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ABSTRACT

Towards inducing superconductivity into graphene

Dmitri K. Efetov

Graphenes transport properties have been extensively studied in the 10 years since its

discovery in 2004, with ground-breaking experimental observations such as Klein tunneling,

fractional quantum Hall effect and Hofstadters butterfly. Though, so far, it turned out to be

rather poor on complex correlated electronic ground states and phase transitions, despite

various theoretical predictions. The purpose of this thesis is to help understanding the

underlying theoretical and experimental reasons for the lack of strong electronic interactions

in graphene, and, employing graphenes high tunability and versatility, to identify and alter

experimental parameters that could help to induce stronger correlations.

In particular graphene holds one last, not yet experimentally discovered prediction,

namely exhibiting intrinsic superconductivity. With its vanishingly small Fermi surface at

the Dirac point, graphene is a semi-metal with very weak electronic interactions. Though, if

it is doped into the metallic regime, where the size of the Fermi surface becomes comparable

to the size of the Brillouin zone, the density of states becomes sizeable and electronic

interactions are predicted to be dramatically enhanced, resulting in competing correlated

ground states such as superconductivity, magnetism and charge density wave formation.

Following these predictions, this thesis first describes the creation of metallic graphene at

high carrier doping via electrostatic doping techniques based on electrolytic gates. Due

to graphenes surface only properties, we are able to induce carrier densities above n >

1014 cm−2 (εF > 1 eV) into the chemically inert graphene. While at these record high carrier

densities we yet do not observe superconductivity, we do observe fundamentally altered

transport properties as compared to semi-metallic graphene. Here, detailed measurements of



the low temperature resistivity reveal that the electron-phonon interactions are governed by

a reduced, density dependent effective Debey temperature - the so-called Bloch-Grüneisen

temperature ΘBG. We also probe the transport properties of the high energy sub-bands in

bilayer graphene by electrolyte gating. Furthermore we demonstrate that electrolyte gates

can be used to drive intercalation reactions in graphite and present an all optical study

of the reaction kinetics during the creation of the graphene derived graphite intercalation

compound LiC6, and show the general applicability of the electrolyte gates to other 2-

dimensional materials such as thin films of complex oxides, where we demonstrate gating

dependent conductance changes in the spin-orbit Mott insulator Sr2IrO4.

Another, entirely different approach to induce superconducting correlations into graphene

is by bringing it into proximity to a superconductor. Although not intrinsic to graphene,

Cooper pairs can leak in from the superconductor and exist in graphene in the form of

phase-coherent electron-hole states, the so-called Andreev states. Here we demonstrate a

new way of fabricating highly transparent graphene/superconductor junctions by vertical

stacking of graphene and the type-II van der Waals superconductor NbSe2. Due to NbSe2’s

high upper critical field of Hc2 = 4 T we are able to test a long proposed and yet not well

understood regime, where proximity effect and quantum Hall effect coexist.
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CHAPTER 1. INTRODUCTION 1

Chapter 1

Introduction

1.1 Overview and outline

Having joined Philip Kim’s research group as an undergraduate student in 2006, with

graphene haven been discovered only 2 years prior, put me instantly in the position of

an observer from within in an extremely dynamic and, in retrospect, with the award of

the Nobel prize for the discovery of graphene in 2010, historic stretch of condensed matter

research. At that time, graphene had received immense attention for its massless Dirac

Fermion physics and its unexpectedly high electronic quality which led to the observation

of the unusual half-integer quantum Hall effect [1; 2; 3; 4].

Albeit being a superb ballistic conductor with unusual single particle properties, as soon

as I started my PhD in 2007, I began to hear voices asking wether graphene also could sus-

tain more complex electronic phases and phase transitions, such as superconductivity or

exciton condensation [5; 6; 7; 8; 9; 10]. The search of such exotic phases started first at

close proximity of the Dirac point. However, specifically with regard to intrinsic supercon-

ductivity in graphene, we quickly realized that the regime where we could have the best

chance of observing it, would be in the opposite limit where the Fermi energies are as far

away from the Dirac point as possible. This initial intuition resulted in an active search

for the regimes where graphene could potentially have a superconducting order, starting a
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strong push towards inducing record high carrier densities with electrolyte gates and ended

with the induction of superconducting correlations into graphene via proximity effect.

In Chapter 1, we first quickly introduce graphene and its electronic properties [11;

12; 13; 14; 15; 16; 17] and present band-structure calculations with a specific focus on

singular points where the density of states has strongly elevated values, the so-called van

Hove singularities [9], and put these into context with theoretical predictions for intrinsic

superconductivity in graphene. Then we introduce general concepts of the superconducting

proximity effect [18] and explain how these manifest themselves when coupled with the

Dirac equation in graphene [19].

In Chapter 2 we discuss electrolyte gating concepts and its implications to various

materials [20; 21; 22; 23; 24; 25]. Motivated by the at the time mostly unstudied properties

of graphene at higher carrier densities and the intriguing theoretical predictions for this

regime [10], we decided to apply stronger gating techniques to graphene devices. For this

purpose we used a solid polymer electrolyte gate that had before been demonstrated for

other thin films and improved it for the use with graphene [26]. With these experimental

techniques at hand almost any thin film material can be gated, especially materials with

complex carrier density dependent phase transition like cuprates or complex oxides [24].

In this chapter we will introduce basic electrochemical concepts and experimental tech-

niques and present the application of these to materials such as graphene, graphite and

complex oxides. While for the case of graphene we will present a detailed approach to

introduce highest possible carrier densities with a solid polymer electrolyte gate, in the case

of the complex oxide Sr2IrO4 we use the ionic liquid DEME-TFSI and compare the effect of

electrostatic gating with that of chemical doping. Finally we discuss the limits of electrolyte

gating when electrochemical reactions set on at high gate voltages and demonstrate that

these can be used to intercalate ionic species into graphite to form crystallized intercalation

compounds.

