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Abstract

Theoretical study of charge density waves in transition metal

materials

Junichi Okamoto

In this thesis we theoretically study new aspects of charge density waves in tran-

sition metal materials recently revealed by scanning tunneling microscopy measure-

ments. The two important problems that we have investigated are the effects of

orbital degeneracy on the formation of the charge-density waves in cobalt nanowires,

and the effects of dilute but strongly pinning impurities on the charge-density wave

in niobium diselenide.

We first present an overview on charge-density waves, and then introduce a general

theoretical model describing charge-density waves. We also explain several known re-

sults about disorder effects on charge-density waves. We briefly touch on the principle

of scanning tunneling microscopy and its advantages compared to other experimental

tools.

Second, we discuss the physics of one-dimensional cobalt nanowires along with

experimental results. We propose a theoretical model that is relevant to cobalt

nanowires, and then analyze the model by two theoretical tools: mean-field the-

ory and bosonization. Our results show that the multi-orbitals allow a spin-triplet

interaction among electrons leading to different phase diagrams from the ones con-

sidered previously for similar models. Numerical results obtained by first-principles

calculations are also briefly explained.



Third, we consider the effects of dilute strong impurities on the charge-density

wave in niobium diselenide, a transition metal dichalcogenide. We first explain the

material and properties of its charge-density wave phase. Then, detailed analysis of a

scanning tunneling microscopy measurement is presented. Next, we analytically and

numerically study a phenomenological model relevant to the experiment. We show

that the dilute strong impurities have little effects at large length scales compared

to the average inter-impurity distance, leading to a topologically ordered phase with

a (quasi-)long-range autocorrelation; this result is quite different from conventional

pictures predicting short-range order with the proliferation of topological defects.
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1. Introduction 1

Chapter 1

Introduction

1.1 Overview

In this thesis, we theoretically study charge-density waves in transition metal ma-

terials. Motivated by the recent discovery of a low-temperature dimerized state in Co

nanowires [Zaki et al. (2013)], in Chap. 2, we consider one-dimensional charge-density

waves in transition metal nanowires. In Chap. 3, we investigate the disorder effects

on the charge-density wave in NbSe2 based on recent scanning tunneling microscopy

measurements [Okamoto et al. (2014)].

This chapter is an introduction to the thesis. We start by giving a general overview

of charge-density waves in the first section. In the second section, a phenomenological

model describing a charge-density wave is introduced and explained. We review the

disorder effects on charge-density waves in the third section. A brief description

of a scanning tunneling microscopy technique for the study of charge-density wave

materials is presented in the last section.

1.2 Charge-density waves: background

Interacting condensed matter systems often exhibit spontaneously broken sym-

metries at low-temperatures, and a classification of phases of matters by the broken
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symmetry (an idea proposed by Lev Landau) has been a central dogma of theoretical

physics since the last century. Spontaneously broken symmetry means that at high-

temperatures, the state of the system has the same symmetry of the Hamiltonian,

while at low temperatures, the state of the system falls into a subgroup of the sym-

metry of the Hamiltonian. Such a transition is characterized by an order parameter,

which is zero at the high-temperature disordered phase, but is non-zero at the low-

temperature ordered phase. A charge-density wave (CDW) is a typical example of

such a broken symmetry phenomenon, and its order parameter is a density modula-

tion of electrons whose periodicity is different from the one at high temperatures; the

translational symmetry at high temperatures is broken at low temperatures. In equi-

librium situations, this charge modulation accompanies lattice distortion in general,

and these two are treated as a single order parameter.

Along with the classification of broken symmetries, an important question is the

underlying mechanism of the spontaneous symmetry breaking. In the case of CDWs,

Rudolf Peierls first discussed that the nesting of a Fermi surface of electrons can

lead to a charge-density modulation considering electrons coupled to phonons (ions)

[Peierls (1930)]. Later, this idea was more carefully formulated by himself [Peierls

(1996)], and Fröhlich (1954). Mathematically, this formulation is equivalent to the

Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [Bardeen et al. (1957);

Lee et al. (1974)], and can be understood as the Fermi surface instability in a particle-

hole channel; for instance, the particle-hole susceptibility is divergent at | ~Q| = 2kF

(kF : the Fermi wave vector) for one-dimensional electrons. The energy gain comes

from the energy gap opening around the Fermi energy, so the wavelength of the charge

modulation is not related to the original lattice periodicity and given by � = ⇡/kF .

The dominant driving force for the CDW in this case is the electronic part, while

phonons are weak scatters of electrons on the Fermi surface. Thus, the amplitude

of the CDW and lattice distortion is small compared to the original lattice constant
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Figure 1.1: Solid (dashed) lines indicate the original (modified) energy
bands. Energies are measured from the chemical potential. (a) When the
electron-phonon coupling is weak, the energy gain comes from the Fermi
surface. (b) When the coupling is strong, the energy gain comes from the
occupied band far from the Fermi energy.

a. Instead the coherence length ⇠, which is the distance of the electron-hole pair

creating the CDW, i.e., the measure of the rigidity of the CDW, is large as the BCS

theory (⇠ � a). Since the BCS theory gives a mean-field like transition, there are

no electron-hole pairs above the transition temperature. Because nesting requires a

special geometry such as quasi-one-dimensional alignment of molecules, this theory

had not been verified until experiments on organic compounds such as TTF-TCNQ

became possible in 1970s [Jérome and Schulz (1982)]. Blue bronzes [Schlenker (1983)],

and some transition metal chalcogenides [Rouxel and Schlenker (1989)] are also con-

sidered to follow this scenario. We will discuss how the Peierls’ idea is modified when

electrons in one-dimension are interacting (Luttinger liquids) in Chap. 2.

Another scenario inducing CDWs is “phonon softening" [Dove (1993)]. In this pic-

ture, ions are vibrating around their equilibrium positions at high temperatures, while

the anharmonic couplings between vibrating modes (phonons) turn the frequencies
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of the modes into imaginary at low temperatures; the high temperature equilibrium

positions are no longer stable. Thus at low temperatures, the ions align with a new

periodicity inducing also a charge-density modulation. Microscopically, the anhar-

monic couplings of phonons are due to the electron-phonon couplings [Varma and

Simons (1983)], and the induced charge-modulation is intimately connected to the

periodic lattice distortion. Therefore, the new periodicity is typically close to the

integer multiple of the original lattice (commensurate) � = aN/M (N,M : integers).

We may image this picture more like a local chemical bonding of neighboring ions.

Thus, the coherence length is short (⇠ ⇠ �), and the CDW amplitude is large. Above

the transition temperature, there remain short-range electron-hole pairis; the phase

of the CDW is not yet condensed while the amplitude is condensed. Compared to the

nesting picture, phonon softening does not necessarily require a non-zero electronic

density of states at the Fermi surface, although the energy gain is still from the elec-

tronic part (Fig. 1.1). The typical metals having phonon-driven CDWs are transition

metal dichalcogenides [Wilson et al. (1975); McMillan (1977)], and we will discuss, in

particular, 2H-NbSe2 in Chap. 3.

In a real material, along with the electron-phonon coupling, electron-electron

interactions also exist. Naively speaking, electronic interactions tend to suppress

charge-density waves, simply because electrons repel each other and charge-density

modulation, which has a local charge accumulation, is not preferable. Instead, spin-

density waves are often induced for repulsive interactions [Overhauser (1960); Chan

and Heine (1973)]. For semimetals and semiconductors, the interactions between

electrons and holes may lead to a CDW [Halperin and Rice (1968a,b)]. On the other

hand, as we will see in Chap. 2, for one-dimensional electrons with orbital degeneracy,

there are various scattering processes that can compete with the spin-density waves,

leading to a non-trivial rich phase diagram.

From the above mechanisms, we can draw the following simple picture for a CDW
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phase transition [Tosatti (1980)]. As for most of classical phase transitions, a CDW

transition occurs as a result of a competition between energy and entropy in free

energies F = E � TS (F : free energy, E: energy, T : temperature, S: entropy). The

energy of a CDW state is lower than the energy of a normal state;

�E = ECDW � Enormal = �Elattice +�Eelectron < 0, (1.1)

where the energy difference is decomposed into two contributions from electrons and

phonons. As depicted in Fig. 1.1, a CDW always gains electronic energy by either

opining a gap at the Fermi surface or lowering the valence band, �Eelectron < 0

[Johannes and Mazin (2008)]. On the other hand, due to the lattice distortion, the

lattice part has to pay extra elastic energy, thus �Elattice > 0. In order to have a

phase transition, the sum of the two contributions must be negative, �E < 0. Now

we will look at the entropy difference between CDW and normal states. The entropy

of electrons becomes smaller for the CDW state, when a gap opens, since a phase

space available for the electrons becomes smaller (�Selectron < 0). For the lattice

part, we also find �Slattice < 0, since the CDW state is more rigid. Thus, the total

entropy difference is always negative �S < 0. Therefore, the free energy has a critical

temperature satisfying

�F = 0 = �E � Tc�S, (1.2)

whenever �E < 0.
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1.3 Ginzburg-Landau theory of charge-density waves

1.3.1 Fluctuations and dimensionality

In this section, we introduce a Ginzburg-Landau model describing a CDW phase

transition, and explain some basic features of the model. As is similar to Ginzburg-

Landau theories for superconductivity, in a real crystal, a Ginzburg-Landau functional

can be very complicated including all the terms allowed by the symmetry. Here we

consider only one ordering vector without those complexities. Some specific theories

for transition metal dichalcogenides are found in McMillan (1975); Walker and Jacobs

(1982); Nakanishi and Shiba (1984), and we will discuss this in Chap. 3. At weak

electron-phonon coupling limit, we can derive a Ginzburg-Landau functional rigor-

ously [Grüner (2009)]. When the electron-phonon coupling becomes larger, rigorous

derivations are difficult. However, the following model still captures the basic features

of the transition, so we will take the model as given:

F = F0 + f

Z
d~x

✓
t| |2 + 1

2

| |4 + ⇠2
���~r 

���
2
◆
, (1.3)

where F0 is the free energy of a normal state, f is the free energy density,  ⌘
| |ei� is a complex order parameter describing the amplitude and the phase of the

lattice distortion, and ⇠ is the bare coherence length. Near the mean-field transition

temperature TMF
c , we have t ⇠ (T � TMF

c )/TMF
c . In general, with multiple ordering

vectors, there is a cubic term if three ordering vectors sum up to zero as in a triangular

lattice; we will see this in Chap. 3. If the sum of three ordering vectors is non-zero,

as in a square lattice, a cubic term is prohibited. The modulated charge density is

given by

⇢(x) = ⇢0 + ⇢1| | cos( ~Q · ~x+ �), (1.4)
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(a) (b)T > TMF
c T < TMF

c

Figure 1.2: (a) The free energy for T > TMF
c . There are two massive

amplitude modes around the bottom of the potential. (b) The free energy for
T < TMF

c . There are one massive amplitude mode along the radial direction,
and one massless phase mode along the minima.

where ⇢0 is the original charge-density, ⇢1 is the modulated density, ~Q is the ordering

vector, and � is the phase of  . The second term comes from the electrons near ~Q.

The slow spatial modulation of � (much longer than the wavelength 2⇡/Q) means

that the ordering vector is shifted to ~Q ! ~Q0
=

~Q+

~r�. For a quasi-one dimensional

case, the ordering vector is associate with the Fermi wavevector as Q = 2kF = ⇡⇢0.

Thus, the local modulation of the phase leads to slow change of the charge density as

[Allender et al. (1974)]

�⇢(x) =
1

⇡
r�. (1.5)

When we ignore the fluctuations given in the elastic part, then by minimizing the

Ginzburg-Landau functional by  , we find a minimum at  = 0 for T > TMF
c , while

we have continuous minima of | | =
p

|t| for T < TMF
c (Fig. 1.2). This is a very basic

description of a second order phase transition. Now we consider the fluctuations � 
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on top of these static configurations  0. For T > TMF
c , we have

F = f

Z
d~x

✓
t |� |2 + ⇠2

���~r� 
���
2
◆
+ constant. (1.6)

Thus, the fluctuations cost non-zero energy to excite (massive), and gives an expo-

nential decay of the correlation function with a decay length ⇠0 ⇠ ⇠/
p
t:

C(x) = h� (~x)� (0)i ⇠ T

Z
d~p

(2⇡)D
ei~p·~x

t+ ⇠2p2
⇠ e�|~x|/⇠0 . (1.7)

For T < TMF
c , the static solution is  0 =

p
|t|ei�0 . Writing � = �ei�0 , we have

F = f

Z
d~x

⇢
2|t|�2

1 + ⇠2
⇣
~r�1

⌘2
+

⇣
~r�2

⌘2��
+ · · · , (1.8)

where � = �1 + i�2, and · · · are constants and the higher order terms. The �1

fields are massive amplitudons, while the �2 fields are massless phasons (Goldstone

modes). The appearance of massless modes is a result of a continuous symmetry

breaking; in this case U(1) symmetry (translational symmetry) is broken. We will

discuss the cases when the commensurability becomes important, and explain how

the continuous symmetry is broken into a discrete one in the next subsection. The

fluctuation of the massive modes is not dangerous. However, the behavior of thermal

fluctuations of phasons depends on the dimensionality D:

h�2(0)
2i = T

2f⇠2

Z
d~p

(2⇡)D
1

p2
. (1.9)

When D � 3, the integral becomes constant, since we always have a ultra-violet

(UV) cut-off. However, the integral becomes infra-red (IR) divergent for D  2;

the fluctuation is so big that the system wanders far away from the original state

 0 =

p
|t|ei�0 . Thus, there is no long-range order. This is a natural consequence

of the Coleman theorem [Coleman (1973)] or Mermin-Wagner-Hohenberg theorem
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[Mermin and Wagner (1966); Hohenberg (1967)]. Thus, for the quasi-one-dimensional,

and quasi-two-dimensional systems, the phase transition to true long-range order does

not occur at the mean-field transition temperature, but occurs at a lower temperature

after the inter-chain or inter-layer interactions establish the three dimensional CDW

[Imry and Ma (1975)]. In two dimensions, the Kosterlitz-Thouless type transition

[Kosterlitz and Thouless (1973)] to a quasi-long range order, where the correlation

function is power-law, may occur at a finite temperature.

1.3.2 Effects of backscattering

So far we have not considered the effects of backscattering of electrons. The

backscattering are quite important, since it can significantly modify the nature of

CDWs; it tries to pin down the phase of the CDW. Complexities arising from these

effects are non-trivial, and the main focus of this thesis is to understand the behavior

of CDWs under such complicated circumstances. Three dominant contributions to

backscattering are lattice potentials, electron-electron interactions, and impurities.

We will explain these in the following.

When a lattice potential couples to electrons, it tends to make the period of a

lattice distortion or a CDW to a commensurate value. When this tendency is strong

as in a phonon-driven CDW, the fluctuation and the ordered phases shows different

behaviors from the previous case. Phenomenologically the lattice potential adds a

term,

� V0 cos(M�), (1.10)

to the Ginzburg-Landau energy. Microscopically, this term arises due to the backscat-

tering by Umklapp process [Lee et al. (1974)]. When V0 is large, then the allowed

values of � are integer multiples of 2⇡/M . Expanding the cos potential up to second
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order, and ignoring the amplitude fluctuations, we have

F = F0 +

Z
d~x


1

2

c
⇣
~r�
⌘2

+

1

2

V0M
2�2

�
. (1.11)

This means that dispersion is massive, and the phase-phase correlation decays ex-

ponentially implying long-range order even for D  2. This is because that the

strong potential makes the continuous U(1) symmetry into ZM . As the potential

becomes weak, or the thermal fluctuations are large, however, then such a pinning

stops working, and then the U(1) symmetry recovers.

The electron-electron interactions can also generate backscattering. For D � 2,

the backscattering is irrelevant and not important in general. Instead forward scat-

tering turns the system into a Landau’s Fermi liquid, and determines the Landau

parameters [Shankar (1994); Schulz et al. (2000)]. On the other hand, in one dimen-

sion, forward scattering makes the system Tomonaga-Luttinger liquids [Tomonaga

(1950); Luttinger (1963)], and characterizes it by Luttinger parameters. The first

order of backscattering is marginal for non-interacting electrons, while the forward

scattering can make the backward scattering relevant. Hence, we cannot ignore the

backscattering in one dimension. For example, for electrons in one dimension at

half-filing, the backscattering generates a term like

g1 cos(
p
8��) + g3 cos(

p
8�⇢), (1.12)

where �⇢(�) are the phase for the charge (spin) density waves respectively. These terms

again tend to pin the phase as the commensurate potential as we saw above. However,

at low-temperatures, quantum fluctuations become important. In particular, when

there are other scattering processes, quantum fluctuations usually lead to a non-trivial

fixed point. We will discuss in detail the effects of such complexity arising from the

orbital degeneracy in one dimension in Chap. 2 [Okamoto and Millis (2011, 2012)].
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This work is motivated by the recent success of fabricating one-dimensional transition

metal wires [Wang et al. (2008); Zaki et al. (2013)], and we consider a one-dimensional

Hubbard model with orbital degeneracy having various electron-electron interactions,

in particular a Hund coupling preferring a locally high-spin state. Such a interaction

distinguishes our model from the previously studied two-leg ladder models, which

prefer locally low-spin states.

Finally, another source of backscattering is disorder. In a real crystal, there are

always defects or impurities to some extent. For a CDW compound, the effects of

impurities are quite important to understand both static and dynamic properties of

the CDW phase. For example, the nonlinear transport and current oscillations, which

are often observed in CDW systems, are attributed to the effect of impurity pinning

[Grüner (1988)]. Impurities are expressed as an electrostatic potential v(~x), and they

are linearly coupled to the CDW density,

Himp =

Z
d~xv(~x)�⇢CDW =

X

i

Z
d~xV (~x � ~Ri)�⇢CDW. (1.13)

~Ri is the position of the ithe impurity. Using Eqs. (1.4) and (1.5), we find

Himp =

Z
d~xv(~x)

h e
⇡

r�+ ⇢1<
⇣
 ei

~Q·~x
⌘i

. (1.14)

The term coupling the impurity and the slow density modulation r� is not important;

they are irrelevant for D > 2, and actually can be eliminated by a translation of the

phase variable [Bak and Brazovsky (1978); Giamarchi and Le Doussal (1995)]. Thus,

it does not destroy the long-range order. On the other hand, it is known that the

last term, from a general argument presented in the next section, destroys the long-

range order even with an arbitrary small impurity potential for D < 4. Therefore, we

will focus on the second term in the following. For charged impurities, the impurity
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energy becomes

Himp =

X

i

⇢1<
Z

d~xV (~x) ei
~Q·(~x+ ~R

i

)

=

X

i

<⇢1
Z

d~p

(2⇡)D
ei(~p+

~Q)· ~R
iv(�~p � ~Q) (~p)

⇠
X

i

<⇢1ei~q·
~R
iv(� ~Q) (0),

(1.15)

where we used the fact that  is a slowly varying object compared to Q. The Fourier

component is given by v(Q) = [4⇡e2/✏1(Q)]Q�2, where ✏1(Q) is the dielectric func-

tion. For a large Q, screening is not significant, and thus charged impurities have

a strong potential of the order of eV, while isoelectric impurities are presumably

much weaker [Lee and Rice (1979)]. The total free energy below TMF
c is found to be

( =

p
|t|ei�0

+ �ei�0)

F = f

Z
d~x

⇢
2|t|�2

1 + ⇠2
⇣
~r�1

⌘2
+

⇣
~r�2

⌘2��
+

Z
d~xv(~x)⇢1<

⇣
 ei

~Q·~x
⌘
. (1.16)

1.4 Charge-density waves with impurities

In this section, we will give a brief overview about the impurity effects on charge-

density waves. First, we present basic arguments about the effects starting from a

single impurity embedded in a CDW. We then discuss that the result given by the

basic arguments for many impurities is not self-consistent, and how the contradiction

was resolved. We also mention several open problems related to our study in Chap. 3.
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1.4.1 Basic arguments

Let us think about the effect of a single local impurity, v(~x) = �|V |�(~x), as a

starting point. The phase which the impurity prefers is 0, while at the infinity the

order parameter goes back to
p

|t|ei�0 . Ignoring the thermal fluctuation, we would

like to minimize the energy (1.16). As a result, we obtain

�F

��1
= f

⇣
4|t|�1 � 2⇠2~r2�1

⌘
� |V |⇢1�(~x) cos�0 = 0.

�F

��2
= �2f⇠2~r2�2 + |V |⇢1�(~x) sin�0 = 0.

(1.17)

Solving the differential equations with a boundary condition �(1) = 0, we find

�1 = �✏ cos�0
⇠

|x|e
� |x|

⇠

0 , (1.18)

�2 = ✏ sin�0
⇠

|x| , (1.19)

where ⇠0 = ⇠/
p

2|t|, and ✏ = |V |⇢1/(8⇡f⇠3). At small x, we must think that there is

a short distance cut-off, since any impurity has a finite size. The solution indicates

that the amplitude decays exponentially with the decay length with ⇠0, while the

phase variation is long-ranged as Coulombic. Thus, we will mostly focus on the phase

fluctuation ignoring the amplitude modulation appearing only near the impurity sites.

For a weak potential ✏ ⌧
p

|t|, the elastic energy cost is ⇠ �2
0|t|f⇠3, since the phase

changes from �0 at x = 1 to 0 at x = ⇠ in a power-law fashion ⇠ 1/x. On the other

hand, the impurity energy gain is ⇠ ⇢1|V |
p

|t|. Therefore, for ✏ ⌧
p

|t|, a single

impurity does not pin the phase.

Although a single impurity is not enough to pin the phase of a CDW when ✏ ⌧
p
t,

Larkin (1970) noticed that a collection of impurities may pin the phase. He assumed

that the phase fluctuation is small, so that the expansion of the impurity potential is
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a good approximation in a weak coupling limit,

v(~x) cos
h
�(~x) + ~Q · ~x

i
' �v(~x) sin( ~Q · ~x)�(~x) + · · · ⌘ F (~x)�(~x) + · · · . (1.20)

This term represents the random force coupling linearly on the phase. When we

ignore the amplitude fluctuation, we can integrate over the disorder potential, and

find

h[�(L) � �(0)]2i ⇠
✓

L

Lc

◆4�D

with Lc ⇠ �2
F

⇠2t
,

h�⇢(L)�⇢(0)i ⇠ e�(
L

L

c

)

4�D

.

(1.21)

�F is the standard deviation of the random force F . This indicates that the order

parameter correlation function decays exponentially with an arbitrary small impurity

potential, and leads to short-range order for D < 4. The same conclusion was derived

by Imry and Ma (1975), and Sham and Patton (1976) in the context of a continuous

spin model.

Fukuyama and Lee (1978) reached the same conclusion by the following simple

scaling argument. They considered that the system consists of domains of length

L where the phase is coherent. Between different domains, the phase varies by the

order of ⇡, so the elastic energy density is Eel ⇠ ft(⇠/L)2. The average value of the

phases that impurities in the domain prefer is 0 (or undetermined). However, since

the domain is finite, there is always a fluctuation of size
p
niLD (ni: the impurity

density), such that we can choose the phase which takes advantage of this. The total

energy density is thus found to be

E

LD
⇠ ft

4

✓
⇠

L

◆2

� |V |
r

ni

LD
. (1.22)
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Figure 1.3: Schematic pictures of three different pinning scenarios [repro-
duced from Abe (1986)]. (a) Weak-pinning, (b) strong pinning when ⇠ > l,
and (c) strong pinning when ⇠ < l.

Minimizing this by L gives us the optimal domain size L0,

L0 =

✓
ft⇠3

D|V |pni

◆ 2
4�D

,
E⇤

LD
0

=

✓
1

4

� 1

D

◆✓
ft⇠2

|V |pniD

◆� 4
4�D

. (1.23)

Therefore, for D < 4, the total energy prefers to have a non-zero L0, even for arbitrary

small |V |. L0 is called FLR length, or Larkin length. We note that the potential

dependence of the energy ⇠ V 4 is different from the one ⇠ V 2 obtained by Efetov

and Larkin (1977), who used a diagrammatic method, while the correlation length is

the same for both cases. The difference comes from the fact that the FLR solution

considers a constant phase in a domain, while the solution by Efetov and Larkin

(1977) is a superposition of Coulombic forms.

For a strong impurity potential, it had been believed that the phase is com-

pletely fixed by impurities, and it is smoothly interpolated between the impurity sites

(Fig. 1.3). In this case the correlation length is of the order of the average impu-

rity distance. Abe (1985), later, noticed that this is not always the case. When the
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coherence length is shorter than the inter-impurity distance l, we can modulate the

phase in the vicinity of each impurity over the range of ⇠, whose elastic energy is

⇠ ft⇠3 as the single impurity case. Compared to the smooth interpolation of phase,

whose energy is ⇠ ftl3, such local modulation is more preferable when ⇠ ⌧ l. We

expect that this phase profile leaves much larger phase coherent domains than l, and

we will carefully study this scenario in Sec. 3.4. In the opposite limit, l � ⇠, it is

no longer possible to make such local modulation, and the phase profile looks as the

conventional scenario.

