be written as (using Equations 23, 25, and 
27): 

Z [(s + (1 - s)v) k (s + (1 - s)v )] <0 (28) 

We have therefore transformed an inequality between main di- 
agonal elements of mover-stayer and Markov matrices into an in- 
equality between their eigenvalues. Further, the eigenvalues vi in 
(28) pertain to the matrix of structural parameters M, which is 
constant over time even though P.,(0, t) is not. 

To ascertain the conditions under which the inequality 
(28) will be satisfied, we first determine whether or not all terms 
in the sum 

E (i + 1 -S) V.) 
k 

(i + S) Vt k)](9 

necessarily have the same sign. If v, is a positive real eigenvalue 
other than vi = 1, then by Jensen's inequality (Feller, 1971, pp. 
153-154), 

[s + (1 _ s) vi] 
k 

[s + (1 _ s) Vk ] < 0 (30) 
for k = 2, 3,4, ... and all s e (0,1). Our first conclusion, there- 
fore, is that in a comparison between BKM's mover-stayer model 
and a Markov chain, if all eigenvalues of P,(O, A) are distinct, positizve, 
and real, the inequality (21) will hold and clustering on the main diagonal 
will be observed. 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 187 

We further see that if the difference (29) is ever to be posi- 
tive and a reversal of (28)-equivalently (21)-observed, it must 
occur for matrices having complex conjugate or negative real 
eigenvalues for which Jensen's inequality is reversed. We there- 
fore ask whether there are regions inside the unit disk in the com- 
plex plane for which 

Re[s + (1 - s)v] - Re[s + (1 - s)v'] > ? (31) 

where Re (.) denotes the real part of the eigenvalue. The unit disk 
is the relevant region to examine because all eigenvalues of 
stochastic matrices are restricted to this region. Further, it is 
sufficient to examine the real parts of the eigenvalues because 
complex eigenvalues of matrices with real entries come in con- 
jugate pairs (specifically x + Jj and x - Jy, where j = v/-1 ), so 
that for matrix P with eigenvalues 6,, i = 1, 2,..., r, 

r r 

trace P = E = Z Re bi 

Case k = 2 in Equation (31) 

Writing v in the form v = x + jy, we obtain 

Re[s + (1 - s)v]2 - Re[s + (1 - s)v21 

= S(S - 1)[(1 - X)2 _ y2] > 0 

which is satisfied by eigenvalues v with components such that 

(1 - x - y)(1 - x + y) < (32) 

The eigenvalues in the unit disk for which this inequality holds 
are shown in the shaded region of Figure 2.8 

An important consequence of (32) is that 

Re[s + (1 - s)v]2- Re[s + (1 - s)v2] < 0 

for any eigenvalue v of a stochastic matrix M of order r < 4 and for 
every s e (0,1). This is a consequence of the inequalities of 

8Because each section of the shaded region is convex and contains the 
eigenvalues 1 and v (or 1 and v, the complex conjugate of v), s- 1 + (1 - s)v 
[and s - 1 + (1 - s)uJ] are also in the shaded region for any s E (0, 1). Thus 
the eigenvalue condition on M for a reversal of (21)-that is, presence in the 
shaded region of Figure 2-pertains as well to the eigenvalues of P. (0, A). 
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188 BURTON SINGER AND SEYMOUR SPILERMAN 

Figure 2. Eigenvalue region for a reversal of Equation (28) with k = 2 (shaded area), to- 
gether with cone-shaped restrictions on eigenvalue locations of 3 x 3, 4 x 4, and 6 
x 6 matrices. 

Im(v) 

K\ K6\ 

K3 ""J 

e2"j/3~~ 

X~~~~ Re(v) 

K4 / i K6 

NOTE: Each cone-shaped region (dashed lines) is symmetric with respect to the x-axis. 