Chapter 3 mainly deals with the application of the electrolytic gates to monolayer and

bilayer graphene devices. The extreme tunability of graphene with the electrolytic gates
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makes it possible to tune the Fermi energy continuously from ϵF ∼ 0 eV to ϵF > 1 eV,

allowing to study not only graphenes properties at high carrier densities, but also a material

at the cross-over from a zero band-gap semi-conductor to a metal [26]. While here graphene

does not show clear signs of superconductivity even at the highest carrier densities we

achieved so far, these studies help to fill an empty space in the big phase space of graphenes

properties [27].

Along those lines we present a carrier density dependent study of the temperature

dependent resistivity of monolayer graphene at the cross-over from a semi-metal to a metal.

Here we find that the fundamental electron-phonon scattering process is governed by a new

characteristic temperature scale, the Bloch-Grüneisen temperature ΘBG, and investigate its

striking density dependence. Moreover we present a study of bilayer graphene where, for

the first time, we were able to fill up the high-energy sub-bands, resulting in a multi-band

conduction regime.

In Chapter 4, we discuss in detail our efforts to induce superconducting correlations

into graphene via proximity effect. This study was mainly motivated by a set of long

standing theoretical predictions such as the possibility of specular Andreev reflections in

graphene [19], and the interplay of Andreev reflections with the quantum Hall effect [28; 29].

To approach the regime where these predictions could be realized, both ultra clean graphene

and a very transparent electrical contact to a type-II superconductor with a large SC gap are

needed. While over the years the quality of graphene has been improved tremendously [30],

coupling it with such superconductors has been challenging [31; 32], mainly due to the

invasiveness of the deposition techniques such as sputtering or evaporation.

Here we discuss our novel approach to contact high quality hBN/graphene stacks with

the layered van der Waals material NbSe2 employing the recently developed stacking tech-

nique. We show that the so fabricated graphene/NbSe2 junctions yield very transparent

Ohmic interfaces, resulting in a high probability of the Andreev reflections. Furthermore,

as NbSe2 is a type-II superconductor with a relatively high Hc2 ∼ 4 T, Andreev reflections

can be retained up to fields where the quantum Hall effect is fully developed.
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1.2 Theoretical overview of graphene

1.2.1 Graphenes band structure from the tight-binding approximation

Monolayer graphene

Graphene is a single sheet of carbon atoms arranged symmetrically in a two-dimensional

honeycomb lattice (Fig. 1.1 (a)). The unit cell in the Bravais lattice contains two equivalent

carbon atoms referred to as the A and B sub-lattice sites with the inter-atomic distance

a0 = 1.42 Åand the lattice constant a =
√
3a0 = 2.46 Å. The two unit vectors of this lattice

(Fig. 1.1 (c)) are defined :

a⃗1 =

(√
3a

2
,
a

2

)
; a⃗2 =

(√
3a

2
,−a

2

)
(1.1)

with the vectors connecting the nearest neighbors being :

δ⃗1 =
a

2

(
1√
3
, 1

)
; δ⃗2 =

a

2

(
1√
3
,−1

)
; δ⃗3 =

a

2

(
2√
3
, 0

)
(1.2)

and the K⃗, K⃗ ′ vectors in the reciprocal space :

K⃗ =

(
0,

4π

3a

)
; K⃗’ =

(
0,

−4π

3a

)
(1.3)

Each carbon atom has three nearest neighbors, lying in a 120◦ angle to one another and

six electrons, of which four are valence electrons - one in the 2s and three in the 2p orbitals.

Embedded in the two dimensional crystal, the 2s, 2px and the 2py orbitals hybridize to form

three in-plane sp2 orbitals determining the σ-bonds, and one 2pz orbital forming the cova-

lent π-bonds between the neighboring atoms. The in-plane σ-bonds are extremely strong

and contribute to the structural stability of graphene, making it the strongest material in

the world. The electrons in the σ-bonds are very tightly bound and are localized at rele-

vant energy scales. The delocalized π-bands however cross the Fermi energy and therefore
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a
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c

d

Figure 1.1: (a) and (b) Crystallographic schematics of monolayer and bilayer graphene.
The π-electrons can move in-plane between the two equivalent lattice sites A and B and
are connected through the hopping integral γ0. In bilayer graphene, the carbon sheets are
Bernal stacked with the A site on the lower sheet sitting directly below the B′ site of the
upper sheet. Here A and B′ and are coupled through the hopping integral γ1.
(c) Graphenes unit cell with two equivalent carbon atoms spanned by the unit cell vectors
a⃗1, a⃗2. The nearest-neighbor vectors are δ⃗1, δ⃗2, δ⃗3. (d) Graphenes Brillouin zone with the
high-symmetry points K,K ′,M and Γ.

determine the low energy electronic properties of graphene.

