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ABSTRACT

OKID as a general approach

to linear and bilinear system identification

Francesco Vicario

This work advances the understanding of the complex world of system identification, i.e. the set

of techniques to find mathematical models of dynamical systems from measured input-output

data, and exploits well-established approaches for linear systems to address nonlinear system

identification problems.

We focus on observer/Kalman filter identification (OKID), a method for simultaneous identifi-

cation of a linear state-space model and the associated Kalman filter from noisy input-output

measurements. OKID, developed at NASA, resulted in a very successful algorithm known as

OKID/ERA (OKID followed by eigensystem realization algorithm). We show how ERA is not

the only method to complete the OKID process, developing novel algorithms based on the

preliminary estimation of the Kalman filter output residuals.

The new algorithms do not only show potential for better performance, they also cast light

on OKID, explicitly establishing the Kalman filter as central to linear system identification in

the presence of noise, paralleling its role in signal estimation and filtering. The Kalman filter

embedded in the OKID core equation is capable of converting the original problem, affected

by random noise, into a purely deterministic problem. The new interpretation leads to the

extension of OKID to output-only system identification, providing a new tool for applications in

structural health monitoring, and raises OKID to the level of a unified approach for input-output



and output-only linear system identification. Any algorithm for linear system identification

formulated in the absence of noise can now optimally handle noisy data via a preliminary step

consisting in solving the OKID core equation.

The OKID framework developed for linear system identification is then extended to bilinear

systems, which are of interest because several natural phenomena are inherently bilinear and

also because high-order bilinear models are universal approximators for a wide class of nonlinear

systems. The formulation of an optimal bilinear observer for bilinear state-space models, similar

to the Kalman filter in the linear case, leads to the development of an extension of OKID to

bilinear system identification. This is the first application of OKID to nonlinear problems,

not only because bilinear systems are themselves nonlinear, but also because one can think of

bilinear OKID as a technique to find bilinear approximations of nonlinear systems.

Furthermore, the same strategy adopted in this work could be used to extend OKID directly to

other classes of nonlinear models.
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Chapter 1

Introduction

1.1 System identification

System identification has attracted a lot of research interest over the last three decades in

many areas of engineering and other fields, virtually in any application concerning models of

dynamic systems. The basic purpose of system identification is to find from experimental data

a mathematical model representing the behavior of the dynamic system of interest. In this

regard, it can be seen as a powerful alternative to traditional modeling by first principles.

The latter is often extremely useful in providing the structure of the dynamic equations and

understanding qualitative aspects of the system behavior. However, the values of the equation

coefficients can be critical to assign, for example because they depend on material properties

difficult to assess or on complex geometry. Additionally, the physical parameters determining

such coefficients can vary significantly from the static conditions in which they are measured to

the dynamic conditions in which the system will operate. System identification methods have

been developed that provide both the order of the mathematical model and its coefficients from

1
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dynamic input-output data measured from the system of interest in a dedicated experiment or

in normal operation (on line).

Among the possible mathematical representations of dynamic systems, state-space models have

become very popular in particular because they lend themselves well to system analysis, nu-

merical simulation and controller design via established and robust techniques. A discrete-time

linear-time-invariant state-space model is defined as

x(k + 1) = Ax(k) + Bu(k) (1.1a)

y(k) = Cx(k) + Du(k) (1.1b)

where k is the time step (sample counter), x ∈ Rn×1 is the state vector, u ∈ Rm×1 is the

input vector, y ∈ Rq×1 is the output vector, A ∈ Rn×n is the system matrix, B ∈ Rn×m is the

input matrix, C ∈ Rq×n is the output matrix and D ∈ Rq×m is the direct influence matrix.

Equation (1.1a) is the state equation and equation (1.1b) is the observation equation. Such

a model is linear since the variables u, x and y appear linearly in equation (1.1), and it is

time-invariant since the matrices A, B, C and D are constant over time. Although physical

dynamical systems are usually in continuous time (and state-space models can be cast in con-

tinuous time, too), discrete-time models are of interest because they are particularly suitable

for digital implementation. This is true both in applications of dynamic models, for example

in controllers implemented via software, and in the identification process, where the measured

data come from sampling devices.

State-space models are not the only option to represent linear dynamical systems. Although a

review of all possible linear models is beyond the scope of this work, it is worth mentioning the
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following finite-difference equation

y(k) = α1y(k − 1) + α2y(k − 2) + . . .+ αny(k − n)

+ β0u(k) + β1u(k − 1) + . . .+ βnu(k − n) (1.2)

where αj ’s and βj ’s are constant matrices. Equation (1.2) expresses the output at the current

time step k as a linear combination of past outputs and current and past inputs, looking back

n time steps. n is referred to as the order of the system. Equation (1.2) is known in the

time-series literature as an autoregressive model with exogenous input (ARX). Note that the

models in equations (1.1) and (1.2) are equivalent in terms of input-output mapping. It is indeed

possible to convert one into another by simple operations.

The model in equation (1.1) is purely deterministic since the input u and the output y are

supposed to be measured and therefore completely known. Given some initial conditions, the

state response over time is fully determined as well. However in real applications noise in-

evitably affects the system. It can be in the form of electrical noise in actuators and sensors,

disturbances in the environment where the dynamic system operates or even modeling error.

Every mathematical model, no matter how accurate it is, is based on simplifying assumptions

that hopefully well represent the characteristics of the system that mostly affect its dynamic

response. Nevertheless, unknown disturbances or unmodeled secondary phenomena, although

negligible, often contribute to the response and appear in the measurements as noise.

To take into account noise, the state-space model in equation (1.1) is usually modified as

x(k + 1) = Ax(k) + Bu(k) +wp(k) (1.3a)

y(k) = Cx(k) + Du(k) +wm(k) (1.3b)
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where the vectors wp ∈ Rn×1 and wm ∈ Rq×1 represent some process and measurement

noise affecting the dynamics of the state and the measured output. A common assumption

for wp(k) and wm(k) is that they are uncorrelated with u(k) and y(k) are zero-mean and

white. Additionally, they often are considered to have constant covariance matrices Q and

R, respectively. Such assumptions have become standard in the literature as they are a good

compromise between mathematical tractability of the model and accurate representation of

reality. However it must be kept in mind that, for instance, modeling errors cannot be white

by definition and disturbances, even when random, usually have a specific frequency content,

violating the assumption of flat spectrum. Obviously, the closer the noise is to the stated

assumptions, the better the system identification methods based on equation (1.3) perform. A

good reference on state-space models, covering all the concepts useful to thoroughly understand

the material presented in the next chapters is Reference 1.

1.1.1 System identification vs. parameter estimation

Figure 1.1 shows the system identification process by input-output diagrams. Two aspects of

system identification are worth pointing out. First of all the order of the system is not known

a priori. The dimensions of the identified matrices (in particular A) are not pre-specified and

they are somehow determined by information embedded in the measured input-output data

sequences. Secondly, the identified model is necessarily linear, although it can be of any order.

(a) Data collection. (b) Identification.

Figure 1.1: System identification.
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Typically, when a nonlinear model is desired, one has to specify the form of the nonlinearity,

fixing the order of the system as well.

Those two aspects are peculiar to system identification and distinguish it from the sister field

of parameter estimation. In parameter estimation the equations of the dynamic model are

completely specified a priori, apart from the value of their coefficients (parameters). Hence

parameter estimation techniques lend themselves to finding nonlinear models as well. On the

other hand, they have no freedom in choosing the order of the system, which therefore needs to

be known a priori. Parameter estimation requires knowledge of the physics of the phenomenon

that one wants to model, whereas system identification is often referred to as black-box modeling

since in principle it does not require any a priori information on the system to be identified. In

summary, system identification provides the best linear approximation of the model representing

the true dynamics of the system. Because many systems behave linearly, at least in a limited

range of operation, and the most popular system analysis and controller design techniques are

based on linear models, system identification has become a very popular modeling technique.

1.1.2 Deterministic vs. combined system identification methods

Many methods for system identification have been developed. Providing a comprehensive re-

view is beyond the scope of this work, and the task is complicated by the large number of

algorithms that researchers have devised. It is however very relevant to this work remarking

the difference between deterministic and combined system identification methods, following the

same classification done in Reference 2.

Deterministic methods are developed from the state-space model in equation (1.1). Since their

formulation does not take into account the presence of noise, their behavior with experimental

input-output data, inevitably polluted with noise, is unknown a priori. Their robustness is
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entirely in the hands of the numerical techniques used in the implementation. Some deterministic

algorithms have actually proven to be quite robust to noise. Nevertheless, better methods

have been worked out based on the model in equation (1.3), i.e. taking explicitly into account

process and measurement noise. Their formulation then directly addresses noise in the data

and tries to minimize the resulting uncertainty in the identification. Such methods are referred

to as combined since they handle both the deterministic (u) and stochastic (wp and wm) drive

of the system. Another class can be defined, that of stochastic methods, which address the

identification problem where no deterministic input is present and will be the topic of chapter 4.

1.2 Bilinear systems

Bilinear systems are a specific class of nonlinear systems and are defined in discrete-time state-

space form as

x(k + 1) = Ax(k) +

m∑
i=1

Nix(k)ui(k) + Bu(k) +wp(k) (1.4a)

y(k) = Cx(k) + Du(k) +wm(k) (1.4b)

Bilinear systems differ from linear systems because of the presence of products between the

state and the input, whose effect on the dynamics of the state is determined by matrices Ni ∈

Rn×n. Bilinear systems are important per se since several phenomena in engineering, biology,

physiology, sociology and other fields are inherently bilinear (References 3–5). Some examples

of inherently bilinear systems are DC motors, automobile braking systems, processes involving

the regulation of thermal energy by fluid flow, chemical reactors. Even more appealing is the

fact that bilinear models can approximate more general nonlinear systems, namely input-affine

dynamic systems, i.e. systems with input appearing linearly (References 6, 7). At the same
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time, bilinear models have sufficient mathematical structure to aim to develop techniques for

controller and observer design so that one can think of bilinear models as a unified approach

to handle nonlinear control problems. Interest in bilinear systems has recently seen a spark

after Carleman linearization (References 8) was found to be a technique to obtain a bilinear

approximation of input-affine dynamic systems (Reference 9).

1.3 Research motivation

The main motivation for this research work is to develop methods for the identification of

discrete-time bilinear state-space models, continuing the work initiated by Hizir (Reference 10).

Significant work in the area of bilinear and more generally of nonlinear system identification

has been recorded over the past few years, with valuable contribution in particular from Juang

(References 9, 11–14). Although well-established and robust system identification techniques

have been developed for linear system identification, to date the same cannot be stated for

bilinear systems and more generally for nonlinear systems. The property of bilinear models of

being able to approximate input-affine nonlinear system positions bilinear system identification

as a general method to identify mathematical models of nonlinear systems.

The shortcomings of existing bilinear system identification methods are introduced in chap-

ters 6, 7, 9, which describe novel bilinear identification methods to overcome them. One of

the main objectives is concerned with the development of bilinear identification methods with

explicit connection with state observers for bilinear systems. For this reason, the approach to

bilinear system identification starts with the same technique that in the past led to a method

that has not only been very successful in linear system identification (see for example Ref-

erences 15–19) but also has an explicit connection with state observers, as suggested by the
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name observer/Kalman filter identification (OKID) followed by eigensystem realization algo-

rithm (ERA), References 1, 20. More precisely, under the stated assumptions on the noise wp

and wm, OKID/ERA simultaneously identifies the system model and the associated optimal

observer for the (unknown) covariances of the noise embedded in the measured data. With

reference to the classification in section 1.1.2, OKID/ERA qualifies as a combined system iden-

tification method. State observers are an indispensable component to design state-feedback

controllers, since the measured outputs are often fewer than the state variables of the dynamic

system and therefore an estimate for the entire state is necessary to close the loop. For bilin-

ear systems approximating more general nonlinear systems, the need for bilinear observers is

even more important because Carleman linearization introduces additional non-physical state

variables that cannot be measured.

The extension of OKID to bilinear systems turns out to require some significant modifications

to the original OKID/ERA algorithm. In particular, the lack of ERA for bilinear systems moti-

vates the development of an alternative approach to complete the OKID process. The research

on bilinear system identification presented in this thesis leads then to the development of new

methods for linear system identification, too. Such methods provide a novel and powerful inter-

pretation to OKID that raises OKID to the level of a general approach to system identification

and establishes the OKID core equation and the underlying Kalman filter as the bridge between

deterministic (noise-free) and combined (noisy) system identification.

1.4 Thesis organization

The organization of this thesis could have followed two alternative paths. From a chronological

point of view, chapter 6 should come first, followed by chapter 7. The former rigorously extends
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to the bilinear case the concept of interaction matrices, which is also at the core of the devel-

opment of linear OKID, resulting in new deterministic bilinear system identification algorithms

that have the advantage of not imposing any restriction to the form of input used to excite the

system. Chapter 7 describes an alternative method to overcome the approximate nature and the

curse of dimensionality affecting the method in chapter 6, at the price of relying on structured

excitation. Chapter 8 establishes the connection between the bilinear identification method in

chapter 6 and the bilinear state estimation problem, proving that the above mentioned inter-

action matrices correspond to the gains of optimal bilinear observers, similar to OKID in the

linear case. Also, chapter 8 lays the foundation for the extension of the deterministic bilinear

identification method in chapter 6 to the combined case, paving the ground for bilinear OKID.

For that purpose, the Kalman filter properties at the core of OKID needs to be revisited as

reported in chapter 2. The development of bilinear OKID described in chapter 9 relies on a new

approach to system identification, which is the most important conceptual contribution of this

thesis. Before being applied to bilinear system identification, the new approach is completely de-

veloped and implemented for linear system identification leading to the new OKID-based linear

system identification algorithms described in chapter 3. The sudden expansion of the family of

OKID methods and the intuitive interpretation of the new methods motivate the development

of a general framework for OKID, which is presented in chapter 5, and suggest the possibility

of applying OKID to stochastic (or output-only) system identification (chapter 4).

The author has chosen the second path, organizing the work in accordance with the logical flow of

concepts and results. The work is then split into two parts. The first one (chapters 2 - 5) presents

OKID for linear systems, from its theoretical foundations, through classic and novel algorithms,

up to the illustration of the general framework for system identification that OKID provides,

including output-only identification. The second part is concerned with bilinear systems and
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begins with the development of two new methods for their identification in the absence of

noise, continues with the link between such methods and bilinear state observers (which is also

exploited to develop a new method for bilinear observer design), establishing the new methods

for bilinear system identification as belonging to the OKID framework, and culminates with the

development of bilinear OKID in the presence of noise.



Chapter 2

Observer/Kalman filter

identification

2.1 Introduction

After a clear statement of the problem that observer/Kalman filter identification (OKID) ad-

dresses, this chapter provides a comprehensive and self-contained presentation of the keystone

of OKID. The equation at the core of OKID, relating measured input-output data without the

state appearing explicitly, is derived following an approach slightly different from that used in

the traditional OKID literature (References 1, 20). The derivation better highlights the role of

the observer in OKID. Additionally, the connection between the least-squares solution to the

OKID core equation and the optimal observer (Kalman filter) is presented in detail. The need

to revisit how such a connection is established arises from the desire to develop an extension of

OKID for bilinear systems, which highlights the necessity of working out more rigorously the

proof at the core of OKID. For the purpose, the relevant properties of the steady-state Kalman

11
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filter are proven and linked to the linear-time-invariant (LTI) observer used in the derivation of

the OKID core equation. In chapter 8, the same approach is extended to the bilinear case.

Linear-time-invariant observers and in particular the Kalman filter are at the core of OKID,

therefore they deserve a thorough introduction. A review of observers and state estimators is

beyond the scope of this chapter, which is limited to the presentation of the concepts useful to

develop and understand OKID. Although not comprehensive, such a presentation is at the same

time rigorous and self-contained to the benefit of the reader with little background in the area.

2.2 Problem Statement

Consider the linear-time-invariant (LTI) dynamical system in discrete-time state-space form

given in equation (1.3). A single set of length l of input-output data, measured from the system

starting at some unknown initial state x(0), is given

{u(k)} = {u(0), u(1), u(2), . . . , u(l − 1)} (2.1a)

{y(k)} = {y(0), y(1), y(2), . . . y(l − 1)} (2.1b)

The objective is to identify the system of equation (1.3) from the measured input-output data

provided in equation (2.1), i.e. to find the matrices A, B, C, D given the sequences {u(k)}

and {y(k)}. The data is assumed to be of sufficient length and richness so that the system of

equation (1.3) can be correctly identified. Neither the noise sequences {wp(k)} and {wm(k)}

or their covariance matrices Q and R are known.

It would be ideal to extract from the measured input-output data also the optimal linear observer

of the system state, to be used for example in a state-feedback control loop for the identified
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system. The optimal observer is uniquely determined by the system and noise covariance ma-

trices (see equation (2.7) or References 1, 21). Whereas the measurement noise covariance can

usually be estimated via dedicated experiments on the sensors, the process noise covariance is

harder to assess, making the design of the observer more difficult. It is then desired to estimate

the Kalman gain K as well, which will be introduced in the next section.

As a final note, the assumptions made in section 1.1 on the noise affecting the dynamic system to

be identified are standard in the literature of system identification and state estimation. In real

applications, noise is not perfectly white, in particular the process noise, which usually is due

to modeling errors or disturbances. The stated assumptions have the benefit of mathematical

tractability, while generally retaining a good approximation of actual noise. Obviously, the

smaller the approximation, the better the identification techniques developed from equation (1.3)

and the stated assumptions will perform. Similar to how the Kalman filter is a robust state

estimator even in conditions violating its assumptions, even OKID turns out to perform well

in such conditions. This is supported by numerous successful applications of the traditional

OKID/ERA algorithm (see for example References 1, 15, 17, 20, 22, 23) as well as by the

experimental examples shown in chapters 3 and 4.

2.3 Observers and Kalman filter

A typical problem in system dynamics is the estimation of the state x, given the system matrices

A, B, C, D and input-output measurements. For instance, in modern control system engineer-

ing, the knowledge of the current state is necessary to implement state-feedback control laws.

However, in most cases the state is not measured and only a subset (or, with more generality,

a linear combination) of the state variables is available from the output measurement y. Also

the input u is measured.
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The state estimation problem (or observer problem) for the LTI system of equation (1.3) can

be formulated as follows. Given the system model and the measured values of the input u and

output y from time sample 0 to k, what is the best estimate that we can get for the state x at

the next time step k + 1? Any set of equations yielding at time k an estimate x̂(k + 1) for the

state x(k+ 1) is called state estimator for the system in equation (1.3), state observer or simply

observer. An alternative name is that of one-step-ahead predictor to remark the fact that an

observer is asked to predict the behavior of the state at the future step knowing the input and

output up to the current time step.

In general, an observer for the LTI system of equation (1.3) has then the form

x̂(k + 1) = F (k,u(0),u(1), . . . ,u(k),y(0),y(1), ...,y(k)) (2.2)

which might also be written in recursive (or adaptive) form

x̂(k + 1) = G (k, x̂(k),u(k),y(k)) (2.3)

The adaptive form is highly desirable for computational efficiency, but a priori it is not guar-

anteed that any general form can be converted into adaptive. Note that for generality, both F

and G can explicitly depend on time.

A special family of state estimators is given by the linear observers, defined by equation (2.2)

with linear F or, in recursive form, by equation (2.3) with linear G. Note that any linear

observer can be written in recursive form. The most general form for a linear observer can then
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be written as

x̂(k + 1) = F(k)x̂(k) + H(k)u(k) + K(k)y(k) (2.4a)

ŷ(k) = Cx̂(k) + Du(k) (2.4b)

where F(k) ∈ Rn×n, H(k) ∈ Rn×m and K(k) ∈ Rn×q. Equation (2.4b) is added to provide

an estimate of the true system output as well. Such an estimate is indicated by ŷ, which is

also known as observer output. Note that equation (2.4) is the equation of a dynamic system,

whose state is driven by u and y, which are the input and output of the original, physical

system in equation (1.3) but from the point of view of the observer are both inputs. In other

words, an observer is a dynamical system itself. Whereas the original system of equation (1.3)

is the mathematical representation of a physical (real) system, an observer is just a set of

equations whose purpose is the estimation of the state and possibly the output of the original

system. From a mathematical point of view, both equation (1.3) and equation (2.4) are dynamic

systems (the former is linear-time-invariant, LTI, the latter is linear-time-varying, LTV). This

observation is of paramount importance not only in the proof of the OKID core equation, but

also to understand the intimate nature of OKID and in particular of the algorithms presented in

section 3.4. The similarity of equation (2.4b) with equation (1.3b) is due to the following simple

fact. Once the desired estimate of the next state is available and the next input is chosen,

one can compute the corresponding estimate for the next output via equation (1.3b), which

indeed describes how the output is related to the state and the input. Only the value of the

measurement noise is unknown, but the best guess for it is its expected value, which is 0 at each

time step by assumption (wm is a zero-mean random process). Hence, equation (2.4b).

In his seminal paper (Reference 24), Kalman derived equation (2.4) as the observer form pro-

viding the optimal estimate of the state under some assumptions on the probability distribution
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of the noises. A common distribution satisfying such assumptions is the normal or Gaussian

distribution. Kalman also found the relations to obtain the value of the matrices F(k), H(k) and

K(k). The resulting observer, known as Kalman filter, is the linear observer in equation (2.4)

with

F(k) = A−K(k)C (2.5a)

H(k) = B−K(k)D (2.5b)

K(k) = AΠ(k)CT
(
R + CΠ(k)CT

)−1
(2.5c)

Π(k + 1) = AΠ(k)AT −AΠ(k)CT
(
R + CΠ(k)CT

)−1
CΠ(k)AT + Q (2.5d)

Equation (2.5d) is the famous Riccati equation and Π is the covariance matrix of the state

estimation error e(k) = x(k)− x̂(k), i.e. Π(k) = E
[
e(k)eT(k)

]
.

It is now important to point out two facts. First, the Kalman filter is the optimal observer,

among all the possible observers for the LTI system of equation (1.3), in the case of Gaussian

distribution (or other particular distributions satisfying the conditions given in Reference 24)

of the noise. Second, the Kalman filter is the optimal linear observer for any other distribution

for the noise, provided the latter is a white, i.e. uncorrelated, process. As explained later, the

optimality criterion behind the above fact can be defined in several equivalent ways, remarkably

all leading to the same observer. For the sake of clarity, it is also worth mentioning that Kalman

derived his famous equations with reference to a linear-time-varying (LTV) dynamic system,

addressing a more general family of dynamic systems than the one considered in this work. In

Reference 24 also the noise covariance matrices could be time-varying, i.e. Q(k) and R(k).

Under the assumption of stationary noise, i.e. noise with mean and covariance constant over

time as assumed in section 2.2, the matrices of the Kalman filter approach over time constant
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values. The Kalman filter in steady state then becomes a LTI observer. The most general form

of LTI observer is

x̂(k + 1) = Fx̂(k) + Hu(k) + Ky(k) (2.6a)

ŷ(k) = Cx̂(k) + Du(k) (2.6b)

When F, H and K are given by

F = A−KC (2.7a)

H = B−KD (2.7b)

K = AΠCT
(
R + CΠCT

)−1
(2.7c)

Π = AΠAT −AΠCT
(
R + CΠCT

)−1
CΠAT + Q (2.7d)

the LTI observer in equation (2.6) is the steady-state Kalman filter. Equation (2.7d) is known as

the algebraic Riccati equation. Note that equation (2.6) is itself the equation of a LTI dynamic

model and that the matrices of the steady-state Kalman filter depend on the system matrices

A, B, C, D as well as the noise covariance matrices Q, R.

Many derivations of equation (2.7) have been worked out and are available in the literature.

The Kalman filter can indeed be derived in several ways and, remarkably, from different starting

points as there are a few properties that uniquely characterize it. Reference 1 defines the opti-

mality criterion for the state estimator as the minimization of the expected value of the magni-

tude (squared, for convenience) of the state estimation error, E
[
(x(k)− x̂(k))T (x(k)− x̂(k))

]
.

The choice is intuitive, since the goal of the observer is the estimation of the state of the true

system. Among the other properties that uniquely define the Kalman filter, we are interested

in the following four, valid for all k ≥ p, where p is a time index sufficiently large to consider
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the Kalman filter in the steady state and

ε(k) = y(k)− ŷ(k) (2.8)

is the observer (Kalman filter) output residual:

Property 1 ε is a zero-mean white process, i.e. E [ε(k)] = 0 and E
[
ε(i)εT(j)

]
= 0 for all

i 6= j.

Property 2 E
[
εT(k)ε(k)

]
is minimized.

Property 3 ε is orthogonal to past output values and past and current input values, i.e.

E
[
ε(k)yT(k − j)

]
= 0 for all j = 1, 2, ..., k and E

[
ε(k)uT(k − j)

]
= 0 for all j = 0, 1, ..., k.

Their proofs are presented in section 2.4. Additionally, the Kalman filter is the only linear

observer featuring the above properties. With more generality we can then state

Fact 0 The Kalman filter is the unique linear system in the form of equation (2.6), i.e. the

unique LTI observer, having any of the properties 1 to 3.

This fact is the theoretical foundation of OKID.

2.4 Kalman Filter properties

In this section the properties of the Kalman filter which provide the theoretical foundation of

OKID are derived. The presentation is specific to OKID, it is not meant to be a review of the

general properties of the Kalman filter. Lemmas 8.4 and 8.5 prove property 1 above, lemma 8.8

proves property 2 and lemmas 8.6 and 8.7 prove property 3. Fact 0 directly follows from the

above mentioned lemmas.
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Consider the system in equation (1.3) and the LTI observer in equation (2.6). From the definition

of state estimation error

e(k) = x(k)− x̂(k) (2.9)

and equations (1.3) and (2.6), the dynamics of the state estimation error is

e(k + 1) = x(k + 1)− x̂(k + 1)

= Ax(k) + Bu(k) +wp(k)− Fx̂(k)−Hu(k)−Ky(k)

= (A−KC) e(k) + (A− F−KC) x̂(k)

+ (B−H−KD)u(k) +wp(k)−Kwm(k) (2.10)

We would like to analyze the properties of the observer in (2.6) and in particular the conditions

under which the observer state x̂(k) is an unbiased estimate for the system state x and the

estimation error is minimized.

2.4.1 Unbiased observer

Lemma 2.1. The state x̂(k) of the observer in equation (2.6) is an unbiased estimate for the

state x(k) of the system in (1.3) for all k ≥ p and for any arbitrary input sequence if and only

if the following conditions are satisfied

F = A−KC (2.11a)

H = B−KD (2.11b)

(A−KC)p = 0 (2.11c)
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Notice that when the condition in equation (2.11c) cannot be satisfied exactly, it can still be

approximately met by a sufficiently large value of p provided A −KC has all the eigenvalues

within the unit circle. Equation (2.11c) corresponds then to the observer in (2.6) being stable

and having reached its steady state.

Proof. Define for convenience

Ā = A−KC (2.12a)

F̄ = A− F−KC (2.12b)

H̄ = B−H−KD (2.12c)

(2.12d)

Equation (2.10) can be rewritten as

e(k + 1) = Āe(k) + F̄x̂(k) + H̄u(k) +wp(k)−Kwm(k) (2.13)

and the expected value of the state estimation error is

E [e(k)] = ĀE [e(k − 1)] + F̄E [x̂(k − 1)] + H̄u(k − 1) (2.14)

To obtain equation (2.14), the noise terms vanish thanks to the assumption of zero-mean noises

and the input is pulled out of the expectation operator since it is a known, deterministic vari-

able (u is measured). The expected values in equation (2.14) are ensemble averages, i.e. they

can be interpreted as the expected values obtained over different realizations of the process

and measurement noise while driving the system with the same input sequence. Propagating
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equation (2.14) one time step backwards yields

E [e(k)] = Ā2E [e(k − 2)] + ĀF̄E [x̂(k − 2)]

+ ĀH̄u(k − 2) + F̄E [x̂(k − 1)] + H̄u(k − 1) (2.15)

and, by propagating back to the initial time step, we can write the expected state estimation

error as

E [e(k)] = ĀkE [e(0)] + f
(
Ā, F̄, H̄, x̂(0),u(0),u(1), . . . ,u(k − 1)

)
(2.16)

where the second term on the right-hand side of equation (2.16) represents all the terms not

depending on the initial error and is identically zero for any input history and initial observer

state if and only if F̄ and H̄ are null matrices, i.e. if and only if F and H in equation (2.6) are

chosen in accordance with the conditions in equations (2.11a) and (2.11b). The first term is

guaranteed to vanish for any choice of x̂(0) and for any possible x(0) if and only if the observer

is stable and k is sufficiently large for the observer to have reached its steady state (k ≥ p).

For the sake of completeness, the special case for which Āk = 0 for all k ≥ n corresponds to a

deadbeat observer, which can be interpreted as the Kalman filter in the absence of noise.

2.4.2 Optimal observer

Among all the possible LTI observers, we are now interested in the one minimizing the expected

value of the norm squared of the state estimation error E
[
eT(k)e(k)

]
at all k. The criterion

is equivalent to minimizing the trace of the covariance matrix of the state estimation error

Π(k) = E
[
e(k)eT(k)

]
. Recall that the second moment for a random variable is greater than

or equal to the corresponding central moment (variance). Equality is achieved only in the case

of zero mean. It follows that in order to minimize the sum of the second moments of each
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component of the estimation error E
[
eT(k)e(k)

]
, the observer needs to be unbiased so that

E
[
eT(k)e(k)

]
is the sum of the variances. Conditions (2.11a)-(2.11c) needs then to be satisfied

and Π(k + 1) can be expressed as

Π(k + 1) = ĀΠ(k)ĀT + KRKT + Q (2.17)

Supposing the observer is stable, after the transient has vanished, the covariance of the state

estimation error will reach a steady state value Π given by

Π = ĀΠĀT + KRKT + Q (2.18)

Lemma 2.2. The observer in equation (2.6) minimizes the squared norm of the steady-state

state estimation error if and only if the observer is unbiased (Lemma 8.2) and K satisfies the

following condition

ĀΠCT −KR = 0 (2.19)

Proof. The squared norm of the steady-state state estimation error can be computed as the

trace of the covariance matrix Π. We can then think of choosing K such that the trace of Π is

minimized. Imposing the first-order conditions, from equation (2.18) we obtain

∂ trace Π

∂K
= −2

(
ĀΠCT −KR

)
= 0 (2.20)

which leads to the optimality condition in equation (2.19). Note how the latter is valid for any

kind of input u.
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2.4.3 Properties of the residuals

Lemma 2.3. The expected value of the output residuals of the observer in equation (2.6) is

zero at all k ≥ p if and only if the observer state is an unbiased estimate of the system state

(Lemma 8.2).

Proof. From the definition of observer residual, we can write

ε(k) = y(k)− ŷ(k) = Ce(k) +wm(k) (2.21)

Taking the expectation (ensemble average) of both sides of (2.21) we obtain

E [ε(k)] = CE [e(k)] (2.22)

and for the same conditions that guarantee that the observer in (2.6) is unbiased (Lemma 8.2),

E [ε(k)] = 0 at all k ≥ p, i.e. for all k in steady state.

Lemma 2.4. The output residuals of the observer in equation (2.6) in steady state form a white

sequence, i.e. E
[
ε(k + j)εT(k)

]
for k ≥ p is zero for j ≥ 1, if and only if the observer is optimal

(Lemma 8.3).

Proof. We prove here Lemma 8.5 for j = 1, the proof for other values of j follows the same

lines. From equations (2.21) and (2.13), considering the unbiased observer of Lemma 8.2 we
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can write

E
[
ε(k + 1)εT(k)

]
= E

[
(Ce(k + 1) +wm(k + 1)) (Ce(k) +wm(k))T

]
= E

[(
CĀe(k) + Cwp(k)−CKwm(k)

+wm(k + 1)
)

(Ce(k) +wm(k))T
]

= C
(
ĀΠ(k)CT −KR

)
+ C

(
N̄Π(k)CT −M2R

)
u(k) (2.23)

In steady state(k ≥ p), Π(k) tends to Π given by equation (2.18), yielding

E
[
ε(k + 1)εT(k)

]
= C

(
ĀΠCT −KR

)
(2.24)

which vanishes under the optimality conditions (2.19).

Lemma 2.5. The expected value of the norm squared of the output residuals of the observer in

equation (2.6) in steady state is minimized if and only if the observer is optimal (Lemma 8.3).

Proof. Recalling equation (2.21), we obtain

E
[
ε(k)εT(k)

]
= E

[
(Ce(k) +wm(k)) (Ce(k) +wm(k))T

]
= CE

[
e(k)eT(k)

]
CT + E

[
wm(k)wT

m(k)
]

= CΠCT + R (2.25)
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Note that E
[
εT(k)ε(k)

]
= traceE

[
ε(k)εT(k)

]
, therefore it is sufficient to prove that the latter

is minimized. Linearity of the trace operator allows us to write

traceE
[
ε(k)εT(k)

]
= trace

(
CΠCT + R

)
= trace CΠCT + trace R (2.26)

The second term on the right hand-side of equation (2.26) is given. We then need to prove

that the first term is minimum if trace Π is minimized. The trace of a matrix is invariant to

similarity transformations, therefore without loss of generality we can transform equation (2.26)

into a new coordinate frame (denoted by superscript prime) where Π is diagonal

traceE
[
ε(k)εT(k)

]
= trace C′Π

(
C′
)T

+ trace R′ (2.27)

where trace R′ = trace R. The relevant term to be minimized can be rewritten as

trace C′Π
(
C′
)T

=
n∑
j=1

(
q∑
i=1

c2
ijπj

)
=

n∑
j=1

(
πj

q∑
i=1

c2
ij

)
(2.28)

where cij ’s are the entries of C and πj ’s are the diagonal entries of Π. The former are given

and c2
ij ≥ 0 for all i, j, hence γj =

∑q
i=1 c

2
ij ≥ 0. Since Π is a covariance matrix and its diagonal

entries represent variances, πj ≥ 0 for all j. As a result

trace C′Π
(
C′
)T

=

n∑
j=1

πjγj (2.29)

is minimized if every πj is minimum, as guaranteed only by the optimal observer in Lemma 8.3.
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Lemma 2.6. The output residuals of the observer in equation (2.6) in steady state are orthog-

onal to the current and past input values, i.e. E
[
ε(k)uT(k − j)

]
for all k ≥ p is zero for j ≥ 0,

if and only if the observer is unbiased (Lemma 8.2).

Proof. For j = 0, starting from equation (2.21), we can write

E
[
ε(k)uT(k)

]
= CE [e(k)]uT(k) (2.30)

which vanishes for zero-mean output residuals, i.e. if and only if the observer state is an unbiased

estimate for the system state (Lemma 8.4). Similarly, for j > 0 we obtain

E
[
ε(k)uT(k − j)

]
= CE [e(k)]uT(k − j) (2.31)

with the same conclusion.

Lemma 2.7. The output residuals of the observer in (2.6) in steady state are orthogonal to the

past output values, i.e. E
[
ε(k)yT(k − j)

]
for k ≥ p is zero for j ≥ 1, if and only if the observer

is optimal (Lemma 8.3).

Proof. We prove Lemma 8.7 below for j = 1, the proof for other values of j follows the same

lines, therefore it is omitted. From equation (2.21) and considering the unbiased observer of

Lemma 8.2, we can write

E
[
ε(k)yT(k − 1)

]
= E

[
(Ce(k) +wm(k))yT(k − 1)

]
= E

[
Ce(k)yT(k − 1)

]
= CE

[(
Āe(k − 1) +wp(k − 1)−Kwm(k − 1)

)(
Cx̂(k − 1) + Ce(k − 1)

+ Du(k − 1) +wm(k − 1)
)T]

= CĀE
[
e(k − 1)x̂T(k − 1)

]
CT + C

(
ĀΠ(k − 1)CT −KR

)
(2.32)
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In steady state(k ≥ p), Π(k) tends to Π given by equation (2.18) and we obtain

E
[
ε(k)yT(k − 1)

]
= CĀE

[
e(k)x̂T(k)

]
CT + C

(
ĀΠCT −KR

)
(2.33)

which vanishes for the optimal observer of Lemma 8.3. The first term on the right-hand side of

equation (2.33) is null because so is E
[
e(k)x̂T(k)

]
by the orthogonality argument arising from

the least-squares optimality criterion, the last term vanishes thanks to the optimality condition

in equation (2.19).

2.5 OKID core equation

The main difficulty in state-space model identification is the nonlinearity of the problem. Al-

though the model in equation (1.3) is linear, from the viewpoint of system identification both

the state x and the matrices A and C are unknowns. Their products in equation (1.3) make

the identification problem nonlinear. OKID relies on an observer to remove such nonlinearity.

Defining

G =

[
H K

]
(2.34a)

vx(k) =

u(k)

y(k)

 (2.34b)

the most general form of LTI observer, equation (2.6), becomes

x̂(k + 1) = Fx̂(k) + Gvx(k) (2.35a)

ŷ(k) = Cx̂(k) + Du(k)) (2.35b)
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where vx can be looked as the input to the observer state equation. Indeed, u and y are the

given signals driving the observer state dynamics. Recalling the definition of observer output

residual in equation (2.8), equation (2.36) can also be written as

x̂(k + 1) = Fx̂(k) + Gvx(k) (2.36a)

y(k) = Cx̂(k) + Du(k) + ε(k) (2.36b)

Propagating equation (2.36a) forward in time by p time steps and then shifting the time index

backward by p+ 1, we obtain

x̂(k) = Fpx̂(k − p) + Tz(k) (2.37)

where

z(k) =



vx(k − 1)

vx(k − 2)

...

vx(k − p)


(2.38)

T =

[
G FG ... Fp−2G Fp−1G

]
(2.39)

As will be proven later, the stability of the observer guarantees that Fp becomes negligible

for sufficiently large values of p (p >> n). Equation (2.37) yields then the following relation

expressing the current state as a function of the sole past input and output values

x̂(k) = Tz(k) (2.40)
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Plugging equation (2.40) into equation (2.36b), we obtain

y(k) = Φv(k) + ε(k) (2.41)

where Φ and v(k) are augmented versions of T and z(k) to take into account the direct influence

of the input on the output through the D matrix, i.e.

v(k) =

u(k)

z(k)

 =



u(k)

u(k − 1)

y(k − 1)

u(k − 2)

y(k − 2)

...

u(k − p)

y(k − p)



(2.42)

Φ =

[
D CG CFG ... CFp−2G CFp−1G

]
(2.43)

Equation (2.41) relates the input and output, without the state appearing explicitly. Note that

Φ contains the sequence of Markov parameters of the observer in the form of equation (2.35).

The Markov parameters of a discrete-time linear model correspond to its unit pulse response,

i.e. they are the response to a unit pulse in the input to the system, and they have the properties

of being unique for a given system. The Markov parameters (or unit pulse response) are indeed

often referred to as the signature of the model. Equation (2.41) can be written for each time

step k ≥ p of the measured data record, to obtain the following system of equations in matrix

form

Y = ΦV + E (2.44)
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where

Y =

[
y(p) y(p+ 1) ... y(l − 1)

]
(2.45a)

V =

[
v(p) v(p+ 1) ... v(l − 1)

]
(2.45b)

E =

[
ε(p) ε(p+ 1) ... ε(l − 1)

]
(2.45c)

Equation (2.44) is the OKID core equation. Y and V are known (from measurements), Φ and

E are not. By having l > p (m+ q) + m, the set of equations in (2.44) is overdetermined and,

considering E as an error term, it is possible to find the least-squares (LS) solution

Φ̃ = YVT
(
VVT

)−1
= YV† (2.46)

where † denotes the Moore-Penrose pseudoinverse of a matrix. Associated with the LS solution

are the LS residuals given by

Ẽ = Y − Φ̃V (2.47)

The keystone of OKID is the relationship between the LS solution to the OKID core equation

and the Kalman filter defined in equations (2.6) and (2.7), summarized in the two following

facts:

Fact 1 The LS residuals in equation (2.47) are the output residuals of the Kalman filter.

Proof. Two alternative proofs are provided. The first one is a new result, whose main

benefit is the simplicity of its interpretation.

Proof by Minimization

For simplicity, consider the case with q = 1 (single-output system). By definition, the LS
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solution in equation (2.46) minimizes the norm of Ẽ, i.e. the sum of the squares of the

residuals

Φ̃ = YV† ⇐⇒ min
l−1∑
k=p

ε2(k) (2.48)

Since the assumptions in the problem statement make the process of equation (1.3) sta-

tionary, then by the ergodic property we can estimate the ensemble average of the resid-

uals squared by their time average over a sufficiently long record. Assuming l is large

and dividing the right-hand side of equation (2.48) by l − p, we recognize that for all

k = p, p+ 1, ..., l − 1

lim
l→+∞

1

l − p

l−1∑
i=p

ε2(i) = E
[
ε2(k)

]
(2.49)

Hence, in the limit of l→∞, equation (2.48) becomes

Φ̃ = YV† ⇐⇒ minE
[
ε2(k)

]
(2.50)

Since the Kalman filter is the (only) linear system of equation (2.6) minimizing the ex-

pected value of the residuals squared, it is proven that the residuals Ẽ of the LS problem

are the Kalman output residuals. The extension to the multi-output case is straightfor-

ward and therefore omitted.

Proof by Orthogonality

Right-multiplying equation (2.44) by VT and replacing Φ with its LS estimate Φ̃, we

obtain

YVT = YVT
(
VVT

)−1
VVT + EVT = YVT + EVT (2.51)
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which implies that EV T = 0. From the definition of v(k), we conclude that

l−1∑
k=p

ε(k)uT(k − j) = 0 j = 0, 1, ..., p (2.52a)

l−1∑
k=p

ε(k)yT(k − j) = 0 j = 1, 2, ..., p (2.52b)

Since the assumptions in the problem statement make the process of equation (1.3) sta-

tionary, then by the ergodic property we can estimate the ensemble average of each entry

of the products between the current residual and the current input or past input and out-

put by their time average over a sufficiently long record. Assuming l is large and dividing

equation (2.52) by l− p, we recognize the left-hand side as the time average of each entry

of ε(k)uT(k − j) and ε(k)yT(k − j). The ergodic property leads to the conclusion that,

for all k ≥ p,

E
[
ε(k)u(k − j)T

]
= 0 j = 0, 1, ..., p (2.53a)

E
[
ε(k)y(k − j)T

]
= 0 j = 1, 2, ..., p (2.53b)

The residuals ε of the LS problem of equation (2.44) are then orthogonal to the current

and past input values and to the past output values. Since the Kalman filter is the only

linear system in the form of equation (2.6) that features such property, it is proven that

the residuals of the LS problem are the Kalman output residuals.

Fact 2 The LS solution in equation (2.46) is an estimate for sequence of Markov parameters

of the Kalman filter in the form of equation (2.36), i.e. the true value of Φ is

Φ =

[
D CB̄ CĀB̄ ... CĀp−2B̄ CĀp−1B̄

]
(2.54)
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where Ā = A−KC and B̄ =

[
B−KD K

]
.

Proof. Fact 2 is a corollary of Fact 1. By the same argument of uniqueness of the Kalman

filter, the linear system in equation (2.6) that generated white/orthogonal residuals must

be the Kalman filter and therefore Φ contains the Markov parameters of such Kalman

filter.

Additionally, it is known that a LS estimator is asymptotically unbiased when the equation

error is white and zero-mean. Since in the LS problem of equation (2.44) the error term

is given by the Kalman residual ε, which is known to be a zero-mean white process, then

Φ̃ is an asymptotically unbiased estimate for the Markov parameters of the Kalman filter

in the form of equation (2.36) .

Having established that the observer used in the derivation of equation (2.44) is the Kalman

filter, then its stability is guaranteed (see for example Reference 21) and the assumption of

Fp ≈ 0 for large p to derive equation (2.40) and following is justified.

To summarize, the core of OKID consists in (i) using an observer to implicitly estimate the

true state of the system to be identified, removing the initial nonlinearity of the identification

problem; (ii) exploiting the LS solution to guarantee that such an observer is not a random

observer with random F, H, K matrices but the Kalman filter, whose matrices satisfy equa-

tion (2.7) and therefore are closely related to the matrices of the system to be identified. Said

link is crucial in OKID. Note how the use of an observer, which eventually turns out to be the

Kalman filter, has been defined as implicit because the matrices of the observer are not even

known before identification. Nevertheless, the sole structure of the LTI observer allows one to

derive the OKID core equation whose LS solution has the same properties of the underlying
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Kalman filter and provides some information on said filter, such as its Markov parameters and

its output residuals.

Fact 1 and Fact 2 above are two sides of the same coin. Nevertheless they deserve to be

mentioned separately because they lead to different OKID-based algorithms. Fact 1 is at the

basis of the algorithms presented in section 3.4 and identifying the Kalman filter via its output

residuals, estimated as the LS residuals of equation (2.44)

Ẽ =

[
ε̃(p) ε̃(p+ 1) . . . ε̃(l − 2) ε̃(l − 1)

]
(2.55)

Fact 2 is at the core of the algorithms described in section 3.3, which identify the Kalman filter

via the LS estimate of its Markov parameters

Φ̃ =

[
Φ̃0 Φ̃1 . . . Φ̃p−1 Φ̃p

]
(2.56)

where Φ̃0 is the estimate of D and Φ̃j is the estimate of CĀj−1B̄, j = 1, 2, . . . , p.

2.6 Conclusions

In this chapter, the problem of linear system identification from noisy input-output data has

been stated. The concept of linear observer has been presented, amphasizing teh fact that the

type of observer at the core of OKID is the optimal linear-time-invariant observer, also known as

steady-state Kalman filter (although in this work it is often simply referred to as Kalman filter).

The properties of the steady-state Kalman filter related to OKID have been proven rigorously

and explicitly, without mixing their proofs with the ones for the time-varying Kalman filter, as

done in Reference 1, which is an unnecessary source of confusion. The OKID core equation has
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been derived and the key link between its least-squares (LS) solution and the Kalman filter has

been proven in two different ways. Besides the traditional argument based on orthogonality of

the residuals, the more intuitive proof based on the fact that the Kalman filter output residuals

are indeed minimized in a LS sense is given.

Chapter 2 provides then the theoretical background for OKID and in particular the first step

of it, which is common to all OKID-based algorithms.



Chapter 3

OKID algorithms

3.1 Introduction

The OKID equation presented in the previous chapter, equation (2.44), is at the core of the

approach to system identification described in this work. However, its LS solution does not

complete the identification process. It yields some preliminary information on the Kalman filter

associated with the system to be identified and the noise embedded in the measured input-

output data. A second step is necessary. For the sake of clarity, the OKID core equation

provides the LS estimates for the Kalman filter output residuals, equation (2.55), and Markov

parameters, equation (2.56). In the presentation of the theory behind the second step of the

OKID approach, the notation will for simplicity refer to the true values of Markov parameters

Φj and output residuals ε. Nevertheless it must be born in mind that those are not available

and the OKID algorithms described in sections 3.3 and 3.4 are implemented replacing the true

values with their estimates Φ̃j and ε̃ obtained from the OKID core equation.