Karpelewitsch (1951) (see also Singer and Spilerman, 1976a, pp. 
10-13) that restrict the eigenvalues of general r x r stochastic 
matrices according to 

(1/2 + 1/r)ir < arg(v - 1) < (3/2 - 1/r)7r (33) 

These inequalities define the cone-shaped regions K3 and K4 

drawn in dashed lines in Figure 2. We observe that when r < 4 
all eigenvalues of a stochastic matrix must lie in the complement 
of the shaded region in Figure 2 and a reversal of (21) cannot 
occur. 

Case k = 3 in Equation (31) 

The region for which the inequality holds is now more 
complicated geometrically than the shaded region of Figure 2. 
Furthermore, the sign of the difference 

Re[s + (1 - s)v]3 - Re[s + (1 - s)v3] 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 189 

Figure 3. Eigenvalue regions for a reversal of Equation (28) with k = 3 (shaded area). 

Im(v) 

0v Re(v) 

-(I + s) 

(2 -s) 

NOTE: Value of s in this graph = .18. 

depends on s, unlike in the situation for k = 2. By a calculation 
similar to that in the previous case we obtain the shaded regions 
in Figure 3 as the location of eigenvalues of matrices M for which 
a reversal of (21) may occur.9 

The preceding restrictions have rather far-reaching im- 
plications. To see this, consider the more refined restrictions on 
eigenvalues of stochastic matrices of orders 3, 4, and 6 due to 
Karpelewitsch (1951). In particular, the shaded areas in Figures 
4, 5, and 6 display the regions within the unit circle of the com- 
plex plane in which all eigenvalues of matrices of orders 3, 4, and 
6, respectively, must lie. These areas should be considered in con- 
junction with the shaded region in Figure 3, which reports eigen- 
value conditions necessary for a reversal of (21 )-equivalently (28). 
It is evident that there is an overlap between the regions, even 

9Because the shaded regions now depend on s, they pertain to the eigen- 
values of M, not P.(O, A). 
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Figure 4. Restrictions on eigenvalues of 3 x 3 stochastic matrices. 

Im(v) 

e2"jj/3 

Re(v) 

NOTE: All eigenvalues of a 3 x 3 stochastic matrix must lie in the triangle or on the negative real 
axis. 

Figure 5. Restrictions on eigenvalues of 4 x 4 stochastic matrices. 

Im(v) 
j=enj/2 

NOTE: All eigenvalues of a 4 x 4 stochastic matrix must lie within Robin's cape (Begin, 1948) or on 
its boundary. 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 191 

Figure 6. Restrictions on eigenvalues of 6 x 6 stochastic matrices. 

Im(6) 

ae2fti/5 

e e 

NOTE: All eigenvalues of 6 x 6 stochastic matrices must lie within Batman's cape (Begin, 1948) or 
on its boundary. 

for stochastic matrices of order 3. Further, the area of overlap 
widens as the matrix order is increased. 

For 3 x 3 stochastic matrices, the region of overlap (Fig- 
ures 3 and 4) is restricted to negative real values of v, in particular 
to the region v e [-1, -(1 + s)/(2 - s)]. Note, incidentally, 
that this constrains s to the interval (0, 2]. By a judicious choice 
of M and s we can therefore illustrate mover-stayer mixtures in 
which this heterogeneity formulation underpredicts the diagonal 
elements of the corresponding Markov process. 

Example 1 
Suppose an empirical process evolves according to the 

mover-stayer formulation, 
P,,(O,A) = sI+ ( - s)M 

0.1302 0.0326 0.8372 
= 0.0352 0.0963 0.8685 

0.8685 0.0013 0.1302 
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192 BURTON SINGER AND SEYMOUR SPILERMAN 

where s = 0.0625 and 

0.0722 0.0347 0.8931 

M= 0.0375 0.0361 0.9264 

0.9264 0.0014 0.0722 

Comparing the mixture model P,(0, kA) -that is, the observed 
process-with the Markov model P'(0, A), which uses P,(0, A) as 
a one-step transition matrix, we find 