Although the electrons in the π-bands are not as strongly bound as in the σ-bands,

the tight-binding approximation still provides very accurate estimates. Considering only

nearest neighbor hopping the tight-binding Hamiltonian is given [33] :

H = γ0
∑
⟨i,j⟩

( â†i b̂j + h.c.) (1.4)

where γ0 ≈ 3.16 eV is the overlap integral between the pz states of the carbon atoms and

â†i , (âi), b̂
†
i , (b̂i) are the creation and annihilation operators for the lattice sites A and B

respectively and ⟨i, j⟩ are a pair of nearest carbon atoms. This Hamiltonian can be

expressed with respect to the basis of the wave-function amplitudes on the individual

sub-lattice sites A and B (ψA, ψB) :
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H =

 0 γ0
∑
i
e−ik⃗δ⃗i

γ0
∑
i
eik⃗δ⃗i 0

 (1.5)

and results in two bands defined as the valence π(−) and the conduction π∗(+) bands

(Fig. 1.2 (a)), defined by the two energy eigenvalues :

ε±(k⃗) = ±γ0

√√√√1 + 4 cos

(√
3akx
2

)
cos

(
aky
2

)
+ 4 cos2(aky) (1.6)

The energy spectrum of this relation results in a large gap in the Brillouin zone (BZ)

center which smoothly closes at corners of the BZ (K and K ′). As each carbon atom con-

tributes exactly one electron to the π-bands, each band is exactly half filled with the Fermi

energy ϵF sitting in the overlap regions of the π and π∗ bands, the K and K ′ points with

ε±(K⃗) = ε±(K⃗ ′) = 0. Around this point the dispersion relation is defined by two equiv-

alent linear regions, the so-called Dirac cones (Fig. 1.2 (b)) with its singular overlapping

point, the Dirac point. As the Fermi surface in this point is infinitely small, graphene, in

all generality, can be defined as a zero band-gap semiconductor.

To better illustrate the peculiar low energy properties of graphene we rewrite the Hamil-

tonian in the new basis (ψK,A, ψK,B, ψK′,B, ψK′,A) of the wave-function amplitudes on the

A and B lattice sites near the K, K ′ points [11; 17]. Furthermore we expand the Hamil-

tonian for low energies around the K⃗-points with κ⃗ ≡ K⃗ − k⃗ and the Fermi velocity

υF =
√
3aγ0
2 ≈ 106 m/s :

H =



0 iυF |κ⃗|e−iθ 0 0

−iυF |κ⃗|eiθ 0 0 0

0 0 0 iυF |κ⃗|eiθ

0 0 −iυF |κ⃗|e−iθ 0


= υF

 ˆ⃗σ · κ⃗ 0

0 −ˆ⃗σ · κ⃗

 (1.7)
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E

kx

ky

K
K’ M

 

K’

a b c

 
F
= 0.3eV

 
F
= 3eV

K

Figure 1.2: (a) π-bands of graphene from the tight-binding approximation. At zero doping
the bands are half-filled with the Fermi energy sitting exactly at the touching points of the
Dirac cones, the so-called Dirac points. (b) Low energy spectrum with the two linear Dirac
cones in the BZ corner sites K and K ′. (c) Fermi surface for different values of the Fermi
energy ϵF . At high energies the two separated valleys merge together in the M -point and
form a large single Fermi surface. The electronic properties at these energies are no longer
defined by the relativistic Dirac equation.

where ˆ⃗σ = (σx, σy) is the Pauli matrix operator with :

σx =

 0 i

−i 0

 ; σy =

 0 1

1 0

 (1.8)

leading essentially to two decoupled valleys in the corners of the BZ with each valley

having a linear energy dispersion relation :

ϵ(κ⃗) = ±υF |κ⃗| (1.9)

The linear dispersion relation is a consequence of the fact that the Hamiltonian in Eqn.

1.7 is identical to the Dirac Hamiltonian of zero-mass relativistic particles, like photons or

neutrinos, with the Fermi velocity replacing the speed of light. One of the peculiarities of

the Dirac equation is that it directly ties the direction of the spin of the particle with its
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momentum, a concept called chirality. In graphene the electron spin is decoupled from the

degrees of motion, but the spinor (ψA, ψB), termed as pseudo-spin, replaces the role of the

spin for Dirac Fermions. The electrons in graphene therefore are chiral with its momentum

intimately tied with the pseudo-spin direction. Although just a mathematical peculiarity

seemingly not having direct relativistic particles in play, the description of the electrons

with the Dirac equation has real consequences on the conduction properties of graphene.

The most striking consequence is the observation of Klein tunneling in graphene, a counter-

intuitive relativistic phenomena where the transmission probability of a relativistic particle

incident on a potential barrier is increasingly higher the higher the barrier becomes, reach-

ing perfect transmission for infinitely high barriers. This effect also explains the absence of

back-scattering in graphene which in turn leads to the very high observed mobilities.

At high energies, the Fermi surface alters dramatically from the low energy case as is

demonstrated in Fig. 1.2 (c). Instead of the two small circular Fermi surfaces around the K

and K ′ points and a linear dispersion relation around them, the two valleys are trigonally

warped and merge together at around ϵ ∼ 3 eV to form a single Fermi surface spanning

the entire BZ. The dispersion relation around these energies is not linear and results in flat

band regions. In particular in the M -points, the band exhibits saddle point behaviour with

an extremely high density of states (DOS), resulting in van Hove singularities (vHS). With

its large Fermi surface in this regime graphene can be better described as a good metal

rather than a zero band-gap semiconductor and is predicted to exhibit strong correlated

electronic states, such as superconductivity, typically found only in metallic systems.

Bilayer Graphene

Though the properties of monolayer graphene are key to understand bilayer graphene, it

is an entirely different electronic system. The π-bands in bilayer graphene can also be

calculated by a tight-binding Hamiltonian taking only inter-layer and intra-layer nearest-

neighbor interactions into account, though here the picture turns out to be quite more

complicated with now four carbon atoms in the unit cell and new hopping terms coupling

the two graphene sheets, hence resulting in now four π-bands. In addition, the two graphene
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sheets can generally have two different potential energies, for example due to the application

of a transverse electric field, where a finite layer potential difference ∆ leads to a recon-

struction of the band-structure and an opening of a band-gap around the charge neutrality

point (CNP).

