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ABSTRACT

Attention and Preference Measurement

Liu (Cathy) Yang

This dissertation contains two essays examining the role of attention and information processing in

stated choices under choice-based preference measurement tasks.

While choice experiments have long been used in marketing as a way to measure consumer

preferences, full rationality of consumers is always assumed, meaning consumers are able to process

all the choice relevant information before making a decision. Moreover, conditioned on the premise

that consumers process all the choice-relevant information, incentive-alignment mechanism intro-

duced in choice experiments are considered the gold standard for inducing consumers to choose

as they would in real-life situations. However, if consumers are boundedly rational and processing

information is costly, we expect consumers to maximize not only the utility derived from the option

they choose but also the utility derived from the process. Therefore, given a certain incentive struc-

ture, the amount of information processed by consumers is endogenized by individual preference

toward the focal product in a choice experiment. Furthermore, research has shown that varying

incentives in experiments might also result in changes in attention, which implies that the amount

of attention paid in real-life choice situations (the probability of realizing a choice is 1) is different

than the attention paid to choices paired with smaller incentives in most preference-measurement

tasks (the probability of realizing a choice is strictly greater than 0 but lower than 1). In this

dissertation, we first focus in Chapter 1 on the link between information processing and stated

choices in an incentive-alignment choice experiment by developing a new preference measurement.

We explore the impact of incentives on attention, information processing, and stated choices by

conducting an experiment described in Chapter 2.

In Chapter 1, we develop a dynamic discrete choice model of information search and choice

under bounded rationality, that we calibrate using a combination of eye-tracking and choice data.

Our model extends the directed cognition model of Gabaix et al. (2006) by capturing fatigue,



proximity effects, and imperfect memory encoding and by estimating individual-level parameters

and partworths within a likelihood-based, hierarchical Bayesian framework. We show that modeling

eye movements as the outcome of forward-looking utility maximization improves out-of-sample

predictions, enables researchers and practitioners to use shorter questionnaires, and allows better

discrimination between attributes.

In Chapter 2, we empirically investigate whether incentives impact attention, information pro-

cessing, and stated choices. We vary the probability that the respondent’s choice will be realized

from 0 (hypothetical) to 0.01, 0.50, 0.99, and 1 (deterministic) and collect data on both response

times and eye tracking. We find a U-shaped relationship between the probability that the choice

will be realized and the level of attention. Hypothetical questions and deterministic questions

induce similar attention and information processing but different choices.
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Chapter 1

A Bounded Rationality Model of

Information Search and Choice in

Preference Measurement

1.1 Introduction

Choice experiments are used routinely in marketing, economics, and psychology. One common ex-

ample is choice-based conjoint analysis. An implicit assumption typically made in the choice-based

preference measurement literature is that respondents are fully rational and thus can systematically

process all the choice-relevant information (i.e., attribute levels of all alternatives) and choose the

alternative that provides the greatest utility. However, the bounded rationality literature (Simon,

1955) suggests that this assumption is not necessarily valid. Instead, consumers likely balance the

utility of the option they choose with the (cognitive) utility derived from the choice process itself

(e.g., Payne et al. (1988, 1992, 1993)).1

Trading off the costs of processing information with the benefits from the choice should result

1 In doing so, they may revert to noncompensatory decision rules, e.g. disjunctive, conjunctive (Gilbride and

Allenby, 2004, 2006; Jedidi and Kohli, 2005), lexicographic and elimination-by aspects (Johnson et al., 1989; Payne

et al., 1988; Tversky et al., 1988; Yee et al., 2007). From a modeling perspective, we leverage the fact that noncom-

pensatory decision rules are nested within additive utility models and we do not model them directly (Jedidi and

Kohli, 2005, 2008; Yee et al., 2007).
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in some choice-relevant information not being processed at all. This phenomenon has long been

recognized in the marketing literature (e.g., Hagerty and Aaker (1984), Hauser et al. (1993), and

Meyer (1982)) and has been documented recently using eye-tracking evidence (Shi et al., 2013;

Stüttgen et al., 2012; Toubia et al., 2012). Recent models have endogenized the information ac-

quisition process (Shi et al., 2013; Stüttgen et al., 2012) but not in a way that explicitly captures

the strategic, dynamic tradeoff between the effort spent acquiring information and the benefits of

making better-informed decisions.

This chapter attempts to close this gap. We develop a dynamic discrete choice model of in-

formation processing and choice under bounded rationality that we calibrate using a combination

of eye-tracking and choice data. To the extent that consumers are strategic in their information

acquisition process and that information acquisition is motivated by utility maximization, the in-

formation acquisition process should contain valuable information about consumers’ preferences.

Indeed, we show that complementing choice data with eye-tracking data and modeling eye move-

ments as outcomes of forward-looking utility maximization improve out-of-sample performance,

enable practitioners and researchers to use shorter questionnaires, and allow better discrimination

between attributes.

Although we collected our eye-tracking data in a dedicated lab, commercial solutions are avail-

able, such as Eyetrackshop (www.eyetrackshop.com) and YouEye (www.youeye.com), that allow

for collection of eye-tracking data in an online environment using the consumer’s webcam. There-

fore, we believe that the model developed in this chapter and the data on which it relies will be

widely accessible in the near future and that market researchers will be able to collect eye-tracking

data systematically to augment traditional choice data.

The rest of the chapter is organized as follows. We review some relevant prior literature in

Section 1.2, present our model in Section 1.3, describe our data in Section 1.4 and the estimation

results in Section 1.5, and conclude in Section 1.6.

1.2 Prior Literature

Our model bridges the literatures on dynamic discrete choices and eye-tracking. Before reviewing

these literatures, we briefly introduce the context and type of data considered in our model. We
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consider a consumer who makes a series of choices in which alternatives are described by attributes

that may have several levels. We assume that the choice-relevant information is presented to the

consumer in a matrix such as the one shown in Figure 1.1 with one column per alternative and

one row per attribute (alternative formats could be modeled as well, as in Shi et al. (2013)). We

also assume that we observe, for each choice question, a series of eye fixations that end when the

consumer chooses one of the alternatives. On each search opportunity, the consumer makes a choice

between acquiring some choice-relevant information (by visiting a cell in the matrix) or ending the

search and choosing one of the alternatives based on the information acquired up to that point. In

the latter case, the consumer moves on to the next choice question.

1.2.1 Dynamic Models of Search

The decisions made by consumers in the process of acquiring choice-relevant information and choos-

ing one alternative are an example of a typical dynamic choice setting, in which each decision may

affect the utility offered by various future possible decisions. For example, acquiring a new piece

of information on one alternative may change the identity of the alternative in the choice set with

the highest expected utility. Such choice problems can be modeled using dynamic discrete choice

models (e.g., Ching et al. (2012), Chintagunta et al. (2012), Dube et al. (2012), Hartmann and Nair

(2010), Huang et al. (2012), Misra and Nair (2011), Rust (1987), Toubia and Stephen (2013), Yao

and Mela (2011)). However, the standard approach to dynamic discrete choice modeling poses at

least two challenges in our case. First, the state space is likely to be too large to allow estimation

of a traditional dynamic discrete choice model using tools and computers available today. For ex-

ample, suppose there are four alternatives per choice question described by six attributes. In this

typical scenario, simply keeping track of which cells of the matrix were visited by the consumer

would require 224 possible states. Second, such an approach would not fit well with the assumption

that consumers trade off decision accuracy and decision cost. In particular, once it is assumed

that processing information and making decisions is potentially costly, search models that require

solving dynamic programs suffer from the “infinite regress problem” – agents should optimize how

they will optimize their decisions and optimize how they will optimize the way they optimize their

decisions, and so on and so forth (Gabaix et al., 2006). More generally, several researchers have

argued that models based on dynamic programming, while being normative, should be adjusted
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to capture the behavior of boundedly rational consumers (e.g., Assuncao and Meyer (1993) and

Hutchinson and Meyer (1994)).

In light of these issues, we base our model on the directed cognition (DC) model proposed

and validated by Gabaix et al. (2006). According to this model, on each search occasion t, the

participant chooses as if this search occasion is the last one in that question. In other words, if the

consumer decides to acquire some information, he or she does so as if he or she would be making

a choice immediately after acquiring this new piece of information.

The DC model offers several benefits in addition to being computationally tractable for complex

search problems like ours. First, although not fully forward-looking, the DC model is not myopic

either and does capture the basic tradeoff in search problems (i.e., search more and choose later

using more information vs. choose now based on the currently available information). Second, there

is evidence that this model describes the actual behavior of human agents better than traditional

search models based on optimal solutions to dynamic programs. Using a simple experimental

setting, Gabaix et al. (2006) showed that the DC model predicts behavior better than a search model

based on the optimal strategy, which in that case was available in closed form, using the Gittins-

Weitzman index (Gittins, 1979; Weitzman, 1979). In another experiment, the authors showed that

the model predicts behavior well in a more complex setup that shared some similarities with choice-

based conjoint (CBC) analysis. In particular, Gabaix et al. (2006) used a setting in which choices

were presented in a matrix format similar to Figure 1.1. However, each cell contained monetary

payoffs and the value of each alternative was the sum of the amounts in the corresponding cells

(i.e., subjects received the monetary value of the chosen alternative). Gabaix et al. (2006) tested

the DC model using a Mouselab paradigm (see Payne et al. (1993)) in which most information was

hidden and subjects could “open” only one cell at a time.

Although the DC model provides us with a framework that informs our modeling efforts, our

specific model differs significantly from the model used by Gabaix et al. (2006). We will compare

our implementation of the DC model to theirs in Section 1.3.3 after describing our model in more

detail.

We also note that the DC model of Gabaix et al. (2006) is related to earlier studies in the

marketing literature. For example, Hagerty and Aaker (1984) considered a similar context in which

information is presented to consumers in a matrix form. In their model, at each search opportunity



CHAPTER 1. A BOUNDED RATIONALITY MODEL OF INFORMATION SEARCH AND
CHOICE IN PREFERENCE MEASUREMENT 6

consumers evaluated the expected gain from visiting each cell in the matrix. That gain is linked

to the probability that visiting a piece of information will change the identity of the option that

provides the greatest expected utility. Similarly to Gabaix et al. (2006), Hagerty and Aaker (1984)

assumed that consumers select the cell in the matrix that will maximize the expected gain in utility

in the next period. See Meyer (1982) for a related model.

1.2.2 Eye-tracking Research in Marketing

Eye tracking data are composed of fixations and saccades (Wedel and Pieters, 2000). Fixations

represent the time periods in which participants fix their eyesight to a specific location; saccades

represent the eye movements between two fixations.

As a way to directly measure attention and involvement, eye-tracking studies have been con-

ducted in numerous marketing settings, including branding (Pieters and Warlop, 1999; van der

Lans et al., 2008a), advertising (Pieters et al., 1999, 2002; Pieters and Wedel, 2004; Rosbergen

et al., 1997; Wedel and Pieters, 2000, 2008; Wedel et al., 2008), search effectiveness (van der Lans

et al., 2008b), and brand display on supermarket shelves (Chandon et al., 2009).

Other studies have used eye tracking in preference measurement settings. Toubia et al. (2012)

used eye tracking in a purely descriptive manner to measure the impact of “gamifying” a preference

measurement task on the amount of attention paid by consumers. Musalem et al. (2013) used eye

tracking to explore how consumers’ preferences for each level of an attribute relate to the amount

of attention paid to that attribute level and to alternatives that contained it. Shi et al. (2013) used

eye-tracking data to study and model how consumers switch back and forth between attribute-

based and alternative-based strategies when acquiring information about products described in

a matrix format. The paper closest to ours is probably Stüttgen et al. (2012), which developed

and estimated a model of search and choice in which consumers were assumed to use a satisficing

rule; that is, they evaluated alternatives one after another and chose the first alternative that was

deemed satisfactory. The authors further assumed that consumers used a conjunctive rule to decide

whether an alternative was satisfactory (i.e., all attributes of the alternative need to be acceptable).

The standard approach for modeling eye-tracking data among these papers was either to treat

eye fixations as exogenous (e.g., Musalem et al. (2013)) or to endogenize eye fixations using hidden

Markov models (Liechty et al., 2003; Shi et al., 2013; Stüttgen et al., 2012; van der Lans et al.,
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2008a,b). The states in hidden Markov models of eye movements typically capture various informa-

tion acquisition strategies or modes of search. For example, Stüttgen et al. (2012) followed Liechty

et al. (2003) and assumed that consumers move back and forth between a “local search” state and a

“global search” state that involve eye movements in the periphery of the current eye position (local)

and in different areas (global). Their model captures how the transition probabilities between these

states are influenced by the consumer’s ongoing evaluations of the various alternatives (i.e., which

alternatives have already been classified as satisfactory and which as unsatisfactory based on the

information processed up to that point).