Now we turn to the stability of the phase to topological defects such as vortices

and dislocations. We will focus on the three dimensional case, since this is the relevant

case for our later analysis of NbSe2. The vortex cannot terminate inside the bulk,

so the stable object in three dimensions is a vortex loop. The elastic energy is not

important, since the contributions from the opposite sides of the loop cancel it. The

important energy is the core energy of the vortex, which scales linearly in terms of

the size of the loop L. By choosing the loop’s location and orientation, the impurity

energy inside the loop is optimized as in the Fukuyama-Lee argument; the energy

scales as L3/2. Balancing these two terms leads to the same conclusion as before,

and the length scale of the domain and the vortex loops scales in the same manner.

Therefore, the disordered state, which we expect from the scaling arguments for l ⌧ ⇠,

consists of phase coherent domains that are separated by the vortex loops of the same

size. Since the vortex appears even in the weak pinning limit, there are many vortices

in the strong pinning phase as well. The stability of the locally modulated phase

appearing for ⇠ ⌧ l to topological defects has not been studied, and we will study it

in Chap. 3.
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a a a

Figure 9: Schematic explanation of the di�erence of roughness between the
interfaces and the periodic systems. Left: In an interface the large roughness
is produced by the fact that there are always regions where it is energeti-
cally favorable for the line to go, and from there further to another region,
increasing endlessly the displacements. Right: For a periodic system (here
a periodic system of lines of period a), since what counts it the total energy
of the system there is no interest for one line to make displacements much
larger than the interline distance since it would just steal the disorder from
the neighbor. Thus even with the same disorder, displacements would thus
“saturate” (in fact still grow but very slowly with distance) when they reach
the interparticle distance.

19

Figure 1.4: A schematic representation of an isolated elastic object (left)
and a periodic media (right) subject to impurity pinning [reproduced from
Giamarchi (2009)]. Lines are elastic objects, and dots are impurities. a is
the lattice constant of the periodic media.

1.4.2 Bragg glass

In the late 1980s and early 1990s, people realized that the basic arguments given

in the previous subsection becomes invalid at long distance [Feigel’man et al. (1989);

Nattermann (1990); Bouchaud et al. (1991, 1992); Korshunov (1993); Giamarchi and

Le Doussal (1994, 1995, 1997); Rosso and Giamarchi (2004)]. For example, the basic

assumption for the Larkin’s calculation was that the fluctuation of the phase is small

such that the expansion of the impurity potential in terms of the phase is a good

approximation. However, when L > Lc, the phase fluctuation becomes of the order

of ⇡, signaling the breakdown of the assumption.

Indeed, this approximation misses an important fact for a periodic media as fol-

lows. Fig. 1.4 sketches the difference between the effects of impurities on a single

elastic object and a periodic elastic media. A single elastic object is, for example,

a domain wall between different spin directions. When such an object is subject to
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impurity potentials, the phase wanders such that the object optimizes the potential

energy as the Larkin’s argument. On the other hand, a periodic media such as a

CDW consists of array of elastic objects aligned with an equal space �. Thus, when

the phase fluctuation of one object becomes comparable to ⇡, this does not gain as

much potential energy as the single isolated object; there is already another object

enjoying the potential energy at distance �. This naive physical picture indicates that

the impurity effects are weaker than the one that Larkin considered when L > Lc for

a periodic media.

Indeed, using sophisticated methods such as functional renormalization group [Ba-

lents and Fisher (1993); Balents et al. (1996)] and replica method [Giamarchi and Le

Doussal (1995)], it was shown that the phase fluctuation diverges only logarithmically

h[�(L) � �(0)]2i ⇠ ⌘ logL,

h�⇢(L)�⇢(0)i ⇠ 1

L⌘
.

(1.24)

⌘ is estimated as ⇠ 1, and presumably temperature independent. The correlation

function of the order parameter decays by a power-law, and this gives a power-law

diverging peak in the structure factor at the Bragg point, S(~p) ⇠ p⌘�3; thus this

phase is called a “Bragg glass".

The stability of a Bragg glass to generation of topological defects was studied by

Gingras and Huse (1996) by Monte Carlo simulations. They showed that the Bragg

glass phase does not have topological defects for a weak impurity potential. Above

a certain threshold potential strength, the density of vortices becomes finite, and the

autocorrelation of the order parameter decays exponentially.

A basic assumption for the discussion of the Bragg glass phase is that the impurity

density is high and its pinning is weak. When the density is high and pinning is

strong, the system is a disordered state. However, as we saw previously, the effects of

the dilute, but strongly pinning impurities on a CDW are not so severe as had been
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thought. Therefore, a natural question arising from these facts is that whether dilute,

but strongly pinning impurities may exhibit a Bragg glass phase, or a disordered

state. From experimental point of views, a new class of scanning tunneling microscopy

(STM) measurements allows us to have detail examinations on states near impurities,

and also the information about large field of views. Such an analysis of NbSe2 based

on a STM topographic image motivated us to study the impurity effects on a CDW,

and prompted us to look at, in particular, the situation with dilute, but strongly

pinning impurities [Okamoto et al. (2014)]. In Chap. 3, we will discuss the details

of the analysis of the experimental data, and present several theoretical analysis to

understand a behavior of CDW under such a situation.

1.5 Scanning tunneling microscopy

The development of scanning tunneling microscopy (STM) and spectroscopy (STS)

techniques greatly accelerated the research of condensed matter physics [Wiesendan-

ger (1994); Chen (2008)]. The conventional experimental techniques such as scattering

or transport measurements can obtain only spatially averaged information. However,

using STM, we can literally see the surface of samples at atomic levels over a wide

field of view; both local information and spatially averaged information are available.

Such features of STM are quite useful to study following systems in condensed matter

systems:

1. One-dimensional systems: long-range order is often prohibited by thermal and

quantum fluctuations as discussed in Sec. 1.3. However, a STM can observe

such short-range order along with local spectroscopic information via STS.

2. Disordered systems: local information about defects and domain walls are avail-

able from STM.
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Ft:G. 1. Principle of operation of the sea~~i~~ tun-
neliag microscope. {Schematic: distances and sizes
are not to scale. } The piezodrives Px and Py scan
the metal tip M over the surface. The control unit
(CU) applies the appropriate voltage V& to the piezo-
drive P, for constant hmnel current Jz at constant tun-
nel voltage Vz. For constant work function, the volt-
ages applied to the piezodrives P, , Py, and P, yield
the topography of the surface directly, whereas mod-
ulation of the tunnel distance s by As gives a measure
of the work function as explained in the text. The
broken line indicates the z displacement in ay scan
at (A) a su~face step and {j9) a contamination spot, g,
with lower work function.

over the surface at con~tant tunnel current as
shown in Fig. 1. The displacements of the metal
tip given by the voltages applied to the piezo-
drives then yield a topographic picture of the
surface. The very high resolution of the STM
rests on the strong dependence of the tunnel cur-
rent on the distance between the two tunnel elec-
trodes, i.e., the metal tip and the scanned sur-
face. The tunnel current through a planar tunnel
barrier of average height q and width s is given
by4

Jr ~exp(-Ay'~'s), (1)
where A = (4iT/h) 2m)' ' = 1.025 A ' eV ' ', with I
the free-electron mass, appropriate for a vacu-
um tunnel barrier. With barrier heights (work
functions) of a few electronvolts, a change of the
tunnel barrier width by a single atomic step
(-2-5 A) changes the tunnel current up to three
orders of magnitude. Using only the distance de-
pendence as given by Eq. (1), and a spherical tip
of radius R, one estimates a lateral spread 6 of
a surface step a,s 5=Sr, =3(2R/Ay~'), '~' i.e.,
5(A) ~3[R(A)]' '. Thus, a lateral resolution con-
siderably below 100 A requires tip radii of the
order of 100 A. Such tips are standard in field-

emission microscopy. However, since suppres-
sion of vibrations is evidently more vital for the
STM, long and narrow field-emission tips might
not be satisfactory. Instead, we used solid metal
rods of 1 mm diameter, and ground 90' tips with
a conventional grinding machine. This yielded
overall tip radii of only some thousand angstroms
to 1 p, m, but with some rather sharp minitips.
The extreme sensitivity of the tunnel current on
gap width then selects the longest of the minitips
for operation of the STM. The lateral resolution
could be increased further by gently touching the
surface with the tip and subsequently retracting
it. This "mini-spot-welding" procedure created
very fine tips, such that monoatomic steps could
be resolved within 10 A laterally.
Scanning the tunnel tip at constant tunnel current
implies y' 's =const. Thus, the z displacement
of the tunnel tip gives the surface topography
only for constant work function y, and therefore
constant gap width s, as shown in Fig. 1 at A..
On the other hand at B, the z displacement is
caused by a change of work function on a struc-
tureless part of the surface. However, true sur-
face structures and work-function-mimicked
structures can be separated by modulating the
gap width s while scanning, at a frequency higher
than the cutoff frequency of the control unit. In
a simple situation, as depicted in Fig. 1, the
modulation signal gives the square root of the
work function y ~'= 6(inner)/&s, directly, & in
Eq. (1) being nearly 1. For general surface topog-
raphies, and work-function profiles, the separa-
tion process becomes rather involved. Then, the
modulation 4s of the gap with s is no longer equal
to the length modulation M of the piezodrive P, .
Essentially, As =M cosp, where &p is the angle
between the tunnel-surface element and the z
direction. In turn, the modulation signal is no
longer constant at true surface structures even
for constant work function y. However, since V~

and the modulation signal contain y and s in a
different way, their separation is, in principle,
still possible even for involved structures and
work-function profiles. In the following, we
present topographic pictures of (110) surfaces
of CaIrSn4 and Au. Work-function profiles have
not yet been studied in detail. They were used
rather to get an overall picture of the surface
condition.
CaIrSsq.—The flux-grown single crystals ex-

hibited shiny, natural faces after solving the re-
maining flux in HCl. Solvent etching probably
stops at Ir layers, which appear to be r=. ather
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Figure 1.5: (a) Schematics of a STM [reproduced from Binnig et al. (1982)].
s is the tip-sample distance. VT and JT are the tunneling voltage and current.
(b) Density of states (DoS) and tunneling between the sample and the tip
[reproduced from Hamers (1989)]. The left side is the DoS of the tip with a
work function �T . The right side is the sample’s DoS (vertical curve) with
a work function �S. The hatched region is occupied, and the arrows are
tunneling rates.

Related to the first kind, in Chap. 2, we consider Co nanowires fabricated on a stepped

copper surface. A STM study revealed that the Co nanowires show a dimerization

below 100K. In Chap. 3, we focus on the second aspect, and study the disorder effects

on the CDW phase of 2H-NbSe2.

Now we briefly explain the principle of STM [Chen (2008)], since the data analysis

in Chap. 3 requires some of the knowledge explained here. Fig. 1.5 shows a schematic

set-up of STM. Using the Fermi’s Golden rule, the tunneling current from the tip to

the sample is

It!s = �4⇡e

~

Z 1

�1
d✏
�
f(�eV + ✏)⇢t(�eV + ✏) ⇥ [1 � f(✏)] ⇢s(✏) ⇥ |M |2

 
, (1.25)
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where the energy is measured from the Fermi energy of the sample, and M is the

transition probability matrix from the tip to the sample. f(✏) is the Fermi distribution

function, and ⇢t(s) is the density of states of the tip (sample). Similarly, for the current

from the sample to the tip is

Is!t = �4⇡e

~

Z 1

�1
d✏
�
[1 � f(�eV + ✏)] ⇢t(�eV + ✏) ⇥ f(✏)⇢s(✏) ⇥ |M |2

 
. (1.26)

The total current is

I =

4⇡e

~

Z 1

�1
d✏
�
[f(✏) � f(�eV + ✏)] ⇢t(�eV + ✏)⇢s(✏) ⇥ |M |2

 
. (1.27)

The two realistic assumptions for experimental environments are: (a) temperature

dependence is ignorable in f(✏), and (b) the density of states of the tip is nearly

constant around the Fermi energy. These assumptions significantly simplify the ex-

pression, and we finally have

I ⇡ �4⇡e

~ ⇢t

Z eV

0

d✏⇢s(✏)|M |2. (1.28)

The tunneling matrix M in general depends on the energy ✏. If we can ignore the

energy dependence, and assume a s-wave tip, |M |2 is approximated as

|M |2 ⇡ e
�2 ~p

2m'

s
, (1.29)

where m is the electron mass, ' is the difference of work functions between the sample

and the tip, and s is the tip-sample distance.

The two modes of operations are (a) the topographic mode, and (b) the spectro-

scopic mode. The topographic mode uses a constant voltage and current adjusting

the tip-sample distance to maintain the integrated DoS constant. Without spatial

inhomogeneity of DoS, the tip will keep the same distance from the sample. However,
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with spatial modulation of DoS, the tip height will change accordingly. The spectro-

scopic mode changes the voltage, and measures the differential conductance at each

spatial point:
dI

dV
= �4⇡e

~ |M |2⇢t⇢s(eV ), (1.30)

where we ignored the energy dependence of M . We can infer the local DoS suppose

we know the matrix elements and ⇢t. For the full treatment of the energy dependent

M , see Chen (2008).
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Chapter 2

Charge-density waves in Co

nanowires

2.1 Overview

In this chapter, we consider the physics of Co nanowires at low temperatures. In

the first section, we explain experimental findings on this material from STM mea-

surements, and discuss the theoretical problems. Then, in the second section, a model

is introduced, and its symmetry is discussed. We present a mean-field analysis of the

model in Sec. 2.4. The mean-field analysis captures the basic physics of the model,

but ignores the quantum fluctuations. In Sec. 2.5, using bosonization and renormal-

ization group, we analyze the same model incorporating the quantum fluctuations,

and obtain phase diagrams. The case in which spins are polarized is separately dis-

cussed in Sec. 2.6. The indication of first principles calculations is also discussed.

The last section is the summary and the discussion about the connection between

theoretical results and experimental findings.

2.2 Background

Fabrication of one-dimensional atomic wires composed of adatoms confined at

step edges on surfaces of substrates becomes possible due to self-assembly epitax-
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ial techniques [Himpsel et al. (2001); Barth et al. (2005); Snijders and Weitering

(2010)]. By choosing appropriate substrates, we can realize a situation where the

bulk substrate bands are decoupled from the electronic states of the adatoms, leading

to ideal one-dimensional systems. This class of materials can exhibit CDW order at

low temperatures due to the Peierls instability. One example is Au nanowires grown

on the Si(577) surface [Ahn and Yeom (2003); Yeom et al. (2005)]. The physics of Au

nanowires is still a subject of debate, but it appears that the relevant band is Au s-

states for which electron-electron interactions are relatively weak, and the dominant

physics may be associated with lattice instabilities [Johannes and Mazin (2008)].

However, recent success of fabricating one-dimensional transition metal nanowires

such as Co nanowires on a Cu(111) surface indicates that the electrons confined on

the one-dimensional geometry come from the transition metal d-orbitals, and hence

have strong electron-electron interactions. As we discussed in Chap. 1, naively the

large repulsive interactions among electrons tend to suppress the formation of CDWs.

However, a STM study on Co nanowires revealed that the system undergoes a transi-

tion to a dimerized state below 100K (Fig. 2.1) [Wang et al. (2008); Zaki et al. (2009,

2013)]. This apparent contradiction motivates us to investigate the ground state of

the transition metal nanowires.

From a theoretical point of view, the important feature of transition metal nanowires

is the orbital degeneracy of the transition-metal d-levels, which permits a rich set of

strong on-site interactions. For a single atom, the five d-levels are degenerate. Once

the atoms form a crystal or put on a surface, the rotational symmetry is broken

such that the degeneracy is lifted. In other situations, the orbital ordering occurs

and shifts some of the d-levels upward or downward. These effects thus reduce the

number of orbitals crossing the Fermi surface. Hence we consider a system with two

transition metal orbitals for the sake of simplicity. Similar models involving two or-

bitals per unit cell has been previously considered in the literature, both for their
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garding the inflection measured in the profile of the one-
atom-wide wires. We note that the local density of states
!LDOS" may be affected by quantum-size effects due to the
atomic scale of the wires, as seen, for example, in the case of
atomically fabricated chains of Cu on Cu!111".20

The growth physics of these Co wires can also be exam-
ined via wire-length distributions measured from the STM
images. Thus, in Fig. 3, one-atom-wire histograms are given
for the two different coverages mentioned above, namely,
0.09 and 0.12 ML. The histograms clearly reveal an increase
in the length of the wires as coverage is increased. Specifi-
cally, the average wire length at 0.09 ML is found to be #27
atoms with a standard deviation of 22 atoms and a maximum
observed length of 105 atoms; at the higher coverage of 0.12
ML, the average length had increased to #40 atoms with a
corresponding increased standard deviation of 37 atoms and
a maximum observed length of 141 atoms. Note that the
measurements are for one-atom wires only and do not in-
clude the wire-length distribution for two-atom-wide wires
nor the terrace-site exchange !see below", which are also
observed at the higher 0.12 ML coverage; hence, the one-
atom-wide wires increase in length despite the fact that these
other atomic morphologies are starting to form. This obser-
vation of increasing wire length with coverage provides in-
sight into the wire self-assembly mechanism, as will be
discussed below.

In addition to Co wires at the step edges, depressions are
seen in step terraces, such as those in the regions marked by
circles in Fig. 2!d". Several observations are consistent with

these depressions reflecting Co atoms locally embedded in
the terrace. First, the maximum apparent depth of these de-

FIG. 2. !Color online" STM derivative images of Cu!775" at RT after deposition of Co. Blue-colored !darker colored" circles denote Co
atoms and gold-colored !lighter colored" circles denote Cu atoms. The black arrows in the topographical profiles correspond to positions
indicated by white arrows in the images. !a" Scan showing one-atom-wide Co wires; frizz is seen on a clean step edge at the left of the image.
The inset is a topographical profile along the direction of the corresponding white line in the image. Coverage is 0.09 ML. !b" Scan showing
two-atom-wide Co wires, as well as one-atom-wide wires and clean steps. A plateau, denoted by arrows, is seen for the two-atom-wide wire
scan; in this image, the plateau is not seen for one-atom-wide wires presumably due to finite tip radius and the narrowness of the wires;
however, the lack of frizz is a strong indication of Co at the step edge. Coverage is 0.12 ML. !c" Profile for white line in !b". The gray dashed
line serves merely as a step guide for the eyes and does not denote the exact position of the steps. !d" Scan showing terrace-embedded Co.
Coverage is 0.12 ML. !e" Embedded Co appears as depressions, as indicated by the arrow, in the step terrace.
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FIG. 3. Distribution of one-atom-wide Co wire lengths. The
smooth gray curves denote a fit based on a one-dimensional lattice-
gas model; see discussion in text. At a coverage of 0.09 ML
!circles", the average wire length is a #27 atoms. As the coverage is
increased to 0.12 ML !squares", the average wire length increases to
#40 atoms, indicating that wire length increases with coverage.
This result is in accord with a growth mechanism, in which the Co
atoms move facilely along the step edge until encountering a wire
end, to which the Co atom attaches. Note that in comparison to the
typically reported widths of nanometer-scale islands at step edges
!5 nm or #20 atoms", the one- and two-atom !not shown above"
wires have grown to much longer length scales.
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FIG. 1. (Color online) Self-assembled Co atomic chain system.
(a) Illustration of dimerized Co atomic chains on vicinal (8.5◦

miscut) Cu(111). (b)–(d) Illustration of high-spin ferromagnetic,
high-spin antiferromagnetic, and zero-spin electron configurations.
Coupling is strongest for the high-spin ferromagnetic phase, weaker
for the zero-spin phase, and blocked for the antiferromagnetic phase.
(e) Perspective view of a STM topography of two self-assembled
Co wires at adjacent Cu step edges. The vertical scale has been
magnified to accentuate the appearance of the Co wires. The Co atoms
constituting these wires have undergone a 1D structural distortion,
leading to the appearance of a single peak near the Cu step edge.
However, the underlying Co atoms constituting each single peak are
resolved farther away from the Cu step edge due to the decreased
contribution of the Cu local density of states to the tunneling current.
Constant current tunneling parameters: Vbias = +0.742 V at 9.4 nA.

on Cu(111) ranges from 2.50 to 2.56 Å,15 which is comparable
to that found in bulk Co. It is surprising that the Co chain would
exhibit a structural distortion; given that the atom spacing of
bulk Co is similar to bulk Cu (a difference of only ∼2%), an
ideal uniform Co atom spacing would be expected. It therefore
appears that the bond-length distortion in this case is due to
the one-dimensional geometry along the Cu step edge with
its anisotropic environment. Our observation of a dimerized
Co chain is also unexpected since monatomic Cu chains on
Cu(111), which are fabricated using atom-tip manipulation,
do not exhibit such a distortion;16 these experimental results
used STM measurements at 7 K. Hence, the fact that we are
using Co rather than Cu is important for the onset of this
distortion.

One expects that the lattice distortion is a low-temperature
phenomenon, occurring only below a critical temperature, as
observed for wires on semiconducting surfaces. The bimetallic
Co/Cu(775) system investigated here undergoes a phase tran-
sition at relatively elevated temperatures. At a temperature of
91 K, the Co distortion is nonuniform along a chain, varying
from 0.6 to 0.0 Å. The Co chains also show a tip-bias
dependency; at low tip bias, single Co atoms are easily
resolved, while at higher tip bias, a ×2 periodicity is more

prevalent (Figs. S9 and S10). At a slightly lower temperature of
81( ± 4) K, however, some chains appear exactly as those mea-
sured at 5 K, i.e., they possess a dimerization instability that is
independent of tip bias (Fig. S11). These observations indicate
a coexistence of two different phases, lending to the tentative
assignment of this system change as a first-order phase
transition with a critical temperature in the vicinity of 100 K.

To understand the physics of the dimerization as observed
in our experimental measurements, we examine theoretically
how and why an isolated Co chain restricted to distortions in
one spatial dimension dimerizes. The effect of the step may be
subsequently deduced. Ab initio and density functional theory
(DFT) calculations have previously been performed for free17

and surface supported finite18 and infinite atomic chains19 with
results ranging from nondimerized to zigzag to anisotropically
strained. However, no clear physical mechanism has been
deduced or put forward. Here we present DFT calculations,
based on several different functionals (Figs. S5 and S6),13

which shed light on the physics underlying our experimental
observations. Specifically, the energy of an infinite length 1D
periodic system consisting of two Co atoms per unit cell was
studied under the constraint that the period of the system
matched twice the Cu atom-atom spacing (2 × 2.56 Å) and that
the Co atoms are allowed to move only along the wire direction.
With regard to the latter constraint, note that our earlier
experimental observations have shown the chain is in fact
linear. In addition, our calculations used energy minimization
to identify the final atom configuration. Finally, notice that in
our experiment, the vicinal Cu(111) substrate template serves
to align the atoms in the chain in a linear 1D array.

In our theoretical model there are two Co-Co bond lengths.
Figure 2(a) shows the dependence of the energy on the
length of the shorter, i.e., nearest-neighbor, Co-Co bond
(measured relative to the mean Co-Co distance). A clear
energy minimum is visible at dshort = 0.794davg = 2.03 Å
(implying dlong = 3.08 Å). A key result of the DFT calculation
is that the Co d shell on each site is essentially fully spin
polarized, having maximal spin polarization for a given
d occupancy. Different orientations of the Co spin were
investigated [Fig. 2(a) shows as an example the energy of the
two sublattice antiferromagnet]; the ground state was found to
be in the ferromagnetic phase. Furthermore, the ferromagnetic
phase favors a structural distortion while the antiferromagnetic
phase does not. These findings suggest that the dimerization
instability is driven by the energetics of electron transfer
between d orbitals subject to a ground state of maximal
spin. Because the d orbitals are partially occupied, transfer
is optimized in a ferromagnetic state, while the high-spin state
means that electron transfer is essentially forbidden in the
antiferromagnetic state. These considerations suggest that the
spin-polarized d orbitals play a key role in the dimerization
phenomenon and thus spin (magnetic) interactions are key to
our observations.