trace P'(0, A) = 1.502 < trace PM(O, 2A) = 1.755 

but 

trace P3(0, D) = 0.6486 > trace P,,(0, 3A) = 0.6089 

Continuing these calculations, we get 

trace P3(0, A) = 1.248 < trace P,(0, 4A) = 1.548 

traceP'(0,A) = 0.8248 > traceP. (0,5A) = 0.7784 

and so forth. Thus our different results with respect to a reversal 
when k = 2 and k = 3 carry over to higher-order odd and even 
values of k. See Singer and Spilerman (1977) for further details. 

Example 2 

As part of a study of interpersonal relationships among 
American high school youth in the 1950s, Coleman (1961) asked 
students in Northern Illinois high schools in October 1957 and 
again in May 1958 whether or not: 

1. They perceived themselves to be members of the leading crowd 
in their school. 

2. They could maintain their principles and be a member of the 
leading crowd. 

Affirmative answers to each question were scored plus and nega- 
tive answers were scored minus. Thus an individual can respond 
to these questions in one of four possible ways at each observa- 
tion time: (response to (1), response to (2)) = (+, +) or (+, -) 
or (-, +) or (-, -). We then identify these responses as possible 
states of a stochastic process. In connection with this survey, 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 193 

Coleman proposed a theory about attitude changes in an adoles- 
cent population in which individuals could alter their views on 
either issue 1 or 2 at any one time but could not change their at- 
titude on both issues simultaneously. This theoretical restriction 
implies that transition matrices M describing attitude changes 
when they occur should be of the special form 

O a 1 -a 0 

'Y O O 1 -e' 

O a 1 -6 0 

where O < a, f,, y, < 1. 
These matrices have eigenvalues vi= 1, V2= -1, V3= 

{j[A - (A2 - 4B)"12]"1/2, and V4 = - [A (A2 4B)-1/2]}1/2 

where 

A = ((1 -,B) + (1 - -y ( ) + a: + y(l -a) 

B = a#3(1 - 6)(1 - y) - 3((1 - a)(1 - y) 

+ 'yb(1 - a)(1 - ,B) - ay(1 - ()(1 - 

A somewhat tedious calculation verifies that if any M, as 
defined above, is incorporated in a discrete-time mover-stayer 
mixture, then there is an interval of stayer fractions (0, s*) such that 

trace (sI + (1 - s)M)3 > trace (sI + (1 - s)M3) 

for every s e (0, s*), if and only if 
4 4 

-2 + 3 V - 2 E v i = 3[1 + A - VTTi74 ] > 0 
i=2 i=2 

Furthermore, for such M, s* is given by the formula 
4 4 \ 4 

S* = 2 - 3 fV ?2f+2 ) Z (Vi- i)3 
i=52 i52 i5=2 

To illustrate the calculations, suppose that a = = l and 
y =6fi = Then v = 1,v2= -1, V3 = , V4 = -, and s* = 

0.342. This means that for any value of s e (0, 0.342), a mover- 
stayer mixture having the preceding M matrix will show under- 
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194 BURTON SINGER AND SEYMOUR SPILERMAN 

prediction of the main diagonal entries of the corresponding Markov 
process. 

Despite the fact that reversals can take place for discrete- 
time mover-stayer matrices of order 3 and 4, the analogous 
inequality cannot occur for any 3 x 3 or 4 x 4 continuous-time mover- 
stayer mixture. This arises because every eigenvalue v of e(M -), 

where M is a stochastic matrix, must lie inside or on the boundary 
of the heart-shaped region Hr in the complex plane (Figure 7). 
(See Singer and Spilerman, 1976a, pp. 10-13, for details; see 
Runnenberg, 1962, for a proof.) Further, if v e Hr, then s + 
(1 - s)v is also in Hr, all s e (0, 1). Since for r < 4 the hearts H3 
and H4 are properly contained in the complement of the shaded 
region in Figure 2, reversals of (21) cannot occur for continuous- 
time models of these orders. 