Our model takes a different approach. The key differentiator of our model (compared to extant

models based on hidden Markov processes) is that we allow consumers to be strategic and forward-

looking in how they acquire information. We model information acquisition as the result of forward-

looking utility maximization; the utility derived by a consumer comes not only from the chosen

product but also from the information acquisition process itself. Another key feature of our model

is that we allow for imperfect memory encoding; in other words, a consumer may need multiple

fixations in a region of interest before remembering the information it contains.

1.3 Model

In this section we develop a dynamic discrete choice model in which the amount of information

processed by consumers is endogenized and modeled as the result of forward-looking utility maxi-

mization in which the consumer derives (positive or negative) utility both from his or her final choice

and from the search process itself. The model is designed to be calibrated using a combination of

eye-tracking and choice data.

1.3.1 Specification

For ease of exposition, we focus on one consumer when describing our model. We index choice

questions by k, and each choice question consists of selecting one of J alternatives that are described

by I attributes. For ease of presentation, we assume without loss of generality that all attributes

have the same number of levels, L. The choice-relevant information is presented in a matrix such

as the one shown in Figure 1.1 with one column per alternative and one row per attribute.
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For simplicity, we assume that the choice questions come from a random experimental design. In

this case, attributes vary independently across alternatives and there is no need to model inferences

consumers may make across attributes and alternatives. Our approach could easily be extended to

nonrandom experimental designs.

Each time period in our model is a search occasion, t, in which the consumer chooses between

acquiring some choice-relevant information (by visiting a cell in the matrix that contains the level of

one attribute for one choice alternative) and ending the search and choosing one of the alternatives

based on the information acquired up to that point. In the latter case, the consumer moves to the

next choice question.

As mentioned earlier, our model is inspired by the DC model proposed and validated by Gabaix

et al. (2006). According to that model, on each search occasion t, the participant chooses as if the

search occasion is the last one in that question. In other words, if the consumer decides to acquire

some information, he or she does so as if he or she is going to make a choice immediately after

acquiring this new piece of information.

We develop a likelihood-based implementation of the DC model that allows for heterogeneity

in preferences. Like any dynamic model, our implementation specifies an action space, a set of

state variables, a utility function, and state-transition probabilities. We next define each of these

components and the resulting likelihood function.

Actions

We denote the current position of the eyes in the I ×J matrix that contains the choice-relevant

information by p = (i, j). On each search occasion, the consumer may move his or her eyes to a

different location (i′, j′) in the matrix or end the information acquisition process and choose one of

the alternatives (j′), thereby moving to the next choice question.2

States

Although the attribute levels for each alternative in a choice question are known to the re-

searcher, they are unknown to the consumer at the beginning of the question. Take Figure 1.1 as

2We only consider fixations within the regions of interest that contain choice-relevant information. In the first

search occasion in each question, the number of possible cells to move to is I × J instead of I × (J − 1) (there is no

“current” position). We collapse consecutive fixations within the same cell as one fixation since they are likely to be

caused by participants randomly moving their eyes in a very small range due to blinking (nonconsecutive fixations

in the same cell are recorded as distinct fixations).
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an example. Consumers learn the level of each attribute in each alternative when they move their

eyes to the relevant cell in the matrix. In our data, we found that consumers revisited 62.22% of

the cells they visited at least once. Therefore, it would be unreasonable to assume that consumers

learn the level of attribute i for alternative j with certainty after only one fixation in cell (i, j).

Instead, we assume an imperfect memory encoding process in which consumers form a set of beliefs

about the true value of each cell. These beliefs are updated after each fixation, and they converge

to the truth as the number of fixations increases.

Our two observed state variables are p, which captures the current eye position, and a set of

numbers {ni,j} in which ni,j is the number of times cell (i, j) is visited (i.e., number of fixations in

the cell that contains information on attribute i for alternative j).

We follow Wedel and Pieters (2000) and assume that consumers extract a chunk of information

with each fixation on a cell. We denote as η the amount of information extracted per fixation.

Again following Wedel and Pieters (2000), we further assume that the total amount of information

stored by the consumer related to cell (i, j) is the sum of the activation levels of all memory traces:

η × ni,j . Suppose the true level in cell (i, j) is l0. After ni,j fixations in that cell, the total amount

of information in support of l0 being the true level is η × ni,j . The total amount of information in

support of any other level being the true level is 0. If we assume some error in memory retrieval

(δi,j,l) (Wedel and Pieters, 2000), then the probability that the consumer believes l0 is the true

level is Prob(ηni,j + δi,j,l0 > δi,j,l, ∀ l 6= l0). If we assume that δi,j,l follows a double exponential

distribution, the probability weight associated with each level l, wi,j,l, becomes

wi,j,l(η, ni,j) =






exp(ηni,j)
L−1+exp(ηni,j)

if l is the true level

1
L−1+exp(ηni,j)

if l is not the true level
. (1.1)

We denote the 1 × L array of probability weights corresponding to all possible levels in cell

(i, j) as wi,j(η, ni,j) which equals [wi,j,1(η, ni,j), ..., wi,j,L(η, ni,j)]. Before the first visit to a cell, the

consumer starts with a uniform belief, wi,j(η, 0) = [ 1
L , ..., 1

L ] that reflects the random experimental

design (nonrandom designs would potentially give rise to different initial beliefs). The set of weights

corresponding to a cell is updated after each visit to the cell and converges to a vector that has a

weight of 1 on the true level and 0 on all the other levels. Appendix A.1 illustrates this process

using a simple example.
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We further assume the existence of unobserved state variables in the form of idiosyncratic

shocks ε(a) that capture information unobservable to the econometrician. This addition allows us

to write a likelihood function for our model following a standard distributional assumption (see

Rust (1987)).

Utility Function

The utility derived by the consumer at each search occasion is a function of the current state

and the consumer’s action. We make a distinction between product-related utility derived by

the consumer (i.e., the utility that comes from the alternative (j) chosen by the consumer) and

search-related utility (i.e., the utility that comes from the search process, which may be positive or

negative). The consumer derives product-related utility only upon ending the search.

We first describe product-related utility. For ease of exposition, we do not include a subscript

for the consumer in our equations although all of the parameters are estimated at the individual

level. We assume effects coding; that is, the partworth for the last level of an attribute is equal to

minus the sum of the partworths for the other levels. Let βi be the (L − 1) × 1 vector containing

a consumer’s partworths for attribute i under effects coding. The L × 1 vector containing all

partworths for attribute i is β̃i = I0
i βi where I0

i is an L × (L − 1) coding matrix:

I0
i =











1 0 ... 0

0 1 ... 0

0 0 ... 1

−1 ... ... −1











. (1.2)

With perfect memory encoding, the consumer would know the true level contained in cell ( i, j)

after one fixation, and the partworth corresponding to that cell would simply be the appropriate

element of β̃i. However, with imperfect memory encoding, the consumer assigns a set of probability

weights, wi,j(η, ni,j), to each possible level in cell (i, j), and the expected value of the partworth

corresponding to that cell is a weighted average of the partworths for attribute i: wi,j(η, ni,j)β̃i.

This expression converges to the appropriate element of β̃i as the number of fixations on the

cell increases. The product-related utility is specified as

uproduct(a|{n}, β) =






0 if a = move to (i′, j′)

∑
i wi,j′(η, ni,j′)β̃i if a = choose j ′

. (1.3)
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Appendix A.1 illustrates computation of product-related utility using a simple example.

In a case in which the consumer decides not to choose any alternative and continues searching

instead, he or she derives search-related utility. Given the finding that the amount of information

processed by participants tends to decrease as they progress through the questionnaire (Stüttgen

et al., 2012; Toubia et al., 2012), we allow for fatigue effects by modeling search-related utility as

a function of the question number, k.

Shi et al. (2013) documented that a large proportion of consecutive fixations are to contiguous

cells when information about products is displayed using matrices as in our case. This is consistent

with eye movements between cells being more cognitively costly when the cells are more distant.

Moreover, Shi et al. (2013) identified an asymmetry in consumers’ propensity to make horizontal

vs. vertical eye movements. To capture these physiological factors, we also allow search-related

utility to be a function of the distance between the current location of the eyes, p, and the next

cell visited and allow for different weights on horizontal and vertical movements. In particular, we

model search-related utility as3

usearch(a|p, k, θ) =






θ0 + θ1k + θ2d(a, p, θ3) if a = move to (i′, j′)

0 if a = choose j ′
(1.4)

where d(a, p, θ3) is a weighted Euclidean distance between the current cell (i, j) and the next cell

(i′, j′) defined as
√

(i − i′)2 + θ3(j − j′)2 . The parameter θ3 captures asymmetries between vertical

and horizontal eye movements (this parameter is constrained to be non-negative). Note that we do

not restrict the signs of the parameters θ0, θ1, and θ2 .

Transition Probabilities

The state variables capture eye position and the number of fixations in each cell. The transitions

between states are deterministic from the perspective of the researcher based on the consumer’s

actions. However, from the perspective of the consumer, there is some uncertainty regarding the

true value of each cell so the transitions between states are probabilistic.

Suppose that the consumer’s action, a, is to visit cell (i′, j′). From the perspective of the

consumer, for each possible level l there is a probability (given by wi′,j′,l(η, ni′,j′)) that level will

3We also tested a version of the model with only the parameter θ0 in the search-related utility function. The

deviance of information criteria favored the more complex version, and out-of-sample performance was not greatly

affected. Details are available from the author.
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be found in cell (i′, j′). Therefore, the value function is based on a set of transition probabilities

given by the current set of probability weights, wi′,j′(η, ni′,j′), which are a function of the current

state variable, ni′,j′ . These weights represent the probability of seeing each level in each cell based

on the consumer’s current beliefs. (Note that we assume that the consumer knows which cell he or

she is visiting; the only uncertainty is related to the level contained in the cell.)

Suppose that l0 is the true level in cell (i′, j′). To specify the Bellman equation, we need to

model all possible state transitions from the perspective of the consumer. In particular, we need

to model what would happen when the consumer sees a level in cell (i′, j′) that is different from

l0. Although this never happens, it must be addressed because the weights (wi′,j′,l(η, ni′,j′)) are

positive for all levels, not just the true level. If level l 6= l0 is found in cell (i′, j′), the amount of

information in support of that level being the true level would increase from 0 to η. As a result,

the probability weight associated with the level would be updated to exp(η)
L−2+exp(ηni′,j′ )+exp(η) . The

weight associated with the true level would be updated to
exp(ηni′,j′ )

L−2+exp(ηni′,j′ )+exp(η) and the weights

associated with the other levels to 1
L−2+exp(ηni′,j′ )+exp(η) . With a slight abuse of notation, we denote

the product-related utility based on the new beliefs that are formed if level l is to be found in cell

(i′, j′) as uproduct(a′|{n′
i′,j′,l}, β) .

After the fixation to cell (i′, j′), the state variable corresponding to that cell, ni′,j′ , is incremented

by 1 and the set of probability weights corresponding to that cell is updated to wi′,j′(η, ni′,j′ + 1)

based on Equation (1.1).

There is no need to specify transition probabilities for the other state variables (p (current

fixation position) and ε(a)) because the former evolves deterministically and the latter is assumed

to satisfy the conditional independence assumption (Rust, 1987).

Likelihood Function

The DC model assumes that consumers act on each search occasion as if this search occasion

is their last opportunity to acquire new information. Mathematically, this implies that consumers

behave on each search occasion as if they are solving the following optimization problem:

max{ max
a={j′}

{uproduct(a|{n}, β) + ε(a)},

max
a={i′,j′}

{usearch(a|p, k, θ) + ε(a) +
∑

l

wi′,j′,l(η, ni′,j′) max
a′={j}

{uproduct(a
′|{n′

i′,j′,l}, β) + ε(a′)}}}
.

(1.5)
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The first term, maxa={j′} {uproduct(a|{n}, β) + ε(a)}, is the maximum utility the consumer can

derive by ending the search and choosing one of the alternatives given the current state vari-

ables {n} and the consumer’s partworths β. The second term is the maximum utility the con-

sumer can derive by continuing the search, and usearch(a|p, k, θ) + ε(a) is the search-related utility,

wi′,j′,l(η, ni′,j′) captures the state-transition probabilities (from the perspective of the consumer),

and maxa′={j} {uproduct(a′|{n′
i′,j′,l}, β) + ε(a′)} is the maximum utility derived from choosing one

of the alternatives in the next period given that level l is found in cell (i′, j′).

Assuming that the idiosyncratic shocks, ε, satisfy the conditional independence assumption and

follow a double-exponential distribution gives rise to the following likelihood function in which

Θ = {β, θ, η}.