36
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Before plunging into the details of the algorithms, two equivalent forms of the Kalman filter in-

troduced in section 2.3 are presented as they help understand the intimate nature of the OKID

approach. The rest of the chapter is divided into two main parts illustrating two different

ways to complete OKID. The first part reviews the traditional OKID methods, i.e. OKID/ERA

(OKID followed by eigensystem realization algorithm) and OKID/ERA-DC (OKID followed by

ERA with data correlation), both based on the estimate of the Kalman filter Markov param-

eters coming from the OKID core equation. A new interpretation to the sequences of Markov

parameters involved in OKID is also provided and is helpful in chapter 5 to better illustrate

the general framework that OKID offers for system identification. Although not completely

novel, the family of OKID/ERA and OKID/ERA-DC algorithms is here expanded to provide a

comprehensive view of OKID. The second part is a completely new development, presented at

the 24th AAS/AIAA Space Flight Mechanics Meeting in Santa Fe, NM, in 2014 (Reference 25),

and gives rise to several algorithms based on the estimate of the Kalman filter output residuals.

Two of them, OKID/DI (OKID followed by deterministic intersection algorithm) and OKID/DP

(OKID followed by deterministic projection algorithm), will also be illustrated via examples. As

a historical note, OKID/ERA and OKID/ERA-DC were the first OKID-based algorithms to be

developed (Reference 20), with co-operation between NASA and Columbia University leading to

the distribution of the algorithm in the software package known as SOCIT (Reference 26). The

original goal was to identify lightly damped structures, quite typical in aerospace engineering

applications, characterized by slow decay of the response to initial conditions, which leads to

high computational effort with traditional methods. The use of an observer allows to modify

the decay rate of the original system response, compressing the data for higher computational

efficiency. The advantage is extreme in the absence of noise, where the observer turns out to

be a deadbeat observer, i.e. an observer whose transient lasts exactly n time steps and becomes

identically equal to zero afterwards (References 27, 28). The development of the new family of
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OKID-based algorithms is more recent and responds to the need for an alternative to ERA, in

an attempt to extend OKID to bilinear systems, for which ERA is not available (see chapter 9).

The resulting approach based on the estimate of the Kalman filter residuals does not only pro-

vide new OKID-based algorithms for the linear case, but also has the benefit of casting new

light on the underlying principles of OKID, leading to a broader and more general framework

for OKID (chapter 5), with extension to output-only system identification (chapter 4), too.

3.2 Kalman filter forms

Before plunging into the details of the identification algorithms, it is worth pointing out how

two different representations of the Kalman filter are used in OKID. In both of them, x̂ and ŷ

indicate the state and the output of the Kalman filter, respectively. This section conceptually

belongs to chapter 5, since the idea that all possible OKID algorithms indeed completely identify

a Kalman filter is a somewhat new concept arising from the desire to generalize the formulation

of OKID.

3.2.1 Kalman filter in innovation form

x̂(k + 1) = Ax̂(k) + Bu(k) + Kε(k) (3.1a)

ŷ(k) = Cx̂(k) + Du(k) (3.1b)

The innovation form expresses the Kalman filter as a state-space model with input given by u

and ε. Whereas the former is also the input to the original system in equation (1.3), the latter

is, in accordance with equation (2.8), the sequence of the output residuals of the Kalman filter,

i.e. the difference between the measurement of the output of the original system and the output
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predicted by equation (3.1b). Recall how the output residuals form a zero-mean white process

(Lemmas 8.4 and 8.5). The output residual is the actual new piece of information that the

output measurement provides to the Kalman filter to provide the optimal estimate for the true

state of the system at the next time step, hence the name innovation form. It is worth noting

also how the state space model in equation (3.1) explicitly includes the matrices A,B,C,D of

the original system to be identified.

For the sake of clarity, the innovation form in equation (3.1) can be written in the more compact

form

x̂(k + 1) = Ax̂(k) + B′v′x(k) (3.2a)

ŷ(k) = Cx̂(k) + Du(k) (3.2b)

where

B′ =

[
B K

]
(3.3a)

v′x(k) =

u(k)

ε(k)

 (3.3b)

(3.3c)

3.2.2 Kalman filter in bar form

From equation (3.1a), recalling the definition of ε in equation (2.8) we can write

x̂(k + 1) = Ax̂(k) + Bu(k) + K (y(k)− ŷ(k)) (3.4)
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Plugging equation (3.1b) into (3.4), we further obtain

x̂(k + 1) = Āx̂(k) + (B−KD)u(k) + Ky(k) (3.5a)

ŷ(k) = Cx̂(k) + Du(k) (3.5b)

The state space model in equation (3.5) is equivalent to the one in equation (3.1) in the sense

that both provide the same time histories for x̂ and ŷ. However, they are driven by different

inputs, as the model in equation (3.5) has u and y as forcing functions. Even more importantly,

the dynamics of equation (3.5) is governed by

Ā = A−KC (3.6)

instead of A, hence the name bar form. Nevertheless, the overall effect of different input and

system matrix on the Kalman filter state history is the same.

Similar to equation (3.1a), the forcing terms in equation (3.5a) can be grouped together to

obtain

x̂(k + 1) = Āx̂(k) + B̄vx(k) (3.7a)

ŷ(k) = Cx̂(k) + Du(k) (3.7b)

where

B̄ =

[
B−KD K

]
(3.8a)

vx(k) =

u(k)

y(k)

 (3.8b)
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Equation (3.7) is indeed the one used to derive the OKID core equation in section 2.5.

The key features that put the bar form at the core of the derivation of the OKID equation

are the following two. First of all, both inputs are known (from measurements), as opposed to

ε in equation (3.1), making it possible to derive an equation involving solely measured data.

Secondly, the fact that the Kalman filter is stabilizing makes Ā in equation (3.5) more stable than

A in equation (3.1), generally resulting in a faster convergence to zero of the state dependent

term in equation (2.37). In other words, the bar form allows one to select a smaller value for

p in the OKID core equation. The advantage is extreme in the case of noise-free data, where

the Kalman filter becomes a deadbeat observer, i.e. K is such that Āp = 0 for p as low as n

regardless the characteristics of the transient of the original system to be identified.

3.3 Identification via Kalman filter Markov parameters

This is the traditional approach of OKID (References 1, 20). The Kalman filter at the core of

OKID can be identified from its Markov parameter sequence Φ, whose estimate Φ̃ is obtained

from the LS solution of the OKID core equation. For convenience, partition Φ as follows

Φ =

[
Φ0 Φ1 . . . Φp

]
(3.9)

where Φ0 ∈ Rq×q and Φj ∈ Rq×m+q, j = 1, 2, . . . , p. Comparing equations (2.43) and (2.54), it

is clear that

Φ0 = D (3.10a)

Φj = CĀj−1B̄ for j = 1, 2, . . . , p (3.10b)
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As the sequence of Markov parameters of a dynamic system corresponds to its unit pulse re-

sponse, one can complete the identification of the system matrices via algorithms capable of

extracting the model matrices (also known as realization) from the system unit pulse response,

such as ERA or ERA-DC (appendix A).

In the original OKID/ERA and OKID/ERA-DC algorithms (Reference 20), before applying

ERA or ERA-DC, the following sequences have to be found

Ψ(s) =

[
D CB CAB . . . CAN−1B

]
(3.11a)

Ψ(g) =

[
CK CAK . . . CAN−1K

]
(3.11b)

that Reference 20 calls the system Markov parameters and the gain Markov parameters, respec-

tively. Similarly to what done above for Φ, partition Ψ(s) and Ψ(g) as

Ψ(s) =

[
Ψ

(s)
0 Ψ

(s)
1 . . . Ψ

(s)
N

]
(3.12a)

Ψ(g) =

[
Ψ

(g)
1 Ψ

(g)
2 . . . Ψ

(g)
N

]
(3.12b)

so that

Ψ
(s)
0 = D (3.13a)

Ψ
(s)
j = CAj−1B (3.13b)

Ψ
(g)
j = CAj−1K for j = 1, 2, . . . , N (3.13c)

It is remarkable how, by simple algebraic operations, the system and gain Markov parameters

can be recovered from the Markov parameters Φ estimated from the OKID core equation. First

of all, notice that the estimate of the sequence Φj is finite (j = 0, 1, ..., p) only in appearance.
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For j > p, CĀj−1B̄ can be considered to be equal to 0 as assumed in the derivation of the

OKID core equation. In other words, the sequence of estimated Markov parameters Φ̃j can be

extended to an arbitrary value j = N > p simply by padding Φ̃ in (2.56) with zeros. Defining

for convenience

Φ
(1)
j = CĀj−1 (B−KD) (3.14a)

Φ
(2)
j = CĀj−1K (3.14b)

the conversion can be done as follows

Ψ
(s)
0 = Φ

(1)
0 (3.15a)

Ψ
(s)
j = Φ

(1)
j +

j∑
h=1

Φ
(2)
h Ψ

(s)
j−h for j = 1, 2, . . . , N (3.15b)

Ψ
(g)
j = Φ

(2)
j +

j−1∑
h=1

Φ
(2)
h Ψ

(g)
j−h for j = 1, 2, . . . , N (3.15c)

The sequences of system and gain Markov parameters can actually be put together as

Ψ =

[
Ψ

(s)
0 Ψ

(s)
1 Ψ

(g)
1 Ψ

(s)
2 Ψ

(g)
2 . . . Ψ

(s)
N Ψ

(g)
N

]
(3.16)

which can be interpreted as the sequence of Markov parameters of the Kalman filter in innovation

form, equation (3.1). The operation in equation (3.15) corresponds then to the conversion of

the Kalman filter Markov parameters from bar form to innovation form.

The traditional OKID/ERA and OKID/ERA-DC algorithms complete then the identification

process feeding Ψ to ERA or ERA-DC to extract the matrices A,B,C,D,K. More precisely,

D is readily available from Ψ
(s)
0 , whereas the other matrices result from ERA or ERA-DC being
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applied to the sequence

Ψj =

[
Ψ

(s)
j Ψ

(g)
j

]
= CAj−1

[
B K

]
= CAj−1B′ for j = 1, 2, . . . , N (3.17)

That is the algorithm presented in Reference 1, 20.

A variant consists in using ERA or ERA-DC to find the system matrices only and identify the

Kalman gain in a separate step. Ψ(s) alone allows ERA or ERA-DC to extract A,B,C,D. The

latter directly yields D, whereas A,B,C are obtained by applying ERA or ERA-DC on the

sequence Ψ
(s)
j , j = 1, 2, . . . , N . To find K, the following equation, of straightforward derivation,

between the observability matrix of the system and the gain Markov parameters



C

CA

...

CAN−1


K =



Ψ
(g)
1

Ψ
(g)
2

...

Ψ
(g)
N


(3.18)

is solved by LS

K =



C

CA

...

CAN−1



† 

Ψ
(g)
1

Ψ
(g)
2

...

Ψ
(g)
N


(3.19)

The approach described so far is the one traditionally adopted, even though the variant just

presented did not explicitly appear in the literature. Another alternative way to extract the

desired matrices A,B,C,D,K is also possible. Whereas above the identification of the Kalman

filter was performed working on the Markov parameters of its innovation form, it is also possible
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to apply ERA or ERA-DC directly on the Markov parameters of the Kalman filter in bar form.

D is readily available as usual, and the input to ERA or ERA-DC is then the estimate for Φj ,

j = 1, 2, ..., p, which produces as an output the matrices Ā, B̄,C. Relabeling the matrix blocks

in the definition of B̄ in equation (3.8a) as

B̄ =

[
B̄1 B̄2

]
(3.20)

where B̄1 ∈ Rn×m and B̄2 ∈ Rn×q, we can complete the identification recovering K, B and A

from equations (3.8a) and (3.6) as follows

K = B̄2 (3.21a)

B = B̄1 + KD (3.21b)

A = Ā + KC (3.21c)

Even for the identification of the Kalman filter in bar form, the variant based on the estimation

of K via the observability matrix is possible. Instead of running ERA or ERA-DC on the

sequence Φj , j = 1, 2, . . . , p, apply it to Φ
(1)
j , j = 1, 2, . . . , p to find C, Ā, B̄(1). Similar to

equation (3.18), the following equation between the observability matrix of the system and the

gain Markov parameters can be derived



C

CĀ

...

CĀN−1


K =



Φ
(2)
1

Φ
(2)
2

...

Φ
(2)
N


(3.22)
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to find K by LS

K =



C

CĀ

...

CĀN−1



† 

Φ
(2)
1

Φ
(2)
2

...

Φ
(2)
N


(3.23)

The matrices B and A are finally recovered from equations (3.21b) and (3.21c).

Note that the above algorithms based on the bar form of the Kalman filter are not found in

the literature as their performance is generally poorer than those based on the innovation form.

As the approach based on Markov parameters is well established, no illustrative examples are

provided here. The reader is referred to, for instance, References 1, 15, 17, 20, 27, 28.

3.3.1 Algorithms based on Kalman filter Markov parameters

The detailed steps to implement the OKID methods based on the observer/Kalman filter Markov

parameters are given below, in a comprehensive algorithm along which the user can choose

which form of the Kalman filter to use and whether to implement ERA or ERA-DC for the

identification of the observer. The input to the algorithm are the sequences {u(k)} and {y(k)}

in equation (2.1). The output is the set of matrices A, B, C, D and K.

1. construct the matrices Y and V from equations (2.45a) and (2.45b)

2. solve equation (2.44) by LS

Φ̃ = YV† (3.24)
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For algorithms identifying the Kalman filter in innovation form

3. partition Φ̃ as

Φ̃ =

[
Φ̃0 Φ̃1 ... Φ̃p−1 Φ̃p

]
(3.25)

where Φ̃0 ∈ Rq×q and Φ̃j ∈ Rq×(m+q), j = 1, 2, . . . , p.

4. compute Ψ̃j for j = 0, 1, . . . , N from equation (3.15) with Φ̃j = 0 for j > p, choosing

N such that the sequence Ψ̃j covers a significant portion of the impulse response of the

system

5. identify D = Ψ̃0

6. execute, with input Ψ̃j , j = 1, 2, ..., N , any of the following algorithms

• ERA (section A.1) for OKID/ERAi

• ERA-DC (section A.2) for OKID/ERA-DCi

• any other algorithm for deterministic state-space model identification from unit pulse

response (Markov parameters)

and read the output matrices Ai, Bi, Ci

7. extract the desired matrices (Matlab R© notation)

A = Ai,C = Ci,B = Bi (:, 1 : m) ,K = Bi (:,m+ 1 : m+ q) (3.26)

For algorithms identifying the Kalman filter in innovation form - variant

3. partition Φ̃ as

Φ̃ =

[
Φ̃0 Φ̃1 ... Φ̃p−1 Φ̃p

]
(3.27)
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where Φ̃0 ∈ Rq×q and Φ̃j ∈ Rq×m+q, j = 1, 2, . . . , p.

4. compute Ψ̃
(s)
j for j = 0, 1, . . . , N and Ψ̃

(g)
j for j = 1, 2, . . . , N from (3.15) with Φ̃j = 0 for

j > p, choosing N such that the sequence Ψ̃j covers a significant portion of the impulse

response of the system

5. identify D = Ψ̃0

6. execute, with input Ψ̃
(s)
j , j = 1, 2, ..., N , any of the following algorithms

• ERA (section A.1) for OKID/ERAvi

• ERA-DC (section A.2) for OKID/ERA-DCvi

• any other algorithm for deterministic state-space model identification from unit pulse

response (Markov parameters)

and read the output matrices Ai, Bi, Ci

7. identify the desired matrices

A = Ai,C = Ci,B = Bi (3.28)

8. find K as

K =



C

CA

...

CAN−1



† 

Ψ̃
(g)
1

Ψ̃
(g)
2

...

Ψ̃
(g)
N


(3.29)

For algorithms identifying the Kalman filter in bar form

3. partition Φ̃ as

Φ̃ =

[
Φ̃

(1)
0 Φ̃

(1)
1 Φ̃

(2)
1 ... Φ̃

(1)
p Φ̃

(2)
p

]
(3.30)
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where Φ̃
(1)
0 ∈ Rq×q, Φ̃

(1)
j ∈ Rq×m+q and Φ̃

(2)
j ∈ Rq×q, j = 1, 2, . . . , p.

4. identify D = Φ̃0

5. execute, with input Φ̃j , j = 1, 2, ..., N , any of the following algorithms

• ERA (section A.1) for OKID/ERAb

• ERA-DC (section A.2) for OKID/ERA-DCb

• any other algorithm for deterministic state-space model identification from unit pulse

response (Markov parameters)

and read the output matrices Ab, Bb, Cb

6. extract the desired matrices (Matlab R© notation)

A = Ab,C = Cb,K = Bb (:,m+ 1 : m+ q) ,B = Bb (:, 1 : m) + KD (3.31)

For algorithms identifying the Kalman filter in bar form - variant

3. Partition Φ̃ as

Φ̃ =

[
Φ̃

(1)
0 Φ̃

(1)
1 Φ̃

(2)
1 ... Φ̃

(1)
p Φ̃

(2)
p

]
(3.32)

where Φ̃
(1)
0 ∈ Rq×q, Φ̃

(1)
j ∈ Rq×m+q and Φ̃

(2)
j ∈ Rq×q, j = 1, 2, . . . , p.

4. Identify D = Φ̃0

5. Execute, with input Φ̃
(1)
j , j = 1, 2, ..., N , any of the following algorithms

• ERA (section A.1) for OKID/ERAvb

• ERA-DC (section A.2) for OKID/ERA-DCvb
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• any other algorithm for deterministic state-space model identification from unit pulse

response (Markov parameters)

and read the output matrices Ab, Bb, Cb

6. Find K as

K =



Cb

CbAb

...

CbA
N−1
b



† 

Φ̃
(2)
1

Φ̃
(2)
2

...

Φ̃
(2)
N


(3.33)

7. Extract the desired matrices

C = Cb,B = Bb + KD,A = Ab + KC (3.34)

3.4 Identification via Kalman filter output residuals

As pointed out in sections 2.3 and 3.2, the Kalman filter is itself a dynamic system in state-space

form. For instance, consider the innovation form of the Kalman filter, equation (3.1). Its inputs

are u and ε and its output is ŷ: u is known from measurements and an estimate for ε and ŷ is

available from the LS solution to the OKID core equation. Indeed, once an estimate for the time

history of the Kalman filter residual ε is available, that can be used to obtain via equation (2.8)

the estimate Ỹ for the time history Ŷ of the Kalman filter output

Ỹ = Φ̃V (3.35a)

Ŷ =

[
ŷ(p) ŷ(p+ 1) . . . ŷ(l − 1)

]
(3.35b)
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Both the input and the output sequences of the dynamic system in equation (3.1) are then known

(measured or estimated). Additionally, in equation (3.1) no (unknown) noise term is present.

We have just constructed a new noise-free identification problem: given the time histories of

u, ε, ŷ, find the matrices A, B, C, D and K. Thanks to the absence of noise, any deterministic

system identification method capable of identifying a state-space model from its response to

an arbitrary input can be used to solve the new problem. Note that the solution to the new

problem is also the solution to the original problem stated in section 2.2.

This gives rise to many OKID-based identification algorithms, as many as the deterministic

identification methods from arbitrary input response that one can think of. In this work, to

illustrate the effectiveness of the new approach, we demonstrate via examples two possible

choices, namely the Deterministic Intersection (DI) and the Deterministic Projection (DP)

method. In the literature of subspace methods, several intersection and projection algorithms

have been developed (see for instance Reference 2). In the examples in this section, we refer

to the DI algorithm of Reference 29 and the DP algorithm of Reference 30. The Matlab R©

codes of both algorithms are provided in Reference 21. These two methods are also reviewed in

appendix A. The DI and DP methods are considered deterministic because their formulation is

based on purely deterministic state-space models, with no process or measurement noise, such

as the one in equation (1.1). It is however worth noting that, although they do not qualify as

combined identification algorithms, the numerical techniques used in the implementation of DI

and DP (essentially singular value decomposition, SVD) make them very robust to noise and in

some specific cases even unbiased (Reference 2). The resulting new OKID-based algorithms are

referred to as OKID/DIi and OKID/DPi to remark that the underlying Kalman filter is identified

in its innovation form, distinguishing them from their variant based on the identification of the

Kalman filter in bar form outlined below.

1 Also available at http://homes.esat.kuleuven.be/~smc/sysid/software/.

http://homes.esat.kuleuven.be/~smc/sysid/software/
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Similar to the innovation form, equation (3.5) represents a dynamic system whose input u and y

and output ŷ are known. Any deterministic system identification method can be applied to find

a realization of the matrices Ā, B̄, C, D. From the latter, equation (3.21) allows one to recover

the desired matrices A, B, K, too, in the same way as in OKID/ERAb and OKID/ERA-DCb

algorithms.

The new OKID-based identification algorithms presented in this section can then be formulated

either via the innovation form of the Kalman filter to give OKID/DIi and OKID/DPi, or via

the bar form to give OKID/DIb and OKID/DPb. Both alternatives are demonstrated in the

examples. It is worth adding that other algorithms based on the new identification strategy

can be devised simply by replacing DI and DP with other deterministic system identification

methods. For instance, one could use the subspace Algorithm 1 or Algorithm 2 in Reference 2

or the algorithms from the superspace family (References 31–33).

As a last comment, note that the input to the observer to be identified (in either form) is differ-

ent in the state and observation equations. More precisely, the state equation has an additional

input (ε or y), which makes the form of the deterministic identification problem slightly dif-

ferent from the standard form usually considered in the literature, including in the DI and DP

algorithms. Two ways to address the issue are possible. One consists in feeding the determinis-

tic identification algorithms with the same additional input in the observation equation as well,

relying on the associated coefficients in the corresponding extended D matrix being identified

as 0. The other approach is to tailor the deterministic identification algorithms so that they

identify the observer taking into account its peculiar form. The required modification is very



Chapter 3. OKID algorithms 53

simple to apply in the case of the deterministic intersection2 and the superspace algorithms.

Numerical experiments show negligible difference between the two approaches when the inno-

vation form is used for the Kalman filter. In the case of bar form, the tailored algorithms tend

to provide better results. In the examples given in this work, for simplicity no modification is

adopted.

3.4.1 Algorithms based on Kalman filter output residuals

The detailed steps to implement the OKID methods based on the observer/Kalman filter output

residuals are given below, in a comprehensive algorithm along which the user can choose which

form of the Kalman filter to use and whether to implement DI, DP or other deterministic

methods for the identification of the observer. The input to the algorithm are the sequences

{u(k)} and {y(k)} of equation (2.1). The output is the set of matrices A, B, C, D and K.

1. construct the matrices Y and V from equations (2.45a) and (2.45b)

2. solve equation (2.44) by LS

Φ̃ = YV† (3.38)

2 With reference to the DI algorithm described step by step in appendix A, only step 4 needs to modified
to take into account the peculiar structure of the Kalman filter in equation (3.2) or in equation (3.7). The LS
problem to be solved gets split into the following two LS problems

UT
q U

T
12U(m+ q + 1 : (m+ q)(i+ 1), 1 : 2mi+ n)S11 =

[
A B

][
UT
q U

T
12U(1 : mi+ qi, 1 : 2mi+ n)S11

U(mi+ qi+ 1 : mi+ qi+m− q), 1 : 2mi+ n)S11

]
(3.36)

to be solved for A and B and

U(mi+ qi+m+ 1 : (m+ q)(i+ 1), 1 : 2mi+ n)S11 =
[
C D

][
UT
q U

T
12U(1 : mi+ qi, 1 : 2mi+ n)S11

U(mi+ qi+ 1 : mi+ qi+m− q), 1 : 2mi+ n)S11

]
(3.37)

to be solved for C and D. Note that A, B, C, D in this footnote are consistent with the notation used in the DI algorithm
in appendix A, they do not refer to the matrices of the Kalman filter in equations (3.1) or in equation (3.5). Depending on
the Kalman filter form used, the appropriate correspondence relationship between the former and the latter matrices can
be found, similar to equations (3.42) and (3.44).
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and compute [
ỹ(p) ỹ(p+ 1) ... ỹ(l − 1)

]
= Φ̃V (3.39)

For algorithms identifying the Kalman filter in innovation form

3. compute

[
ε̃(p) ε̃(p+ 1) ... ε̃(l − 1)

]
= Y − Φ̃V (for innovation form only) (3.40)

4. define the following input and output sequences

{ui} =


u(p)

ε̃(p)

 ,
u(p+ 1)

ε̃(p+ 1)

 , ...,
u(l − 1)

ε̃(l − 1)


 (3.41a)

{yi} = {ỹ(p), ỹ(p+ 1), ..., ỹ(l − 1)} (3.41b)

5. execute, with input {ui} and output {yi},

• the DI algorithm for OKID/DIi

• the DP algorithm

• any other algorithm for deterministic state-space model identification

and read the output matrices Ai, Bi, Ci, Di

6. extract the desired matrices (Matlab R© notation)

A = Ai, B = Bi(:, 1 : m), K = Bi(:,m+ 1 : m+ q),

C = Ci, D = Di(:, 1 : m) (3.42)
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For algorithms identifying the Kalman filter in bar form

3. define the following input and output sequences

{ub} =


u(p)

y(p)

 ,
u(p+ 1)

y(p+ 1)

 , ...,
u(l − 1)

y(l − 1)


 (3.43a)

{yb} = {ỹ(p), ỹ(p+ 1), ..., ỹ(l − 1)} (3.43b)

4. execute, with input {ub} and output {yb},

• the DI algorithm for OKID/DIb

• the DP algorithm for OKID/DPb

• any other algorithm for deterministic state-space model identification

and read the output matrices Ab, Bb, Cb, Db

5. extract the desired matrices (Matlab R© notation)

C = Cb, D = Db(:, 1 : m), K = Bb(:,m+ 1 : m+ l),

B = Bb(:, 1 : m) + KD, A = Ab + KC (3.44)

3.4.2 Demonstration and interpretation

In this section we introduce a simple example to demonstrate the above algorithms, discuss

their main features and provide an interpretation of the new identification strategy.
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3.4.2.1 Example

Consider the state-space model of equation (1.3) with the following matrices

A =

 0 0.5

0.5 −0.5

 B =

1

2

 C =

[
0 1

]
D = 0 (3.45)

The measured input-output data in equation (2.1) are simulated as follows. First we generate a

white input sequence {u(k)} of length l = 10, 000 (from a normal distribution with zero mean

and standard deviation of 1) and two zero-mean gaussian noise sequences {wp(k)} and {wm(k)}

with covariance

Q =

1 2

2 4

× 10−2 R = 4× 10−2 (3.46)

Said sequences are used to generate {y(k)} via equation (1.3). Such {u(k)} and {y(k)} can also

be interpreted as input-output measurements with mutually uncorrelated zero-mean gaussian

noise affecting the input-output channels with standard deviation of 0.1 and 0.2, respectively.

The resulting signal-to-noise ratio is about 20 dB in both channels.

3.4.2.2 Estimation of Kalman output residuals

The algorithm starts with the choice of the parameter p. Let us assume that the system order

is unknown but we have reason to believe it is small, say less than 5. Let us then choose p = 20

and run the first part of the identification method (steps 1 and 2), which is common to all the

new OKID-based algorithms presented above. That leads to the estimation of the Kalman filter

output residuals. Figure 3.1 compares the obtained estimates with the theoretical residuals

coming from the Kalman filter in equation (3.1) with the gain computed from the true system

and covariance matrices in equations (3.45) and (3.46) via equations (2.7c) and (2.7d) (algebraic
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Figure 3.1: Estimation of Kalman filter output residuals.

Riccati equation). As part of the properties of the Kalman filter, the residuals are known to be

a white process (lemma 8.5). It is then remarkable how it is possible to accurately estimate the

time history of such a random process, as shown in Figure 3.1.

For the purpose of illustration, steps 3, 4 and 5 are executed for all the four algorithms described

above to get the corresponding identified matrices A, B, C, D and K. The parameter i to be set

in the DI and DP methods is chosen equal to 5, consistently with the above mentioned a priori

belief on the system order. All the new algorithms are able to identify the right order (n = 2).

It is here worth remarking that when noise corrupts the data, it is impossible to get exact

identification. This fact generally makes the comparison of different methods and algorithms

a difficult task, often addressed via lenghty numerical simulations whose generality is difficult

to claim. The task is beyond the scope of this work. Table 3.1 reports the eigenvalues of the

true A matrix and of the same matrix identified via the new algorithms. The identified values

are shown in terms of mean and standard deviation of the results of a Monte Carlo simulation

with 100 runs of the same example varying the noise sequences. All of the proposed algorithms

provide good identification. None of them outperforms the others and neither form of the
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Kalman filter seems to provide significantly better results, suggesting the proposed algorithms

are all equivalent, at least in the example.

More interestingly, Table 3.1 shows how the OKID-based algorithms give better identification

than the straight application of the corresponding deterministic methods. Running the DI and

DP algorithms in appendix A directly on the measured {u(k)} and {y(k)} sequences give in

general less accurate results than running them after the estimation of the Kalman filter resid-

uals to identify the Kalman filter. This leads to the interpretation of the first part of the OKID

approach as a pre-filtering stage. The Kalman filter embedded in the OKID core equation,

equation (2.44), provides new input-output signals which are then passed to the second part of

the new OKID approach, consisting in the identification of the Kalman filter from its estimated

output (and residuals). Such pre-filtering lets the chosen deterministic identification method

operate in the conditions for which it was formulated, i.e. with no noise or at least significantly

attenuated noise. To emphasize the role played by the pre-filtering stage, Figures 3.2 and 3.3

show the plots of the normalized singular values arising from the Singular Value Decomposi-

tion (SVD) at the core of the DI and DP methods. Such SVDs are meant to split the zero

and non-zero singular values, the number of the latter being the order of the system. If the

input-output data are corrupted by noise, no singular value is exactly zero and the user might

Table 3.1: Eigenvalue comparison between true A and corresponding identified matrices
(Monte Carlo simulation with 100 runs).

Method
Eigenvalue 1 Eigenvalue 2

mean std. dev. mean std. dev.

True -0.80902 - 0.30902 -
OKID/DIi -0.80894 0.00097 0.30938 0.00265
OKID/DPi -0.80896 0.00101 0.30935 0.00267
OKID/DIb -0.80881 0.00098 0.30933 0.00266
OKID/DPb -0.80826 0.00227 0.30915 0.00269
DI -0.80864 0.00098 0.30760 0.00262
DP -0.81375 0.00102 0.29896 0.00283
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Table 3.2: Eigenvalue of A matrix identified by different algorithms with residual whitening.

Method Eigenvalue 1 Eigenvalue 2

OKID/DIi −0.8109258705999016 0.3077103118249301
OKID/DPi −0.8109258705999016 0.3077103118249320
OKID/DIb −0.8109258705999021 0.3077103118249284
OKID/DPb −0.8109258705999010 0.3077103118249288

experience difficulties in deciding which singular values can be considered negligible and be

discarded. Figure 3.2 shows the singular values of the DI and DP algorithms when applied

directly, without pre-filtering. The separation line between zero and non-zero singular values

is somewhat arguable. The pre-filtering gives rise to clearer plots, where two singular values

stand out as being the ones to be considered different from zero, as shown for example for the

algorithms based on the bar-form Kalman filter (Figure 3.3).

Note that the singular values considered to be negligible in the plots of Figure 3.3 are not

exactly 0. Even though pre-filtering makes the order of the system clearly equal to 2, some

noise is still present in the data fed to the the second part of the OKID-based algorithms.

The OKID core equation relies on the assumption that Āp in equation (2.37) is negligible,

which is true for sufficiently large p. The approximation resulting from truncating p to a

finite value gives then rise to some noise in the estimation of the residuals. Theoretically,

increasing p asymptotically leads to no truncation error. In practice, p cannot grow indefinitely

for numerical issues (condition number of the matrix to be pseudo-inverted in equation (2.46))

and because that would increase the number of parameters to be estimated and at the same

time decrease the number of equations available in the LS problem of equation (2.44), reducing

its overdeterminacy.



Chapter 3. OKID algorithms 60

1 2 3 4 5

10
−1

10
0

Singular value index

R
e
la

ti
v
e
 m

a
g
n
it
u
d
e

(a) DI algorithm.
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(b) DP algorithm.

Figure 3.2: SVD of deterministic algorithms.
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(c) OKID/DIb algorithm.
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(d) OKID/DPb algorithm.

Figure 3.3: SVD of OKID algorithms based on Kalman filter bar form.

3.4.2.3 Exact residuals by whitening

An alternative to the classic OKID core equation (equation (2.44) in this work) was presented

in Reference 34. The technique is called residual whitening and is used here to improve the

estimate of the Kalman filter output residuals. The technique is outlined in section 5.5, where
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(a) OKID/DIb algorithm.
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(b) OKID/DPb algorithm.

Figure 3.4: SVD of OKID algorithms based on Kalman filter bar form with residual whitening.

its relationship with the OKID core equation is discussed in more detail. Briefly, residual

whitening can be interpreted as trading the truncation error of the classic OKID equation (due

to neglecting Fp, i.e. Āp, to get equation (2.40)) with the iteration convergence error of the

GLS procedure used to solve the residual whitening equation. As opposed to the former, the

latter can be made as small as desired just by running more iterations. We can then think of

residual whitening as a technique to improve the estimation of the residuals and make the pre-

filtering exact, i.e. yielding a noise-free set of data to be fed to the DI or DP method. To show

the concept, we estimate the Kalman residuals by residual whitening with p = 2 and execute

the steps 3 to 5 for all the proposed algorithms getting the SVD plots of Figure 3.4 and the

eigenvalues of the identified A matrix summarized in Table 3.2. The zero singular values are

now really such, since they are close to the working precision of Matlab R©. Thanks to residual

whitening, 15 order of magnitude separate the zero and non-zero singular values, making the

selection of the right order of the system crystal clear. In conclusion, residual whitening with

p = n makes the pre-filtering exact and the SVD shows no trace of noise. As a consequence,

the DI and DP methods are run on noise-free data and all the proposed algorithms provide the
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same identified matrices, as shown by the eigenvalues of the identified A. The numerical values

in Table 3.2 differ only after the 15th significant digit.

The first part of the OKID-based algorithms can now be interpreted as a conversion of the

original combined identification problem of equation (1.3) into the deterministic problem of

equation (3.1) or equation (3.5). The new approach consists then in converting the original

problem, whose data are corrupted by noise, into a simpler noise-free problem which can be

solved by any deterministic identification method. When the first part is solved approximately

(e.g. due to truncation error in the classic OKID equation, limited number of iterations in

the residual whitening technique, violation of the initial assumptions on the process and mea-

surement noise), the error in the residual estimates makes the conversion not exact and the

new identification problem is not completely noise-free, yet the noise is significantly reduced

(pre-filtering).

For the sake of clarity, we used residual whitening in the example above to highlight the fact that

the exact LS solution to the OKID equation would lead to completely noise-free identification of

the observer. Residual whitening can generally be used to improve the estimates of the observer

residuals, but it must be kept in mind that the LS problem of equation (5.13) is nonlinear (both

Ψ̄ and W are unknowns) and the convergence of the GLS procedure to the (global) minimum

is not always guaranteed. When the procedure converges, then residual whitening is a powerful

technique to refine the identification.

As a last note, it is worth clarifying that it is impossible to estimate exactly the theoretical

Kalman residuals from a finite-length record. This is due to the stochastic nature of the noise

in the identification problem of equation (1.3). Even in numerical simulations, since the process

and measurement noises are random, an infinitely-long record would be necessary to make them

really satisfy the problem assumptions (in particular their whiteness). The consideration is
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mainly of academic interest, since in real applications the noises can be of diverse nature and

to some extent always violate the problem assumptions. Nevertheless it is important to realize

that the residuals given by residual whitening are exact in the sense that they correspond to the

LTI observer minimizing exactly the OKID equation with no truncation error. However, the

finite nature of the record prevents the minimizing observer from being exactly the theoretical

Kalman filter.

3.4.3 Numerical example

As a more realistic example, consider the lumped model of a four-story shear building, shown in

Figure 3.5, with each mass equal to m = 0.259 kips-sec2/in and each lateral spring of stiffness

k = 122.889 kips/in. The building is also supposed to have viscous damping, quantified by a

damping factor of ζ = 0.01 for each of the 4 vibration modes. The assumption of modal damping

makes it possible to recover the modal parameters (natural frequencies, damping factors and

mode shapes) from the identified state-space model without conceptual difficulties. The force is

applied in correspondence of the third floor via a zero-order-hold (ZOH) system with a sampling

time of 0.01s. The excitation used in the example is a white signal normally distributed with

zero mean and standard deviation of 1 and duration of 100s (l = 10, 000). The input channel is

affected by gaussian noise of standard deviation equal to 0.15, for a signal-to-noise ratio of about

16 dB. The lateral acceleration at each floor is measured, for a total of 4 outputs. Gaussian noise

of standard deviation of 1 is present in each output channel, resulting in signal-to-noise ratios

of about 13 db, 26 dB, 52 dB and 50 dB (from the ground up). The discrete-time state-space

model of the structure of Figure 3.5 is therefore in the form of equation (1.3), with n = 8, m = 1

and q = 4. The process noise wp is due to the noise in the input channel. Its covariance matrix
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Figure 3.5: Lumped model of 4-story shear-type building.

is then Q = BBT, whereas the covariance of the measurement noise wm is the identity matrix.

All the four variants of the algorithm described above are executed, with p = 40 in the OKID

equation and i = 20 for the DI and DP algorithms. The identification results are reported in

Table 3.3, in the form of natural frequencies and damping factors, together with the true values

as well as those obtained via the direct application of the DI and DP methods and via traditional

combined (deterministic input plus stochastic noise) methods such as OKID/ERA (section 3.3 )

and N4SID. N4SID (References 2, 35) is another very popular algorithm for the identification of

combined linear systems. It belongs to the family of subspace methods and has been extensively

used in industrial applications. The Matlab R© code used here to run N4SID is the one provided

in Reference 23. The algorithms based on the innovation form of the Kalman filter perform

sensibly better than their bar-form counterparts, in particular for OKID/DP. The accuracy of

OKID/DIi and OKID/DPi is in line with OKID/ERAvi and N4SID. A very significant fact is

that the OKID pre-filtering makes OKID/DIi and OKID/DPi generally perform better than DI

and DP, as expected from the theoretical framework previously presented. This confirms the

benefit of pre-filtering the data via the OKID equation, making the DI and DP algorithms work

3 Also available at http://homes.esat.kuleuven.be/~smc/sysid/software/.

http://homes.esat.kuleuven.be/~smc/sysid/software/
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(a) DI algorithm.
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(b) DP algorithm.

Figure 3.6: SVD of deterministic algorithms.
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(a) OKID/DIi algorithm.
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(b) OKID/DPi algorithm.

Figure 3.7: SVD of OKID algorithms based on Kalman filter innovation form.

in conditions closer to the ones for which they are formulated. For completeness, the SVD plots

of some of the algorithms in Table 3.3 are reported in Figures 3.6 and 3.7. The advantage of

OKID is evident with the DI method, leading to the correct identification of 4 vibration modes

(Figure 3.7a), whereas without OKID pre-filtering the first mode is missed (Figure 3.6a). Its

value in Table 3.3 is reported by forcing the selection of 8 non-zero singular values in SVD plots
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Table 3.3: Identified natural frequencies (Hz) and damping factors of the structure of Fig 3.5
(Monte Carlo simulation, average over 100 runs).

Method f1 ζ1 f2 ζ2 f3 ζ3 f4 ζ4

True 1.3948 0.0100 3.9721 0.0100 5.9447 0.0100 7.0122 0.0100
OKID/DIi 1.3955 0.0109 3.9725 0.0109 5.9450 0.0104 7.0122 0.0100
OKID/DPi 1.3958 0.0105 3.9730 0.0106 5.9451 0.0103 7.0121 0.0100
OKID/DIb 1.3979 0.0154 3.9718 0.0129 5.9458 0.0121 7.0126 0.0120
OKID/DPb 1.3653 0.0013 3.9991 0.0131 5.9499 0.0140 7.0197 0.0120
DI 1.3892 0.0120 3.9677 0.0106 5.9429 0.0105 7.0111 0.0104
DP 1.3951 0.0098 3.9754 0.0097 5.9453 0.0098 7.0129 0.0098
OKID/ERAvi 1.3956 0.0120 3.9732 0.0120 5.9458 0.0111 7.0125 0.0100
N4SID 1.3948 0.0102 3.9724 0.0103 5.9450 0.0101 7.0120 0.0100

like Figure 3.6a. In the DP case, the advantage of OKID shows up in pushing the negligible

singular values down towards 0 (Figures 3.6b and 3.7b).

3.4.4 Experimental example

In order to demonstrate the new state-space model identification approach on real data, the

experimental tests performed in the Engineering Institute (EI) at Los Alamos National Labo-

ratory (LANL) and described in Reference 36 are considered in this section. The test structure

(Figure 3.8) is a laboratory three-story building used as a damage-detection test-bed structure.

It consists of aluminum columns and plates assembled using bolted joints, intended to form a

four degree-of-freedom shear building.

An electrodynamic shaker provides a lateral excitation to the base floor along the center line of

the structure. The structure and shaker are mounted together on an aluminum baseplate, and

the entire system rests on rigid foam to minimize extraneous sources of unmeasured excitation

from being introduced through the base of the system. A load cell attached at the end of a

stinger measures the input force from the shaker to the structure. Four accelerometers attached

at the center line of each floor on the opposite side from the excitation source measure the

system response. The overall arrangement is intended to minimize the torsional excitation of
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Figure 3.8: LANL test structure.

the system. In order to avoid the rigid body modes of the structure, a band-limited random

excitation in the range of 20-150 Hz is used to excite the structure. The analog sensor signals

are discretized with a sampling frequency of 320 Hz. The resulting time histories of 25.6 s in

duration contain 8,192 time samples.

In the following example, we use the first dataset for the standard configuration of the test

structure (denoted as state #1 in Reference 36) for system identification and the second dataset

for the same configuration for validation of the identified model4. The OKID/DPi algorithm

is applied for illustration. Choosing p = 100 and i = 20, the SVD of Figure 3.9 is obtained

and clearly reveals the presence of 3 primary modes of vibration (largest 6 singular values) and

3 secondary modes (7th to 12th singular values). Retaining only the 6 largest singular values

yields the following modal parameters: f1 = 30.72Hz, ζ1 = 2.2%, f2 = 54.80Hz, ζ2 = 0.78%,

4The data are available for download at http://institute.lanl.gov/ei/software-and-data/.
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Figure 3.9: SVD in OKID/DPi.

f3 = 71.73Hz, ζ3 = 0.73%, which are in line with the values estimated in Reference 36 from the

analysis of the experimental frequency response functions via the rational-fraction polynomial

method (RFP). Retaining the 12 largest singular values in Figure 3.9, the same three modes are

identified (with slightly modified modal parameters) and three additional modes appear with

natural frequencies of 21.12 Hz, 41.05 Hz and 76.16 Hz. The additional modes can be explained

as torsional modes of the test structure, weekly excited by the shaker and therefore hardly de-

tectable in the frequency response analysis reported in Reference 36. Their presence is confirmed

by the prediction capabilities of the identified six-mode model verified on the validation dataset

(Figure 3.10), which are significantly better than the identified three-mode model. Figure 3.10

compares the outputs measured in the validation test and the outputs predicted by the identified

system model when driven by the same measured input. This corresponds to multi-step-ahead

prediction and the resulting output error is due not only to the identification error but also to

the process and measurement noise affecting the data. The presented identification approach

provides also the optimal one-step-ahead predictor (Kalman filter) associated with the identified
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Figure 3.10: Validation of identified model.
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Figure 3.11: Validation of identified model and observer in terms of output prediction error.

model and the noise embedded in the data. Figure 3.11 shows both the output error from the

system multi-step-ahead prediction and the output error from the Kalman filter one-step-ahead

prediction. The latter is obviously smaller thanks to the additional information provided by

the output measured at the previous time step. Figures 3.10 and 3.11 demonstrate how the
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presented OKID-based algorithms are able to identify from real experimental data a state-space

linear model and the associated optimal observer that can be effectively used for predicting the

dynamic response of the system.

3.5 Conclusions

This chapter presented in detail several OKID algorithms for linear system identification from

noisy input-output data. All of them start from the least-squares solution of the OKID core

equation derived in chapter 2 but can then be classified into two families, those completing the

identification from the estimated Markov parameters of the Kalman filter and those accomplish-

ing the same task from the estimated output residuals of the Kalman filter. The traditional

OKID/ERA method belongs to the former. The latter is a novel family of algorithms that

numerical examples show to perform in line with OKID/ERA. In particular, in the given nu-

merical and experimental examples, OKID/DPi proved to be the most accurate among all the

OKID methods.

It is also worth remarking how the chapter discusses and demonstrates via numerical examples

the conceptual result unveiled by the novel OKID approach based on output residuals. As

better explained in chapter 5, the OKID core equation can be seen as a converter from combined

(deterministic and stochastic) to purely deterministic system identification, i.e. as a powerful

technique to simplify the identification problem. That is possible thanks to the filtering action

that the Kalman filter embedded in the OKID equation performs. The interpretation is not

only of theoretical interest, it also suggests that OKID can be applied to output-only system

identification as well (chapter 4).



Chapter 4

Output-only observer/Kalman filter

identification (O3KID)

4.1 Introduction

The OKID core equation has been interpreted in chapter 3 as an implicit Kalman filter capable of

converting an identification problem with stochastic signals (noise) into a purely deterministic

identification problem. This suggests that OKID can also be applied to output-only system

identification, i.e. to the case where only the output is measured and the unknown input can be

approximated as white noise. As explained below, such case is typical in the identification of

large structure in the area of civil engineering known as structural health monitoring (SHM).

This application gives a chance to remark how system identification is a promising technique in

civil engineering.

As the infrastructure system rapidly ages and maintenance and rehabilitation operations are

more costly and urgent, Structural Health Monitoring (SHM) has become an active area of

71
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research in civil engineering. Several system identification techniques have been developed over

the past few decades and their application is growing with the availability of instrumentation

on civil infrastructures. The purpose of system identification is the estimation of a mathe-

matical model for the structure under consideration from the time histories of its response to

environmental disturbances (e.g. earthquake, wind, traffic, etc.). From such a model, one can

then compute the modal parameters of the structure (natural frequencies, damping factors,

mode shapes) and use them for SHM, directly to detect damaged areas or indirectly to refine or

update more detailed numerical models of the structure (e.g. a Finite Element Model, FEM).

The modal parameters are classically identified from a mathematical model representative of the

structure in operational conditions, which describes the relationship between the excitation ap-

plied to the structure and the structure’s vibrational response. However, especially in the case of

civil infrastructures, it is often difficult to measure and control the excitation without disrupting

the normal operations. The difficulties arise from the random character of the excitation both

in the nature (e.g. wind, traffic) and in the way it is applied to the structure (e.g. distribution

of wind pressure). In response to these obstacles, a variety of system identification techniques

have been developed using only structural response information and are typically referred to as

stochastic identification or output-only system identification. The standard assumption made

in the development of output-only identification techniques is that the input is white and sta-

tionary. The success of such techniques obviously depends on how close the excitation is to the

assumption. In the frequency domain, when the input is white, the power spectral density of the

output itself can be considered to represent the dynamical properties of the system. Stochastic

techniques in the frequency domain such as peak-picking (References 37, 38), frequency domain

decomposition (References 38, 39) and maximum likelihood identification (References 40, 41)

have then been developed. In the case of time-domain analysis, it has been shown that the
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covariance functions of the system vibrational response uniquely characterize a dynamic system

in a similar fashion to impulse response functions. The observation has led to the application to

the stochastic case of classic system identification techniques that use impulse response functions

(Reference 42). Such techniques are referred to as covariance-driven stochastic identification

techniques, as opposed to other time-domain techniques known as data-driven that directly use

the recorded output time histories. Among the latter, several stochastic subspace methods are

available, i.e. algorithms based on well-established linear algebra concepts and robust numerical

techniques. A notable example is presented in Reference 35 and a good general reference is

Reference 2. A survey on output-only system identification methods is beyond the scope of this

thesis.