With respect to mover-stayer mixtures we therefore con- 
clude 

Figure 7. Restrictions on eigenvalues of 3 x 3, 4 x 4, and 6 x 6 continuous-time 
mover-stayer mixtures. 

Im(v) 

Av)~~~~~~~~~~~~ev 

Region of reversal of 
Equation (28) with 
k =2 

NOTE: Each heart-shaped region includes the ones of smaller size. Thus, the eigenvalues of a 
S x S continuous-time mover-stayer mixture must lie within the innermost region (H3), the 
eigenvalues of a 4 x 4 continuous-time mover-stayer mixture must lie within the in- 
termediate region (H4), and so forth. 
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CLUSTERING ON THE MAIN DIAGONAL IN MOBILITY MATRICES 195 

(i) A reversal of (21)--equivalently (28)-cannot occur 
when all eigenvalues of P,(O, A) are distinct, real, and positive. 
This statement holds irrespective of whether the model is a dis- 
crete or a continuous-time formulation, for all integer values of r 
and k, and for all spacings A > 0. 

(ii) For k = 2 in (21) we have the further restriction that a 
reversal cannot occur for negative real eigenvalues (see Figure 2); 
complex eigenvalues are necessary. 

(iii) As the order of matrix P is increased, the eigenvalue 
region in which reversals can occur becomes more extensive. It is 
possible, however, to exhibit reversals for k = 3 in a discrete- 
time mover-stayer model even for matrices as small as 3 x 3 and 
4 x 4. 

(iv) Finally, a general sufficient condition for a reversal of 
(21) is that all eigenvalues lie in the shaded region. In large-order 
matrices a not uncommon situation would be for some eigen- 
values to fall in this region while others lie outside it. In this cir- 
cumstance the eigenvalue conditions constitute only necessary 
criteria and a direct calculation of Equation (29) is necessary. 

This section has demonstrated the important point that 
mover-stayer mixtures do not necessarily imply clustering on the 
main diagonal; in fact, underprediction of the corresponding 
elements in a Markov chain can occur. Thus a failure to observe 
clustering in an empirical process does not rule out the possibility 
that the process was generated by a mover-stayer mixture, as long 
as some eigenvalue of P(O, A) lies in the region of reversal (Fig- 
ures 2 and 3). However, a failure to observe clustering when no 
eigenvalue lies in this region would rule out the possibility that 
the underlying model is mover-stayer. In particular, when all 
eigenvalues are distinct, real, and positive, clustering must occur 
when the empirical process is mover-stayer. 

IV. A CONTINUOUS MASS DISTRIBUTION 
AND CLUSTERING 

Consider the class of mixtures of continuous-time Markov 
chains having transition probabilities given by (8) and (9)-that 
is, by 
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P(O, t) = e feX(M-)ddu(X) (34) 

where the rate parameter X is distributed in the population ac- 
cording to the probability measure g (X) via the relation 

Prob(X <c) df (X) (35) 

Even without specifying g (X) further we can make a rather gen- 
eral statement about clustering for this mixture process. In par- 
ticular, if P,(O, t) has distinct, real, positive eigenvalues,'0 then for 
any k and any spacing interval A we have 

trace Pk(0, A) - traceP,,(O,kA) < 0 (36) 

Thus inequality (21) holds and clustering must occur (see the 
appendix). A particularly important consequence of this result is 
that if an observed matrix P(O, A) satisfies the noted eigenvalue 
condition but inequality (36) is reversed, no model of the form 
(34) could have generated the matrix. 