P (a|{n}, p, Θ) =
exp(Va({n}, p|Θ))

∑
a′ exp(Va′({n}, p|Θ))

(1.6)

where:

Va({n}, p|Θ) =





usearch(a|p, k, θ) +
∑

l wi′,j′,l(η, ni′,j′) log
∑

a′={j} exp(uproduct(a′|{n′
i′,j′,l}, β)) if a = move to (i′, j′)

uproduct(a|{n}, β) if a = choose j ′
(1.7)

1.3.2 Identification and Estimation

The parameters to be estimated in our proposed dynamic discrete choice model are Θ = {β, θ, η}.

As with a standard CBC analysis, the partworths, β, are identified at the individual level through

the choices consumers make between various alternatives. The parameters θ0, θ1, θ2, and θ3 capture

search-related utility. Given the value of the partworths, the intercept θ0 is identified because we

observe consumers choosing either to continue the search or to stop the search and select one of

the alternatives. The parameter θ1 captures the effects of fatigue (through the question number)

and is identified because we observe multiple questions per consumer. The parameters θ2 and

θ3 capture the effect of distance on search utility and are identified because the information in

each cell varies randomly across questions. We estimate both β and θ at the individual level.

Finally, η is a parameter that captures the amount of information extracted per fixation (i.e., it
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may be interpreted as capturing the speed with which consumers learn the content of a cell). This

parameter is identified primarily through the common occurrence of revisits to cells that were

previously visited by the same consumer in the same question. However, we have found that this

parameter is only weakly identified. Therefore, we estimate it only at the aggregate level using a

grid search. In particular, we fix the parameter η and estimate all the other parameters given that

value of η for multiple values of η. We keep the value of η that gives rise to the lowest deviance of

information criteria (DIC)4 . We estimate our model using a hierarchical Bayes method (Atchadé

and Rosenthal, 2005). The first stage prior for {θn, βn} (where n indexes consumers) is normal with

{θn, βn} ∼ N(μ0, Λ). The second stage priors are μ0 ∼ N(0, 1000∗I) and Λ−1 ∼ Wishart(I, 23+3)

where 23 is the number of heterogeneous parameters in the model. A total of 150,000 Markov chain

Monte Carlo (MCMC) iterations are performed using the first 100,000 as burn-in. We apply a grid

search method for the learning parameter η; we estimate the model with η = 0 − 5 with a step of

1 and select the best-fitting model based on DIC.

We confirmed the identification of our model and tested our estimation approach using a simu-

lation study. Appendix A.2 provides the details of our simulation study. We generated a synthetic

data set using a set of parameters inspired by the estimates from our study reported in Section 1.5.

We found that the parameters were recovered adequately.

1.3.3 Comparison with Gabaix et al.

We used the DC model of Gabaix et al. (2006) as a basic framework for our model, but our model

differs significantly in several important ways. First, the Gabaix et al. model was applied to a

context in which each cell contained a monetary amount and the payoff from the chosen alternative

was the sum of the monetary values of its cells. Product-related utility in Gabaix et al.’s model was

simply the amount of money earned in the game. We apply our model to a context in which each

cell contains an attribute level and product-related utility is parameterized by a set of partworths.

Gabaix et al. assumed that the value in each cell was drawn from a continuous normal distribution,

while in our case the values are drawn from a discrete uniform distribution. As a result, Gabaix

et al. was able to derive a closed-form expression for the expected benefit from each possible action

4 The DIC is defined as −4EΘ[log f(a|{n}, p, Θ)|a] + 2 log f(a|{n}, p, Θ̂(a, {n}, p)), where Θ̂(a, {n}, p) =

arg maxΘ {f(a|{n}, p, Θ)} (Celeux et al., 2006).
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(see Equation (3) in Gabaix et al. (2006)) while we use the general Bellman equation. Gabaix

et al. assumed that search-related utility is constant (the opportunity cost of time) while we allow

search-related utility to be affected by fatigue and proximity effects (i.e., consumers may search less

and less over time and may be more likely to move their eyes to nearby cells). Gabaix et al. also

assumed perfect memory encoding (a consumer learns the content of a cell perfectly after one visit)

while we allow for imperfect memory encoding. While Gabaix et al. calibrated the one parameter

in their model (opportunity cost of time) by fitting moments of the data (average amount of search

in the game), we develop a likelihood-based, hierarchical Bayesian framework. And Gabaix et al.

calibrated their model at the aggregate level; we allow for heterogeneity across consumers.

1.4 Data

1.4.1 Set-up

We collected the choice-based conjoint (CBC) data in the context of Dell laptop computers and

used six attributes (I = 6) with four levels each (L = 4): processor speed (1.6 GHz, 1.9 GHz, 2.7

GHz, and 3.2 GHz), screen size (26 cm, 35.6 cm, 40 cm, and 43 cm), hard drive capacity (160 GB,

320 GB, 500 GB, and 750 GB), Dell support subscription (1 year, 2 years, 3 years, and 4 years),

McAfee antivirus subscription (30 days, 1 year, 2 years, and 3 years), and price (350, 500, 650, and

800 euros).

In the main task, each participant answered twenty choice questions, where each offering four

alternatives (J = 4). The questions were generated randomly (once for all participants, i.e., all

participants saw the same set of questions). Before answering the twenty questions, participants

completed one training question designed to familiarize them with the interface. Figure 1.1 provides

a screenshot of one of choice questions.
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Figure 1.1: Screenshot from the first question in the main task.
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In addition to the main task, participants completed an external validity task. We used a typical

setting in which the external validity task consisted of one choice task with eight alternatives that

were chosen randomly (once for all participants; all participants saw the same set of alternatives)

subject to the constraint that each level of each attribute would be present in at least one of the

alternatives. This task also was preceded by one training question to familiarize participants with

the interface.

We randomized the position of the external validity task relative to the main task so that half

of the participants completed the external validity task first and half the main task first. This

difference was our only between-subject variation.

Our study followed an incentive-alignment scheme typical of CBC studies (Ding et al., 2005;

Ding, 2007). One participant was selected randomly as a winner and received 800 euros, which

were to be used to automatically purchase a laptop based on his or her answers to the survey. The

winner received the alternative chosen in the external validity task with probability 50% and the

alternative chosen in each question in the main task with probability 2.5%. The winner received

the preferred laptop along with the difference between 800 euros and the price of the laptop.

Our participants were recruited at a large European university. They all participated in the

survey in the university’s behavioral lab using the online platform developed by the author.

Eye-Tracking Data

Participants completed the survey while being monitored by a free-standing nonintrusive Tobii R©

2150 eye tracker that sampled infrared corneal reflections at 50Hz with a 0.35◦ spatial resolution and

an accuracy of 0.5◦. The stimuli were presented on a 21-inch LCD monitor with a display resolution

of 1,600 by 1,200 pixels. The position of the left eye and right eye were recorded separately (van der

Lans et al., 2011). Fixations and saccades were differentiated using van der Lans et al. (2011)’s

velocity-based algorithm. We defined the region of interest (ROI) for each piece of information as

the area within the boundary of the cell that contained the information (see Figure 1.1).

1.4.2 Descriptive Statistics

We collected complete eye-tracking data for 70 participants. Of those, 33 completed the external

validity task before the main task and 37 completed it after the main task.

We now provide a descriptive analysis of our eye-tracking data for the twenty questions in
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the main task. The average proportion of cells visited at least once (with at least one fixation)

across all questions and participants was 69.65%. The proportion differs slightly with the order in

which the main task and the external validity task were completed: 67.79% for the main task first

and 71.74% for the external validity task first (p-value=0.13). We accommodated this difference

by adding a parameter to our search-utility specification (see Section 1.5.1.). Figure 1.2 plots

the average proportion of information visited in each choice question. The downward trend in

this graph confirms the need to control for question position in our model and is consistent with

previous findings (Stüttgen et al., 2012; Toubia et al., 2012). Figure 1.3 shows the distribution of

the proportion of information visited across all choice questions and participants. Figure 1.4 shows

the distribution of the number of visits per piece of information (each “piece of information” consists

of the level of one attribute for one alternative) for all pieces of information, choice questions, and

participants. This chart shows that information that is processed is likely to be visited multiple

times by the same consumer in the same question, which confirms the need to model memory

encoding as imperfect; it would not be reasonable to assume that visiting a cell once is enough for

a consumer to completely memorize its content. Figure 1.5 shows the distribution of the distances

between two consecutive eye fixations across all choice questions and participants5. We see that

consumers are much more likely to move their eyes to an adjacent (distance = 1) cell in the 6 by 4

matrix containing all choice-relevant information than they are to move a more distant cell. This

is consistent with previous studies (Shi et al., 2013; Stüttgen et al., 2012) and confirms the need

model search-related utility as a function of the distance between cells.

5If the respondent moves his or her eyes between cell (i, j) and (i′, j′), the distance is defined as
√

(i − i′)2 + (j − j′)2.
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Figure 1.2: Average proportion of information visited per choice question vs. question number.

Figure 1.3: Distribution of the proportion of information visited per choice question.
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Figure 1.4: Distribution of the number of visits per piece of information.

Figure 1.5: Distribution of the Euclidean distance between successive eye fixations.

Note: If the respondent moves his or her eye from the cell (i, j) to cell (i′, j′), the distance is

defined as
√

(i − i′)2 + (j − j′)2.

Table 1.1 shows the proportion (across all questions and participants) of eye movements that
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were to a different choice alternative within the same attribute, to a different attribute within the

same alternative, and to a different attribute in a different alternative. While most movements were

either within the same alternative or within the same attribute, there is no evidence that either

alternative-based processing or attribute-based processing dominates. To explore the possibility

that each type of processing dominates for subsets of consumers, we present a scatter plot of

the proportion of within-attribute and within-alternative eye movements at the participant level

in Figure 1.6 (each dot represents one participant). We see that most participants use a hybrid

of attribute-based and alternative-based searches, although attribute-based searches were more

prevalent on average. To further investigate the existence of attribute-based and alternative-based

searches, we report the distribution of the number of attributes visited per alternative (across all

alternatives, respondents, and choice questions) in Figure 1.7 and the number of alternatives visited

per attribute (across all attributes, respondents, and choice questions) in Figure 1.8. Attribute-

based search would lead to some attributes not being visited at all, and alternative-based search

would lead to some alternatives not being visited at all. We find that an alternative (attribute) is

completely ignored only 1.13% (4.33%) of the time. This further suggests no evidence for purely

attribute-based or alternative-based searches, and confirms the need for a model to be flexible

enough to allow for any type of eye movements.

Table 1.1: Overall proportion of eye movements to a different alternative within the same attribute,

to a different attribute within the same alternative, and to a different attribute in a different

alternative.

Type of search Proportion

Different alternative within the same attribute 0.51

Different attribute within the same alternative 0.34

Different attribute in a different alternative 0.16
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Figure 1.6: Scatter plot of the proportion of eye movements to a different alternative within the

same attribute versus a different attribute within the same alternative.

Note: Each dot corresponds to one respondent.

Figure 1.7: Distribution of the number of attributes visited per alternative (across all alternatives,

respondents and choice questions).
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Figure 1.8: Distribution of the number of alternatives visited per attribute (across all attributes,

respondents and choice questions).

1.5 Estimation Results

We use the last four questions of the main task as holdouts. We vary the number of questions used

for estimation between the first eight and sixteen to assess the benefits of the proposed model when

the number of choice questions is increased.

1.5.1 Proposed Model

We estimate the proposed model described in Section 1.3 with one small adjustment to capture the

change in position of the external validity task and its effect on the propensity to search. Thus, we

add one term to the search-related utility equation:

usearch(a|p, k, θ) =






θ0 + θ11k + θ121(ext val) + θ2d(a, p, θ3) if a = move to (i′, j′)

0 if a = choose j ′
(1.8)

where 1(ext val) is an indicator function equal to 1 if the participant completed the external

validity task before the main task. The additional parameter θ12 captures the effect of completing

the external validity task before the main task on the propensity to search for information in the
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main task. Recall that we omit consumer subscripts for ease of exposition, but the partworths and

search-related utility parameters are all estimated at the individual level. In addition, we constrain

the partworths for price to be monotonic using rejection sampling (Allenby et al., 1995).

1.5.2 Benchmark Models

We use several benchmark models to test various components of the proposed model. All bench-

marks are estimated using the same Bayesian approach and the same prior specifications as the

proposed model.