This work is a completely new development, first presented at the Sixth World Conference on

Structural Control and Monitoring in Barcelona in 2014 (Reference 43) and recently accepted for

publication in Structural Control and Health Monitoring (Reference 44). Several new algorithms

for output-only identification are proposed by extending to the output-only case the OKID

approach presented in the previous chapters. The resulting algorithms are referred to as O3KID

(output-only OKID). Their derivation could be skipped by the simple observation that as a

Kalman filter exists for the linear system in equation (4.1), it exists as well for the same model

without input (i.e. u = 0). With the general framework for OKID given in the previous chapters,

the development of the O3KID algorithms is then straightforward. Nevertheless, for the sake of

completeness, the core O3KID equation and the application of the deterministic algorithms to

identify the Kalman filter are outlined in this chapter and specialized to the output-only case.

Indeed, the complete absence of the deterministic input u allows one to tailor the DI and DP

algorithms for a more elegant solution.
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4.2 Problem description

Like any linear dynamical system, the mathematical model of a structure can be represented in

the state-space form in equation (1.3). The vectorswp ∈ Rn×1 andwm ∈ Rq×1 represent noise

in the process (e.g. noise in the input or unmodeled dynamics) and in the measurement (e.g.

noise in the output measurement and, if D 6= 0, in the input, too). The standard assumption is

that the process and measurement noises are zero-mean white stationary processes, uncorrelated

with u and y, and with covariance Q ∈ Rn×n and R ∈ Rq×q, respectively (section 2.2). When

both input and output measurements are available (input-output system identification), OKID

methods have been demonstrated to be very effective in identifying the matrices of structural

models (References 20, 22, 23 and sections 3.4.3 and 3.4.4).

When the input measurements are not available but can be assumed to be white and stationary

(standard assumption in the literature of output-only system identification for SHM), the system

in (1.3) can be rewritten as

x(k + 1) = Ax(k) +w′p(k) (4.1a)

y(k) = Cx(k) +w′m(k) (4.1b)

where w′p ∈ Rn×1 and w′m ∈ Rq×1 are zero-mean white stationary processes including

the original process and measurement noises and the effect of the unknown input on the state

equation (Bu(k)) and on the measurement equation (Du(k))

w′p(k) = Bu(k) +wp (4.2a)

w′m(k) = Du(k) +wm (4.2b)



Chapter 4. Output-only OKID (O3KID) 75

As a result w′p and w′m satisfy the same assumptions as the original process and measurement

noise and will be referred to as such in the rest of the chapter. Although they are assumed

to be uncorrelated with the output of the system, notice that when D 6= 0 the input compo-

nent embedded in w′p and w′m generally makes them correlated via a cross-covariance1 matrix

S′ ∈ Rn×q. This is indeed the case with structures where the input is force (or pressure) and

the measured output is acceleration. The auto-covariance matrices are denoted by Q′ ∈ Rn×n

and R′ ∈ Rq×q, respectively.

The output-only system identification problem addressed in this chapter can be stated as follows.

Given a set of length l of output data

{y(k)} = {y(0),y(1),y(2), . . . ,y(l − 1)} (4.3)

measured from the system in (4.1) starting at some unknown initial state x(0) and driven by

w′p and w′m, the objective is to identify the state-space model (4.1), i.e. to find the matrices A

and C. Neither the noise sequences {w′p(k)} and {w′m(k)} nor their covariance matrices Q′,

R′, S′ are assumed to be known.

4.3 O3KID core equation

Similar to OKID (input-output Observer/Kalman filter IDentification), O3KID (Output-Only

Observer/Kalman filter IDentification) consists of two main steps. First a set of algebraic equa-

tions is solved by least-squares (LS). That is totally analogous to the OKID core equation (2.44),

but it is now referred to as the O3KID core equation since its formulation is simplified by the

1 Although not taken into account in section 2.4, noise cross-correlation does not affect the properties at the
core of OKID described in section 2.3. The same is true for the absence of a deterministic input. Therefore, fact
0 is still valid also in the context of output-only systems such as equation (4.1) with cross-correlated noise. Hence
OKID is applicable.
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absence of the deterministic input u. Then the Kalman filter associated with the system under

consideration and the noise statistics embedded in the data is identified. Thanks to the close

mathematical relationship between the system and the associated Kalman filter, the identifi-

cation of the latter also solves the original problem, yielding the desired system matrices. In

the case of input-output identification, OKID provides the matrices A, B, C and D in equa-

tion (4.1) as well as the gain K of the associated Kalman filter. In the output-only case, only

the matrices A and C can be identified for the system, as it is clear from equation (4.1). Nev-

ertheless the approach in O3KID is the same as for the input-output case and yields K as well.

O3KID provides valuable information for applications in structural health monitoring, as the

modal parameters of the structure under consideration (natural frequencies, damping factors

and mode shapes) can be computed from the identified matrices A and C. Also, the resulting

Kalman filter can be used for optimal state estimation or output filtering.

Some overlap with the notation in section 2.5 is preferred to the use of further letters and

symbols. Similar notation also helps make clear the links between OKID and O3KID.

Consider the steady-state Kalman filter2 for the system in (4.1)

x̂(k + 1) = Ax̂(k) + K
(
y(k)− ŷ(k)

)
(4.5a)

ŷ(k) = Cx̂(k) (4.5b)

2 For brevity and clarity of presentation, the observer underlying the O3KID approach has been introduced in
equation (4.5) already in the form of a Kalman filter. This is justified by the fact that such observer is eventually
proven to be the Kalman filter. For a more rigorous mathematical presentation, similar to what was done in
section 2.5, the observer in equation (4.5) could have been introduced in the most general form of LTI observer
for the output-only system in equation (4.1), i.e.

x̂(k + 1) = Fx̂(k) + Ky(k) (4.4a)

ŷ(k) = Cx̂(k) (4.4b)

The fact that the steady-state Kalman filter is the unique observer in the form of equation (4.4) featuring the
orthogonality property of the LS residuals of the O3KID core equation would in the end prove that F = A−KC,
making equation (4.4) equivalent to equation (4.5).
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where x̂ ∈ Rn×1 and ŷ ∈ Rq×1 are the observer state and output and K ∈ Rn×q is the observer

gain. The observer in (4.5) is in the form of one-step-ahead predictor, i.e. it provides an estimate

x̂(k+1) of the next state x(k+1) from the current state estimate x̂(k) and output measurement

y(k). Since all the matrices are constant with time, equation (4.5) is a linear-time-invariant

(LTI) model. Additionally, recalling the definition of observer output residual in equation (2.8),

the Kalman filter in equation (4.5) is noticed to be in innovation form (section3.2).

Plugging equation (4.5b) into (4.5a) and equation (2.8) into (4.5b), the observer in (4.5) can be

written in the equivalent form

x̂(k + 1) = Āx̂(k) + Ky(k) (4.6a)

y(k) = Cx̂(k) + ε(k) (4.6b)

where Ā = A−KC.

Propagating (4.6) forward in time by p − 1 time steps (via repeated substitution) and then

shifting the time index backward by p, we obtain

x̂(k) = Āpx̂(k − p) + Tv(k) (4.7)

where

v(k) =



y(k − 1)

y(k − 2)

...

y(k − p)


(4.8a)

T =

[
K ĀK ... Āp−2K Āp−1K

]
(4.8b)
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The stability of the Kalman filter (Reference 21) guarantees that Āp becomes negligible for suf-

ficiently large values of p (p >> n). Equation (4.7) yields then the following relation expressing

the current state as a linear combination of solely past output values

x̂(k) = Tv(k) (4.9)

Plugging (4.9) into (4.6b), we obtain

y(k) = Φv(k) + ε(k) (4.10)

where

Φ =

[
CK CĀK ... CĀp−2K CĀp−1K

]
(4.11)

Note that Φ in equation (4.11) corresponds to the sequence of Φ
(2)
j , j = 1, 2, . . . , p, in equa-

tion (3.14b).

Equation (4.10) relates mesured output values, without the state appearing explicitly. Also,

note that Φ ∈ Rq×qp contains the sequence of Markov parameters (or unit pulse response) of

the observer in bar form (see equation (4.21)). Equation (4.10) can be written for each time

step k = p, p+ 1, . . . , l− 1 of the measured data record, to obtain the following set of equations

in matrix form

Y = ΦV + E (4.12)
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where

Y =

[
y(p) y(p+ 1) ... y(l − 1)

]
(4.13a)

V =

[
v(p) v(p+ 1) ... v(l − 1)

]
(4.13b)

E =

[
ε(p) ε(p+ 1) ... ε(l − 1)

]
(4.13c)

Equation (4.12) is at the core of O3KID. Y and V are known (from measurements), Φ and E

are not. By having l − p > pq (more equations than unknowns) and considering E as an error

term, it is possible to find the LS solution to (4.12)

Φ̃ = YVT
(
VVT

)−1
= YV† (4.14)

where † denotes the Moore-Penrose pseudoinverse of a matrix, as well as the corresponding LS

residuals

Ẽ = Y − Φ̃V (4.15)

Post-multiplying (4.12) by VT and replacing Φ and E with their LS estimates Φ̃ and Ẽ, we

obtain

YVT = YVT
(
VVT

)−1
VVT + ẼVT = YVT + ẼVT (4.16)

which implies that ẼVT = 0. From the definition of v(k), we conclude that

l−1∑
k=p

ε̃(k)yT(k − j) = 0 j = 1, 2, ..., p (4.17)

Since the stated assumptions make the process in (4.1) stationary, then the ergodic property

applies and following exactly the same strategy as in section2.5 we can prove that the solution
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to the LS problem in (4.12) yields an estimate of the Markov parameters and output residuals

of the Kalman filter corresponding to the unknown system matrices A, C and noise statistics

Q′, R′, S′ that generated the given output sequence {y(k)}. The stability of the Kalman filter

(Reference 21) also guarantees that the observer used to derive the O3KID core equation is

stable, as required for equation (4.9) to hold.

In summary, solving the O3KID core equation (4.12) by LS yields an estimate for the sequence

of the output residuals of the Kalman filter

Ẽ =

[
ε̃(p) ε̃(p+ 1) ε̃(p+ 2) ... ε̃(l − 1)

]
(4.18)

and for the sequence of Markov parameters of the Kalman filter in bar form

Φ̃ =

[
Φ̃1 Φ̃2 ... Φ̃p−1 Φ̃p

]
(4.19)

where Φ̃j ∈ Rq×q is an estimate for the jth Markov parameter CĀj−1K.

4.4 Kalman filter identification via output residuals

Similar to OKID, the second step of O3KID consists of the identification of the Kalman filter

associated with the system to be identified and the noise statistics embedded in the data.

Whereas the first step, i.e. solving the O3KID core equation (4.12), is the same for all methods

based on O3KID, which differ by how they identify the Kalman filter. Similar to OKID, O3KID

methods can be classified in two families: the ones identifying the Kalman filter from its Markov

parameters and those accomplishing the same task from its output residuals.
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Recalling the definition of observer output residuals (2.8), (4.5) can be written as follows

x̂(k + 1) = Ax̂(k) + Kε(k) (4.20a)

ŷ(k) = Cx̂(k) (4.20b)

which is the innovation form of the Kalman filter for the output-only system in equation (4.1).

Equation (4.20) can also be looked at as the state-space model of a dynamic system with ε as

the input and ŷ as the output. Most importantly, no (unknown) noise term is present in (4.20).

Therefore a new noise-free input-output identification problem can be formulated as follows.

Given the sequences of ε and ŷ, identify the matrices of the system in (4.20), i.e. A, C and K.

Yielding A and C, the solution to the new problem would solve also the original identification

problem.

From the first step of O3KID, an estimate for the sequence of ε(k) for k = p, p + 1, . . . , l − 1

is indeed available, as well as for the sequence of ŷ(k), since ε(k) and ŷ(k) are related via the

definition of observer output residuals (2.8). We indeed converted the original identification

problem (4.1), characterized by the presence of unknown signals (w′p and w′m), into the simpler

identification problem (4.20). Any method formulated for deterministic system identification can

be used to address the new problem, solving the original problem at the same time. This gives

rise to many O3KID-based output-only identification algorithms, as many as the deterministic

state-space model identification methods one can think of.

In this chapter, we demonstrate via examples two possible choices, namely the Deterministic

Intersection (DI) and the Deterministic Projection (DP) methods described in appendix A and

specialized below to the O3KID case. The resulting O3KID-based algorithms are referred to as

O3KID/DIi and O3KID/DPi, where the lower-case letter i indicates that the underlying Kalman
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filter is identified in its innovation form (4.20), distinguishing them from the following variant.

From (4.6), plugging (2.8) into (4.6b), we can write

x̂(k + 1) = Āx̂(k) + Ky(k) (4.21a)

ŷ(k) = Cx̂(k) (4.21b)

which has already been referred to as the bar form of the Kalman filter. Similar to (4.20), notice

how the dynamic system in (4.21) is purely deterministic, with input y(k) and output ŷ(k) that

are both known (from measurement and from estimation, respectively). Again, any method for

deterministic system identification can be applied to find Ā, C and K, from which A can be

recovered as A = Ā+KC. Such variant, when coupled with DI and DP to identify the Kalman

filter in bar form, gives rise to O3KID/DIb and O3KID/DPb. Their input-output versions,

OKID/DIb and OKID/DPb, were presented in detail in section 3.4, but numerical examples

suggest their performances are inferior to the algorithms based on the innovation form of the

Kalman filter. Intuitively, the direct identification of A is preferable to the identification of

Ā and subsequent recovery of A from the estimated K and C. Therefore, O3KID/DIb and

O3KID/DPb are omitted in this chapter.

It is worth adding that other algorithms based on the same approach can be devised simply

by replacing DI and DP by other deterministic methods. For instance, one could use the

subspace Algorithm 1 and Algorithm 2 in Reference 2 or the algorithms from the superspace

family (References 31–33). Also note that the approach based on the Kalman output residuals

highlights the following aspect of O3KID. The O3KID core equation (4.12) allows one to convert

the original stochastic identification problem, complicated by the presence of unknown signals

(w′p and w′m), into a new simpler, purely deterministic identification problem whose solution
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includes the solution to the original problem. The intuitive interpretation is that the Kalman

filter underlying (4.12) optimally filters the noise out of the problem, paralleling the same central

role that the Kalman filter has in classic signal estimation (see section 3.4.2 and chapter 5).

Since the record used to construct (4.12) is finite, the filtering action is not exact and neither

are the resulting estimates of A and C. Indeed, due to the stochastic nature of the problem

addressed in this work, an infinite record of output data would be necessary to aim to exact

identification of the system in (4.1). The fact that a Kalman filter exists for the system in (4.1)

as well as for the system in (4.1) indeed inspired the extension of the OKID approach to the

output-only case and led to O3KID.

Although one could use the DI or DP algorithms in their original formulation, as described in

appendix A, it is possible to modify them for a more elegant solution to take into account the

special structure that the models in equations (4.20) and (4.21) have, i.e. no direct influence

matrix in the observation equation. In the rest of the section, the DI and DP methods are

then briefly outlined and specialized to the identification of the Kalman filter in (4.20) from the

following data

{ε(k)} = {ε(p), ε(p+ 1), ε(p+ 2), . . . , ε(l − 1)} (4.22a)

{ŷ(k)} = {ŷ(p), ŷ(p+ 1), ŷ(p+ 2), . . . , ŷ(l − 1)} (4.22b)

Note that in O3KID/DIi and O3KID/DPi, the true {ε} and {ŷ} are not known and replaced

by their estimates

{ε̃(k)} = {ε̃(p), ε̃(p+ 1), ε̃(p+ 2), . . . , ε̃(l − 1)} (4.23a)

{ỹ(k)} = {ỹ(p), ỹ(p+ 1), ỹ(p+ 2), . . . , ỹ(l − 1)} (4.23b)
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where the latter sequence is obtained by ỹ(k) = y(k)− ε̃(k).

4.4.1 Deterministic intersection (DI) algorithm

The property at the core of the DI algorithm for deterministic system identification is that the

Kalman state history can be expressed via the following two matrix relations

X̂ = LpHp X̂ = LfHf (4.24)
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where

X̂ =

[
x̂(p+ i) x̂(p+ i+ 1) . . . x̂(l − i)

]
(4.25a)

Hp =



ε(p) ε(p+ 1) . . . ε(l − 2i)

ŷ(p) ŷ(p+ 1) . . . ŷ(l − 2i)

ε(p+ 1) ε(p+ 2) . . . ε(l − 2i+ 1)

ŷ(p+ 1) ŷ(p+ 2) . . . ŷ(l − 2i+ 1)

...
...

. . .
...

ε(p+ i− 1) ε(p+ i) . . . ε(l − i− 1)

ŷ(p+ i− 1) ŷ(p+ i) . . . ŷ(l − i− 1)



(4.25b)

Hf =



ε(p+ i) ε(p+ i+ 1) . . . ε(l − i)

ŷ(p+ i) ŷ(p+ i+ 1) . . . ŷ(l − i)

ε(p+ i+ 1) ε(p+ i+ 2) . . . ε(l − i+ 1)

ŷ(p+ i+ 1) ŷ(p+ i+ 2) . . . ŷ(l − i+ 1)

...
...

. . .
...

ε(p+ 2i− 1) ε(p+ 2i) . . . ε(l − 1)

ŷ(p+ 2i− 1) ŷ(p+ 2i) . . . ŷ(l − 1)



(4.25c)

(4.25d)

and Lp, Lf ∈ Rn×2qi are two constant matrices. For (4.24) to hold, the parameter i must be

such that qi ≥ n. From a linear algebra perspective, (4.24) shows how the Kalman state sequence

lies both in the row space of Hp and in the row space of Hf . X̂ can then be reconstructed by

intersection of the row spaces of Hp and Hf , which can be accomplished by two singular value

decompositions (SVDs). The most intuitive way to compute said intersection is to note that
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(4.24) implies that

LpHp − LfHf = 0 (4.26)

which can be rewritten as [
Lp −Lf

]Hp

Hf

 = 0 (4.27)

Lp and Lf can then be computed as the left singular vectors associated with the zero singular

values of the comprehensive data matrix H, defined as the concatenation of the past data matrix

Hp and the future data matrix Hf

H =

Hp

Hf

 (4.28)

The SVD of H is then needed

H =

U11 U12

U21 U22


S11 0

0 0

VT (4.29)

where S11 ∈ R(2qi+n)×(2qi+n) is a diagonal matrix with the non-zero singular values of H,

V ∈ R(l−2i−p+1)×(l−2i−p+1) is the matrix with its right singular vectors, and the matrix U with

the left singular vectors is partitioned into U11,U21 ∈ R2qi×(2qi+n) and U12,U22 ∈ R2qi×(2qi−n).

By left-multiplying H with its left singular vectors corresponding to the zero singular values

and recalling the orthogonality property of the singular vector matrix U , we obtain

[
UT

12 UT
22

]Hp

Hf

 = 0 (4.30)

or equivalently

UT
12Hp = −UT

22Hf (4.31)



Chapter 4. Output-only OKID (O3KID) 87

Equation (4.31) shows that UT
12Hp (or −UT

22Hf ) represents the required intersection of the

row spaces of Hp and Hf . However, UT
12Hp contains 2qi − n row vectors, only n of which are

linearly independent. Another SVD can be taken to compute a basis of n linearly independent

vectors for its row space. Such basis provides the sequence of the Kalman state X̂ and the

identification of the Kalman filter in (4.20) can then be completed by solving the following sets

of linear equations

[
x̂(p+ i+ 1) . . . x̂(l − i)

]
=

[
A K

]x̂(p+ i) . . . x̂(l − i− 1)

ε̃(p+ i) . . . ε̃(l − i− 1)

 (4.32a)

[
ŷ(p+ i) . . . ŷ(l − i− 1)

]
= C

[
x̂(p+ i) . . . x̂(l − i− 1)

]
(4.32b)

Since the true ε and ŷ are not known and only their estimates are available from the OKID

equation (4.12), the above equations should be solved in a LS sense. Note that the traditional

solution scheme of DI would solve (4.32) at once as in equation (A.26), identifying also a direct

influence matrix. In the Kalman filter in (4.20), there is no direct influence matrix and such

information can be included in the identification process by solving (4.32) instead of (A.26).

Obviously, in the latter case the direct influence matrix of the Kalman filter model is expected

to be found equal to 0. As verified by numerical and experimental examples, indeed it turns out

to be negligible and existing DI codes such as the one provided with Reference 2and described

in appendix A can be used without modification. Additionally, note that the LS estimate of A

is independent from the presence of a direct influence matrix in equation (A.26). If one is only

interested in the natural frequencies and damping factors of the system, only (4.32a) needs to

be solved.

In Reference 29 a more robust and computationally efficient way to complete the intersection

of Hp and Hf and construct a LS problem equivalent to (4.32) is provided. With reference to
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the identification of the model in (4.20), the algorithm in Reference 29 can be summarized and

modified to take into account the absence of a direct influence matrix as follows.

DI algorithm for output-only Kalman filter identification

1. construct the matrices Hp and Hf in (4.25b) and (4.25c) choosing i greater than q times

the assumed order of the system to be identified, and concatenate them into a single

matrix H as defined in (4.28)

2. take the SVD of H

H = USVT =

U11 U12

U21 U22


S11 0

0 0

VT (4.33)

3. calculate Uq from the SVD of UT
12U11S11

UT
12U11S11 =

[
Uq Ur

]Sq 0

0 0


VT

q

VT
r

 (4.34)

4. solve by LS the following set of equations for A and K

UT
q UT

12U(2q + 1 : 2q(i+ 1), 1 : 2qi+ n)S11 =

[
A K

]
 UT

q UT
12U(1 : 2qi, 1 : 2qi+ n)S11

U(2qi+ 1 : 2qi+ q), 1 : 2qi+ n)S11


(4.35)

5. solve by LS the following set of equations for C

U(2qi+ q + 1 : 2q(i+ 1), 1 : 2qi+ n)S11 = CUT
q UT

12U(1 : 2qi, 1 : 2qi+ n)S11 (4.36)
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where the standard Matlab R© notation has been used to indicate specific submatrices of U. For

example, U(a : b, c : d) indicates the submatrix of U at the intersection of rows A to B and

columns C to D.

4.4.2 Deterministic projection (DP) algorithm

As an alternative, the Kalman filter in (4.20) can be identified by the Deterministic Projection

(DP) algorithm. The equation at the core of the method is the following

Ŷh = ΓX̂ + HtEh (4.37)

where Ŷh and Eh are matrices with Kalman output and residual data arranged according to

a block Hankel structure, Ht is a block Toeplitz lower-triangular matrix that contains the first

i Markov parameters of the Kalman filter in innovation form, Γ is the extended observability
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matrix and X̂ is the sequence of Kalman states

Ŷh =



ŷ(p) ŷ(p+ 1) . . . ŷ(l − i)

ŷ(p+ 1) ŷ(p+ 2) . . . ŷ(l − i+ 1)

...
...

. . .
...

ŷ(p+ i− 1) ŷ(p+ i) . . . ŷ(l − 1)


(4.38a)

Eh =



ε(p) ε(p+ 1) . . . ε(l − i)

ε(p+ 1) ε(p+ 2) . . . ε(l − i+ 1)

...
...

. . .
...

ε(p+ i− 1) ε(p+ i) . . . ε(l − 1)


(4.38b)

Ht =



0 0 0 . . . 0

CK 0 0 . . . 0

CAK CK 0 . . . 0

...
...

...
. . .

...

CAi−2K CAi−3K CAi−4K . . . 0


(4.38c)

X̂ =

[
x̂(p) x̂(p+ 1) . . . x̂(l − i)

]
(4.38d)

Γ =



C

CA

CA2

...

CAi−1


(4.38e)

The key observation in the DP method is of geometrical nature. Under general conditions

(Reference 30), the dimension of the projection of the row space of Ŷh on the orthogonal

complement of the row space of Eh provides the order of the system and its column space yields
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an estimate of Γ. Indeed the estimation of the observability matrix is at the core of the DP

method, similar to how the reconstruction of the Kalman state history is the keystone of the

DI method. Once Γ is estimated, C can be read as the first q rows of Γ whereas A can be

computed thanks to the following relationship with Γ

¯
ΓA = Γ̄ (4.39)

where
¯
Γ and Γ̄ are obtained from Γ by deleting the last and first q rows, respectively.

Let ΠE⊥
h

be the matrix that projects the row space of a matrix onto the row space of the

orthogonal complement to the row space of Eh. The projection of Ŷh onto E⊥h is denoted by

Ŷh/E
⊥
h and can be expressed as Ŷh/E

⊥
h = ŶhΠE⊥

h
. Post-multiplying both sides of (4.37) by

ΠE⊥
h

, we obtain

Ŷh/E
⊥
h = ΓX̂ΠE⊥

h
(4.40)

because EhΠE⊥
h

is null by definition. Take the SVD of Ŷh/E
⊥
h

Ŷh/E
⊥
h =

[
U1 U2

]S1 0

0 0


VT

1

VT
2

 (4.41)

where S1 ∈ Rn×n is a diagonal matrix containing the non-zero singular values, U1 ∈ Rqi×n

and U2 ∈ Rqi×(qi−n) contain the left singular vectors, and V1 ∈ R(l−i−p+1)×n and V2 ∈

R(l−i−p+1)×(l−i−p+1−n) contain the right singular vectors. U1 is then an orthonormal basis

for the column space of Ŷh/E
⊥
h and can be taken as an estimate of the extended observability

matrix Γ. The matrix C can be read as the first q rows of U1 and A can be estimated as

A =
¯
U†1Ū1 (4.42)
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where
¯
U1 and Ū1 are defined similarly to

¯
Γ and Γ̄.

The identification of A and C solves the original problem and allows one to compute the natural

frequencies, the damping factors and the mode shapes for the structure under consideration. If it

is also desired to identify the Kalman gain K, an extra step is necessary. By the orthonormality

properties of the SVD, the columns of U2 are orthonormal to the columns of U1, i.e. to the

columns of Γ. Pre-multiplying (4.37) by UT
2 and post-multiplying by E†h, we obtain

UT
2 ŶhE

†
h = UT

2 Ht (4.43)

which can be rewritten as an overdetermined set of linear equations in the unknown K as

follows. Denote by Mj ∈ R(qi−n)×q and Lj ∈ R(qi−n)×q the block columns of UT
2 ŶhE

†
h and UT

2 ,

respectively, i.e.

UT
2 YhE

†
h =

[
M1 M2 . . . Mi

]
(4.44a)

UT
2 =

[
L1 L2 . . . Li

]
(4.44b)

Equation (4.43) can then be written as



M1

M2

...

Mi−1


=



L2 L3 . . . Li

L3 L4 . . . 0

...
... . . .

...

Li 0 . . . 0


¯
U1K (4.45)

and solved by LS for K. Note that, similar to the DI algorithm, the classic implementation of

the DP method (appendix A) would attempt to identify also a direct influence matrix , which is

however known to be null for the system in (4.20). Existing codes for the classic DP algorithm
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can be used without modification and yield a direct influence matrix approximately null, as

verified by numerical examples. The version adopted in the examples on O3KID/DPi illustrated

in this chapter is tailored for the identification of the state-space model in equation (4.20). The

corresponding DP algorithm is summarized below step by step for ease of implementation.

DP algorithm for output-only Kalman filter identification

1. construct the matrices Ŷh and Eh as in (4.38)

2. project3 Ŷh on E⊥h to obtain Ŷh/E
⊥
h

3. calculate U1 and U2 from the SVD of Ŷh/E
⊥
h as in (4.41)

4. read C as the first q rows of U1

5. compute A from (4.42)

6. if desired, solve by LS (4.45) to find the Kalman gain K

4.5 Kalman filter identification via Markov parameters

The Kalman filter at the core of the O3KID approach can be identified from its Markov parame-

ters, whose estimate Φ̃ is obtained from the LS solution of the O3KID core equation. Similar to

output-only OKID, before applying ERA or ERA-DC, the following preliminary operation has

to be done on the estimated Kalman filter Markov parameters. The latter refer to the Kalman

filter in the bar form (4.21). With simple algebraic manipulation, it is possible to demonstrate

that the sequence Φj = CĀj−1K can be converted into the sequence Ψj = CAj−1K, which

3The projection of Ŷh on E⊥
h can be computed in closed form via the projection operator ΠE⊥

h
= I −

ET
h

(
EhE

T
h

)†
Eh or via numerically more robust techniques such as QR decomposition. The code for DP available

at http://homes.esat.kuleuven.be/~smc/sysid/software/ relies on the latter, as illustrated in chapter 6 of
Reference 2. In the examples illustrated in this chapter, the same technique based on QR decomposition is used.

http://homes.esat.kuleuven.be/~smc/sysid/software/
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corresponds to the Markov parameters of the Kalman filter in its innovation form (4.20). Ad-

ditionally, it can be noticed that the sequence of estimated CĀj−1K is finite (j = 1, 2, ..., p)

only in appearance. For j > p, CĀj−1K can be considered to be equal to 0 as assumed in

the derivation of the O3KID core equation. In other words, the sequence of estimated Markov

parameters Φ̃j can be extended to an arbitrary value j = N > p simply by padding Φ̃ in (4.19)

with zeros. The estimate for the Markov parameters of the Kalman filter in innovation form

can then be computed as

Ψ̃1 = Φ̃1 (4.46a)

Ψ̃j = Φ̃j +

j−1∑
h=1

Φ̃hΨ̃j−h for j = 2, 3, . . . , N (4.46b)

From the Markov parameters Ψj = CAj−1K, j = 1, 2, . . . , N , ERA or ERA-DC can be applied

to identify the desired matrices A, C and K. The resulting algorithms are referred to as

O3KID/ERAi and O3KID/ERA-DCi. It is worth noting how the Markov parameters Φj =

CĀj−1K could also have been used as an input to ERA or ERA-DC, leading to the identification

of Ā, C and K, from which A could then be recovered as A = Ā + KC. However, similar

considerations to what observed for the identification of the Kalman filter via output residuals

apply and the direct identification of A turns out to be more accurate. O3KID/ERAb and

O3KID/ERA-DCb are then not illustrated in this chapter.

In contrast with the identification via observer output residuals, the use of Markov parameters

is completely insensitive to the absence of a direct influence matrix in equation (4.20).
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4.6 O3KID algorithms

The detailed steps for O3KID are described below. The user can choose between identifying the

underlying Kalman filter from its Markov parameters or from its output residuals. Furthermore,

within these two families, any deterministic state-space model identification algorithm can be

chosen other than the ones illustrated in this work (DI, DP, ERA, ERA-DC).

The input to the following O3KID-based algorithms is the sequence of measured system output

{y(k)} of length l in (4.3). The output of the algorithm is the set of matrices A, C and K.

1. construct the matrices Y and V in (4.13a) and (4.13b), choosing p sufficiently larger than

the assumed order n of the system (4.1) to be identified (typically, 20 times larger)

2. solve equation (4.12)

Φ̃ = YV† (4.47)

For algorithms based on Kalman filter output residuals

3. compute

[
ỹ(p) ỹ(p+ 1) ... ỹ(l − 1)

]
= Φ̃V (4.48a)[

ε̃(p) ε̃(p+ 1) ... ε̃(l − 1)

]
= Y − Φ̃V (4.48b)

4. execute, with input ε̃(k) and ỹ(k), k = p, p+ 1, . . . , l − 1, any of the following algorithms

• DI (in this section or in section A.3) for O3KID/DIi

• DP (in this section or in section A.4) for O3KID/DPi
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• any other algorithm for deterministic state-space model identification from arbitrary

excitation

5. read the output matrices A, C and, if desired, K

For algorithms based on Kalman filter Markov parameters

3. partition Φ̃ in submatrices of q columns each

Φ̃ =

[
Φ̃1 Φ̃2 ... Φ̃p−1 Φ̃p

]
(4.49)

4. compute Ψ̃j for j = 1, 2, . . . , N from (4.46) with Φ̃j = 0 for j > p, choosing N such that

the sequence Ψ̃j covers a significant portion of the impulse response of the system

5. execute, with input Ψ̃j , j = 1, 2, ..., N , any of the following algorithms

• ERA (section A.1) for O3KID/ERAi

• ERA-DC (section A.2) for O3KID/ERA-DCi

• any other algorithm for deterministic state-space model identification from unit pulse

response (Markov parameters)

6. read the output matrices A, C and, if desired, K

4.7 Numerical examples

The following numerical examples aim to illustrate the correctness and effectiveness of the

output-only identification approach proposed in this chapter. The results obtained from the

four different O3KID algorithms are reported and compared to highlight some of their features.
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4.7.1 Four-story shear-type building

Consider the same lumped model of a four-story shear-type building shown in Figure 3.5 and

described in section 3.4.3. Since the excitation is a white process normally distributed with

zero mean and standard deviation of 1, the input satisfies the assumptions made in section 4.2.

The gaussian noise that might affect the input channel is not explicitly modeled here, as it

can be considered included in the unmeasured excitation mentioned above. With regard to the

structural response, the lateral acceleration at each floor is measured, for a total of 4 outputs.

Zero-mean gaussian noise is present in each output channel, with standard deviation expressed

as a percentage σm% of the standard deviation σyi of the corresponding true system output

yi. The complete discrete-time state-space model of the structure is therefore in the form of

equation (1.3) with n = 8, m = 1 and q = 4. The process noise wp is not explicitly modeled

(Q = 0), whereas the covariance of the measurement noise wm is the diagonal matrix

R = σ2
m%



σ2
y10 0 0

0 σ2
y2 0 0

0 0 σ2
y3 0

0 0 0 σ2
y4


(4.50)

In the output-only system identification problem addressed in this chapter, only the output

(corrupted by noise) is assumed to be measured. The contribution of the input to the state and

measurement dynamics is absorbed in the noise terms wp and wm in (4.1), which then have

covariance matrices Q′ = BBT and R′ = DDT + R, respectively. The model to be identified

consists in the matrices A and C.
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4.7.2 Full set of sensors

The following study is based on Monte Carlo simulations of 100 runs each and different mea-

surement noise levels σm%. In each Monte Carlo simulation, the measurement noise level is

kept constant as well as the standard deviation of the excitation. Independent sequences for

wp and wm are generated for each run and the corresponding output sequences obtained from

(4.1) are fed to the illustrated algorithms to identify the matrices A and C. In each of the four

O3KID-based algorithms, the SVD of a data matrix needs to be performed. The system order

is revealed at this stage by the number of singular values that can be considered different from

zero. In deterministic system identification (noise-free input and output data), the separation

between non-zero and zero singular values is an extremely simple task since the latter are indeed

numerically zero. The presence of noise wp and wm prevents the singular values from being

exactly zero and the user is asked to select the singular values that are sufficiently small to

be considered zero and discarded. As an example, Figure 4.1 shows the singular value plots

obtained for each O3KID-based algorithm for a single run of the Monte Carlo simulation with

σm% = 10%. Note how for O3KID/DPi, O3KID/ERAi and O3KID/ERA-DCi there is a clear

gap between the 8 largest singular values and the others. The order n = 8 is then correctly

selected without difficulty. In contrast, the singular value plot in O3KID/DIi does not reveal the

order of the system as clearly. In the Monte Carlo simulation, in order to compare the results

from the different methods, the number of non-zero singular values chosen in O3KID/DIi is

forced to 8.

From the identified matrices A and C, the modal parameters of the structures can be com-

puted as follows. By using the eigenvectors of A, transform the identified system into modal
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coordinates. The resulting state-space model has system and output matrices

Λ = φ−1Aφ (4.51a)

Ω = Cφ (4.51b)

where the columns of φ ∈ Rn×n correspond to the eigenvectors of A and Λ is a diagonal matrix

with the eigenvalues of A, namely λ1, λ2, . . . , λn. When the system has no rigid body modes

and all its vibrational modes are underdamped, the eigenvalues λi appear in complex conjugate

pairs, i.e.

λ2i = a2i + jb2i = λ∗2i−1 for i = 1, 2, . . . , n/2 (4.52)

where a2i and b2i represent the real and imaginary parts of λ2i, respectively, and the superscript

∗ denotes the complex conjugate. Note that the order of the eigenvalues and the corresponding

eigenvectors can be changed arbitrarily, provided that the re-ordering is done consistently and

simultaneously for both. In general, each pair a2i ± jb2i (i = 1, 2, . . . , n/2) corresponds to a

second-order vibration mode. Under the standard zero-order-hold assumption, the correspond-

ing undamped natural frequencies fi (in Hz) and damping factors ζi (dimensionless ratio) can

be computed as

fi = mag

(
logλi
2π∆t

)
(4.53a)

ζi = −cos (phase (logλi)) (4.53b)

where ∆t is the sampling time in seconds of the measured data. The mode shapes are given

by the columns of Ω. Since the system is classically damped, for each mode the phase between

different degrees of freedom is expected to be either 0 or π. Due to the noise wp and wm,

the estimated mode shapes will generally have some additional phase difference, which can be
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Table 4.1: Numerical example – Identified natural frequencies (Hz) of the structure in Fig. 3.5

(Monte Carlo simulation, average f̄i and standard deviation σfi , i = 1, 2, 3, 4, over 100 runs) for
different levels of measurement noise σm%.

σm% Method f̄1 σf1 f̄2 σf2 f̄3 σf3 f̄4 σf4

True 1.395 – 3.972 – 5.945 – 7.012 –

O3KID/DIi 1.369 0.133 3.963 0.040 5.938 0.032 7.007 0.027
O3KID/DPi 1.397 0.019 3.974 0.010 5.945 0.012 7.013 0.013

0% O3KID/ERAi 1.398 0.007 3.973 0.009 5.946 0.012 7.012 0.012
O3KID/ERA-DCi 1.398 0.007 3.973 0.009 5.946 0.012 7.012 0.012
N4SID 1.395 0.005 3.974 0.008 5.945 0.011 7.013 0.012

O3KID/DIi 1.390 0.006 3.970 0.008 5.943 0.011 7.011 0.011
O3KID/DPi 1.400 0.005 3.974 0.008 5.945 0.011 7.014 0.011

1% O3KID/ERAi 1.398 0.007 3.973 0.009 5.946 0.012 7.012 0.012
O3KID/ERA-DCi 1.398 0.007 3.973 0.009 5.946 0.012 7.012 0.012
N4SID 1.395 0.005 3.974 0.008 5.945 0.011 7.014 0.012

O3KID/DIi 1.406 0.024 3.974 0.009 5.946 0.012 7.013 0.012
O3KID/DPi 1.401 0.005 3.974 0.008 5.945 0.011 7.014 0.011

10% O3KID/ERAi 1.397 0.007 3.973 0.009 5.947 0.012 7.013 0.012
O3KID/ERA-DCi 1.397 0.007 3.973 0.009 5.947 0.012 7.013 0.012
N4SID 1.396 0.008 3.973 0.008 5.946 0.011 7.014 0.011

O3KID/DIi 1.400 0.006 3.972 0.008 5.946 0.011 7.013 0.012
O3KID/DPi 1.400 0.005 3.973 0.008 5.946 0.011 7.014 0.011

20% O3KID/ERAi 1.396 0.006 3.973 0.009 5.948 0.012 7.013 0.012
O3KID/ERA-DCi 1.396 0.006 3.973 0.009 5.948 0.012 7.013 0.012
N4SID 1.397 0.009 3.973 0.008 5.946 0.011 7.014 0.012

eliminated in the normalization process by finding the closest real mode shape.

Tables 4.1 and 4.2 report the average of the natural frequencies and damping factors identified

in each Monte Carlo simulation, with different noise levels σm%. All the four O3KID algorithms

are executed with p = 100 in the O3KID equation, i = 20 in DI and DP and N = 200

in ERA and ERA-DC. The results from N4SID (i = 20) are also reported as a benchmark.

N4SID (References 2, 35) is a an algorithm for system identification in the presence of noise

that, similar to OKID, can be applied to both the input-output and output-only cases. As

expected from the analysis of its singular value plot, the performance of O3KID/DIi is inferior

to the other algorithms. Remarkably, in most of the runs, O3KID/DIi is able to identify the

correct modes. However, the lower accuracy and precision, in particular for the first mode,

reflect the fact that in Figure 4.1a the singular values corresponding to true and spurious

modes are very close to each other. The other O3KID algorithms provide estimates of natural
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Table 4.2: Numerical example – Identified damping factors of the structure in Fig. 3.5 (Monte

Carlo simulation, average ζ̄i and standard deviation σζi , i = 1, 2, 3, 4, over 100 runs) for different
levels of measurement noise σm%.

σm% Method ζ̄1 σζ1 ζ̄2 σζ2 ζ̄3 σζ3 ζ̄4 σζ4

True 0.0100 – 0.0100 – 0.0100 – 0.0100 –

O3KID/DIi 0.0336 0.0831 0.0127 0.0094 0.0113 0.0038 0.0104 0.0022
O3KID/DPi 0.0102 0.0186 0.0103 0.0023 0.0102 0.0018 0.0099 0.0017

0% O3KID/ERAi 0.0246 0.0063 0.0076 0.0022 0.0090 0.0019 0.0094 0.0017
O3KID/ERA-DCi 0.0246 0.0063 0.0076 0.0022 0.0090 0.0019 0.0094 0.0017
N4SID 0.0111 0.0047 0.0103 0.0020 0.0101 0.0018 0.0100 0.0015

O3KID/DIi 0.0141 0.0060 0.0108 0.0021 0.0105 0.0018 0.0102 0.0015
O3KID/DPi 0.0115 0.0047 0.0102 0.0020 0.0102 0.0018 0.0099 0.0015

1% O3KID/ERAi 0.0246 0.0063 0.0076 0.0022 0.0090 0.0019 0.0095 0.0017
O3KID/ERA-DCi 0.0246 0.0063 0.0076 0.0022 0.0090 0.0019 0.0095 0.0017
N4SID 0.0114 0.0049 0.0103 0.0020 0.0102 0.0018 0.0100 0.0015

O3KID/DIi 0.0510 0.0390 0.0118 0.0028 0.0107 0.0020 0.0104 0.0017
O3KID/DPi 0.0111 0.0045 0.0101 0.0020 0.0101 0.0018 0.0099 0.0015

10% O3KID/ERAi 0.0230 0.0064 0.0078 0.0022 0.0091 0.0019 0.0095 0.0017
O3KID/ERA-DCi 0.0230 0.0064 0.0078 0.0022 0.0091 0.0019 0.0095 0.0017
N4SID 0.0115 0.0050 0.0104 0.0021 0.0102 0.0018 0.0100 0.0015

O3KID/DIi 0.0111 0.0045 0.0101 0.0021 0.0102 0.0018 0.0100 0.0015
O3KID/DPi 0.0111 0.0045 0.0100 0.0020 0.0101 0.0018 0.0099 0.0015

20% O3KID/ERAi 0.0189 0.0064 0.0081 0.0022 0.0093 0.0019 0.0096 0.0017
O3KID/ERA-DCi 0.0189 0.0064 0.0081 0.0022 0.0093 0.0019 0.0096 0.0017
N4SID 0.0115 0.0052 0.0104 0.0021 0.0102 0.0018 0.0100 0.0015

frequencies and damping factors that are extremely close to the true values. Both the average

estimation error and the standard deviation are below 1%. The most critical mode from the

identification point of view seems to be the first one. Note how N4SID is generally more

accurate than O3KID-based methods but as measurement noise increases the average error

and standard deviation of N4SID estimates get worse, whereas O3KID-based methods are not

affected. Also note how O3KID/DPi performs significantly better in the estimation of damping

factors than O3KID/ERAi and O3KID/ERA-DCi. The two algorithms based on Kalman filter

Markov parameters provide very similar estimates of natural frequencies and damping factors

(the difference is associated with digits beyond those reported in the tables), but ERA-DC

performs consistently better than ERA. The same is true for the estimates of the mode shapes

and can be related to the ability of ERA-DC to better separate zero and non-zero singular values

(Figures 4.1c and 4.1d). The mode shapes shown in Figure 4.2 are the averages obtained from
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(c) ERAi (80 largest singular values).
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(d) ERA-DCi (80 largest singular values).

Figure 4.1: Numerical example – Singular value plots for O3KID algorithms (σm% = 10%).

the Monte Carlo simulation with σm% = 10% after normalization (unit eigenvectors). They are

identified with great accuracy by all the proposed algorithms, in particular by the ones based

on the estimation of the Kalman output residuals.

4.7.3 Reduced set of sensors

As an additional example to demonstrate O3KID, consider the same structure in Figure 3.5 and

the same study in section 4.7.2, this time assuming that the lateral acceleration is measured

only in correspondence of the second and fourth floor. The four-degree-of-freedom model has
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(a) Mode 1.
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(b) Mode 2.
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(c) Mode 3.
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(d) Mode 4.

Figure 4.2: Numerical example – Comparison between true and identified modes (Monte
Carlo simulation, average over 100 runs with σm% = 10%).

then the same A ∈ R8×8 matrix and reduced C ∈ R2×8 matrix. As shown in Figure 4.3, all

O3KID algorithms are able to identify the correct order of the system, even the variant based on

DI. The latter produces indeed a very clear singular value plot, where the gap between zero and

non-zero singular values is not large in magnitude but is very well defined, being the non-zero

singular values very close to each other. O3KID/ERA-DCi confirms its ability to separate the

singular values better than O3KID/ERAi.

Tables 4.3 and 4.4 show how all the proposed algorithms successfully identify the four-story
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Table 4.3: Numerical example with reduced set of sensors – Identified natural frequencies
(Hz) of the structure in Fig. 3.5 (Monte Carlo simulation, average f̄i and standard deviation

σfi , i = 2, 4, over 100 runs) for different levels of measurement noise σm%.

σm% Method f̄1 σf1 f̄2 σf2 f̄3 σf3 f̄4 σf4

True 1.395 – 3.972 – 5.945 – 7.012 –

O3KID/DIi 1.395 0.006 3.973 0.008 5.946 0.011 7.013 0.011
O3KID/DPi 1.396 0.006 3.974 0.008 5.945 0.011 7.013 0.011

0% O3KID/ERAi 1.427 0.008 3.961 0.012 5.938 0.012 7.007 0.013
O3KID/ERA-DCi 1.427 0.009 3.961 0.012 5.938 0.012 7.007 0.013
N4SID 1.396 0.006 3.973 0.008 5.945 0.011 7.013 0.011

O3KID/DIi 1.396 0.006 3.972 0.008 5.945 0.011 7.013 0.011
O3KID/DPi 1.398 0.006 3.975 0.008 5.945 0.011 7.013 0.011

1% O3KID/ERAi 1.505 0.353 4.060 0.352 5.963 0.185 7.023 0.070
O3KID/ERA-DCi 1.505 0.353 4.060 0.352 5.963 0.185 7.023 0.070
N4SID 1.396 0.013 3.973 0.008 5.945 0.011 7.013 0.011

O3KID/DIi 1.396 0.005 3.973 0.008 5.945 0.011 7.013 0.011
O3KID/DPi 1.396 0.006 3.975 0.008 5.946 0.012 7.013 0.011

10% O3KID/ERAi 1.405 0.009 3.974 0.011 5.943 0.013 7.013 0.014
O3KID/ERA-DCi 1.405 0.009 3.974 0.011 5.943 0.013 7.013 0.014
N4SID 1.397 0.017 3.973 0.008 5.945 0.012 7.013 0.012

O3KID/DIi 1.396 0.005 3.973 0.008 5.945 0.012 7.013 0.011
O3KID/DPi 1.396 0.005 3.976 0.008 5.946 0.012 7.013 0.012

20% O3KID/ERAi 1.393 0.007 3.979 0.011 5.943 0.013 7.014 0.014
O3KID/ERA-DCi 1.393 0.007 3.979 0.011 5.943 0.013 7.014 0.014
N4SID 1.397 0.020 3.973 0.010 5.945 0.012 7.013 0.012

Table 4.4: Numerical example with reduced set of sensors – Identified damping factors of the
structure in Fig. 3.5 (Monte Carlo simulation, average ζ̄i and standard deviation σζi , i = 2, 4,

over 100 runs) for different levels of measurement noise σm%.