In the context of this thesis we will be only covering Bernal stacked or A-B stacked

bilayer graphene, where the two monolayers are stacked such that the B atom in the upper

sheet sits directly above the A atom of the lower sheet (Fig. 1.1 (b)). Although there can

be many other arrangements of two stacked graphene sheets, Bernal stacked graphene is

the most common form and we will only focus on this type as it has been used for the

experiments in this thesis. We further will only consider one hopping term γ1 ≈ 0.4 eV

between the two layers that is corresponding to hopping from A to B′, and neglect all

other hopping terms. Although such an approximation fails to elucidate the ultra low

energy properties of the bilayer graphene band-structure, it provides very good estimates

for higher energies and is fully sufficient for our experimental work.

The four atoms in the unit cell consist of two atoms on each graphene sheet with

the assigned indices A, B and A′, B′ correspondingly. We can write the Hamiltonian in

the basis of the four local density wave-functions (ψA, ψB, ψA′ , ψB′) essentially doubling

the single layer Hamiltonian in Eqn. 1.7 and additionally introduce the A-B′ inter-layer

hopping term expressed by γ1 [34; 35]. In addition we account for the potential difference

between the two graphene sheets expressed by ∆ = V1−V2, with V1, V2 being the potential

energy of each graphene layer :

H =



−∆/2 γ0
∑
i
e−ik⃗δ⃗i 0 0

γ0
∑
i
e−ik⃗δ⃗i −∆/2 γ1 0

0 γ1 ∆/2 γ0
∑
i
e−ik⃗δ⃗i

0 0 γ0
∑
i
e−ik⃗δ⃗i ∆/2


(1.10)

again expanding for low energies around the K-point with κ⃗ ≡ K⃗ − k⃗ we can rewrite the
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Hamiltonian :

H =



−∆/2 iυF |κ⃗|e−iθ 0 0

−iυF |κ⃗|eiθ −∆/2 γ1 0

0 γ1 ∆/2 iυF |κ⃗|e−iθ

0 0 −iυF |κ⃗|eiθ ∆/2


(1.11)

yielding the following four-band dispersion relation (Fig. 1.3):

ϵ±1,2(κ⃗) = ±

√
γ21
2

+
∆2

4
+ h̄2υ2Fκ

2 ±
√
γ41
4

+ h̄2υ2Fκ
2(γ21 +∆2) (1.12)

This dispersion relation yields now four sub-bands, with two low energy sub-bands

touching in the zone center at zero energy (∆ = 0 eV) and two sub-bands originating

at higher(lower) energies |ϵ| > γ1 ≈ 0.4 eV. Just like in the monolayer case, here the

Fermi energy of neutral bilayer graphene sits in the singular overlapping point of the two

low-energy sub-bands at half-filling, hence defining bilayer graphene as a zero-gap semi-

conductor. Though for ∆ ̸= 0 eV a band-gap is opened between the two sub-bands, now

defining bilayer graphene as a semiconductor with a gate tunable gap reaching values of up

to ∆ ∼ 200 meV.

In general, similarly to the case of monolayer graphene one can expand the bilayer

graphene Hamiltonian for low energies around the K- and K
′
-points and show that the

low energy spectrum in bilayer graphene also obeys the Dirac equation, only this time for

massive chiral particles, comparable to massive near-relativistic neutrinos.

1.2.2 Van Hove singularities in graphene

In search for exotic correlated states and many-body interactions in new materials, a very

strong attention is often directed to positions in the band-structure where the density of

states (DOS) is extremely high or exhibits non-monotonic behaviour as a function of energy.
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Figure 1.3: Band-structure in the BZ corner K of single layer graphene (left), un-gapped
bilayer graphene with ∆ = 0 eV (center) and gapped bilayer graphene with ∆ = 0.3 eV
(right). A band-gap is opened in the spectrum of bilayer graphene when the two graphene
sheets have different potential energies defined by ∆. In addition, bilayer graphene has two
high energy sub-bands beginning at ϵ > 0.4 eV.

At such points, often referred to as van Hove singularities (vHS), correlated electronic states

can occur due to an increased available phase space volume for the exchange of virtual quasi-

particles. For example in the case of superconductivity, virtual phonons are responsible for

the strength of the attractive force between the electrons in a Cooper pair and strongly

depend on theDOS [36]. In general, for various complex materials with nontrivial correlated

ground states, such as superconductivity, magnetism or charge density wave formation, it

is believed that a high DOS and the nesting of the Fermi energy in a vHS are key for the

understanding of these exotic phases [10].

Monolayer graphene

In the case of monolayer graphene the DOS can be calculated analytically from the nearest

neighbors tight-binding band-structure as it was derived in the previous section. Here an

exact analytical expression can be derived and is given by [11; 17] :

DOS(ϵ) =
4

π2
|ϵ|
γ20

1√
Z0

F

(
π

2
,

√
Z1

Z0

)
(1.13)
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Figure 1.4: (a) Dispersion relation of monolayer graphene and the corresponding DOS(ϵ).
The band-structure disperses linearly with energy around the K-point, with a linearly
increasing DOS starting from zero energy. In proximity to the M -point the bands become
flat resulting in a strong singular increase in the DOS, the vHS. (b) Low energy dispersion
relation of bilayer graphene around the K-point for values of ∆ = 0 eV (thin line) and
∆ = 0.3 eV (thick line) and the corresponding DOS(ϵ). For finite ∆ several flat band
regions in the band-structure appear giving rise to non-monotonic jumps in the DOS. A
further vHS appears at the onset energy of the high-energy sub-bands ϵ ∼ 0.4 eV. In
contrast to monolayer graphene where the DOS at the K-point is zero, here, due to its
curved band-structure at the band edge, the DOS has finite values.