Our first set of benchmarks does not model searches and focuses only on choice. We refer to this

set as the “choice-only” benchmarks. The first is a standard multinomial logit (MNL) choice model

that assumes that participants have full knowledge of the alternatives in each choice question (i.e.,

the information in all of the 24 cells in Figure 1.2 is assumed to be known). The second benchmark

is an MNL model that takes into account information on the specific cells visited (cells with at

least one fixation) by each participant in each question and assumes that participants only use

the information contained in the cells that they visited when they evaluate the alternatives. The

likelihood function in these benchmarks is based only on the choice data. Therefore, we cannot

compare them to the proposed model based on measures of in-sample fit, and we use out-of-sample

predictions instead.

Our second set of benchmarks models both the choices made by consumers and their eye move-

ments and therefore may be compared to our proposed model based on in-sample fit statistics

(deviance of information criteria (DIC)). We refer to this set as “search+choice” benchmarks. In

each search+choice benchmark, the same imperfect memory encoding process from the proposed

model (Equation 1.1) is assumed, and the same specification is used for product-related utility

(Equation 1.3) and search-related utility (Equation 1.4). The only difference is in specification of

the forward-looking term in the value function (Equation 1.7). The first benchmark in this set

(labeled “future product-related utility unanticipated”) assumes that consumers only take search-

related utility into consideration when deciding whether and how to search for information and

that they ignore future product-related utility. This benchmark assumes that the value function
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from Equation (1.7) takes the following form.

Va({n}, p|Θ) =






usearch(a|p, k, θ) if a = move to (i′, j′)

uproduct(a|{n}, β) if a = choose j ′
(1.9)

Our second benchmark in this set explores the possibility that, while consumers may take future

utility into account when deciding whether to continue searching for information, they may not take

into account how the results of the search will impact their future beliefs, which will impact their

future expected utility. This benchmark assumes that consumers behave on each search occasion

as if they will not update their beliefs after the search. We label this benchmark as “future belief

updating unanticipated.” Note that this benchmark assumes that subjects ignore future updating

of beliefs at the time of the decision but updates beliefs after subjects acquire the new information.

The value function takes the following form.

Va({n}, p|Θ) =






usearch(a|p, k, θ) + log
∑

a′={j} exp(uproduct(a′|{n}, β)) if a = move to (i′, j′)

uproduct(a|{n}, β) if a = choose j ′

(1.10)

We estimate η, the learning parameter, for each benchmark separately using a grid search of

the same set of values as in the proposed model. Table 1.2 reports the DICs for the proposed model

and the second set of benchmarks when the number of questions used for calibration varies from

eight to sixteen. We find that the proposed model has a better fit than both benchmarks. Thus,

it is reasonable to assume that consumers take future product utility into account when deciding

whether and how to search and that they anticipate how searching will impact their beliefs about

the various alternatives.

1.5.3 Posterior Check

In addition to computing the DICs, we measure in-sample fit for the proposed model by evaluating

how well it recovers some key statistics of the data (Gelman et al., 1996). At each iteration of

the Gibbs sampler, we use the parameter estimates in that iteration to simulate the number of eye

fixations for each respondent and for each choice question in the calibration set and repeat this

analysis when the number of questions used for calibration varies from eight to sixteen. Figure 1.9
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Table 1.2: Comparison of proposed model with search+choice benchmarks based on deviance of

information criteria (DIC).

Number of questions used for calibration

Model 8 9 10 11 12 13 14 15 16

Proposed model 140758.518 156895.061 172595.803 190780.442 207433.841 222558.975 236862.551 252007.345 267657.965

Future belief-

updating unanticipated 142849.949 159134.888 175173.667 193607.851 210737.014 226183.093 240554.609 255871.439 271813.857

Future product-

related utility unanticipated 143390.124 159746.143 175816.279 194222.653 211265.653 226766.771 241243.021 256665.679 272617.374

shows the real average number of eye fixations across choice questions and respondents together

with the 95%-credible interval of this statistic across iterations of the Gibbs sampler as the number

of questions used for calibration is varied. In all cases, the true values falls within the 95%-credible

interval.

Figure 1.9: Posterior check of the average number of eye fixations per choice question vs. number

of questions used for calibration.

1.5.4 Parameter estimates

Table 1.3 shows the posterior means and 95%-credible intervals of the first-stage prior parameters

defined in Section 1.3.2., i.e., the population mean of the partworths and search-utility parameters
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(μ0) and the population variance of those parameters (diagonal elements of Λ). The estimates pre-

sented in Table 1.3 are based on the proposed model using the first sixteen questions for calibration.

(Recall that all parameters in Table 1.3 are estimated at the individual level; we report only the

population means here.) All results are based on η = 3, the value suggested by the grid search for

this parameter. As previously mentioned, we used effects coding such that the partworths sum up

to 0 within each attribute.

The signs of θ11 and θ12 are consistent with the descriptive statistics reported earlier that showed

that search decreases as the questionnaire progresses and that placing the external validity first

slightly increases the amount of attention spent in the main task. The sign of θ2 is consistent

with the finding that consumers tend to move to cells that are close to the one they are currently

visiting. The fact that θ3 is less than 1 is consistent with Table 1.1, which shows that horizontal

eye movements within the same attribute are more frequent than vertical ones within the same

alternative. The positive sign of θ0 suggests that search-related utility may be positive in certain

situations.

The posterior means of the importance of each attribute based on the proposed model and

the set of choice-only benchmarks are presented in Table 1.4. The proposed model extracts more

information about each attribute from each choice question. Therefore, we expect this model to give

rise to more discrimination across attributes; for each consumer, there should be more variance in

attribute importance across attributes. Table 1.4 also reports posterior means and credible intervals

of the averages (across consumers) of the variance (across attributes) of the partworth importances.

That is, at each iteration of the MCMC, we compute the variance of the attribute importances

for each consumer and calculate the average of this variance across consumers. As predicted, the

proposed model gives rise to much more variation across attributes than the benchmarks (the 95%-

credible intervals do not overlap with the benchmarks). In other words, complementing choice data

with search data and modeling the information acquisition process as the result of forward-looking

utility maximization increases discrimination across attributes.

1.5.5 Out-of-sample Predictions

We compare out-of-sample prediction performance between the proposed model and the two sets of

benchmarks (search+choice and choice-only), based on the hit rate on both the holdout questions
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Table 1.3: Population estimates from the proposed model.

Posterior 95% Credible Posterior

Population Mean Interval Population Variance

θ0 2.33 [2.13, 2.51] 1.05

θ11 -0.01 [-0.03, 0.00] 0.36

Search-related parameters θ12 0.28 [-0.07, 0.61] 1.3

θ2 -1.07 [-1.08, -1.05] 0.45

θ3 0.70 [0.66, 0.73] 0.75

1.6 Ghz -8.80 [-9.11, -8.51] 17.03

Processor speed 1.9 Ghz -3.21 [-3.44, -2.97] 6.54

2.7 Ghz 3.94 [3.69, 4.15] 5.07

26 cm -0.31 [-0.54, -0.09] 17.06

Screen size 35.6 cm 1.42 [1.16, 1.77] 4.36

40 cm 0.31 [-0.01, 0.51] 4.14

160 GB -3.36 [-3.87, -2.99] 4.27

Hard drive 320 GB -0.62 [-1.12, -0.28] 2.57

500 GB 1.20 [0.98, 1.51] 2.68

1 year -1.51 [-1.75, -1.27] 1.93

Dell support 2 years 0.90 [0.69, 1.11] 1.81

3 years 0.16 [-0.07, 0.41] 1.55

30 days -0.83 [-1.03, -0.57] 4.37

Anti virus 1 year 0.05 [-0.23, 0.39] 1.44

2 years 0.58 [0.31, 0.82] 2.13

350 euro 4.98 [4.68, 5.28] 14.18

Price 500 euro 1.49 [1.34, 1.66] 1.97

650 euro 0.04 [-0.13, 0.17] 1.29

Note: The first sixteen questions are used for calibration. We used effects coding so the partworth

for the last level of each attribute is minus the sum of the other three partworths.
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Table 1.4: Average attribute importances and average variance of attribute importances.

Proposed Model Choice-only Benchmarks

Assume consumers Use knowledge of

fully informed which cells visited

A
v
er

ag
e

at
tr

ib
u
te

im
p
o
rt

an
ce

Processor speed 0.335 0.281 0.232

Screen size 0.145 0.140 0.140

Hard drive 0.140 0.199 0.189

Dell support 0.076 0.091 0.125

Anti virus 0.081 0.090 0.108

Price 0.222 0.200 0.206

Average variance of

attribute importances 0.010 0.006 0.003

95% Credible interval [0.009, 0.011] [0.004, 0.007] [0.002, 0.003]

Note: The first sixteen questions are used for calibration.

(the last four questions in the main task) and the external validity task. For each consumer and

out-of-sample question, we measure the hit rate by computing the estimated choice probability of

the chosen alternative at each MCMC iteration and then computing the average across MCMC

iterations.6 We plot how the average performance of each model evolves as the number of questions

used for calibration varies between eight and sixteen. Results are reported in Figures 1.10 through

1.13.

6We computed the utility of each alternative in each out-of-sample choice question by multiplying the character-

istics of the alternatives by the consumer’s partworths. This standard approach implicitly assumes that consumers

take into account the full description of all the alternatives in the choice set. We also tried making out-of-sample

predictions for the search+choice models based on counterfactual simulations. In particular, we could simulate the

consumer’s search process in the out-of-sample questions and estimate the resulting choice probabilities. Predictive

performance was slightly worse using this approach. Details are available from the author.
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Figure 1.10: Proposed model vs. choice-only benchmarks - average holdout hit rate vs. number of

questions used for calibration.

Figure 1.11: Proposed model vs. search+choice benchmarks - average holdout hit rate vs. number

of questions used for calibration.
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Figure 1.12: Proposed model vs. choice-only benchmarks - average external validity hit rate vs.

number of questions used for calibration.

Figure 1.13: Proposed model vs. search+choice benchmarks - average external validity hit rate vs.

number of questions used for calibration.

We see in Figure 1.10 that the hit rate on the holdout questions is systematically higher in the

proposed model than in the choice-only benchmarks and that the difference becomes less and less
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Table 1.5: Proposed model vs. choice-only benchmarks - regression results.

Holdout questions External Validity

Coefficient P-value Coefficient P-value

Intercept 0.918 0.000 0.618 0.000

Choice only - assume

consumers fully informed dummy -0.187 0.000 -0.518 0.002

Choice only - use knowledge

of which cells visited dummy -0.426 0.000 -0.679 0.000

q 0.040 0.000 0.006 0.843

q2 0.001 0.728 -0.017 0.184

Choice only - assume

consumers fully informed dummy × q 0.098 0.000 -0.027 0.521

Choice only - use knowledge

of which cells visited dummy × q 0.088 0.000 0.048 0.259

Choice only - assume

consumers fully informed dummy × q2 -0.025 0.000 0.018 0.342

Choice only - use knowledge

of which cells visited dummy × q2 -0.018 0.001 0.009 0.645

Note: The number of observations in each regression is the number of respondents × 9 (number

of questions used for calibration varies from eight to sixteen) × 3 (number of models being

compared). The dependent variable is the logit of the hit rate. We include respondent fixed

effects. The variable q is the (mean-centered) number of questions used for calibration.
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Table 1.6: Proposed model vs. search+choice benchmarks - regression results.

Holdout questions External Validity

Coefficient P-value Coefficient P-value

Intercept 0.918 0.000 0.618 0.000

Search+choice - future

belief-updating unanticipated dummy -0.491 0.000 -0.789 0.000

Search+choice - future product-related

utility unanticipated dummy -0.716 0.000 -1.342 0.000

q 0.040 0.000 0.006 0.835

q2 0.001 0.730 -0.017 0.163

Search+choice - future

belief-updating unanticipated dummy × q 0.062 0.000 0.037 0.362

Search+choice - future product-related

utility unanticipated dummy × q 0.024 0.055 -0.007 0.861

Search+choice - future

belief-updating unanticipated dummy × q2 -0.017 0.002 0.017 0.346

Search+choice - future product-related

utility unanticipated dummy × q2 -0.010 0.078 -0.002 0.888

Note: The number of observations in each regression is the number of respondents × 9 (number

of questions used for calibration varies from eight to sixteen) × 3 (number of models being

compared). The dependent variable is the logit of the hit rate. We include respondent fixed

effects. The variable q is the (mean-centered) number of questions used for calibration.
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pronounced as the number of questions grows. This is consistent with the fact that the proposed

model is able to extract more information from each choice question. Therefore, it is able to

achieve greater predictive performance with fewer questions. It takes approximately twelve choice

questions for the best choice-only benchmark to reach the performance achieved by the proposed

model after eight choice questions, and the performance of the best choice-only benchmark after

sixteen questions is similar to the performance of the proposed model after only twelve questions.