σm% Method ζ̄1 σζ1 ζ̄2 σζ2 ζ̄3 σζ3 ζ̄4 σζ4

True 0.0100 – 0.0100 – 0.0100 – 0.0100 –

O3KID/DIi 0.0123 0.0047 0.0111 0.0022 0.0110 0.0020 0.0108 0.0018
O3KID/DPi 0.0117 0.0053 0.0103 0.0020 0.0102 0.0018 0.0100 0.0015

0% O3KID/ERAi 0.0107 0.0061 0.0106 0.0026 0.0101 0.0021 0.0099 0.0018
O3KID/ERA-DCi 0.0107 0.0061 0.0106 0.0026 0.0101 0.0021 0.0099 0.0018
N4SID 0.0112 0.0055 0.0104 0.0020 0.0102 0.0018 0.0100 0.0015

O3KID/DIi 0.0119 0.0050 0.0103 0.0020 0.0102 0.0018 0.0101 0.0016
O3KID/DPi 0.0109 0.0048 0.0101 0.0019 0.0100 0.0018 0.0099 0.0015

1% O3KID/ERAi 0.0105 0.0148 0.0129 0.0084 0.0093 0.0023 0.0071 0.0036
O3KID/ERA-DCi 0.0105 0.0148 0.0129 0.0084 0.0093 0.0023 0.0071 0.0036
N4SID 0.0113 0.0060 0.0104 0.0020 0.0102 0.0019 0.0100 0.0015

O3KID/DIi 0.0121 0.0052 0.0104 0.0020 0.0103 0.0019 0.0101 0.0016
O3KID/DPi 0.0117 0.0053 0.0102 0.0019 0.0101 0.0018 0.0099 0.0015

10% O3KID/ERAi 0.0154 0.0061 0.0103 0.0026 0.0101 0.0019 0.0095 0.0019
O3KID/ERA-DCi 0.0154 0.0061 0.0103 0.0026 0.0101 0.0019 0.0095 0.0019
N4SID 0.0110 0.0067 0.0103 0.0020 0.0103 0.0019 0.0100 0.0016

O3KID/DIi 0.0124 0.0056 0.0106 0.0021 0.0105 0.0019 0.0101 0.0016
O3KID/DPi 0.0118 0.0056 0.0103 0.0020 0.0102 0.0019 0.0099 0.0015

20% O3KID/ERAi 0.0143 0.0060 0.0105 0.0025 0.0107 0.0019 0.0100 0.0019
O3KID/ERA-DCi 0.0143 0.0060 0.0105 0.0025 0.0107 0.0019 0.0100 0.0019
N4SID 0.0107 0.0074 0.0101 0.0025 0.0103 0.0020 0.0101 0.0016
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(c) ERAi (40 largest singular values).
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(d) ERA-DCi (40 largest singular values).

Figure 4.3: Numerical example with reduced set of sensors – Singular value plots for O3KID
algorithms (σm% = 10%).

structure even when the acceleration is measured at two floors only. In particular, notice how

the algorithms based on the estimation of the Kalman output residuals provide very precise

(small standard deviation) estimates at all noise levels. The corresponding estimated mode

shapes match very well the true ones, as far as the measured degrees of freedom. The minimum

condition to reconstruct the complete mode shapes is that each degree of freedom is instru-

mented (either with an actuator or a sensor), as proven in Reference 45. In output-only system

identification, this requires the response at each degree of freedom to be measured, making it

impossible to reconstruct the complete mode shapes in case of reduced set of sensors.
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4.8 Experimental example

For the demonstration of O3KID on real data, the same experimental tests performed in the

Engineering Institute (EI) at Los Alamos National Laboratory (LANL) and used in chapter 3

are considered in this section.

Recall that the excitation is band-limited in the range of 20-150 Hz. Strictly speaking, such input

does not satisfy the assumptions in section 4.2, but it is closer to the excitation that can occur

in real applications (finite-power spectrum). Additionally, the excitation measurements allow

one to estimate with greater accuracy the natural frequencies and damping factors, providing

a gold standard against which the modal parameters identified by O3KID can be compared.

These facts make the example an ideal test bench for the proposed output-only identification

methods.

In the following example, we use the first dataset for the standard configuration of the test

structure (denoted as state #1 in Reference 36)4. Although the excitation input is measured, it

is not fed to the O3KID algorithms. These are applied choosing p = 100, i = 20 and N = 200.

The resulting SVD plots are shown in Figure 4.4 and lead to the conclusion that the dynamic

response of the structure is characterized by three vibration modes. Notice how, similar to the

example in Figure 4.1, O3KID/DIi does not show a clear cut between non-zero and zero singular

values. In order to compare the identification results, the 6 largest singular values are retained

as suggested by the SVD of the other algorithms.

Table 4.5 reports the natural frequencies and damping factors identified via O3KID. The results

are close to the estimates reported in Reference 36 and obtained by an input-output modal

4The data are available for download at http://institute.lanl.gov/ei/software-and-data/.
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(c) ERA (80 largest singular values).
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(d) ERA-DC (80 largest singular values).

Figure 4.4: LANL test structure – Singular value plots for O3KID algorithms.

Table 4.5: LANL test structure – Identified natural frequencies (Hz) and damping factors,
compared with the values reported by LANL.

Method f1 ζ1 f2 ζ2 f3 ζ3

Input-Output RFP (LANL benchmark) 30.7 0.063 54.2 0.020 70.7 0.010

O3KID/DIi 31.063 0.068 54.472 0.015 71.475 0.007
O3KID/DPi 31.380 0.065 54.709 0.020 71.534 0.010
O3KID/ERAi 31.176 0.045 54.445 0.017 71.429 0.008
O3KID/ERA-DCi 31.176 0.045 54.445 0.017 71.429 0.008
N4SID 32.122 0.064 54.822 0.019 71.605 0.010

identification technique formulated in the frequency domain (Rational-Fraction Polynomial,

RFP).
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Table 4.6: LANL test structure with modified column stiffness – Identified natural frequencies
(Hz) and damping factors.

Method f1 ζ1 f2 ζ2 f3 ζ3

O3KID/DIi 32.180 0.246 54.646 0.026 62.054 0.015
O3KID/DPi 28.032 0.061 54.624 0.019 62.179 0.012
O3KID/ERAi 27.955 0.021 54.413 0.019 62.179 0.011
O3KID/ERA-DCi 27.955 0.021 54.413 0.019 62.179 0.011
N4SID 28.700 0.018 54.737 0.018 62.217 0.012

To further demonstrate the proposed algorithms, Table 4.6 shows the natural frequencies and

damping factors obtained from another dataset in Reference 36, the one denoted as state #7

and characterized by reduced stiffness in two of the columns supporting the second floor. As ex-

pected, apart from O3KID/DIi, the identified natural frequencies decrease whereas the damping

factors do not change significantly.

4.9 Conclusions

The well-established OKID method for system identification from input-output data has been

extended to the case where only the output measurements are available and the input can

be considered to be a white process. Not only the traditional OKID algorithms completing

the identification via the Kalman filter Markov parameters by ERA or ERA-DC have been

specialized to the output-only case, but also new algorithms based on the estimation of the

Kalman output residuals and on final identification by subspace methods such as Deterministic

Intersection (DI) and Deterministic Projection (DP) have been formulated. All of the proposed

algorithms have been illustrated via examples on both numerical and experimental data, which

demonstrated how O3KID is an effective approach for output-only system identification. In

particular, O3KID/DPi proved to be very reliable and accurate and its performance are in line

with or better than existing methods for output-only system identification methods such as
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N4SID. Similar to the family of subspace methods, OKID and O3KID provide then a unified

framework for input-output and output-only system identification and a useful tool for structural

health monitoring.



Chapter 5

OKID as a unified framework for

linear system identification

5.1 Introduction

The objective of this chapter is to provide an overview of OKID, without getting lost in the

mathematical details. Whereas chapters 2 and 3 were meant to rigorously prove, describe and

demonstrate the validity of the traditional and novel OKID algorithms, this chapter is intended

to focus on the general and unified framework that OKID provides for system identification.

Starting from a very high-level view of OKID, the detail level is gradually increased and, with

the help of diagrams, the relationships among all the algorithms presented in chapter 3 are high-

lighted. Additionally, the connection between OKID and system identification methods based

on ARX models (autoregressive models with exogenous input) and ARMAX (autoregressive-

moving-average models with exogenous input) is discussed. In particular, the latter provides an

alternative OKID core equation, i.e. it can improve the first step in the OKID approach.

110
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5.2 OKID as a two-step identification process

All the algorithms presented in chapter 2 start with the construction of the LS problem in

equation (2.44) and the corresponding solution. This LS problem then earned the name of

OKID core equation as it represents the connecting link among the algorithms presented in

chapter 3. The interpretation given in section 3.4 to the algorithms based on the estimation

of the Kalman filter output residuals highlights how the use of the Kalman filter equations to

derive the OKID core equation serves as a filter to the noisy input-output data obtained from

measurements. The first step of OKID can then be interpreted as a filtering stage, to eliminate

(or at least reduce) the undesired effect of noise on the identification of the matrices A, B, C,

D. The concept is thoroughly discussed and illustrated in section 3.4.2.

After noise is filtered out of the data, the second step of OKID takes place and consists in

the identification of the Kalman filter associated with the system to be identified and the

statistical characteristics of the noise embedded in the measured input-output data. Whereas

the first step provides some preliminary information on such a Kalman filter, either its unite

pulse response (which is a deterministic and distinctive characteristic of the Kalman filter,

its signature) or its output residuals (which serve to construct a new, purely deterministic

identification problem), the second step completes the identification of the Kalman filter itself.

Thanks to the close relationship between the Kalman filter model, equation (3.1) or (3.5), and

the system model, equation (1.3), the matrices of the latter can be easily recovered, solving

the original identification problem. The two-step process described above is summarized in

the diagram in Figure 5.1. All the mathematical details are found in chapter 2 for step 1 and

chapter 3 for step 2.

It is at this stage interesting to point out how the identification of the Kalman filter is not only
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Figure 5.1: Two main steps of OKID.

appealing for the reasons mentioned in section 2.2, it is actually necessary in order to neutralize

the detrimental effect that noise has on the identification process. The gain K can be explicitly

found or not in OKID (depending on the chosen algorithm), nevertheless its presence is crucial

in the formulation of OKID. It is indeed the Kalman filter that yields the OKID core equation,

allowing one to find an asymptotically unbiased estimate of variables somewhat related to the

system to be identified. In summary, OKID establishes the Kalman filter as the right tool to

harness process and measurement noise in system identification. The optimal properties of the

Kalman filter in signal estimation play a crucial role in system identification as well, as they

allow the construction of a LS problem with white noise (as desired for unbiasedness) despite

the process noise passing through the system becomes colored at the output measurement. The

Kalman filter can then be considered to be the bridge between combined (i.e. from noisy data)

and deterministic (i.e. from noise-free data) system identification.

The practical consequence of such a role for the Kalman filter in system identification is that

OKID allows any deterministic system identification method to become combined. As mentioned

in chapter 1, identification methods are referred to as deterministic when they are formulated

without taking into account noise in the data, i.e. they are based on equation (1.1) instead of

equation (1.3). Identification methods arising from the latter, like OKID algorithms, are called
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combined since they take into account both the deterministic drive u and the stochastic drivewp,

wm. The robustness of deterministic identification methods to noise in the data is then entirely

in the hands of the numerical techniques used in the implementation. Noise generally makes

the models estimated by deterministic methods biased. The benefit of the OKID core equation

is that it can filter out the noise embedded in the measured data and let the identification get

completed by deterministic identification methods, which then operate closer to the conditions

for which they were formulated. By preliminary application of the OKID core equation and

the construction of a new identification problem where the Kalman filter instead of the original

system is identified, any deterministic identification method can result in a combined algorithm

able to optimally handle noise.

Finally, it is worth commenting on the sources of estimation error in OKID-based algorithms,

namely the truncation error in the OKID core equation and the finite-record error. In the

derivation of equation (2.44), passing from equation (2.37) to equation (2.40) it is assumed that

Fp, which eventually turns out to correspond to Āp, is null. However, the Kalman gain K does

not place the eigenvalues of Āp at the origin as a deadbeat observer would. The presence of

noise indeed makes the decay of the term Āp gradual. Although it converges to zero as p is

increased, it will never be identically zero. Hence, to explicitly remark the corresponding source

of approximation, we should rewrite equation (2.41) as

y(k) = Φv(k) + ε(k) + εt(k) (5.1)

where εt(k) = CĀpx(k − p) is the truncation error arising from the approximation made to

derive equation (2.41). Correspondingly, the OKID core equation should be written as

Y = ΦV + E + Et (5.2)



Chapter 5. OKID as a unified framework for linear system identification 114

where Et is defined, similar to E, as

Et =

[
εt(0) εt(1) ... εt(l − p− 1)

]
(5.3)

When solving equation (5.2) via LS by considering the unknown terms E and Et as error terms,

the fact that εt(k) is not white causes a bias in the estimate for Φ. The second source of

estimation error is due to the finite length of the data record. Even assuming that there is no

truncation error (or, as in practice, that p is chosen sufficiently large to make the truncation error

negligible), the estimator for Φ given by the LS solution to equation (2.44) is asymptotically

unbiased. In practice, this means that an infinitely long record (infinite l) would be necessary

to find the true value of Φ. The finite-record error is intrinsic to the problem described in

section 2.2, due to the stochastic nature of the noise. The truncation error arises instead

in the proposed approach to system identification, it is intrinsic to OKID. Nevertheless, as

anticipated in section 3.4.2.3 and presented in more detail in section 5.5, the truncation error

can be eliminated by a technique known as residual whitening.

5.3 Main variants within the framework of OKID

5.3.1 Input to the second step

After solving equation (2.44), two main approaches can be taken to identify the Kalman filter

underlying the OKID core equation. The LS solution Φ̃ in equation (2.46) comes with the

LS residuals Ẽ in equation (2.47). As rigorously proven in section 2.5, they correspond to the

Kalman filter Markov parameters (or unit pulse response) and output residuals, respectively.

Depending on which of the two new pieces of information one decides to focus on, two different

OKID approaches arise, as illustrated in Figure 5.2. The left branch is based on the estimated
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Figure 5.2: Two main approaches within OKID.

output residuals and identifies the underlying Kalman filter by any identification method able

to find the state-space model of a linear system from its noise-free response to an arbitrary (and

sufficiently rich) input sequence. This approach is described in detail in section 3.4. The right

branch works on the estimate of the unit pulse response and identifies the underlying Kalman

filter by any identification method able to find the state-space model of a linear system from its

noise-free response to a unit pulse. This approach is described in detail in section 3.3.

5.3.2 Deterministic identification method

Within each branch in Figure 5.2, different methods can be chosen. Among the methods for

system identification from arbitrary input response, the choice is virtually unlimited. In this

work, popular and well-established methods such as deterministic intersection (DI) and deter-

ministic projection (DP) have been chosen as representative to illustrate and demonstrate the

proposed OKID approach. Many other choices are possible though, for example the subspace

Algorithm 1 and Algorithm 2 in Reference 2 or the algorithms from the superspace family (Ref-

erences 31–33). Since the filtering action performed in the first step of OKID is not exact, one
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Figure 5.3: Two forms for the Kalman filter to be identified.

could also think of using a combined system identification method to better handle the filtering

(estimation) error. Such a method could be OKID itself for an approach which could be named

OKID2. This idea is not developed here though, it is left as future work.

As to the methods for system identification from unit pulse response, eigensystem realization

algorithm (ERA) and its improved version with data correlation (ERA-DC) have been chosen,

partly for historical reasons (originally OKID was developed in conjunction with those methods)

and also because ERA is the most established approach when a state-space realization is needed

from a unit pulse response.

5.3.3 Kalman filter form

After deciding the approach to take and the specific method to use for the identification of the

Kalman filter, the next question is about which form of the Kalman filter model one wants to
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Figure 5.4: Detailed diagram for algorithms based on output residuals.

directly identify (Figure 5.3). The Kalman filter can be represented by two different although

equivalent state space models, which were introduced in section 3.2 and in this work are re-

ferred to as innovation form, equations (3.1) or (3.2), and bar form, equations (3.5) and (3.7).

Figure 5.3 illustrates the options and the resulting OKID algorithms. As the two Kalman filter

forms are equivalent, it is always possible to pass from one to the other after their identification.

However, as numerical experiments suggest (see for example section 3.4.3), the innovation form

seems to be preferred. Intuitively, it makes indeed sense to identify the Kalman filter in the

form the closest to the original dynamic system to be identified, and the innovation form in

equation (3.1) is indeed the closest possible to equation (1.3). All the matrices match, apart

from the former having an additional matrix, the Kalman gain K, in its state equation.

Figures 5.4 and 5.5 show a more detailed diagram than Figures 5.1-5.3. For space reasons, the
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Figure 5.5: Detailed diagram for algorithms based on Markov parameters.

diagram is split in its two main parallel branches, shown in separate figures. The notation in

the figures is consistent with the definitions given in chapter 3.

5.4 OKID and identification of ARX models

The framework laid out so far for OKID is quite broad, as it gives rise to many possible

algorithms for system identification in the presence of noise. However it has been strictly limited

to state-space model identification. A second glance at equation (2.41), which originates the

OKID core equation, reveals that it is based on an autoregressive model with exogenous input
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(ARX), affected by white error ε (which can be regarded as playing the role of measurement

noise). More precisely, as the current output depends on input and output up to p time steps

back, the ARX model order is p and the model can be denoted by ARX(p). The LS solution to

the core OKID equation then yields the following ARX(p) model

y(k) = Φ
(2)
1 y(k − 1) + . . .+ Φ(2)

p y(k − p) + Φ
(1)
0 u(k) + . . .+ Φ(1)

p u(k − p) (5.4)

An ARX model predicts the output of the system from its previous outputs and current and

previous inputs. It is a simpler description than a state-space model as it does not involve the

state, but it is perfectly equivalent in terms of input-output mapping. When a simple input-

output mapping is desired, it is then sufficient to identify an ARX model, without the need to

go after a more complex representation of the system such as a state-space model. Therefore

ARX models are quite popular in engineering practice. A comparison between pros and cons of

ARX and state-space models is beyond the scope of this work.

The theory behind OKID (chapter 2) shows however something very interesting on ARX model

identification. When data are corrupted by process and measurement noise, like in equa-

tion (1.3), then the ARX model to be identified should be of high order, typically much higher

than the actual system order n. In fact the ARX model that one identifies is not the mathe-

matical model of the dynamic system but the model of its optimal observer. The point can be

illustrated via equation (5.1). If the data contain no noise, we know that the optimal steady-

state observer (the one minimizing the norm squared of the state estimation error) is a deadbeat

observer. By choosing p = n the LS solution to equation (2.44) yields an ARX(n) model with

the gain K embedded in Φ corresponding to the deadbeat gain, i.e. being such that Āj = 0 for

all j ≥ n. The truncation error εt(k) = CĀnx(k− n) is null and so is the output residual ε(k).

Therefore, with noise-free input-output data it makes sense to look for an ARX model of order
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corresponding to the order of the actual system. Such a model exactly fits (reproduces) the data

with the lowest possible order. The presence of the deadbeat gain in the coefficients of the ARX

model suggests that the ARX model is actually the model of the observer. The question about

whether such ARX model represents the system or its deadbeat observer is however irrelevant.

In the absence of noise and in steady state, both the system and the observer state-space models

reproduce the same (measured) output sequence. The fact can be confusing at first. If one looks

at the observer model in equation (3.5), it is not intuitive that there exists a gain K such that

(in steady state) the output of the observer is the same as that of the system in equation (1.1).

Equations (1.1) and (3.5) just looks different, their system matrix is not the same, neither are

their Markov parameters. Nevertheless they are driven by different inputs, and the additional

input in equation (3.5), modulated by the deadbeat gain, compensates exactly for the difference

in the system matrix. A mathematical argument to convince the skeptical reader is the fol-

lowing. The observer state-space models in equations (3.1) and (3.5) are equivalent (the latter

was derived from the former), hence they reproduce the same time history ŷ. In steady-state

and absence of noise, the deadbeat output residuals are identically equal to zero, i.e. ε(k) = 0

and the term Kε(k) in equation (3.1a) vanishes. The state-space model in equation (3.1) then

becomes the same as the state-space model in equation (1.1). Hence, in steady-state and ab-

sence of noise, the system and deadbeat observer models are the same, regardless of being in

state-space or ARX form. In fact the derivation of equation (2.41) in section 2.5, appropriately

modified for the noise-free case, is a very elegant and intuitive way to pass from a deterministic

system state-space model to the corresponding ARX model.

When process and measurement noises corrupt the data, the distinction between system and

optimal observer model becomes more relevant. The steady-state observer minimizing the norm

squared of the the state estimation error is the Kalman filter, whose matrix K makes the ARX
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coefficients Φj smaller and smaller as j is increased, but the convergence is asymptotic. There

is no threshold for j after which CĀj−1 is identically equal to zero. Hence the ARX model of

the Kalman filter derived in equation (2.41) is of infinite order. In practice, one can truncate

it to a large value of p. Nevertheless, the order of the actual system is n � p, and we know

there does exist an ARX(n) model equivalent to the system state-space model. We want to find

the ARX model of the system but the well established LS estimator, equation (2.46), yields

the ARX model of the Kalman filter. And if we force p = n in equation (2.46), we get a

biased estimate for the ARX coefficients due to the truncation error εt(k) in equation (5.1)

being neither negligible nor white. This fact is not surprising from an OKID perspective. The

OKID framework says that the presence of noise in the data prevents us from getting direct

access to the system model. The corresponding Kalman filter needs to be identified and the

matrices of the system are then recovered from the Kalman filter matrices. In summary, the

OKID framework also provides the right interpretation to the ARX models that one can identify

from input-output data.

The fact that the Kalman filter is the bridge between noisy input-output data and the system

to be identified can be extend beyond OKID and ARX model identification. It suggests that

independently from the method used or the model chosen to identify a linear system, when the

measured data are affected by process and measurement noise, any sort of LS minimization used

to identify the model needs to be done on the Kalman filter parameters and not on the system

itself. This claim, although supported from the theory presented in this work, needs to be

confirmed via numerical simulations. A good test could be on OKID itself as follows. Acknowl-

edging the presence of truncation error in algorithms of OKID/ERA type, References 23, 46

proposed the use of sequential quadratic programming to refine the state-space model identified
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Figure 5.6: Link between OKID and methods for ARX model identification.

by OKID/ERA, potentially affected by the truncation error. The refinement consists in min-

imizing a LS-type objective function for the entries of the matrices of the system state-space

model. The problem is obviously nonlinear since the state is also unknown and multiplied by

A and C. For the objective function to be quadratic and hence simple to be minimized, an

iterative procedure is adopted. Using as an initial guess the state-space model identified via

OKID/ERA with large yet finite p, the objective function is replaced by its quadratic approxi-

mation and then minimized. Around the obtained solution, a new quadratic approximation for

the objective function can be constructed and another iteration performed. Provided that the

initial guess is sufficiently close to the true solution so that the quadratic approximation is valid,

the procedure converges to the actual state-space model minimizing the sum of the squares of

the error between the measured output and the output predicted by the model. The argument

developed above suggests that the correct (unbiased) approach would be to construct the objec-

tive function from the Kalman filter state-space model instead of the system state-space model.

The study is not addressed in this thesis, it is left as future work.

The link between OKID and ARX model identification leads to another interesting interpreta-

tion of OKID algorithms. The first step of OKID identifies a high-order ARX(p) model and the
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second step consists in the reduction of such a model to ARX(n), as the identified state-space

model (of order n) can be converted to ARX(n) without difficulty. However, in the view of the

author, this interpretation does not provide a clear picture. Thinking in terms of noise adding

modes (eigensolutions) to the identified model that then need to be eliminated is an abstract

and debatable argument. The interpretation of the process via observers provides a rigorous,

well defined and intuitive framework to better understand the identification process.

Figure 5.6 schematically shows the link between the OKID framework presented here and ARX

model identification methods

5.5 Residual whitening and identification of ARMAX models

In section 5.2 it has been highlighted how the OKID core equation (2.44) is actually approxi-

mated, it suffers from a truncation error converging to zero as the parameter p is increased. In

Reference 34 an alternative equation was proposed for the purpose of reducing the value of p.

Besides requiring more computational effort, increasing p also means fewer equations in the LS

problem in equation (2.44), which is detrimental in particular when the available data record

is short. In this section we notice another aspect of such an alternative equation, i.e. the fact

that it is exact, no truncation is involved. That gives the potential for more accurate system

identification.

The derivation proposed below is different from the one in Reference 34 and provides additional

insight to OKID. Consider the Kalman filter in innovation form, equation (3.1). We can think

of using an observer to estimate its state. Supposing the residual ε(k) is known, the Kalman

filter in equation (3.1) is a purely deterministic system. Its deadbeat observer can be written
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itself in innovation form as

χ(k + 1) = Aχ(k) + Bu(k) + Kε(k) + G (ŷ(k)− ζ(k)) (5.5a)

ζ(k) = Cχ(k) + Du(k) (5.5b)

where χ and ζ are the observer estimates for the Kalman filter state x̂ and ŷ output of the

Kalman filter and G is the deadbeat gain of the observer. Note that in equation (5.5) we

wrote such an observer in innovation form, i.e. adding to the state equation of the system to be

observed (the Kalman filter in this case) the output error term multiplied by a gain. By plugging

equation (5.5b) into equation (5.5a) and recalling equation (2.8), the state equation (5.5a) can

equivalently be written as

χ(k + 1) = ĀGχ(k) + B̄Gvx(k) + M̄Gε(k) (5.6)

where

ĀG = A−GC (5.7a)

B̄G =

[
B−GD G

]
(5.7b)

M̄G = K−G (5.7c)

(5.7d)

Note that vx is the same as in classic OKID, defined in equation (2.34b); ĀG and B̄G have exactly

the same structure as Ā and B̄ in equations (3.6) and (3.8a) but the gain is the deadbeat gain,

indicated as G to avoid confusion, instead of the Kalman gain. Propagating (5.6) forward by p
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time steps, we obtain

χ(k + 1) = Āp
Gχ(k − p) + TGz(k) + SGw(k) (5.8)

where

TG =

[
B̄G ĀGB̄G . . . Āp−1

G B̄G

]
(5.9a)

z(k) =



vx(k − 1)

vx(k − 2)

...

vx(k − p)


(5.9b)

SG =

[
M̄G ĀGM̄G . . . Āp−1

G M̄G

]
(5.9c)

w(k) =



ε(k − 1)

ε(k − 2)

...

ε(k − p)


(5.9d)

Note the similarity between the above matrices and vector and the ones in classic OKID. As-

suming that A and C form an observable pair, from control theory we know that there indeed

exists a deadbeat gain G such that Āp
G = 0 for any p ≥ n. We can then write

χ(k + 1) = TGz(k) + SGw(k) (5.10)

Additionally, after n time steps, we know that the deadbeat observer gets into steady state

and the estimation error becomes identically zero. Hence, χ(k) = x̂ and ζ(k) = ŷ. Plugging
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equation (5.10) into equation (5.5b) and recalling equation (2.8), we obtain

y(k) = Φ̄v(k) + Ψ̄w(k) + ε(k) (5.11)

where

Φ̄ =

[
CB̄G CĀGB̄G . . . CĀp−1

G B̄G

]
(5.12a)

Ψ̄ =

[
CM̄G CĀGM̄G . . . CĀp−1

G M̄G

]
(5.12b)

Equation (5.11) relates the measured input and output of the system without the state appearing

explicitly, in a very similar fashion to equation (2.44). However, two differences should be noticed

about equation (5.11). First of all, no approximation has been made in its derivation. Secondly,

the past residuals appear in it via w(k). They are unknown and multiplied by the unknown

coefficients in Ψ̄, making the following LS problem nonlinear. Writing equation (5.11) for all

k ≥ p and putting everything together, we obtain

Y = Φ̄V + Ψ̄W + E (5.13)

where, Y, V and E are the same as in equation (2.45) and similarly the matrix W is defined as

W =

[
w(p) w(p+ 1) ... w(l − 1)

]
(5.14)

The way we wrote equation (5.13) lends itself to a LS solution, as the error term ε(k) is the

Kalman filter output residual and therefore it is zero-mean, white and minimum in a LS sense.

The LS solution to equation (5.13) yields residuals that are orthogonal not only to the current

input and past input and output (proving they really are the Kalman output residuals), but
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Figure 5.7: Alternative OKID core equations.

also to the past residuals. The latter implies that the estimated residuals are explicitly forced

by the LS solution to be white, from which the name of the technique. The value of p to make

equation (5.13) hold without any approximation just needs to be equal to n or larger. On the

other side, since both Ψ̄ and W are unknown, the LS problem is nonlinear and cannot be solved

in closed form as equation (2.44). One way to solve it is as follows. W is initially unknown,

equation (5.13) must be solved iteratively, updating W with the residuals E estimated at each

iteration by LS. The procedure belongs to the broad class of generalized least squares (GLS,

References 34, 47, 48).

In summary, the residual whitening technique can be interpreted as trading the truncation error

of the classic OKID equation (due to neglecting Fp, i.e. Āp, to get equation (2.40)) with the

iteration convergence error of the GLS procedure. As opposed to the former, the latter can

be made as small as desired just by running more iterations. We can then think of residual

whitening as a technique to improve the estimation of the residuals and make the OKID pre-

filtering exact, i.e. yielding a noise-free set of data to be fed to the DI or DP method. The

example in section 3.4.2.3 illustrates the concept.
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Figure 5.7 shows how equation (5.13) is an alternative to equation (2.44) for the estimation of

the Kalman filter output residuals and Markov parameters. The second step of OKID is the

same for algorithms based on the output residuals, whereas it needs some minor modifications

for algorithms based on Markov parameters (see Reference 34).

5.6 Conclusions

This chapter has provided an overview of OKID in the light of the new developments presented

mainly in chapter 3. It is now clear how OKID is indeed a general and unifying approach

to linear system identification from noisy measurements. The OKID framework extends the

applicability of any deterministic identification method to the case with noisy data and has

a clear connection with other techniques for system identification based on time-series models

such as ARX and ARMAX. The high-level view and intuitive interpretation of OKID given in

this chapter is expected to help the reader navigate the complex world of system identification.



Chapter 6

Deterministic bilinear system

identification with arbitrary input

6.1 Introduction

In this chapter we shift the topic from linear to bilinear system identification. As mentioned in

section 1.2, bilinear state-space model identification is of interest for two main reasons. Some

physical systems are inherently bilinear and bilinear models of high dimension can approximate

a broad class of nonlinear systems. Nevertheless, no well-established technique for bilinear

system identification is available yet.

Recently a deterministic bilinear model identification method was presented in Reference 33, by

extending the interaction matrix formulation that was originally developed for linear state-space

models. A linear relationship between the bilinear system state and past input-output data was

obtained and used to rewrite the bilinear model as an equivalent linear model (ELM). The ELM

can be identified with any linear identification method, from which the original bilinear model is

129
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then recovered. In contrast to other attempts to transform the bilinear model into an ELM, e.g.

by expanding the bilinear system state with sinusoidal basis functions by perturbation theory

(Reference 49), a benefit of the method in Reference 33 is the freedom in choosing the form of

input excitation as long as it is sufficiently rich. The same advantage and the fact that data

from a single experiment are sufficient make the approach more appealing than the one adopted

by Juang, based on multiple pulses over multiple experiments(References 11, 12).

The content of this chapter was presented at the 23rd AAS/AIAA Spaceflight Mechanics Meet-

ing in Kauai, HI, in 2013 (Reference 50) and published in Nonlinear Dynamics in 2014 (Refer-

ence 51). Its first fundamental contribution is a formal proof for the existence of the interaction

matrices that were originally postulated in References 33, 52 where they were used to linearly

express the causal relationship between the state of a bilinear system at the current time step

in terms of past input-output measurements. The second contribution is showing that the bi-

linear state can also be linearly related to future and current input-output data, again via the

interaction matrices. The derivation of the anticausal state representation is less straightfor-

ward than the causal version established in Reference 33, but makes it possible to develop an

intersection subspace (IS) approach to discrete-time bilinear system identification. The third

contribution of this chapter is therefore the IS approach where the bilinear system state history

is reconstructed by intersecting two input-output vector spaces. The bilinear state-space model

matrices can then be identified by the classic least-squares method. To our knowledge, this is

the first application to bilinear systems of an algorithm based on intersection of vector spaces,

which has proven to be very effective in linear system identification (References 2, 29, 53). Note

that in the proposed IS method it is not even necessary to identify an ELM or explicitly com-

pute the interaction matrices. Additionally, establishing that an anticausal linear relation also

exists between the bilinear state and the input-output data gives rise to an anticausal version
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of the ELM-based method presented in Reference 33. This new development serves as a useful

complement to the original method. Finally, other linear input-output-to-state representations

are also developed and their benefits are discussed, resulting in a wide range of algorithms for

the identification of discrete-time bilinear systems that require data from a single experiment

without specific restrictions on the form of excitation input to be used.

This chapter also introduces concepts such as input-output-to-state-representations (IOSRs),

ELM and IS methods and interaction matrices that are at the core of the next chapters, too.

In particular, it is worth mentioning how the identification methods presented in this chapter

and chapter 7 are derived via interaction matrices. This is indeed the same technique that was

originally used to develop OKID for linear systems, although OKID is derived in chapter 2 via

the more intuitive concept of observer. Instead of interaction matrices, one could indeed use

state observers to derive the proposed bilinear system identification methods. In chapter 8 the

link between interaction matrices and observer gains will be rigorously established for bilinear

systems as well, proving that the novel methods for bilinear system identification developed in

this work are an extension of OKID to bilinear systems.

As a last note, notation in chapters 6-9 is completely redefined to avoid confusion with the

notation adopted in the linear case (chapters 2-5). Nevertheless, some overlap remarks the

connection between linear and bilinear system identification methods described in this work.
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6.2 Problem statement

Consider an n-state, single-input, q-output bilinear system in state-space form

x(k + 1) = Ax(k) + Nx(k)u(k) + Bu(k) (6.1a)

y(k) = x(k) + Du(k) (6.1b)

where x ∈ Rn×1 is the state vector, u ∈ R is the input, y ∈ Rq×1 is the output vector and

A ∈ Rn×n, N ∈ Rn×n, B ∈ Rn×1, C ∈ Rq×n, D ∈ Rq×1 are the matrices governing the

dynamics of the system. A single set of length l of input-output data that starts from some

unknown initial state x(0) is given

{u(k)} = {u(0), u(1), u(2), ..., u(l − 1)} (6.2a)

{y(k)} = {y(0), y(1), y(2), ..., y(l − 1)} (6.2b)

The objective is to identify the system of Eq. (6.1) with the input-output data provided in

Eq. (2.1). The data is assumed to be of sufficient length and richness so that the system of

Eq. (6.1) can be correctly identified. For simplicity, we focus on the single-input case. Extension

to the multi-input case can be made without conceptual difficulties.

6.3 General approach

Two different approaches to bilinear system identification are adopted in this work. Both of

them are based on the following linear relationship between the state x(k) of the bilinear system
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and a superstate z(k) made of input-output data only

x(k) = Tz(k) (6.3)

where T is a constant matrix. In this and the following chapters, relations of the form of

equation (6.3) play a central role and are referred to as input-output-to-state representations

(IOSRs). It is worth noting the similarities with equation (2.40), which is indeed an IOSR

for linear systems. Depending on the specific choice of IOSR or, equivalently, on the specific

definition chosen for the superstate z(k), several identification algorithms of ELM and IS type

can be devised.

6.3.1 Equivalent linear model (ELM) method

If a relation like equation (6.3) were available for bilinear systems, the identification problem

could be dramatically simplified by rewriting the original bilinear system of equation (6.1) in

the form of a linear system. Substituting equation (6.3) into equation (6.1a) we obtain the

following equivalent linear model (ELM)

x(k + 1) = Ax(k) + BELMw(k) (6.4a)

y(k) = Cx(k) + Du(k) (6.4b)

where

BELM =
[
B NT

]
(6.5)
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and w(k) is defined as the input to the ELM

w(k) =

 u(k)

z(k)u(k)

 (6.6)

The ELM is a linear state-space model with known input {w(k)} and output {y(k)} history.

Thus it can be identified by any linear identification method and then used to recover the

original bilinear system matrices. The ELM approach was first presented in References 33, 49.

The latter relied on sinusoidal basis functions to obtain an approximate IOSR. The former

introduced the concept of interaction matrices to derive a specific IOSR. In this work, the IOSR

in Reference 33 is referred to as causal IOSR because the state at the current time step is related

to the current superstate which is defined in terms of past input and past output data only.

6.3.2 Intersection subspace (IS) method

If one were able to find two independent IOSRs of the form of equation (6.3), then another

approach, based on the direct reconstruction of the bilinear state history, would be possible.

Subspace methods have been very successful in linear system identification (see Reference 2

for a detailed presentation) but are very general. In particular, their versions based on the

intersection of two vector spaces (Reference 53) can be applied to reconstruct the state of any

kind of system for which two relations like equation (6.3) can be obtained. The specialization

of the IS method for bilinear systems is a new development. Note how the IS method presented

here relies on the same principles as the algorithm referred to as DI in appendix A. IS is indeed

the extension of DI to bilinear systems, whose main challenge is the development of IOSRs for

bilinear systems, which is addressed in sections 6.4 and 6.5.
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6.3.2.1 Superspaces

Assume the following IOSRs are available for the bilinear system of equation (6.1)

x(k) = Taza(k) x(k) = Tbzb(k) (6.7)

and define the following matrices

X =
[
x(ki) x(ki + 1) x(ki + 2) ... x(kf )

]
(6.8)

Za =
[
za(ki) za(ki + 1) za(ki + 2) ... za(kf )

]
(6.9)

Zb =
[
zb(ki) zb(ki + 1) zb(ki + 2) ... zb(kf )

]
(6.10)

where ki and kf are the initial and final time steps for which equation (6.7) holds. Then we can

write

X = TaZa X = TbZb (6.11)

The row space of the (minimum-dimension) state X is a subspace of the row space of Za and

also a subspace of the row space of Zb. The row space of X must then lie in the intersection

between the row spaces of the two superspaces Za and Zb. The problem of reconstructing the

state history {x(k)} is therefore reduced to finding the intersection of two vector spaces.

6.3.2.2 Intersection

The intersection of the two vector spaces given by the row spaces of Za and Zb is spanned by

common row vectors hi. The latter can be expressed as linear combinations of the rows of Za

or of the rows of Zb

hi = aT
i Za = bT

i Zb (6.12)
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where ai and bi are column vectors with the corresponding linear combination coefficients.

Defining

R =
[
ZT
a ZT

b

]
(6.13a)

ci =

 ai
−bi

 (6.13b)

we can rewrite equation (6.12) as

Rci = 0 (6.14)

which shows that the column vectors ci lie in the null space of R and therefore can be conve-

niently found by Singular Value Decomposition (SVD) as the right singular vectors associated

with the zero singular values of R. Note that all the possible pair combinations of basis vectors

of the null space of ZT
a and of the null space of ZT

b satisfy equation (6.14). In general, the

null space of R then has dimension m ≥ n and another step is necessary to get a basis for

the intersection subspace (i.e. n linearly independent hi vectors). This can be easily achieved

by another SVD as follows. Knowledge of ci’s allows one to compute the corresponding hi’s

through equation (6.13b) and either of equalities in equation (6.12). Stacking the m common

row vectors hi’s in a matrix H, the n basis vectors Xi’s can be found as the right singular

vectors associated with the non-zero singular values of H. A basis for the actual bilinear state

space is obtained, which means the state history of the bilinear system is now known.
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6.3.2.3 Direct identification

Once the state history is reconstructed, the identification problem is dramatically simplified and

can be solved by the classic least-squares method. Defining

U =

[
u(ki) ... u(kf − 1)

]
(6.15a)

Y =

[
y(ki) ... y(kf − 1)

]
(6.15b)

X− =

[
x(ki) ... x(kf − 1)

]
(6.15c)

X+ =

[
x(ki + 1) ... x(kf )

]
(6.15d)

PXU =

[
x(ki)u(ki) ... x(kf − 1)u(kf − 1)

]
(6.15e)

from equation (6.1) we can write

X+ =

[
A B N

]


X−

U

PXU

 (6.16)

Y =

[
C D

]X−

U

 (6.17)
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and recover A, B, N, C and D via pseudo-inversion (Moore-Penrose)

[
A B N

]
= X+


X−

U

PXU



†

(6.18)

[
C D

]
= Y

X−

U


†

(6.19)

Note that the state reconstructed by intersection is not necessarily in the original coordinate

system, and so will be the identified bilinear model matrices A, B, N, C, D. As usual with

state-space formulation, the change in coordinate system does not affect the identified model

validity. Also, a sufficient richness condition for the input excitation is that the rank of the

state-input matrix to be pseudo-inverted in equation (6.18) is full.

6.3.3 Comparison

The comparison between the ELM and IS methods is more subtle than it appears at a first

glance. In this work, we limit ourselves to the following considerations. The core of the IS

method is state reconstruction, which then makes it trivial to estimate the dynamic system

matrices. The IS method can be applied for state reconstruction directly on the bilinear model

of equation (6.1) or on the ELM of equation (6.4); in the latter case, the IS method is used as a

purely linear identification algorithm. The application of the IS method to the bilinear model of

equation (6.1) is more direct but it requires the existence of at least two IOSRs for the bilinear

model.
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6.4 Useful concepts

Before plunging into the algebraic derivation of IOSRs, a few concepts useful throughout the

rest of this and the following chapters are presented here below.

6.4.1 Interaction matrices

The concept of interaction matrices is at the core of this work. The interaction matrices were

originally formulated by Minh Q. Phan in the context of linear system identification of lightly-

damped large flexible space structures. The dynamics of such structures can be described by the

system Markov parameters. The identification of these Markov parameters can become difficult

because of the very large number of system Markov parameters that must be solved for. The

interaction matrix provides a mechanism to compress an infinite sequence of system Markov

parameters into a finite sequence that can be easily identified from input-output measurements

(References 20, 27). The compression can be exact and extremely efficient in the case of noise-

free input-output data. The system Markov parameters are then recovered from the compressed

Markov parameters, and remarkably, the recovery can be achieved without having to know the

interaction matrix required for the compression in the first place. Later development revealed

that the interaction matrix in the state-space system identification problem could be interpreted

as a Kalman filter gain that is optimal with respect to the system and the (unknown) process

and noise statistics embedded in the input-output data. This development led to the OKID

method (Reference 20) and to the subsequent generalization of OKID as a unified approach

to linear system identification presented in chapters 2-5. Although in system identification

the interaction matrices turn out to be observer gains, they are more general and have found

applications in other areas as well (e.g./ References 54–58). For a survey, see Reference 59.
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The interaction matrices were recently proposed for bilinear system identification in Refer-

ence 33. For the sake of clarity, the key steps to derive the IOSR are reported here below (for

more details about the derivation, see Reference 33). Consider the bilinear system of equa-

tion (6.1) and add and subtract the terms M′y(k) and M′′y(k)u(k) where M′ and M′′ are

interaction matrices, getting

x(k + 1) = Ax(k) + Nx(k)u(k) + Bu(k) + M′y(k)

−M′y(k) + M′′y(k)u(k)−M′′y(k)u(k)

= Ax(k) + Nx(k)u(k) + Bu(k) + M′Cx(k) + M′Du(k)−M′y(k)

+ M′′Cx(k)u(k) + M′′Du2(k)−M′′y(k)u(k)

=
(
A + M′C

)
x(k) +

(
N + M′′C

)
x(k)u(k) +

(
B + M′D

)
u(k)

−M′y(k) + M′′Du2(k)−M′′y(k)u(k) (6.20)

which can be rewritten as

x(k + 1) = Āx(k) + N̄x(k)u(k) + B̄v(k) (6.21)
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where

Ā = A + M′C (6.22a)

N̄ = N + M′′C (6.22b)

B̄ =
[
B + M′D −M′ M′′D −M′′] (6.22c)

v(k) =



u(k)

y(k)

u2(k)

y(k)u(k)


(6.22d)

The interaction matrices convert the bilinear model A, N, B of equation (6.1a) into an equivalent

bilinear model Ā, N̄, B̄, equation (6.21). The observation equation, equation (6.1b), does not

change. The freedom introduced by M′ and M′′ will be used to impose conditions to express the

state at the current time step k solely in terms of past input and output data. In the following,

for brevity of presentation, we will terminate the propagation of equation (6.21) at time step

k + 2, but it is possible to generalize the termination at any time step k + p. Propagating

equation (6.21) one step forward, we get

x(k + 2) = Āx(k + 1) + N̄x(k + 1)u(k + 1) + B̄v(k + 1)

= Ā2x(k) + ĀN̄x(k)u(k) + ĀB̄v(k) + N̄Āx(k)u(k + 1)

+ N̄2x(k)u(k)u(k + 1) + N̄B̄v(k)u(k + 1) + B̄v(k + 1) (6.23)
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As will be proven later, suppose the sum of all the terms in equation (6.23) depending on the

state x(k) vanishes, i.e.

Ā2 + ĀN̄u(k) + N̄Āu(k + 1) + N̄2u(k)u(k + 1) = 0 (6.24)

then equation (6.23) becomes

x(k + 2) = ĀB̄v(k) + N̄B̄v(k)u(k + 1) + B̄v(k + 1) (6.25)

and can be rewritten in the form of an IOSR as

x(k + 2) = T2z2(k + 2) (6.26)

where

T2 =
[
ĀB̄ N̄B̄ B̄

]
(6.27a)

z2(k + 2) =


v(k)

v(k)u(k + 1)

v(k + 1)

 (6.27b)

and the subscript 2 remarks that the state depends on input-output data 2 steps back in time.

Equation (6.26), or equivalently equation (6.25), expresses the state of the bilinear model of

equation (6.1) in terms of previous input-output data only. Shifting the time index backward

by 2 steps, equation (6.26) takes the same form as equation (6.3).



Chapter 6. Deterministic bilinear system identification with arbitrary input 143

As previously mentioned, equation (6.23) can be propagated further in time, leading to a higher-

order (p > 2) IOSR of the form

x(k) = Tpzp(k) (6.28)

In Reference 33, the general pattern to construct the superstate zp(k) for the above IOSR from

input-output data is derived. Generalizing equation (6.24), the condition to be satisfied to get

to equation (6.28) is that the sum of all the terms depending on x(k) in the propagated equation

vanishes. This condition will be symbolically indicated as

Sp

(
Ā, N̄, {u(k) ... u(k + p− 1)}

)
= 0 (6.29)

and for p = 2 it takes the explicit form of equation (6.24).