To further investigate the relevance of the d orbitals to
the dimerization we compare in Fig. 2(b) the dimerization
energetics of stretched wires of Co (partially filled d shell;
DFT predicts a ferromagnetic ground state) and Cu (fully filled
d shell; DFT predicts a paramagnetic ground state) wires. On
general grounds, we expect that a physical 1D system that is
stretched to have a mean bond length sufficiently far from its

161406-2

(a) at room temperature (b) at 5 K

Figure 2.1: Topographic pictures of Co nanowires on Cu(111) surface (a)
at room temperatures, and (b) at 5K [reproduced from Zaki et al. (2009,
2013)].

intrinsic interest [Schulz (1996)], and as steps toward understanding heavy fermion

systems [Varma and Zawadowski (1985); Strong and Millis (1994); Fujimoto and

Kawakami (1994)], high Tc superconductors [Fabrizio et al. (1992); Finkel’stein and

Larkin (1993); Khveshchenko and Rice (1994); Balents and Fisher (1996); Shelton

and Tsvelik (1996); Lin et al. (1998); Lee et al. (2005); Chudzinski et al. (2008)], spin

ladders [Shelton et al. (1996); Kim et al. (2000)], and Hubbard ladders [Azaria et al.

(1999); Tsuchiizu and Furusaki (2002a); Wu et al. (2003)]. In these models, the mul-

tiple bands arise from physically different atoms: In the heavy fermion case, one band

represents the local moments and the other the wide band of conduction electrons; in

the high Tc case an important motivation has been models of “spin ladders". Although

we expect some qualitative aspects of these models also apply to the model of inter-

ests here, the orbital degeneracy, which is specific to the transition metal nanowires,

leads to different physical behaviors. In particular, the Hund coupling favors locally

high spin configurations, potentially leading to interesting spin structures. We also

find that the pair-hopping term, which has been often ignored in the past studies, is
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important to retain a unique orbital symmetry. Once the orbital degeneracy is bro-

ken, in general the velocities between orbitals are also different. Such effects has been

ignored in most of the past study, but are also investigated in our analysis. Finally,

we discuss possibility of magnetic ordering or orbital ordering driven by the strong

local interactions [Roth (1966); Penn (1966); Kugel and Khomskii (1972); Cyrot and

Lyon-Caen (1975); Gill and Scalapino (1987); Sakamoto et al. (2002)].

2.3 Model

2.3.1 One-dimensional two-orbital Hubbard model

We start from a multi-orbital Hubbard-like model representing the Co d-orbitals

with local onsite Coulomb interactions

H =

X

hi,ji

X

m,s

�tmm0

ij

⇣
c†imscjm0s + H.c.

⌘
+Hint. (2.1)

Here c
(†)
ims is the annihilation (creation) operator for a d-electron in orbital m with

spin s at site i. tmm0
ij is the hopping between from orbital m on site i to orbital m0 on

site j. The interaction terms Hint will be discussed below. We set the lattice constant

equal to unity. The presence of the surface breaks the symmetry between d levels and

may lead to an arbitrary ionization level. For the sake of simplicity, we will consider

here only the case where the Fermi energy crosses two orbitals, m = A,B, although

in the general case one could have up to five d-derived bands with an arbitrary Fermi

energy. Furthermore, the rotational symmetry in Hint as we will see always allows us

to diagonalize the hopping matrix, so we will ignore tAB.

In the weak coupling limit, the band structure is characterized by four Fermi

points: two Fermi momenta, kA and kB, and two chiralities, r = R,L. R (L) represent
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(a)

(b)
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Figure 2.2: (a) Schematic of two-leg ladder models. (b) Schematic of two-
orbital Hubbard model [reproduced from Okamoto and Millis (2011)].

electrons around positive (negative) Fermi momenta. The total particle number is

n = 2(kA + kB)/⇡. In principle there are five possible cases, which are summarized

in Table 2.1. In cases (a) and (b), the two Fermi momenta are equal, and the filling

is commensurate and incommensurate respectively. In cases (c) and (d), the two

Fermi momenta are different, while (c) is at half filling, and (d) is away from half

filling. Finally in case (e), one band is commensurate and the other is not, allowing an

orbital selective Mott state. When two bands have equal Fermi momenta and Fermi

velocities, the kinetic term acquires O(3) ' SU(2) orbital symmetry; this orbital

symmetry is explicitly broken with interactions we consider below.

For the two-orbital system the interaction terms have the following form:

Hint = U
X

i,m

nim"nim# + U 0
X

i,s

niAsniBs + (U 0 � J)
X

i,s

niAsniBs

� J
X

i,s

c†iAsciAsc
†
iBsciBs + J 0

X

i

⇣
c†iA"c

†
iA#ciB#ciB" + H.c.

⌘
, (2.2)
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where nims = c†imscims is the electron density and s = �s. U and U 0 indicates on-site

Coulomb repulsion between two electrons in the same band or different bands, and J

represents Hund coupling favoring high spin states. J 0 is the so-called pair-hopping

term. We assume that the symmetry breaking by substrate primarily affects the

hopping terms in the Hamiltonian without changing the local orbitals too much. This

enables us to use free-space rotation symmetries to reduce the number of interaction

constants [Dagotto et al. (2001)] In this case we have

J = J 0, (2.3)

U = U 0
+ 2J. (2.4)

The first equality is derived from the fact that Wannier wave functions are real, and

the second one represents rotational invariance in orbital space. With this simplifica-

tion, the interaction terms now have U(1) orbital rotational symmetry about y axis.

To show the symmetry explicitly, we introduce the following charge, spin, and orbital

(pseudospin) operators:

ni =

X

ms

nims, (2.5)

Si =
1

2

X

mss0

c†ims�ss0cims0 , (2.6)

T i =
1

2

X

mm0s

c†ims⌧mm0cim0s, (2.7)

where � and ⌧ are Pauli matrices. Then, the interactions in terms of U and J are

given by

Hint =
X

i

✓
U

2

n2
i + JS2

i + 3JT 2
i � 2J(T y

i )
2 � U + 5J

2

ni

◆
. (2.8)

For a transition metal ion in free space, U � J > 0, so that all interaction parameters
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are positive. Screening will reduce the value of U , but will lead to only negligible

changes in J [Aryasetiawan et al. (2006)], and most calculations indicate that even

the reduced value of U is greater than J .

As we mentioned earlier, this specific form of interactions between orbitals give

different physics compared to the extensively studied two-leg ladder models (Fig. 2.2).

Both the two-leg ladder models and our model have two orbitals per unit cell in one

dimension (two sites on the same rung on the ladder or two atomic orbitals). However,

the two-leg ladder models in general, have a transverse hopping t? along the rung

of the ladder, which effectively generate an antiferromagnetic coupling (�t2?/U < 0)

under the presence of the onsite interaction U . Thus, the two electrons on the same

rung tend to form a spin singlet. On the other hand, our model does not have a

transverse hopping, since the two orbitals are orthogonal. Instead, the Hund coupling

favors a locally high-spin state.

2.3.2 Symmetry

Now we discuss the symmetry of our Hamiltonian at the bare level. When J = 0,

the interaction term possesses U(1)c⇥SU(4)s,o ⇥ Z2; the indices “c”, “s”, and “o”

denote the charge, spin and orbital parts, and the Z2 symmetry refers to the inter-

change of orbitals. When J 6= 0, the symmetry of the spin-orbital part is broken to

SU(2)s⇥U(1)o. We’d like to emphasize that in our convention, the U(1) axis is the

orbital y-axis, wheres it is orbital z-axis in the convention of Nonne et al. (2010) and

Lee et al. (2004). Only if vA = vB and kA = kB, as in cases (a) and (b), does the total

Hamiltonian have the same symmetry as the interaction. Otherwise, including cases

(c)–(e), the total symmetry is reduced to U(1)c⇥SU(2)s at the bare level due to the

lower symmetry of the kinetic term. However, it is known that low-energy theories

in weak-coupling still have an effective Û(1)o symmetry [Lin et al. (1998); Controzzi
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Case Fermi momentum n symmetries

(a) kA = kB = 2 U(1)c⇥SU(2)s⇥U(1)o⇥Z2

(b) kA = kB 6= 2 U(1)R⇥U(1)L⇥SU(2)s⇥U(1)o⇥Z2

(c) kA 6= kB = 2 U(1)c⇥SU(2)s⇥]U(1)o

(d) kA 6= kB 6= 2 U(1)R⇥U(1)L⇥SU(2)s⇥]U(1)o

(e) kA 6= kB = ⇡/2 6= 2 U(1)c⇥SU(2)s⇥]U(1)o

Table 2.1: Possible band structures in the two-orbital Hubbard model,
and its symmetry at vA = vB. U(1)r represents a gauge transformation of
particles with chirality r.

and Tsvelik (2005); Boulat et al. (2009); Nonne et al. (2010)] at least if vA = vB. We

will see this in detail later using bosonization.

2.4 Mean-field analysis

2.4.1 Method

We employ the standard Hartree-Fock approximation, assuming the deviation

from the mean value of the operator is small:

ˆA ˆB =

⇣
ˆA � h ˆAi + h ˆAi

⌘⇣
ˆB � h ˆBi + h ˆBi

⌘

' h ˆAi ˆB + h ˆBi ˆA � h ˆAih ˆBi,
(2.9)

where h ˆAi and h ˆBi are determined by minimizing the energy. ˆA and ˆB are chosen to

be various fermion bilinears discussed in the next subsection. These expectation val-

ues correspond to (quasi-) long-ranged orders1 induced either by forward scattering
1 In purely one-dimensional system, there is no long-range order corresponding to spontaneous

symmetry breaking of continuous symmetry. In the mean field approximation, ordering tendency is
overestimated leading to fictional long-range order.
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or by backscattering. In the weak coupling regime, we focus on only the backscatter-

ing terms, since Stoner’s scenario of phase transitions driven by forward scattering

requires a coupling to be larger than a critical value [Stoner (1938)], although the

backscattering always opens a gap even in the weak coupling limit in one dimen-

sion.2. In the strong coupling regime, we assume that the forward scattering drives

the system to some kind of density polarization and study the effect of backscattering

on each polarized state. We will not consider partially polarized states, which might

appear between a non-polarized state and a fully polarized state, because the pos-

sible intermediate phases are complicated and depend sensitively on details. Thus,

we focus on a treatment of backscattering here. We also assume a constant density

of states (DoS). Although the detailed form of DoS is important to determinate the

phase boundary between strong coupling phases and weak coupling phases, this ap-

proximation is justified within each regime: In the strong coupling regime, kinetic

terms are less important than interactions; in the weak coupling regime, electrons far

away from the Fermi energy is irrelevant.

We first focus on a single band case. The quadratic Hamiltonian obtained by a

mean-field approximation can be diagonalized, and the system is gapped at the Fermi

energy ✏F . Using the energy ✏ measured from ✏F , the new dispersion is found to be,

±
p
✏2 + g2�2 (2.10)

where � is an order parameter or a fermion bilinear, and g is the corresponding

coupling constant. Under the assumption of constant DoS, the energy gain by this

gap is given by

�E = ⌫

Z 0

�⇤

⇣
✏+

p
✏2 + g2�2

⌘
d✏� g�2, (2.11)

2 This is not always true if we consider quantum fluctuations. For example, a finite value of U is
necessary to open a gap at SU(4) symmetric point with J = 0 [Assaraf et al. (1999)].
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where ⌫ is the density of states for a single band, and ⇤ is the cutoff or bottom of the

band. The values of these parameters are different in the weak coupling and strong

coupling regimes, as we will explain below. The second term in Eq. (2.11) comes

from the decomposition of quadratic terms [see Eq. (2.9)], and represents the energy

increase by the ordering.

By maximizing the energy gain in terms of �, we get the analytical solution to

the gap equation,

� =

⇤

g
sinh

�1

✓
2

⌫g

◆
. (2.12)

The stability condition for the ordered phase is g > 0. In order to obtain the phase

diagram, we compare the energies of possible phases, and choose the order that gives

the smallest energy as the ground state. Thus, phase boundaries indicate first-order

transitions from one minimum to another without coexistent regions.

In the weak coupling limit (g ! 0), Eq. (2.12) is reduced to

� ! 2⇤

g
e�

2
⌫g , (2.13)

and the energy gain for single band by gap opening is found to be

�E ⇠ ⌫g2�2. (2.14)

The density of states is fixed to be the value at the Fermi energy, and the cutoff ⇤ is

taken to be small compared to the band width 4t.

In the strong coupling limit, as a constant density of states, we will use the av-

eraged value for the tight binding dispersion, ⌫ = 1/(4t), since most of the electrons

participate in density-wave formation in the strong coupling limit. The energy of each

state consists of two parts: static energy, and energy reduced by backscattering. The

former is simply given by the sum of kinetic terms, and the static density-density

interaction. As we take the constant DoS to be 1/(4t), the kinetic term becomes
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2tn(n � 1) with particle density n in each band. The reduction of energy by density

wave formation is obtained from Eq. (2.11). In particular, in the limit of g ! 1, it

becomes

�E ⇠ 1

4

g⌫2⇤2 � 1

2

⌫⇤2
+ · · · , (2.15)

with

� ⇠ ⌫⇤

✓
1

2

� 1

3⌫2g2

◆
+ · · · . (2.16)

The backscattering tries to use all the electrons to form a density wave in the strong

coupling limit, so the cutoff ⇤ in Eq. (2.11) is taken as the energy of band bottom.

Finally, we also consider the case where the ordering vector is q = ⇡ involving

Umklapp processes, while the Fermi momenta is not ⇡/2. Calculations very similar

to those leading to Eqs. (2.11) and (2.12) give the following results for q = ⇡ orderings

in a single band with n < 1/2. The ground state energy is given by

EGS = ⌫

Z �2t(1�2n)

�2t

⇣
�
p
✏2 + g02�2

⌘
d✏+ g0�2

+ (static interaction energy), (2.17)

with ⌫ = 1/(4t). We used g0 = 2g to emphasize that the coupling constant is doubled

at q = ⇡ due to Umklapp processes, while static energy from the q = 0 part is just

with g. The kinetic energy for n > 1/2 can be obtained by the particle-hole symmetry.

The solution for the gap equation is found to be

� =

2t

g0 sinh
⇣

2
⌫g0

⌘

s

(2n � 1)

2
+ 1 + 2(2n � 1) cosh

✓
2

⌫g0

◆
. (2.18)

This goes to n/2 in the strong coupling limit. The solution exists only when the

density is close to half-filling, nc < n < 1 � nc, with

nc =
1

2

 s

cosh

2

✓
2

⌫g

◆
� 1 � cosh

✓
2

⌫g

◆
+ 1

!
. (2.19)
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This becomes 1/2 at g ! 0, and goes to 0 as g ! 1. Thus, at intermediate coupling,

the density wave with q = ⇡ is stable only around half-filling.

When multiple bands are involved, the calculation becomes more tedious. Now

the coupling constant g in Eq. (2.10) is expressed by some linear combinations of U

and J . Complete list of coupling constants expressed by U and J is given in Table 2.2.

Note that there exist contributions from Umklapp processes at half-filling, and extra

interband scattering when kA = kB. In our two-band model, the important possibili-

ties are: two bands have the same order independently by intraband scattering, or two

bands have an order by interband scattering. For the former case, Eq. (2.11) remains

the same where ⌫ is the density of states for each band, and the total energy only

depends on the averaged density of states, ⌫intra ⌘ (⌫A + ⌫B)/2. For the latter case,

the dispersion becomes more complicated in general, though the final result depends

only on a single parameter, ⌫�1
inter = (⌫�1

A + ⌫�1
B )/2. Thus, there is an in-equivalence

between interband and intraband density of states,

⌫intra > ⌫inter. (2.20)

Therefore different density of states leads to suppression of interband scattering. Since

the density of states at the Fermi energy is connected to the Fermi velocity v, and

it is given by ⌫ = (2⇡v)�1, we see that the velocity difference suppresses interband

processes from Eq. (2.20).

2.4.2 Order parameters

As mean-field order parameters, we take fermion bilinears characterized by the

chirality, spin and orbital indices; thus in the model considered here there are particle-

hole bilinears,

(�ph)
ss0;mm0

rr0 = c†rmscr0m0s0 (2.21)
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and particle-particle bilinears,

(�pp)
ss0;mm0

rr0 = msc†rmsc
†
r0m0s0

, (2.22)

where c
(†)
rms is the annihilation (creation) operator of electron with chirality r, orbital

m, and spin s. When the momentum transfer q is zero, we have spatially uniform order

such as ferromagnetism, ferroorbital order, and superconductivity. When q 6= 0, spa-

tially non-uniform order such as density waves and Fulde-Ferrell-Larkin-Ovchinnikov

(FFLO) or pair-density wave superconductivity appears. Combinations of r = r0 are

irrelevant in a RG sense, while in the strong coupling they become important. We

will use the following convenient basis to represent them,

Oij
ph =

X

mm0ss0

⌧ imm0�
j
ss0(�ph)

ss0;mm0
+ h.c. (2.23)

Oij
pp =

X

mm0ss0

⌧ imm0�
j
ss0(�pp)

ss0;mm0
+ h.c. (2.24)

where i, j = (0, 1, 2, 3) and ⌧ and � are Pauli matrices with ⌧ 0ab = �0
ab = �ab. These

transform as rank 2 tensors under SO(4) ' SU(2)s⇥SU(2)o transformations; the

SU(2)s rotations connect �1,2,3, and the U(1)o rotation (if it exists) connects ⌧ 1 and ⌧ 3.

Thus, we take the quantization axis along z-direction for spins. As we will show below,

in the mean-field treatment, the high spin states (j = 3) such as SDW states and

triplet superconductivities appear in the phase diagrams, while in the bosonization

treatment, these spin triplet combinations are excluded from the possible ground

state.

The order parameters with r = r0 indicate that the momentum transfer is 0, i.e.,

spatially uniform density order. Considering the SU(2)s and possible U(1)o symmetry,

here we only consider the cases with i, j = 0, 3 such that the fermion bilinears are

diagonal in spin and orbital spaces. We may think about the off-diagonal orbital order
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Figure 2.3: “Angular momentum" of order parameters and the phase at
each Fermi point.

in general such as (ic†rAscrBs0 + h.c.) expressing an antibonding orbital occupancy. In

that case, mean-field treatment generates an off-diagonal one-body term, and thus in

order to solve the self-consistent equation, we need to diagonalize the non-diagonal

dispersion matrix, which depends on the detail of the original dispersion. These lines

are beyond the scope of our thesis. Thus, we focus on the simple diagonal cases. Due

to the conservation of particles, the linearly independent diagonal order parameters

are only ferromagnetism (FM), and orbital ferromagnetism (OFM):

�FM = hnA"i � hnA#i + hnB"i � hnB#i 6= 0,

�OFM = hnA"i + hnA#i � hnB"i � hnB#i 6= 0.
(2.25)

For order parameters with r 6= r0, we label them by the transferred momentum

and the sign at each Fermi point. Here we have four Fermi points each degenerate

about spins, so, in principle, there are four possible cases (Fig. 2.3). We use s-wave

when all four points have the same signs. px and py are odd under the inversion

R $ L, and A $ B respectively. d-wave is odd under both inversions. Applying

this classification, we find that i = 0, 1 are both s-wave for the particle-hole channel,

while the former is intraband type and the latter is interband type. We put “ 0 ” for
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an interband order to distinguish these two. i = 2 is found to be interband py-wave,

and i = 3 is intraband py-wave. For the particle-particle channel, we found d0-, py-,

s-, and s0-wave orders for i = 0, . . . , 3 accordingly. Since px-wave does not appear

in bosonization study, we will use p for py-wave orders when it is not confusing. We

note that the d-wave superconductivity, which often appears in two-leg ladder models

[Schulz (1996)], is the pSS state in our notation. The result is summarized in Table

2.3.

When a band is commensurate, we have another family of order parameters called

“bond" order (BOW), which is basically the density-wave slid from on-site to“on-

bond," and is the same as dimerization. The only difference between site order

and bond order is the phase of the order parameter; � is real for on-site order,

and imaginary for bond order. We found that the energy gain is maximized when

the order parameter is real, indicating that always on-site orders have lower energy.

Therefore, we will ignore the bond orderings for the mean-field calculations.



2. Charge-density waves in Co nanowires 38

k
A

6=
k
B

6=
⇡
/2

k
A

6=
k
B
=
⇡
/2

k
A
=

k
B

6=
⇡
/2

k
A
+
k
B
=
⇡

k
A
=

k
B
=
⇡
/2

C
D

W
�
U

�
U
,�

2
U

�
3
U
+
5
J

�
3
U
+
5
J

�
6
U
+
1
0
J

SD
W

U
U
,2
U

U
+
J

U
+
J

2
U
+
2
J

s0
C

D
W

U
�

5
J

U
�

5
J

U
�

5
J

2
U

�
1
0
J

2
U

�
1
0
J

s0
SD

W
U

�
J

U
�

J
U

�
J

2
U

�
2
J

2
U

�
2
J

p0
C

D
W

U
�

3
J

U
�

3
J

U
�

3
J

2
U

�
6
J

2
U

�
6
J

p0
SD

W
U

�
3
J

U
�

3
J

U
�

3
J

2
U

�
6
J

2
U

�
6
J

pC
D

W
�
U

�
U
,�

2
U

U
�

5
J

U
�

5
J

2
U

�
1
0
J

pS
D

W
U

U
,2
U

U
�

J
U

�
J

2
U

�
2
J

d
0 S

S
�
U
+
J

�
U
+
J

0
�
U
+
J

0

p0 y
T

S
�
U
+
3
J

�
U
+
3
J

�
2
U
+
6
J

�
U
+
3
J

�
2
U
+
6
J

p y
SS

�
2
U
+
2
J

�
2
U
+
2
J

�
2
U
+
2
J

�
2
U
+
2
J

�
2
U
+
2
J

d
T

S
0

0
0

0
0

sS
S

�
2
U

�
2
J

�
2
U

�
2
J

�
2
U

�
2
J

�
2
U

�
2
J

�
2
U

�
2
J

p x
T

S
0

0
0

0
0

s0
SS

�
U

�
J

�
U

�
J

�
2
U
+
2
J

�
U
+
J

�
2
U
+
2
J

p0 x
T

S
�
U
+
3
J

�
U
+
3
J

0
�
U
+
3
J

0

T
ab

le
2.

2:
M

ea
n-

fie
ld

co
up

lin
g

co
ns

ta
nt

fo
r

ea
ch

ph
as

e.



2. Charge-density waves in Co nanowires 39

(
i,
j)

Pa
rt

ic
le

-h
ol

e
or

de
r

(O
ij ph

)
Pa

rt
ic

le
-p

ar
tic

le
or

de
r

(O
ij pp

)
P

L
S

(
0
,0
)

C
ha

rg
e

de
ns

ity
w

av
e

(C
D

W
)

d
0 -w

av
e

sin
gl

et
SC

(d
0 S

S)
-1

0
0

(
0
,3
)

Sp
in

de
ns

ity
w

av
e

(S
D

W
)

p0 y
-w

av
e

tr
ip

le
t

SC
(p

0 y
T

S)
1

0
1

(
1
,0
)

s0
-w

av
e

ch
ar

ge
de

ns
ity

w
av

e
(s

0 C
D

W
)

p y
-w

av
e

sin
gl

et
SC

(p
y
SS

)
1

1
0

(
1
,3
)

s0
-w

av
e

sp
in

de
ns

ity
w

av
e

(s
0 S

D
W

)
d
-w

av
e

tr
ip

le
t

SC
(d

T
S)

-1
1

1
(
2
,0
)

p0 y
-w

av
e

ch
ar

ge
de

ns
ity

w
av

e
(p

0 C
D

W
)

s-
w

av
e

sin
gl

et
SC

(s
SS

)
1

1
0

(
2
,3
)

p0 y
-w

av
e

sp
in

de
ns

ity
w

av
e

(p
0 S

D
W

)
p x

-w
av

e
tr

ip
le

t
SC

(p
x
T

S)
-1

1
1

(
3
,0
)

p y
-w

av
e

ch
ar

ge
de

ns
ity

w
av

e
(p

C
D

W
)

s0
-w

av
e

sin
gl

et
SC

(s
0 S

S)
1

1
0

(
3
,3
)

p y
-w

av
e

sp
in

de
ns

ity
w

av
e

(p
SD

W
)

p0 x
-w

av
e

tr
ip

le
t

SC
(p

0 x
T

S)
-1

1
1

T
ab

le
2.

3:
C

la
ss

ifi
ca

tio
n

of
or

de
r

pa
ra

m
et

er
s.

“
’”

in
di

ca
te

s
th

at
th

e
or

de
r

is
an

in
te

rb
an

d
ty

pe
.

T
he

ei
ge

nv
al

ue
s

of
ea

ch
su

pe
rc

on
du

ct
in

g
ph

as
e

un
de

r
pa

rit
y

(P
),

or
bi

ta
lr

ot
at

io
n

(L
),

an
d

sp
in

ro
ta

tio
n

(S
),

ar
e

al
so

lis
te

d.
T

he
co

rr
es

po
nd

in
g

or
de

r
pa

ra
m

et
er

s
ar

e
gi

ve
n

in
E

qs
.(

2.
21

),
(2

.2
2)

,a
nd

(2
.2

4)
.