In addition, the choice-only benchmark that uses eye-tracking data to account for which cells were

visited in each question performs worse than the standard choice-only benchmark that assumes

that all cells are visited. Thus, to extract valuable information from eye-tracking data, it is not

enough to merely capture which information was processed by the consumer and it is better to

endogenize the information search process.

To compare the performance of these models statistically, we run an ordinary least squares

regression with the logit of the hit rate as the dependent variable.7 The number of observations

in each regression is the number of respondents × 9 (number of questions used for calibration

varies from eight to sixteen) × 3 (number of models being compared). We include respondent fixed

effects to capture the panel structure of the data. We use the proposed model as the baseline and

include dummy variables for each of the two benchmarks. We also include covariates that capture

the increasing trend in performance as the number of questions increases. Results are reported in

Table 1.5. We find that the main effects corresponding to the two benchmarks are significantly

negative; the proposed model on average performs significantly better than either benchmark.

Figure 1.11 compares the proposed model to the search+choice benchmarks, and Table 1.6

reports the results of the regression. The proposed model performs better than either of the

benchmarks. The worst performing benchmark is the one that assumes that consumers ignore future

product-related utility when deciding whether and how to acquire information. The benchmark

that assumes that consumers take future product-related utility into account but ignores how their

beliefs will be updated performs better but still not as well as the proposed model. This suggests

that the gain from the proposed model comes from assuming both that consumers take future

utility into account and that they take the impact that the additional search will have on their

future decisions into account.

7We take the logit because the hit rate is bounded between 0 and 1.
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Figures 1.12 and 1.13 compare the models’ performance on the external validity task. Although

the proposed model still performs better than the benchmarks and the difference remains significant

on average (see Tables 1.5 and 1.6), the comparisons are a little noisier for at least two reasons.

First, the external validity task was a single choice question while the holdout comparisons are

based on the last four questions, which reduces the variance in performance across consumers.

Second, it turns out that the choice shares of the eight alternatives in the external validity question

were very unevenly distributed; the three most popular alternatives were chosen by 95.0% of the

respondents (with respective shares of 55.7%, 28.6%, and 11.4%).

1.6 Conclusions

In this chapter, we develop a joint model of information processing and choice that explicitly

captures the strategic, dynamic tradeoff between search-related utility and product-related utility.

We find that the proposed model offers better out-of-sample predictions than a wide range of

benchmarks that either do not leverage data on the information search process or do so without

endogenizing searches as the outcome of forward-looking utility maximization. Our model also

allows for greater discrimination between various attributes than the benchmarks, which only model

choice and not search.

Our contribution is both methodological and managerial. Methodologically, our model extends

Gabaix et al. (2006)’s DC model in several important ways. That model had a single parameter

(opportunity cost of time) that was estimated at the aggregate level by matching moments of the

data. In contrast, our model specifies a rich search-related utility function that captures fatigue

and proximity effects and a product-related utility function parameterized by a set of partworths.

Moreover, our model allows consumers to have imperfect memory encoding. We estimate our

model within a likelihood-based, hierarchical Bayesian framework that allows for heterogeneity

across consumers.

Managerially, as discussed in the introduction, there are commercial solutions available today

that allow for collection of eye-tracking data in an online environment using the consumer’s webcam.

We expect such solutions to be increasingly common as large companies such as Facebook acquire

such capabilities in 2012, (Facebook acquired GazeHawk, a startup that provides webcam eye-
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tracking services, (ZDNet, 2012)) and with the development of open-source solutions such as ITU

Gaze Tracker (www.gazegroup.org/downloads/23-gazetracker). Therefore, we believe that the

approach developed in this chapter will be increasingly accessible to market researchers. We show

that complementing choice data with eye-tracking data and modeling eye movements as the outcome

of forward-looking utility maximization improve out-of-sample performance, enable practitioners

and researchers to use shorter questionnaires, and allow greater discrimination between attributes.

We envision eye-tracking data being collected systematically in online market research to augment

and improve the responses given by consumers.8

Finally, we believe that the present research offers several directions for future research. First,

our model may be extended to account for risk aversion, loss aversion, regrets, and other behavioral

phenomena (Hauser et al., 1993). Second, our model could provide a framework for developing and

testing new theories related to information search and choice. Third, additional physiological mea-

sures could be collected during preference measurement tasks. For example, commercial software

is already available to scan consumers’ faces and extract information from their facial expressions

(Teixeira et al., 2012). These additional measures could be incorporated in preference measurement

models to further improve predictive performance and reduce the required length of questionnaires.

Fourth, our bounded rationality framework may be used to shed new light on the impact of incen-

tives in preference measurement. In our framework, consumers trade off the cognitive costs related

to information processing with the benefits derived from their choices. Varying the incentives (e.g.,

how likely each choice is to be realized) would impact the expected benefits derived from each

choice, which should then impact how much information (and possibly which information) gets

processed by consumers during the task.

8All code used in this chapter is available upon request.
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Chapter 2

Attention, Information Processing

and Choice in Incentive-Aligned

Choice Experiments

2.1 Introduction

Choice experiments are used routinely in marketing, both by researchers and practitioners. A

perennial issue associated with choice experiments is reduced attention (e.g., Ding et al. (2005),

Liechty et al. (2005), and Netzer et al. (2008)). For example, Johnson (2008, p. 4) writes: “Although

respondents do seem to use simplification strategies when filling out questionnaires, they probably

work harder when making important real-life choices.”

The most common approach for keeping subjects motivated during choice experiments and

inducing them to behave more closely to how they would in real-life situation, is incentive alignment

(e.g., Ding et al. (2005, 2009), Ding (2007), Dong et al. (2010), Park et al. (2008), and Toubia

et al. (2012)). Incentive alignment induces truth-telling. Indeed, as long as respondents do not

derive utility from lying, they have an incentive to tell the truth if their answers may have real

consequences. For example, Ding (2007) showed that truth-telling is the Bayesian Nash equilibrium

in his incentive-aligned procedure. However, truth-telling is sometimes confused with realism by

researchers and practitioners. Incentive alignment is often viewed as the gold standard that ensures
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that a study reflects the real world.

In this chapter, we compare hypothetical choice tasks that have no probability of being realized,

probabilistically incentive-aligned choice tasks in which the respondent’s decision is realized with

some probability strictly greater than 0 and strictly less than 1, and deterministically incentive-

aligned choice tasks in which the decision is realized with probability 1. Incentive-aligned choice

experiments typically use probabilistically incentive-aligned tasks while real-life choices are typically

deterministically incentive-aligned (unless they involve gambles).

Based on the bounded rationality literature, we expect consumers to maximize not only the util-

ity derived from the option they choose but also the utility derived from the process. The cognitive

cost involved in processing choice-relevant information is the same irrespective of the incentives,

but the expected benefits derived from the choice are smaller when incentives are probabilistic

rather than deterministic. Therefore, if processing information is costly, subjects should process

less choice-relevant information under probabilistic incentives than under deterministic incentives.

One stream of research (Arkes et al., 1986; Camerer and Hogarth, 1999; Gneezy and Rusti-

chini, 2000; Heyman and Ariely, 2004; McGraw and McCullers, 1979) has suggested that modest

incentives may actually diminish a consumer’s intrinsic motivation, thereby reducing the amount

of attention paid to the task. This would lead consumers to attend to hypothetical questions more

carefully than they do to probabilistically incentive-aligned questions.

From a practical perspective, different levels of attention are likely to give rise to different

behaviors and choices and therefore to lead researchers and practitioners to conclusions that may

not hold in real-life situations.

We explore the link between incentives, attention, information processing, and behavior in choice

experiments. We use an experimental design in which the probability (prob) that the consumer’s

choice will be realized varies from 0 to 1. We measure attention using both response times and

eye-tracking data. We find a U-shaped relationship between the probability that the choice will be

realized and the level of attention paid. Probability of 0 and 1 generate similar levels of attention.

Probabilities between 0.01 and 0.99 generate levels of attention that are similar to each other but

smaller than the extreme cases (0 or 1). Eye-tracking data allows us to shed light on information

processing beyond attention. We find that respondents in conditions of probabilities of 0 and

1 allocate attention similarly across the choice-relevant information treatments. However, this
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does not imply that purely hypothetical questions (prob = 0) should be favored by researchers and

practitioners. Indeed, consumers’ decisions were different when presented with a purely hypothetical

choice versus a choice that had a positive probability of being realized.

The rest of the chapter is organized as follows. We review relevant prior literature in Section

2.2 and describe our data and results in Section 2.3. In Section 2.4, we conclude and discuss

implications for practice and research and possible remedies to the issues raised by our findings.

2.2 Prior Work

2.2.1 Incentive-aligned Choice Experiments

Incentive-aligned choice experiments are usually considered the gold standard in economics, psychol-

ogy and marketing. Our experiment is conducted in the context of studies of preference measure-

ment which increasingly rely on incentive-aligned choice experiments. Ding et al. (2005) proposed

an incentive-aligned conjoint mechanism to offer additional motivation to respondents to provide

truthful input and showed that it increased external validity in choice-based conjoint (CBC) ex-

periments. Ding (2007) extended this method by allowing researchers to reward respondents from

a limited set of products when some of the alternatives in all choice sets were not available as

possible rewards. While Ding’s (2007) model required estimates of price sensitivity, Dong et al.

(2010) proposed an alternative approach based on an inferred rank order of the potential reward

products that yielded similar predictive performance.

Other incentive-aligned preference measurements have been developed as well. Ding et al.

(2009) proposed an online incentive-aligned method inspired by barter markets. Park et al. (2008)

introduced a mechanism to elicit preferences using a web-based upgrading method (i.e., respon-

dents would state their willingness to pay for an upgrade, and the transaction would be realized

if the randomly generated price was smaller than stated willingness to pay). Toubia et al. (2012)

developed and tested an incentive-aligned conjoint poker game to measure preferences.

All of those incentive-aligned preference measurement methods (like most other incentive-

aligned choice experiments in the marketing literature) follow an approach known in economics

as the random lottery mechanism (RLM). In an RLM, each choice has some probability of being

realized and at most one choice is realized per subject. In other words, RLM implies probabilis-
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tically incentive-aligned tasks (i.e., the respondent’s decision in each task is realized with some

probability strictly greater than 0 and strictly less than 1). On the other hand, as previously

mentioned, real-life choices are typically deterministically incentive-aligned (the decision is realized

with probability 1).

2.2.2 Probabilistic Incentives vs. Deterministic Incentives

An implicit assumption typically made in incentive-aligned choice experiments is that respondents

are fully rational. They therefore systematically process all the choice-relevant information (i.e.,

descriptions of the choice alternatives) and choose the alternative that provides the greatest utility.

However, the literature on bounded rationality suggests that this assumption is not necessarily

valid. Simon (1955) argued that the assumption that people process all the information is hardly

satisfied given the complexity of a task environment and the decision-maker’s limited computational

capabilities. Payne et al. (1988, 1992, 1993) further argued that preferences are of a constructive

nature, partly due to conflicting decision goals (e.g., maximizing choice accuracy vs. minimizing

effort) and partly to decision complexity.

In the economics literature, Wilcox (1993) conceptualized the behavior of boundedly rational

decision-makers in an RLM that uses a decision cost model according to which subjects trade off

the expected utility related to their choices with the (cognitive) cost derived of the choice process

itself. The cognitive cost is not a function of the probability that each choice will be realized.

However, the expected utility from each choice consists of the (possibly weighted) probability that

the choice will be realized multiplied by the utility of the chosen option. Therefore, the expected

utility is smaller in probabilistically incentive-aligned choices than in deterministically incentive-

aligned choices. Harrison (1994) and Smith and Walker (1993) argued that, in an RLM, the

opportunity cost of deviating from the rational prediction in each choice is often negligible because

it is weighted by the modest probability that the choice will be realized. Experimentally, Beattie

and Loomes (1997) showed that the number of violations of rationality (arguably, a symptom of

reduced effort) is smaller for real choices than for choices realized with some probability strictly

less than 1. Therefore, we predict that consumers will process less information in probabilistically

incentive-aligned choice questions than in deterministically incentive-aligned choice questions. This

prediction is consistent with a large literature in economics that has shown that, when incentives are



CHAPTER 2. ATTENTION, INFORMATION PROCESSING AND CHOICE IN
INCENTIVE-ALIGNED CHOICE EXPERIMENTS 42

offered, the amount of effort tends to be monotonically increasing in the amount of the incentives

(Camerer and Hogarth, 1999; Gneezy and Rustichini, 2000; Jenkins et al., 1998).