6.4.2 Exact input-output-to-state representations and ideal bilinear systems

The condition for equation (6.24) to be identically satisfied for any input history {u(k)} is

Ā2 = ĀN̄ = N̄Ā = N̄2 = 0 (6.30)

To identically satisfy the generalized condition of equation (6.29), it is necessary that all the

possible products of order p of matrices Ā and N̄ are zero, which in this chapter is more

compactly indicated as

Cp
(
Ā, N̄

)
= 0 (6.31)

In References 33, 52 the existence of interaction matrices M′ and M′′ such that equation (6.31)

is satisfied was only postulated. It is indeed a matter of fact that there exist bilinear systems

for which equation (6.31) holds for some p. In this work, they are referred to as ideal bilinear
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systems and a couple of examples are given in section 6.7. For an ideal bilinear system it is thus

possible to get an exact IOSR and achieve (apart from noise) exact identification via the ELM

or the IS methods. It is worth remarking that the concept of ideal bilinear system is used only

for the purpose of theoretical considerations, and the techniques developed in this work apply

to arbitrary bilinear systems of the form of equation (6.1), as proven by the next theorem and

shown in the final examples.

6.4.3 Convergence of non-ideal bilinear systems

The following theorem provides rigorous justification for the application to any bilinear system

of ELM and IS identification methods based on IOSRs derived via interaction matrices.

Theorem 6.1. Given any bilinear system of the form of equation (6.1), if (A,C) is a detectable

pair then there exist interaction matrices M′ and M′′ and a value γ such that, for |u(k)| < γ

for all k, equation (6.29) is asymptotically satisfied as p increases.

In particular, the theorem ensures that, even though equation (6.31) is not identically satisfied,

the resulting approximation error in the IOSR converges to zero as the order p is increased,

provided the input is kept within a certain threshold. The proof has its roots in the similarity

between the present problem and the work of Bouazza et al. (Reference 60), who demonstrated

the convergence of a Luenberger-like observer for a class of discrete-time nonlinear systems

which can be shown to include bilinear systems of the form of equation (6.1).

Proof. Consider equation (6.1a). Introducing interaction matrices M′ and M′′, we were able to

write equation (6.21), which was then propagated forward by one time step to obtain x(k + 2)

in equation (6.23). Note that the terms containing the state x(k) in equation (6.23), which

were eliminated via the condition of equation (6.24), do not involve the input v(k). Also, note



Chapter 6. Deterministic bilinear system identification with arbitrary input 145

that the terms depending on v(k) in equation (6.23) do not contain the state x(k). These

observations can be generalized to propagation in time up to any step k+p. Since the objective

is to prove convergence to zero of the sum of the terms in equation (6.24) and in the more

general equation (6.29), it is sufficient to study the convergence to the origin of the following

dynamic system

x̂(k + 1) = Āx̂(k) + N̄x̂(k)u(k) (6.32)

as explained in what follows. Propagating equation (6.32) forward, we obtain

x̂(k + p) = Sp

(
Ā, N̄, {u(k) ... u(k + p− 1)}

)
x̂(k) (6.33)

If we prove that, for any arbitrary x̂(k), x̂(k+ p) converges to zero as p increases, then conver-

gence of Sp in equation (6.33) to zero will follow.

Recall the definition of Ā, equation (6.22), and assume A and C form a detectable pair. Then

there exists a positive definite matrix S such that

ĀTSĀ + I = S (6.34)

Define the weighted norm

X̂(k) = x̂T(k)Sx̂ (6.35)

which will be the measure of convergence to zero of x̂(k). Even more conveniently, define the

increment of the above weighted norm

∆X̂(k) = X̂(k + 1)− X̂(k) (6.36)
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Plugging equation (6.32) into the first term of equation (6.36) and equation (6.34) into the

second term we obtain

∆X̂(k) = x̂T(k + 1)Sx̂(k + 1)− x̂T(k)Sx̂

=
(
Āx̂(k) + N̄x̂(k)u(k)

)T
S
(
Āx̂(k) + N̄x̂(k)u(k)

)
− x̂T(k)

(
ĀTSĀ + I

)
x̂(k)

= u2(k)x̂T(k)N̄TSN̄x̂(k) + 2u(k)x̂T(k)ĀTSN̄x̂(k)− x̂T(k)x̂(k)

= −||x̂(k)||2
(
−1

||x̂(k)||2
u2(k)x̂T(k)N̄TSN̄x̂(k)

− 1

||x̂(k)||2
2u(k)x̂T(k)ĀTSN̄x̂(k) + 1

)
(6.37)

from which it is clear that X̂(k) will converge to zero if the term in parentheses in equation (6.37)

is positive, i.e. if

1

||x̂(k)||2
u2(k)x̂(k)TN̄TSN̄x̂(k) +

1

||x̂(k)||2
2u(k)x̂(k)TĀTSN̄x̂(k) < 1 (6.38)

By basic matrix norm properties, the following inequalities follow

u2(k)x̂(k)TN̄TSN̄x̂(k) ≤ ||u2(k)x̂(k)TN̄TSN̄x̂(k)||

≤ u2(k)||x̂(k)||2||N̄||2||S|| (6.39)

u(k)x̂(k)TĀTSN̄x̂(k) ≤ ||u(k)x̂(k)TĀTSN̄x̂(k)||

≤ |u(k)| ||x̂(k)||2||Ā|| ||N̄|| ||S|| (6.40)

and allow us to rewrite the convergence condition of equation (6.38) as

u2(k) ||N̄||2||S||+ 2|u(k)| ||Ā|| ||N̄|| ||S|| < 1 (6.41)



Chapter 6. Deterministic bilinear system identification with arbitrary input 147

which is always possible to satisfy by choosing |u(k)| < γ for all k, with sufficiently small γ. By

equation (6.35), convergence of X̂(k) implies convergence of x̂(k), as desired.

The above theorem is a fundamental finding that provides theoretical justification of the overall

approach to bilinear system identification proposed in this chapter, and in particular of the

application of the concept of interaction matrices to bilinear systems. In the rest of the work,

we will sometimes refer to exact IOSRs and approximate IOSRs to remark the fact that not

all bilinear systems satisfy equation (6.29) identically, but increasing the IOSR order p ensures

that the approximation error converges to zero. It is worth remarking that the requirement of

bounded input concerns the excitation to get input-output data for identification. Once the

bilinear model is identified, it can be used to predict the output of the real bilinear system for

inputs higher than the above mentioned bound.

6.5 Input-output-to-state representations

To implement the IS identification method it is necessary to have two independent Input-Output-

to-State Representations (IOSRs). Another IOSR is necessary, other than the one derived above,

equation (6.28). Additionally, even when applying the ELM method, some IOSRs can be more

favorable than others for certain bilinear systems. Thus it is of interest to find other IOSRs, i.e.

other linear relations between the bilinear system state and a superstate made of input-output

data only.

6.5.1 Causal IOSR

A causal IOSR is here defined as a representation of the form of equation (6.3) where the state

depends on past (and current, at most) input-output data only, i.e. x(k) depends on u(i) and
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y(i) with i ≤ k. The example of IOSR derived above is causal. Its key equations are rewritten as

follows introducing the subscript c where needed to remark the causality of the representation.

Equation (6.21) becomes

x(k + 1) = Ācx(k) + N̄cx(k)u(k) + B̄cv(k) (6.42)

where

Āc = A + M′
cC (6.43a)

N̄c = N + M′′
cC (6.43b)

B̄c =
[
B + M′

cD −M′
c M′′

cD −M′′
c

]
(6.43c)

vc(k) =



u(k)

y(k)

u2(k)

y(k)u(k)


(6.43d)

and the causal IOSR of equation (6.28) is denoted by

x(k) = Tp,czp,c(k) (6.44)

where the superstate zp,c(k) depends on input-output data at steps k − 1, k − 2, ... , k − p

only. Letting nCk =
(
n
k

)
denote the combinations of k out of n terms, commonly referred to as

n-choose-k, the general pattern for the entries of the column vector zp,c(k+p) is (Reference 33):

− vc(k), vc(k + 1), ... , vc(k + p− 1)
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− vc(k) multiplied with products of u(k + 1) to u(k + p − 1) in all possible combinations

(p− 1)C1, (p− 1)C2, ... , (p− 1)C(p− 1) of {u(k + 1), u(k + 2), ... , u(k + p− 1)}

− vc(k+ 1) multiplied with products of u(k+ 2) to u(k+ p− 1) in all possible combinations

(p− 2)C1, (p− 2)C2, ... , (p− 2)C(p− 2) of {u(k + 2), u(k + 3), ... , u(k + p− 1)}

...

− vc(k + p − 3) multiplied with products of u(k + p − 2) and u(k + p − 1) in all possible

combinations 2C1, 2C2 of {u(k + 3), u(k + 4), ... , u(k + p− 1)}

− vc(k + p− 2) multiplied with 1C1 of u(k + p− 1), which of course is u(k + p− 1)

To obtain an expression for zp,c(k), we simply shift the time indices of zp,c(k+ p) backwards by

p time steps.

6.5.2 Anticausal IOSR

An anticausal IOSR is here defined as a representation of the form of equation (6.3) where the

state depends on future (and current, at most) input-output data only, i.e. x(k) depends on

u(i) and y(i) with i ≥ k.

Rewrite equation (6.1) as

x(k) = A−1x(k + 1)−A−1Nx(k)u(k)−A−1Bu(k) (6.45a)

y(k) = Cx(k) + Du(k) (6.45b)
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Let M′
a and M′′

a be another pair of interaction matrices, where the subscript a stands for

anticausal, and add and subtract the terms M′
ay(k + 1) and M′′

ay(k)u(k) in (6.45a), getting

x(k) = A−1x(k + 1)−A−1Nx(k)u(k)−A−1Bu(k) + M′
ay(k + 1)

−M′
ay(k + 1) + M′′

ay(k)u(k)−M′′
ay(k)u(k)

= A−1x(k + 1)−A−1Nx(k)u(k)−A−1Bu(k) + M′
aCx(k + 1)

+ M′
aDu(k + 1)−M′

ay(k + 1) + M′′
aCx(k)u(k) + M′′

aDu
2(k)−M′′

ay(k)u(k)

=
(
A−1 + M′

aC
)
x(k + 1)−

(
A−1N−M′′

aC
)
x(k)u(k)−A−1Bu(k)

+ M′
aDu(k + 1)−M′

ay(k + 1) + M′′
aDu

2(k)−M′′
ay(k)u(k) (6.46)

which can be rewritten as

x(k) = Āax(k + 1) + N̄ax(k)u(k) + B̄ava(k + 1) (6.47)

where

Āa = A−1 + M′
aC (6.48a)

N̄a = −A−1N + M′′
aC (6.48b)

B̄a = −
[
A−1B −M′

aD M′
a −M′′

aD M′′
a

]
(6.48c)

va(k + 1) =



u(k)

u(k + 1)

y(k + 1)

u2(k)

y(k)u(k)


(6.48d)
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Rewriting equation (6.47) for the next time step

x(k + 1) = Āax(k + 2) + N̄ax(k + 1)u(k + 1) + B̄ava(k + 2) (6.49)

and plugging equation (6.47) and equation (6.49) into equation (6.47) itself, we get

x(k) = Āa

(
Āax(k + 2) + N̄ax(k + 1)u(k + 1) + B̄ava(k + 2)

)
+ N̄a

(
Āax(k + 1) + N̄ax(k)u(k) + B̄ava(k + 1)

)
u(k) + B̄ava(k + 1)

= Ā2
ax(k + 2) + ĀaN̄ax(k + 1)u(k + 1) + ĀaB̄ava(k + 2) + N̄aĀax(k + 1)u(k)

+ N̄2
ax(k)u(k)2 + N̄aB̄ava(k + 1)u(k) + B̄ava(k + 1) (6.50)

Assuming, similarly to equation (6.30),

Ā2
a = ĀaN̄a = N̄aĀa = N̄2

a = 0 (6.51)

we get from equation (6.50)

x(k) = ĀaB̄ava(k + 2) + N̄aB̄ava(k + 1)u(k) + B̄ava(k + 1) (6.52)

which we can rewrite as

x(k) = T2,az2,a(k) (6.53)
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where

T2,a =
[
ĀaB̄a N̄aB̄a B̄a

]
(6.54a)

z2,a(k) =


va(k + 2)

va(k + 1)u(k)

va(k + 1)

 (6.54b)

Equation (6.53), or equivalently equation (6.52), expresses the state of the bilinear model in

terms of current and future input-output data only, and is an anticausal IOSR specialized for

p = 2.

The rationale in the above derivation is to find an expression for the state written in terms of

input-output data only, via an assumption similar to the one made for the causal representation,

i.e. eliminating the dependance of x(k) on the states at any other time steps. The aim is the

same as in the causal representation, however the derivation is less straightforward. To better

show the approach to find higher-order anticausal IOSRs, the derivation for p = 3 is presented

as well. After rewriting equation (6.49) for the next time step

x(k + 2) = Āax(k + 3) + N̄ax(k + 2)u(k + 2) + B̄ava(k + 3) (6.55)
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plug equations (6.47, 6.49, 6.55) into equation (6.50) to get an expression for x(k) whose (un-

known) state-dependent terms all contain 3rd-order products of matrices Āa and N̄a

x(k) =Ā3
ax(k + 3) + Ā2

aN̄ax(k + 2)u(k + 2) + ĀaN̄aĀax(k + 2)u(k + 1)

+ N̄aĀ
2
ax(k + 2)u(k) + ĀaN̄

2
ax(k + 1)u2(k + 1)

+ N̄aĀaN̄ax(k + 1)u(k + 1)u(k) + N̄2
aĀax(k + 1)u2(k) + N̄3

ax(k)u3(k)

+ Ā2
aB̄ava(k + 3) + ĀaN̄aB̄ava(k + 2)u(k + 1) + N̄aĀaB̄ava(k + 2)u(k)

+ ĀaB̄ava(k + 2) + N̄2
aB̄ava(k + 1)u2(k) + N̄aB̄ava(k + 1)u(k) + B̄ava(k + 1) (6.56)

Assuming that the terms with matrix products given by all the possible combinations of Ā and

N̄ of 3rd order vanish, we get

x(k) =Ā2
aB̄ava(k + 3) + ĀaN̄aB̄ava(k + 2)u(k + 1) + N̄aĀaB̄ava(k + 2)u(k)

+ ĀaB̄ava(k + 2) + N̄2
aB̄ava(k + 1)u2(k) + N̄aB̄ava(k + 1)u(k) + B̄ava(k + 1) (6.57)

which can be rewritten as

x(k) = T3,az3,a(k) (6.58)

where

T3,a =
[
Ā2
aB̄a ĀaN̄aB̄a N̄aĀaB̄a N̄2

aB̄a ĀaB̄a N̄aB̄a B̄a

]
(6.59)
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z3,a(k) =



va(k + 3)

va(k + 2)u(k + 1)

va(k + 2)u(k)

va(k + 1)u2(k)

va(k + 2)

va(k + 1)u(k)

va(k + 1)



(6.60)

Following the same approach, anticausal IOSRs can be obtained for any arbitrary value of p

and are denoted by

x(k) = Tp,azp,a(k) (6.61)

where the superstate zp,a(k) is defined as the column vector with the following entries

− va(k + 1)ui(k) for all i = 0, 1, ... , p− 1

− va(k + 2)ui1(k)ui2(k + 1) for all i1, i2 ≥ 0 and i1 + i2 ≤ p− 2

...

− va(k + r)ui1(k)ui2(k + 1) ... uip(k + p− r) for all ij ≥ 0 and
∑r

j=1 ij ≤ p− r

...

− va(k + p)

and depends on input-output data at steps k, k + 1, ... , k + p only. Note that the above

definition of superstate zp,a(k) with va(k) given by equation (6.48d) leads to some redundancy

in the entries of zp,a(k), which is suggested to be eliminated when implementing the desired

identification algorithm.
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It is worth remarking that the condition for a bilinear system to have an exact anticausal IOSR

is formally the same as for the causal IOSR, but it involves Āa and N̄a instead of Āc and N̄c,

i.e.

Cp
(
Āa, N̄a

)
= 0 (6.62)

A bilinear system ideal in backward sense is defined as a system satisfying equation (6.62) for

some p.

To be rigorous, the previous theorem about convergence for increasing p refers to the causal IOSR

and its extension the anticausal IOSR would need modifying the proof. Numerical evidence

indeed shows convergence of the anticausal IOSR; however, the extension of the theorem is

unnecessary thanks to the mixed-anticausal IOSR that will be presented next.

6.5.3 Considerations on causal and anticausal IOSRs

Having so far developed two IOSRs only, no alternative is possible when using the IS method.

In contrast, the ELM method requires one IOSR only, therefore asking which IOSR is preferred

is of interest.

Consider two extreme examples. If the system to be identified was an ideal bilinear model (in

forward sense), then the causal IOSR would be the preferred choice since, being exact, it would

in turn give an exact ELM and exact identification (apart from noise). Similarly, if the system

in question was an ideal bilinear model in backward sense, then the anticausal IOSR would

have to be chosen. A more realistic example concerns a non-ideal bilinear system, whose causal

(anticausal) IOSR converges to the actual dynamics faster than its anticausal (causal) IOSR

as p increases. A preferred choice would still exist and be the causal (anticausal) IOSR. An a

priori optimal choice is not possible. Obviously, it is very hard to know how close a system is
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to being ideal before its identification. Still, having different IOSRs at our disposal is helpful,

allowing us to try different ELMs and then choose the one converging faster, with apparent

computational advantages.

It is worth remarking that when the IS identification method is used, the order p of the causal

and anticausal representation can be different (pc 6= pa). The ideal situation would be to have

an ideal bilinear system in both forward and backward sense, which is a rare (if at all possible)

occurrence. Four interaction matrices (M′
c, M′′

c , M′
a, M′′

a) are required. One non-exact IOSR

is sufficient to make the IS method approximate (obviously, the larger p, the more accurate the

identification, thanks to the above theorem about IOSR convergence).

Based on these considerations, it makes sense to ask whether other, more favorable, IOSRs

can be found. Here two more examples are provided and the resulting representations are

referred to as mixed since they relate the current state to both past and future input-output

data. The remarkable feature of these mixed representations is that each of them needs three

interaction matrices, and when used together with a causal or anticausal representation the

overall requirement for the IS method to be exact is relaxed to the existence of three interaction

matrices only.

6.5.4 Mixed-anticausal IOSR

Start from equation (6.47) and work on its right-hand side replacing x(k+1) with equation (6.49)

and x(k) with equation (6.44) to get

x(k) =Ā2
ax(k + 2) + ĀaN̄ax(k + 1)u(k + 1) + ĀaB̄ava(k + 2)

+ N̄aTpc,czpc,c(k)u(k) + B̄ava(k + 1) (6.63)
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Replace x(k+ 1) in equation (6.63) with equation (6.44) shifted forward by 1 time step, getting

x(k) =Ā2
ax(k + 2) + ĀaN̄aTpc,czpc,c(k + 1)u(k + 1) + ĀaB̄ava(k + 2)

+ N̄aTpc,czpc,c(k)u(k) + B̄ava(k + 1) (6.64)

Observe that the only state-dependent term on the right-hand side of equation (6.64) is mul-

tiplied by Ā2
a. If n = 2, it is sufficient that A−1 and C form an observable pair to guarantee

the existence of an interaction matrix M′
a such that Ā2

a vanishes. Note that interaction matrix

M′′
a becomes unnecessary, therefore N̄a = −A−1N. If n = 3, the above derivation can be con-

tinued replacing x(k + 2) with equation (6.55) and taking care of the resulting terms as done

above, getting an equation for x(k) with the only state-dependent term multiplied by Ā3
a, again

guaranteed to be zero if (A−1,C) is an observable pair. The generalized IOSR is denoted as

x(k) = Tpc,pa,mazpc,pa,ma(k) (6.65)

where, for the case n = 2, pa can be 2 and Tpc,pa,ma and zpc,pa,ma(k) specialize to

Tpc,2,ma =
[
ĀaN̄aTpc,c N̄aTpc,c ĀaB̄a B̄a

]
(6.66a)

zpc,2,ma(k) =



zpc,c(k + 1)u(k + 1)

zpc,c(k)u(k)

va(k + 2)

va(k + 1)


(6.66b)
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More in general,

zpc,pa,ma(k) =



zpc,c(k + pa − 1)u(k + pa − 1)

...

zpc,c(k)u(k)

va(k + pa)

...

va(k + 1)



(6.67)

and the subscript ma stands for mixed-anticausal to distinguish this IOSR from its counterpart

derived below. The above IOSR is mixed because it depends on both past and future input-

output data. The definition of its superstate formally features a heavier contribution from future

input-output data, hence the a in the subscript. Also, note that the definition of va(k) given

in equation (6.48d) leads to some redundancy in the entries of zpc,pa,ma(k) in equation (6.67),

which is not difficult to eliminate when implementing the desired identification algorithm.

6.5.5 Mixed-causal IOSR

With a similar approach, a relation symmetric to equation (6.65) can be derived

x(k) = Tpc,pa,mczpc,pa,mc(k) (6.68)
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where

zpc,pa,mc(k) =



zpa,a(k − pc)u(k − pc)

...

zpa,a(k − 1)u(k − 1)

vc(k − pc)

...

vc(k − 1)



(6.69)

and mc stands for mixed-causal. Again, note that the definition of superstate zp,a(k) of equa-

tion (6.61) with va(k) given by equation (6.48d) leads to some redundancy in the entries of

zpc,pa,mc(k), which is suggested to be eliminated when implementing the desired identification

algorithm.

6.5.6 Considerations on mixed IOSRs

The mixed-anticausal IOSR can be of great advantage when used in the IS identification method.

As already highlighted, for the mixed-anticausal IOSR to be exact, it is necessary for the bilinear

system to be ideal only in forward sense, despite its mixed nature. This means that an ideal

bilinear system (in forward sense) can be identified exactly with a version of the IS method

based on causal and mixed-anticausal IOSRs. The only condition imposed on the backward

system, equation (6.47), is that (A−1,C) is an observable pair. M′′
a is no longer required to

exist and the overall requirements on interaction matrix existence are significantly relaxed. For

the sake of clarity, it is worth remarking that the matrix M′
a making the mixed-anticausal IOSR

exact is in general different from the matrix M′
a necessary for the anticausal IOSR to be exact.

The mixed-causal representation is complementary to the mixed-anticausal IOSR in the sense

that, when used together with the anticausal IOSR in the IS identification method, it requires
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the bilinear system to be ideal only in backward sense for the identification to be exact. The

existence of M′
c, M′

a and M′′
a only is required.

The advantage does not disappear for more general non-ideal bilinear systems. Obviously, if

the system IOSR turns out to converge faster in its forward (backward) formulation, then the

IS method will benefit from the choice of causal and mixed-anticausal (anticausal and mixed-

causal) IOSRs. To be noted is the fact that the dimension of the superstate in the above mixed

IOSRs is larger than in purely causal or anticausal IOSRs. There would be no point in using a

mixed representation in the ELM identification method.

6.6 Algorithms

In this section, a step-by-step description of the methods proposed above for discrete-time

bilinear system identification is provided. The data necessary to run the algorithms is the time

history of the measured input u(k) and output y(k), k = 0, 1, ... , l − 1.

6.6.1 Equivalent linear model (ELM) method

1. Construction of ELM Input. Form w(k) time history, equation (6.6), for k = ki, ki + 1,

... , kf choosing for z(k) an IOSR among the following

i Causal IOSR, equation (6.44)

ii Anticausal IOSR, equation (6.61)

The order pc or pa of the selected IOSR must be chosen as well, typically greater than the

assumed order of the system n.
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2. Identification of ELM. Identify the ELM of equation (6.4) by any linear system identifica-

tion technique (e.g. the superspace method described in Reference 33 or the intersection

subspace method presented in this chapter with modified causal and anticausal IOSRs,

which are significantly simplified for a linear system). The order nid of the identified ELM

will also be the order of the identified bilinear model.

3. Reconstruction of State History. Simulate the identified ELM driven by the input w(k) to

reconstruct the state history x(k) for k = 0, 1, ... , l−1; since the initial state is unknown,

discard the reconstructed samples corresponding to the initial transient.

4. Estimation of Bilinear System Matrices. Use the reconstructed state history x(k) to form

the least-squares problems of equations (6.16) and (6.17), with ki now equal to a time step

after the initial transient is over, and use equations (6.18) and (6.19) to estimate A, N,

B, C, D.

Note that two variants of steps 3 and 4 to complete the estimation of the bilinear model matrices

are given in Reference 33.

6.6.2 Intersection subspace (IS) method

1. Construction of Superspaces. Form matrices Za and Zb, equations (6.9) and (6.10), choos-

ing for za(k) and zb(k) two IOSRs among the following

i Causal IOSR, equation (6.44)

ii Anticausal IOSR, equation (6.61)

iii Mixed-causal IOSR, equations (6.65, 6.67)

iv Mixed-anticausal IOSR, equations (6.68) and (6.69)
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The order pc and pa of the selected IOSRs must be chosen as well, typically greater than

the assumed n (note that pc can be chosen to be different from pa).

2. Intersection of Superspaces. Take the SVD of R =
[
ZT
a ZT

b

]
and select the right singular

vectors (call them ci, i = 1, ... , m) corresponding to the zero singular values of R.

3. Construction of Basis for State History Space. Extract from vectors ci the first entries

corresponding to vectors ai, equation (6.13b), and use them to compute row vectors

hi = aT
i Za, i = 1, ... , m.

4. Reduction of Basis to Linear Independent Vectors. Stack vectors hi, i = 1, ... , m in a

matrix H, take the SVD of H and select its right singular vectors (call them xi, i = 1,

... , nid) corresponding to the non-zero singular values, whose number nid will then be the

order of the identified bilinear model.

5. Estimation of Bilinear System Matrices. Transpose column vectors xi to get row vectors,

each of them representing the time history of the ith state variable of the identified model.

Use vectors xi to form the least-squares problems of equations (6.16) and (6.17) and use

equations (6.18) and (6.19) to estimate A, N, B, C, D.

6.7 Examples

Several numerical examples are provided to show the correctness and main features of the dif-

ferent identification algorithms that can be devised based on the IOSRs derived in this chapter.

In each example, measured input-output data are simulated by generating a random input se-

quence {u(k)} of l = 1000 samples (from a uniform distribution between −0.5 and 0.5) and

using it to obtain the output history {y(k)} via the state-space model equations of the system

to be identified. {u(k)} and {y(k)} sequences are then used to execute the chosen identification
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algorithm. Finally, another input sequence {u(k)} is generated (independently from the one

used for identification) and used to drive both the original system and the identified model.

The difference in their outputs, also known as prediction error, is analyzed as a metric to gauge

how accurate the identification algorithm was.

For detailed examples and comments on the ELM identification method based on the causal

IOSR, see Reference 33. The following bilinear systems are used in the next examples as

prototypes of ideal and arbitrary bilinear systems.

System I (ideal in forward sense)

A =

 0 0.5

0.5 −0.5

 B =

1

2

 N =

 0 1

−1 1

 (6.70a)

C =

[
0 1

]
D = 0 (6.70b)

It is possible to verify that the following M′
c and M′′

c satisfy equation (6.30). See Reference 33

for more details.

M′
c =

−0.5

0.5

 M′′
c =

−1

−1

 (6.71)
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System II (ideal in backward sense)

A =

0.5 0.5

0.5 0

 B =

1

2

 N =

0.5 −1

0 −0.5

 (6.72a)

C =

[
0 1

]
D = 0 (6.72b)

No pair M′
c, M′′

c for which equation (6.31) is satisfied exists. However, the following M′
a and

M′′
a

M′
a =

−2

2

 M′′
a =

−1

−1

 (6.73)

satisfy equation (6.62) for p = 2 or, equivalently, equation (6.51). System II is therefore ideal

in backward sense.

System III (arbitrary)

Modifying matrix N of system I to

N =

0.3 1

−1 1

 (6.74)

is sufficient to lose the above mentioned ideal properties. System III, equal to system I but with

N defined by equation (6.74), is therefore an example of arbitrary bilinear system.

6.7.1 ELM method with anticausal IOSR

Consider system II. Its identification via a version of the ELM method based on an anticausal

IOSR of order pa = 2 is exact, as expected thanks to its ideal backward property. The maximum
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prediction error is around 10−13, i.e. close to Matlab R© working precision. Also, it is worth

remarking that the identified bilinear system has the correct dimension (nid = 2). In contrast,

using the version of the ELM method based on the causal IOSR leads to an approximate

identification algorithm due to the non-ideal nature of system II in forward sense. For pc = 2

the identified model is of (wrong) order nid = 3 and the prediction accuracy is quite poor

(maximum prediction error of 10−2). However, as guaranteed by the convergence theorem,

identification accuracy improves as pc is increased. With pc = 4, for example, the order of the

identified system is correctly estimated to be nid = 2, and the maximum prediction error is

reduced to 10−4. The anticausal IOSR is therefore a useful complement to the causal IOSR

when the ELM method is used, providing more accurate results when the bilinear system is (or

at least is closer to being) ideal in backward sense.

6.7.2 IS Method with causal and anticausal IOSRs

Again with reference to system II, the IS identification method can also be applied. For the IS

method two IOSRs are needed, and the causal and anticausal IOSRs can serve for the purpose.

With system II, which is ideal in backward sense, the causal IOSR is expected to introduce

approximation in the identification. In agreement with the convergence theorem, increasing the

order of the causal IOSR improves the accuracy of the identified system. While for pc = pa = 2

the maximum prediction error is around 10−2, with pc = 6, pa = 2 it gets as low as 10−6.

In both cases, the order of the identified system turns out to be correct (nid = 2). Note that

since none of the presented bilinear systems is ideal in both forward and backward sense, the

IS algorithm based on causal and anticausal IOSRs cannot be exact and pc and/or pa must be

increased to improve the identification accuracy.
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Table 6.1: IS method with causal and mixed-anticausal IOSRs - identification improvement
as pc is increased (pc = order of causal IOSR, pa = order of anticausal IOSR, epred = order of

magnitude of maximum prediction error).

pc 2 3 4 5 6
pa 3 3 3 3 3
epred 10−1 10−3 10−4 10−5 10−5

6.7.3 IS Method with causal and mixed-anticausal IOSRs

To appreciate how the IS method can benefit from the use of a mixed IOSR, consider system

I. Thanks to its forward ideal property, there exist interaction matrices M′
c and M′′

c such that

equation (6.29) is satisfied for p = 2. Also, the use of the mixed-anticausal IOSR instead of a

purely anticausal IOSR relaxes the condition for the existence of M′
a and M′′

a to the existence

of a single M′
a, guaranteed since A−1 and C form an observable pair. Identification is therefore

expected to be exact when using these IOSRs both of order as low as 2. This is indeed the case,

as confirmed by numerical experiments with pc = pa = 2, where the maximum prediction error

is again of the order of Matlab R© working precision. Relying on a mixed IOSR can make the IS

identification method exact, in contrast with the IS version based only on pure IOSRs (causal

and anticausal).

In order to give more details about the new IS identification method presented in this chapter

and to remark its effectiveness, a thorough example of its application on an arbitrary bilinear

system of the IS method based on causal and mixed-anticausal IOSRs is now described. Consider

system III and for the sake of generality assume no prior knowledge of its order n = 2 is available.

The a priori guess for the order of the system is, for example, n = 3. Accordingly, pa is set to

be equal to 3 and then pc can be varied to achieve the desired identification accuracy. Table 6.1

summarizes the obtained results.

Note that in the mixed-anticausal IOSR pc < pa is not a consistent choice, since pa must
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Table 6.2: IS method with causal and mixed-anticausal IOSRs - identification improvement
as pc is increased (pc = order of causal IOSR, pa = order of anticausal IOSR, epred = order of

magnitude of maximum prediction error).

pc 2 3 4 5 6
pa 2 2 2 2 2
epred 10−2 10−4 10−5 10−6 10−7

be chosen to be not less than the assumed order of the system and the requirements for the

causal interaction matrices are much tougher than those for the (only) anticausal interaction

matrix. This observation is well reflected in the previous table. As pc is increased, the prediction

accuracy of the identified model improves. Also note that for pc = 6 the length of the input-

output sequences had to be increased to preserve the overdetermined nature of matrix R of

equation (6.13a). Indeed, as pc and pa are increased, the length of the measured dataset should

be increased as well to avoid trivial redundancy of columns of R. If the guess on n is improved

and the identification algorithm is executed with pa = 2, the accuracy of results improves

accordingly (less numerical noise in the SVDs), as shown in Table 6.2.

For the purpose of showing the key steps of the algorithm, the representative case for pc =

4, pa = 3 is now analyzed more in details. Step 1: Indicating with Za the superstate history

matrix formed with the causal superstate z4,c(k) of equation (6.44) and with Zb the superstate

history matrix formed with the mixed-anticausal superstate z4,3,ma(k) of equation (6.67), Za

and Zb have respectively 60 and 193 rows. Step 2: The initial and final time steps for which both

IOSRs are valid are ki = pc = 4 and kf = l− 1− pa = 996, giving rise to a matrix R ∈ R993x253.

The singular values of R (normalized over the largest) are shown in Figure 9.2a. Due to the

approximation of the IOSRs, there are no singular values exactly equal to zero and the user has

to select the ones that are small enough to suggest some linear dependence of the columns of R.

This might be a delicate step, but the proposed algorithm proved to be very robust and the user

should not be concerned with minimizing at any cost the number m of singular values chosen at
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Figure 6.1: SVD of step 2 of the IS algorithm (to find the intersection of superspaces Za and
Zb).
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Figure 6.2: SVD of step 4 of the IS algorithm (to find a minimum basis for the intersection
subspace).

this stage. If necessary, the SVD of Step 4 will automatically perform such further reduction.

To remark the point, in this specific example all the singular values 104 times smaller than the

largest are selected (Figure 9.2a), for a total of m = 16 (instead of selecting m = 2, which would

immediately guarantee nid = 2 and lead to similar final results). Step 3: The first 60 entries of

each right singular vector ci, i = 1, ..., 16 corresponding to the selected zero singular values are
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Figure 6.3: Comparison of output from actual and identified system III.

Table 6.3: IS method with causal and mixed-anticausal IOSRs - eigenvalue comparison be-
tween true and identified matrices.

Matrix Eigenvalue 1 Eigenvalue 2

A −0.809016994 0.309016994
Aid −0.809012078 0.308957226
Relative error 0.000608% 0.019341%
N 0.649999999 + i0.936749700 0.649999999− i0.936749700
Nid 0.650096808 + i0.936686271 0.650096808− i0.936686271
Relative error 0.000270% 0.000270%

extracted to form column vectors ai, and row vectors hi are then computed via the first equality

of equation (6.12). Step 4: Matrix H ∈ R16x993 with hi vectors as rows is constructed and its

SVD taken; the graph of normalized singular values of H is shown in Figure 9.2b, from which

it is apparent how only two rows of H are linearly independent. Therefore, only two singular

values and corresponding right singular vectors are selected and used as an estimate of the state

history {x(k)}. The order of the identified bilinear model is then nid = 2. Step 5: Solving the

least-squares problems of equations (6.16, 6.17) leads to the estimate of the following bilinear

model matrices (rounded to the 4th significant digit)



Chapter 6. Deterministic bilinear system identification with arbitrary input 170

Aid =

−0.8499 −0.1322

0.3587 0.3499

 Bid =

0.04835

0.08492



Nid =

0.4456 −0.6513

1.411 0.8546

 Cid =

[
20.33 11.98

]

Did = −2.486× 10−5

Figure 6.3 shows the accuracy of the identified model comparing its predicted output with the

output from the actual system III, when both are driven by the same random input sequence,

generated independently from the one used to simulate input-output data. As another indicator

of the effectiveness of the identification, Table 6.3 compares the eigenvalues of the true matrices

A and N of the actual system and the eigenvalues of the corresponding identified matrices.

6.8 Conclusions

This chapter has introduced the problem of deterministic bilinear system identification and the

approach chosen to solve it. Additionally, this chapter has rigorously proven the extension of

the interaction matrices to bilinear systems. Interaction matrices were used to derive multiple

linear relations between the bilinear system state and input-output data (IOSRs), from which

several identification algorithms for bilinear systems were developed. The presented intersection

subspace method was shown to be very effective for bilinear system identification. The state of

the bilinear system is reconstructed by intersecting vector spaces corresponding to two IOSRs.

From the state information, a bilinear state-space model of the system is identified by simple

least-squares. A new version of the equivalent linear model approach was also introduced, based

on an anticausal IOSR. The benefits of having several IOSRs were highlighted and also shown
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by numerical examples. In terms of advantages, no specific form of excitation input is required,

beyond the standard richness condition for system identification. Also, there is no need to use

data from multiple experiments as input-output data from a single experiment is adequate.

The identification algorithms developed in this chapter offer a way to develop, from measured

input-output data, the mathematical models representing the dynamic behavior of systems that

are inherently bilinear. Such models can then be used for system analysis or controller design.

Additionally, the algorithms are applicable to input-affine nonlinear systems to find bilinear

models approximating their dynamics as established by Carleman linearization, providing a

promising approach to handle more general nonlinear control problems.

Although the overall theoretical foundation has been established, a few practical aspects of the

identification algorithms presented in this chapter require further work. Accurate identification

of high-order bilinear models, such as those arising from Carleman linearization, may require

a relatively large value of p which will lead to significant computational burden. Also, the

convergence of the presented identification algorithms as p increases is guaranteed at the price of

keeping the excitation input within a certain bound. This may lead to two potential difficulties.

First, the bound is unknown before identification, hence some trial-and-error procedure might

be needed. Second, such a bound might turn out to be very small and challenging for practical

applications. A solution to those issues is presented in the chapter 7.



Chapter 7

Deterministic bilinear system

identification with specialized input

7.1 Introduction

Drawing inspiration from the technique at the basis of OKID, interaction matrices were used in

chapter 6 to derive linear Input-Output-to-State Representations (IOSRs) for bilinear systems,

i.e. relationships expressing the state at any time step as a linear function of a superstate defined

in terms of only input-output data (typically from the past p time steps or from the future p

time steps). The so derived IOSRs were then used to implement identification algorithms

for bilinear systems known as equivalent linear model (ELM) and intersection subspace (IS)

methods. Interaction matrices giving rise to exact IOSRs exist however only for very specific

bilinear models. Theorem 6.1 was proven ensuring for any bilinear system with observable

linear part the existence of interaction matrices such that the resulting IOSRs converge to exact

relationships as the IOSR order p is increased. Unfortunately, the dimension of the superstate,

172
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and hence the required computational effort, increases exponentially with p. The drawback

becomes more relevant when one wants to identify high-order bilinear systems, as is the case in

the use of bilinear models to approximate more general nonlinear systems as mentioned above.

Another drawback of the methods presented in References 33, 50 is that convergence of IOSRs

as p increases is guaranteed only if the input magnitude is kept within a certain bound, which

is unknown before system identification is performed.

The content of this chapter was presented at the AAS/AIAA Astrodynamics Specialist Con-

ference in Hilton Head, SC, in 2013 (Reference 61), and addresses the same problem stated in

section 6.2. A different approach is now taken to derive small-dimension IOSRs which are exact

for any arbitrary bilinear model (with minimum observability requirements) and for any input

magnitude, overcoming the above-mentioned difficulties. The new approach exploits the fact

that a bilinear system can be seen as a linear-time-varying (LTV) model. Interaction matrices

are then used on this LTV formulation to derive exact time-varying IOSRs of minimum order

and even minimum dimension for the given order. The computational benefit is twofold. Not

only are the time-varying IOSRs exact with minimum order p (less than or equal to the order

n of the bilinear model) but also the dimension of the corresponding superstate is increasing

linearly with p instead of exponentially. This feature makes the approach very attractive when

dealing with high-order bilinear models, as those usually arising from Carleman linearization.

Also, the LTV approach requires that the input takes at each time step any value from a finite

set whose values must be specified a priori but are not subject to magnitude constraints. For

the application of the ELM or IS identification methods, the time-varying IOSRs need to be

transformed into time-invariant IOSRs. This operation is crucial since, if performed naively, it

generally leads to a fast increase in the dimension of the time-invariant IOSR. We also address

this problem and show how appropriate design of the input excitation preserves the algorithm
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computational efficiency obtained with the LTV approach. We provide a method to generate

an input sequence which is sufficiently rich for identification and at the same time keeps under

control the computational requirements of the algorithm.

All these advantages make of the proposed method a crucial step towards the realization of the

bridge between linear and nonlinear systems mentioned in chapter 1, where the identification of

high-order bilinear models is usually expected. For the purpose of illustrating the potential of

the method, detailed examples are given at the end of the chapter on (input-affine) nonlinear

dynamic systems of practical interest, such as the mechanical oscillator with cubic spring, also

known as Duffing’s equation, and the rotation of a rigid body in a reference frame fixed to it,

which is typically referred to as Euler’s equations and represents a building block of the satellite

attitude control problem.

7.2 Time-varying IOSRs

The key concept behind the derivation of IOSRs in chapter 6 is that of interaction matrix. In

this section, we apply time-varying interaction matrices to derive a new type of IOSRs, which are

referred to as Time-Varying (TV) IOSRs as opposed to the Time-Invariant (TI) IOSRs proposed

in chapter 6. The TV IOSRs overcome all the limitations of the TI IOSRs, as discussed at the

end of the section.

7.2.1 TV causal IOSRs

Any bilinear system of the form of equation (6.1) can be rewritten as a linear system with time-

varying system matrix A or time-varying influence matrix B, depending on how the bilinear

term Nx(k)u(k) is lumped with one of the other two terms. In this work we use the time-varying
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system matrix formulation

x(k + 1) = A(k)x(k) + Bu(k) (7.1)

where

A(k) = A + Nu(k) (7.2)

Propagate equation (7.1) forward in time and get

x(k + 2) = A(k + 1)x(k + 1) + Bu(k + 1)

= A(k + 1)
(
A(k)x(k) + Bu(k)

)
+ Bu(k + 1)

= A(k + 1)A(k)x(k) +
[
A(k + 1)B B

]  u(k)

u(k + 1)

 (7.3)

From equation (6.1b), we can also write

y(k + 1) = Cx(k + 1) + Du(k + 1)

= CA(k)x(k) + CBu(k) + Du(k + 1) (7.4)

and put equations (6.1b) and (7.4) together in matrix form

 y(k)

y(k + 1)

 =

 C

CA(k)

x(k) +

 D 0

CB D


 u(k)

u(k + 1)

 (7.5)
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Add and subtract M2,c(k+2)

[
yT(k) yT(k + 1)

]
in equation (7.3) and, plugging equation (7.5)

in, obtain

x(k + 2) = A(k + 1)A(k)x(k) +
[
A(k + 1)B B

]  u(k)

u(k + 1)



+ M2,c(k + 2)

 C

CA(k)

x(k) + M2,c(k + 2)

 D 0

CB D


 u(k)

u(k + 1)



−M2,c(k + 2)

 y(k)

y(k + 1)


=
(
Ã2,c(k + 2) + M2,c(k + 2)C̃2,c(k + 2)

)
x(k) + T̃2,c(k + 2)z̃2,c(k + 2) (7.6)

where

Ã2,c(k + 2) = A(k + 1)A(k) C̃2,c(k + 2) =

 C

CA(k)

 (7.7a)

z̃2,c(k + 2) =

[
u(k) u(k + 1) yT(k) yT(k + 1)

]T

(7.7b)

T̃2,c(k + 2) =

[A(k + 1)B B
]

+ M2,c(k + 2)

 D 0

CB D

 −M2,c(k + 2)

 (7.7c)

and the subscript c stands for causal. Indeed, the superstate z2,c(k + 2) is defined solely in

terms of past input-output data, producing a causal representation. M2,c(k + 2) ∈ Rn×2q is a

time-varying interaction matrix.

For equation (7.6) to be an IOSR, the state-dependent term on the right-hand side must vanish

for any x(k). As will be proven later, suppose that at every time step k there exists an interaction

matrix M2,c(k + 2) such that Ã2,c(k + 2) + M2,c(k + 2)C̃2,c(k + 2) = 0 and also shift the time
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index in equation (7.6) backward by 2 time steps. We can then write the following IOSR of

order p = 2

x(k) = T̃2,c(k)z̃2,c(k) (7.8)

By propagating equation (7.3) one step further and adding and subtracting the term

M3,c(k + 3)

[
yT(k) yT(k + 1) yT(k + 2)

]
, we obtain

x(k + 3) =
(
Ã3,c(k + 3) + M3,c(k + 3)C̃3,c(k + 3)

)
x(k) + T̃3,c(k + 3)z̃3,c(k + 3) (7.9)

where

Ã3,c(k + 3) = A(k + 2)A(k + 1)A(k) C̃3,c(k + 3) =


C

CA(k)

CA(k + 1)A(k)

 (7.10a)

z̃3,c(k + 3) =

[
u(k) u(k + 1) u(k + 2) yT(k) yT(k + 1) yT(k + 2)

]T

(7.10b)

T̃3,c(k + 3) =
[ [

A(k + 2)A(k + 1)B A(k + 2)B

]

+ M3,c(k + 3)


D 0 0

CB D 0

CA(k + 1)B CB D

 −M3,c(k + 3)
]

(7.10c)

Again, if at every time step k there exists an interaction matrix M3,c(k+ 3) such that Ã3,c(k+

3) + M3,c(k + 3)C̃3,c(k + 3) = 0, equation (7.9) becomes (time index shifted backward by 3

steps)

x(k) = T̃3,c(k)z̃3,c(k) (7.11)
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More in general, propagating equation (7.1) forward in time by p−1 time steps and adding and

subtracting

Mp,c(k + p)



y(k)

y(k + 1)

...

y(k + p− 1)


(7.12)

the following TV causal IOSR of order p can be obtained

x(k) = T̃p,c(k)z̃p,c(k) (7.13)

where the superstate z̃p,c(k) is defined as

z̃p,c(k) =
[
u(k − p) u(k − p+ 1) . . . (7.14)

. . . u(k − 1) yT(k − p) yT(k − p+ 1) . . . yT(k − 1)
]T

(7.15)

The TV causal IOSR of general order p is valid provided that at every time step k there exists an

interaction matrix Mp,c(k) such that Ãp,c(k)+Mp,c(k)C̃p,c(k) = 0. The necessary and sufficient

condition for the existence of such Mp,c(k) is that the matrix C̃p,c(k) has rank equal to n at

every k. C̃p,c(k) is the observability matrix of the LTV system in equation (7.1) and it contains

the input values u(k−p), u(k−p+1), . . . , u(k−2). Indeed, the observability of a bilinear system

depends on the input as pointed out in Reference 62. The necessary and sufficient condition

required for the IOSR in equation (7.13) to hold is then that the bilinear system to be identified

is observable under the sequence of input used to excite it. As a particular case, note that when

the linear part of the bilinear system is observable, i.e. A and C form an observable pair, the

above condition is met independently of the input.
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As a result, for an observable system driven by a sufficiently rich input, it is necessary that

pq ≥ n for the IOSR in equation (7.13) to be valid. Note that when n = q, p can be as low as 1.