For arrays P,,(O, A) with complex eigenvalues, a reversal of 
(36) can occur, but the conditions for this are complicated and 
vary with the parametric specification of d1 (X), the order of the 
matrix, and the eigenvalues themselves. To illustrate a reversal 
and report some conditions that make it possible, we consider the 
particular case of order r < 4 and gamma-distributed mixtures- 
that is, dc (X) defined by (10). 

To clarify what is at issue in producing a reversal, it is 
convenient to express the left-hand side of (36) in terms of the 
eigenvalues of M - I and the mixing measure dc (A). To this end 
let I6f(t) }, 1 < i < r, be the eigenvalue of P,,(O, t). We then have 

trace Pk (0, A) - trace P,,(O, kA) 
4 4 

= E3 6i(A) - EZ 6(kA) (37) 
i=, i=, 

l0Stated in terms of matrix M we need require only distinct, real eigen- 
values. This is because each eigenvalue zi of M - I is transformed into an 
eigenvalue bc (t) of P,(O, t) via the relation b, (t) = J0oeAtldg (X) . Since eX takes on 
positive values for any real argument x, and since the integration may be viewed 
as a weighted average of different exponentials, bi(t) will be positive for real, 
negative roots zi + 1 of matrix M. 
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Since P,(O, t) is defined by (34), its eigenvalues are mixtures of 
the eigenvalues e"l4 of the matrix e'(M J). In particular, 

Go &(t) jfeAizidAs(X) I = 1, ... ,r (38) 

where [Iz, 1 < i < r, are the eigenvalues of M - I. With d,u(X) 
specified by (10), we obtain for (38) 

(= [3/(,- iZ)]a 1 < i < r 
a>ZiA>0(39) a > O;, > O 

Thus Equation (37) reduces to 
4 

S W3:/(: - A - [:3/(:3 - kAz2)]aI (40) 

Now a matrix of order r = 4 can have only a single pair of 
complex conjugate eigenvalues; thus necessary conditions on a, 
f3, A, and JZ,- that determine the sign of expression (40) can be 
presented as conditions that determine the sign of 

[#/ (# - AZ )]ka - [f3/ (3 - kAzi) ] a (41) 

for the complex eigenvalue z,.." A numerical evaluation of (41) 
was performed for k = 2, 3, and 4; for (a, ,3) combinations de- 
fined by the list 

a = 0.5, 1.5,2,3,4,6 

= 0.2, 0.5, 0.75, 1, 1.5,2,3,4,6,8 

and for Az = x + jy taking on values on the grid defined by 

x = -0.7 - k(0.1) k = 0,1,2,...,10 

y = 0.1 + q(0.1) q = 0,1,2,...,14 

These calculations reveal the (a, ,B) pairs for which it is possible 
for (41) to be positive for some complex number that is an eigen- 

"1A matrix of order r = 4 with a pair of complex conjugate eigenvalues 
will have two real roots. ByJensen's inequality (see the appendix) the real roots 
add negative terms to the sum (40). A necessary condition for (40) to be positive 
is that (41) be positive. A sufficient condition is that the sum of positive terms in 
(40)-which correspond to complex conjugate roots-exceed the sum con- 
tributed to (40) by the real-valued roots. 
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Figure 8. Region for which Equation (41) can be positive. 

9 _ 

4 

3 

2- 

a 
0 1 2 3 4 5 6 7 8 a 

NOTE: Shaded area shows (a, 13) values for which Equation (41) can be positive. Calculations are for 
complex eigenvalues of 4 x 4 stochastic matrices where la is a gamma mixture with 
parameters (a, 13) and k = 2, 3, 4. 

value of a 4 x 4 matrix M - I, with M stochastic. The results of 
this exercise are reported in Figure 8. In particular, a necessary 
condition for (41) to be positive is that (a, /3) lie in the shaded 
region of the figure. 