One limitation of extant research on the impact of incentives on effort is that effort is usually

not measured directly. Economists often use deviations from rational behavior as an indicator of

reduced effort (e.g., Beattie and Loomes (1997)). Some researchers have used response times as a

proxy for effort (Wilcox, 1993). Other notable research has documented physical manifestations of

effort induced by greater incentives by measuring pupil dilations (Kahneman and Peavler, 1969)

or using Mouselab (Stone and Schkade, 1994). In this chapter, we focus on attention, information

processing, and choice rather than on deviations from normative behavior. We use hypothetical,

probabilistic, and deterministic incentives and measure attention and information processing using

both response-time and eye-tracking data.

2.2.3 No Incentive vs. Probabilistic Incentives

As previously discussed, many studies have suggested that, conditional on offering incentives,

greater incentives usually induce higher effort. However, several studies have compared the im-

pact of offering modest incentives to that of offering no incentive at all and found that effort can

actually be greater in the absence of incentives (Arkes et al., 1986; Camerer and Hogarth, 1999;

Heyman and Ariely, 2004; McGraw and McCullers, 1979). For example, Gneezy and Rustichini

(2000) found that subjects who were offered $0.10 per correct answer on an IQ test performed worse

than subjects who were not rewarded for their performance. However, subjects who were offered

greater incentives did perform better. Heyman and Ariely (2004) found that subjects exerted less

effort in an online game when they were compensated at a low rate ($0.10) than when they received

no compensation. (The authors found that performance was best when subjects were compensated

at a high rate of $4.00.) One explanation for this phenomenon is that subjects are intrinsically

motivated to exert effort when monetary rewards are absent and that the presence of incentives

undermines intrinsic motivation (Camerer and Hogarth, 1999). A variant of this explanation is

that two types of markets exist that determine the link between effort and payment: monetary and

social (Heyman and Ariely, 2004). Offering incentives shifts the transaction between the researcher

and the consumer from a social market (in which the consumer is doing the researcher a “favor”)

to a monetary one (in which the consumer “works” for the researcher and responds to the amount
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of payment offered in compensation for effort). Therefore, it is not unreasonable to expect that

consumers pay less attention in choice experiments that are probabilistically incentive-aligned than

in choice experiments that are purely hypothetical. However it is an empirical question whether

this latter effect would be found in the type of choice experiments used in marketing.

In summary, the literature suggests that consumers pay less attention to relevant information

in probabilistically incentive-aligned choice experiments than in deterministically incentive-aligned

ones. The literature also suggests that consumers may pay less attention when incentives are proba-

bilistic than when no incentives are offered at all. However, to the best of our knowledge, no study

has compared information processing in choice experiments involving no incentive, probabilistic

incentives, and deterministic incentives. The experimental design described in the next section fills

that gap; it uses both response-time and eye-tracking data as measures of attention and information

processing in analyzing the impact of incentives on choices.

2.3 Experimental Design

We collected experimental data to explore the relationship between incentives, attention and in-

formation processing in choice experiments and the impact of those relationships on the choices

made by consumers. We focused on the typical marketing context of preference measurement.

Each respondent in our experiment chose one of eight products (snack boxes). We asked a single

question per respondent because the choices had to be deterministically incentive-aligned for some

respondents. Choices realized with probability of 1 will affect a consumer’s response to any subse-

quent choice (e.g., the consumer may seek variety in subsequent choices). In the experiment, each

respondent received 3 euros as compensation for participation. With some probability between

0 and 1, this money was automatically used to purchase the respondent’s chosen product. The

amount of attention spent by each respondent during the choice task was measured using response

times and eye tracking.

This study compares hypothetical, probabilistic, and deterministic incentives in the context of

choice experiments and is one of only a few studies that have been able to measure the impact

of incentives on information processing directly using eye-tracking data and to link information

processing to choice.
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2.3.1 Methods

We tested our hypothesis in the context of online preference measurement and selected snack boxes

as the product, which allowed us to offer customized products to respondents. Each snack box

contained five components, giving rise to six attributes (including price) with four levels each (all

of the products were available in the local market where the experiment was conducted): a drink

(a can of Coke, a can of Fanta, a box of apple juice, or a box of Chocomel), a mini candy (a mini

M&Ms, Snickers, Toblerone, or Mars), instant soup (tomato, chicken, goulash, or pea), sandwich

spread (apple, honey, chocolate paste, or peanut butter), a healthy snack (Liga evergreen, Sultana,

Mueslibar, or Fruitbar), and price (1.50, 2.00, 2.50, or 3.00 euros). Figure 2.1 provides a screenshot

of the feature description provided to respondents.
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Figure 2.1: Screenshot of the feature description provided to respondents.

Our experiment followed a between-subject design with five conditions that varied the prob-

ability that the respondent’s choice would be realized from 0 to 1. In the prob = 0 condition,

respondents received 3 euros for participation and did not received a snack box. In the prob =

0.01, 0.50, and 0.99 conditions, the respondent received his or her preferred alternative with prob-

ability 0.01, 0.50, and 0.99 respectively. Finally, in the prob = 1 condition, the respondent received

the preferred alternative with probability 1. Whenever a respondent received a snack box, she or

he also received the difference between 3 euros and the price of the snack box. Therefore, the total



CHAPTER 2. ATTENTION, INFORMATION PROCESSING AND CHOICE IN
INCENTIVE-ALIGNED CHOICE EXPERIMENTS 46

payment was held constant at 3 euros for all conditions.

Set-up

Respondents were recruited at a large European university. They participated in the survey in

the university’s behavioral lab while monitored by a free-standing, nonintrusive Tobii R© 2150 eye

tracker sampling infrared corneal reflections at 50Hz with a 0.35◦ spatial resolution and accuracy

of 0.5◦. The stimuli were presented on a 21-inch LCD monitor with a display resolution of 1,600 by

1,200 pixels. The positions of the left and right eyes were recorded separately (van der Lans et al.,

2011).

Procedure

All respondents who took the survey used the online platform developed by the author. The

experiment consisted of the following steps. First, the online platform randomly assigned each

respondent to one of the five conditions (prob = 0, 0.01, 0.5, 0.99, and 1). Instructions were then

provided and respondents completed a short quiz to ensure that they understood the instructions.

A practice question followed involving one choice task with eight alternatives, followed by the main

task, which consisted of another choice task with eight alternatives. The alternatives in each task

were chosen randomly (once for all respondents; all respondents saw the same set of alternatives)

subject to the constraint that each level of each attribute should be present in at least one of

the alternatives. Figure 2.2 shows the interface in the main task. The descriptions of the eight

alternatives were presented in a matrix format. We used text rather than pictures to eliminate any

effect of longer fixation durations due to color contrast (Wedel and Pieters, 2008). We also made

sure that the text in each cell of the matrix was vertically and horizontally distant enough from

the text in the other cells so that each fixation only enabled respondents to identify one piece of

information within the region of interest (ROI). Underwood and McConkie (1985) showed that the

area from which words can be identified in a given fixation generally does not exceed seven or eight

letter spaces to the right of the fixation. Pollatsek et al. (1993) conducted two experiments found

no evidence that readers obtain semantic information from below the line or text. After completion

of the main task, the reward received by each respondent was determined by the online system

according to the incentive scheme in that condition and the respondent’s choice. The reward was

distributed to the respondent upon leaving the lab.

Dependent Variables
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Response times for each respondent in each question were collected automatically in the database

using time stamps and used as one measure of the amount of attention respondents paid to each

question. Response time has long been studied as a variable associated with aspects of memory,

attitudes, and decision-making (Aaker et al., 1980; Fazio and Olson, 2003; MacLachlan and Myers,

1983; MacLachlan et al., 1979; Tyebjee, 1979). Although response times can account for multiple

latent factors such as deliberation, accessibility of memory, and conflict experience, it is one (noisy)

way to measure attention.

Our second set of dependent variables came from the eye-tracking data. Eye tracking has

become increasingly popular as a tool for directly measuring attention and involvement in various

marketing contexts (Chandon et al., 2009; Pieters et al., 1999, 2002; Pieters and Warlop, 1999;

Pieters and Wedel, 2004; Rosbergen et al., 1997; van der Lans et al., 2008a,b; Wedel and Pieters,

2000, 2008; Wedel et al., 2008). Eye tracking has also been used in the literature on preference

measurement, albeit to address different questions (Musalem et al., 2013; Shi et al., 2013; Stüttgen

et al., 2012; Toubia et al., 2012; Yang et al., forthcoming).

Eye-tracking data are composed of fixations and saccades based on eye-fixation duration (Wedel

and Pieters, 2000). Fixations represent time periods when respondents fix their eyesight on a specific

place; saccades represent eye movements between two fixations. In our study, fixations and saccades

were differentiated by van der Lans et al.’s (2011) velocity-based algorithm. Data on consecutive

fixations in the same cell were collapsed to one fixation since they were likely caused by respondents

randomly moving their eyes in a very small range while blinking (nonconsecutive fixations in the

same cell were recorded as distinct fixations).

We defined the ROI for each piece of information as the area within the boundary of a cell in

a matrix of the number of attributes × the number of alternatives containing the choice-relevant

information (see Figure 2.2).
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Our basic measure of attention for the eye-tracking data was the proportion of information

processed by each respondent, i.e., the proportion of cells for which at least one eye fixation was

observed. Similar results were obtained when taking multiple visits to the same cell and/or the

fixation duration into account (details are presented in Appendix A.3).

Finally, another dependent variable was the choice of snack box made by each respondent and

the choice share of each alternative.

2.4 Results

We collected complete data on 86 respondents1 across the five conditions. We now analyze our

response-time and eye-tracking data and the choices made by these respondents.

2.4.1 Response Time

The average response time on the main choice task for all conditions was 26.87 seconds. Figure

2.3 shows the distribution of the response times. Figure 2.4 shows the average response time in

each condition (as a function of the probability (prob) that the choice will be realized). We find

a U-shaped relationship between this probability and response time; respondents tended to spend

more time on questions with deterministic incentives (prob = 1) and no incentives (prob = 0)

than on questions with probabilistic incentives (prob = 0.01, 0.5, 0.99). Moreover, there appears

to be little difference in the response times for the three probabilistic conditions (prob = 0.01,

0.5 and 0.99). Since the distribution of response time was skewed, we compared response times

across conditions using nonparametric ranksum tests. None of the pairwise differences between the

probabilistic conditions (prob = 0.01, 0.5 and 0.99) was statistically significant.2 Therefore, we

1 We recruited 120 respondents to participate in our study. We first looked at the raw eye-fixation data from each

respondent during the study and detected time stamps without any affiliation of eye-fixation position as missing data.

The respondents with missing data were also confirmed through a video of the choice experiment interface mapped

with eye-tracking data during the study. We found that 34 of the 120 respondents the eye fixations were not recorded

properly and excluded their eye tracking data. To have a consistent sample in our analysis for attention, information

processing, and choices, we also excluded analysis of the response-time and choice data for those 34 respondents even

though they were properly recorded.

2 The median of the response time under prob = 0.01, 0.5, and 0.99 is 23.5, 18.0, and 19.0 seconds respectively.

The p-values were 0.32, 0.63, and 0.99 for ranksum tests for between prob = 0.01 vs. prob = 0.5, prob = 0.01 vs.
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group these three conditions and compared the median response time across the conditions (19.0

seconds) to the median response times under prob = 0 (28.0 seconds) and prob = 1 (25.0 seconds).

We find that respondents spent significantly less time answering a question when the incentives

were probabilistic (compared to when there was no incentive (p-value < 0.03) and when the incen-

tives were deterministic (p-value < 0.04)). Therefore, the analysis of response time confirms our

prediction that choices associated with probabilistic incentives generate less attention than choices

associated with deterministic incentives. Moreover, we find evidence that questions involving prob-

abilistic incentives may generate less attention than purely hypothetical questions in the type of

choice experiments used in marketing. The difference between the no-incentive condition and the

deterministic incentive condition is not significant (p-value = 0.64).

Figure 2.3: Distribution of response times across all respondents.

prob = 0.99, and prob = 0.5 vs. prob = 0.99 respectively.
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Figure 2.4: Average response time vs. probability that choice will be realized.

2.4.2 Eye Tracking

We now turn to eye-tracking data as a more direct measurement of attention. The average pro-

portion of information visited across respondents was 53.08%. Figure 2.5 shows the distribution

of the proportion of information visited for all respondents. Figure 2.6 shows the distribution of

the number of visits (i.e., fixation) per piece of information (each piece of information is one cell

that contains the level of one attribute for one alternative) across all pieces of information and

respondents. That is, the bars in the histogram in Figure 2.6 add up to the number of respondents

multiplied by the number of pieces of information. These two figures confirm earlier findings that

a substantial proportion of choice-relevant information is not processed in preference measurement

tasks and that ROIs with at least one fixation from a respondent are likely to have multiple fixations

by the same respondent (Toubia et al., 2012; Yang et al., forthcoming).
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Figure 2.5: Distribution of proportion of information visited across all respondents.