From equations (7.7c) and (7.10c) it is clear that the matrix relating the superstate and the

state is not constant. The time dependence of the system matrix A(k) makes the above IOSR

matrix T̃p,c time-varying, from which the name TV IOSR. It is worth remarking that the inter-

action matrix Mp,c(k) is time-varying, too, because at each time step the pair
(
Ãp,c(k), C̃p,c(k)

)
takes a different value and therefore requires a different interaction matrix to make Ãp,c(k) +

Mp,c(k)C̃p,c(k) = 0. The time dependence of T̃p,c(k) is then due to both A(k) and Mp,c(k)

appearing in its definition and T̃p,c(k) turns out to be a function of the ordered sequence

(u(k − p+ 1), u(k − p+ 2), . . . , u(k)).

7.2.2 TV anticausal IOSRs

The anticausal version of the TV causal IOSR can be derived in a similar fashion. Rewrite

equation (7.1) as

x(k) = A−1(k)x(k + 1)−A−1(k)Bu(k) (7.16)

and propagate it backward by plugging

x(k + 1) = A−1(k + 1)x(k + 2)−A−1(k + 1)Bu(k + 1) (7.17)

into equation (7.16)

x(k) = A−1(k)
(
A−1(k + 1)x(k + 2)−A−1(k + 1)Bu(k + 1)

)
−A−1(k)Bu(k)

= A−1(k)A−1(k + 1)x(k + 2)−A−1(k)A−1(k + 1)Bu(k + 1)−A−1(k)Bu(k) (7.18)
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Similar to equation (7.5), we can write (backward)

y(k + 2)

y(k + 1)

 =

 C

CA−1(k + 1)

x(k + 2) +

D 0

0 −CA−1(k + 1)B + D


u(k + 2)

u(k + 1)

 (7.19)

Adding and subtracting M2,a(k)

y(k + 2)

y(k + 1)

 in equation (7.16) and, plugging equation (7.19)

in it, get

x(k) = A−1(k)A−1(k + 1)x(k + 2)−
[
A−1(k)A−1(k + 1)B A−1(k)B

] u(k + 1)

u(k)



+ M2,a(k)

 C

CA−1(k + 1)

x(k + 2)

+ M2,a(k)

D 0

0 −CA−1(k + 1)B + D


u(k + 2)

u(k + 1)

−M2,a(k)

y(k + 2)

y(k + 1)


=
(
Ã2,a(k) + M2,a(k)C̃2,a(k)

)
x(k + 2) + T̃2,a(k)z̃2,a(k) (7.20)

where

Ã2,a(k) = A−1(k)A−1(k + 1) C̃2,a(k) =

 C

CA−1(k + 1)

 (7.21a)

z̃2,a(k) =

[
u(k + 2) u(k + 1) u(k) yT(k + 2) yT(k + 1)

]T

(7.21b)

T̃2,a(k) =
[
−
[
0 A−1(k)A−1(k + 1)B A−1(k)B

]
+ M2,a(k)

D 0 0

0 −CA−1(k + 1)B + D 0

 −M2,a(k)
]

(7.21c)
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and the subscript a stands for anticausal to indicate that the superstate z̃2,a(k) depends only

on current and future input-output data.

Again, if the first term in equation (7.20) cancels for any x(k+2), a time-varying IOSR analogous

to equation (7.8) is obtained.

Equation (7.20) refers to p = 2. Propagating equation (7.16) backward by p − 1 time steps

and following the same approach as for the TV causal IOSR derivation allows us to generalize

equation (7.20) to any p. We obtain

x(k) =
(
Ãp,a(k) + Mp,a(k)C̃p,a(k)

)
x(k + 2) + T̃p,a(k)z̃p,a(k) (7.22)

which reduces to

x(k) = T̃p,a(k)z̃p,a(k) (7.23)

if Ãp,a(k) + Mp,a(k)C̃p,a(k) = 0. The superstate z̃p,a(k) is defined as

z̃p,a(k) =
[
u(k + p) u(k + p− 1) . . .

. . . u(k) yT(k + p) yT(k + p− 1) . . . yT(k + 1)
]T

(7.24)

Similar reasoning to the one for the causal case applies to the TV anticausal IOSR. For

equation (7.23) to hold, C̃p,a(k) has to be of rank n for any k, which for observable bilin-

ear systems is guaranteed by choosing p such that pq ≥ n. Again, it is worth remarking

that the IOSR matrix T̃p,a(k) relating the superstate and the state is not constant due to

the presence of A(k) and Mp,a(k) in its definition. It is a function of the ordered sequence

(u(k), u(k + 1), . . . , u(k + p− 1)).
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7.2.3 Comparison with TI IOSRs

The TI IOSRs presented in Reference 50 have some drawbacks, as summarized below:

1. The TI IOSRs are exact only for a class of bilinear system (referred to as ideal in chapter 6)

defined by very stringent conditions

2. For non-ideal bilinear systems the TI IOSRs converge asymptotically with p to exact

IOSRs, provided that |u(k)| < γ at every time step k (where γ is a positive constant

unknown before identification) and that the linear part of the system is observable for any

arbitrary bilinear system

3. The dimension of the superstate of the TI IOSRs grows exponentially with its order p

In contrast, the TV IOSRs are exact for any observable bilinear systems. Note that observability

is the minimum requirement to identify any dynamic system. On top of being exact also for non-

ideal systems, the bilinear observability condition necessary for the TV IOSRs is less stringent

than the observability of the linear part and, most importantly, no bound on the magnitude of

the excitation input is necessary. Additionally, from equations (7.14) and (7.24), the dimension

of the TV IOSR superstates z̃p,c and z̃p,a grows linearly with p, avoiding the computational

difficulties arising with the method of Reference 50 for systems of large order.

In conclusion, the TV IOSRs developed in this chapter provide a better ground for bilinear

system identification. However, in order to be able to use the TV IOSRs in the ELM or IS

identification methods (section 6.3), the time dependence of T̃p,c (and T̃p,a) must be eliminated.

A form like equation (6.3), with constant T, is needed and in the next section it is shown how

to transform the TV IOSRs of equations (7.13) and (7.23) into such form.
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7.3 Input design

As already noticed, T̃p,c(k) depends on the values that the ordered sequence
(
u(k−p), u(k−p+

1), . . . , u(k− 1)
)

takes over time. We can then think of designing the excitation input sequence

so that T̃p,c(k) changes over time in a convenient way. Note that the reasoning and analysis in

this section are done with reference to to the TV causal IOSR but they are applicable to the

TV anticausal IOSR in the same exact fashion and with analogous benefit.

7.3.1 From time-varying to time-invariant T

The first requirement that the excitation input sequence has to satisfy is to allow us to transform

the TV IOSR of equation (7.13) into the constant-T form of equation (6.3). This can be done

by limiting the values that u(k) can take to a finite set U = {u1, u2, . . . , uL}. As a consequence

A(k) can take L possible matrix values and the number of possible ordered sequences
(
A(k −

p), . . . ,A(k− 1)
)
, which uniquely determine T̃p,c(k), is finite. The last observation allows us to

construct the following finite-dimensional extended matrix T p,c and extended superstate ζp,c(k)

T p,c =
[
T̃(1)
p,c T̃(2)

p,c . . . T̃(N)
p,c

]
ζp,c(k) =



0

...

0

z̃p,c(k)

0

...

0



(7.25)
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z̃p,c(k) is placed in the jth block row of ζp,c(k), where j is the index of the actual matrix value

that T̃p,c takes at time k (among the N possible values), and all the other block rows are zeros

(each block row has as many entries as the dimension of the superstate z̃p,c(k)). The following

relationship formally equal to equation (6.3) can now be written

x(k) = T p,cζp,c(k) (7.26)

and the same technique can be used to derive the anticausal version of the IOSR of equa-

tion (7.26)

x(k) = T p,aζp,a(k) (7.27)

Equations (7.26) and (7.27) are formally two time-invariant IOSRs but in this chapter we con-

tinue referring to the them as TV IOSRs to emphasize that they directly stem from the time-

varying IOSRs of equations (7.13) and (7.23). ζp,c(k) and ζp,a(k) can then be used to construct

the corresponding input w(k) to the ELM or the superspace matrices Za and Zb for the IS

method. Since such matrices are highly-structured and contain many zeroes, a preliminary

SVD is usually very effective for dimension reduction, i.e.

TZ = T

[
U1 U2

]S 0

0 0

[V1 V2

]T

= TU1SVT
1 = TredZred (7.28)

where Tred = TU1S, Zred = VT
1 , S is a diagonal matrix with the non-zero singular values of

Z and U1 and V1 are the corresponding left and right singular vectors, whereas U2 and V2

are the singular vectors associated with the zero singular values of Z. Both Za and Zb can be

decomposed as in equation (7.28) and replaced by the corresponding Zred in the IS method. A

similar procedure is beneficial in the ELM method, too, in order to reduce the number of inputs

to the ELM.
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(a) TV causal IOSR derived from 2-level random input.
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(b) TV causal IOSR derived from optimal pulsed input.

Figure 7.1: Dimension increase for the TI causal IOSR and for the TV causal IOSR with
random and optimized input (single-output system).

If the input value at any time step is randomly drawn from the set U , the number of possible

matrix values that T̃p,c(k) can take is maximum, N = Lp. The dimension of the extended state

ζp,c is then (q + 1)pLp. As shown in Figure 7.1a, even choosing the minimum possible L (i.e.

L = 2), the resulting growth in size of the extended superstate ζp,c of the TV causal IOSR is

actually faster than the growth of the superstate of the TI causal IOSR. Nevertheless, the exact

nature of the superstate ζp,c allows the system identification engineer to select a smaller value

of p with respect to the one that would be chosen if using TI IOSRs. The following example

shows how the proposed algorithm indeed leads to exact identification.

Example 1. Consider the following arbitrary bilinear system from chapter 6

A =

 0 0.5

0.5 −0.5

 B =

1

2

 N =

0.3 1

−1 1

 C =

[
0 1

]
D = 0 (7.29)

and generate an input sequence (and the corresponding output) by randomly drawing at each

time step k a value from the set U = {0, 0.2}, k = 0, 1, . . . , 1000. Applying the ELM method
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Table 7.1: Identification of the system of example 1 by random 2-level excitation.

p A eigenvalue 1 A eigenvalue 2 N eigenvalues

True - -0.8090169943749475 0.3090169943749474 0.6499999999999999 ± 0.9367496997597599i

2 -0.8090169943749478 0.3090169943749524 0.6499999999999947 ± 0.9367496997597534i
ELM 3 -0.8090169943749496 0.3090169943749490 0.6500000000000010 ± 0.9367496997597594i

4 -0.8090169943749462 0.3090169943749483 0.6499999999999801 ± 0.9367496997597613i

2 -0.8090169943749470 0.3090169943749478 0.6499999999999941 ± 0.9367496997597653i
IS 3 -0.8090169943749458 0.3090169943749453 0.6500000000000055 ± 0.9367496997597589i

4 -0.8090169943749492 0.3090169943749483 0.6499999999999946 ± 0.9367496997597634i

based on the TV causal IOSR of equation (7.26) and the IS method based on the TV causal

IOSR of equation (7.26) and the TV anticausal IOSR of equation (7.27), the results summarized

in Table 7.1 are obtained. In all cases the identified order is correct (nid = 2) and the output

prediction error, verified on the response to a random unconstrained (i.e. u(k) not restricted

to take values from U only) input sequence independently generated from the one used for

identification, is close to Matlab R© numerical zero. Notice that the identification is exact both

when p is chosen to be equal to its minimum theoretical value (p = 2, since n = 2 and q = 1)

and when p > 2. This is crucial for any system identification algorithm, since the true order

n of the system is usually unknown before identification. It is worth mentioning here that if

0 is not included in the allowed input levels, the input richness condition turns out not to be

satisfied for the IS method and leads to an identified model of larger order (an additional step

then has to be performed to reduce the model and recover the correct bilinear system matrices).

It is remarkable how the proposed method can achieve very accurate identification with reduced

computational effort. In Reference 50, to achieve an output prediction error of order 10−7 with

the IS method, it was necessary to know the true order of the system (n = 2) and increase the

order of the causal IOSR to p = 6, with a corresponding number of columns of 253 for R in

equation (6.13b). When using the TV IOSRs, the identification is exact (prediction error of

10−14) and, if p = 2, R has only 36 columns (28 if the preliminary reduction of equation (7.28)

is performed).
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7.3.2 Input optimization

Having shown the feasibility and correctness of the LTV approach for bilinear system identifi-

cation, we now propose a technique to minimize,for a given value of p, the extended superstate

dimension while preserving the excitation richness needed for the identification. It is worth

remarking here how the desired characteristics of the input sequence may vary from application

to application. Different strategies can be adopted to address the trade-off between input appli-

cability and computational efficiency, in which the a priori belief of the system order may play a

major role. The optimized input sequence proposed below as an example aims to computational

efficiency.

The chosen form of input resembles a sequence of pulses and is shown in Figure 7.2, where uh

is the amplitude of the pulses, and ∆
(i)
h and ∆

(i)
l refer to the duration of the nonzero and zero

input application at the ith pulse. uh is a fixed (constant) value, whereas ∆
(i)
h and ∆

(i)
l are

in general random discrete variables, whose possible (integer) realizations are constrained as

follows

hmin ≤∆
(i)
h ≤ hmax (7.30)

lmin ≤∆
(i)
l ≤ lmax (7.31)

In other words, the excitation is a sequence of multiple pulses of fixed amplitude and different

(random) duration, and its design parameters are uh, hmin, hmax, lmin and lmax. Note that

such input form satisfies the conditions established in Reference 63 for continuous-time bilinear

system identifiability.

The next step consists in the choice of the input design parameters in order to minimize the

dimension of ζp,c. First notice from equations (7.14) and (7.25) that the dimension of the
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Figure 7.2: Input form for optimal excitation input design.

superstate is (q + 1)pN , where N is the number of combinations that any sequence of length p(
u(p−k), u(p−k+1), . . . , u(k−1)

)
can take. With reference to Figure 7.2, it is then convenient

to have ∆l ≥ p (i.e. fix lmin ≥ p) so that each input sequence of length p embraces at most

one pulse, significantly reducing the number of possible combinations. To push the reduction

of N further, one can also impose ∆h = 1 (i.e. hmin = hmax = 1) and get N = p + 1, leaving

all the variability of the pulses to the duration of the zero-input portions, i.e. ∆l. Having fixed

lmin ≥ p, the only parameter to be arbitrarily chosen is then lmax, which does not have an

impact on N. The resulting number of rows for the extended superstate ζp,c is then quadratic

in p

nrows(ζp,c) = (q + 1)(p+ 1)p (7.32)

A closer look at equations (7.25) and (7.14) suggests a further reduction can immediately be

obtained, even though the growth rate remains quadratic in p. Due to the low level of the pulse

sequence being zero, even the jth block row of ζp,c in equation (7.25) has some entries always

equal to zero. With ∆h = 1, among all the possible jth block rows of ζp,c, p contain p−1 entries

equal to 0, and one has p entries equal to 0. Hence, equation (7.32) becomes

nrows(ζp,c) = qp2 + (q + 1)p (7.33)

Equation (7.33) represents the maximum number of rows that can remain after performing the
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Table 7.2: Identification of the system of example 2 by multiple-pulse excitation.

p A eigenvalue 1 A eigenvalue 2 N eigenvalues

True - -0.8090169943749475 0.3090169943749474 0.6499999999999999 ± 0.9367496997597599i

2 -0.8090169943749465 0.3090169943749516 0.6499999999999837 ± 0.9367496997597706i
ELM 3 -0.8090169943749496 0.3090169943749462 0.6500000000000312 ± 0.9367496997598526i

10 -0.8090169943749470 0.3090169943749515 0.6499999993273293 ± 0.9367497010332932i

2 -0.8090169943749468 0.3090169943749468 0.6499999999999113 ± 0.9367496997597923i
IS 3 -0.8090169943749480 0.3090169943749460 0.6500000000011040 ± 0.9367496997602179i

10 -0.8090169943749492 0.3090169943749430 0.6499999993267873 ± 0.9367496981421699i

preliminary SVD of equation (7.28), which can result in an even further reduction depending

on the actual realization of the input-output sequence.

Figure 7.1b shows how the maximum number of rows of ζp,c from equation (7.33) grows with

p significantly slower when the optimized input is used. The following example also shows that

the identification is still exact.

Example 2. Consider again the bilinear system of equation (7.29) and evaluate its response

when subject to an input as in Figure 7.2 with uh = 0.2, ∆h = 1, p ≤ ∆l ≤ p + 2 (k =

0, 1, . . . , 1000). Table 7.2 summarizes the results when applying the ELM method based on

the TV causal IOSR of equation (7.26) and the IS method based on the TV causal IOSR of

equation (7.26) and the TV anticausal IOSR of equation (7.27). In all cases the identified order

is correct and the output prediction error, verified on the response to a completely random

input sequence, is close to numerical zero. Notice again that the identification is exact even

when the IOSR order p is chosen larger than the true system order n. It is worth mentioning

that even for a relatively large value of p, for example p = 10, the number of rows in the matrix

Z constructed from ζp,c is 220, it goes down to 120 when the all-zero rows are eliminated, and it

decreases to 32 after the preliminary SVD is performed. In contrast, the number of rows of the

matrix Z constructed from ζp,c if the input was randomly chosen between two levels would be

20,480 and it would reach 4,194,300 if Z was built from the TI IOSR superstate of Reference 50.
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7.4 Discussion

The TV IOSRs are developed in this chapter to overcome the drawbacks of the TI IOSRs

presented in chapter 6, as previously explained in details (exact for a class of bilinear systems,

approximated for the others, subject to a constraint on the excitation input magnitude, affected

by curse of dimensionality). The solution offered by the TV IOSRs comes at the price of the

need for a somewhat structured input, which was the main motivation for the development of

the identification methods in chapter 6. The latter are indeed applicable on data coming from a

single experiment, in contrast for example with Reference 11, and without any restriction on the

form that the excitation input can take, marking a significant improvement over the sinusoidal

input needed in Reference 49 and the sequence of multiple pulses at the core of Reference 13.

With respect to linear system identification, it is interesting to note how the bilinear case seems

to require some specialized input to overcome the curse of dimensionality. Even the approach

taken in References 11, 13, 14 for continuous-time bilinear system identification is that of a

highly-structured input, with some interesting similarities to what proposed in this chapter, for

example the use of multiple pulses in Reference 13. It is however important to note how the

use of multiple-pulse excitation is a necessary requirement for the algorithm in Reference 13,

whereas for the methods proposed in this chapter it is just one possible choice (recommended

when computational issues may arise).

It is noteworthy how IOSR-based methods such as ELM and IS provide a unified framework for

discrete-time bilinear system identification. Different IOSRs can be used to implement the ELM

or IS methods according to the needs that different applications may have. The pros and cons

of the various IOSRs have been discussed in a previous section. In what follows, an intuitive

interpretation of the role of IOSRs in system identification is provided.
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The IOSRs presented in References 33, 50 are derived via interaction matrices. As discussed

in detail in chapter 8, the interaction matrices of the TI IOSRs can be interpreted as gains

of an observer (state estimator) for the bilinear model to be identified. In the absence of

noise, for ideal bilinear models the resulting observer is deadbeat and leads to exact IOSRs

and in turn exact identification algorithms. For arbitrary bilinear systems the observer is not

deadbeat but is convergent (indeed it is the fastest possible bilinear observer) and makes the

identification algorithms asymptotically exact. The TV IOSRs presented in this chapter can still

be interpreted as state estimators. More specifically, they are time-varying deadbeat observers,

providing the exact estimate of the bilinear state in a finite number of steps p, i.e. only based

on the values that the input and the output took over the past (in the case of causal TV IOSR)

p time steps. The interaction matrix Mp,c(k) plays then the role of a time-varying gain. The

underlying approach is therefore the same that led to the development of OKID (Reference 20).

Although there are some common ideas (e.g. exploiting the LTV nature of bilinear systems

via structured excitation), the identification algorithms proposed in this chapter are then very

different from the approach taken in References 11, 13, 14, which is based on the estimation

of the observability matrix from a properly constructed data matrix and is therefore closer to

subspace methods rather than OKID.

7.5 Identification of Carleman bilinear models of nonlinear sys-

tems

The examples provided in this section serve for multiple purposes. First of all, they concern

the identification of nonlinear dynamic systems which are well-known in the literature and in

applications. The first example on Duffing’s equation shows how the proposed IOSRs allow

the IS method to identify with great accuracy even bilinear systems of large order (n = 9
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and n = 14). The second examples is on Euler’s equations and illustrates how the proposed

identification algorithms can be applied to Multiple-Input-Multiple-Output (MIMO) systems

and how the condition q = n allows one to choose the excitation input with much more freedom

than the multiple-pulse form in Figure 7.2, without incurring in computational issues. Duffing’s

equations and Eulers’ equations are also used as examples of identification of discrete-time

bilinear models from data generated by continuous-time (input-affine) nonlinear models. The

challenge here is two-fold, since not only are the identified models of large order, but also the

data fed to the identification algorithm do not come from discrete-time bilinear systems. The

identification algorithm then works on data which are affected by modeling error.

7.5.1 Duffing’s equation

Duffing’s equation describes the dynamics of a mass-spring oscillator with cubic spring, and is

defined as

ÿD(t) + cẏD(t) + by3
D(t) + ayD(t) = u(t) (7.34)

Equation (7.34) is first bilinearized by the Carleman technique to obtain a continuous-time

bilinear model in the form

ẋ(t) = Acx(t) + Ncx(t)u(t) + Bcu(t) (7.35a)

y(t) = Ccx(t) + Dcu(t) (7.35b)

which is then discretized by one of the methods presented in Reference 64 to obtain a bilinear

model in the form of equation (6.1). Defining the primary state variables of equation (7.34) as

x1 = yD x2 = ẏD (7.36)
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Carleman linearization (References 8, 9) introduces a state vector made of progressively higher-

order products of the primary state variables. For instance, the second-order Carleman state

vector involves quadratic terms

x =

[
x1 x2 x2

1 x1x2 x2
2

]T

(7.37)

and the third-order state vector introduces cubic terms

x =

[
x1 x2 x2

1 x1x2 x2
2 x3

1 x2
1x2 x1x

2
2 x3

2

]T

(7.38)

For instance, the state-space matrices of the 3rd-order Carleman model of Duffing’s equation

are

Ac =



0 1 0 0 0 0 0 0 0

−a −c 0 0 0 −b 0 0 0

0 0 0 2 0 0 0 0 0

0 0 −a −c 1 0 0 0 0

0 0 0 −2a −2c 0 0 0 0

0 0 0 0 0 0 3 0 0

0 0 0 0 0 −a −c 2 0

0 0 0 0 0 0 −2a −2c 1

0 0 0 0 0 0 0 −3a −3c



(7.39a)
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Nc =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 2 0 0 0 0 0

0 0 0 0 3 0 0 0 0



Bc =



0

1

0

0

0

0

0

0

0



(7.39b)

Dc = 0 (7.39c)

Using Euler’s discretization method (Reference 64) with step size ∆t, the discrete-time bilinear

model matrices are

A = I + Ac∆t N = Nc∆t B = Bc∆t D = Dc (7.40)

In order to simulate a hardening spring, the Duffing coefficients in this example are chosen to

be a = c = 1 and b = 0.01. The sampling time is ∆t = 0.002. The objective is to identify the

matrices A, N, B, C, D of equation (7.40), given input-output data. The excitation input used

for identification is of the optimized type presented in Figure 7.2, with uh = 2, ∆h ∈ {0.02, 0.04}

and ∆l ∈ {0.02, 0.04}. To verify the accuracy of the identified bilinear model, its predicted

output is then compared with the output of the true system when both are driven by the same

sequence of input, independently generated from the one used for identification. The input used

for verification is plotted in Figure 7.3, whereas Figure 7.4 shows the resulting output of the true

Duffing’s equation and of its bilinear approximations derived by 3rd- and 4th-order Carleman
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linearization and discretized by Euler’s method. Figure 7.4 also reports the output of the linear

approximation to Duffing’s equation, to show how the bilinear approximation is more accurate

and therefore attractive.

Assume that the variables x1, x2
1, x3

1 are measured, i.e.

C =


1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

 (7.41)

When the output is generated by the discrete-time Carleman model of equations (7.40) and (7.41),

the 3rd-order Carleman bilinear model is identified exactly by the IS method with TV IOSRs

with p = 10, as demonstrated by the high accuracy in predicting the output of the true Carle-

man model (Figure 7.5) when both are driven by the input of Figure 7.3. Note that p has been
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Figure 7.3: Input for the verification of the identified bilinear models.
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Figure 7.4: Output of the true Duffing’s equation, its linear approximation and theoretical
Carleman bilinear approximations.
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Figure 7.5: Prediction accuracy of the bilinear model identified from input-output data gen-
erated by the 3rd-order theoretical Carleman bilinear model of Duffing’s equation.
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Figure 7.6: Prediction accuracy of the bilinear model identified from input-output data gen-
erated by the true Duffing’s equation.

chosen pretending that the true order of the system is not known, and p = 10 is consistent with

the assumption that the model can be of up to order 30 (pq = 30).

The above example illustrates how the proposed algorithms is capable of identifying relatively

large bilinear models (n = 9). However, generally one is interested in finding a Carleman

bilinear approximation of a nonlinear system, from data measured from the real system or,

if the differential governing the system dynamics are known, from data numerically generated

from such equations. In the following example, we generate data directly from equation (7.34)

driven by and input sequence with uh = 2, ∆h ∈ {0.02, 0.04} and ∆l ∈ {0.02, 0.04} (Figure 7.2).

From the point of view of the identification algorithm, the input-output data are now affected by

modeling error, making the identification more challenging. Figure 7.6 shows that the algorithm

is still able to provide an excellent bilinear approximation of Duffing’s equation. In the example

of Figure 7.6, the output data provided to the identification algorithm is the sequence formed

by

y(k) =

[
yD(k∆t) y2

D(k∆t) y3
D(k∆t) y4

D(k∆t)

]
(7.42)
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and the identified bilinear model is therefore similar to a 4th-order Carleman approximation

(n = 14).

7.5.2 Euler’s equations

Consider Euler’s equations, which describe the rotation of a rigid body in a reference frame

fixed to the rotating body and having axes coincident with the principal axes of inertia and

represent a fundamental building block of the satellite attitude control problem

I1ω̇1(t) + (I3 − I2)ω2(t)ω3(t) = τ1(t)

I2ω̇2(t) + (I1 − I3)ω3(t)ω1(t) = τ2(t) (7.43)

I3ω̇3(t) + (I2 − I1)ω1(t)ω2(t) = τ3(t)

where ωi’s are the angular velocities along the principal axes, Ii’s are the principal moments of

inertia and τi’s are the applied torques, i = 1, 2, 3. Letting the driving torques be the sum of a

feedback term −biωi and a feedforward term fi

τi = −biωi + fi (7.44)

and defining

a1 =
I3 − I2

I1
a2 =

I1 − I3

I2
a3 =

I2 − I1

I3
ci =

bi
Ii

ui =
fi
Ii

(7.45)
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equation (7.43) becomes

ω̇1(t) = −a1ω2(t)ω3(t)− c1ω1(t) + u1(t)

ω̇2(t) = −a2ω3(t)ω1(t)− c2ω2(t) + u2(t) (7.46)

ω̇3(t) = −a3ω1(t)ω2(t)− c3ω3(t) + u3(t)

Defining the Carleman state as

x =

[
ω1 ω2 ω3 ω2

1 ω2
2 ω2

3 ω1ω2 ω1ω3 ω2ω3

]T

(7.47)

a 2nd-order bilinear model is obtained

ẋ(t) = Acx(t) +

3∑
i=1

Ncix(t)ui(t) + Bcu(t) (7.48a)

y(t) = Ccx(t) + Dcu(t) (7.48b)
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where u =


u1

u2

u3

 and

Ac = −



c1 0 0 0 0 0 0 0 a1

0 c2 0 0 0 0 0 a2 0

0 0 c3 0 0 0 a3 0 0

0 0 0 2c1 0 0 0 0 0

0 0 0 0 2c2 0 0 0 0

0 0 0 0 0 2c3 0 0 0

0 0 0 0 0 0 c1 + c2 0 0

0 0 0 0 0 0 0 c1 + c3 0

0 0 0 0 0 0 0 0 c2 + c3



(7.49a)

Bc =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0



Dc =


0 0 0

0 0 0

0 0 0

 Nc1 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



(7.49b)
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Figure 7.7: Excitation input for the identification of Euler’s equations.

Nc2 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0



Nc3 =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 2 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0



(7.49c)

By equation (7.40) the following discrete-time model with 3 inputs is obtained

x(k + 1) = Ax(k) +
3∑
i=1

Nix(k)ui(k) + Bu(k) (7.50a)

y(k) = Cx(k) + Du(k) (7.50b)

The presence of a vector input can be incorporated in the TV IOSRs just by noting that

A(k) = A + N1u1(k) + N2u2(k) + N3u3(k). The excitation input of Figure 7.7 generates the
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Figure 7.8: ω1(t) of the true Euler’s equations and comparison with its theoretical and iden-
tified 2nd-order Carleman bilinear approximation.

output history ω1(t), ω2(t), ω3(t) in accordance with equation (7.46) assuming I1 = 30, I2 = 20,

I3 = 10, b1 = b2 = b3 = 3 and sampling with ∆t = 0.002s. Suppose that a bilinear model

similar to the 2nd-order Carleman approximation is desired. Then the measurements fed to the

identification algorithm can be chosen as

y(k) =
[
ω1(k) ω2(k) ω3(k) ω2

1(k) ω2
2(k) ω2

3(k)

ω1(k)ω2(k) ω1(k)ω3(k) ω2(k)ω3(k)
]T

(7.51)

i.e. corresponding to an identity C matrix in equation (7.50). Knowing that the desired ap-

proximated bilinear model is of order n = 9 and being q = 9, then p can be selected equal to 1.

This gives more freedom in choosing the excitation input (Figure 7.7), without worrying about

computational problems.

The identified bilinear model has the correct order nid = 9 and accurately predicts the output of

both the true Euler equations and their Carleman approximation of 2nd order. For verification,

all the three models are driven by an input sequence independently generated from the one used

for identification and as an example the comparison of their output ω1 is shown in Figure 7.8.
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7.6 Conclusions

This chapter has extended the family of input-output-to-state representations (IOSRs) for bi-

linear systems, i.e. relationships expressing the bilinear state as a linear combination of input-

output data only. The new IOSRs feature crucial benefits over the ones available in the literature

and those presented in chapter 6. In particular, they are exact for any arbitrary bilinear system

satisfying minimum observability conditions and without imposing restrictions on the magnitude

that the excitation input can take. These characteristics have been obtained by exploiting the

linear-time-varying nature of bilinear systems. By designing appropriate excitation input, it has

been shown how bilinear systems can be correctly identified with reduced computational com-

plexity. The proposed input form is optimized with respect to computational complexity, but

the identification method resulting from the new IOSRs is very flexible and can accommodate

other input profiles.

The proposed algorithms can be applied to identify systems which are inherently bilinear as well

as bilinear models approximating more general nonlinear systems. Numerical examples have

been given for both cases, showing how the approach offers benefits over existing methods. In

particular, the identification algorithms are exact for arbitrary bilinear systems with minimum

observability requirements and the computational effort is significantly reduced to allow one to

identify relatively large bilinear models. For these reasons, the proposed approach to bilinear

discrete-time system identification can play an important role in the identification of high-order

bilinear models to approximate more general nonlinear systems, paving the way for an effective

way to handle more general identification and control problems.



Chapter 8

Bilinear observers

8.1 Introduction

Regardless of the technique used to bilinearize a nonlinear system, Carleman linearization or bi-

linear system identification, the resulting bilinear models have states whose direct measurement

is not possible. Even in inherently bilinear phenomena, often not all the states are measured.

Like for linear systems, for bilinear systems the use of some kind of state estimator (e.g. an

observer) is then indispensable in order to design and implement state-feedback controllers.

References 65 and 66 studied the problem of minimal-order state observers for bilinear systems in

continuous time. These results can be shown to apply also to discrete-time systems with obvious

modifications (stable matrix when the eigenvalues lie within the unit circle instead of the left-half

plane). The observability of bilinear systems is affected by the input (Reference 62), therefore

the dynamics of the state estimation error generally depends on the input. Other theoretical

contributions to the topic were made in References 67 and 68. Reference 65 formulated time-

invariant minimal-order observers with bilinear structure and focused on those whose state

203
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estimation error is independent of the input. Reference 65 found the necessary conditions on

the structure of the bilinear system for such observers to exist. Even when they exist, their

eigenvalues cannot in general be arbitrarily chosen. If they happen to be stable and sufficiently

fast for the desired application, then the design is successful. When the bilinear system meets

all the necessary conditions, the design procedure is simple and easily automated. Reference 66

investigated another design method leading to a minimal-order observer with the same bilinear

structure as the one formulated in Reference 65 and estimation error possibly dependent on

the input but asymptotically convergent to zero irrespective of it. Such a technique was shown

to allow one to design stable bilinear observers even in some cases where the method from

Reference 65 is not applicable or successful. However, also the method from Reference 66 is

applicable only to a certain class of bilinear systems, which is harder to identify a priori than

the one addressed in Reference 65. Finally, the design procedure is fairly complicated and more

difficult to automate. Both References 65 and 66 dealt with the problem of general dependency

on the input of the state estimation error by placing some constraints on the structure of the

bilinear systems for which it is possible to design bilinear observers.

In this chapter we approach the problem differently, as presented at the 16th Yale Workshop

on Adaptive and Learning Systems in New Haven, CT, in 2013 (Reference 69). We devise

an observer design procedure applicable to any bilinear system with minimum observability

requirements (observable linear part), overcoming the limitations of the methods proposed in

References 65 and 66. We formulate a time-invariant full-order observer with bilinear structure

and develop a design technique to optimize its gains based on system identification. Observers

in this form, as opposed to other nonlinear forms, are of particular interest because they are

required to develop an extension of OKID for bilinear systems. The connection between the

gains of the proposed bilinear observer and the interaction matrices in the context of system
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identification is a new development and is central to the chapter. The connection is established

and also proposed as an approach to design both deterministic and stochastic bilinear observers.

It is here assumed that the bilinear state-space model and the process and measurement noise

covariances are known, and only the optimal bilinear observer gains are to be designed. The

link between observer gains and interaction matrices is also exploited in the reverse direction.

The properties of the proposed bilinear observer are proven to be, under the sole additional

assumption of stationary white input, equivalent to the properties of the steady-state Kalman

filter that led to OKID in the linear case. In short, not only do the presented results lead to a

new bilinear observer design technique, but they also form the first fundamental step of working

out a bilinear version of OKID, where a bilinear system model and an associated optimal bilinear

observer are identified directly from noisy input-output measurements.

8.2 Problem statement

Consider the bilinear system in equation (6.1) with additive process and measurement noise

x(k + 1) = Ax(k) + Nx(k)u(k) + Bu(k) +wp(k) (8.1a)

y(k) = Cx(k) + Du(k) +wm(k) (8.1b)

where wp ∈ Rn×1 and wm ∈ Rq×1 are stationary zero-mean white processes with covariance ma-

trices Q ∈ Rn×n and R ∈ Rq×q, respectively. Both wp and wm are assumed to be uncorrelated

with u and y as well as, for simplicity, mutually uncorrelated.
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We introduce a full-order time-invariant bilinear observer of the form

x̂(k + 1) = Ax̂(k) + Bu(k) + M1 (y(k)− ŷ(k)) + Nx̂(k)u(k) + M2 (y(k)− ŷ(k))u(k) (8.2a)

ŷ(k) = Cx̂(k) + Du(k) (8.2b)

where ŷ(k) ∈ Rq×1 is the observer output based on the estimated state x̂(k) ∈ Rn×1, and

M1,M2 ∈ Rn×q are the observer gains. Defining

Ā = A−M1C N̄ = N−M2C (8.3a)

B̄ =

[
B−M1D M1 −M2D M2

]
(8.3b)

v(k) =

[
u(k) yT(k) u2(k) u(k)yT(k)

]T

(8.3c)

the bilinear observer in equation (8.2) can be written in the following equivalent form

x̂(k + 1) = Āx̂(k) + N̄x̂(k)u(k) + B̄v(k) (8.4a)

ŷ(k) = Cx̂(k) + Du(k) (8.4b)

It can be shown that the dynamics of the state estimation error e(k) = x(k)− x̂(k) is governed

by

e(k + 1) = Āe(k) + N̄e(k)u(k) +wp(k)−M1wm(k)−M2wm(k)u(k) (8.5)

The presence of input-dependent terms in equation (8.5) makes the bilinear state estimation

problem more complex than the well-known linear case.

This chapter is concerned with the observer design problem. In the deterministic case (Q = 0,

R = 0), given A, N, B, C, D, the objective is to design observer gains M1 and M2 so that in

the limit as k tends to infinity, the state estimation error e(k) converges to zero. In addition,
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we also seek to answer the question if a deadbeat bilinear observer exists that causes the state

estimation error to converge to zero identically in a minimum number of time steps. In the

stochastic case, we assume further that the process and measurement noise covariances Q and

R are known, and the design problem is to find the appropriate bilinear observer gains M1 and

M2 so that the time average of the Euclidean norm squared of the steady-state state estimation

error is minimized. This requirement is similar to that of the Kalman filter in the linear case.

Indeed, when the problem is linear (N = 0) the solution presented in this chapter produces the

well-known steady-state Kalman filter gain K (M1 = K, M2 = 0).

8.3 Deterministic bilinear observer

In the absence of noise, the dynamics of the state estimation error is described by

e(k + 1) = Āe(k) + N̄e(k)u(k) (8.6)

To guarantee the stability of the deterministic bilinear observer, e(k) in equation (8.6) must con-

verge to zero regardless of its initial condition e(0) and the applied input sequence. From (8.6),

e(k) can be interpreted as being governed by a linear-time-varying difference equation with a

time-varying dynamic matrix Ā+N̄u(k). Convergence of e(k) to zero is in general dependent on
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u(k), which is exogenous to the observer. Propagating equation (8.6) forward in time produces

e(1) = Āe(0) + N̄e(0)u(0)

e(2) = Ā2e(0) + ĀN̄e(0)u(0) + N̄Āe(0)u(1) + N̄2e(0)u(0)u(1)

e(3) = Ā3e(0) + Ā2N̄e(0)u(0) + ĀN̄Āe(0)u(1) + ĀN̄2e(0)u(0)u(1)

+ N̄Ā2e(0)u(2) + N̄ĀN̄e(0)u(0)u(2) + N̄2Āe(0)u(1)u(2) + N̄3e(0)u(0)u(1)u(2)

...

e(k) = Sk(k)e(0) (8.7)

Observe that the relationship that expresses e(k) in terms of the previous inputs u(k−1), ..., u(0)

and the initial error e(0) contains all possible products of Ā and N̄ whose combined power is

k. The sum of such terms (multiplied by the appropriate input values) is compactly denoted by

Sk(k) similar to what done in equation (6.29). As seen from equation (8.3a), the two observer

gains M1 and M2 provide the design freedom for Sk(k) to converge to zero. In mathematics

literature the topic is well-known under the name of Infinite Product of Matrices. To our

knowledge, no general result is available that guarantees the convergence to zero of the above

mentioned products as k tends to infinity regardless of the magnitude of u. However, when the

magnitude of u is bounded, it is possible to guarantee the existence of the observer gains M1

and M2 to ensure that the state estimation error e(k) converges to zero as k tends to infinity.

This result can be explained in the context of state-space bilinear identification using interaction

matrices.
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8.3.1 Observer gains and interaction matrices

The interaction matrices were introduced in chapter 6 to derive input-output-to-state repre-

sentations (IOSRs) for deterministic bilinear system identification. These IOSRs allow one to

express the current state, x(k), in terms of a fixed number of past input and output values,

u(k − 1), ..., u(k − p),y(k − 1), ...,y(k − p). Such relationships are proven to be asymptotically

exact for a general bilinear system as p increases (Reference 51). It turns out that the ap-

proximation error of the IOSRs in system identification has exactly the same structure as the

state estimation error of equation (8.7). The interaction matrices M′ and M′′ in chapter 6 can

then be interpreted as bilinear observer gains. Additionally, the same theorem that ensures the

validity of the IOSRs in the system identification problem (theorem 6.1), also guarantees the

existence of the observer gains M1 and M2 to cause the state estimation error e(k) to converge

to zero as k tends to infinity, provided that (A,C) is an observable pair1, and the magnitude of

the input u(k) is upper bounded. This result is restated below for the bilinear observer problem.

Theorem 8.1. If (A,C) is an observable pair, then there exist observer gains M1 and M2 and

a value γ such that, for |u(k)| < γ for all k, e(k) in equation (8.7) converges to 0 as k tends to

infinity.

The proof is the same as for theorem 6.1.

The interaction matrix formulation offers a fundamental connection between the system identifi-

cation problem and the state estimation problem. One can indeed think of system identification

in the context of a larger problem of observer identification where an optimal observer gain is

identified simultaneously with the system model, hence the term observer identification might

be more appropriate. In the bilinear system identification methods in chapter 6 the interaction

1The theorem in Reference 51 requires (A,C) to be a detectable pair, instead of observable. Observability is
a more stringent requirement than detectability, therefore the proof in Reference 51 is valid for theorem 8.1, too.
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matrices are used to derive the desired IOSRs, but they do not need to be found explicitly for

the identification of the discrete-time bilinear state-space model matrices A, N, B, C, D. This

same formulation can now be exploited in reverse order to identify the observer gains M1 and

M2 given the bilinear state-space model A, N, B, C, D. Here one has the additional advantage

of knowing the system state because the model is given. State information is not available in

the system identification problem where only input-output data is known.

8.3.2 Observer gain identification

A special consideration in the deterministic case is to determine if suitable observer gains exist

that would cause the state estimation error e(k) to become identically zero after a finite number

of time steps. This is analogous to the case of a deadbeat observer for a linear system. Note that

Theorem 8.1 does not imply that all the possible products of Ā and N̄ whose powers add up to

a certain value vanish identically. In other words, unlike the linear case, no deadbeat observer is

guaranteed to exist for a general bilinear system. Deadbeat observers only exist for a very limited

class of bilinear systems where A and N satisfy certain restrictive conditions as illustrated via

an example in Reference 33. These systems are referred to as ideal in the present work, following

the same terminology used in the context of bilinear system identification (chapter 6). For non-

ideal systems, although deadbeat observers do not exist to cause the state estimation error to

converge to zero identically in a finite number of time steps, observer gains can still be found to

cause the state estimation error to converge to zero asymptotically. The design of these observer

gains is described below.

Propagating equation (8.1) forward in time by p time steps, we obtain

x̂(k) = Tpzp(k) + Sp(k)x̂(k − p) (8.8)
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where Tp is a matrix containing products of Ā, N̄ and B̄, Sp(k) is the sum of all products of Ā

and N̄ of combined power p multiplied by appropriate products of past input values u(k − 1),

..., u(k − p), and zp(k) is a column vector defined solely in terms of input-output data exactly

as zp,c in section 6.5 below equation (6.44).

For example, for p = 2 we have

T2 =

[
ĀB̄ N̄B̄ B̄

]
(8.9a)

z2(k) =


v(k − 2)

v(k − 2)u(k − 1)

v(k − 1)

 (8.9b)

S2(k) = Ā2 + ĀN̄u(k − 2) + N̄Āu(k − 1) + N̄2u(k − 2)u(k − 1) (8.9c)

From Theorem 8.1, if p is chosen to be sufficiently large then Sp(k) → 0. For k ≥ p, (8.8)

becomes

x̂(k) = Tpzp(k) (8.10)

Equation (8.10) expresses the estimated state x̂(k) in terms of p past input and p past output

measurements, u(k− 1), ..., u(k−p),y(k− 1), ...,y(k−p). Following the same terminology used

in chapter 6, equation (8.10) is an observer IOSR. Since e(k) = x(k) − x̂(k), (8.10) can be

rewritten as

x(k) = Tpzp(k) + e(k) (8.11)

leading to the following matrix relationship

X = TpZp + E (8.12)
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where

x =

[
x(p) x(p+ 1) x(p+ 2) . . . x(l)

]
(8.13a)

zp =

[
zp(p) zp(p+ 1) zp(p+ 2) . . . zp(l)

]
(8.13b)

E =

[
e(p) e(p+ 1) e(p+ 2) . . . e(l)

]
(8.13c)

where l is the final time step in a data record. This relationship is used to develop a numerical

data-based approach to design the bilinear observer gains from a given model of the system as

described below.

Using the system state-space model, state and output data, denoted by {x(k)} and {y(k)}, can

be generated from one or more sufficiently long and rich input data sequences {u(k)}, and the

matrices X and Zp are then formed. The matrix Tp can then be solved according to

T̃p = X (Zp)
† (8.14)

where the superscript † denotes the pseudo-inverse operation. The observer gains M1 and M2

are extracted directly from T̃p because they appear explicitly in B̄ which is in T̃p. For an

ideal bilinear system, Tp can be found by equation (8.14) to satisfy (8.12) exactly with E = 0.

The observer gains extracted from Tp when p is minimum are the deadbeat observer gains that

would cause the state estimation error to converge to zero identically in p time steps. For the

more general case of a non-ideal system, E cannot be made exactly 0 and the pseudo-inverse

solution corresponds to an observer that minimizes the Frobenius norm of the state estimation

error matrix E (least-squares solution).
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8.4 Stochastic bilinear observer

In the stochastic case, the dynamics of the state estimation error is given by equation (8.5). For

the purpose of stability analysis, we are interested in studying its response to initial conditions,

which leads again to the analysis of equations (8.6) and (8.7). Therefore, Theorem 8.1 is

applicable to the stochastic case, too, and guarantees the existence of stable bilinear observers

even in the presence of process and measurement noise.

For a linear system, the optimal linear observer in the presence of noise is the Kalman filter

(in one-step-ahead predictor form). Similar to OKID (see chapter 2), in this chapter we are

concerned with time-invariant observers, therefore the optimal observer we are after is the

steady-state Kalman filter. In the following development, we work out a solution for the linear

case, and then extend the result to the bilinear case. In the linear case, the solution produces

the steady-state Kalman filter gain.

8.4.1 Linear case

In the linear case, N = 0 and M2 = 0. The matrices Tp, zp(k) and Sp then become

Tp =

[
Āp−1B̄ . . . ĀB̄ B̄

]
(8.15a)

zp(k) =



v(k − p)

...

v(k − 2)

v(k − 1)


(8.15b)

Sp = Āp (8.15c)
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where also the input to the observer simplifies to

v(k) =

u(k)

y(k)

 (8.16)

If p is chosen to be sufficiently large so that Āp can be neglected, the least-squares solution

T̃p = X (Zp)
† minimizes the Frobenius norm of E which is

γ =

 l∑
k=p

n∑
i=1

ei(k)2

1/2

(8.17)

We now argue that T̃p contains the steady-state Kalman filter gain. As shown in chapter 2, the

Kalman filter is the unique linear observer of the form given by equation (8.2), with N = 0 and

M2 = 0 (linear case), which minimizes E
[
eT(k)e(k)

]
. The corresponding observer gain M1 can

be computed by solving the algebraic Riccati equation in (2.7d) together with equation (2.7c)

and will be denoted by K. The stationarity of the noise makes it possible to estimate the

expected value of the norm squared of the state error as its time average (ergodic property)

E
[
eT(k)e(k)

]
= lim

l→∞

1

l − p+ 1

l∑
k=p

eT(k)e(k)

= lim
l→∞

1

l − p+ 1

l∑
k=p

n∑
i=1

e2
i (k)

= lim
l→∞

γ2

l − p+ 1
(8.18)

where the last expression is proportional to the Frobenius norm, minimized by T̃p = X(Zp)
†.