Pa
rt

ic
le

-h
ol

e
ch

an
ne

ls
ar

e
ev

en
un

de
r

pa
rit

y.



2. Charge-density waves in Co nanowires 40

SDW

s ' CDW
pCDWHC2S0L

CDW
(C1S0)

  sSS
(C1S0)

py' TSHC1S0L
(C1S0)

-1.0 -0.5 0.0 0.5 1.0
U-1.0

-0.5

0.0

0.5

1.0
J

px' TS
py' TSHC2S0Lpy SSHC1S0L

sSS
(C1S0)

s ' CDWHC1S0L

(C2S0)

SDW
pSDW

-1.0 -0.5 0.0 0.5 1.0
U-1.0

-0.5

0.0

0.5

1.0
J

px' TS
py' TSHC2S0Lpy SSHC1S0L

sSS
(C1S0)

s ' CDWHC1S0L

(C2S0)

SDW
pSDW

-1.0 -0.5 0.0 0.5 1.0
U-1.0

-0.5

0.0

0.5

1.0
J

(a) kA 6= kB 6= �/2 kA 6= kB = �/2 kA = kB 6= �/2(b) (c) 

Figure 2.4: Mean-field phase diagrams for incommensurate cases [repro-
duced from Okamoto and Millis (2011)].

2.4.3 Results

Here we present Hartree-Fock (HF) phase diagrams in the weak coupling regime.

In order to obtain the phase diagrams, we compare the energy of possible phases,

and choose the one with the lowest energy as the ground state. Along with the order

parameter with (quasi-) long-range correlation, these phases are characterized by the

number of gapless excitations in the charge and spin modes. We denote a system with

m massless charge modes and n massless spin modes as CmSn [Balents and Fisher

(1996)]. Without any interaction, the original Hamiltonian has four bands and this

corresponds to C2S2. We first explain the three cases away from half-filling, and then

see the phase diagrams for systems at half-filling. For all the cases, the physically

relevant parameter region is U � J > 0, although we investigated various parameter

regions beyond this restriction.

First, we discuss the incommensurate cases, whose phase diagrams are given in

Fig. 2.4. When U � |J |, the Coulomb repulsion U dominates the physics, and as in

the one orbital Hubbard model [Overhauser (1960)] the ground state is a spin density
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wave. In the generic case of two incommensurate Fermi wavevectors the phase of the

spin density wave is not pinned between the two channels and there is a continuous

family of solutions. When kA = kB, the relative phase mode is pinned down; there

is no degeneracy here. The total charge mode and the relative charge mode are both

massless in the degenerate SDW phase where both spin modes are massive. Thus,

the degenerate SDW phase is expressed as C2S0. This represents two independent

metallic spin-gapped chains of C1S0. The non-degenerate SDW phase in kA = kB

case has a massive relative charge mode so it becomes C1S0.

One notable feature for J � |U | is that we have p-wave superconductivity, which

is also observed in numerical calculation [Sakamoto et al. (2002); Shirakawa et al.

(2008)] This is different from the case of two-leg ladder systems, where a purely re-

pulsive Coulomb interaction leads to a spin-singlet d-wave superconducting ground

state [Schulz (1996)]; the p-wave superconductivity is triggered by an attractive in-

teraction. We can understand this by looking at the limit of J ! +1, where the

spin on the same site is fully polarized, but an orbital degeneracy remains. So the

only on-site interaction with dynamical consequences is (U �3J)nA�nB� in Eq. (2.2).

By employing the knowledge that the negative-U Hubbard model has spin singlet

superconductivity as the ground state [Auerbach (1994)], we find that the analogous

ground state of this limit is the interband orbital singlet superconductivity with par-

allel spins, i.e., p0yTS. The degeneracy of p0yTS with p0xTS arises from the absence of

pinning effect between the two SCs as is the case for the SDW and pSDW states.

When two Fermi momenta are not equal, these superconductivities show periodic

modulation of order parameters in real space similar to that found in a FFLO state.

At last, the degenerate p0xTS and p0yTS state is C2S0, and the non-degenerate p0yTS

state for kA = kB is C1S0.

Next, we turn our attention to the negative U region, �U � |J |. When |U |
is large enough, it is naturally expected that attractive U < 0 gives some kind of
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superconductivity; indeed, we found the pySS state for positive J , and the sSS state

for negative J when two Fermi momenta are different. The pySS state is replaced

to the CDW state when kA = kB. To understand these phases, here we consider

two-particle local eigenstates. There are 4C2 = 6 locally possible states. The spin

triplet (S = 1) states are

|S = 1, Sz = 1i ⌘ c†A"c
†
B"|0i,

|S = 1, Sz = 0i ⌘ 1p
2

�x
ss0c

†
Asc

†
Bs0 |0i,

|S = 1, Sz = �1i ⌘ c†A#c
†
B#|0i

(2.26)

The on-site energy is ES=1 = U � 3J . Among the three spin singlet (S = 0) states,

U(1)orbital doublet states are

|S = 0, xi ⌘ 1p
2

�x
mm0c

†
m"c

†
m0#|0i,

|S = 0, zi ⌘ 1p
2

�z
mm0c

†
m"c

†
m0#|0i

(2.27)

with ES=0,� = U � J . The last piece is U(1)orbital singlet

|S = 0,+i ⌘ 1p
2

�mm0c†m"c
†
m0#|0i (2.28)

with ES=0,+ = U + J . This indicates that, for large negative U , interband supercon-

ductivity with S = 1 is preferable for J > 0, and intraband spin singlet superconduc-

tivity is preferable for J < 0. The latter superconductivity is indeed the sSS phase in

the negative J region. On the other hand, the positive J region does not match with

the pySS state in the phase diagram. This discrepancy is attributed to the differ-

ent numbers of allowed scattering processes; when two Fermi momenta are different,

the number of interband scattering processes is fewer than that of intraband ones.

Therefore, interband orderings are suppressed. For example, the following interband
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process is prohibited when kA 6= kB,

nA�nB� ' c†AL�cAR�c
†
BR�cBL� + H.c., (2.29)

although a similar intraband process is allowed,

nm�nm� ' c†mL�cmR�c
†
mR�cmL� + H.c.. (2.30)

Therefore, |S = 0, zi is more suitable in positive J , and this corresponds to the pySS

state. Of course, when J becomes sufficiently strong, the energy gain by spin align-

ment becomes predominant, and the system exhibits spin-triplet superconductivity.

Similarly, the CDW phase in upper left area for equivalent bands appears since it is

strongly enhanced due to the “nesting” of kA = kB although the pySS state is not

affected. Here all the phases are non-degenerate, so only the total charge mode is

massless, C1S0.

The large negative J region (�J � |U |) is again described by the nA�nB� term in

Eq. (2.2), and the ground state should be an interband orbital density wave, which

corresponds to the SDW state of the simple Hubbard model. So the possible can-

didates are either the s0CDW state, or the pCDW state. Taking into account the

ordering of the fermionic operators in nA�nB�, we find that the s0CDW state has

correct sign to be the ground state. For kA = kB case, the s0CDW and pCDW states

are degenerate as the U(1)o symmetry requires.

The phase diagrams for half-filling cases are shown in Fig. 2.5. At half-filling, the

most of the arguments presented for the case of general filling still apply, but we have

to take Umklapp processes into consideration. Since Umklapp processes enhance only

density-wave states, superconducting states that appear in the negative U region are

now replaced by the CDW state as in the kA = kB case away from half-filling. An

interesting new phase is the s0SDW state, which is located between the s0CDW and
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Figure 2.5: Mean-field phase diagrams for commensurate cases [reproduced
from Okamoto and Millis (2011)].

SDW states for the kA 6= kB case. At this special filling, interband Umklapp processes

are enhanced, so the s0SDW state is dominant at small J . However, the s0SDW state

is stable only when U > J , although the SDW state is stable for all U, J > 0 region.

Thus at large J , the SDW state is again dominant, and we obtain the above phase

diagram.

The sSS phase at half-filling should be read as the S-Mott or S 0-Mott state at

commensurate filling, we know that the system is insulating due to Umklapp pro-

cesses. These Mott insulating states have similar order parameters as the sSS state

except the total charge mode when it is written in bosonic fields, and turn into the

sSS state upon doping.

Finally most of the phases appearing at half-filling are completely gapped, C0S0,

except a region where the s0CDW and pCDW states are degenerate. In this degenerate

region, the orbital sector is massless, C1S0.

As we pointed out in Eq. (2.20), the velocity difference suppresses interband scat-

tering processes, and intraband orders become dominant. In our cases, the dominant
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Figure 2.6: Mean-field phase diagrams with different velocities [reproduced
from Okamoto and Millis (2011)].

phases appearing are pySS, CDW, SDW, pSDW and sSS. As the velocity difference

gets larger from vA/vB = 1, the phases governed by interband scattering are gradu-

ally excluded, and beyond vA(B)/vB(A) ⇡ 40, which corresponds to ⌫intra/⌫inter ⇡ 10,

the whole phase diagram is covered by intraband type orderings (Fig. 2.6). The

kA 6= kB = ⇡/2 case looks like Fig. 2.6(a) when either vA/vB or vB/vA becomes large.

When kA = kB, the phase diagrams are similar to Fig. 2.6(b) regardless of the filling.

2.5 Bosonization and renormalization group analysis

2.5.1 Bosonization

The mean-field analysis presented in the previous section captures basic physical

aspects of our model, but it does not incorporate the quantum fluctuations, which

may drive the system into a non-trivial fixed point different from the mean-field
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Figure 2.7: Various scattering processes and “g-ology" [reproduced from
Okamoto and Millis (2012)].

results. Furthermore, we have ignored the possibility of non-local order, which are

also products of purely quantum mechanical nature.

Here in order to include these ingredients, we employ bosonization and renormal-

ization group to analyze the same model. In particular, bosonization enables us to

describe the low energy physics including all the forward scattering effects. Without

backscattering terms, the effective model describes the hydrodynamic phonon modes

of electron densities with a renormalized velocity due to the forward scattering. We

present an Abelian-bosonization analysis, which is useful for the cases when differ-

ence in velocities is negligible. The details of the Appendix A outlines the more

complicated formalism needed for unequal velocities.

We briefly recall formulas from Abelian-bosonization [Voit (1995); Giamarchi

(2003); Gogolin et al. (2004); Carpentier and Orignac (2006)]. The following for-

mula gives transformation from a fermionic Hamiltonian to a bosonic Hamiltonian,

 m�r =
⌘m�p
2⇡↵

e⌥i�
m�r , (2.31)

where m = A,B is orbital, r = R,L is chirality, and ⌘ is a Majorana fermion or Klein

factor, which takes care of the fermionic properties. The bosonic fields satisfy the
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commutation relations,

[�m�R(L)(x),�m0�0R(L)(x
0
)] = ±i⇡�mm0���0sgn(x � x0

)

[�m�R(x),�m0�0L(x
0
)] = i⇡�mm0���0 .

(2.32)

The Majorana fermions obey anti-commutation relations

{⌘m�, ⌘m0�0} = 2�mm0���0 . (2.33)

A more convenient representation is given by the non-chiral fields,

�m�, ✓m� =

1

2

(�m�L ± �m�R). (2.34)

They are connected to density and current as r� / n and r✓ / j, and satisfy

commutation relations,

[�m�(x),�m0�0
(x0

)] = [✓m�(x), ✓m0�0
(x0

)] = 0

[�m�(x), ✓m0�0
(x0

)] = i⇡�mm0���0
⇥(x0 � x),

(2.35)

where ⇥(x) is the Heaviside step function. Finally we move to different combinations

of these fields, 2

6666664

�c0

�c⇡

�s0

�s⇡

3

7777775
=

1

2

2

6666664

1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

3

7777775

2

6666664

�A"

�A#

�B"

�B#

3

7777775
, (2.36)

where µ = (c, s) represents charge and spin modes, and ⌫ = (0, ⇡) gives bond-

ing/antibonding basis. ✓’s are transformed in the same manner. The sign of each

coupling constant is determined by Klein factors, and by a commutator between differ-

ent chirality, [�R,n(x),�L,n0
(x0

)] = i⇡�n,n0 . The eigenvalues of Klein factors composed
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of two Majorana fermions (different from the ones introduced for refermionization

later) are taken to be

i = ⌘As⌘Bs = ⌘A"⌘A# = ⌘A"⌘B# = ⌘B"⌘A# = �⌘B"⌘B#. (2.37)

To classify the various scattering processes we follow the notation of Chudzinski

et al. (2008). “1–4" corresponds to conventional “g-ology" indices for left and right

moving fields, and “a–d" are similar but label orbital indices. Some examples are

given in Fig. 2.7. Using the standard bosonization formalism,Voit (1995); Giamarchi

(2003); Gogolin et al. (2004) the Hamiltonian density H0 of the free-boson part be-

comes,

H0 =
1

2⇡

X

µ=c,s
⌫=0,⇡

vµ⌫


Kµ⌫(r✓µ⌫)2 +

1

Kµ⌫

(r�µ⌫)
2

�
(2.38)

where � and ✓ are connected to density and current: r� / n, and r✓ / j. The

renormalized Luttinger parameters and velocities are given by

Kc0(⇡) =

s
1 � (y1d ± y2b)/2

1 + (y1d ± y2b)/2
⌘ 1 � yc0(⇡)

Ks0(⇡) =

s
1 + (y1d ± y1a)/2

1 � (y1d ± y1a)/2
⌘ 1 � ys0(⇡)

vc0(⇡) = v
p

1 � (y1d ± y2b)2/4

vs0(⇡) = v
p

1 � (y1d ⌥ y1a)2/4

(2.39)

with yi ⌘ gi/4⇡v and y2b ⌘ y?2b+y
k
2b. “c” and “s” represent the charge and spin modes,

and “0” and “⇡” are used for bonding and antibonding combination. We introduced

yµ⌫ for each Luttinger parameter for later use. We ignore the velocity difference

induced by the g4 process, since its effect is to shift the phase boundaries slightly. We

will provide a separate treatment for systems in which difference of initial velocities
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is quite large.

The interaction part of the Hamiltonian is rather complicated. The interaction

terms common to all cases are

Hint = g1d

Z
cos (2�s0) cos (2�s⇡)

+ g1a

Z
cos (2�s0) cos (2✓s⇡)

� g1c

Z
cos (2�s0) cos (2✓c⇡)

� g2c

Z
cos (2�s⇡) cos (2✓c⇡)

+ gkc

Z
cos (2✓s⇡) cos (2✓c⇡) .

(2.40)

Here
R

stands for (2⇡↵)�2
R
dx, and ↵ is the cut-off which is of the order of the

lattice constant. The last term does not exist in the original Hamiltonian, but will be

generated after the one-loop renormalization. When kA = kB, in cases (a) and (b),

additional processes are allowed,

H 0
int = gka

Z
cos (2�s⇡) cos (2�c⇡)

+ g1b

Z
cos (2�s0) cos (2�c⇡)

+ g2a

Z
cos (2✓s⇡) cos (2�c⇡) .

(2.41)
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Finally when the filling is commensurate, we have

H 00
int = g3a

Z
cos (2�c0) cos (2✓s⇡)

� g3b

Z
cos (2�c0) cos (2�s⇡)

� g3c

Z
cos (2�c0) cos (2✓c⇡)

� g3d

Z
cos (2�c0) cos (2�c⇡)

� gkb

Z
cos (2�c0) cos (2�s0) .

(2.42)

The g3d process exists only when both bands are commensurate, case (a). Again, we

ignored the g4 type interactions whose scaling dimension is always larger than two,

and this is consistent with the equal velocity approximation. The initial values of

these coupling constants are: g1d = g3d = 4U , g1a = g1c = g2c = g2a = g3a = g3c = 4J ,

g
k
2b = gka = gkb = 4(U�3J), and g1b = g?2b = g3b = 4(U�2J). They will take different

values after renormalization.

The SU(2)s symmetry constrains coupling constants as

gm1d � gm2d = 0,

g?2b � g
k
2b � g1a = 0,

g1c � g2c + gkc = 0,

gs0(⇡) +
1

2

(g1d ± g1a) = 0.

(2.43)

For the rest of the chapter, we will omit ? when it is not confusing. When two Fermi

points coincide, we have additional processes gka, g1b, and g2a, which are connected

by the SU(2)s symmetry as,

gka � g1b + g2a = 0. (2.44)
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kA = kB means that we have the U(1)o symmetry, and this implies

gA1(2)d � gB1(2)d = 0,

�gm2d + g?2b + g2c + g2a = 0,

�gm1d + g1b + g1c + g1a = 0,

g
k
2b + gkc � gka = 0,

gc⇡ +
1

2

(�g1d + g2b) = 0.

(2.45)

As Umklapp processes, we have gkb and g3i (i = a–d). The gm3d process represents the

intraband Umklapp process, so it only exists for km = ⇡/2. Other Umklapp processes

are possible whenever n = 2. The SU(2)s symmetry gives

g3a + gkb � g3b = 0, (2.46)

and the U(1)o symmetry leaves

g3d = g3a + g3b + g3c. (2.47)

Contrary to the classical case in Sec. 1.3, these potentials do not immediately lead

to the destruction of massless modes because of two reasons. First, the forward scat-

tering among electrons renormalizes the velocity and Luttinger parameters. Due to

these renormalization effects, the scaling dimensions of backscattering terms usually

deviate from the non-interacting values at the first order of RG equations; some cou-

pling constants may be irrelevant. Furthermore, when we consider the second order

effects in RG equations, the complicated coupling among various scattering channels

further change the fixed points from the ones obtained from simple scaling arguments.

Thus, in general, we need to integrate the RG equations to figure out the final fixed

points; the final Hamiltonian can be totally different from the initial one.
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Finally we will discuss the symmetry of the linearized model (Table 2.1). First,

U(1)c and SU(2)s (around z-axis) are displayed in the invariance of the Hamiltonian

under the translation of ✓c0 and ✓s0. In fermionic language, each corresponds to the

following gauge transformation:

crms ! ei↵crms, crms ! eis↵crms. (2.48)

The indices r, m, and s represent chirality, orbital, and spin, and ↵ expresses the

constant phase shift. The conserved Noether currents, corresponding to the U(1)c

and SU(2)s symmetries are,

X

rms

Nrms /
Z

dxr�c0,

X

rms

sNrms /
Z

dxr�s0,

(2.49)

where Nrms is the particle number at the branch specified by r, m, and s. Since r�
is momentum conjugate of ✓, the operator exp

�R
dxr�

�
gives a constant shift of ✓.

The SU(2)s rotation around x- and y-axis are not manifest in Abelian bosonization.

Away from half filling, there is also a continuous chiral symmetry under the

transformation, crms ! eir↵crms. Thus, the Hamiltonian is invariant under arbi-

trary translation of �c0, with conserved total currents, JA + JB /
R
dxr✓c0 where

Jm =

P
s NRms �NLms. At half filling, this symmetry is broken to a discrete symme-

try, and true long-range order can be realized.Wu et al. (2003) When a system has

both the chiral symmetry and the U(1)c symmetry, this implies that left, and right

moving parts have separate conservation laws corresponding to the U(1)R⇥U(1)L
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symmetry. Similarly, other gauge transformations such as

crms ! eim↵crms,

crms ! eims↵crms,

crms ! eirs↵crms,

crms ! eirms↵crms,

(2.50)

leave the Hamiltonian invariant for discrete values of ↵ = n⇡/2; each corresponds

to the discrete shift of ✓c⇡, ✓s⇡, �s0, and �s⇡. When kA = kB, there is an explicit

orbital rotational symmetry about y-axis. This transformation mixes fermions in

different orbitals, so its generator cannot be expressed as a local operator in Abelian

bosonization. This fact leads to a new combination of possible ground states as will

be shown.

The effective ]U(1)o symmetry appearing when kA 6= kB and vA = vB,Lin et al.

(1998); Controzzi and Tsvelik (2005); Boulat et al. (2009); Nonne et al. (2010) corre-

sponds to the invariance under the translation of �c⇡ or the gauge transformation,

crms ! eirm↵crms. (2.51)

The conserved “charge” corresponding to this symmetry is the difference of two orbital

currents: JA � JB /
R
dxr✓c⇡.

2.5.2 Renormalization group

The idea of renormalization was first introduced in particle physics [Peskin and

Schroeder (1995)], and later K. Wilson developed a renormalization group (RG) [Wil-

son (1975)]. The basic spirit of RG is deriving a low-energy Hamiltonian by succes-

sively integrating out the higher energy degrees of freedom. RG equations describe
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the flow of coupling constants as the ultraviolet cut-off ⇤ changes from the original

one ⇤0.

In the RG equations obtained from Abelian bosonization, we use normalized cou-

pling constants defined as

yi ⌘ gi
4⇡v

. (2.52)

RG equations are derived using the operator product expansion (OPE) [Cardy (1996);

Balents and Fisher (1996); Delft and Schoeller (1998)] and integrating out higher

frequency modes. The RG equations are complicated, so we will not show them

explicitly. In all of the cases that we have examined, the RG equations may be

expressed as
dyi
dl

= �@V
@yi

. (2.53)

with a potential function, V [y1(l), y2(l), · · · , yn(l)], and the flow parameter l = ln⇤0/⇤.

The RG flow is to the valleys of the potential in the beginning and then along the

valley. The potential structure is consistent with the arguments of Chen et al. (2004).

For the commensurate case, kA = kB = ⇡/2, the potential is

V [yi] = �y1ay1cykc + y1ay1by2a � y1ay3aykb + y1cy1dy2c � y1cy3cykb + y1dykay1b

+ y1dy3bykb � y2cy3by3c � ykcy3ay3c + y1by3dykb � y2ay3ay3d + ykay3by3d

� 1

2

�
y23a � y23b � y23c � y23d � y2kb

�
yc0

� 1

2

�
�y21c � y22c � y2kc + y2ka + y21b + y22a � y23c + y23d

�
yc⇡

� 1

2

�
y21d + y21a + y21c + y21b + y2kb

�
ys0

� 1

2

�
y21d � y21a + y22c � y2kc + y2ka � y22a � y23a + y23b

�
ys⇡,

(2.54)

where we introduced Kµ⌫ ⌘ 1 � yµ⌫ for each Luttinger parameter. For kA 6= kB or

doped cases, we should remove some coupling constants which are not allowed by

momentum conservation. The RG equations valid even when velocities are different
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are given in Appendix A. We checked that both RG equations give consistent results

when vA = vB.

To get phase diagrams, we integrate the RG equations numerically until one of

the coupling constant becomes of the order of 1(⌘ t). We used initial values of

coupling constants as small as 10�8–10�3. Due to the hidden potential structure, the

asymptotic behavior of the RG flow is captured by the following ansatz [Balents and

Fisher (1996); Chen et al. (2004)],

g0i[l] =
g0i

lc � l
, (2.55)

where lc is the length at which the relevant couplings diverge, and the g0i determines

the ratio among them. This represents the fixed ray of relevant coupling constants.

Then, the bosonic fields are pinned down to the minima of the effective potential.

These values enable us to determine the order parameter that takes a non-zero value.
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2.5.3 Order parameters

The relevant local order parameters for RG study are only the spin-singlet part

j = 0, and their bosonized forms are:

O00
ph / cos (k0x � �c0) sin (k⇡x � �c⇡) sin (�s0) sin (�s⇡) ,

O10
ph / cos (k0x � �c0) sin (✓c⇡) cos (�s0) cos (✓s⇡) ,

O20
ph / cos (k0x � �c0) cos (✓c⇡) cos (�s0) cos (✓s⇡) ,

O30
ph / cos (k0x � �c0) sin (k⇡x � �c⇡) cos (�s0) cos (�s⇡) ,

O00
pp / e�i✓

c0
sin (k⇡x � �c⇡) cos (�s0) cos (✓s⇡) ,

O10
pp / e�i✓

c0
sin (✓c⇡) sin (�s0) sin (�s⇡) ,

O20
pp / e�i✓

c0
cos (✓c⇡) sin (�s0) sin (�s⇡) ,

O30
pp / e�i✓

c0
sin (k⇡x � �c⇡) sin (�s0) sin (✓s⇡) ,

(2.56)

with k0(⇡) = kA±kB. If coupling constants grow to the order of t after renormalization,

the corresponding bosonic fields are pinned to the values that minimize the resultant

potential. For incommensurate fillings, the total charge mode is massless, and the

interaction terms pin the other modes to definite values (in mod of ⇡). The pinned

values determine the order parameter that gives a finite value of correlation. It is easy

to find such pinned values from the above expressions, e.g., (✓c⇡,�s0,�s⇡) = (⇡/2, 0, 0)

for the s0CDW state.