Figure 2.6: Distribution of the number of visits per piece of information.

In Figure 2.7 we plot the average proportion of information visited as a function of the proba-

bility (prob) that the choice will be realized. As with response time, the relationship between prob

and the proportion of information visited is U-shaped. Respondents processed less information in

probabilistic incentive-aligned questions than they did when there was no incentive and when the
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incentive was deterministic. We compared the proportion of information visited across conditions

using t-tests (similar results were obtained with nonparametric tests but t-tests seemed appropriate

because the distribution of the proportion of information visited is close to normal). We find no

significant difference in the proportion of information visited between the three probabilistic con-

ditions (prob = 0.01, 0.5, and 0.99) and therefore group these conditions together.3 The average

proportion of information visited under no incentive, probabilistic incentives, and deterministic

incentives was 0.59, 0.49, and 0.60 respectively. As with response time, the proportion of informa-

tion visited is significantly lower in the probabilistic conditions than in the deterministic condition

(p-value < 0.03) and in the no-incentive condition (p-value < 0.04). Again, there is no significant

difference in the proportion of information visited between the no-incentive and the deterministic

conditions (p-value = 0.97). Similar results were obtained when using the total number of fixations

per question as the measure of attention or the total fixation duration (see Appendix A.3).

Figure 2.7: Average proportion of information visited vs. probability that choice will be realized.

Therefore, the results using eye-tracking data confirm our results from the response-time data.

Eye-tracking data allow us to take our analysis one step further by providing information on which

3The mean of proportion of information visited is 0.49, 0.47, and 0.50 when prob = 0.01, 0.5, and 0.99 respectively.

p-value = 0.77, 0.85, and 0.61 for the comparison of prob = 0.01 vs. prob = 0.5, prob = 0.01 vs. prob = 0.99, and

prob = 0.5 vs. prob = 0.99 respectively.
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information was processed by respondents in different conditions. More precisely, we can study

whether probabilistic incentives only reduce the overall level of attention or also distort how con-

sumers process information. For example, we can study the impact of incentives on the number of

attributes processed by subjects and on the number of alternatives processed.

Before analyzing the impact of incentives on the number of attributes and alternatives processed

by respondents, we explore whether there is evidence for attribute-based and alternative-based

processing in our data. Figure 2.8 plots the distribution of the number of attributes visited (at least

one fixation) per alternative across all alternatives and respondents. Figure 2.9 plots the number

of alternatives visited per attribute across all attributes and respondents. These figure suggests

that consumers process the information presented to them using a mixture of attribute-based and

alternative-based processing. Indeed, pure attribute-based searches would lead to some attributes

not being visited at all, and pure alternative-based searches would lead to some alternatives not

being visited at all. We find that an alternative (attribute) is completely ignored only 6.83%

(1.16%) of the time.

Figure 2.8: Distribution of the number of attributes visited per alternative (across all alternatives

and respondents).
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Figure 2.9: Distribution of the number of alternatives visited per attribute (across all attributes

and respondents).

Based on the evidence just presented, we analyzed the impact of incentives on the number

of attributes and on the number of alternatives processed by respondents using two multilevel

mixed-effects ordered logistic regressions. In the first, the dependent variable was the number

of alternatives visited in each attribute by each respondent (i.e., the number of observations in

the regression was the number of respondents × the number of attributes). In the second, the

dependent variable was the number of attributes visited in each alternative by each respondent

(i.e., the number of observations in the regression was the number of respondents × the number of

alternatives). In each case, the ordered logistic regression controlled for the probability conditions

with two dummy variables associated with 0 < prob < 1 (i.e., prob = 0.01, 0.5, 0.99) and prob

= 1 using prob = 0 as the baseline. We also added fixed effects for the six attributes in the first

regression and the eight alternatives in the second. We took the individual effects as random and

assumed that the individual effects follow identical independent normal distribution. The results

are presented in Table 2.1.
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Table 2.1: Number of alternatives (attributes) visited in an attribute (alternative) vs. probability

that choice will be realized - mixed effects ordered logistic regression results.

(a) Number of alternatives visited in an attribute

Threshold 0-1 -9.01*

Threshold 1-2 -5.88*

Threshold 2-3 -4.35*

Threshold 3-4 -3.24*

Threshold 4-5 -2.59*

Threshold 5-6 -1.85*

Threshold 6-7 -1.24*

Threshold 7-8 -0.24

0 < prob < 1 -0.95*

prob = 1 0.01

Attribute 2 -1.81*

Attribute 3 -2.62*

Attribute 4 -3.51*

Attribute 5 -3.65*

Attribute 6 -3.16*

Random effects 1.52

of individual (stdev)

(b) Number of attributes visited in an alternative

Threshold 0-1 -3.94*

Threshold 1-2 -1.97*

Threshold 2-3 -1.04*

Threshold 3-4 -0.35

Threshold 4-5 0.18

Threshold 5-6 0.82*

0 < prob < 1 -0.71*

prob = 1 0.05

Alternative 2 -0.39

Alternative 3 -0.37

Alternative 4 -0.22

Alternative 5 -0.32

Alternative 6 -0.22

Alternative 7 -0.91*

Alternative 8 -0.96*

Random effects 1.07

of individual (stdev)

Note: * denotes a coefficient with p-value < 0.05.

We find that respondents processed significantly fewer alternatives per attribute and fewer

attributes per alternative under probabilistic incentives than under no incentives (both p-values <

0.05) and deterministic incentives (both p-values < 0.06). There is no significant difference in the

number of alternatives visited per attribute or in the number of attributes visited per alternative

for no incentive and deterministic incentives (both p-values > 0.90). This suggests that incentives

influenced both the number of alternatives visited per attribute and the number of attributes visited

per alternative in the same way that they influenced the total amount of information processed



CHAPTER 2. ATTENTION, INFORMATION PROCESSING AND CHOICE IN
INCENTIVE-ALIGNED CHOICE EXPERIMENTS 57

and response times.

We can also analyze the eye-tracking data at the level of each cell in the matrix containing

the choice-relevant information (see Figure 2.2). Table 2.2 shows the share of fixations for each

cell of the matrix across all conditions. For example, 0.03 in the first cell in Table 2.2 means

that 3% of the fixations in the prob = 0 condition were made to the cell that contained the drink

attribute for the first alternative. We compared the fixation shares for all conditions using chi-

square tests of independence. We find that all pairwise comparisons are significant (p-value <

0.03) except the comparison between prob = 0 and prob = 1 (p-value = 0.94). This suggests that

no incentive and deterministic-incentive alignments (the extreme conditions) not only raise the same

level of attention but also lead to a similar spreading of attention across all of the choice-relevant

information. Probabilistic incentives lead to different information processing patterns.4

4We also looked into the shares of fixation duration for the 48 pieces of information across different conditions and

reached a similar conclusion. We applied a different statistical test due to the nature of the fixation-duration data.

The results are available from the author upon request.
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Table 2.2: Share of fixations in each piece of information across conditions.

Probability that choice realized

Alternatives Attributes 0 0.01 0.5 0.99 1

Drinks 0.03 0.04 0.05 0.04 0.04

Candy 0.02 0.03 0.04 0.03 0.02

Alternative 1 Instant Soup 0.02 0.02 0.03 0.02 0.02

Spread 0.01 0.02 0.02 0.02 0.02

Healthy Snack 0.02 0.02 0.03 0.02 0.02

Price 0.02 0.02 0.02 0.02 0.02

Drinks 0.04 0.04 0.05 0.04 0.03

Candy 0.02 0.02 0.03 0.02 0.02

Alternative 2 Instant Soup 0.01 0.02 0.01 0.02 0.01

Spread 0.01 0.01 0.01 0.02 0.01

Healthy Snack 0.01 0.00 0.02 0.02 0.01

Price 0.01 0.01 0.01 0.02 0.01

Drinks 0.04 0.05 0.05 0.03 0.04

Candy 0.03 0.03 0.04 0.02 0.03

Alternative 3 Instant Soup 0.02 0.02 0.02 0.03 0.02

Spread 0.02 0.02 0.00 0.01 0.02

Healthy Snack 0.01 0.01 0.01 0.01 0.01

Price 0.02 0.00 0.02 0.02 0.02

Drinks 0.03 0.04 0.05 0.03 0.03

Candy 0.03 0.02 0.04 0.03 0.03

Alternative 4 Instant Soup 0.02 0.03 0.03 0.02 0.01

Spread 0.01 0.01 0.02 0.02 0.01

Healthy Snack 0.02 0.01 0.01 0.01 0.01

Price 0.03 0.01 0.02 0.03 0.02

Drinks 0.04 0.04 0.04 0.02 0.04

Candy 0.03 0.02 0.03 0.02 0.04

Alternative 5 Instant Soup 0.03 0.03 0.02 0.02 0.02

Spread 0.02 0.02 0.02 0.01 0.02

Healthy Snack 0.02 0.01 0.01 0.01 0.02

Price 0.04 0.01 0.01 0.02 0.02

Drinks 0.03 0.04 0.03 0.02 0.04

Candy 0.02 0.02 0.02 0.03 0.03

Alternative 6 Instant Soup 0.02 0.02 0.02 0.03 0.02

Spread 0.02 0.02 0.01 0.02 0.02

Healthy Snack 0.01 0.02 0.01 0.02 0.03

Price 0.02 0.02 0.01 0.03 0.03

Drinks 0.03 0.03 0.03 0.02 0.02

Candy 0.01 0.02 0.02 0.01 0.02

Alternative 7 Instant Soup 0.01 0.02 0.02 0.02 0.01

Spread 0.01 0.02 0.02 0.01 0.01

Healthy Snack 0.01 0.01 0.02 0.01 0.01

Price 0.02 0.01 0.01 0.02 0.02

Drinks 0.02 0.02 0.02 0.03 0.02

Candy 0.01 0.03 0.01 0.02 0.02

Alternative 8 Instant Soup 0.02 0.03 0.01 0.02 0.02

Spread 0.01 0.01 0.01 0.01 0.01

Healthy Snack 0.01 0.02 0.01 0.01 0.01

Price 0.02 0.01 0.01 0.02 0.01
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2.4.3 Choice Shares

Our analysis of the response-time and eye-tracking data documents that respondents in our prefer-

ence measurement task paid less attention under probabilistic incentives than under deterministic

incentives and no incentive. Moreover, both the amount of attention and the allocation of atten-

tion across the choice-relevant information were similar for no incentive and deterministic incentives

which begs a question. If purely hypothetical (i.e., not incentive-aligned) choice experiments and

deterministically incentive-aligned choice experiments induce similar information processing, are

hypothetical choice experiments best suited to predict real-life choices? To answer this question,

we now turn to a comparison of choice shares across conditions.

Table 2.3 reports choice shares for the eight alternatives (presented in Figure 2.2) across all

conditions. We compared the shares across conditions using Spearman’s rank correlation, as re-

ported in Table 2.4. We find that the shares in the prob=0 condition are not highly correlated with

the shares in the prob = 1 condition (ρ = 0.40, p-value = 0.32). We also see that the shares in

the probabilistic conditions are more highly correlated with those in the deterministic condition:

prob=0.01 and prob=0.99 are both significantly correlated with prob = 1 (ρ = 0.98 and 0.79 re-

spectively, p-value < 0.01 and 0.03 respectively) which prob = 0.5 has a lower correlation (ρ =

0.57, p-value = 0.14).

Table 2.3: Choice shares of different alternatives across conditions.

Attribute Choice share when prob=

Alternative Drink Candy Instant Soup Spread Healthy Snack Price 0 0.01 0.5 0.99 1

1 Apple Juice M&M’S Pea Peanut Butter Liga Evergreen 2.00 Euro 0.14 0.19 0.18 0.18 0.20

2 Chocomel Snickers Pea Honey Fruitbar 2.50 Euro 0.05 0.00 0.06 0.00 0.00

3 Coke Mars Pea Apple Spread Sultana 1.50 Euro 0.14 0.00 0.06 0.06 0.00

4 Coke Snickers Goulash Chocolate Paste Sultana 2.00 Euro 0.05 0.06 0.12 0.18 0.07

5 Coke M&M’S Chicken Apple Spread Sultana 1.50 Euro 0.38 0.19 0.24 0.12 0.20

6 Chocomel Toblerone Pea Chocolate Paste Fruitbar 1.50 Euro 0.10 0.25 0.12 0.24 0.33

7 Apple Juice Mars Tomato Chocolate Paste Sultana 3.00 Euro 0.00 0.13 0.18 0.12 0.07

8 Fanta Snickers Tomato Peanut Butter Mueslibar 1.50 Euro 0.14 0.19 0.06 0.12 0.13
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Table 2.4: Spearman’s rank correlations between choice shares across conditions.