Therefore, the solution T̃p = X(Zp)
†, in the limit as the data record length tends to infinity,

minimizes the same objective function minimized by K. Since the Kalman filter is the unique

linear observer minimizing E
[
eT(k)e(k)

]
, it follows that T̃p = X(Zp)

† must contain the state
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Markov parameters of the Kalman filter, i.e. the products ĀjB̄, j = 0, 1, ..., p − 1, where Ā

and B̄ are defined in equation (8.3) with M1 = K and M2 = 0. Also note that in the linear

case B̄ =

[
B−KD K

]
. Hence, M1 extracted from the last column of T̃p converges to K,

completing the argument.

8.4.2 Bilinear case

Although (8.14) can be immediately used in the stochastic case, for a bilinear model the high

dimensionality of Zp may become impractical. In the stochastic case the locations of the eigen-

values of Ā and N̄ via M1 and M2 are determined by the statistical structure of the noise, i.e.

by Q and R. Therefore, Sp(k) will generally converge to zero with p more slowly than in the

deterministic case, where the absence of noise makes the eigenvalue placement optimized for

the convergence of Sp(k). In the following we develop an alternative technique to overcome the

high dimensionality associated with equation (8.14). Starting with

x(k + 1) = x̂(k + 1) + e(k + 1) (8.19)

and substituting (8.4a) for x̂(k + 1) produces

x(k + 1) = Āx̂(k) + N̄x̂(k)u(k) + B̄v(k) + e(k + 1) (8.20)

Since x̂(k) = x(k)− e(k), equation (8.20) becomes

x(k + 1) = Ā [x(k)− e(k)] + B̄v(k) + N̄ [x(k)− e(k)]u(k) + e(k + 1) (8.21)
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Because we are interested in the batch-form solution, it is more convenient to rewrite equa-

tion (8.21) as

x(k + 1) = PV(k) + e(k + 1) (8.22)

where the bilinear observer gains M1 and M2 are explicitly present in B̄ in P

P =

[
Ā N̄ B̄

]
(8.23a)

V(k) =


x(k)

x(k)u(k)

v(k)

−


e(k)

e(k)u(k)

0

 (8.23b)

Equation (8.22) can be written using all available data as

X = P (VX −VE) + E (8.24)

where

X =

[
x(p) x(p+ 1) · · · x(l)

]
(8.25a)

VX =


x(p− 1) · · · x(l − 1)

x(p− 1)u(p− 1) · · · x(l − 1)u(l − 1)

v(p− 1) · · · v(l − 1)

 (8.25b)

VE =


e(p− 1) · · · e(l − 1)

e(p− 1)u(p− 1) · · · e(l − 1)u(l − 1)

0 · · · 0

 (8.25c)

E =

[
e(p) e(p+ 1) · · · e(l)

]
(8.25d)
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Equation (8.24) is now in a convenient form because it isolates in a single term (E) the state

estimation error sequence whose Frobenius norm has to be minimized. Such term can be viewed

as the residuals of the least-squares (LS) problem (8.24), with VX − VE as data matrix and

Ā, N̄, and B̄ as coefficients to be estimated. As a result, the LS solution to equation (8.24)

yields the matrices Ā, N̄, and B̄ containing the optimal gain M1 and M2 (the concept of op-

timality for the proposed bilinear observer is defined more rigorously in section 8.5). However,

ordinary LS techniques cannot be directly applied to equation (8.24) since VE is not known

before the LS solution is found and the corresponding residuals E are computed. Nevertheless,

equation (8.24) is in a form that existing standard generalized (or extended) LS methods can

be adapted to find the solution that minimizes the Frobenius norm of E as desired. Notice

how, in system identification, generalized least-squares (GLS) methods usually refer to tech-

niques to eliminate the bias in ordinary LS estimates caused by correlated residuals (see for

example Reference 48). Although pursuing a different goal, one of such techniques, proposed

in Reference 47, addresses the LS estimation bias by rewriting the model to be identified in

the form of autoregressive-moving-average model and solving the same type of problem where

direct application of the ordinary LS technique is not possible. The iterative method presented

in Reference 47 is described below with reference to equation (8.24). In section 8.5 it will then

be proven how to guarantee that the matrices Ā, N̄ and B̄ found via (8.14) or via the iterative

method contain indeed the optimal bilinear observer gains M1 and M2.

8.4.3 Optimal bilinear observer gains by iterative method

Let the superscript j denote the iteration number, starting from j = 1. Using {u(k)}, {x(k)},

{y(k)} data that are generated from the given bilinear model and the specified process and
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measurement noise covariances, we form X and VX , then solve for P(1)

P(1) = X (VX)† (8.26)

and compute the corresponding error matrix E(1) associated with this solution

E(1) = X−P(1)VX (8.27)

The entries in E(1) are denoted by the superscript (1)

E(1) =

[
e(1)(p) e(1)(p+ 1) · · · e(1)(l)

]
(8.28)

and used to update the parameter estimate. Since VE calls for e(p − 1), but e(p − 1) is not

available in E which starts with e(p), the first column of X must now start from p+ 1 instead

of p

X(1) =

[
x(p+ 1) x(p+ 2) · · · x(l)

]
(8.29)

VX associated with X(1) is then adjusted accordingly so that VE can start with e(1)(p) which

is available in E(1)

V
(1)
X =


x(p) · · · x(l − 1)

x(p)u(p) · · · x(l − 1)u(l − 1)

v(p) · · · v(l − 1)

 (8.30)

V
(1)
E =


e(1)(p) · · · e(1)(l − 1)

e(1)(p)u(p) · · · e(1)(l − 1)u(l − 1)

0 · · · 0

 (8.31)



Chapter 8. Bilinear Observers 219

The next update P(2) and E(2) can be computed from

P(2) = X(1)
(
V

(1)
X −V

(1)
E

)†
(8.32)

E(2) = X(1) −P(2)
(
V

(1)
X −V

(1)
E

)
(8.33)

E(2) is then used to update the parameter estimate. The first entry in E(2) is e(2)(p + 1)

which is consistent with X(1). For the next iteration, X(2) must start from x(p+ 2), V
(2)
X from

x(p+ 1), u(p+ 1),v(p+ 1) so that V
(2)
E can start from e(2)(p+ 1), etc. To avoid losing one data

sample at each iteration, an alternative strategy is inserting e(1)(p− 1) = 0 to equation (8.28),

so that V
(1)
X can remain the same as VX . The first column of V

(1)
E which now starts with

e(1)(p − 1) = 0 will be zero. Once P is identified, the bilinear observer gains M1 and M2 can

be directly extracted from it.

8.5 Stochastic properties of the optimal bilinear observer

In this section the theoretical aspects behind the proposed stochastic observer are analyzed,

for two main purposes. The first two lemmas justify the design procedure illustrated above

and highlight the properties of the resulting state observer. Additionally, the properties of the

observer output residuals are proven to show how the proposed observer possesses properties

similar to those of the Kalman filter that led to OKID in the linear case. Notice the similarity

with the approach taken in section 2.4 to prove the theoretical foundation of OKID in the linear

case.
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Consider the system in equation (8.1) and the proposed bilinear observer in (8.4). The most

general form for such a time-invariant observer is

x̂(k + 1) = Fx̂(k) + Gx̂(k)u(k) + Hu(k) + Lu2(k) + M1y(k) + M2y(k)u(k) (8.34)

where F,G ∈ Rn×n, H,L ∈ Rn×1, and M1,M2 ∈ Rn×q. From the definition of state estimation

error and equations (8.1) and (8.34), the dynamics of the state estimation error is

e(k + 1) = x(k)− x̂(k)

= Ax(k) + Nx(k)u(k) + Bu(k) +wp(k)− Fx̂(k)−Gx̂(k)u(k)−Hu(k)

− Lu2(k)−M1y(k)−M2y(k)u(k)

= (A−M1C) e(k) + (N−M2C) e(k)u(k) + (A− F−M1C) x̂(k)

+ (N−G−M2C) x̂(k)u(k) + (B−H−M1D)u(k)− (L + M2D)u2(k)

+wp(k)−M1wm(k)−M2wm(k)u(k) (8.35)

We would like to analyze the properties of the observer in (8.34) and in particular the conditions

under which the observer state x̂(k) is an unbiased estimate for the system state x and the

estimation error is minimized. The assumptions on the noises wp and wm are the same as

stated in section 6.2.

8.5.1 Unbiased observer

Lemma 8.2. The state x̂(k) of the observer in (8.34) is an unbiased estimate for the state

x(k) of the system in (8.1) for all k ≥ p and for any arbitrary input sequence if and only if the
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following conditions are satisfied

F = A−M1C (8.36a)

G = N−M2C (8.36b)

H = B−M1D (8.36c)

L = −M2D (8.36d)

Sp = 0 (8.36e)

In general, condition (8.36e) cannot be satisfied exactly, but for an appropriately bounded input

it can be approximately met by a sufficiently large value of p (Theorem 8.1). Condition (8.36e)

corresponds then to the observer in (8.34) being stable and having reached its steady state.

Proof. Define for convenience

Ā = A−M1C (8.37a)

N̄ = N−M2C (8.37b)

F̄ = A− F−M1C (8.37c)

Ḡ = N−G−M2C (8.37d)

H̄ = B−H−M1D (8.37e)

L̄ = L + M2D (8.37f)
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Equation (8.35) can be rewritten as

e(k + 1) = Āe(k) + N̄e(k)u(k) + F̄x̂(k) + Ḡx̂(k)u(k) + H̄u(k)

− L̄u2(k) +wp(k)−M1wm(k)−M2wm(k)u(k) (8.38)

and the expected value of the state estimation error is

E [e(k)] = ĀE [e(k − 1)] + N̄E [e(k − 1)]u(k − 1) + F̄E [x̂(k − 1)]

+ ḠE [x̂(k − 1)]u(k − 1) + H̄u(k − 1)− L̄u2(k − 1) (8.39)

To obtain equation (8.39), the noise terms vanish thanks to the assumption of zero-mean noises

and the input is pulled out of the expectation operator since it is a known, deterministic variable.

The expected values in (8.39) are ensemble averages, i.e. they can be interpreted as the expected

values obtained over different realizations of the process and measurement noise while driving

the system with the same input sequence. Propagating equation (8.39) one time step backwards

yields

E [e(k)] =
(
Ā2 + ĀN̄u(k − 2) + N̄Āu(k − 1) + N̄2u(k − 1)u(k − 2)

)
E [e(k − 2)]

+ ĀF̄E [x̂(k − 2)] + ĀḠE [x̂(k − 2)]u(k − 2) + ĀH̄u(k − 2) + ĀL̄u2(k − 2)

+ N̄F̄E [x̂(k − 2)]u(k − 1) + N̄ḠE [x̂(k − 2)]u(k − 1)u(k − 2)

+ N̄H̄u(k − 1)u(k − 2)− N̄L̄u(k − 1)u2(k − 2)

+ F̄E [x̂(k − 1)] + ḠE [x̂(k − 1)]u(k − 1) + H̄u(k − 1)− L̄u2(k − 1) (8.40)
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and, by propagating back to the initial time step, we can write the expected state estimation

error as

E [e(k)] = Sk(k)E [e(0)] + f
(
Ā, N̄, F̄, Ḡ, H̄, L̄, u(0), u(1), ..., u(k − 1), x̂(0)

)
(8.41)

where the second term on the right-hand side of (8.41) represents all the terms not depending

on the initial error and is identically zero for any input history and initial observer state if and

only if F̄, Ḡ, H̄, L̄ are null matrices, i.e. if and only if F,G,H,L in equation (8.34) are chosen

in accordance with conditions (8.36a)-(8.36d). The first term is guaranteed to vanish for any

choice of x̂(0) and for any possible x(0) if and only if the observer is stable (Theorem 8.1) and

k is sufficiently large for the observer to have reached its steady state (k ≥ p).

8.5.2 Optimal observer

Let us start by choosing for the bilinear observer the same optimality criterion as for the

steady-state linear Kalman filter, i.e. minimum expected value of the norm squared of the

state estimation error E
[
eT(k)e(k)

]
for all k. The criterion is equivalent to minimizing the

trace of the covariance matrix of the state estimation error Π(k) = E
[
e(k)eT(k)

]
. Recall

that the second moment for a random variable is greater than or equal to the corresponding

central moment (variance). Equality is achieved only in the case of zero mean. It follows that

in order to minimize the sum of the second moments of each component of the estimation

error E
[
eT(k)e(k)

]
, the observer needs to be unbiased so that E

[
eT(k)e(k)

]
is the sum of the

variances. Conditions (8.36a)-(8.36e) needs then to be satisfied and Π(k + 1) can be expressed
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as

Π(k + 1) = ĀΠ(k)ĀT + M1RMT
1 + Q

+
(
ĀΠ(k)N̄T + N̄Π(k)ĀT + M1RMT

2 + M2RMT
1

)
u(k)

+
(
N̄Π(k)N̄T + M2RMT

2

)
u2(k) (8.42)

From equation (8.42) we notice that, even after the transient has vanished, the covariance of the

state estimation error changes in time due to its dependence on the input. In contrast with the

linear case, to minimize the trace of Π(k) at every k ≥ p, time-varying gains M1(k) and M2(k)

would be necessary also in steady state. Since the focus of this work is on time-invariant bilinear

observers, we relegate the analysis of the case with time-varying gains to the appendix. In what

follows we seek to answer the question of what optimality can be achieved with constant gains.

Lemma 8.3. The observer in (8.34) minimizes the time average Π̄ of the expected value of

the norm squared of the state estimation error Π(k) if and only if the observer is unbiased

(Lemma 8.2), the input is stationary and white, and M1 and M2 satisfy the following conditions

ĀΠ̄CT −M1R = 0 (8.43a)

N̄Π̄CT −M2R = 0 (8.43b)

Proof. We observed from equation (8.42) that Π(k) changes with time but if the input is white

and stationary (constant mean µ and second moment β2), then Π(k) is a stationary process
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and its steady-state time-average Π̄ satisfies the following equation

Π̄ = ĀΠ̄ĀT + M1RMT
1 + Q

+
(
ĀΠ̄N̄T + N̄Π̄ĀT + M1RMT

2 + M2RMT
1

)
µ

+
(
N̄Π̄N̄T + M2RMT

2

)
β2 (8.44)

We can now think of choosing M1 and M2 such that the trace of Π̄ is minimized. Imposing

the first-order conditions, from equation (8.44) we obtain

∂ trace Π̄

∂M1
= −2

(
ĀΠ̄CT −M1R

)
− 2

(
N̄Π̄CT −M2R

)
µ = 0 (8.45a)

∂ trace Π̄

∂M2
= −2

(
N̄Π̄CT −M2R

)
β2 − 2

(
ĀΠ̄CT −M1R

)
µ = 0 (8.45b)

which, to hold for arbitrary µ and β2, lead to the two optimality conditions (8.43).

8.5.3 Properties of the residuals

Lemma 8.4. The expected value of the output residuals of the observer in (8.34) is zero at all

k ≥ p if and only if the observer state is an unbiased estimate of the system state (Lemma 8.2).

Proof. From the definition of observer residual, we can write

ε(k) = y(k)− ŷ(k) = Ce(k) +wm(k) (8.46)

Taking the expectation (ensemble average) of both sides of (8.46) we obtain

E [ε(k)] = CE [e(k)] (8.47)
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and for the same conditions that guarantee that the observer in (8.34) is unbiased (Lemma 8.2),

E [ε(k)] = 0 at all k ≥ p, i.e. for all k in steady state.

Lemma 8.5. The output residuals of the observer in (8.34) in steady state form a white se-

quence, i.e. the time average W̄ε(j) of Wε(k, j) = E
[
ε(k + j)εT(k)

]
for k ≥ p is zero for j ≥ 1,

if and only if the observer is optimal (Lemma 8.3).

Proof. We prove here Lemma 8.5 for j = 1, the proof for other values of j follows the same

lines. From equations (8.46) and (8.5), we can write Wε(k, 1) as

E
[
ε(k + 1)εT(k)

]
= E [(Ce(k + 1) +wm(k + 1)) (Ce(k) +wm(k))]

= E
[(

CĀe(k) + CN̄e(k)u(k) + Cwp(k)−CM1wm(k)

−CM2wm(k)u(k) +wm(k + 1)
)

(Ce(k) +wm(k))
]

= C
(
ĀΠ(k)CT −M1R

)
+ C

(
N̄Π(k)CT −M2R

)
u(k) (8.48)

The assumption of stationary white excitation input allows us to write the time average of

Wε(k, 1) as

W̄ε(1) = C
(
ĀΠ̄CT −M1R

)
+ C

(
N̄Π̄CT −M2R

)
µ (8.49)

which vanishes under the optimality conditions (8.43).

Lemma 8.6. The output residuals of the observer in (8.34) in steady state are orthogonal to

the current and past input values, i.e. the ensemble average Wu(k, j) = E [ε(k)u(k − j)] for all

k ≥ p is zero for j ≥ 0, if and only if the observer is unbiased (Lemma 8.2).
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Proof. For j = 0, starting from equation (8.46), we can write Wu(k, 0) as

E [ε(k)u(k)] = CE [ε(k)]u(k) (8.50)

which vanishes for zero-mean output residuals, i.e. if and only if the observer state is an unbiased

estimate for the system state (Lemma 8.4). Similarly, for j > 0 we obtain

E [ε(k)u(k − j)] = CE [ε(k)]u(k − j) (8.51)

with the same conclusion.

Lemma 8.7. The output residuals of the observer in (8.34) in steady state are orthogonal to

the past output values, i.e. the time average W̄y(j) of Wy(k, j) = E
[
ε(k)yT(k − j)

]
for k ≥ p

is zero for j ≥ 1, if and only if the observer is optimal (Lemma 8.3).

Proof. We prove Lemma 8.7 below for j = 1, the proof for other values of j follows the same lines,

therefore it is omitted. From equation (8.46) and considering an unbiased observer (Lemma 8.2),

we can write Wy(k, 1) as

E
[
ε(k)yT(k − 1)

]
= E

[
(Ce(k) +wm(k))yT(k − 1)

]
= E

[
Ce(k)yT(k − 1)

]
= CE

[(
Āe(k − 1) + N̄e(k − 1)u(k − 1) +wp(k − 1)−M1wm(k − 1)

−M2wm(k − 1)u(k − 1)
)(

Cx̂(k − 1) + Ce(k − 1)

+ Du(k − 1) +wm(k − 1)
)T]

= CĀE
[
e(k − 1)x̂T(k − 1)

]
CT + CN̄E

[
e(k − 1)x̂T(k − 1)

]
CTu(k − 1)

+ C
(
ĀΠ(k − 1)CT −M1R

)
+ C

(
N̄Π(k − 1)CT −M2R

)
u(k − 1)

(8.52)
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Assuming stationary white input, defining W̄x̂ as the time average of Wx̂ = E
[
e(k)x̂T(k)

]
and

taking the time average of equation (8.52), we obtain

W̄y(1) = CĀW̄x̂C
T + CN̄W̄x̂C

Tµ

+ C
(
ĀΠ̄CT −M1R

)
+ C

(
N̄Π̄CT −M2R

)
µ (8.53)

which vanishes for the optimal observer of Lemma 8.3. The first two terms on the right-

hand side of equation (8.53) are null because so is W̄x̂ by the orthogonality argument coming

from the least-squares optimality criterion, the last two terms vanish thanks to the optimality

conditions (8.43).

Lemma 8.8. The output residuals of the observer in (8.34) in steady state are orthogonal to

the current zp defined below equation (8.8), i.e. the time average W̄z of Wz(k) = E
[
ε(k)zT

p (k)
]

for k ≥ p is zero, if and only if the observer is optimal (Lemma 8.3).

Proof. Lemma 8.8 can be proven entry by entry of zp(k). Consider the remaining entries of

v(k) not yet taken into account in Lemma 8.6 and Lemma 8.7. In steady state

E
[
ε(k)u2(k − j)

]
= E [ε(k)]u2(k − j) (8.54)

which is null for any j > 0 under the same conditions that guarantee the output residuals to be

a zero-mean process (Lemma 8.4), and so is its time average. Similarly, the time average of

E
[
ε(k)u(k − j)yT(k − j)

]
= E

[
ε(k)yT(k − j)

]
u(k − j) (8.55)

is zero because so is the time average W̄y(j) of Wy(k, j) = E
[
ε(k)yT(k − j)

]
for j ≥ 1

(Lemma 8.7). Together with Lemma 8.6 and Lemma 8.7 themselves, this proves that the time
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average W̄v(j) of Wv(k, j) = E [ε(k)v(k − j)] is null for any j > 0 if and only if the observer

is optimal (Lemma 8.3). All the other entries of zp(k) involves products of v(j), j = 1, 2, ..., p,

with input values. It is then straightforward to show that W̄z = 0.

8.6 Examples

Numerical examples are provided to support the theoretical findings and to provide additional

insights. State and output data {x(k)}, {y(k)} are generated from random input sequences

{u(k)} that are uniformly distributed between −0.5 and 0.5. For the stochastic case, zero-mean

Gaussian process and measurement noises are added with the following covariances Q and R,

respectively

Q =

 0.01 0.005

0.005 0.0025

 R = 0.04

Note that the generated input and noise satisfy the assumptions made in section 8.5 to derive

the properties of the optimal bilinear observer in the stochastic case.

Three systems are used in the illustration. System I (ideal bilinear) is defined by

A =

−0.5 0.5

0.5 0

 N =

1 −1

1 0

 B =

2

1

 C =

[
1 0

]
D = 0

System II (non-ideal bilinear) is modified from System I with the (2, 2) element of N set to 0.3,

which is sufficient to turn it into a non-ideal bilinear model. Systems I and II are the same

illustrated in the examples in chapter 6. System III (linear) is modified from System I by setting

N = 0.
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8.6.1 Deterministic bilinear observer

For System I, p = 2 is the smallest value for which Tp can be found to satisfy equation (8.12)

exactly (E = 0 when T2 is solved for). This is an indication that a deadbeat observer exists

for this system. The identified gains associated with this minimum value of p = 2 are extracted

from T2 as

M1 =

[
−0.5 0.5

]T

M2 =

[
1 1

]T

These bilinear observer gains can be verified to cause Ā2 = ĀN̄ = N̄Ā = N̄2 = 0. The state

estimation error converges to zero in 2 time steps for any input as seen in Figure 8.1. For System

II, the smaller singular values of Zp decrease gradually as p increases, and a solution for Tp that

satisfies equation (8.12) with E = 0 does not exist. This is a certain indication that a deadbeat

observer does not exist for this system. Indeed, the gains identified by equation (8.14) do not

make the products of Ā and N̄ whose sum of powers added up to p vanish. Instead, these

gains minimize the Frobenius norm of the state estimation error matrix E in equation (8.12).
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Figure 8.1: The state estimation error of the observer designed for System I (deterministic
case) converges to zero in exactly 2 time steps. The designed observer is deadbeat.
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Although the identified observer is not deadbeat, numerical results confirm that it is the fastest

observer when compared to observers where the identified gains are perturbed. The case for

p = 6 is illustrated in Figure 8.2, where for every perturbed observer a random value is added

to each entry of the gains in order to randomly generate perturbation in all directions in the

gain space. Note that both Figure 8.1 and 8.2 are obtained by driving the bilinear system with

an input sequence generated independently from the one used for gain design.
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Figure 8.2: The observer designed for System II (deterministic case) has the fastest conver-
gence compared to those with perturbed gains.

Table 8.1: Comparison of observer gains and mean-norm error obtained from Kalman theory,
IOSR-based method and iterative technique (System III).

Kalman Non-iterative (IOSR) Iterative

M1(1) -0.085757111 -0.086211775 -0.086133466
M1(2) 0.117193716 0.117111690 0.117122168
||M1|| 0.145219314 0.145422206 0.145384236
eMN 0.113100785 0.113100750 0.113100749
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8.6.2 Stochastic bilinear observer

In the stochastic case, we first confirm that the proposed observer identification techniques

indeed reproduce the well-known steady-state Kalman filter gain for a linear system (System

III). Both the non-iterative (IOSR-based) and the iterative techniques identify the Kalman

filter gain correctly. The two elements of M1 (M2 = 0) are shown in Table 8.1. Since the

design objective is to minimize the expected value of the norm of the state estimation error,

an appropriate performance measure is the mean-norm state estimation error eMN = (l +

1)−1
∑l

k=0

(
eT(k)e(k)

)1/2
, which in the limit as l → ∞ converges to the expected value of the

norm of the state estimation error. We use p = 40 for the IOSR-based method. To identify

the Kalman filter gain exactly, an infinitely long data set would be necessary. To avoid the

obvious computational issues, the design is performed by averaging the identified gains from

100 independent data sets of 104 samples each. For evaluation, both in this case and later in

the bilinear case, another 100 independent data sets of 104 samples are used, and the averaged

eMN values are reported. Note that the relatively large value of p = 40 used in the IOSR-based

approach guarantees that Sp is negligible. With the identified observer gain, S40 = Ā40 has

entries whose magnitudes are of the order of 10−7.

We evaluate the effectiveness of the proposed design methods by analyzing the actual per-

formance of the identified bilinear observers. Table 8.2 compares the eMN of the observers

designed by the IOSR-based technique (again from another 100 independent data sets of 104

samples each) for different values of p. As expected, increasing p leads to better identification,

Table 8.2: Improvement of mean-norm error for the bilinear observer designed by non-iterative
(IOSR-based) method, as p increases (System II).

p 2 3 4 5 6
# Zp rows 12 28 60 124 252
eMN 0.15292 0.12592 0.12164 0.12022 0.11988
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since a larger p improves the approximation of equation (8.10). For p = 7, the identified gains

are

M1,IOSR =

−0.09792

0.12945

 M2,IOSR =

0.19703

0.27786


In the linear case, the number of rows of Zp grows linearly with p. In the bilinear case, the

growth is exponential, hence the iterative solution is called for. The bilinear observer gains

based on the iterative solution are found to be

M1,ITER =

−0.09137

0.12509

 M2,ITER =

0.18319

0.27114


The eMN of the observer with gains designed by the iterative technique is 0.11975. For the

IOSR-based design, it is 0.11978. The slightly larger error for the latter can be explained

by the fact that p = 7 is not sufficiently large to make S7(k) negligible. For instance, the

entries of (A−M1C)7 and (N−M2C)7 are of the order of 10−2. A larger p would improve

the approximation of equation (8.10), but computational and ill-conditioning issues might in

practice limit p. As a confirmation we compare the state estimation error of the observer found

via the iterative method to the observers whose gains are perturbed from the values given above

(again, random and independent perturbation for each entry of the gain vectors, with standard

deviation equal to 30% of the corresponding gain entry). The resulting eMN values, obtained

by averaging 100 tests of 104 samples each, are shown in Figure 8.3. The observer designed via

the iterative technique performs better than all 100 observers with randomly perturbed gains.

The state estimation error is minimized. In fact, this identified bilinear observer for System II

can legitimately be considered as being optimal or very close to it. Finally, fast convergence

is observed for the proposed iterative technique. In the above examples, in fewer than 100

iterations, the gains in successive iterations converge with a relative difference of about 10−16
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Figure 8.3: The observer designed for System II (stochastic case) has minimum state estima-
tion error compared to those with perturbed gains.

in order of magnitude, which is numerically zero by Matlab R© double precision calculation.

Additionally, Fig. 8.4 shows how the residuals of the bilinear observer designed via the iterative

method are white, as expected since the gains and the excitation input satisfy the requirements

of Lemma 8.5. The state estimation error is not expected to be white. These results exactly

parallel those of the optimal Kalman filter in the linear case, and the only required additional

assumption is to have stationary and white input.

8.6.3 Numerical validation of the stochastic properties of the optimal bilinear

observer

In order to verify the theory developed in section 8.5, the validity of equations (8.43) and (8.44)

is illustrated below via the same numerical example on system II presented above (section 8.6.2).

Generate a sequence of input u made of 104 values independently drawn from a uniform distri-

bution between -0.5 and 0.5 and follow the steps below. Note again that the generated input
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Figure 8.4: The autocorrelation of state estimation error and output residual for System II
(stochastic case). The output residual is white.

satisfies the assumptions made in section 8.5 to derive the properties of the optimal bilinear

observer.

8.6.3.1 Gain design on single dataset

Run for 100 times the following steps (the superscript (i) denotes the index of the run)

1. Generate the sequences ofw
(i)
p and w

(i)
m as gaussian noise with covariance matrices in (8.56)

2. Simulate the system dynamics according to equation (8.1) to get the sequences of the

system state x(i) and output y(i)

3. Use u, x(i), y(i) to design via the iterative method the gains M
(i)
1 and M

(i)
2 of the bilinear

observer in equation (8.2)

4. Run the designed observer on the same dataset used for its design to obtain the sequence

of x̂(i)
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5. Estimate the time average of the expected state error covariance as the covariance Π̄
(i)

of

the sequence of e(i) = x(i) − x̂(i). This is an estimate of the time-average of the expected

error covariance matrix, computed by the ergodic property as a simple time average.

6. Compute the gains M
(i)
1,the and M

(i)
2,the that one would obtain from the optimality condi-

tions (8.43) using the estimated Π̄
(i)

M
(i)
1,the = AΠ̄

(i)
CT

(
CΠ̄

(i)
CT +R

)−1
(8.56a)

M
(i)
2,the = NΠ̄

(i)
CT

(
CΠ̄

(i)
CT +R

)−1
(8.56b)

and compare them with the designed gains (Figures 8.5 and 8.6)

7. Evaluate the right-hand side of Eq. (8.44) using Π̄
(i)

, M
(i)
1 and M

(i)
2 in the place of Π̄,

M1 and M2 to obtain Π̄
(i)
RHS and compare it with Π̄

(i)
(Figure 8.7)

Figures 8.5, 8.6, and 8.7 show indeed good agreement. Exact match of the displayed variables

and invariance across different runs cannot be achieved due to the stochastic nature of the

problem and the finiteness of each run dataset.

8.6.3.2 Gain design on multiple datasets

1. Improve the design of the gains averaging the values obtained over the 100 runs in sec-

tion 8.6.3.1, to get M1 and M2

2. Estimate Π(k) according to its definition, i.e. as the average of e(i)(k)
(
e(i)(k)

)T
over i

3. Estimate Π̄ as the average of Π(k) over k
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Figure 8.6: Comparison between M
(i)
2 and M
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2,the at each run.

4. Compute the gains M1,the and M2,the that one would obtain from the optimality conditions

in equation (8.43) using the estimated Π̄

M1,the = AΠ̄CT
(
CΠ̄CT +R

)−1
(8.57a)

M2,the = NΠ̄CT
(
CΠ̄CT +R

)−1
(8.57b)
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Figure 8.7: Comparison between left-hand and right-hand side of equation (8.44) at each run.

and compare them with the designed gains

M1 =

−0.09137

0.12509

 M2 =

0.18319

0.27114

 (8.58a)

M1,the =

−0.09087

0.12559

 M2,the =

0.18174

0.27202

 (8.58b)

5. Evaluate the right-hand side of equation (8.44) using Π̄, M1 and M2 to obtain Π̄RHS and

compare it with Π̄

Π̄ =

0.01342 0.00371

0.00371 0.00601

 Π̄RHS =

0.01341 0.00371

0.00371 0.00603

 (8.59)

The numerical results in (8.58) and (8.59) confirm the validity of the approach and in particular

the correctness of equations (8.43) and (8.44).
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8.7 Discussion

The presented observer design strategy can be applied to any bilinear system with minimum

observability requirements (observable linear part) and to both the deterministic and stochastic

case. The magnitude of the input to ensure stability of the observer in operations is usually

subject to a bound, which goes to infinity for deterministic ideal bilinear systems. Note that

instability under large input is an intrinsic characteristic of bilinear models, therefore it affects

both the system and its observer. The introduction of the gains M1 and M2 generally allows

one to enhance the observer stability over the system stability.

In the deterministic case, when the bilinear system is ideal the resulting observer is of deadbeat

type. It converges to zero error in the state estimate in exactly n time steps, independently

of the input. It is worth making a connection with the work in Reference 65 on reduced-order

observers. If their method was applied to the example given on System I, it would turn out that

a state-independent first-order observer would exist and have the eigenvalue fixed at the origin

(deadbeat). Reference 65 also gave a general sufficient condition for the existence of a reduced-

order bilinear observer whose eigenvalues can be arbitrarily chosen. The condition requires the

existence of a similarity transformation x′ = Mx such that the given bilinear system can be

written in the form

x′(k + 1) =

A′11 A′12

A′21 A′22

x′(k) +

N′11 0q,n−q

N′21 0n−q,n−q

x′(k)u(k) +

B′1

B′2

u(k) (8.60a)

y(k) =

[
Iq 0q,n−q

]
x′(k) + Du(k) (8.60b)

where 0r,s indicates a null matrix of dimension r × s and Ir is an identity matrix of dimension

r × r. It is straightforward to verify that the design technique proposed in this chapter would
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yield a deadbeat gain for a system described by equation (8.60). Indeed, an interaction matrix

(or observer gain) M2 would exist to make N̄ null, so that all the matrix products in Sp would be

identically 0 except from Āp. The observability of the pair (A,C) ensures the existence of M1

to make Āp = 0. Reference 65 only studied bilinear observers with error dynamics independent

of the input and indeed N̄ = 0 in equation (8.6) eliminates any effect of u on e. In summary,

if a reduced-order deadbeat observer exists, the proposed design method will accordingly yield

a full-order deadbeat observer.

When the bilinear system is not ideal, the proposed design approach can still be applied even

though a deadbeat observer does not exist. The result is the fastest possible converging bilinear

observer. Since the design procedure is done on a specific input sequence, the observer will

preserve the property when the system is driven by an input with the same characteristics of

the input used to design the gains. For other input profiles (e.g. different amplitude or different

frequency spectrum), the observer can still be used but will in general be suboptimal in the

sense that it might not be the fastest possible observer. Stability is guaranteed as long as the

magnitude of the input is kept smaller than the maximum value satisfying equation (6.41).

With reference to the work in Reference 60, the observer proposed in the present chapter can

be interpreted as an optimization of the bound to the input, achieved by introducing a second

gain (M2). Note that the maximum input satisfying equation (6.41) provides a sufficient but

not necessary bound for stability.

The design strategy proposed in this chapter can also be applied to bilinear systems whose

dynamics is affected by process and measurement noise. Noise makes it impossible for the

bilinear observer to converge to the exact state, eliminating the conceptual difference between

ideal and non-ideal bilinear systems. When the input is stationary and white, Lemma 8.3

guarantees that the observer minimizing the time average of the state estimation error variance is
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unbiased and has the structure proposed in equation (8.2). This provides a rigorous justification

for the design procedures presented, which then require stationary white excitation. If the

designed observer is then used in operation conditions with input (or noise) characteristics

different from the ones used to design the gains, the observer can still be used, it works and is

unbiased but generally suboptimal, i.e. in steady state the estimated state is the true system

state in expectation but the average estimation error variance is not guaranteed to be minimum.

For optimality under arbitrary input profiles, time-varying gains are required and can be found

as illustrated in the appendix.

The importance of the link established between the bilinear observer gains and the interaction

matrices in bilinear system identification goes beyond the development of a numerical technique

for bilinear observer design. The bilinear system identification methods presented in Refer-

ence 51 are formulated for noise-free bilinear systems and can now be interpreted as based on

deterministic bilinear observers. The development of an optimal bilinear observer for bilinear

systems affected by process and measurement noise paves the way for a bilinear version of OKID

(see section 8.1) able to optimally handle noise in the measured data. This would allow one

to simultaneously estimate both the model matrices (A,N,B,C,D) and the optimal observer

gains (M1,M2) directly from data measured from the real bilinear system, solving a broader

problem than the one addressed in this chapter.

The proposed optimal bilinear observer is the right candidate for bilinear OKID. In the linear

case, the steady-state Kalman filter is the unique linear-time-invariant observer with output

residuals orthogonal to the current input and past input-output values. This guarantees that

the observer Markov parameters (unit pulse response) estimated in OKID from input-output

data are those of the optimal linear-time-invariant observer (steady-state Kalman filter). The

structure of the Kalman filter makes it possible to relate the state-space model of the Kalman
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filter to that of the system and complete the identification. The following theorem states a

similar property for the bilinear case. Note that when passing from linear to bilinear OKID,

the additional assumption of stationary white excitation is required.

Theorem 8.9. The output residuals ε of the observer in (8.34) in steady state are orthogonal

to the input at the same time step and to input-output data at previous steps (i.e. the sequence

{ε(k)} is orthogonal to the sequences {u(k)} and {zp(k)} for k ≥ p) only if the observer takes

the form of (8.2) and if the input is stationary and white.

Proof. Lemma 8.6 and Lemma 8.8 require the observer to be optimal in the sense of Lemma 8.3

for the output residuals to be orthogonal to current input and past input-output data. Lemma 8.3

requires stationary white input and unbiased observer for the observer to be optimal. Lemma 8.2

shows how the observer is unbiased if and only if it takes the form of equation (8.2).

8.8 Conclusions

In this chapter we have formulated a full-order bilinear time-invariant observer for a bilinear

state-space model. The key feature of the proposed bilinear observer is its link to the interaction

matrices at the core of the methods for bilinear system identification in the absence of noise

presented in chapter 6. In particular, we have established a connection between the interaction

matrices in bilinear system identification and the observer gains in bilinear state estimation.

This connection has been exploited in both directions, to devise a technique to design bilinear

observer gains as well as to lay the ground for the development of a bilinear version of OKID

for bilinear system identification in the presence of noise.

With regard to the observer design problem, we have taken the approach of identifying the

observer gains with data generated from a known model and the noise covariances (an observer
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identification problem), instead of finding their closed-form solution. In the absence of noise,

the fastest convergent observer is obtained. It is also shown how for certain bilinear systems a

deadbeat observer exists, where the estimated state estimation error converges to zero identically

in a finite number of time steps. For such systems, the proposed design technique finds the

deadbeat gains. In the presence of noise, the resulting observer minimizes the state estimation

error in a manner similar to how the Kalman filter does in the linear case. Provided the input is

stationary and white, the designed time-invariant bilinear observer minimizes the time average

of the expected value of the norm squared of the state estimation error. Additionally, we have

shown how time-varying gains are needed for the observer to minimize at each time step the

expected value of the norm squared of the state estimation error. Such time-varying bilinear

observer is the fastest in the presence of noise and its optimality holds for arbitrary input

sequences. Numerical examples successfully illustrated both the theoretical and computational

aspects of the new results.

The properties of the bilinear stochastic observer have also been investigated and proven to

be, under the sole additional assumption of stationary white input, the bilinear counterpart of

the properties of the Kalman filter that led to OKID in the linear case. This forms the first

fundamental step of working out a bilinear version of OKID, where not only is the bilinear

system model identified directly from noisy input-output measurements, but also the associated

bilinear observer is simultaneously identified without a priori knowledge of the noise covariance

or the system model. Bilinear OKID would address at once both the system identification and

the state estimation problem.



Chapter 9

Bilinear OKID

9.1 Introduction

In chapters 6 and 7 we developed several methods for the identification of bilinear state-space

models from noise-free input-output measurements. In chapter 8 the connection between the

interaction matrices used in chapter 6 and the gain of an optimal bilinear time-invariant observer

provides an observer with, under the sole additional assumption of stationary white excitation

input, similar structure and properties to the ones of the Kalman filter that led to OKID in

the linear case. Such a result paves the way for the development of a bilinear counterpart to

the OKID equation in (2.44). Finally, the novel OKID approach based on the estimation of the

observer output residuals presented in chapter 3 provides us with a way to get around the lack

of ERA for bilinear systems, and complete the identification process via the construction of a

new deterministic identification problem to be solved by the methods developed in chapter 6.

The solution to said deterministic identification problem yields the state-space model of the

optimal bilinear observer from which the matrices of the bilinear system to be identified can

easily be recovered.

244
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The outcome of the chapter is a bilinear system identification method optimally taking into

account the noise corrupting the measured data, which is a significant improvement over the

deterministic methods of chapter 6 and represents the first extension of OKID to nonlinear

systems.

The content of this chapter was presented at the 24th AAS/AIAA Space Flight Mechanics

Meeting in Santa Fe, NM, in 2014 (Reference 70).

9.2 Problem statement

Consider the n-state, single-input, q-output discrete-time bilinear system in state-space form

introduced in equation (8.1). A single set of length l of input-output data that starts from some

unknown initial state x(0) is given

{u(k)} = {u(0), u(1), u(2), ..., u(l − 1)} (9.1a)

{y(k)} = {y(0), y(1), y(2), ..., y(l − 1)} (9.1b)

The objective is to identify the system of equation (8.1), i.e. the matrices A, N, B, C, D, with

the input-output data provided in equation (9.1). The process and measurement noises are

unknown, as well as their covariance matrices. The data of equation (9.1) is assumed to be of

sufficient length and richness so that the system of equation (8.1) can be correctly identified.

For simplicity, we focus on a single-input model in this work. Extension to the multi-input case

can be made without conceptual difficulties.
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9.3 Approach overview

As mentioned in the introduction, OKID/ERA (chapter 3) has proven to be a very successful

technique for the identification of linear systems, solving the linear counterpart (N = 0) of

the problem addressed in this chapter. OKID/ERA is based on a relationship between the

measured input and output, equation (2.44), which was originally derived via the interaction

matrix technique (Reference 20). In the presence of noise in the data, the least-squares (LS)

solution of the corresponding set of equations is proven to yield the Markov parameters (or unit

pulse response) of the optimal linear observer (Kalman filter) for the system to be identified and

the noise statistics embedded in the data. From the Markov parameters of the observer, those

of the system can be recovered and fed to ERA or ERA-DC (appendix A) to find a realization

of the system (matrices A, B, C, D) and the corresponding Kalman gain. The use of ERA (or

ERA/DC) to complete the OKID process is not the only possible choice as proven in chapter 3,

and in this chapter we exploit such finding to overcome the lack of a bilinear version of ERA

and develop the first OKID-based identification method for bilinear systems. The method is

articulated around the main steps described below.

9.3.1 Input-output relationship via interaction matrices

In system identification, the measured input and output are the only known signals. No knowl-

edge of the evolution of the state over time is generally available. It is then useful to derive an

equation relating the output of the system directly to the input, without the state appearing

explicitly. In the same fashion as in the original OKID work (Reference 20), interaction matrices

are used to derive such a relation, which can be classified as a bilinear autoregressive model

with exogenous input (ARX). The proof for the existence of interaction matrices for bilinear
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systems is given in chapter 6. Due to its central role in this paper, the corresponding theorem

is restated and briefly discussed in the next section.

9.3.2 Estimation of the observer residuals

The bilinear ARX gives rise to a set of algebraic equations, which represents the core of bilinear

OKID. The LS solution of the bilinear ARX equations are proven to be related to the optimal

bilinear observer corresponding to the system to be identified and to the noise statistics em-

bedded in the data. In particular, the LS residuals of the bilinear OKID core equation are the

residuals ε of the optimal bilinear observer.

9.3.3 Construction of a noise-free identification problem

Along the same lines of chapter 3, the observer residuals are used to construct the following new

identification problem. Consider the optimal observer in equation (8.2). Recalling the definition

of observer output residual, equation (2.8), and indicating the gains as K′ and K′′ to remark

their optimality, we can write the optimal bilinear observer as

x̂(k + 1) = Ax̂(k) + Nx̂(k)u(k) + Bu(k) + K′ε(k) + K′′ε(k)u(k) (9.2a)

ŷ(k) = Cx̂(k) + Du(k) (9.2b)

Since, from the definition of observer residual we can compute ŷ(k) = y(k)−ε(k), equation (9.2)

can be looked at as the state-space model of a dynamic system whose inputs, u(k), ε(k), ε(k)u(k),

and output, ŷ(k), are known. Additionally, notice that no (unknown) noise term is present in

equation (9.2). We can then think of identifying the matrices of such system, namely A, N, B,

K′, K′′, C and D, with a deterministic bilinear system identification method.
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9.3.4 Observer identification

The methods developed in chapter 6 are used to solve the noise-free system identification prob-

lem in equation (9.2). The reader will notice similarities in the technique used to derive the

input-output-to-state relationships at the core of the methods in chapter 6 and the way the bi-

linear ARX model is derived in the present work. Indeed, the proposed bilinear OKID method

can be interpreted as the extension of the methods of chapter 6 to bilinear identification prob-

lems where the dynamic process and the measurements are corrupted by noise. The crucial

difference is that in the latter case the optimal bilinear observer is identified instead of the

original dynamical system. Note that the identification of the observer of equation (9.2) solves

the original problem of identifying the system of equation (8.1). Due to the peculiarities of

the identification problem of equation (9.2), namely different input in the state equation and

the observation equation, the deterministic identification algorithms in chapter 6 are briefly

reviewed and accordingly modified in a dedicated section.

9.4 Interaction matrices and optimal observer

The existence of interaction matrices for bilinear systems is guaranteed by theorem 6.1, proven

and thoroughly discussed in chapter 6. Theorem 6.1 is invoked at several points in this paper,

therefore it is conveniently restated here below.

Theorem 9.1. Given the matrices A ∈ Rn×n, N ∈ Rn×n, C ∈ Rq×n, define the matrices

ĀM = A−M′C and N̄M = N−M′′C and the product

SM,p(k) =
(
ĀM + N̄Mu(k − 1)

) (
ĀM + N̄Mu(k − 2)

)
...
(
ĀM + N̄Mu(k − p)

)
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where M′, M′′ ∈ Rn×q are called interaction matrices and {u(k − p), u(k − p+ 1), ..., u(k − 1)}

is a scalar sequence. If (A,C) is an observable pair, then there exist some interaction matrices

M′, M′′ and a positive scalar γ such that SM,p(k) converges asymptotically to 0 with p provided

that |u(i)| < γ for all i = k − p, k − p+ 1..., k − 1.

As discussed in details in chapter 6, it is worth noting that there are bilinear systems, referred

to as ideal, for which there exist M′ and M′′ such that SM,p(k) is identically equal to 0 for

p ≥ n and γ →∞ (i.e. no bound on |u|). The class of ideal bilinear systems comprises, among

others, all those with rank C = n. For arbitrary (non-ideal) bilinear systems, SM,p(k) cannot

be identically equal to 0 but it is guaranteed to converge to 0 asymptotically with p thanks to

M1, M2 and the finite bound γ on the magnitude of the values that u can take.

At the core of the linear OKID method are steady-state linear state observers, in particular

linear-time-invariant observers minimizing E
[
eT(k)e(k)

]
for all k after the initial transient,

where e(k) = x(k)−x̂(k) is the state estimation error. Such observers are the deadbeat observer

(in the absence of noise) and the Kalman filter (in the presence of noise). In the bilinear version

of OKID we rely on the bilinear observer defined by a similar optimality criterion and presented

in detail in chapter 8.