where F
(
π
2 , x
)
is the complete elliptical integral of the first kind with Z0:

Z0 =


(
1 + | ϵ

γ0
|
)2

− [(ϵ/γ0)2−1]2

4 , |ϵ| ≤ γ0

4 |ϵ|
γ0
, |ϵ| ≥ γ0

(1.14)

and vice versa for Z1:

Z1 =

 4 |ϵ|
γ0
, |ϵ| ≤ γ0(

1 + | ϵ
γ0
|
)2

− [(ϵ/γ0)2−1]2

4 , |ϵ| ≥ γ0

(1.15)

Fig. 1.4 (a) displays the DOS in Eq. 1.13 side-by-side with the energy spectrum. Being

completely zero at the Dirac point, the DOS first increases linearly with energy but then

scales much faster close to the M -point where it reaches a sharp maximum at ϵ = γ0 hence

forming a vHS. The steep increase of the DOS in this point is a direct consequence of the



CHAPTER 1. INTRODUCTION 13

flattening of the bands when they approach the M -point, since it enhances the number

of momentum states per given energy. Overall one can define two distinct points with

non-monotonic behaviour of the DOS, the Dirac point with ϵ = 0 eV and the vHS with

ϵ = γ0 ∼ 3.16 eV.

While being quite accurate for low energies, the nearest-neighbors tight-binding band-

structure is not a good approximation for the higher energy band-relation. Although it

resembles all the main characteristics of the experimentally obtained band-structure, as it

was obtained by angle resolved photo-emission spectroscopy studies (ARPES) shown in Fig.

1.5 [9], the corresponding energy scales alter quite severely. Here the two valleys touch in

the M -point at much lower energy than predicted ϵ = 1.5 eV, with the flat band regions

through theM -point being much flatter and much more extended, hence resulting in an even

sharper vHS with higher maximal DOS values. The reasons for such a strong deviation

of the experimental band-structure stem from in a strong renormalization of the energy

spectrum due to the onset of strong electronic correlations which, in turn, could be caused

by the high values of DOS. Therefore these findings further support that complex electronic

states could be found in the vHS of single layer graphene and suggest that these could be

potentially much more easily accessible than expected, since the lower onset energies directly

translate into lower carrier densities that are needed to fill up the bands. Here the carrier

density at the vHS are nexp ∼ 5 × 1014 cm−2 much lower than the theoretically predicted

ntheor ∼ 1× 1015 cm−2.

Bilayer graphene

In general monolayer and bilayer graphene bands have very similar high energy properties,

where in exact analogy to the monolayer case both, the low- and high-energy sub-bands

follow a linear dispersion relation that becomes flatter close to the M -point where the

two valleys merge. The low energy characteristics of the bilayer graphenes band-structure

however, with a band-gap opening for ∆ > 0 eV, is strikingly different from the monolayer

case. For this reason, we will skip the similar behaviour near the M -point, and will only

work out the behaviour of the DOS at the low energy regime.
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Figure 1.5: Doping dependence of the band-structure of monolayer graphene measured
by angle resolved photo emission spectroscopy (ARPES). Here the carrier density of the
graphene devices was varied by adsorption of evaporated positively charged ionic species,
resulting in different values of the Fermi energy. Here the energies at which the two valley
merge are ϵF ∼ 1.5 eV much lower than the ϵF ∼ 3 eV expected from the nearest-neighbor
tight-binding approximation. Figure is taken from [9].

The DOS can be calculated from the low energy approximation of the band-structure

around the K-points as it was derived in the previous section using the identity :

DOS(ϵ,∆) =
2k(ϵ,∆)

π
(
dϵ(k,∆)
dk(ϵ,∆)

) (1.16)

with the wave-vectors for the low- and high-energy sub-bands k1 and k2 being defined as :

k1(ϵ,∆) =
1

h̄vF

√
∆2

4
+ ϵ2 +

√
4∆2ϵ2 + 4γ20ϵ

2 − γ20∆
2

2
(1.17)

k2(ϵ,∆) =
1

h̄vF

√
∆2

4
+ ϵ2 −

√
4∆2ϵ2 + 4γ20ϵ

2 − γ20∆
2

2
(1.18)

resulting in the rather lengthy expressions for the DOS of the low- and high-energy

sub-bands DOS1 and DOS2 :
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DOS1(ϵ,∆) = 1
πh2v2F

ΘH

(
ϵ− ϵ1

(
∆
√

2γ2
0+∆2

hvF
,∆

))(
2ϵ+

8γ2
0ϵ+8∆2ϵ√

4∆2ϵ2+4γ2
0ϵ

2−γ2
0∆

2

)

− 1
πh2v2F

ΘH

(
ϵ− ϵ1

(
∆
√

2γ2
0+∆2

hvF
,∆

))
ΘH(ϵ1(0,∆)− ϵ)

(
2ϵ− 8γ2

0ϵ+8∆2ϵ√
4∆2ϵ2+4γ2

0ϵ
2−γ2

0∆
2

)
(1.19)

DOS2(ϵ,∆) =
1

πh2v2F
ΘH(ϵ− ϵ2(0,∆))

(
2ϵ− 8γ20ϵ+ 8∆2ϵ√

4∆2ϵ2 + 4γ20ϵ
2 − γ20∆

2

)
(1.20)

with ΘH the Heaviside step function that is used to account for the singular points in the

band-structure, and ϵ1, ϵ2 the low- and high-energy sub-band dispersions as obtained in

the previous section.