Probability that choice will be realized

0 0.01 0.5 0.99 1
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0 1.00 0.36 0.15 -0.01 0.40

0.01 1.00 0.47 0.73* 0.98*

0.5 1.00 0.45 0.57

0.99 1.00 0.79*

1 1.00

Note: * denotes a correlation with p-value < 0.05.

Therefore, our analysis of the choice data suggests that hypothetical and deterministic incentive

questions induce similar information processing but that consumers tend to choose differently given

the information they process when questions are hypothetical. Therefore, we cannot conclude

that hypothetical questions lead to the same choices as deterministically-aligned questions or that

hypothetical questions should be used in practice. The source of the difference in the choice shares

despite the similarities in information processing is a topic for further research. Memory encoding

in hypothetical and incentive-aligned choices may be different, leading to different memory traces

despite similar fixations (Wedel and Pieters, 2000). Also, the effort spent by consumers to compute

their preferences and reach a decision given the information processed may vary as a function

of incentives. According to the psychology literature, there should be variations in how choices

are construed as a function of incentives. Indeed, hypothetical choices should be more distant

psychologically and thus be construed at a higher level than incentive-aligned choices (Trope and

Liberman, 2010). Intuitively, consumers may choose based on “abstract” preferences in hypothetical

choices (e.g., “I like Coke”) and use more concrete considerations when choices are incentive-aligned

(e.g., “right now I feel like having a Fanta”). Finally, social desirability has been shown to bias

hypothetical choices (Ding et al., 2005).

Regarding the comparison of choice shares for probabilistic and deterministic incentives, our

evidence is mixed. Two of the three probabilistic conditions have a significant correlation with the

deterministic condition. The null effect found in the other probabilistic condition may be a conse-

quence of our sample size, and we hope that future research will provide additional comparisons of
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choice shares under probabilistic and deterministic incentives.

2.5 Conclusions

In this chapter, we explore the relationship between incentives, attention, information processing

and choice in the context of choice experiments. Four features make our study unique: ( i) we

compare purely hypothetical, probabilistic, and deterministic incentives; ( ii) we jointly study the

impact of incentives on attention, information processing, and choice; (ii i) we use eye-tracking data

as a direct measure of information processing; and (iv) we use the typical marketing context of

preference measurement.

We find a U-shaped relationship between the probability that a choice will be realized and the

level of attention. Purely hypothetical choices (prob = 0) and deterministic choices (prob = 1)

generate similar levels of attention and information processing. Choices that are to be realized

with probabilities between 0.01 and 0.99 generate levels of attention that are similar to each other

but smaller than the extreme cases. This result shows that incentive-alignment as it is typically

implemented in choice experiments (using probabilistic incentives) does not motivate respondents

to process as much information as they would in deterministic choices. While the utility related

to processing choice-relevant information is the same irrespective of the probability that the choice

will be realized, the expected utility derived from the chosen alternative is less in probabilistically

incentive-aligned choices. As a result, boundedly rational consumers tend to process less informa-

tion in probabilistically incentive-aligned choices than in deterministically incentive-aligned choices.

In other words, although probabilistic incentives are enough to induce truth-telling, they do not

appear to be enough to induce consumers to process choice-relevant information as carefully as they

would if the choices were real. On the other hand, when incentives are absent, consumers appear

to be intrinsically motivated to exert effort, leading to levels of attention that are similar to those

in deterministic choices. We further provide evidence that attention was allocated similarly for no

incentive and deterministic incentives. However, the choices that consumers made were different

when there were no incentives.

Probabilistically incentive-aligned choice experiments are considered the gold standard by prac-

titioners and researchers. Therefore, our findings have broad implications for theory and practice
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since they suggest that typical incentive-aligned choice experiments do not induce consumers to

behave like they would when making real-life decisions. Hypothetical choice questions may in-

crease the level of attention but give rise to different answers and thus they do not offer a viable

alternative. Deterministically incentive-aligned choice questions induce biases when multiple ques-

tions of a similar type must be asked and are impractical and expensive. Thus hypothetical and

deterministic choice questions may not be viable substitutes for probabilistic choice questions in

practice. Nonetheless, our results raise serious questions about the accuracy of predictions based

on probabilistic questions.

We argue that at least two types of solutions can be found in the recent literature and devel-

oped further in future research. The first would be to model the information acquisition process

formally as a function of incentives, calibrate such a model using probabilistically incentive-aligned

experiments, and predict real-life choices using counterfactual simulations. The model proposed by

Yang et al. (forthcoming) may provide a building block for such an endeavor. However, our find-

ings suggest that choices are not driven solely by information processing since we find that similar

information processing can lead to different choices. Therefore, modeling information processing

as a function of incentives may not be adequate to predict choices under various incentive schemes.

A second potential approach is to develop choice experiments that increase respondents’ intrinsic

motivation to provide thoughtful information. This might be achieved through gamification. Some

examples previously mentioned include Ding et al. (2009), Park et al. (2008), and Toubia et al.

(2012).
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Appendix A

Appendices

A.1 Illustrative Example for Chapter 1

We illustrate our state variables and the computation of product-related utility, using a simple

example. We assume one attribute (I=1) with three levels (L=3), and two alternatives per choice

question (J=2). We assume that alternative 1 has attribute 1 at level 1 and alternative 2 has

attribute 1 at level 2.

We have I0
1 =








1 0

0 1

−1 −1








, and the partworths for the first attribute may be represented as:

β1 =




β11

β12



 or β̃1 =








β11

β12

−β11 − β12








.

Before the first fixation the state variables have the following values:

-p=∅

-n1,1 = n1,2 = 0

And we have the following:

-w1,1 = w1,2 = [13 , 1
3 , 1

3 ]

-The expected product-related utility of alternative 1 is: w1,1β̃1 = 0

-The expected product-related utility of alternative 2 is: w1,2β̃1 = 0

Suppose that the first fixation is to cell (1, 1) corresponding to attribute 1 of alternative 1. Then
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the state variables evolve to:

-p=(1, 1)

-n1,1 = 1

-n1,2 = 0

And we have the following:

-w1,1 = [ exp(η)
2+exp(η) ,

1
2+exp(η) ,

1
2+exp(η) ]

-w1,2 = [13 , 1
3 , 1

3 ]

-The expected product-related utility of alternative 1 is now: w1,1β̃1 = exp(η)−1
2+exp(η)β11

-The expected product-related utility of alternative 2 is now: w1,2β̃1 = 0

Suppose now that after t = 15, 10 fixations have been made to cell (1, 1) and 5 fixations have

been made to cell (1, 2), and that the last fixation was on cell (1, 2). Then we have:

-p=(1, 2)

-n1,1 = 10

-n1,2 = 5

And we have the following:

-w1,1 = [ exp(10η)
2+exp(10η) ,

1
2+exp(10η) ,

1
2+exp(10η) ]

-w1,2 = [ 1
2+exp(5η) ,

exp(5η)
2+exp(5η) ,

1
2+exp(5η) ]

-The expected product-related utility of alternative 1 is now: w1,1β̃1 = exp(10η)−1
2+exp(10η)β11

-The expected product-related utility of alternative 2 is now: w1,2β̃1 = exp(5η)−1
2+exp(5η)β12
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A.2 Simulation for Chapter 1

A.2.1 Data generation

We simulated a situation similar to our experiment. We used the same number of attributes and

levels and the same experimental design. We simulated 70 participants completing the first 16

choice questions from the main task. For each participant and each choice question, we simulated

the eye movements and the choice based on the learning parameter η, a set of individual-level search-

related utility parameters θn = [θ0n, θ1n, θ2n, θ3n] defined as in Equation (4), and 18 individual-level

partworths βn .

The learning parameter was set to η = 3. All individual-level parameters were drawn from a

multivariate normal distribution: [θn, βn] ∼ N([θ0, β0],




Λθ 0

0 Λβ



), where Λθ was a diagonal matrix

with diag(Λθ) = [0.1, 0.01, 0.1, 0.1], and Λβ was the identity matrix. The average values of θn and

βn are reported in the table below.

A.2.2 Results

We calibrated our proposed model on the simulated dataset using the estimation procedure de-

scribed in section 2.3. We performed a grid search on the parameter η by calibrating the model

with η = 0 to 5 with increments of 1. The true value η = 3 was accurately selected based on the

log-marginal density.

The average estimates of the relevant parameters are reported in the table below, together

with 95% credible intervals. We see that all the search-related parameters as well as 16 out of 18

partworths are contained within the 95% credible intervals. The two partworths that fall outside

of the 95% credible interval (1.9 GHz and 1 year Dell support) are still reasonably well recovered.
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Table A.1: Simulation results

True Estimated 95% credible

average value average value interval

θ0 1.99 1.94 [1.79, 2.06]

Search-related θ1 -0.07 -0.07 [-0.09, -0.06]

parameters θ2 -0.97 -0.99 [-1.02, -0.97]

θ3 0.70 0.74 [0.70, 0.79]

1.6 Ghz -2.98 -3.28 [-3.87, -2.65]

Processor speed 1.9 Ghz -1.03 -0.63 [-0.99, -0.33]

2.7 Ghz 1.08 0.80 [0.30, 1.29]

26 cm -3.05 -2.95 [-3.41, -2.63]

Screen size 35.6 cm -1.14 -1.44 [-1.79, -1.04]

40 cm 0.80 1.06 [0.65, 1.45]

160 GB -2.83 -3.09 [-3.47, -2.78]

Hard drive 320 GB -1.02 -0.67 [-1.09, -0.32]

500 GB 1.02 1.20 [0.90, 1.43]

1 year -2.85 -3.28 [-3.65, -2.94]

Dell support 2 years -0.97 -1.03 [-1.23, -0.80]

3 years 1.06 1.10 [0.79, 1.36]

30 days -3.03 -3.05 [-3.44, -2.69]

Anti virus 1 year -1.12 -1.06 [-1.33, -0.73]

2 years 1.08 1.01 [0.60, 1.57]

350 euro -3.10 -2.86 [-3.39, -2.32]

Price 500 euro -0.96 -1.34 [-1.82, -0.86]

650 euro 1.12 1.33 [1.07, 1.56]
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A.3 Measuring attention using the total the number of fixations

and fixation duration for Chapter 2.

The total number of eye fixations and fixation duration in a choice question offer another measure

of attention. The average number of fixations and the average fixation duration in the main choice

task was 53.76 and 17477.09 ms respectively across respondents in our data. Figure A.1 (a) and

(b) shows the histogram of the number of fixations and fixation duration across all respondents.

Figure A.2 (a) and (b) shows the average number of fixations and average fixation duration as a

function of the probability prob that the choice will be realized.

Figure A.1: Distribution of number of fixations and fixation duration across all respondents.

(a) Number of fixations (b) Fixation duration
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Figure A.2: Average number of fixations and fixation duration vs. probability that choice will be

realized.

(a) Number of fixations (b) Fixation duration

Like with response time and the average proportion of information visited, the relationship be-

tween prob and the number of fixations and fixation duration is U-shaped. We compare the number

of fixations and fixation duration across conditions using non-parametric ranksum tests (similar re-

sults are obtained with t-tests; however non-parametric ranksum tests seem appropriate because

the distribution of the number of fixations and fixation duration are skewed). We find no significant

difference between the probabilistic conditions (prob=0.01, 0.5 and 0.99) for the number of fixa-

tions1 as well as fixation duration,2 and therefore group these three conditions. The median number

of fixations under no incentives, probabilistic and deterministic incentives was respectively 56.00,

36.50 and 54.00; the median fixation duration under no incentives, probabilistic and deterministic

incentives was respectively 17605.00, 11702.00 and 15725.00 ms. Like with response time and the

proportion of information visited, the number of fixations and fixation duration in the probabilis-

1The median of number of fixations is 49, 35 and 31, when prob=0.01, 0.5 and 0.99 respectively. p-value=0.44,

0.76 and 0.78 for the comparison between prob=0.01 vs. prob=0.5, prob=0.01 vs. prob=0.99, and prob=0.5 vs.

prob=0.99 respectively.

2The median of fixation duration is 13294.50, 11265.00 and 11087.00 ms, when prob=0.01, 0.5 and 0.99 respectively.

p-value=0.79, 0.87 and 0.86 for the comparison between prob=0.01 vs. prob=0.5, prob=0.01 vs. prob=0.99, and

prob=0.5 vs. prob=0.99 respectively.
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tic conditions is significantly lower than that in the deterministic condition (p-value<0.04) and

than that in the no-incentive condition (p-value<0.03). Again, there is no significant difference

in the number of fixations and fixation duration between the no incentives and the deterministic

conditions (p-value>0.89).