When a filling is commensurate, insulating phases (with the gapped total charge

mode) become possible, and it turns out that the generic behavior is either that all

fields are massless or all fields are gapped. We discuss the fully gapped phases here.

In the bosonized representation, the physics is described by the conjugate fields, �µ⌫

and ✓µ⌫ , in the four sectors, µ = c, s, and ⌫ = 0, ⇡. In a fully gapped situation, in

each sector, one of �µ⌫ or ✓µ⌫ is pinned at a value that may be 0 or ⇡/2 (mod ⇡); the

conjugate variable fluctuates strongly. Naively this implies (2 ⇥ 2)

4
= 256 possible
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Phase h�c⇡i h✓c⇡i h�s0i h�s⇡i h✓s⇡i
CDW ⇡/2 ⇡/2 ⇡/2

BDW(SP) 0 0 0
s0CDW(CDW⇡) ⇡/2 0 0
s0BDW(PDW) 0 ⇡/2 ⇡/2
p0CDW(SF) 0 0 0

p0BDW (FDW) ⇡/2 ⇡/2 ⇡/2
pCDW(ODW) ⇡/2 0 0
pBDW(SP⇡) 0 ⇡/2 ⇡/2

HC ⇡/2 ⇡/2 ⇡/2
RS 0 0 0

S-Mott ⇡/2 0 0
S 0-Mott 0 ⇡/2 ⇡/2
D-Mott 0 0 0
D0-Mott ⇡/2 ⇡/2 ⇡/2

HO ⇡/2 0 0
RT 0 ⇡/2 ⇡/2

Table 2.4: Expectation values of bosonic variables in the fully gapped
phases. We set h�c0i = 0. The commonly used names are given in parenthe-
ses. SP: spin-Peierls, SF: staggered flux, PDW: p-wave density wave, FDW:
f -wave density wave.

insulating states, but only a few of these are relevant. The charge conservation implies

that only �c0 can be pinned, and the gauge invariance under translating all angles

by ⇡/2 allows us to set h�c0i = 0. The spin conservation means that only �s0 can

be pinned and additional constraints arising from the structure of the interactions

may further limit the possibilities. In the end, only eight density-wave states and

the corresponding eight dual Mott insulating states are relevant. The Mott states

are obtained from the density-wave states by interchanging which of �s⇡ and ✓s⇡ is

pinned, and The pinned values of bosonic variables in the sixteen insulating phases

are given in Table 2.4.

The density-wave states have a straightforward description in terms of local order

parameters defined as local combinations of fermion bilinears. The transcription is
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given in the previous subsection, and will not be elaborated on here with one proviso:

the gap in the total charge mode implies a breaking of translational invariance, cor-

responding to a U(1) invariance in boson language. Therefore, only a Z2 invariance

(shift of �c0 by ⇡/2) remains, and this allows us to distinguish site-centered states

(CDW’s), and bond-centered states (BDW’s).

Dual to the density-wave stats are the Mott insulating states. These evolve into

superconducting states upon doping. We do not know a general representation in

terms of bilinears constructed from the original fermion operators, even if non-local

string states are allowed. In some cases, approximate wave functions can be written

down in the strong coupling limit, essentially by analogy to the superconducting states

that appear upon doping [Lin et al. (1998); Tsuchiizu and Furusaki (2002b); Momoi

and Hikihara (2003)]:

|S-Motti ⌘
Y

i

h
c†iA"c

†
iA# + c†iB"c

†
iB#

i
|0i ,

|D-Motti ⌘
Y

i

h
c†iA"c

†
iA# � c†iB"c

†
iB#

i
|0i ,

|RSi ⌘
Y

i

h
c†iA"c

†
iB# � c†iA#c

†
iB"

i
|0i ,

|RTi ⌘ 1

2

Y

i

h
c†iA"c

†
i+1,B# � c†iA#c

†
i+1,B" � (A $ B)

i
|0i ,

(2.57)

where RS stands for the rung-singlet state, and RT for the rung-triplet state [Nishiyama

et al. (1995); Kim et al. (2000)]. These four states evolve into the sSS, pSS, s0SS,

and d0SS states upon doping respectively. The bonding counterparts of these phases

are the S 0-Mott, D0-Mott, Haldane-charge (HC), and Haldane-orbital (HO) phases

[Nonne et al. (2010)]. However, finding wave functions for these four Mott states

remains a challenge.

Also, in some particular cases, string operators can be constructed. For exam-

ple, in the strong-coupling limit, where the charge mode is decoupled, we expect the
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RS and RT states become the ones that appear in spin-12 Heisenberg two-leg ladders

[Nishiyama et al. (1995); Kim et al. (2000)]. The RS state appears in chains with

antiferromagnetic coupling along rung (or ferromagnetic coupling over plaquette diag-

onals), and it is a resonance-valence-bond (RVB) state whose stable configurations are

the singlet along rung or ladder. This state is characterized by a non-zero expectation

value of a string operator

h
�
Sz
A,i + Sz

B,i+1

�
ei⇡

P
j�1
k=i+1(S

z

A,k

+Sz

B,k+1)
�
Sz
A,j + Sz

B,j+1

�
i, (2.58)

and exhibits a “hidden antiferromagnetic order”; the total spin over plaquette diag-

onals, Sz
A,i + Sz

B,i+1, align antiferromagnetically along ladder except spin-0 site. For

chains coupled ferromagnetically along rung (or antiferromagnetically over plaquette

diagonals), the above order disappears, and the RT state with the Valence-Bond-Solid

(VBS) configuration [Affleck et al. (1987)] becomes stable. Singlet pairs are formed

in a staggered manner, and this results in triplet pair along a rung. The following

order parameter takes a non-vanishing value,

h
�
Sz
A,i + Sz

B,i

�
ei⇡

P
j�1
k=i+1(S

z

A,k

+Sz

B,k

)

�
Sz
A,j + Sz

B,j

�
i, (2.59)

which represents a hidden order about the spin-triplet on a rung. The string operators

for these disordered states are non-local, so complications arise in the transcription to

bosonic variables. Generally accepted forms for Eqs. (2.58) and (2.59) are [Nakamura

(2003)]:

hcos [�s0(x)] cos [�s0(y)]i,

hsin [�s0(x)] sin [�s0(y)]i.
(2.60)

These correlation functions take non-zero values for the RS and RT phases respec-

tively.
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The bonding counterparts of the RS and RT phases are the Haldane-charge (HC),

and Haldane-orbital (HO) phases proposed by Nonne et al. (2010) as the Haldane

gapped states of pseudo spin-1 antiferromagnetic Heisenberg chain; this realizes when

the charge or orbital symmetry is promoted from U(1) to SU(2). The form of string

operators for these states is similar to Eq. (2.59) if we replace the SU(2) spin operators

by the charge and orbital SU(2) operators:

Jz
i =

1

2

(ni � 2), J†
i = c†i,A"c

†
i,B# � c†i,A#c

†
i,B"; (2.61)

T z
i =

1

2

(nA,i � nB,i), T †
i = c†i,A"ci,B" + c†i,A#ci,B#. (2.62)

The bosonized form of the strong operators are

hJz
i e

i⇡
P

j�1
k=i+1 J

z

kJz
j i ⇠ hsin(�c0(x)) sin(�c0(y))i,

hT z
i e

i⇡
P

j�1
k=i+1 T

z

kT z
j i ⇠ hsin(�c⇡(x)) sin(�c⇡(y))i,

(2.63)

where r�c0 ⇠ Jz
(x) and r�c⇡ ⇠ T z

(x). These expressions become non-zero for the

HC and HO phases respectively.

2.5.4 Quantum phase transitions

Two of the most prominent features of one-dimensional systems are dynamical

symmetry enlargement (DSE) [Lin et al. (1998); Konik et al. (2002)] and duality

[Momoi and Hikihara (2003); Boulat et al. (2009); Nonne et al. (2010)]. Employing

these two ideas enables us to narrow down the possible phases appearing in the phase

diagram; without these and other symmetry considerations, there are 256 possible

phases.

DSE means that the effective theory describing the low energy fixed point exhibits

a higher symmetry than that of the original lattice Hamiltonian. This phenomenon
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was noted by Lin et al. (1998), who found that the low-energy theory of half-filled

two-leg Hubbard ladder is the SO(8) Gross-Neveu (GN) model. Since their work,

DSE to O(8) or O(6) GN models has been seen in other multiband systems [Assaraf

et al. (2004); Bunder and Lin (2007)]. As we will see, our model also exhibits DSE

for equal velocities.

The ground states of different low-energy O(8) or O(6) GN models are related to

each other by duality mappings, which are generalizations of the Kramers-Wannier

duality seen in the two dimensional Ising model [Kramers and Wannier (1941)]. The

idea of duality is based on the observation that the low energy theory is invariant

under some discrete operations apart from the continuous symmetries listed in Table

2.1. These discrete symmetries enable us to understand quantum phase transitions

among them.

Now, as a preparation, in order to exhibit the symmetries of the Hamiltonian, we

refermionize the model using eight Majorana fermions as explained in Shelton et al.

(1996) and Tsvelik (2011). We introduce four refermionized fields (� = c0, c⇡, s0, or

s⇡.),

 �r =
⌘�p
2⇡↵

e�ir�
�

+i✓
� . (2.64)

They satisfy the following identities:

 †
�R �L �  †

�L �R =

�i

⇡↵
cos(2��),  †

�R 
†
�L �  �L �R =

i

⇡↵
cos(2✓�). (2.65)

We decompose each mode into two Majorana fermions as

 c0
r =

1p
2

�
⇠7r + i⇠8r

�
,  c⇡

r =

1p
2

�
⇠5r + i⇠6r

�
,

 s0
r =

1p
2

�
⇠1r + i⇠2r

�
,  s⇡

r =

1p
2

�
⇠4r + i⇠3r

�
.

(2.66)
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Thus, the above identities can be rewritten for  �r =
�
⇠ar + i⇠br

�
/
p
2 as

⇠aR⇠
a
L + ⇠bR⇠

b
L =

�i

⇡↵
cos(2��), ⇠aR⇠

a
L � ⇠bR⇠

b
L =

i

⇡↵
cos(2✓�). (2.67)

Also, using the following identity (: : indicates the normal ordering),

:  †
�r �r := � 1

2⇡
(r�� � rr✓�) = � 1

2⇡
r��r, (2.68)

the forward scattering terms can be written as

1

2

g�

Z
dx⇠aR⇠

a
L⇠

b
R⇠

b
L. (2.69)

After substituting the these formula to the bosonized Hamiltonian, it is easy to

find that at half filling, the expression for the U(1)o symmetric case, (a), is,

H = �i
v

2⇡

8X

a=1

(⇠aR@⇠
a
R � ⇠aL@⇠

a
L) +

g1
2

2s + g2so + g3sI

+ g4oI +
g5
2

2o +
g6
2

2c + g7sc + g8oc + g9Ic (2.70)

with s =

P3
a=1 ⇠

a
R⇠

a
L, o =

P5
a=4 ⇠

a
R⇠

a
L, I = ⇠6R⇠

6
L, and c =

P8
a=7 ⇠

a
R⇠

a
L. The

indices “s”, “o”, “I”, and “c” refer to the SU(2)s, U(1)o, Z2, and U(1)c symmetries

respectively.3

Away from half filling, case (b), the charge mode is decoupled from the other

modes, and we do not need to consider gi=6⇠9. Thus, we have

H = �i
v

2⇡

6X

a=1

(⇠aR@⇠
a
R � ⇠aL@⇠

a
L) +

g1
2

2s + g2so + g3sI + g4oI +
g5
2

2o (2.71)

3 The initial values of each coupling constant are: g1 = �(2g1a + g1b + g1c)/4, g2,3 = ⌥(g1c ±
g1b)/4, g4,5 = (�g1b ⌥ g1c + 2g2a ± 2g1c)/4, g6 = gc0/2, g7,8 = (⌥g3a + g3b)/4, g9 = (g3a + g3b +
2g3c)/4.
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As we mentioned before, even without an explicit U(1) orbital symmetry for the

lattice Hamiltonian, the low energy theory may have the effective ]U(1)o symmetry

[Lin et al. (1998); Controzzi and Tsvelik (2005); Nonne et al. (2010)]. In that case,

the structure of the refermionized forms is the same as above. Thus, cases (c) and

(d) have the same form as Eqs. (2.70) and (2.71) with different values of g’s.4 5

For the refermionized forms, duality mappings are defined as, ⇠aL ! �⇠aL while

keeping right-moving parts untouched. It is easy to see that Eqs. (2.70) and (2.71) are

invariant under such transformations if we change the signs of some coupling constants

as well. To retain the form of the Hamiltonian, only mappings that transform all the

Majorana fields in the same symmetry sector are permitted. For example, for the

SU(2) spin part, we should map the three left Majorana fermions, ⇠a=1⇠3
L , at the

same time. For notational convenience, we define ⌦⌫ as an operation of ⇠aL ! �⇠aL
for all the a’s in a symmetry sector ⌫. With this at hand, it is obvious that allowed

mappings for half filling cases are

⌦O(8) ⌘ {⌦c,⌦o,⌦I ,⌦s,⌦c,o,⌦c,I ,⌦o,I}. (2.72)

The number of independent mappings is three, and other mappings just follow from

them ,e.g., ⌦o,I = ⌦o⌦I . Away from half filling, the charge mode is separated, so only

three of the above mappings are left,

⌦O(6) ⌘ {⌦o,⌦I ,⌦s}, (2.73)

and two of them are independent. An immediate consequence of these dualities and

DSE is that although we showed sixteen insulating phases for half filling systems, and
4 To get the same form, we have to redefine  c⇡

L = 1p
2

�
⇠5L � i⇠6L

�
. Here the modes correspond to

the new orbital part are ⇠5 and ⇠6, and the Ising mode is carried by ⇠4.
5 The bare values of coupling constants are: g1,3 = ⌥(g1a ± g1d)/4, g2 = �g1c/4, g4 =

(g1c � 2g2c)/4, g5 = �gc⇡/2, g6 = gc0/2, g7,9 = (⌥g3a + g3b)/4, g8 = �g3c/4
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eight metallic phases for incommensurate filling, only a part of them are realized.

Now, we will show such possible ground states for each model. We start from the

“fundamental" SO(8) Gross-Neveu (GN) model,

H = �i
v

2⇡

⇣
~⇠R@~⇠R � ~⇠L@~⇠L

⌘
+

g

2

⇣
~⇠R~⇠L

⌘2
, (2.74)

which appears at low-energy when all the g’s in Eq. (2.70) converge to the same value

as a result of DSE. For case (a), this model represents the BDW phase, and other

possible phases are found by applying ⌦O(8) to the BDW state (see Table 2.5). We

denote them as �y, and they are

�y : BDW, CDW, p0CDW, p0BDW, S-Mott, S 0-Mott, RT, HO. (2.75)

The case (b) follows from the relation between insulating states and metallic states, or

applying ⌦O(6) to the CDW phase, which is “fundamental". The original lattice model

we are considering here is invariant under the orbital U(1) rotation about y-axis.

As we mentioned previously, a single local bosonic field within Abelian-bosonization

scheme cannot express the generator of this symmetry .

This combination, �y, is different from the ones that have been studied extensively;

previously studied phases are

�z : BDW, CDW, pBDW, pCDW, RS, HC, RT, HO (2.76)

and

f
�z : S-Mott, S 0-Mott, D-Mott, D0-Mott, s0CDW, s0BDW, p0BDW, p0CDW. (2.77)

The former, �z, appears in models with weak transverse hopping, and with the U(1)o

symmetry about z-axis [Lee et al. (2004); Nonne et al. (2010)]. The latter,f�z, appears
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1 ⌦c ⌦o ⌦c,o ⌦I ⌦c,I ⌦s ⌦c,s

(a) BDW CDW p0CDW p0BDW S-Mott S 0-Mott RT HO
(b) CDW CDW p0CDW p0CDW sSS sSS d0SS d0SS
(c) S-Mott S 0-Mott D-Mott D0-Mott s0CDW s0BDW p0BDW p0CDW
(d) sSS sSS pSS pSS s0CDW s0CDW p0CDW p0CDW

Table 2.5: Possible ground states for case (a)–(d) in Table 2.1 at equal
velocities. The BDW, CDW, S-Mott, and sSS phases in the second column
are expressed by the fundamental SO(8) or SO(6) Gross-Neveu model for case
(a)–(d) respectively. The other states are mapped from these fundamental
states by the duality transformation ⌦ in the top row. ⌦⌫ is an operation of
⇠aL ! �⇠aL for all the a’s in a symmetry sector ⌫. For example, in case (a),
the BDW state is mapped to the p0CDW state by ⌦o. For doped cases, (b)
and (d), the charge mode is separated from the rest, and the ground states
are invariant under ⌦c.

when the model has strong transverse hopping, and the low energy theory possesses

the Û(1)o symmetry [Balents and Fisher (1996); Lin et al. (1998); Tsuchiizu and

Furusaki (2002b); Wu et al. (2003); Chudzinski et al. (2008)]; our cases (c) and (d)

belong to this category (see Table 2.5).

The connection between �y and �z is obvious. Since the generator of the orbital

symmetry for each case is y- or z-component of Eq. (2.62), they are simply mapped

to each other by a rotation around x-axis:

Rx :

0

@c0rAs

c0rBs

1

A
=

1p
2

0

@ 1 �i

�i 1

1

A

0

@crAs

crBs

1

A . (2.78)

This transformation does not affect the charge and spin generators. For instance, the

S 0-Mott state in �y goes to the HC state in �z by Rx. The correspondence among

other states is given in Fig. 2.8. On the other hand, f�z and �z transform each other

by so-called strong-weak tunneling duality [Controzzi and Tsvelik (2005); Nonne et al.

(2010)].

⌦? : cLm" ! c†Lm#, cLm# ! �c†Lm". (2.79)
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Figure 2.8: Relationships among three groups of insulating ground states
[reproduced from Okamoto and Millis (2012)]. Rx indicates the rotation
about x-axis in orbital space in Eq. (2.78), and ⌦? is strong-weak tunneling
duality mapping in Eq. (2.79). For example, the S 0-Mott state in �y maps
to the HC state in �z by Rx.

Therefore, we found that in addition to underlying band structure, the form of

interaction also affects the possible combinations of ground states. We summarized

these results in Table 2.5 and Fig. 2.8.

The quantum phase transitions among gapped ground states could be either first

order or second order. For the transitions among states connected by a duality map-

ping, the modes which are not involved in the mapping become massive at higher

energy, and the effective low energy theory near the transition contains only Majo-

rana fields flipped by the mapping [Boulat et al. (2009)].

For a single Majorana field, it becomes the critical Ising model,

H = �i
v

2⇡
(⇠R@⇠R � ⇠L@⇠L) � im⇠R⇠L (2.80)
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Over the transition, the mass changes its sign, and this represents a second-order

phase transition. With more than one field, the low-energy effective theory becomes

the massive O(N) Gross-Neveu (GN) model,

H = �i
v

2⇡

⇣
~⇠R@~⇠R � ~⇠L@~⇠L

⌘
� im~⇠R~⇠L +

g

2

⇣
~⇠R~⇠L

⌘2
. (2.81)

The fate of further renormalization to lower energy determines whether the phase

transition is first-order or second-order depending on the final fixed point for the

critical fields [Gross and Neveu (1974); Shankar (1985); Lin et al. (1998); Tsuchiizu

and Furusaki (2002b); Controzzi and Tsvelik (2005)]. The transition line is defined as

the point where the m in Eq. (2.81) goes to zero, and the critical fields are expressed

by a massless GN model in the vicinity of transition. For N = 2, it is known that the

system can be mapped to a Gaussian model, so it is a second order transition. For

N � 3, however, if the coupling constant in the GN model is positive (g > 0), the

renormalization flow departs to a strong coupling fixed point (asymptotic free), since

the RG equation is given by

ġ / g2. (2.82)

At this fixed point, the mass is generated dynamically, and the system is off-critical.

We can see this either by mean-field treatment of the interaction (reducing the quartic

part to quadratic with the order parameter h⇠R⇠Li), or by stationary phase approxi-

mation, which becomes exact when N ! 1. At this massive fixed point, there are

two degenerate minima about two signs of mass, and they correspond to two phases

connected by this first-order transition. On the other hand, when g < 0, further

renormalization reduces g to 0, and the system reaches a massless fixed point; this

represents a second-order transition.

When the transition is second order, the critical theory is described by a conformal

field theory (CFT) due to its dimensionality, (1+1). Each CFT is characterized by its
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Figure 2.9: An example of RG flow

central charge, c, which roughly expresses the number of critical fields. c = 1/2 is the

Z2 Ising critical theory, c = 1 is the U(1) Gaussian theory, and c = 3/2 is the SU(2)2

Wess-Zumino-Novikov-Witten theory. With the duality mappings, it is easy to read

off the central charge of each CFT. Since each Majorana fermion carries c = 1/2, the

number of fields flipped by a mapping directly tells us the central charge. We will

identify the phase transitions appearing in our phase diagrams more precisely later.

2.5.5 Results

A typical RG flow obtained by numerically integrating the RG equations are given

in Fig. 2.9. In all the cases with equal velocities, we find that the coupling constants

eventually exhibit the dynamical symmetry enlargement, and obtained phases are the

ones predicted in the previous subsection. The phase diagrams obtained from the RG

analysis are shown in Figs. 2.10 and 2.11. We also investigated the effect of velocity
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Figure 2.10: Bosonization phase diagrams for incommensurate cases [re-
produced from Okamoto and Millis (2012)].

anisotropy to the phases in physically relevant parameter region, U/2 > J > 0 in

Fig. 2.12, using the RG equations based on the fermionic Hamiltonian. We studied

the range, 10 � vA/vB � 1.

With inequivalent Fermi momenta at incommensurate filling (Fig. 2.10), the phys-

ically relevant region is covered by a Luttinger Liquid (LL) phase, where all the modes

are massless, and the s0CDW phase. The transition between massive phases and a

LL phase is Kosterlitz-Thouless (KT) in the sense that a LL phase is critical with a

power-law correlation, while massive phases have exponentially decaying correlations.

The HF phase diagram in this case is similar to the RG phase diagram. We have the

p(s)SS state with large negative U and small positive (negative) J . For large nega-

tive J , we have the s0CDW state. The pTS and SDW states appearing in positive

J regime of the HF phase diagram are renormalized to the Luttinger liquid phase.

As the velocity anisotropy becomes larger, the s0CDW phase is gradually suppressed,

and whole area in physically relevant region is covered by the LL state for vA/vB � 6.

The population imbalance and velocity difference between orbitals largely suppress
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the scattering processes, leading to a LL phase.

Even when one of the orbital is half-filled, the phase diagram does not change

much [Fig. 2.10(b)]; only the Luttinger liquid state is replaced by a C1S2 phase,

where a commensurate band opens a charge gap, and the rest of the modes remain

massless. This is an orbital-selective Mott state. The velocity anisotropy in both

directions, vA/vB < 1 and vA/vB > 1, does not modify the C1S2 state in the region,

U/2 > J > 0.

The phase diagram for the orbital degenerate case (kA = kB) is given in Fig. 2.10(c).

The HF phase diagram of this case [Okamoto and Millis (2011)] has the SDW phase

for 0.6U > J > 0, which corresponds to the d0SS phase found by bosonization; both

of them are locally high-spin states. In the negative J region, we have the sSS state,

while the HF calculation gives not only the sSS state, but also a large region of the

s0CDW phase. As we mentioned, this CDW state is Ising dual to the S-Mott phase,

which is the insulating analogue of the sSS state. In the large J > 0 region, we found

p0y-wave spin-triplet superconductivity in the HF phase diagram, which is replaced

by CDW in the bosonic calculation. The CDW state around �U > J > 0 is robust,

and we observe it both at HF level and after renormalization. The velocity difference

in a quadrant, U, J > 0, does not modify the large J regime, though a C2S1 state

appears at small J [Fig. 2.12 (a)]. The C2S1 phase was observed in other two-leg

ladder systems when the velocity difference becomes large [Balents and Fisher (1996);

Chudzinski et al. (2008)].

For the system at half filling, but with two different Fermi momenta, the phase

diagram is given in Fig. 2.11(a). There is a narrow Luttinger Liquid (LL) phase near

U ' J > 0. Again, transitions between the LL phase and massive phases are KT

type except the total charge mode remaining massive in both phases. The D0-Mott

and S(0)-Mott states can be understood as the reminiscent of the pSS and sSS phases

which exist away from half-filling. The corresponding HF phase diagram shows the
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Figure 2.11: Bosonization phase diagrams for commensurate cases [repro-
duced from Okamoto and Millis (2012)].