The total DOS(ϵ,∆) = DOS1(ϵ,∆)+DOS2(ϵ,∆) is plotted in Fig. 1.4 (b) for different

values of ∆ side-by-side to the energy-spectrum. While for ∆ = 0 eV, starting from a

finite value in the CNP the DOS increases linearly and exhibits a sharp non-monotonic

jump at the onset of the high-energy sub-bands, for ∆ > 0 eV the DOS(ϵ) is immensely

modified. Here, due to band-gap opening, the low-energy sub-bands have now the shape

of a “Mexican hat” with two flat band regions. At the bottom ring of the Mexican hat,

the DOS has very strong singularities forming additional vHSs. Similarly to the vHSs in

monolayer graphene these vHSs have also attracted attention in the research community

with various predictions stating the possibility of exotic electronic states.
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1.3 Predictions of intrinsic superconductivity in graphene

Whenever a new material is discovered, one of the very first questions researchers address

is whether or not this material could sustain intrinsic superconductivity (SC) at low tem-

peratures and whether the SC order could be of an unusual kind. Ever since the discovery

of graphene this question has kept hopes high for the potential discovery of SC in graphene

and myriads of theoretical studies predicted unusual pairing mechanism resulting from

graphenes chiral Dirac electrons and pseudo-spin properties [8; 9; 10; 37]. Furthermore,

as many graphene derived materials like graphite intercalation compounds (GIC’s) [38; 39;

40; 41; 42], potassium doped fullerene compounds Rb3C60 [43] and, more controversially,

carbon-nanotube bundles [44] showed SC properties with Tc’s of up to 28 K, the question

arises whether the graphene planes in these materials could have a major role in the occur-

rence of SC and whether single layer graphene, when subjected to similar conditions, could

sustain a similar form of SC pairing by itself [37]. A potential discovery of superconduc-

tivity in graphene could therefore shed some light on the SC mechanisms in other carbon

compounds. Yet, in the year 2014 graphene has still not shown signs of intrinsic SC. Why

not?

In order to try to address this question without giving a full account of all the different

theoretical predictions, we first give a back-of-the-envelope reason why, and under which

conditions, SC could be feasible in graphene. Here we assume conventional electron-phonon

interaction mediated SC and employ the typical formula for Tc from the BCS theory, the

McMillan formula [36] :

Tc = 1.14ΘD exp

(
−2

V0DOS

)
(1.21)

with ΘD the Debye temperature and V0 the electron-phonon coupling potential.

As due to graphenes extreme in plane strength ΘD ≃ 2300 K is almost an order of

magnitude higher than ΘD in typical metals, the existence of SC in graphene should appear
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to be rather likely. Though, as the other two parameters V0 and DOS are entering the

formula exponentially, these have much more weight and too small values of either V0 or

DOS would result in extremely low Tc’s that would be impossible to explore experimentally.

Here, while V0 is relatively high, owing to a reasonably strong electron-phonon coupling term

λ ∼ 0.2 [42], the DOS is zero in the Dirac point and vanishingly small in its vicinity. The

small DOS’s could be therefore the main reason why SC was not observed close to the

Dirac point, albeit a lot of experimental activities searching for SC down to milli-Kelvin

temperatures.

At higher doping levels however the DOS is much larger and reaches extremely high

values in the vHSs. In this regime all three parameters that enter the McMillan formula

would be relatively high and could hence result in high Tc values. Indeed most theoretical

predictions of SC in graphene are made for the regime at extremely high doping levels

around the vHSs [8; 9; 10]. However, the experimental phase space in this regime remains

almost completely unexplored since typical gating techniques do not allow to exceed Fermi

energies beyond ϵF ∼ 0.3 eV and hence to accesses this regime.

1.3.1 Superconductivity in graphite intercalation compounds

Graphite intercalation compounds (GIC’s) are a very well studied family of materials based

on highly oriented pyrolytic graphite (HOPG) with crystallographically oriented layers of

ions arranged in-between the graphene sheets. Here the intercalated ionic species are most

commonly small alkali and rare earth ions like Li+, Ca2+ arranged in a XC6 stoichiometry

where X represents metallic ions, but also much larger ions like K+ or Cs+ can be successfully

intercalated in a XC8 stoichiometry [38]. Depending on the number of graphene layers

intercalated in-between two consecutive ionic layers one can define a stage number to the

resulting compound, with for example stage 1 and stage 3 corresponding to one or three

graphene planes in-between two ionic planes, respectively (Fig. 1.6 (a)).

Many stage 1 compounds like KC8, YbC6 and most recently and prominently CaC6 [41;

42] were found to be superconductors with relatively high Tc’s of 0.5 K, 6 K and 11.5 K
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respectively. Although these observations are already several decades old, the exact nature

and origin of SC in these compounds is still a big debate in the community. There exists a

big dispute whether the graphene derived π-bands have a prominent role in the nucleation

of the SC or whether it could be solely explained by the 3D spherically symmetric electronic

bands derived from the intercalated ions [39; 40; 41; 42].

Though, with several recent experimental studies including angle resolved photo emis-

sion spectroscopy (ARPES) [41; 42] and scanning tunneling microscopy (STM) which were

performed on these materials for the first time, the focus towards the explanation of the

SC mechanism seems to shift in favor to the graphene derived π-bands. Here specifically

the ARPES results are very revealing as shown in Fig. 1.6 (b). It turns out that the band-

structure of CaC6 is essentially identical to the band-structure of monolayer graphene with

a strongly elevated Fermi energy. This result suggests three major effects of the intercalate

layers on the graphene : 1. The ionic planes increase the spacing between the graphene

layers d, in the case of CaC6 from d = 3.35 Å to d = 4.52 Å, resulting in an effective

electronic decoupling of these. Without direct electronic hopping between the graphene

planes the band-structure is equivalent to that of monolayer graphene; 2. The positively

charged Ca2+ ions dope the graphene planes and elevate their Fermi energy to extremely

high values in close proximity to the vHS in the M -points with their high DOS. Here the

charge transfer per ion is not unity and does vary for the various GIC’s with the highest

percentages of ∼ 60 − 70% typically obtained for CaC6; 3. As the intercalated layers ar-

range in crystallographic order they give rise to new phonon branches which in turn can

couple to the π-band electrons. As it was also inferred from a more detailed analysis of the

ARPES data of CaC6 [42], these additional phonons lead to an overall enhancement of the

electron-phonon coupling parameter λ from ∼ 0.2 in pure graphite to ∼ 0.85 in CaC6.