For a given (a, ,B) pair such that (41) can be positive, we 
wish to characterize the eigenvalue region Az = x + jy for which 
(41 ) is, in fact, positive. Recall that the restriction 

ir(1/2 + 1/r) < arg(zAz) < ir (42) 

(together with its symmetric counterpart below the x axis) is a 
necessary condition for Az to be an eigenvalue of an r x r in- 
tensity matrix (Singer and Spilerman, 1976a, pp. 10-12). In- 
equality (42) with r = 4 restricts the eigenvalue region to that 
portion of the complex plane below the 45-degree line in Figure 
9. The bent line that defines the lower boundary derives from 
two further considerations. First, the segment of this line closest 
to the origin arises from the simulation calculatioins discussed 
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Figure 9. Region for which Equation (41) is positive. 
y 

4 

3 

2 

1 

-5 -4 -3 -2 -1 

NOTE: Shaded area shows eigenvalue region for which Equation (41) will be positive. Calculations 
are for g, a gamma mixture with a = 6, p = 1. 

above. The steeper rise, to the left of the bend, is due to an 
asymptotic argument described in Singer and Spilerman (1977, 
p. 758). The slope of this line is -tan (r/ 12), which means that if 
M-and hence M - I-has complex conjugate eigenvalues with 
a sufficiently small imaginary part, then (41)-and thereby (40) 
-will be negative for all A > 0. In particular, this will be the case 
if 

tan -yIk/XkI ?< ur/12 (43) 
where zk = Xk 1 kare eigenvalues of M - I. 

With this characterization of the region where (41) will be 
positive, it is a straightforward matter to exhibit concrete gamma 
mixtures of Markov chains for which, for example, 

trace P(0,,A) - trace P,,(O, 2A) > 0 

forall A > 1. 
Example 3 

Suppose M is a 3 x 3 circulant matrix 

a, a2 a3] 

M= a3 a1 a2 

a2 a3 a1, 
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with a1 = 0.3332, a2 = 0.6220, and a3 = 0.0448. Then M - I 
has eigenvalues z, = 0, Z2 = -1 + 0.5j, and Z3 = -1 - 0.5j. 
The numerical calculations described above reveal that for A = 1 
and ,g (X) a gamma measure with a = 6, ,B= 1, 

trace P,,(0, 1 -trace P,,(0, 2) = 3.8 x 10-4 > 0 

Additional calculations and reference to (43) indicate that for 
A > 0.86 

trace P, (0, A) - trace P,(0, 2 A) > 0 

while for spacings A < 0.86 the reverse of this inequality holds. 

V. A SEMI-MARKOV MODEL AND CLUSTERING 

In each of the preceding mixture models if P,(0, A) con- 
tains only distinct, real, positive eigenvalues, clustering on the 
main diagonal is guaranteed-that is, a reversal of (21) cannot 
occur. Moreover, this result is rather general, holding for matrices 
P,,(O, A) of any order, all values of k in (21), all spacing intervals 
A, and any heterogeneity formulation based on a distribution of 
rates of movement.12 Overprediction of the main diagonal ele- 
ments by a Markov model can occur in a mixture formulation 
only if matrix P,(0, A) has negative real or complex eigenvalues. 
Further, in a continuous-time mixture overprediction can occur 
only if there are complex eigenvalues. 

For practical purposes it would be useful to know what 
proportion of transition matrices constructed from observations 
on a social process contain only distinct, real, positive eigen- 
values. While we have not addressed this question in a systematic 
fashion, a cursory examination of published matrices suggests 
that upward of 90 percent of arrays constructed from sociological 
data have distinct, real, positive eigenvalues. Our results as- 
sociating clustering with heterogeneity would therefore appear to 
hold for most, though not all, mobility matrices encountered in 
empirical research. 