SDW and s0SDW states in the physically relevant region [Okamoto and Millis (2011)],

while they are replaced by the s0BDW and D-Mott phases in the RG phase diagram.

The CDW phase, which dominates large positive J region at mean-field level, is

replaced by the D0-Mott state after renormalization. For this case, the pSS state, the

metallic analogue of the D0-Mott state, is subdominant with large positive J at the

HF level, and this is more enhanced than the CDW order during the renormalization

flow. Negative J region of the HF phase diagram is again covered by the sSS and

s0CDW phases, which are related to the S(0)-Mott state. In this case, the velocity

difference does not modify the phase diagram in physically relevant region essentially.

Now we look at the orbital degenerate case, kA = kB [Fig. 2.11(b)]. The phase

diagram is similar to the one away from half filling if we replace the insulating states

to corresponding metallic ones; S-Mott to sSS, RT to d0SS, and BDW to CDW.

Although precise boundaries do not coincide exactly, the corresponding HF phase

diagram shows similar structure [Okamoto and Millis (2011)]. There, we have the

SDW phase instead of the RT state in U > J > 0; they are both locally high-
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spin configurations with anti-ferromagnetic orders along the chain. The S-Mott state

found in the bosonization result corresponds to mainly the degenerate state of the

s0CDW and pCDW orders with a smaller region of sSS in the HF phase diagram. In

the bosonic language, the order parameter of the sSS phase is the same as that of

the S-Mott state except the total charge mode. The s0CDW and pCDW states are

degenerate due to the orbital symmetry, and they are Ising dual to the S-Mott and

Haldane orbital (HO) phases respectively. The CDW state stays almost the same

regime in both phase diagrams. The BDW phase does not appear in the HF phase

diagrams, since its HF energy is higher than that of the CDW phase.

There is a notable difference between the orbital degenerate case, and non-degenerate

case. When kA = kB, locally high-spin states, RT and d0SS, are dominant in

U/2 > J > 0, while low-spin configurations, s0BDW and D-Mott, are found for

kA 6= kB. We understand these low-spin states as a result of decoherence by two

different wave numbers. In essence, density waves with different phases in the two

bands mean that the energy contribution from the J interaction averages out to zero.

We noticed that the phase transition from the RT state to the CDW state with

increasing J is similar to the SDW-CDW transition found in the extended Hubbard

model (EHM) [Nakamura (2000); Tsuchiizu and Furusaki (2002a)]. The EHM has

a nearest neighbor interaction, V njnj+1, in addition to the Hubbard interaction,

Unj"nj,#. As the former interaction becomes predominant, particles try to form a

CDW state, while strong U prefers SDW. In the weak coupling regime, it is found that

the SDW state undergoes a spin-gap transition to a BDW state, and then becomes the

CDW state through a Gaussian transition of the charge sector. In the strong-coupling

regime, these two transition lines are coupled to a first order transition line. In our

model, strong J plays the same role as V in the EHM; large J induces an attractive on-

site interaction [see Eq. (2.2)] leading to the CDW state. The properties of transitions

from the RT phase to the CDW phase, and the existence of the narrow BDW region
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Figure 2.12: Bosonization phase diagrams with different velocities [repro-
duced from Okamoto and Millis (2012)]

are also the same as in the EHM. Therefore, we expect that in the strong-coupling

regime, the RT-CDW transition in our model also becomes first order, although this

has not been demonstrated.

Now, we consider the effect of velocity difference in the first quadrant; U, J > 0

[Fig. 2.12(b)]. As vA/vB becomes as large as 1.5, we found that the RT and BDW

states in small J > 0 are completely replaced by a C1S2 state, where only a charge

mode of a single band becomes massive, and the rest is massless. The CDW and BDW

states in J > U > 0 are robust to the change in velocity. This is because the large

anisotropic velocities suppress the interband scattering, resulting in the domination

of intraband scattering. As vA/vB is increased beyond 1.5, the C1S2 phase becomes

larger, although the BDW phase always exists between the CDW and C1S2 phases.
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2.6 Spin-polarized solutions

Lastly, we examine the possibilities of having a density polarization such as ferro-

magnetism and orbital ferromagnetism. Considering the fact that a bulk Co crystal

is a ferromagnet, it is quite important to consider the effects of such polarizations

in order to understand the experimental results. Since the Stoner’s argument shows

that the spatially uniform order develops above a certain interaction strength, we

investigate the strong coupling regime (U � J � t) in the following.

2.6.1 Mean-field results

Here we show a mean-field phase diagram. Since we are mostly interested in high-

spin states, we compared the energies of following four ferromagnetic states and four

antiferromagnetic (or SDW) states:

(1) FM, FM(+OFM), FM+ODW, FM+OAFM

(2) SDW, AFM, OFM+SDW, OFM+AFM,

where AFM stands for antiferromagnetism, and OAFM is orbital-antiferromagnetism.

In particular, we will distinguish two spin-density waves: the AFM state with q = ⇡

and the SDW state with q = 2kF . The two states are identical when kF = ⇡/2 but

while the SDW state is driven by a Fermi surface instability and is the only important

state in the limit of weak coupling, the AFM state is stabilized by commensurability

(Umklapp) effects and may exist for a range of carrier concentrations near the com-

mensurate value. We similarly define the orbital density wave (ODW) with a wave

vector q = 2kF , and the OAFM state with a wave vector q = ⇡.

For simplicity, we assumed two degenerate bands with a constant density of states.

The particle-hole symmetry allows us to investigate only 0 < n < 2. Comparing the
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Figure 2.13: Mean-field diagram for strong coupling [reproduced from
Okamoto and Millis (2011)]

energies of the eight states discussed above, we obtained the ground state phase

diagram which is given in Fig. 2.13. Below quarter-filling, the FM(+OFM) state –

where only single band is occupied – is dominant with large U ; this configuration

does not cost any interaction energy. The transition between the FM+ODW and

FM(+OFM) states below n = 1 can be understood by Stoner’s scenario where the

orbital sector becomes polarized above a critical value Uc. The precise behavior of

the phase boundary as n ! 0 depends on details; for example, the DoS of an isolated

chain diverges at very small n leading to the smaller value of critical interaction

strength.

As the filling becomes closer to quarter-filling, the FM+OAFM state is found

to be stable because it can use Umklapp processes to cancel the static interaction

energy, although this solution is unstable if too many holes or electrons are doped
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[see Eq. (2.19)]. As we plot the energies of these states, we found that a phase

separated state exists below n = 1. This state is the mixture of the FM+OAFM

and FM(+OFM) states for large U and of the FM+OAFM and FM+ODW states for

small U . At exactly quarter-filling, the system is a homogeneous FM+OAFM state.

Above quarter-filling, the FM+ODW state is more stable than the FM(+OFM)

and FM+OAFM states; the energy of the FM+ODW state in the strong coupling

regime is roughly

E ⇠ 1

8

(U � 3J)n2, (2.83)

while the energies of the FM(+OFM) and FM+OAFM states are linear in n, E ⇠
(U�3J)(n�1). Thus, the FM+ODW state is energetically preferable above n ⇡ 1.18.

Again the transition from the FM+OAFM state to the FM+ODW state is smeared

by a phase separated state of these two.

Near half-filling, n ⇡ 2, an AFM state appears in the weak U regime by the

same reason for the FM+OAFM phase to appear around quarter-filling. However,

the kinetic part of the AFM state does not cancel the static part completely, and the

residual interaction makes this state unstable as U gets larger. The AFM state forms

an inhomogeneous mixed state with the FM+ODW state below half-filling, and at

half-filling, the system is totally occupied by the AFM state.

Now, we would like to compare our mean-field phase diagram to previously ob-

tained results. At quarter-filling (n = 1), Kugel and Khomskii (1972), and Cyrot and

Lyon-Caen (1975) found the FM+OAFM state as the ground state by strong cou-

pling expansion, and this is confirmed by numerical calculations [Gill and Scalapino

(1987); Sakamoto et al. (2002)]. This result can be understood as follows: When

spins are totally aligned, Fermi momenta are doubled, and effectively the system is

at half-filling. Then we may regard the orbital index as pseudospins, and the system

exhibits a pseudospin density wave, i.e., OAFM.
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Away from quarter-filling, the Umklapp process is killed so we expect OAFM is

less dominant; indeed, Sakamoto et al. (2002) found the FM+ODW state with a

tight-binding DoS. They also found that adding further neighbor hopping to get a

constant DoS replaces the FM+ODW state with a paramagnetic state (S = 0) for

n < 1 though the system remains FM for n > 1. This is because the FM state is

induced by double-exchange mechanism for the electron-doped case, but for the hole-

doped case, it is driven by purely one-dimensional “spin-charge separation," [Ogata

and Shiba (1990)], which is fragile to perturbation of further-neighbor hopping. These

observations do not contradict our result above quarter-filling, though we have the

FM(+OFM) state instead below quarter-filling. We think the FM(+OFM) state is

actually more or less similar to the paramagnetic state without double occupancy in

Sakamoto et al. (2002), since both configurations do not cost any interaction energy

below quarter-filling. The mean-field treatment picks up the FM(+OFM) state among

other configurations which do not have doubly occupied sites. On the other hand,

the ferromagnetism in Sakamoto et al. (2002) is induced by spin-charge separation,

which is not a phenomenon captured by mean-field theory. Therefore, we conclude

that the ferromagnetism of the FM(+OFM) state in Fig. 2.13 and the state seen in

the numerical results of Sakamoto et al. (2002) have different origins.

At half-filling, the system is claimed to be a Haldane type where fully-polarized

spin 1 on each site are antiferromagnetically coupled by exchange interactions. Slightly

below half-filling, a phase separation between the Haldane phase and the FM+ODW

phase was found [Sakamoto et al. (2002)], which agrees with our results for small U .

2.6.2 Bosonization results

In this subsection, we investigate the possible orbital orders by bosonization as-

suming that the system is fully spin polarized. In other words, we consider the effect
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of residual backscattering in the subspace of the charge and orbital sectors assuming

the spin excitations are frozen. We leave the investigation of the regime close to half

filling for future study.

Suppose that all the electrons have the same spins, the model in Eq. (2.1) and

Eq. (2.2) is then reduced to,

H = Hkinetic +
X

i

(U � 3J)niAniB, (2.84)

where we omit the spin index. Now the SU(2)s symmetry is lost, but we can regard

the orbital part as pseudo spins. If the two bands have the same kF and velocities,

the system has the orbital SU(2) symmetry. The band splitting in orbital sector is

isomorphic to the Zeeman splitting by magnetic field. Therefore, the model now turns

to a simple Hubbard model with effective interaction Ueff = U � 3J , with or without

magnetic field.

Depending on the effective crystal field splitting between the two orbitals �, and

the band widths, there may be three different scenarios in this model. The first case

is that the two bands are completely degenerate: � = 0, and kA = kB. We expect a

staggered orbital order to appear. On the other hand, when there exists either small

splitting or when the band widths are slightly different, the two momenta are not

equal, and orbital orders might be suppressed. We will discuss these two scenarios

below using bosonization method. However, there is another scenario, which may

arise when either splitting is large, or two band widths are greatly different. Then,

only one band has states at the Fermi surface and the physics is trivial.

We first look at the degenerate case, kA = kB, corresponding to the absence of

magnetic field. The bosonized form of the Hamiltonian in Eq. (2.84) at half filling is
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Figure 2.14: Bosonization phase diagram with spin polarization [repro-
duced from Okamoto and Millis (2012)].
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⌘
,

(2.85)

where the Luttinger parameters and velocities are,

Kcvc = Kovo = v (2.86)

vc(o)/Kc(o) = v

✓
1 ± Ueff

⇡v

◆
. (2.87)

Thus, the charge and orbital modes are decoupled, and each mode has a SU(2) sym-

metry. The total symmetry is SU(2) ⇥ SU(2) = SO(4).

Translating the analysis for the Hubbard model [Giamarchi (2003)] to our charge-
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orbital model, we found the following results. For incommensurate filling, the last

Umklapp term in Eq. (2.85) vanishes, and the charge mode is massless. Also the

SU(2)c symmetry is broken to U(1)c. About the orbital sector, we find:

(1) Ueff > 0 Orbital density wave (ODW) has the longest correlation, and both or-

bital and charge modes are massless. The SU(2)o symmetry requires that

ODW’s about all three directions (x, y, z) are degenerate.

(2) Ueff < 0 The orbital sector becomes massive, and the phase with slowest decaying

correlation is orbital-singlet superconductivity with parallel spins ,i.e., p0yTS in

Okamoto and Millis (2011).

At half filling, the charge mode becomes massive (Kc = 1/2) when the effective inter-

action is repulsive; the system is Mott insulating. The orbital part still gives ODW,

and this FM+ODW state in U > 3J regime is observed both analytically [Kugel

and Khomskii (1972); Cyrot and Lyon-Caen (1975); Okamoto and Millis (2011)] and

numerically [Gill and Scalapino (1987); Sakamoto et al. (2002)]. For the attractive

side, the charge mode is gapless (Kc = 1) with an orbital gap by the p0yTS order; this

is the Luther-Emery phase. This triplet superconductivity agrees with the numerical

result by Sakamoto et al. (2002). The results are summarized in Fig. 2.14.

Now we turn to the case with kA 6= kB; there is a pseudo magnetic field acting on

the orbital space. At very small filling, only a single band is filled, so the ground state

is ferromagnetic Luttinger liquid of a single gapless mode. When we dope enough the

two bands start to share the Fermi surface. The SU(2)o symmetry is reduced to U(1)o,

and the cos

�
2

p
2�o

�
term vanishes due to two different Fermi momenta. Thus, the

orbital sector is always massless. With an attractive interaction, the band degeneracy

occurs with smaller filling than with a repulsive interaction, since we guess the upper

band is pulled down by the lower filled band for Ueff < 0. The charge mode is massive

(massless) for repulsive (attractive) interaction at half filling. At tree-level, the states
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with longest correlations are ODWx and ODWy for Ueff > 0, and p0xTS and p0yTS for

Ueff < 0. Since the orbital symmetry is explicitly broken, the exponents of correlation

may differ for different directions. Finally, contrary to the complete degenerate case,

we speculate that an orbital selective Mott phase appears near n = 1 for inequivalent

bands; once one band is half filled, the commensurate wave vector opens a gap, and

the other band remains metallic. Further filling just goes to the metallic band until

it reaches half filling. Fig. 2.14 presents the general phase diagram for this case.

2.6.3 Indications of first-principles calculations

Here we briefly explain the relevant numerical results obtained by density func-

tional theory (DFT) [Zaki et al. (2013)]. The calculations simulate isolated Co

nanowires, whose width of the terrace is six Cu atomic wide ⇡ 14 Å. The key finding

of the DFT simulation is that the ground state shows dimerized Co atoms, whose

d-shell occupations are fully spin polarized, and that the spins are ordered in a ferro-

magnetic manner. Antiferromagnetic order has higher energy, and does not favor the

structural distortion. The energy difference between two magnetic structures are due

to the cost of hopping between neighboring sites; with the antiferromagnetic order,

electrons need to flip their spins paying the extra cost of the spin exchange energy.

The origin of the structural distortion is understood from the band occupancy of the

ferromagnetic state. The orbitals with the majority spins are fully occupied while

the ones with minority spins are nearly half-filled (Fig. 2.15). Thus, from the Peierls

argument, inducing dimerization for the electrons with minority spins can further

lower the total energy.
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Figure S7 Electronic structure of isolated Co wires constrained to bulk Cu atom spacing 
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due to orbital polarization. Note that overall, the dimerized Co wire is not an insulator; an 
𝑠/𝑑௭మ orbital derived band crosses the Fermi level for both majority and minority spin. (b), (d) 
The corresponding density of states. Computed using spin polarized GGA. 
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Figure 2.15: Band structures of Co nanowires on a stepped Cu surface (a)
without structural distortion and (b) with structural distortion [reproduced
from Zaki et al. (2013)].

2.7 Conclusions

In this chapter, we investigated a one-dimensional two-orbital Hubbard model,

possibly relevant to a transition metal nanowires. From the mean-field analysis,

we find that, in a physically relevant parameter region, in a weak coupling limit,

various SDW orders (SDW, s0SDW, and pSDW) are dominant similarly to the simple

Hubbard model (Figs. 2.4, and 2.5). The velocity difference between two orbitals

suppresses the interband processes, while in order to completely suppress it, it requires

the ratio of the two velocities to be ⇠ 40 (Fig. 2.6). From the bosonization and

renormalization group analysis, we find that quantum fluctuations drive the system

into non-trivial fixed points such as BDW, RT, D-Mott, and d0-SS phases (Figs. 2.10,

and 2.11). In particular, the RT and d0-SS phases are locally high-spin configurations,

which we expected from the Hund coupling. By lifting the degeneracy and doping

away from the commensurate values, orbital selective Mott phase, and Luttinger
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liquids appear. These results do not agree with the ferromagnetic ground state with

dimerization seen in the experiment and the DFT simulation [Zaki et al. (2013)].

This indicates that the important physics are beyond the weak coupling regime of

our model.

In a strong coupling limit, ferromagnetic order is dominant in the mean-field phase

diagram (Fig. 2.13). Although the first principle calculation indicates also a ferro-

magnetic ground state, our calculation does not show a dimerization. An important

missing ingredient for our model is the effect of the substrate or phonons, which

prefers to form a CDW state instead of the orbital density waves, which are more

preferred by the electron-electron interactions. Therefore, generalizing our model to

the one with a lattice might be an interesting future problem.
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Chapter 3

Effects of impurities on the

charge-density wave in NbSe2

3.1 Overview

In this chapter, we consider the effects of dilute but strongly pinning impurities

on the charge-density wave in NbSe2. First, we give a brief explanation about NbSe2,

and its CDW order. Then we analyze the experimental data obtained from STM

measurements, and argue that the impurities in the material are dilute, but strongly

pinning. Our analysis shows that the CDW phase is still topologically ordered, with

quasi-long-range autocorrelations, i.e., a Bragg glass. This result cannot be explained

by the conventional theories, which we explained in Sec. 1.4. In order to understand

such a behavior, we analytically and numerically study a Ginzburg-Landau model in

Secs. 3.4 and 3.5 respectively.

3.2 Background

A class of transition metal calcogen compounds are prototype inorganic materi-

als showing charge-density waves at low temperatures. Their crystal structures are

spatially anisotropic, and transition metal trichalcogenides as NbSe3 are quasi-one-

dimensional while transition metal dichalcogenides as NbSe2 are quasi-two-dimensional.
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In this section, we will focus on 2H-NbSe2, and explain the properties of the CDW

phase of this material.

The crystal structure of NbSe2 is depicted in Fig. 3.1. Its unit cell consists of

two blocks of Se-Nb-Se layers; the Nb atoms in each layer form a triangular lat-

tice and the electrical conductivity is much larger for in-plane directions. Scattering

[Moncton et al. (1977)] and specific heat [Harper and Geballe (1975)] measurements

indicate that a second order phase transition occurs at Tc ⇡ 34 K; below this tem-

perature a charge density wave forms. The charge density wave involves conden-

sation of electronic density at three wavevectors ~Qi=1,2,3 related by 120

� rotations.

| ~Qi| ⇡ ~Gi/3 ⇡ 0.7 Å�1 with ~Gi the smallest nonzero reciprocal lattice vectors. The

CDW wavevectors are slightly deviated from the commensurate values by 2%. We

may write the modulation of the electron density �⇢ in the charge density wave phase

as

�⇢(x) =
3X

i=1

<
⇣
 i(~x)e

i ~Q
i

·~x
⌘

(3.1)

The CDW order parameters  i are complex numbers that may be written in terms

of a real magnitude ⌘i and a phase �i. Deviations from perfect charge density wave

order involve spatial variations of ⌘ and �. Phenomenological theory using Ginzburg-

Landau models of this type can be found in McMillan (1975); Walker and Jacobs

(1982); Nakanishi and Shiba (1984). The relevant part for our later analysis is

F = t
3X

i1

| i|3 + c3< 1 2 3 + b1

3X

i1

| i|4 + b2
X

i 6=j

| i|2| j|2 + · · · . (3.2)

A crucial issue in the following analysis is the dimensionality of the system. While

NbSe2 has very anisotropic electronic properties [Dordevic et al. (2001)], we believe

that the appropriate CDW model is three dimensional for the following reasons. First,

three dimensional critical scattering is observed in the similar compound 2H�TaSe2

[Moncton et al. (1977)], with correlation lengths in the in-plane and out-of-plane
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Figure 3.1: Crystal structure of 2H-NbSe2 [reproduced from Wang et al.
(2009)]

directions differing only by a factor of three. Second, below the transition tempera-

ture, the development of the order parameter agrees with mean-field theory [Moncton

et al. (1977)], while a two dimensional incommensurate CDW cannot show a true

long-range order [Mermin and Wagner (1966); Hohenberg (1967); Coleman (1973)].

Third, a first-principles calculation showed that single layer NbSe2 does not exhibit

the 3 ⇥ 3 periodicity [Calandra et al. (2009)]. These arguments suggest that, most

likely because of lattice effect, the CDW in NbSe2 is not unusually anisotropic. In-

deed, the importance of lattice effect in this material has been recognized since the

theoretical work by McMillan (1977) showing that the displacive model by phonons

better explains the CDW transition rather then BCS or nesting scenario. Such an

observation is further supported by inelastic X-ray scattering measurements finding a

large collapse of a phonon mode around the CDW wavevector [Weber et al. (2011)].

Also, the hydrodynamic pressure does not change the CDW wavevector, indicating

the irrelevance of the Fermi surface nesting to the formation of the CDW. Considering
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these, it seems appropriate to consider that the CDW in NbSe2 is three dimensional,

while the electronic response is more anisotropic. Thus, in the following analysis, we

assume that the system is three dimensional unless explicitly mentioned.

3.3 Analysis of STM data of NbSe
2

In this section, we present various quantities obtained from STM measurements on

a surface of NbSe2 at 22 K. All the measurements were done by Carlos J. Arguello, and

Ethan P. Rosenthal. First, we show a topographic picture of the surface, and argue

that the impurities are strongly pinning the CDW phase. Next, autocorrelations of

the amplitude, and total charge modulations are presented. The data indicate that

the impurities have more severe effects on the phase of the CDW rather than the

amplitude. The order parameters of the CDW are extracted from the topographic

image, and the local modulations of phases by impurities are directly observed. To

study the topological defects near impurities in the phase of the CDW, we construct

a Delaunay diagram. We find that the dislocations always appear in pairs, and that

the system is topologically ordered up to the scale of the picture. Thus, the system

is in a Bragg glass phase. In summary, the data imply that the impurities observed

in this NbSe2 sample are strong pinning centers, but nevertheless leave the system

in a Bragg glass phase, in apparent disagreement with the conventional idea that

the strong impurities induce free topological defects and completely destroy the long-

range order [Fukuyama and Lee (1978); Lee and Rice (1979)]. Some of the detail

procedures about data processing are given in Appendix B.
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Figure 3.2: A topographic image of a ⇠ 32 nm ⇥ 32 nm region of NbSe2
at 22 K < Tc = 34 K taken under conditions of constant sample-tip current
and bias voltage [reproduced from Okamoto et al. (2014)]. Data was taken
by C. Arguello, E. Rosenthal, and A. Pasupathy. The heavy white spots are
the strong pinning centers.

3.3.1 Topography

We use the scanning tunneling microscopy (STM) data shown in Fig. 3.2 to obtain

real-space information about the spatial dependence of the amplitude ⌘(x) and phase

�(x). The sample used here is the one described in Arguello et al. (2014), and is

made by vapor transport. The cleaved surface is believed to be a Se layer, since a

Se-Se bond is van deer Waals, while a Se-Nb bond is Coulombic. Fig. 3.2 shows the

topographic image of the cleaved surface at 22 K < Tc = 34 K. The voltage and



3. Effects of impurities on the charge-density wave in NbSe2 89

current are fixed to be �100 mV and 20 pA respectively. The measured signal is

the vertical displacement of the STM tip; this depends on the physical topography

and on the near Fermi-level electronic density of states at the tip position (Sec. 1.5).

The large number of lighter white spots form an approximately triangular lattice

with mean lattice constant � ⇠ 1 nm about three times the basic lattice constant,

consistent with the CDW wavevector found in scattering measurements [Moncton

et al. (1977)]. We therefore believe that these are local maxima in �⇢ arising from

CDW formation. The small number of heavy white spots indicate impurities. There

are about 40 impurities in this field of view, which contains ⇠ 10

3 CDW unit cells; in

other words, the impurity density nimp ' 0.4%. The signal associated with impurities

may come either from a physical change in surface height (associated e.g. with an

impurity in the Se layer) or from a change in the local density of states. However,

one may see that in almost all cases the impurity sits in the center of a hexagon of

CDW maxima and has a triangular shape of size . 1 nm consistent with interference

of three CDW wave vectors [Fig. 3.3(c)]. This suggests that a significant contribution

of the impurity signal arises from impurity-induced modulations of the density of

states, and that in particular impurities lead to an increase in the local density of

states which acts as a strong pinning center fixing the local CDW maximum to the

impurity site.