Overall these findings bring the graphene derived π-bands into the focus and suggest that

the occurrence of SC in GIC’s could potentially be explained by very similar arguments that

were given in the previous subsection. Here, assuming conventional BCS superconductivity

and the validity of the McMillan formula, the high DOS values paired with the enhanced
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Figure 1.6: (a) Schematics of graphite intercalation compounds with different stages of
intercalation. The graphene planes (black) are separated by crystallographically arranged
layers of ions (red). Here the stage number corresponds to the number of graphene layers in-
between two ionic layers. (b) Electronic band-structure of the stage 1 GIC CaC6 as measured
by angle resolved photon emission spectroscopy (ARPES). In contrast to the band-structure
of graphite, the dispersion relation of CaC6 is equivalent to the band-structure of highly
doped monolayer graphene. Figure (b) is taken from [42].

electron-phonon coupling parameter λ could be the key factors for the relatively high Tc

observed in CaC6. In general, by extracting the Fermi energies and λ’s from ARPES data

for various GIC’s, it was shown that the values of their corresponding Tc’s have indeed

certain trends towards higher DOS and λ’s [41].

It naturally arises the question whether under similar conditions monolayer graphene

could also sustain similar SC. Now indeed a very similar Fermi energy and DOS can be

achieved in graphene with novel electrolytic gates, which in addition could also be used to

adsorb different ionic species onto the graphene to potentially increase λ. In general the

strong tunability of monolayer graphene could allow to even further vary these parameters

and, hypothetically, to obtain even higher Tc’s.
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1.4 Superconducting proximity effect induced electronic cor-

relations in graphene

While intrinsic SC has not been observed in graphene yet, it is though possible to induce

SC correlations into graphene via proximity effect, by bringing it into electrical contact

with an intrinsic SC. Here, although not thermodynamically stable in a normal metal (N),

Cooper pairs can leak in from the SC and form phase-correlated electron-hole states [45;

46; 36]. The key for understanding this effect is a process called Andreev reflection (AR)

which occurs when an electron from N is incident on a SC [47]. Since the electron can only

continue to propagate in the SC as a Cooper pair it has to bind with another electron,

though due to charge conservation, this process is only possible if at the same time a hole

is created in the normal metal. This hole is retro-reflected back into N with the exactly

opposite momentum of the incident electron. This electron and the reflected hole inherit

the phase-coherent properties of the electrons in Cooper pairs and form phase-coherent

electron-hole quasi-particles in the normal metal, the so called Andreev states [46].

In general, the proximity effect in graphene can be of specific interest as it combines AR

processes that are described by the Bogoliubov-de Gennes equations (BdG) with graphenes

Dirac equation, so coupling two seemingly completely unrelated fields, relativistic physics

and the physics of condensed collective ground states. This combination can lead to the

yet not experimentally observed prediction of specular AR’s [19; 48], an exotic type of AR’s

where unlike for the case of retro-reflection, the hole is reflected back at an angle to the

momentum of the incident electron.

Moreover, owing to its strict two dimensionality and its ballistic transport properties,

graphene is also an excellent platform to study the effect of high magnetic fields on AR’s,

a long time proposed but experimentally almost not studied field in mesoscopic condensed

matter physics where an interesting interplay between the quantum Hall effect and the AR

processes is expected [29; 49; 50; 51]. While similarly these experiments could also be per-

formed with other ballistic 2D electron gases for example in semiconductor quantum well
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Figure 1.7: (a) Schematic of retro and specular Andreev reflections. While the retro-
reflected hole is reflected back in exactly the same direction as the incident electron, the
specular-reflected hole is reflected at an angle, equal to the angle of incidence. (b) Schemat-
ics of retro and specular ARs in perpendicular magnetic fields. The cyclotron motion of
the retro-reflected hole is directed in the same direction as the incident electron, resulting
in propagation along the edge. The specular-reflected holes cyclotron motion is counter-
directed to the electron, resulting in localized states.

structures, such as GaAs and InAs [52; 53; 54; 55; 56; 57; 58] it can be typically very chal-

lenging to engineer Ohmic electronic interfaces and transparent contacts, a prerequisite to

have a high probability of Andreev reflections at the SN interface. As will be discussed later

on, being a semi-metal, graphene can have advantages to these semiconducting materials

and the creation of transparent SN interfaces could be less challenging.

1.4.1 Andreev reflections from the BKT theory

A widely used theoretical framework to calculate the conductance across superconductor-to-

normal (SN) junctions is the BKT theory named after Blonder, Tinkham and Kalpwijk [18].

This one dimensional conduction model assumes an infinite SC condensate, that is described

by the Bogoliubov-de Gennes equations (BdG) [36], which is in electrical contact with an

infinite normal metal, that typically can be just described by a free electron Hamiltonian

H = h̄2

2m
d

dx2 . We can write down the BdG equations, which are a set of coupled Schrödinger

equations [18; 46; 45] :

Eψ(x) = −(H + ϵF )u(x) + ∆(x)v(x)

Eψ(x) = (H + ϵF )v(x) + ∆(x)u(x)
(1.22)
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with ∆(x) the spatially varying SC pairing potential and µ the chemical potential.