Its key properties are summarized here below, where, exploiting the ergodic property ensured

by the stationary drive to the system, the properties are written purely in terms of time aver-

ages. Under the assumption made to derive the optimal gain conditions of equation (8.43), i.e.

stationary white excitation input u, the residuals ε(k) of the bilinear observer at steady state

(k ≥ p) can be shown to have the following properties if and only if the observer is optimal:

1. {ε(k)} is a zero-mean sequence, i.e. liml→+∞
1
l−p
∑l−1

k=p ε(k) = 0

2. {ε(k)} is a white sequence, i.e. liml→+∞
1

l−p−j
∑l−1

k=p+j ε
T(k)ε(k − j) = 0 for j > 0
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3. ε(k) is orthogonal to the past outputs and to the current and past inputs, and some prod-

ucts of them, i.e. liml→+∞
1
l−p
∑l−1

k=p ε(k)u(k) = 0 and liml→+∞
1
l−p
∑l−1

k=p ε
T(k)zp(k) = 0

where zp(k) contains past inputs and outputs and is defined more precisely later in the paper,

below equation (9.9). Note that such properties are similar to those of the Kalman filter that

led to the development of OKID in the linear case.

9.5 Estimation of the observer residuals

The proposed bilinear OKID method consists of two main steps, the first of which is the es-

timation of the optimal observer residuals. The task is accomplished by solving by LS a set

of equations arising from an input-output relationship in which the state does not appear ex-

plicitly. The derivation in this section is done following the same strategy as in the original

OKID paper (Reference 20). Accordingly, the presence of noise in equation (8.1) is temporarily

ignored and its effect is discussed when solving the above mentioned LS problem. Additionally,

connections with previous work on bilinear discrete-time system identification are made along

the derivation to provide a comprehensive framework for the method proposed in this paper.

Add and subtract the terms H′y(k) and H′′y(k)u(k) to equation (6.1a) where H′, H′′ ∈ Rn×q

are interaction matrices, getting

x(k + 1) = Ax(k) + Nx(k)u(k) + Bu(k) + H′y(k)−H′y(k) + H′′y(k)u(k)−H′′y(k)u(k)

= Ax(k) + Nx(k)u(k) + Bu(k) + H′y(k)−H′Cx(k)−H′Du(k)

+ H′′y(k)u(k)−H′′Cx(k)u(k)−H′′Du2(k)

= ĀHx(k) + N̄Hx(k)u(k) + B̄Hv(k) (9.3)
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where

ĀH = A−H′C B̄H =

[
B−H′D H′ −H′′D H′′

]
(9.4a)

N̄H = N−H′′C v(k) =

[
u(k) yT(k) u2(k) yT(k)u(k)

]T

(9.4b)

The interaction matrices convert the bilinear model A, B, N of equation (6.1a) into the equiv-

alent bilinear model of equation (9.3) with matrices ĀH , N̄H , B̄H . The observation equation,

equation (6.1b), does not change. The freedom introduced by H′ and H′′ will be used to impose

conditions to express the state at the current time step k solely in terms of past input and

output data. Equation (9.3) has the same form as equation (9.23), anticipating the connection

between interaction matrices and observer gains. Propagating equation (9.3) one step forward,

we get

x(k + 2) =
(
ĀH + N̄Hu(k + 1)

)
x(k + 1) + B̄Hv(k + 1)

=
(
ĀH + N̄Hu(k + 1)

) ((
ĀH + N̄Hu(k)

)
x(k) + B̄Hv(k)

)
+ B̄Hv(k + 1)

= SH,2(k)x(k) + TH,2z2(k + 2) (9.5)

where

SH,2(k + 2) =
(
ĀH + N̄Hu(k + 1)

) (
ĀH + N̄Hu(k)

)
(9.6a)

TH,2 =

[
ĀHB̄H N̄HB̄H B̄H

]
z2(k + 2) =

[
vT(k) vT(k)u(k + 1) vT(k + 1)

]T

(9.6b)
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Propagating equation (9.5) further in time, we obtain the more general expression

x(k + p) = SH,p(k + p)x(k) + TH,pzp(k + p) (9.7)

which, by shifting the time index backward by p time steps, can be more conveniently written

as

x(k) = SH,p(k)x(k − p) + TH,pzp(k) (9.8)

where

SH,p(k) =
(
ĀH + N̄Hu(k − 1)

) (
ĀH + N̄Hu(k − 2)

)
...
(
ĀH + N̄Hu(k − p)

)
(9.9)

TH,p contains products of ĀH , N̄H and B̄H , and zp(k) is constructed exactly like zp,c(k) in

equation (6.44).

By choosing p sufficiently large, theorem 9.1 ensures that SH,p(k) vanishes and we can write

x(k) = TH,pzp(k) (9.10)

So far the development is the same as in chapter 6, where equation (9.10) is referred to as

an input-output-to-state relationship (IOSR) and used as the starting point to develop the

equivalent linear model (ELM) and intersection subspace (IS) methods for bilinear system iden-

tification in the absence of noise.
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Putting together equations (9.10) and (6.1b), always assuming no noise in the measured data,

we realize that

x(k) = TH,pzp(k) (9.11a)

y(k) = Cx(k) + Du(k) (9.11b)

are the equations of an observer in non-recursive form, whose state is determined solely by past

input-output values. Indeed, the observation that the matrices H′ and H′′ embedded in TH,p

can be interpreted as observer gains was exploited in chapter 8 to devise a technique to design

the fastest bilinear observers in the absence of noise. For ideal bilinear systems, such observers

are deadbeat in a strict sense, i.e. the observer state is exactly equal to the system state after

p = n steps. For arbitrary bilinear systems, the fastest deterministic observer state converges

asymptotically to the system state, i.e. one needs to wait a larger number p of steps before the

observer state approaches the system state. By plugging equation (9.11a) into equation (9.11b)

we obtain the following relationship between the input and output

y(k) = CTH,pzp(k) + Du(k) (9.12)

which is the equation used in Reference 52 to directly identify bilinear input-output maps in

the absence of noise. By defining

ΦH,p =

[
CTH,p D

]
vp(k) =

[
zT
p (k) u(k)

]T

(9.13)

equation (9.12) takes the form of the classic OKID equation

y(k) = ΦH,pvp(k) (9.14)
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which can be written at all time steps p ≤ k ≤ l − 1 to obtain the following set of equations

Y = ΦH,pVp (9.15)

where

Y =

[
y(p) y(p+ 1) ... y(l − 1)

]
(9.16a)

Vp =

[
vp(p) vp(p+ 1) ... vp(l − 1)

]
(9.16b)

The presence of noise in equation (8.1) makes equation (9.15) inconsistent. The inconsistency

can be expressed by an error term E

Y = ΦH,pVp + E (9.17)

with

E =

[
ε(p) ε(p+ 1) ... ε(l − 1)

]
(9.18)

The same symbol ε indicating the observer residuals is used for the error terms of equation (9.17).

As shown later in this section, the two turns out to correspond.

By having a sufficiently long record, it is possible to find the LS solution to equation (9.17)

Φ̃H,p = YVT
p

(
VpV

T
p

)−1
= YV†p (9.19)
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where † denotes the Moore-Penrose pseudoinverse of Vp. Right-multiplying equation (9.17) by

VT
p and replacing ΦH,p with its LS estimate Φ̃H,p, we obtain

YVT
p = YVT

p

(
VpV

T
p

)−1
VpV

T
p + EVT

p = YVT
p + EVT

p (9.20)

which implies that EVT
p = 0, i.e. that

l−1∑
k=p

ε(k)vT
p (k) = 0 (9.21)

Assuming l is large and dividing equation (9.21) by l − p, we recognize its left-hand side as

the time average of each entry of the product εvT
p . In other words, the LS residuals ε(k)

are orthogonal to all the entries of vp(k), i.e. u(k) and all the entries of zp(k). The latter

are products of past input-output data. This is the same property characterizing the optimal

bilinear observer in equation (9.2), provided u is a stationary white process. Hence, under

the stated assumptions, for a long record (large l) and for a sufficiently large p, the residuals

corresponding to the LS solution of equation (9.17) are an estimate of the optimal bilinear

observer residuals in the presence of noise, and they can be computed by

Ẽ = Y − Φ̃H,pVp (9.22)

In deriving equation (9.15), theorem 9.1 was invoked to make SH,p(k) vanish in equation (9.8).

In the absence of noise, as considered in chapter 6, the interaction matrices H′ and H′′ will

attempt to place the eigenvalues of ĀH and N̄H to make SH,p(k) decay as fast as possible

under the given input history. For ideal bilinear systems, this results in placing the eigenvalues

of ĀH and N̄H at the origin to obtain a decay of SH,p(k) in n time steps (deadbeat) under

any input history. Such a deadbeat decay corresponds to E
[
eT(k)e(k)

]
= 0 for all k ≥ p ≥ n.
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The presence of noise in equation (8.1) makes the latter equality impossible and the interaction

matrices attempt to place the eigenvalues of ĀH and N̄H so that Π̄ in lemma 8.3 is minimized,

i.e. H′ = K′ and H′′ = K′′. Theorem 9.1 still guarantees that SH,p(k) vanishes, possibly for a

lower value of γ.

To better clarify the result, we briefly provide an alternative derivation, similar to how the core

OKID equation was derived for the linear case in chapter 2. One could have started from the

optimal bilinear observer in equation (9.2) and transformed it into

x̂(k + 1) = ĀKx̂(k) + N̄Kx̂(k)u(k) + B̄Kv(k) (9.23a)

ŷ(k) = Cx̂(k) + Du(k) (9.23b)

where

ĀK = A−K′C B̄K =

[
B−K′D K′ −K′′D K′′

]
(9.24a)

N̄K = N−K′′C v(k) =

[
u(k) yT(k) u2(k) yT(k)u(k)

]T

(9.24b)

similar to how equation (3.1) was transformed into equation (3.7).

Propagate equation (9.23a) forward in time like equation (9.3) to obtain

x̂(k) = SK,p(k)x̂(k − p) + TK,pzp(k) (9.25)

where SK,p(k) and TK,p are defined as in equation (9.9), except for ĀH and N̄H being repleaced

by ĀK and N̄K . Plugging equation (9.25) into equation (9.23b) and recalling the definition of
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observer residual, we get

y(k) = CSK,p(k)x̂(k) + CTK,pzp(k) + ε(k) (9.26)

From theorem 9.1, we know that there is a bound γ to the input magnitude for which SK,p(k)

converges to 0 for all k, allowing us to write

y(k) = ΦK,pzp(k) + ε(k) (9.27)

Note that zp(k) contains past outputs and current and past inputs, hence equation (9.27) is a

bilinear ARX model (with noise ε in the output). We can rewrite equation (9.26), in matrix

form, to obtain equation (9.17). By the above orthogonality argument, the LS solution to

equation (9.17) produces LS residuals which are indeed the residuals of the optimal bilinear

observer.

9.6 Observer identification

The second main step of the proposed bilinear OKID method consists in the identification

of the optimal observer. Once the residuals ε(k) of the optimal bilinear observer have been

estimated, they can be used to construct the noise-free identification problem of equation (9.2).

Equation (9.2) describes the dynamics of the optimal bilinear observer, it has no noise terms,

its inputs u(k), ε(k) and ε(k)u(k) are known for k = p, p + 1, ..., l − 1 as well as its output

ŷ(k). Among the matrices to be identified in equation (9.2), there are those of the system of

equation (8.1). Identifying the observer of equation (9.2) solves then the problem addressed in

this paper. In this step lies the essence of the proposed bilinear OKID method. The identification

problem of equation (8.1), affected by (unmeasured) noise, is transformed into the identification
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problem of equation (9.2), with no noise term in it. Note that the identification of the optimal

observer could also be performed in the form of equation (9.23), as discussed in chapter 3 for

the linear case.

To identify the noise-free system of equation (9.2), one can use either of the approaches illus-

trated in chapter 6, i.e. the ELM or the IS approach. Both of them are based on the IOSR in

equation (6.3), which in the case of the identification of the observer in equation (9.2) becomes

x̂(k) = Tz(k) (9.28)

Indeed, the ELM and the IS methods are applied exactly as in chapter 6 but replacing x with

x̂. In the example in this chapter, we use the IS method. The last step to estimate the model in

equation (9.2) alos needs to be modified with respect to equations (6.16) and (6.17) as follows.

Once the observer state history has been reconstructed, from a certain time step ki to kf , we

can write

[
x̂(ki + 1) ... x̂(kf )

]
=

[
A B N K′ K′′

]



x̂(ki) ... x̂(kf − 1)

u(ki) ... u(kf − 1)

x̂(ki)u(ki) ... x̂(kf − 1)u(kf − 1)

ε(ki) ... ε(kf − 1)

ε(ki)u(ki) ... ε(kf − 1)u(kf − 1)


(9.29a)

[
ŷ(ki) ... ŷ(kf )

]
=

[
C D

]x̂(ki) ... x̂(kf )

u(ki) ... u(kf )

 (9.29b)

and recover A, B, N, K′, K′′ and C, D via pseudo-inversion (Moore-Penrose). Note that

the reconstructed state is not necessarily in the original coordinate system, and so will be
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the identified bilinear observer matrices. As usual with state-space formulation, the change in

coordinate system does not affect the identified model validity.

To reconstruct the state, the superspaces Za and Zb for the IS method are built for example

with the causal and mixed-anticausal IOSRs, which need to be modified as follows to take into

account the extra additive input components ε(k) and ε(k)u(k) in equation (9.2a).

By introducing two interaction matrices M′
c and M′′

c and adding and subtracting the terms

M′
cŷ(k) and M′′

c ŷ(k)u(k), equation (9.2a) can be written as

x̂(k + 1) = Ācx̂(k) + N̄cx̂(k)u(k) + B̄cvc(k) (9.30)

where

Āc = A−M′
cC N̄c = N−M′′

cC (9.31a)

B̄c =

[
B−M′

cD M′
c −M′′

cD M′′
c K′ K′′

]
vc(k) =



u(k)

ŷ(k)

u2(k)

ŷ(k)u(k)

ε(k)

ε(k)u(k)



(9.31b)

Propagating equation (9.30) forward in time by pc − 1 steps, we obtain

x̂(k + pc) = Sc,pcx̂(k) + Tc,pczc,pc(k + pc) (9.32)

where Sc,pc is defined as in equation (9.9), except for ĀM and N̄M being replaced by Āc and N̄c,
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and the causal superstate zc,pc(k), made of input-output data at steps k−1, k−2, ..., k−pc only,

is defined like zp(k) in equation (9.10) except for v(k) replaced by vc(k) in equation (9.31b). By

invoking theorem 9.1 and shifting the time index backward by pc steps, equation (9.32) yields

the causal IOSR

x̂(k) = Tc,pczc,pc(k) (9.33)

The mixed-anticausal IOSR for the optimal bilinear observer can similarly be derived, following

the steps in section 6.5.4, to obtain

x̂(k) = Tma,pc,pazma,pc,pa(k) (9.34)

where the mixed-anticausal superstate is defined as

zma,pc,pa(k) =



zc,pc(k + pa − 1)u(k + pa − 1)

...

zc,pc(k)u(k)

va(k + pa)

...

va(k + 1)



(9.35)

with

va(k + 1) =

[
u(k) u(k + 1) ŷT(k + 1) u2(k) ŷT(k)u(k) εT(k) εT(k)u(k)

]T

(9.36)



Chapter 9. Bilinear OKID 261

9.7 Examples

Numerical examples are provided to demonstrate bilinear OKID and show more details about

its implementation. Since the proposed method can be interpreted as the stochastic extension

of the deterministic bilinear identification method described in chapter 6, the examples refer to

the same bilinear systems utilized in the latter and highlight how the new method can achieve

accurate identification even in cases where the direct application of the deterministic algorithms

of chapter 6 fail because of the process and measurement noise affecting the data.

In each example, measured input-output data are simulated as follows. First we generate a

random input sequence {u(k)} of 10,000 samples (from a uniform distribution between −0.5 and

0.5) and two zero-mean gaussian sequences {wp(k)} and {wm(k)}, respectively with covariance

Q =

1 2

2 4

× 10−4 R = 10−4 (9.37)

Said sequences are used to generate the measured output via equation (8.1).

9.7.1 Ideal bilinear system

The following system is used as a prototype of ideal bilinear system (chapter 6)

A =

 0 0.5

0.5 −0.5

 B =

1

2

 N =

 0 1

−1 1

 C =

[
0 1

]
D = 0 (9.38)

The first step of the bilinear OKID method is the estimation of the residuals of the optimal

observer of equation (9.2). This can be done by LS on the set of equations arising from the

bilinear ARX model. However notice how the ideal property of the system of equation (9.38) is
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Figure 9.1: Estimation of observer residuals for ideal system: comparison for different values
of p.

irrelevant, since the poles of ĀH and N̄H are dictated by the statistics of the noise embedded in

the input-output data. As a consequence, the noise structure determines how SL,p converges to

0 with p. Figure 9.1 shows the error in the estimation of the observer residuals over a portion

of the dataset. As expected, for p = 2 the estimates are poor because SL,2 is not negligible.

The estimates improve as p increases. It is remarkable how it is possible to accurately estimate

a white random process such as the observer residual sequence.

Having now estimated ε(k) for k ≥ p, say with p = 4, we can proceed with the second step

of bilinear OKID, i.e. the identification of the observer of equation (9.2), using the IS method

with causal and mixed-anticausal IOSRs with pc = 4 and pa = 2. The choice of the values for p,

pc and pa is consistent with the assumption that the true order of the system is unknown and

believed to be n ≤ 4. When intersecting the two IOSR superspaces to reconstruct the sequence

of the observer state x̂, two SVDs have to be performed and they reveal the order of the observer

in equation (9.2), which is the same as the order of the system of equation (8.1). In order to

reduce the SVD computational effort, the identification of the observer can be done on a reduced

portion of the record. In this example, we select the last 3000 samples. Figure 9.2a shows the

first SVD, to find vectors spanning the intersection subspace of the two superspaces. At this
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Figure 9.2: Observer identification for ideal system: SVDs of the IS method.

stage we need to split the zero and non-zero singular values, and the cut is indeed very clear.

Figure 9.2b shows the second SVD, performed to find a basis for the intersection subspace. Here

we need to retain the non-zero singular values, and again the difference with respect to the zero

singular values is of 10 order of magnitudes, making the selection unquestionable. Since two

singular values are retained, the order of the identified model will be nid = 2, which is indeed

correct. It is worth adding here that applying directly the IS method to the identification of the

bilinear system (as prescribed by the deterministic identification method in chapter 6), without

passing through the identification of the associated observer, makes the singular values of both

SVDs decrease in a continuous fashion, making it impossible to identify the order of the system

and reconstruct correctly the state sequence. In other words, the noise embedded in the data

can heavily affect the outcome of the identification methods presented in chapter 6, where it is

assumed the measured data are noise-free. The bilinear OKID method proposed in this paper

represents a significant improvement over chapter 6 for any practical application, where noise

cannot be eliminated.
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Figure 9.3: Comparison of output from actual ideal system and identified models.

The right singular vectors from the second SVD provide the observer state sequence that allows

one to construct the LS problem of equation (9.29) and solve it for the observer matrices. The

estimated matrices A, B, N, C, D yield the state-space model for the bilinear system. Its

accuracy can be verified by driving both the true and identified models with the same input

sequence (without noise), generated independently from the one used for the identification, and

comparing the corresponding output, as shown in Figure 9.3.

9.7.2 Arbitrary bilinear system

Modifying matrix N in equation (9.38) to

N =

0.3 1

−1 1

 (9.39)

is sufficient to lose the above mentioned ideal properties (chapter 6). The resulting system

is therefore an example of arbitrary bilinear system. In the deterministic case addressed in

chapter 6, the identification process is affected by whether the underlying system is ideal or

arbitrary, the former leading to an exact identified model even for minimum values of p (p = n)
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Figure 9.4: Estimation of observer residuals for arbitrary system: comparison for different
values of p.
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Figure 9.5: Comparison of output from actual arbitrary system and identified models.

and the latter providing comparable accuracy only for significantly larger values of p. In contrast,

when noise is present in the input-output data, any identification method can only estimate

an approximate model. Therefore, the difference between ideal and arbitrary bilinear system

identification is less significant in the presence of noise. As shown in Figure 9.4, the estimates

of the residuals improve as p is increased.

Using the residuals estimated with p = 4, the following bilinear model is identified (matrices

rounded to the 4th significant digit) via the IS method with causal and mixed-anticausal IOSRs

(pc = 4, pa = 2)
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Aid =

−0.8525 −0.1467

0.3453 0.3529

 Bid =

−0.02807

−0.04807

 (9.40a)

Nid =

0.4323 −0.6828

1.352 0.8648

 Cid =

[
−34.50 −21.40

]
Did = 6.805× 10−3 (9.40b)

Again, the system order is obtained by singular value plots with a clear difference between zero

and non-zero singular values, similar to the ones in Figures 9.2a and 9.2b. The accuracy of the

identified model can be assessed by comparing the predicted output with the true output when

both the identified model and the true system are driven by the same input sequence (without

noise), as shown in Figure 9.5. Note that the LS solution to equation (9.29a) also yields

K1,id = −0.01314 K2,id = −0.008434 (9.41)

Such gains can be used to construct a bilinear observer for the system of equation (9.40). In

operation conditions where the input is white, the identification experiment can be performed

on line and the proposed bilinear OKID method provides simultaneously both the system and

observer mathematical models, which can then be used in similar operation conditions. The

key advantage with respect to separate system identification and observer design lies with the

difficulties in estimating the process noise covariance Q (necessary, together with R, to design

K′ and K′′ as shown in Reference 69). The difficulties are completely overcome by bilinear

OKID, which yields the optimal observer gains without requiring knowledge of Q or R.
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9.8 Conclusions

This chapter has presented the first extension to nonlinear systems of the well-established OKID

approach for linear system identification, under the sole additional assumption that the excita-

tion input is stationary and white. The result is a new method for bilinear system identification

in the presence of process and measurement noise. The method relies on a bilinear steady-state

observer, which is proven to have properties similar to the well-known linear Kalman filter. The

estimation of the residuals of such bilinear observer allows one to construct a new noise-free

identification problem that can be solved via the methods developed in chapter 6. The resulting

bilinear OKID method represents indeed a significant improvement over such methods, being

able to accurately identify the bilinear system under consideration even in cases where the noise

prevents the direct application of the previous methods from identifying even the correct order.

In other words, the presented bilinear OKID method can be interpreted as the extension of the

methods presented in chapter 6 to the case where the measured input-output data are corrupted

by noise. The need for white excitation input parallels the result in Reference 71, which presents

a subspace method for the identification of bilinear systems in the presence of noise. OKID is

indeed an alternative approach to subspace methods and has proven to be very successful in

linear system identification, in particular in cases where one is interested in the system model as

well as in the corresponding optimal observer. Therefore this paper represents a significant step

towards the realization of the bridge between linear and nonlinear systems in the areas of system

identification and controls, as mentioned in chapter 1. Further research will aim to remove the

requirements on the excitation input to be used in the identification process, in particular its

whiteness, and to reduce the curse of dimensionality as the parameter p is increased. The latter

problem has already been successfully addressed in the deterministic case (chapter 7).



Chapter 10

Conclusions and future work

10.1 Conclusions

This work significantly extended OKID/ERA (observer/Kalman filter identification followed by

eigensystem realization algorithm), a popular method for simultaneous identification of a linear

state-space model and the associated Kalman filter from noisy input-output measurements.

From a single method, OKID has been raised to the level of a general and unified approach

to system identification. OKID has been shown to be unifying as any linear state-space model

identification algorithm formulated from noise-free data can be turned into an identification

algorithm capable of optimally handling noise by the preliminary application of the OKID core

equation. OKID has also been demonstrated to be a general approach to system identification

as its framework has been applied to develop novel algorithms for output-only linear system

identification (i.e. identification from output measurements only, as is typical in structural health

monitoring) as well as bilinear system identification. The extension to the bilinear case required

268
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the development of an optimal observer in bilinear form and, following the same approach,

OKID might be extended to other classes of nonlinear systems, too.

From a more practical point of view, this work has provided the engineering community with:

− New algorithms for linear state-space model identification both for the input-output and

the output-only case, one of them (OKID/DPi) with particularly promising performance

as illustrated via numerical and experimental examples.

− Novel methods for bilinear system identification both in the absence and in the presence

of noise in the data.

− A potential new approach to nonlinear system identification, not only because OKID has

proven to be successful for bilinear systems (which represent a specific class of nonlinear

systems), but also because bilinear models are claimed to be universal approximators of

more general nonlinear systems.

− Thorough understanding and intuitive interpretation of the general and unifying frame-

work offered by OKID, which is expected to make OKID more accessible to students,

researchers and practitioners.

10.2 Future work

The new results in OKID for linear systems and the successful extension of OKID to bilinear

models open several new possibilities for future work.

First of all, a thorough comparison of the presented OKID methods with subspace methods

(Reference 2) could be undertaken. The latter represent another general framework for linear

system identification and the question of which approach and which specific algorithm should be
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preferred, maybe in different applications, is legitimate and of practical interest. However, due

to the stochastic nature of the problem (noisy data), it seems difficult to address the question

from a theoretical point of view. The use of Monte Carlo simulations is viable but the conclusions

might be difficult to generalize.

Another path to investigate is what could be called OKID/OKID or OKID2, i.e. the repeated

application OKID when solving the new identification problem constructed from the output

residuals estimated by the OKID core equation. Since such estimates are not exact, the new

identification problem is generally not perfectly deterministic and using OKID instead of a

deterministic identification method might be beneficial.

Also, the concept that the Kalman filter is the bridge (interface) between the noisy measurements

and the identification of the system model suggests what follows. Techniques aiming at the

estimation of the model matrices based on the optimization of a cost function minimizing, in

a least-squares sense, the error between the measurements and the output predicted by the

system model should replace the latter with the Kalman filter model to obtain asymptotically

unbiased estimates.

Finally, some preliminary results shown in chapter 8 suggest that some of the methods presented

for bilinear system identification can be applied to find bilinear models approximating more

general nonlinear systems. More work in this direction might be needed to make said methods

robust to noise both from the measurements and from the bilinear approximation. As mentioned

above, the framework developed for OKID might be exploited to develop methods directly

identifying other classes of nonlinear systems as well, following the same strategy adopted for

bilinear models.
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In summary, it is expected that new interesting results in the field of system identification will

be found following the ideas illustrated and demonstrated in this work.
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Appendix A

Algorithms for deterministic system

identification

As mentioned in section 1.1, many algorithms have been developed to identify linear state-space

models, some of them of deterministic nature, i.e. without considering noise in the measured

data, and others combined, i.e. with formulations minimizing the noise uncertainty in the iden-

tification. The OKID-based algorithms described in chapters 2-5 belong to the latter category.

Nevertheless, the interpretation of the OKID core equation as a converter from combined to

deterministic system identification makes it possible to develop combined system identifica-

tion algorithms from any deterministic state-space model identification method, as discussed in

illustrated in chapter 5 and illustrated in chapter 3.

In this appendix, the four deterministic identification methods used to demonstrate and illus-

trate OKID as a general approach to linear system identification are reviewed. For more details,

see References 1, 2, 29, 30, 72, 73.

278
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A.1 Eigensystem realization algorithm (ERA)

ERA (References 1, 72) is based on the fact that arranging the Markov parameters of the system

in equation (1.1) in the following matrix with Hankel structure

H0 =



CB CAB . . . CAN/2−1B

CAB CA2B . . . CAN/2B

...
...

. . .
...

CAN/2−1B CAN/2B . . . CAN−2B


(A.1)

gives rise to the following relationship between the unit pulse response of the system and its

extended observability and controllability matrices ΓN/2 and ΘN/2

H0 = ΓN/2ΘN/2 (A.2)

where

ΓN/2 =



C

CA

...

CAN/2−1


ΘN/2 =

[
K AK . . . AN/2−1K

]
(A.3)

and N is an even integer. From control theory, provided that qN ≥ n, both ΓN/2 and ΘN/2

have rank n. Therefore H0 has rank n, too, and the SVD of H0

H0 =

[
U1 U2

]S1 0

0 0


VT

1

VT
2

 (A.4)



Appendix A. Algorithms for deterministic system identification 280

will then have n non-zero singular values in the diagonal matrix S1 ∈ Rn×n, whereas the

corresponding n left and right singular vectors are the columns of the matrices U1 ∈ RqN/2×n

and V1 ∈ RqN/2×n, respectively. The SVD of H0 does not only reveal the order n of A, but

also the observability and controllability matrices of the system. Hence, H0 can be written as

H0 = U1S1V
T
1 (A.5)

Comparison of (A.2) and (A.5) suggests that ΓN/2 is related to U1 and ΘN/2 is related to VT
1 .

Indeed, a possible choice is

ΓN/2 = U1S
1/2
1 ΘN/2 = S

1/2
1 VT

1 (A.6)

Other choices are possible, reflecting the fact that a change of coordinate system for the state

variables gives a different but equivalent state-space model. In the literature, the choice in

(A.6) is referred to as balanced (Reference 1). The first q rows of ΓN/2 and the first q columns

of ΘN/2 yield estimates for C and K, respectively. To find an estimate for A, another block

Hankel matrix needs to be constructed via the Markov parameters of the system

H1 =



CAB CA2B . . . CAN/2B

CA2B CA3B . . . CAN/2+1B

...
...

. . .
...

CAN/2B CAN/2+1B . . . CAN−1B


(A.7)

which can be shown to satisfy

H1 = ΓN/2AΘN/2 = U1S
1/2
1 AS

1/2
1 VT

1 (A.8)
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By recalling the orthogonality properties of U1 and V1, i.e. UT
1 U1 = I and VT

1 V1 = I, (A.8)

can be solved for A as proven in Reference 1

A = S
−1/2
1 UT

1 H1V1S
−1/2
1 (A.9)

ERA is summarized in the following steps.

ERA

1. construct the matrices H0 and H1 as in (A.1) and (A.7)

2. calculate S1, U1 and V1 from the SVD of H0 in (A.4)

3. read C as the first q rows of U1S
1/2
1

4. read K as the first q columns of S
1/2
1 VT

1

5. calculate A = S
−1/2
1 UT

1 H1V1S
−1/2
1

A.2 ERA with data correlation (ERA-DC)

An improved version of ERA can be devised (References 1, 73) defining the following square

matrices of order qN/2

H0 = H0H
T
0 (A.10a)

H1 = H1H
T
0 (A.10b)
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By recalling (A.1) and (A.7), H0 and H1 can be shown to consist of auto- and cross-correlations

of the system Markov parameters. If noise1 in the Markov parameters is not correlated, then

H0 and H1 will contain less noise than H0 and H1. Hence the name and the benefit of the

algorithm.

From (A.2) and (A.10a), we obtain

H0 = ΓN/2Qc (A.11)

where

Qc = ΘN/2Θ
T
N/2Γ

T
N/2 (A.12)

With an approach similar to basic ERA, H0 can be decomposed by SVD into

H0 =

[
U1 U2

]S1 0

0 0


VT

1

VT
2

 = U1S1V
T
1 (A.13)

where S1 ∈ Rn×n contains the n non-zero singular values of H0 and U1,V1 ∈ RqN/2×n contain

the corresponding left and right singular vectors, respectively. Comparing (A.11) with (A.13),

we can choose

ΓN/2 = U1S
1/2
1 Qc = S

1/2
1 VT

1 (A.14)

ΘN/2 can be estimated from ΓN/2 obtained in (A.14) via (A.2)

ΘN/2 = Γ†N/2H0 = S
−1/2
1 UT

1 H0 (A.15)

1Even though the system in equation (1.1) is formally not affected by noise, recall that all the deterministic
identification algorithms described in this appendix are applied in the presented OKID framework with inputs
that are estimated from originally noisy data, hence the estimation error is a source of noise, although attenuated
by the OKID core equation (see also chapter 5)
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The first q rows of ΓN/2 and the first q columns of ΘN/2 yield estimates for C and K, respectively.

To find an estimate for A, the fact that

H1 = ΓN/2AQc (A.16)

needs to be exploited to obtain, with the help of (A.14),

A = S
−1/2
1 UT

1 H1V1S
−1/2
1 (A.17)

ERA-DC is summarized in the following steps.

ERA-DC

1. construct the matrices H0 and H1 as in (A.1) and (A.7)

2. construct the matrices H0 and H1 as in (A.10)

3. calculate S1, U1 and V1 from the SVD of H0 in (A.13)

4. read C as the first q rows of U1S
1/2
1

5. read K as the first q columns of S
−1/2
1 UT

1 H0

6. calculate A = S
−1/2
1 UT

1 H1V1S
−1/2
1

A.3 Deterministic intersection (DI) algorithm

For a more detailed derivation and rigorous justification of the DI method, see Reference 2, 29.

The property at the core of the DI algorithm for deterministic system identification is that the
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state history of the system in equation (1.1) can be expressed via the following two matrix

relations

X = LpHp X = LfHf (A.18)

where

X =

[
x(i) x(i+ 1) . . . x(l − i)

]
(A.19a)

Hp =



u(0) u1) . . . u(l − 2i)

y(0) y(1) . . . y(l − 2i)

u(1) u(2) . . . u(l − 2i+ 1)

y(1) y(2) . . . y(l − 2i+ 1)

...
...

. . .
...

u(i− 1) u(i) . . . u(l − i− 1)

y(i− 1) y(i) . . . y(l − i− 1)



(A.19b)

Hf =



u(i) u(i+ 1) . . . u(l − i)

y(i) y(i+ 1) . . . y(l − i)

u(i+ 1) u(i+ 2) . . . u(l − i+ 1)

y(i+ 1) y(i+ 2) . . . y(l − i+ 1)

...
...

. . .
...

u(2i− 1) u(2i) . . . u(l − 1)

y(2i− 1) y(2i) . . . y(l − 1)



(A.19c)

(A.19d)

and Lp, Lf ∈ Rn×(m+q)i are two constant matrices. For (A.18) to hold, the parameter i

must be such that qi ≥ n. From a linear algebra perspective, (A.18) shows how the Kalman
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state sequence lies both in the row space of Hp and in the row space of Hf . X can then be

reconstructed by intersection of the row spaces of Hp and Hf , which can be accomplished by

two singular value decompositions (SVDs). The most intuitive way to compute said intersection

is to note that (A.18) implies that

LpHp − LfHf = 0 (A.20)

which can be rewritten as [
Lp −Lf

]Hp

Hf

 = 0 (A.21)

Lp and Lf can then be computed as the left singular vectors associated with the zero singular

values of the comprehensive data matrix H, defined as the concatenation of the past data matrix

Hp and the future data matrix Hf

H =

Hp

Hf

 (A.22)

The SVD of H is then needed

H =

U11 U12

U21 U22


S11 0

0 0

VT (A.23)

where S11 ∈ R(mi+qi+n)×(mi+qi+n) is a diagonal matrix with the non-zero singular values of

H, V ∈ R(l−2i+1)×(l−2i+1) is the matrix with its right singular vectors, and the matrix U

with the left singular vectors is partitioned into U11,U21 ∈ R(m+q)i×(mi+qi+n) and U12,U22 ∈

R(m+q)i×(mi+qi−n). By left-multiplying H by its left singular vectors corresponding to the zero

singular values and recalling the orthogonality property of the singular vector matrix U, we
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obtain [
UT

12 UT
22

]Hp

Hf

 = 0 (A.24)

or equivalently

UT
12Hp = −UT

22Hf (A.25)

Equation (A.25) shows that UT
12Hp (or −UT

22Hf ) represents the required intersection of the row

spaces of Hp and Hf . However, UT
12Hp contains mi + qi − n row vectors, only n of which are

linearly independent. Another SVD can be taken to compute a basis of n linearly independent

vectors for its row space. Such basis provides the sequence of the Kalman state2 X and the

identification of the system in equation (1.1) can then be completed by solving the following

sets of linear equations

x(p+ i+ 1) . . . x(l − i)

y(p+ i) . . . y(l − i− 1)

 =

A B

C D


x(p+ i) . . . x(l − i− 1)

û(p+ i) . . . û(l − i− 1)

 (A.26)

Since the true u and y are not known and only their estimates are available from the OKID

equation (2.44), the above equations should be solved in a LS sense

A B

C D

 =

x(p+ i+ 1) . . . x(l − i)

y(p+ i) . . . y(l − i− 1)


x(p+ i) . . . x(l − i− 1)

û(p+ i) . . . û(l − i− 1)


†

(A.27)

Note that what described so far is the traditional solution scheme of DI. In the OKID approach,

however, DI is used to identify the Kalman filter of equation (3.1) or equation (3.5), i.e a

state-space model in which only part of the input to the state equation is also an input to the

observation equation. Obviously, when solving equation (A.27) D is expected to be found equal

2As usual in state-space model identification, equivalent sets of system matrices can be found by changing the
coordinate system. The basis found for X in the DI algorithm fixes the coordinate system in which A, C and K
are identified
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to 0. As verified by numerical and experimental examples, D turns out to be negligible and

existing DI codes such as the one provided with Reference 2 can be used without modification.

Additionally, note that the LS estimate of A in equation (A.27) is independent from the presence

of D and if one is only interested in the eigenvalues of the system, A can be obtained via the

following reduced equation

[
A B

]
=

[
x(p+ i+ 1) . . . x(l − i)

]x(p+ i) . . . x(l − i− 1)

û(p+ i) . . . û(l − i− 1)


†

(A.28)

In Reference 29 a more robust and computationally efficient way to compute the intersection

of Hp and Hf and construct a LS problem equivalent to (A.26) is provided. The algorithm in

Reference 29 can be summarized as follows.

DI algorithm

1. construct the matrices Hp and Hf in (A.19b) and (A.19c) choosing i greater than q times

the assumed order of the system to be identified, and concatenate them into a single

matrix H as defined in equation (A.22)

2. take the SVD of H

H = USVT =

U11 U12

U21 U22


S11 0

0 0

V T

3. calculate Uq from the SVD of UT
12U11S11

UT
12U11S11 =

[
Uq Ur

]Sq 0

0 0


VT

q

VT
r
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4. compute the LS solution to the following set of equations to obtain A, B, C, D

UT
q UT

12U(m+ q + 1 : (m+ q)(i+ 1), 1 : 2mi+ n)S11

U(mi+ qi+m+ 1 : (m+ q)(i+ 1), 1 : 2mi+ n)S11

 =

A B

C D


 UT

q UT
12U(1 : mi+ qi, 1 : 2mi+ n)S11

U(mi+ qi+ 1 : mi+ qi+m), 1 : 2mi+ n)S11

 (A.29)

where the standard Matlab R© notation has been used to indicate specific submatrices of U. For

example, U(a : b, c : d) indicates the submatrix of U at the intersection of rows A to B and

columns C to D.

A.4 Deterministic projection (DP) algorithm

The Deterministic Projection (DP) algorithm to identify the system in equation (1.1) is de-

scribed below. For a more detailed presentation, the reader is referred to References 2, 30. The

equation at the core of the method is the following

Yh = ΓX + HtUh (A.30)

where Yh and Uh are matrices with system output and input data, respectively, arranged

according to a block Hankel structure, Ht is a block Toeplitz lower-triangular matrix that

contains the first i Markov parameters of the system, Γ is the extended observability matrix
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and X is the state time history

Yh =



y(0) y(1) . . . y(l − i)

y(1) y(2) . . . y(l − i+ 1)

...
...

. . .
...

y(i− 1) y(i) . . . y(l − 1)


(A.31a)

Uh =



u(0) u(1) . . . u(l − i)

u(1) u(2) . . . u(l − i+ 1)

...
...

. . .
...

u(i− 1) u(i) . . . u(l − 1)


(A.31b)

Ht =



D 0 0 . . . 0

CB D 0 . . . 0

CAB CB D . . . 0

...
...

...
. . .

...

CAi−2B CAi−3B CAi−4B . . . D


(A.31c)

X =

[
x(0) x(1) . . . x(l − i)

]
(A.31d)

Γ =



C

CA

CA2

...

CAi−1


(A.31e)

The key observation in the DP method is of geometrical nature. Under general conditions

(Reference 30), the dimension of the projection of the row space of Yh on the orthogonal

complement of the row space of Uh provides the order of the system and its column space yields
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an estimate of Γ. Indeed the estimation of the observability matrix is at the core of the DP

method, similar to how the reconstruction of the state history is the keystone of the DI method.

Once Γ is estimated, C can be read as the first q rows of Γ whereas A can be computed thanks

to the following relationship with Γ

¯
ΓA = Γ̄ (A.32)

where
¯
Γ and Γ̄ are obtained from Γ by deleting the last and first q rows, respectively.

Let ΠU⊥
h

be the matrix that projects the row space of a matrix onto the row space of the

orthogonal complement to the row space of Uh. The projection of Yh onto U⊥h is denoted by

Yh/U
⊥
h and can be expressed as Yh/U

⊥
h = YhΠU⊥

h
. Post-multiplying both sides of (A.30) by

ΠU⊥
h

, we obtain

Yh/U
⊥
h = ΓXΠU⊥

h
(A.33)

because UhΠU⊥
h

is null by definition. Take the SVD of Yh/U
⊥
h

Yh/U
⊥
h =

[
U1 U2

]S1 0

0 0


VT

1

VT
2

 (A.34)

where S1 ∈ Rn×n is a diagonal matrix containing the non-zero singular values, U1 ∈ Rqi×n and

U2 ∈ Rqi×(qi−n) contain the left singular vectors, and V1 ∈ R(l−i+1)×n and V2 ∈ R(l−i+1)×(l−i+1−n)

contain the right singular vectors. U1 is then an orthonormal basis for the column space of

Yh/U
⊥
h and can be taken as an estimate of the extended observability matrix Γ. The matrix

C can be read as the first q rows of U1 and A can be estimated as

A =
¯
U†1Ū1 (A.35)

where
¯
U1 and Ū1 are defined similarly to

¯
Γ and Γ̄.
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A and C are now identified. To find B and D, an extra step is necessary. By the orthonormality

properties of the SVD, the columns of U2 are orthonormal to the columns of U1, i.e. to the

columns of Γ. Pre-multiplying (A.30) by UT
2 and post-multiplying by U†h, we obtain

UT
2 YhU

†
h = UT

2 Ht (A.36)

which can be rewritten as an overdetermined set of linear equations in the unknown B as

follows. Denote by Mj ∈ R(qi−n)×m and Lj ∈ R(qi−n)×q the block columns of UT
2 YhU

†
h and

UT
2 , respectively, i.e.

UT
2 YhU

†
h =

[
M1 M2 . . . Mi

]
(A.37a)

UT
2 =

[
L1 L2 . . . Li

]
(A.37b)

Equation (A.36) can then be written as



M1

M2

...

Mi


=



L1 L2 . . . Li

L2 L3 . . . 0

...
...

. . .
...

Li 0 . . . 0



Iq 0

0
¯
U1


D

B

 (A.38)

where Iq ∈ Rq×q is the identity matrix, and solved by LS for B and D

D

B

 =





L1 L2 . . . Li

L2 L3 . . . 0

...
...

. . .
...

Li 0 . . . 0



Iq 0

0
¯
U1





† 

M1

M2

...

Mi


(A.39)
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Note that, similar to the DI algorithm, in OKID the DP algorithm is used to identify the Kalman

filter of equation (3.1) or equation (3.5), i.e a state-space model in which only part of the input

to the state equation is also an input to the observation equation. The DP method described

above would attempt to identify also a complete direct influence matrix D. Existing codes for

the classic DP algorithm, based on (A.38), can nevertheless be used without modification and

yield D ≈ 0, as verified by numerical examples. The DP algorithm is summarized below step

by step for ease of implementation.

DP algorithm

1. construct the matrices Yh and Uh as in (A.31)

2. project3 Yh on U⊥h to obtain Yh/U
⊥
h

3. calculate U1 and U2 from the SVD of Yh/U
⊥
h as in (A.34)

4. read C as the first q rows of U1

5. compute A via equation (A.35)

6. compute B and D via equation (A.39)

3The projection of Yh on U⊥
h can be computed in closed form via the projection operator ΠU⊥

h
= I −

UT
h

(
UhU

T
h

)†
Uh or via numerically more robust techniques such as QR decomposition. The code for DP available

at http://homes.esat.kuleuven.be/~smc/sysid/software/ relies on the latter, as illustrated in chapter 6 of
Reference 2. In the examples illustrated in this work, the same technique based on QR decomposition is used.

http://homes.esat.kuleuven.be/~smc/sysid/software/


Appendix B

Bilinear observers with time-varying

gains

We derive below the relations that one should use to find the time-varying gains M1(k) and

M2(k) that at each time step minimize the current expected value of the norm squared of the

state estimation error. In the case of time-varying gains, the matrices defined in equation (8.37)

become time-varying

Ā(k) = A−M1(k)C (B.1a)

N̄(k) = N−M2(k)C (B.1b)

F̄(k) = A− F−M1(k)C (B.1c)

Ḡ(k) = N−G−M2(k)C (B.1d)

H̄(k) = B−H−M1(k)D (B.1e)

L̄(k) = L + M2(k)D (B.1f)
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and the conditions they have to satisfy for the observer to be unbiased are similar to (8.36)

F(k) = A−M1(k)C (B.2a)

G(k) = N−M2(k)C (B.2b)

H(k) = B−M1(k)D (B.2c)

L(k) = −M2(k)D (B.2d)

Equation (8.42) then becomes

Π(k + 1) = Ā(k)Π(k)ĀT(k) + M1(k)RMT
1 (k) + Q

+
(
Ā(k)Π(k)N̄T(k) + N̄(k)Π(k)ĀT(k) + M1(k)RMT

2 (k) + M2(k)RMT
1 (k)

)
u(k)

+
(
N̄(k)Π(k)N̄T(k) + M2(k)RMT

2 (k)
)
u2(k) (B.3)

The first-order conditions to minimize Π(k + 1) are

∂ trace Π(k + 1)

∂M1(k)
= −2

(
Ā(k)Π(k)CT −M1(k)R

)
− 2

(
N̄(k)Π(k)CT −M2(k)R

)
u(k) = 0

(B.4a)

∂ trace Π(k + 1)

∂M2(k)
= −2

(
N̄(k)Π(k)CT −M2(k)R

)
u2(k)− 2

(
Ā(k)Π(k)CT −M1(k)R

)
u(k) = 0

(B.4b)

and lead to optimality conditions similar to (8.43)

Ā(k)Π(k)CT −M1(k)R = 0 (B.5a)

N̄(k)Π(k)CT −M2(k)R = 0 (B.5b)



Appendix B. Bilinear observers with time-varying gains 295

By solving equation (B.5) for the time-varying gains

M1(k) = AΠ(k)CT
(
CΠ(k)CT + R

)−1
(B.6a)

M2(k) = NΠ(k)CT
(
CΠ(k)CT + R

)−1
(B.6b)

at each time step k, from Π(k) we can find the gains M1(k) and M2(k) to be used in the observer

to get the estimate x̂(k + 1) of the next system state and to be plugged in equation (B.3) to

provide Π(k + 1) and repeat the process at the next time step k + 1. The scheme is the same

as for the linear Kalman filter.

Note that no requirement of whiteness or stationarity of the input is necessary to derive the

above optimality conditions. The bilinear observer with time-varying gains is then optimal for

arbitrary input sequences and at every time step. Since it minimizes at every time step the

expected value of the norm squared of the state estimation error, the observer with gains given

by equation (B.6) is the fastest converging bilinear observer in the presence of noise.

On the same numerical example in sections 8.6.2 and 8.6.3, the time-varying observers have

gains that, after the initial transients, oscillate around the gains of the optimal time-invariant

observer. The corresponding improvement of the state estimation error offered by the time-

varying observer is not significant and therefore not shown.
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