In order to confirm this basic observation, in Figs. 3.3, we show the bias volt-

age dependence of topographic pictures, whose amplitudes are normalized such that

maximum and minimum are fit into [�0.5, 0.5]. First, as the voltage increases from

the negative one to the positive one, we see that the shape of CDW changes from

a configuration with three deep minima surrounding one maximum to the one with

six shallow minima. This change of the number of minima is due to the change of

CDW phases, and can be understood as follows. The total CDW density is given by

the linear superposition of three CDWs as in Eq. (3.1). The three phases �i can be
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Figure 3.3: Topographic pictures at different bias voltages [reproduced from
Okamoto et al. (2014)]. Data was taken by C. Arguello, E. Rosenthal, and
A. Pasupathy. Arrows indicate the same impurity site at difference voltages.
The intensity along the dotted line, which includes an impurity at the left
end, is given in Fig. 3.4 for negative and positive voltages respectively. (c)
and (d) are the density modulations at ' = 0 and ' = ⇡/6 with ⌘ = 1 in
Eq. (3.1).

decomposed into the relative displacement vector ~u and the total phase ',

�i = ~u · ~Qi + '. (3.3)
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Figure 3.4: Line-cut pictures near an impurity [reproduced from Okamoto
et al. (2014)]. Data was taken by C. Arguello, E. Rosenthal, and A. Pa-
supathy. The intensity along the dotted line in Fig. 3.3, which includes an
impurity at the left end for negative and positive voltages respectively. We
set the absolute maxima of the intensity in each picture to 1. In (a), the
periodicity of CDW is expressed by the ordering of high maximum “H", and
low maximum “L". Near the impurity, the periodicity is distorted from the
ideal one “HHL".

We depicted the density modulation given by Eq. (3.1) with ' = 0 and ⇡/6 in

Figs. 3.3(c) and (d). With ' = 0, each maximum is surrounded by six equivalent

shallow minima like a Kagome lattice, while the degeneracy among six is lifted once

we make ' 6= 0. At ' = ⇡/6, there are three deep minima surrounding one maximum.

Therefore, at negative voltages ' is close to ⇡/6, and at positive voltages ' seems

closer to 0. The intensity modulations around impurities such as the one near the

arrows in Fig. 3.3 follow the same change as the voltage changes, indicating that these

modulations are triggered by the same mechanism as other CDW modulations, i.e.,

local density modulations not the height modulations.

Second, we also see in Fig. 3.3(a) and (b) that impurity sites are always at

CDW maximum, and that the CDW amplitudes near them are enhanced, as more
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Figure 3.5: Autocorrelations of the CDW component �⇢ parallel to and
perpendicular to a CDW wave vector ~Q1, and of the amplitudes ⌘ [reproduced
from Okamoto et al. (2014)]. Data was taken by C. Arguello, E. Rosenthal,
and A. Pasupathy.

clearly presented in the line-cut pictures in Figs. 3.4(a) and 3.4(b). For instance,

in Fig. 3.4(a), in the vicinity of the impurity, the ideal periodicity, two high peaks

followed by one low peak, is distorted to have a maximum at the impurity, and the

CDW amplitude is increased as well. These observations indicate that impurities

strongly pin the CDWs and distort them locally.

3.3.2 Autocorrelations

In Fig. 3.5, we present the autocorrelation of the experimental signal, interpreted

as a density of states modulation. An unbiased autocorrelation of a quantity A(~x)
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confined in a finite size of L ⇥ L is defined as

hA(~x)A(0)i =
R
d2yA (~x+ ~y)A (~y)R
d2yA (~y)A (~y)

⇥ L2

Overlapped area
. (3.4)

The last factor normalizes the autocorrelation depending on the shifting vector ~x. The

integration becomes a summation for a discrete quantity. For the CDW component,

we angular averaged the autocorrelations about ⇡/3 rotations;

¯A(~x) ⌘ 1

3

[A(~x) + A(~x0
) + A(~x00

)] , (3.5)

where ~x0, and ~x00 are the rotated coordinates of ~x by ⇡/3 and 2⇡/3.

We present both the density modulation relative to the average value, �⇢ and the

absolute value or amplitude ⌘. The amplitude autocorrelation is characterized by an

initial rapid decay followed by a more gradual relaxation to a nonzero value while the

autocorrelation of the total CDW modulation �⇢ decays exponentially with a decay

length ⇠ 4 nm comparable to the inter-impurity spacing l ⇡ 5 nm. Taken together,

these facts indicate that the main effect of the impurity is on the phase of the CDW

order parameter.

3.3.3 Order parameters

The three order parameters are extracted from the topographic picture, and their

phases are presented in Fig. 3.6. In general, the phases are coherent over large regions

if we ignore the overall drifts. These drifts are artificial and not intrinsic properties

of the CDW (see Appendix B for details). While all impurities produce a local

maximum in the amplitude of the order parameter, different impurities have different

consequences for the phase. The two insets show expanded views of the phase near

impurity sites. The right inset shows an impurity that induces a smooth and small
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Figure 3.6: The phases of three order parameters [reproduced from
Okamoto et al. (2014)]. Data was taken by C. Arguello, E. Rosenthal, and A.
Pasupathy. The gradual change along the horizontal axis in (b) is an artifact
in order to take the ordering vector ~Qi such that

P
i
~Qi = 0; ~Q are specified

only through integer numbers due to the periodic boundary conditions for
the Fourier transformation.

phase modulation. The left inset shows that a different impurity induces a large

phase modulation from �⇡ to ⇡ as we move in a counterclockwise fashion around the

defect. Only about ⇠ 20% of the identifiable defects produce 2⇡ phase modulations;
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the remainder produce smoothly varying modulations of the phase. Interestingly, at

slightly larger distances from the impurity shown in the lower left inset of Fig. 3.6,

the phase variation becomes smooth; the impurity actually induces a bound vortex-

antivortex pair.

Expressing the phase in the different notation in Eq. (3.3) is also useful. If ' is

fixed to a specific value, this indicates that the cubic term in the Ginzburg-Landau

energy, Eq. (3.2), is strong enough to pin '. As a physically distinct choice of the

phases, we restrict their values to be

�⇡  ~Q1,2 · ~u < ⇡, (3.6)

�⇡
3

 ' <
⇡

3

. (3.7)

One difficulty arises since the corresponding �i are multivalued. The first restriction

leads to

� ⇡ + '̄  �1,2 < ⇡ + '̄, (3.8)

so if we know '̄, we can obtain ~Q1,2 · ~u from these. �i are restricted in [�⇡, ⇡], and

then we can find ~Q1,2 · ~u by

~Qi · ~u =

8
>>>>><

>>>>>:

�i � '+ 2⇡ (�⇡  �i < �2⇡/3 and ' > �i + ⇡)

�i � '� 2⇡ (2⇡/3  �i < ⇡ and ' < �i � ⇡)

�i � ' (otherwise)

. (3.9)

In order to determine ', we substitute the above results into �3,

�3 =
~Q3 · ~u+ '

= � ~Q1 · ~u � ~Q2 · ~u+ '

= ��1 � �2 + 3'� 2⇡n

(3.10)
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with an integer n. The right-hand side is a one-to-one function of ' 2 [�⇡/3, ⇡/3]
with a range of 2⇡. Now, by taking the modulo of 2⇡, we can determine the value of

' using this expression from {'i},

3' ⌘ �1 + �2 + �3 (mod 2⇡). (3.11)

Thus obtained ' is plotted in Fig. 3.7(a). The mean value of ' is 0.286, and the

standard deviation is 0.32. This distribution is neither extremely sharp nor broad; it

is not clear whether the cubic term is important or not.

We also plotted ~u as well in Fig. 3.7(b). The vector ~u is determined by the

displacement of CDW maxima from an ideal lattice position. The origin of the ideal

lattice is chosen arbitrary, and a vector from a center of a unit cell to a CDW maximum

inside the unit cell (if exists) is drawn. The ideal lattice constant and the orientation

of the lattice are calculated from the Fourier peaks corresponding to CDW maxima.

Since it depends on our eyes to determine the center of the Fourier peaks, there might

be a artificial overall drift in ~u over the size of the image due to the deviation from

the exact lattice constant and the obtained lattice constant. If we ignore such a drift,

the vector ~u changes very smoothly over the size of the picture.

3.3.4 Delaunay diagram

To analyze the appearance of topological defects such as dislocations more quanti-

tatively, we study a Delaunay diagram [Murray et al. (1990); Grier et al. (1991); Dai

and Lieber (1992, 1993); Chaikin and Lubensky (2000)] constructed from the CDW

maxima in Fig. 3.2. Dislocations are characterized by the following line integral in a

periodic media: I
d~u =

~b, (3.12)
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Figure 3.7: Total phase ', and displacement vectors ~u. Data was taken by
C. Arguello, E. Rosenthal, and A. Pasupathy.

where ~u is the displacement vectors, and~b is a Burgers vector. The path of the integral

(Burgers circuit) is arbitrary as far as it encloses the position of the dislocation. An

easy way of identifying dislocations is using a Delaunay digram, whose lines are the

constant phase of the three CDWs. In order to construct a Delaunay diagram, first we

divide the image such that each CDW maximum has a region inside which any point

is closer to the CDW maximum than other CDW maxima. The boundary of two

neighboring regions is a part of the bisection line of the neighboring CDW maxima

(This is called a Voronoi diagram). For any two neighboring regions, we draw a line

connecting the two CDW maxima inside. It is known that the any two dimensional

image is filled by triangles given by these lines after these procedures. Thus it is

called Delaunay triangulation. For detail procedures to extract the position of the

CDW maxima is given in the Appendix. The obtained Delaunay diagram is given in

Fig. 3.8.

Examples of dislocations near impurities are shown by the failure of some Burgers

circuits (shown as broken lines) to close. Each dislocation consists of disclinations,
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4nm

Figure 3.8: Delaunay diagram constructed from the topographic image
(Fig. 3.2) [reproduced from Okamoto et al. (2014)]. Data was taken by C.
Arguello, E. Rosenthal, and A. Pasupathy. The blue squares (red diamonds)
are the vertices having fewer (more) than six edges. The blue circles indicate
the locations of impurities. Solid lines are the Delaunay loops which do close,
and dashed one are loops which do not close.

where a vertex has fewer (more) than six edges represented by blue squares (red

diamonds). The locations of impurities are indicated by the blue circles. We find

that dislocations are only visible on short length scales; in general loops of size larger

than a few lattice constants (solid lines) close, indicating that in this field of view the

dislocations appear only in bound dislocation-antidislocation pairs; this agrees with

the observation in the phase of the order parameters. The loops continue to close
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even if the size of the loop becomes as large as the image size, indicating that on the

length scales accessible to this experiment, there are no free dislocations. Therefore,

the system is in a Bragg glass phase [Feigel’man et al. (1989); Nattermann (1990);

Bouchaud et al. (1991, 1992); Korshunov (1993); Giamarchi and Le Doussal (1994,

1995, 1997); Rosso and Giamarchi (2004)].

3.4 Analytical study of a Ginzburg-Landau model

In this section, we analyze a simplified Ginzburg-Landau model describing a CDW

transition in Eq. (1.3). Although the distribution of ' in our data is not broad enough

for us to ignore the cubic term in the Ginzburg-Landau model, it is known that the

phase transition is second order [Harper and Geballe (1975); Moncton et al. (1977)]

implying that the cubic term is negligible. Thus, for simplicity, we consider a CDW

described by one phase variable �, and further neglect amplitude modulation. We

now add impurities at positions xa; these impurities act to locally pin the phase to the

values ✓a. In the original expression, we have ✓a = ~Q ·~xa, although we simply assume

that they are random variables irrelevant to their positions. At distances |~x�~xa| � ⇠

(⇠ is the coherence length of the CDW) the phase will change; this may take place

either by a smooth modulation (as shown in the right inset of Fig. 3.6) or by creation

of a defect-antidefect pair (as shown in the left inset of Fig. 3.6). In the absence of

defects the free energy of this phase only model is

F =

Z
d3~x⇢S

⇣
~r�
⌘2

� |V |
X

a

cos [✓a � �(~xa)] , (3.13)

where ⇢S is the phase stiffness, xa labels the positions of the impurities, ✓a is the

phase energetically favored by the impurity at xa (this depends on the position of the

impurity), and V is the magnitude of the impurity potential (taken to be the same for
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all impurities in light of the weak variation of amplitudes found in Fig. 3.2). We have

rescaled lengths by the ratio of in-plane to out of plane coherence lengths. In a simple

model, we expect that ⇢S ⇠ f | |2⇠2 ⇠ ft⇠2 with f a measure of the condensation

energy per unit volume at T = 0,  the CDW amplitude, ⇠ a bare coherence length,

and t = (Tc �T )/Tc the reduced temperature, while V ⇠ V0 ⇠ V0

p
t is proportional

to a bare pinning potential V0 and to the first power of the CDW amplitude. We

assume the impurities are dilute (mean inter-impurity distance l much greater than

CDW correlation length ⇠0 = ⇠/
p
2t) [McMillan (1977); Weber et al. (2011)]; this

condition breaks down close to the transition temperature, or for dense impurities.

Abe (1985, 1986) pointed out that when ⇠ ⌧ l and pinning is strong the pre-

viously anticipated disordered state with many topological defects does not appear;

he showed that a locally modulating state near impurities over the distance ⇠ has

lower energy by a scaling argument. Then he assumed that the interaction between

impurities is only nearest neighboring type when he simulated impurities put on a

regular lattice. Although his scaling argument casts a serious doubt to the previously

anticipated disordered state for strong pinning, the assumption of local interaction

between impurities is not correct as we will discuss in the following. We obtained an

analytical solution to the problem of impurities put on a regular lattice, and further

confirm the basic features of the solution by Monte Carlo simulations.

3.4.1 Ground states

Minimization of Eq. (3.13) shows that � obeys the Laplace equation, r2� = 0 for

all ~x not within a distance ⇠ of an impurity site. The most general solution of the

Laplace equation is

�(~x) =
X

a

¯✓a⇠

|~x � ~xa|
, (3.14)
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where the ¯✓a are parameters and Eq. (3.14) applies only if |~x � ~xa| > ⇠ for all a. For

|~x � ~xb| < ⇠ we regularize the formally divergent term in the sum as ¯✓b. To determine

the parameters ¯✓a we substitute Eq. (3.14) into Eq. (3.13) and minimize the result

with respect to the ¯✓a. We focus here on the strong pinning limit, in which we expect

that the phase �(x ! xa) ⇡ ¯✓a, so we can expand the impurity potential up to second

order. We find

E

V
' ✏

2

X

ab

Kab
¯✓a¯✓b +

1

2

 
✓a �

X

b

Kab
¯✓b + 2⇡na

!2

(3.15)

with Kab ⌘ �ab + (1 � �ab) ⇠/|~xa � ~xb|, and ✏ = 8⇡⇢S⇠/V ⌧ 1. The integer na

takes care of the periodicity of the cosine potential. For a single impurity, na 6= 0

simply increases the elastic energy compared to na = 0. We expect that with many

impurities, na 6= 0 solutions are energetically expensive most of the time. We will

consider na = 0 until we will come back to this problem later. Eq. (3.15) is an

analogue of a Coulomb gas with the constraint that the potential take specific values

on particular sites. Minimizing the total energy in terms of ¯✓a, we find

¯✓a =
X

b

(✏I +K)

�1
ab ✓b ⌘

X

b

Jab✓b (3.16)

where I is the identity matrix.

The key physics of Eqs. (3.14) and (3.15) is that because of the long ranged nature

of the Laplacian problem, the phase at a given site is determined by the collective

response at many impurity sites. To gain analytical insights into this physics we place

the impurities on a cubic lattice with lattice constant l; the randomness enters only

through the values of the parameters ✓a. Defining ~p to be a vector in the reciprocal

lattice of the lattice of impurity positions, we find

K(p) =
1

r2TFp
2
+ 1 · · · , (3.17)
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where ~p lies within the Brillouin zone of the lattice of impurity positions and · · · de-

notes terms that are smaller by powers of ⇠/l than the terms that have been retained.

rTF =

p
l3/4⇡⇠ is a characteristic screening length. Eq. (3.17) implies that J has the

familiar screening form:

J(p) ' p2r2TF

p2r2TF + 1

. (3.18)

Note that in Eq. (3.18) terms of O(✏) have been neglected; these do not affect the

basic screening properties. Abe considered a similar scenario but assumed a simple

exponential form of J(x) instead of the screening form given by Eq. (3.18) [Abe

(1986)]. The total energy is now found to be

E = 4⇡⇢S⇠
X

ab

Jab✓a✓b. (3.19)

The physics encoded bf Eqs. (3.17) and (3.18) is that that phase at any given

site is determined collectively; thus even delta-correlated randomness h✓a✓bi ⇠ �ab

leads to phase parameters ¯✓ with long ranged correlations while phase fluctuations

are suppressed. Explicitly, use of Eqs. (3.16) and (3.18) leads to

h�(~x)�(~y)i =
X

ab

⌦
¯✓a¯✓b

↵

|~x � ~xa||~y � ~xb|

⇡ 8⇠2⇡2

3l3

Z 2⇡/l

0

dp
p sin (p |~x � ~y|)

|~x � ~y|
�
p2 + 4⇡⇠

l3

�2 ,
(3.20)

where we have written the result for a three dimensional model and, because we are

interested in the long length scale behavior, we have approximated the Brillouin zone

of the impurity lattice as a sphere of an appropriate radius.

We also numerically solved the matrix equation (3.16) without any simplifying

assumptions by placing impurities at random on the nodes of a L ⇥ L ⇥ L lattice

of lattice constant ⇠ with randomly chosen preferred phases, and by calculating K
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Figure 3.9: Solutions of Eq. (3.16) obtained by placing impurities randomly
on sites of a cubic lattice of lattice constant ⇠ with phases chosen randomly
in the interval �⇡  ✓a  ⇡. Typical phase configuration obtained for a
system of linear system size L = 31⇠ with l chosen so the impurity density
is nimp = 4% in (a) two dimensions and (b) three dimensions. For the two
dimensional case, we take R = 2.5L in Eq. (3.21).

and J numerically. For two dimensional cases, instead of the Coulombic form of the

kernel, we use a logarithmic form

Kab = �ab + (1 � �ab) log(R/|~xa � ~xb|)/ log(R/⇠), (3.21)

where R is an arbitrary constant. The choice of R does not affect our final result.

The Fourier transform of this kernel is found to be

K(p) ⇠ 1 +

2⇡

p2l2 log(R
⇠
)

, (3.22)

again leading to an infra-red convergent phase fluctuations; the long-range order

is expected. Typical phase configurations are given in Fig. 3.9 for two and three

dimensional cases. In both cases, the phase varies slowly at long length scales; the



3. Effects of impurities on the charge-density wave in NbSe2 104

�
�

�

�

�

�
�

�
�

�
� � � � � � � � � � � � �

� � � � � �/����
���
���
��	
��

���

��(�)�(�)�
�

�

�

�

�
�

� � � � � � � � � � � � � �

� �
�

�
�

�
� � � � � � � � � � � � � �

� /� = �

� /� = �

� �� �� �/�

���

���

���

���
	(�)

(a) (b)

Figure 3.10: (a) Normalized phase-phase correlations obtained by averaging
over 50 realizations of randomly placed impurities with l = 5.0⇠ and linear
sample size L = 60. (b) Autocorrelations of the order parameter obtained
for same conditions as (a).

two dimensional case, however, has more short length fluctuations (the exact amount

depends on the detail of the ultra-violet cut-off). A further difference is that in two

dimensions impurity-induced vortex-antivortex pairs ultimately lead to a power-law

decay in the autocorrelation. We have also compared the analytical expression for the

phase phase correlation [Eq. (3.20)] to the numerical result. A typical case is shown

in Fig. 3.10(a) for l = 5.0⇠. In this case and in other cases we confirmed that the

analytical expression agrees with the numerical one.

The screening form of Eq. (3.20) has an important consequence: by taking the

y ! x limit of Eq. (3.20) we see that the expression for the variance of the CDW

phase h�(~x)2i is infrared finite implying that the average of the CDW order parameter

hei�i = e�
1
2 h�

2i is non-zero, so that even in the presence of impurities the model has

long ranged order. We have also confirmed this numerically; an example is shown in

Fig. 3.10(b). The physics of this result is that the long-range nature of the elastic
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forces means that the local constraints imposed by the pinning can be accommodated

by small amplitude changes in the phase which accumulate over long distances.

We now turn to the question of local topological defects. Making a defect on one

site a allows the phase to relax rapidly from the value preferred by the local impurity

towards a background value determined by the other defects, decreasing the elastic

free energy at the cost of driving the amplitude to zero over a correlation volume. We

may estimate that the defect costs an energy Evortex ⇠ ft2⇠3/2 ⇠ f0
p
t⇠30/2 ⇠ ⇢S⇠.

The energy gain is associated with removing one defect from the elastic energy. Using

the screened Coulombic form of K�1 and noting that the ✓a are random variables we

obtain that the elastic energy gain is roughly

Eelastic ' 4⇡⇢S⇠(1 + ✏)�1✓2a + O(⇠/l). (3.23)

Thus the energy cost of making a defect-antidefect pair is parametrically equal to

the cost of the phase deformation and which one is preferred is determined by an

intrinsic property of the CDW [namely the ratio  = 4⇡⇢S⇠/Evortex(1 + ✏)] and the

square magnitude of the phase deviation caused by the impurity. Our finding that

about 20% of impurities induce defects suggests that  ⇡ 0.16, and that defects are

only produced when the phase deviates by an amount near its maximal value (✓a ⇡ ⇡);

in analogy with superconductors, the system should be thought of as “type I” rather

than “type II".

Lastly, before, we move on to the problem of fluctuations, we discuss the variations

of na, which we have ignored so far. When na 6= 0 is allowed, the energy in Eq. (3.19)

is generalized to

E = 4⇡⇢S⇠
X

ab

Jab(✓a + 2⇡na)(✓b + 2⇡nb). (3.24)

In order to see whether na = 0 solution is stable, we use a gradient method to search

the lowest energy state in the {na} space. We start from the original state with all
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Figure 3.11: Average energy gain from na variation (in the unit of 4⇡⇢S⇠).
Its dependence on the inter-impurity distance l is well fitted by 12/l0.64.

na = 0, and through all a we change na ! na ± 1. If the change gives a lower energy,

we accept it, and move onto the next a; otherwise, we do not update na. We repeat

the procedures until we get a converged result. For 4% impurities with random or

regular positions, about 5% to 10% of the impurities have nonzero na = ±1. We do

not observe |na| bigger than 1. We also tried initial states with randomly chosen {na}
from {�1, 0, 1}, while these do not evolve into new states. The average energy gain

by a single change of na depends on the concentration of the impurities; it is well

fitted by (Fig. 3.11)

�E(l/⇠) ⇡ 12.0

(l/⇠)0.64
, (3.25)

in the unit of 4⇡⇢S⇠. Considering the number of na 6= 0, this is a significant change

in total energy; the na = 0 solution is actually a high energy state. The change of

na occurs mostly when ✓a is close to ±⇡, while other impurities nearby prefer ⌥⇡.

As the number of impurities inside the sphere of radius rTF grows as l increases, the

fluctuation of local phase at the center of the sphere, which induces the change of na,

decreases; thus, the energy gain by a single change of na also decreases as l becomes

bigger.
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Although the energy of the na = 0 solution is higher than the true ground state,

the conclusion that the system is in long-range order does not change even the modi-

fication of na is allowed. For example, when we calculate the phase-phase correlation,

now the average over the impurity phases is replaced to

h(✓a + 2⇡na)(✓b + 2⇡nb)i. (3.26)

We find that autocorrelation of the na distribution decays almost immediately over the

average inter-impurity distance l, indicating hnanbi / �ab. Similarly the correlation

between ✓a and na is found to be local. Thus, essentially the calculation leading to

the long range order does not change.