We hasten to add that there is no obvious substantive 

12We remind the reader that we have considered only forms of hetero- 
geneity that can be expressed in terms of individual differences in the rate of 
movement. 
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reason why phenomena such as job turnover and geographic mi- 
gration, for example, should be associated with the general class 
of matrices having distinct, real, positive eigenvalues. However, a 
proper subclass of these matrices for which there is some mean- 
ingful interpretation is the class of totally positive matrices. Such 
matrices, in addition to having distinct, positive, real eigenvalues, 
satisfy the determinant inequalities 

P0l1 P'ilit-k 

det > 0 

Piku1 ikl.k 

for any ordered row indices i1 < i2 < < ik and column indices 
i < J2 < ... < jk, k = 2, 3, .. ., r. These matrices arise from birth 
and death processes-that is, movement at a single transition can 
only take place to nearest neighbor states, as in an ordered hier- 
archy where states are identified with prestige rankings. Thus M 
in a birth and death process must satisfy m,j = 0 if I i-j J >1. 
In this circumstance, 

P,(O, A) = fe A(M1)d,.(X) 

is totally positive for a wide class of mixing distributions ,u and for 
every A > 0. 

A specific setting for which this class of models forms a 
natural initial baseline is the study of careers in hierarchical 
organizations such as a civil service bureaucracy or an industrial 
firm. In this connection see Stewman's (1975) description of pro- 
motion patterns in the Michigan State Police. 

We underscore the importance of our results about eigen- 
value conditions by pointing out that when P(O, A), having dis- 
tinct, real, positive eigenvalues, arises from a semi-Markov pro- 
cess, the reverse of Equation (21) can occur. Further, if (21 ) holds, this 
rules out a semi-Markov process with gamma-distributed waiting 
times-that is, Equation (18)-and constitutes evidence for 
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heterogeneity.3 If the reverse of (21) is found, this rules out any 
mixture model-mover-stayer or continuous mass distribution- 
and constitutes evidence for a semi-Markov process (among the 
classes of models we have considered in this chapter). 

To provide the reader with the flavor of the argument re- 
garding overprediction of the main diagonal elements of the semi- 
Markov process (18) by a Markov model, we sketch the proof of 

trace pk(0 A) > trace P(0, kA) (44) 

(that is, a reversal of [21]) for the case k = 2 with P(0, A) having 
distinct, real, positive eigenvalues. Define 

u(t, v.) = E [Fn(t) - Fn+1(t)]v2 
n =0 

where Fn (t) - Fn+1(t) is given by (1 7) and vi is an eigenvalue of 
matrix M. Then u (t, vi) is an eigenvalue of P(0, t). Thus 

trace p2(0o A) = Z U 2(A, Vi) 

and 

trace P(0, 2A) = u (2A, vi) 

Now for any real number v e (0, 1) we have (see foot- 
note 6) 

u2(A, V) - u (2A, v) 
e-A [cosh 3Av'v + (1I / v) sinh VAx/] ]2 

-e-2eA[cosh 2/3Av'- + (1/Nvs) sinh 23AVv-] 
which, after some algebra and use of double-angle formulas, re- 
duces to 

u2(A, v)-u (2A, v) = e ~[sinh2I3A V] (1 - v)/v 

13Our conclusions with respect to heterogeneity formulations are gen- 
eral, not dependent on the parametric specification of heterogeneity (other than 
the fact that mixing is on the rate-of-movement term). Our results with regard 
to semi-Markov processes are specific to the formulation we have analyzed- 
namely, gamma-distributed waiting times. 
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This expression is positive for all v E (0, 1), 83 > 0, A > 0. 
Finally, observe that for the eigenvalue v1 = 1, u2(A, v1) - 
u(2A,v1) = 1 - 1 =0. Thus 

trace P2(0, A) - trace P(O, 2A) = E3 [u2(A, v) - u (2A, vi)] 

=O+2E [u2(A,v) - u (2A, vi)] > 0 
i = 2 

A proof of (44) may be constructed along similar lines for 
k = 3, 4 and any matrix M having distinct, real eigenvalues. Thus 
we obtain rather general results-namely, that for a semi-Markov 
process with gamma-distributed waiting times, there always will 
be a reversal of Equation (21)-for k = 2, 3, 4,-if P(O, A) has 
distinct, real, positive eigenvalues. With complex eigenvalues it is 
possible for both (21) and a reversal of (21) to occur, the particu- 
lar outcome depending on k, fl, and the region of the complex 
plane in which the eigenvalues lie. Determination of these condi- 
tions requires a numerical exercise of the sort illustrated in the 
preceding section with the continuous mass distribution function. 