3.4.2 Fluctuations

We now consider states that are not the ground state. These may be generated

in two ways. One may consider states of the form of Eq. (3.14) but with parameters
¯✓a that do not satisfy Eq. (3.16). These solutions will have very high energy, because

they violate the pinning conditions. Alternatively, one may consider solutions �(x)

which correspond to elastic excitations about the ground state but with the pinning

condition satisfied. To obtain such solutions we write

�(~x) = �(~x) +
X

a

¯✓0a⇠

|~x � ~xa|
. (3.27)

� does not obey the Laplace equation, because the configuration does not minimize

the energy. The ¯✓0a [whose dependence on �(x) is not explicitly notated here] are

determined by minimizing the energy for fixed �(x), in particular insuring that the

impurity pinning condition is fulfilled. Substituting Eq. (3.27) into Eq. (3.13) we
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obtain

E[�(x)] ' ⇢S

Z
d3x (r�)

2
+

V

2

X

a

(⇥a �
X

b

Kab
¯✓0b)

2

+ 4⇡⇢S⇠

"
X

ab

Kab
¯✓0a
¯✓0b + 2

X

a

(�a � �0)
¯✓0a

#
, (3.28)

where �a = �(x = xa) and ⇥a is the sawtooth function of (✓a � �a) introduced to

recover the periodicity 2⇡, and taken to be in [�⇡, ⇡]. �0 is the value of � at infinity.

Minimizing Eq. (3.28) with respect to the ¯✓0a gives,

¯✓0a =
X

b

Jab⇥b, (3.29)

and substituting this into Eq. (3.28) leads to (noting that terms of order ✏ and the

multi branch structure of the sawtooth function are not important here)

E[�(x)] = ⇢S

"Z
d3x (r�)

2 � 4⇡⇠
X

ab

Jab�a�b

#
+ const. (3.30)

To analyze Eq. (3.30), we again consider the model in which the impurities are on

a regular lattice of lattice constant l and use Eq. (3.18) for the Fourier transform of

Jab, obtaining finally

E = ⇢S

Z
d3p

(2⇡)3
r2TFp

4

r2TFp
2
+ 1

|�(p)|2. (3.31)

Since this is a positive definite, the ground state must have �(p 6= 0) = 0; long-range

order is preserved. The thermal fluctuation is

�� ⌘ ��
X

a

¯✓a⇠

|~x � ~xa|
, (3.32)
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where the second part is the ground state configuration with ¯✓a given by Eq. (3.16).

The phase-phase correlation of the fluctuating part �� is found to be

h��(~x)��(0)i ⇠ T

⇢S

Z
d~p

(2⇡)3
ei~p·~x

r2TF

p2r2TF + 1

. (3.33)

This function decays exponentially in terms of ~x, and, thus, the long-range order still

survives. This means that the fluctuation is massive, and that the static conductivity

is vanishing at T = 0 if we ignore the quantum fluctuations. The finite energy to

excite the fluctuation originates from the fact that impurities fix the fluctuations at

impurity sites to zero, ��(xa) = 0.

There is also a possibility of phase slips where na varies. Since there is an infinitely

large energy barrier between different na’s, this could happen only as a soliton type

transition. In the Monte Carlo simulation below, we do not necessarily change the

phase adiabatically (especially for the overrelaxation steps), thus the transition may

happen in principle, although the probability would be very small.

3.5 Monte Carlo simulation of the phase model

In this section, we use a Monte Carlo simulation to simulate the phase only model

of Eq. (3.13) to verify the previous analysis. Once discretized, the phase only model

is formally equivalent to the XY model with random magnetic fields:

E = �
X

hi,ji

~si · ~sj �
X

i2{a}

~hi · ~si, (3.34)

with adjacent sites hi, ji, random impurity sites {a}, and unit vectors ~si. We measure

the energy by the ferromagnetic coupling J between neighboring spins. The phase

of the CDW maps to the angle of planer spin, and the potential term maps to the
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linear coupling of the spin and a local magnetic field. Now ✓a is the angle which

the magnetic field prefers at a site a. Thus, we consider the XY model with random

fields in the following. First, we briefly explain the methodology of Monte Carlo

simulations, and then show our results. We find that a system size dependence of the

autocorrelation follows a power-law behavior, whose exponent is different from the

one of the previously studied Bragg glass phase.

There are several relevant Monte Carlo simulations for the three dimensional XY

model with random magnetic fields. Gingras and Huse (1996) studied a XY model

with random magnetic fields applying on all sites. Their findings suggest vanishing of

vortices at weak magnetic fields at low temperatures. Fisch considered q = 6 and 12

Potts models with dilute, but infinitely strong magnetic fields, and found long-range

order at low temperatures and quasi-long-range order at intermediate temperatures

for nimp = 6.25% [Fisch (1997)].

3.5.1 Method

The basic spirit of Monte Carlo simulation is to calculate an integral by sampling.

In condensed matter physics, what we want to know are observables averaged over

many thermal configurations:

hO[�]i =
R

D�e��E[�]O[�]

Z , (3.35)

where � represents the degrees of freedom in the system, and � = 1/T is the inverse

temperature. The most naive way of evaluating this integral is to randomly pick up

N points in the phase space corresponding to various configuration of the field �, and
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then to take the ensemble average of the integrand,

hO[�]i ' 1

N

NX

i=1

e��E
iO[�i], (3.36)

where �i is the field configuration of the ith sample, and Ei is the energy. However,

the drawback of this method is that we sample many points that do not contribute to

the integral much; many configurations are exponentially small due to the exponential

factor. Thus, the evaluation of the integral takes much longer time than the one that

we show below, and we will not use this approach.

To make the evaluation faster, we need to sample phase space more efficiently, in

a sense that we can sample more points that contribute of the order of 1. In order to

achieve this goal, we use a weighted sampling instead of uniform sampling. The basic

idea is to generate N sample points {�i} in the phase space, whose energy distribution

follows the Boltzmann distribution approximately,

Number of samples having Ei

N
/ e��E

i . (3.37)

Then, the observable quantity can be evaluated as

hO[�]i ' 1

N

NX

i=1

O[�i] (3.38)

without any exponential factor. Since there are more sample points for lower energies,

whose contributions are of the order of unity, this converges much faster than the

uniform sampling in the previous paragraph.

Now the problem is how to generate such a sample following the Boltzmann dis-

tribution. The most common way is to use a Markov process. Now let us label the

all possible configurations of the system as {�1, . . . ,�⌫}, where ⌫ is the total number

of configurations. In a Markov process, the next state �i+1 is determined from the



3. Effects of impurities on the charge-density wave in NbSe2 112

last state �i based on a given probability matrix P (�↵ ! ��), which is a probability

where we have �i+1 = �� if �i = �↵. Conservation of probability flow requires that

this matrix should satisfy
⌫X

�=1

P (�↵ ! ��) = 1. (3.39)

Suppose that ~⇢i is a vector whose ◆ component is the probability of having �◆ at ith

step. This is given by simply multiplying the probability matrix i times to the initial

distribution,

~⇢i = P i~⇢0. (3.40)

Since the probability matrix is non-negative, from Perron-Frobenius theorem, the

maximal eigenvalue is 1, and all the eigenvalues are positive. This means after many

steps, ~⇢i converges to the eigenvector with eigenvalue 1, ~!:

~! = P~!. (3.41)

This equation is called a detailed balance. Now, we would like to choose P such that

~! follows the Boltzmann distribution,

!◆ / e��E[�
◆

]. (3.42)

If we can make such P , we can use the Markov process to generate the desired sample

after convergence.

There are many ways to choose P satisfying the detail balance. The most common

one is the Metropolis-Hasting algorithm. The key steps to generate the sample is as

follows:

1. Choose the initial state �0 = �↵ in the phase space.

2. Choose the next state �� as a next candidate.
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3. Accept �� as �1 with a probability min

h
1,

!
�

!
↵

i
. If not accepted, keep �1 = �↵.

4. Repeat process 2 and 3 to get i � 1.

In our simulation we choose a candidate such that the acceptance rate is 40% to 60%.

We also employ the overrelaxation steps to get a faster convergence. In this

method, the candidate state is chosen from the state with exactly the same energy

as the last state, so that the acceptance rate is always 1. In our case, each spin is

coupled to six spins as

~si ·
X

j2NN

~sj ⌘ ~si · ~Hi. (3.43)

Thus as a candidate state, using ˆHi =
~Hi/| ~Hi|, we consider ~s0 such that

~s0 = �~s+ 2(~s · ˆHi)
ˆHi. (3.44)

~s0 is the vector having the same angle from ~H as ~s, although in the opposite side.

In other words, it is a reflection of ~s about ~H. In this manner, the candidate state

has the same energy as the last state of the Markov process. However, if we only use

this method, the energy remains the same value forever; there is no ergodicity. Thus,

we combine the Metropolis-Hasting algorithm, and the overrelaxation steps, to get a

faster convergence with ergodicity.

3.5.2 Results

We simulate the XY model in Eq. (3.34) on a regular periodic lattice in three

dimensions. We consider the hi = 1 limit, and the orientations of ~hi are randomly

chosen from [�⇡, ⇡]. During the MC steps, we do not update the spins on impurity

sites. We will count eight overrelaxation steps and two Metropolis steps as one MC

step [Li and Teitel (1989)]. First 2 ⇥ 10

3 MC steps are used for thermalization, and



3. Effects of impurities on the charge-density wave in NbSe2 114

(a) (b)

Figure 3.12: Typical phase configurations in (a) a metastable state and (b)
a lowest energy state at L = 48, T = 0.1, and nimp = 8%.

the following 1 ⇥ 10

4 MC steps are used for measurements. We recorded observables

every 25 MC steps. Using a cluster machine in our group with one node, it takes

five to seven days to finish a calculation for L = 128. The autocorrelation time is at

most 10 MC steps regardless of the size and temperatures; it is relatively short due

to the overrelaxation steps. The range of the acceptance rate for Metropolis steps

is from 40% to 60%. The physical observables are energy densities, specific heat,

magnetization, magnetic susceptibility, vortex densities (the average number of vortex

per plaquette), spin stiffness, and autocorrelations. In particular, the autocorrelations

are defined as

C(~x) ⌘ h~s(~y + ~x) · ~s(~y)i. (3.45)

We used both “hot" (fully disordered) and “cold" (fully ordered) initial conditions.

They both converge to a same statistical configurations with positive stiffness for

small systems, L = 16. For a larger system with impurities, a cold (hot) state still

converges to a state with a positive stiffness at low (high) temperatures, while it
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(1) Autocorrelations

For quasi-long range order:
C(rij) ⌘ h�Si · �Sji

C(L/2) ⇠ L��, |M(L)| ⇠ L��/2

n = 4%

new Bragg glass!�strong ⇡ 0.4 ⌧ �weak ⇡ 1.0
13

Figure 3.13: Size dependence of autocorrelations at nimp = 4% at various
temperatures. Only the data for L � 32 is used for fitting; the data with
L = 16 and L = 24 indicated by the gray area are excluded for fitting due to
their small sizes.

often goes to a metastable minimum at high (low) temperatures and remains there

even after 10

4 MC steps. These metastable minima are characterized by a slightly

higher energy, and a faster decay of autocorrelations by phase variations. In Fig. 3.12,

we depict typical phase configurations at nimp = 8% and T = 0.1 for a disordered

metastable state and an ordered state. Vortices appear mostly near the impurity

sites, and the densities of vortices are more or less the same for two cases ⇠ 1.5%.

In the ground state, except one vortex, only vortex-antivortex pairs are found, while

there are more isolated vortices in the metastable state leading to the faster decay

of the autocorrelation. The metastable configurations are relevant to experimental

situations, which usually start from hot initial conditions.

At the transition temperature, we find peaks in the specific heat and magnetic

susceptibility, while they are smeared out compared to the ones for clean samples.

Above Tc, the number of topological defects increases, and at the same time, the

stiffness goes to zero as expected. Due to the finite size, it is not clear whether the

transition remains sharp in dirty samples.



3. Effects of impurities on the charge-density wave in NbSe2 116

In a Bragg glass phase, the autocorrelation decays by a power-law. In our Monte

Carlo simulations, this may appear as the power-law size dependence of the autocor-

relations and magnetization [Binder and Heermann (2010)],

C(L/2) ⇠ L�⌘, M(L) ⇠ L� ⌘

2 . (3.46)

If the system is in true long-range order, there is very little size dependence as far as

the system size is large enough. We plotted C(L/2) in Fig. 3.13 at various tempera-

tures at nimp = 4%. For each impurity configuration, the autoccorelations averaged

over three directions are obtained, and then five different samples are used to calcu-

late the average and the standard deviations in Fig. 3.13 1. To obtain ⌘, we fit the

data with L � 32 by power law function; in the log-log plot, the data at L = 16

and 24 deviates from the linear behavior due to their small size. We find that well

below Tc ⇡ 1.9, the size dependence shows a power-law behavior with an exponent

⌘ ⇡ 0.4. Close to the transition, T = 1.7, the exponent increases to ⌘ ⇡ 0.5. Similar

size dependence are checked on magnetization with negligible difference on the values

of ⌘(T ). Therefore, up to the size available for our simulations, the low-temperature

phase is a quasi-long-range ordered phase with a low density of topological defects,

i.e., a Bragg glass. The difference from the conventional Bragg glass phase with

weak disorder [Giamarchi and Le Doussal (1994, 1995)] is that the exponent we find

⌘ ⇠ 0.4 is much smaller than the exponent ⌘BG ⇠ 1.0 corresponding to a weakly

disordered XY model. However, the exponent is almost independent of temperature

as the conventional one. The apparent power-law decay in the autocorrelations is

thus inconsistent with the conventional Bragg glass behavior about the exponent,

and also with our previous analytical solutions giving a long-range order. Since our

simulations are limited to relatively small lattice sizes, it is not certain whether the
1 For L = 128 at T = 1.7, we have only two samples.
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Figure 3.14: Phase profiles with the same impurity configurations given by
(a) analytical expressions in Eq. (3.16), and (b) Monte Carlo simulations.

autocorrelations would saturate if the system size would be bigger. This should be

checked in the future.

Lastly, we compare our analytical solution in Sec. 3.4, and our Monte Carlo sim-

ulations starting from the cold initial condition. In Fig. 3.14, we depict phase config-

urations obtained by these two different methods for the same impurity distribution

with L = 64. The analytical solution has phase fluctuations at small length scales,

while the Monte Carlo simulation has a larger scale phase variation. In the latter,

larger amount of vortex-antivortex pairs in the vicinity of impurities are found, which

seem to relax the large strain for some impurities preferring different phases from the

local background phase. The different phase profiles lead to different size dependences

in autocorrelations (Fig. 3.15). The autocorrelations from the analytical solutions are

independent of the sizes as expected, while the ones from Monte Carlo simulations

shows a power-law dependence as in Fig. 3.13.
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Figure 3.15: Autocorrelations given by analytical expressions in Eq. (3.16),
and Monte Carlo simulations. Five samples are used for the disorder average.

3.6 Conclusions

In this chapter, we investigated the effects of impurity on the charge-density wave

in NbSe2. We analyzed a topographic image of the surface of the sample obtained by

STM in detail, and found that the impurities on the material is dilute in a sense that

the CDW periodicity is much shorter than the average inter-impurity distance, but

also strongly pinning. Contrary to the conventional wisdom, predicting a proliferation

of topological defects and destruction of long-range order for such a situation, the

observed phase is found to be in a Bragg glass phase, where topological defects are

always in dislocation-antidislocation pairs (Fig. 3.8).

In order to understand such a unconventional behavior, we studied a Ginzburg-

Landau model with impurities. First, noting that a single impurity makes a Coulom-

bic phase modulation, and assuming that the impurities are put on a periodic lattice,

we solved the model analytically. We found that the ground state is in a long-range

ordered state, and furthermore, the excitations that we can think of require a finite

and large energy; the ground state is very stable. We also checked the solution basi-

cally does not change even we put the impurities on random positions by solving the
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problem numerically (Fig. 3.9).

In order to confirm the above picture, and further study the effects of topological

defects, we implemented Monte Carlo simulations of a similar model on a discrete

lattice. At low temperatures, autocorrelations do not decay exponentially, but remain

finite. However, they also show a power-law system size dependence, indicating that

the system is in a Bragg glass phase. The power-law exponent is ⇠ 0.4, which is much

smaller than the previously obtained value ⇠ 1.0, and is temperature independent.

Investigating bigger systems is highly desirable to check whether the power-law decay

persists or saturates.

While the two analyses both show unexpectedly (quasi-) long-range order, their

size dependences of autocorrelations do not agree with each other. Correspondingly,

the phase profiles calculated with the same impurity configurations, but by the two

different methods differ qualitatively; in particular there are more vortex-antivortex

pairs in the Monte Carlo simulations. Clarifying how such a difference in the phase

configurations leads to the difference in the autocorrelations is an important future

problem.
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Appendix A

Fermionic renormalization group

When two Fermi velocities are different, it is more convenient to use current operators

than using refermionization. We follow the notation of Balents and Fisher (1996) with

slight modification:

Jmr =

X

ss0

 †
msr ms0r, Jmr =

X

ss0

 †
msr�ss0 ms0r (A.1)

Lr =

X

ss0

 †
Asr Bs0r, Lr =

X

ss0

 †
Asr�ss0 Bs0r (A.2)

Mmr = �i m"r m#r, Nrss0 =  rAs rBs0 . (A.3)

When kA 6= kB, the interactions terms are given by,

�Hint = eg1⇢JARJAL + eg1�JAR · JAL

+ eg2⇢JBRJBL + eg2�JBR · JBL

+ egx⇢ (JARJBL + JBRJAL)

+ egx� (JAR · JBL + JBR · JAL)

+ egt⇢(LRLL + h.c.) + egt�(LR · LL + h.c.).

(A.4)



A. Fermionic renormalization group 135

This expression is formally the same as the one given in Balents and Fisher (1996).

When kA = kB, we have additional processes,

� H0
int = ega⇢

⇣
LRL

†
L + h.c.

⌘
+ ega�

⇣
LR · L†

L + h.c.
⌘
. (A.5)

Umklapp processes are allowed when the filling is commensurate (n = 2):

�H00
int = eg1u

⇣
MARM

†
AL + h.c.

⌘

+ eg2u
⇣
MBRM

†
BL + h.c.

⌘

+ egxu
⇣
MARM

†
BL +MBRM

†
AL + h.c.

⌘

+ egtu⇢
⇣
N †

R↵�NL↵� � N †
R↵�NL�↵ + h.c.

⌘

+ egtu�
⇣
N †

R↵�NL↵� +N †
R↵�NL�↵ + h.c.

⌘
.

(A.6)

The eg1u and eg2u processes are allowed only when each band has commensurate filling,

i.e., km = ⇡/2. We ignore all the chiral scattering processes, since they only renor-

malize the velocities. The initial values of coupling constants are: eg1⇢ = eg2⇢ = �eg1� =

�eg2� = eg1u = eg2u = �U/2, egx� = �egt⇢ = egt� = �egxu = J/2, egx⇢ = (�2U + 5J)/2,

ega⇢ = (U � 4J)/2, ega� = (U � 2J)/2, egtu⇢ = (�U + J)/2, and egtu� = (�U + 3J)/2.

In the following, we use the renormalized coupling constants, yi = egi⇡�1
(vA +

vB)
�1. The RG equations for the kA = kB = ⇡/2 case are

ẏ1⇢ = ��
�
y2a⇢ + 3y2a� + 3y2tu� + y2tu⇢ � y2t⇢ � 3y2t�

�
� ↵y21u

ẏ2⇢ = �↵
�
y2a⇢ + 3y2a� + 3y2tu� + y2tu⇢ � y2t⇢ � 3y2t�

�
� �y22u

ẏx⇢ = y2a⇢ + 3y2a� � 3y2tu� � y2tu⇢ � y2t⇢ � 3y2t� � y2xu

(A.7)
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ẏ1� = �2� (ya� (ya� + ya⇢) + ytu� (ytu� + ytu⇢) + yt� (yt� � yt⇢)) � 4↵y21�

ẏ2� = �2↵ (ya� (ya� + ya⇢) + ytu� (ytu� + ytu⇢) + yt� (yt� � yt⇢)) � 4�y22�

ẏx� = �2 (ya� (ya� � ya⇢) + ytu� (ytu� � ytu⇢) + yt� (yt� + yt⇢)) � 4y2x�

(A.8)

ẏt⇢ = �2ytu⇢yxu + yt⇢yc� + 3yt�ys�

ẏt� = 2ytu�yxu + yt⇢ys� + yt� (yc� � 2ys+)
(A.9)

ẏa⇢ = �ytu⇢ (↵y1u + �y2u) � ya⇢yc� � 3ya�ys�

ẏa� = �ytu� (↵y1u + �y2u) � ya⇢ys� � ya� (yc� + 2ys+)
(A.10)

ẏ1u = �4 (3�ya�ytu� + �ya⇢ytu⇢ + ↵y1uy1⇢)

ẏ2u = �4 (3↵ya�ytu� + ↵ya⇢ytu⇢ + �y2uy2⇢)

ẏxu = 4 (3yt�ytu� � yt⇢ytu⇢ � yxuyx⇢)

(A.11)

ẏtu⇢ = �ya⇢ (↵y1u + �y2u) � 2yt⇢yxu � ytu⇢yc+ � 3ytu�ys�

ẏtu� = �ya� (↵y1u + �y2u) + 2yt�yxu � ytu⇢ys� � ytu� (yc+ + 2ys+) ,
(A.12)

where we defined yc(s)± = ↵y1⇢(�) + �y2⇢(�) ± 2yx⇢(�) with ↵ = (vA + vB)/(2vA), and

� = (vA + vB)/(2vB). For doped cases, and kA 6= kB cases, the coupling constants

which are not allowed by momentum conservation should be removed.

As we mentioned, the asymptotic behavior of a RG flow is captured by the ansatz

(2.55), and now the ratios of coupling constants at fixed points depend on velocity

differences. However, we can easily distinguish phases with different fixed point struc-

ture by looking at the signs of relevant couplings, and irrelevant couplings. In that

sense, we identify phases as the same ones when the relevant couplings and the signs

are the same. When the relevant couplings are different, or the signs of renormalized

couplings are different, we regard them as different phases.



B. Data analysis of the STM image 137

Appendix B

Data analysis of the STM image

In this appendix, we explain the detail procedures to analyze the STM image of

NbSe2. First, the procedures to extract order parameters from the topographic data

are as follows. The first step is a Fourier transformation of the data (an image of

1024 ⇥ 1024 pixels) assuming that the field of view is periodically repeated in the x

and y directions. The Fourier transformed image has a central peak, atomic Bragg

peaks at reciprocal lattice vectors ~Gi, and 6 relatively sharp peaks originating from

the CDW correlations located approximately on the vertices of a hexagon, ~Qi=1...6

[Fig. B.1(a)]. We define the mean distance of the CDW peaks from the origin to be

Q ⇡ | ~G|/3. We then filter the data by retaining only the region in an annulus of

inner radius Q/2 and outer radius 3Q/2 [Fig. B.1(b)]. Next, we performed an affine

transformation

~x0
= A~x+

~b (B.1)

to remove the shear distortion, which we believe arises from the drift of the scanning

tunneling microprobe. To define the affine transformation we partition the annulus

into six segments, with each boundary between segments passing through a middle

point of neighboring CDW peaks and through the origin. In Fig. B.1(b), X’s are the

middle points, and dashed lines are the boundaries of a segment. For each segment,

we define an affine transformation which maps each middle point position to a vertex
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Figure B.1: (a) The absolute values of Fourier components �⇢(~k). The
Fourier components outside the annulus given by the dashed lines are re-
moved. (b) Fourier components after removing atomic peaks and ~k = 0

components. X’s are the middle points of neighboring CDW peaks. (c) The
Fourier components after affine transformations.

of a regular hexagon. The positions of two middle points and the origin of the picture

uniquely defines the parameters, A and ~b, in Eq. (B.1) for each segment. After the

affine transformations, the Fourier components will look like Fig. B.1(c). Finally, we

need to perform the inverse Fourier transform of the filtered, affine-transformed data

to obtain a position dependent amplitude which we identify with the CDW component

�⇢(~x) in the real space. �⇢(~x) is related to the order parameters,  i(~x) = ⌘i(~x)e
i�

i

(~x)

by

�⇢(~x) =
3X

i=1

< i(~x)e
i ~Q

i

·~x. (B.2)

To obtain the ⌘i and �i, we shift each CDW peak in a circle of radius Q/2 to the

origin of the Fourier space, and Fourier transform it to the real space.

The construction of the Delaunay diagram is as follows. First, we remove the

central peaks of the Fourier image as Fig. B.1, and then transform it back to the
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Figure B.2: (a) The binary image after filtering the topographic image
by a threshold value. (b) The obtained Delaunay image overlaid on the
topographic image.

real space. Then, we create a binary image by distinguishing each data points by a

threshold value; in Fig. B.2, the white parts are above the value, and the black parts

are below. The threshold value is chosen such that we obtain a maximal number of

distinct points. If the value is too low neighboring maximal islands are connected,

while if the value is too large, we miss some of the CDW maxima. The locations

of maxima are identified by red points in Fig. B.2. The Delaunay diagram is then

constructed based on these points.