VI. CONCLUSIONS 

We have sought to demonstrate in this chapter that the fa- 
miliar phenomenon of clustering on the main diagonal is an in- 
herent consequence of the structure of certain model types. Fur- 
ther, while it has not to our knowledge been discussed previously, 
underprediction of the main diagonal elements of a Markov 
model should be associated with other kinds of stochastic mod- 
els that are also applicable to social processes. Our results are 
strongest for the case of matrices P(O, A) having distinct, real, 
positive eigenvalues-the most common situation with respect to 
data from a social process. 

In particular, suppose that a matrix P(O, A) satisfies this 
eigenvalue condition. Then if it arises from a heterogeneity formu- 
lation-whether mover-stayer or continuous mass distribution-a 
reversal of (21) cannot occur; that is "clustering on the main di- 
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agonal" is a consequence of the model's structure. If a matrix 
P(O, A) arises from a semi-Markov process with gamma- 
distributed waiting times, then a reversal of (21) will always oc- 
cur. (Even in the case of distinct, real, positive eigenvalues we 
cannot make a general statement about all semi-Markov formula- 
tions, as could be stated for heterogeneity formulations; it is 
possible that a semi-Markov model with a different waiting-time 
distribution function would be consistent with (21). Lacking ap- 
propriate general theorems about semi-Markov processes, one 
must attempt to carry out the sort of proof outlined in the pre- 
ceding section for different parametric formulations of this model 
type.) 

Main diagonal conditions-whether clustering or under- 
prediction in relation to a Markov process-constitute one sort of 
empirical regularity that can be used to advantage in the activity 
of model discrimination. Stated generally, by model discrimina- 
tion we mean a set of procedures that would allow a researcher to 
choose among competing model types on the basis of a few stra- 
tegic observations on an empirical process. Our findings in this 
chapter contribute to model discrimination techniques in that, 
under appropriate eigenvalue conditions, we have shown that 
main diagonal relationships can be used to reject a heterogeneity 
formulation or a particular semi-Markov model. 

This study does not, however, constitute a concerted effort 
to develop model discrimination procedures. That task is a dif- 
ficult one, and different criteria may have to be developed de- 
pending on the sort of data one can collect on an empirical 
process. (One immediate consequence of our concern with model 
discrimination is therefore a heightened interest in questionnaire 
and data collection design to ensure that the proper information 
for differentiating among competing models of an empirical 
process will be available.) It is our intention to address this con- 
stellation of issues in the near future. 

APPENDIX 

THEOREM: If z is a real eigenvalue of matrix M - I, where 
M is stochastic, and Au (X) is an arbitrary probability measure 
on (0, oo), then 
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6k(A) - 6(kA) < 0 

for k = 2, 3, ... and all A > 0, where 

r0 
6(A) e= fe zdg (X) 

PROOF: Let A be a random variable with distribution func- 
tion Prob (A < c) = lod d (X). Consider the random variable 
Y, defined in terms of A according to Y = e AzA, where A > 0 
and z < 0. 14 With these random variables we can write 

r0 I 

EY = E(e ) = z e d,u (X) = 6 (A) 

Now introduce the convex functions fk (x) = xk) k = 2, 3, . 
where x > 0, and observe that a direct application of 3ensen's 
inequality (Feller, 1971, pp. 153-154) yields 

6k(A) = (EY) k< E (Y k) = E (e kAzA) = (kA) 
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