Together with the two component wave-function ψ, which is given by its electron-like

u (k > kF ) and hole-like v (k < kF ) components that are coupled through the relation

u2 = 1 − v2 = 1
2(1 +

√
E2 −∆2/E) and with the energy E and the macroscopic phase of

the SC condensate ϕ :

ψ =

 u

v

 e
2iEt
h

+ϕ (1.23)

we obtain four types of quasi-particle wave-functions :

ψ±k+(x) =

 u

v

 e±ik+x and ψ±k+(x) =

 u

v

 e±ik+x (1.24)

Here the SN interface can be modeled as an infinitely sharp tunneling barrier that can

be described by a Delta function V (x) = Hδ(x) with potential height H and is typically

described by the dimensionless parameter Z = H/h̄vF , where h̄ is the Planck’s constant and

vF the Fermi velocity of the normal metal. Boundary conditions demand the continuity of

the wave-functions on both the S and N sides ψS(0) = ψN (0), and in view of the δ-potential

we have to set h̄/2m(ψ
′
S(0)−ψ

′
N (0)) = Hψ(0) as well. Taking these condition into account

one can distinguish three types of waves, the incident wave ψinc, the reflected wave ψref

and the transmitted wave ψtrans, which can be expressed by :

ψinc(x) =

 1

0

 eiq
+x ; ψref (x) = a

 0

1

 eiq
−x + b

 1

0

 e−iq+x (1.25)

ψtrans(x) = c

 u

v

 eik
−x + d

 u

v

 e−ik+x (1.26)
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where the dispersion relations for the momentum inside and outside the SC are

h̄k± =
√

2m(µ±
√
E2 −∆2) and h̄q± =

√
2m(µ± E).

From the above expression for the reflected wave ψref we can see that the incident

electron can be either reflected as a hole with an amplitude a or as an electron with an

amplitude b. Overall these two processes can be defined as AR’s and the normal back-

scattering of the electron, respectively. With the parameter γ = u2 + (u2 − v2)Z2 the

probabilities for these scattering processes result in :

A = |a|2 =
(
uv

γ

)2

B = |b|2 =
(
(u2 − v2)(Z2 + iZ)

γ

)2

(1.27)

C = |c|2 =
(
u(1− iZ)

γ

)2

D = |d|2 =
(
ivZ

γ

)2

(1.28)

As u and v are energy-dependent, the resulting scattering probabilities also scale with E

and hence can be probed by changing Vsn, the voltage difference between S and N. Fig. 1.8

(a) demonstrates these coefficients as a function of Vsn for different Z-factors. For Z = 0,

A = 1, hence only AR can take place for eVsn < ∆, with A decaying fast for higher Vsn.

For Z > 0 however, A is severely reduced with now B, the normal reflection processes,

becoming more probable.

The total current across the junction is just the sum of the transmission coefficients over

all the modes, and since only the probabilities for AR’s A and back-scattering B affect the

conduction properties across the junction, the current-voltage characteristics I − Vsn can

be written with the conductance above Tc defined as G0 :

I(Vsn) =
G0

e

∫ ∞

0
dE(f(E)− f(E + eVsn))(1 +A(E)−B(E)) (1.29)

with the Fermi-Dirac distribution f(E) = (e(E−µ)/kT + 1)−1 to account for temperature

smearing of the Fermi energy.
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Figure 1.8: (a) Probabilities for Andreev reflections A and back-scattering processes B vs.
the voltage drop across the SN interface Vsn for different tunnel barrier strengths Z. While
A is relatively large for eVsn < ∆ it decays away quickly for larger Vsn, and while B = 0
for Z = 0 it becomes larger for Z > 0. (b) Normalized differential conductance GS/GN vs.
Vsn for different Z. As A = 1 and B = 0 for Z = 0 in the voltage range eVsn < ∆, the
conductance is doubled, though when Z > 0 and B becomes sizeable, GS/GN is strongly
decreased around Vsn = 0 V, overall resulting in a characteristic conductance double-peak
shape that is marking the SC gap ∆. (c) Finite quasi-particle life-times expressed by the
parameter Γ dramatically broaden and reduce the sharp double-peak features.

As it is often more relevant for experimental measurements, we can now introduce the

normalized differential conductance GS/GN , which is the ratio between the differential

conductance GS = dI/dVsn(T= 0 K) below and GN = G0 above Tc :

GS

GN
(Vsn) =

1

G0

dI

dVsn
= (1 +A(eVsn)−B(eVsn)) (1.30)

It is directly evident from Eq. 1.30 that where-as A is effectively increasing the con-

ductance, B is reducing it. The resulting GS/GN vs. Vsn curves for different Z are plotted

in Fig. 1.8 (b), resulting in the typical Z-dependent conductance double-peak curves, with

the voltage positions of the peaks marking the SC gap eVsn ∼ ∆.

In general the BKT model is a gross approximation, as it does not take into account

possible differences of the Fermi momenta in the two different materials and does not account

for inelastic scattering processes typically occurring at the SN interfaces or in the materials

itself. Though it provides an initial framework, that in spite of its simplicity, accounts for the
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most striking transport properties across SN interfaces, and specifically well approximates

the effect of AR’s on the junctions conductivity.

Additionally, as it is now the wide understanding in the field of SC proximity ef-

fect, during the AR process the incident electron and the reflected hole form a phase-

coherent Andreev state [46]. However, as in any realistic system one has to account

for disorder, temperature and inelastic scattering processes, these can cause the Andreev

states to decoher over very short length scales hence resulting in very short lifetimes [45;

59]. To phenomenologically account for the finite life-times ∆τ , using Heisenberg’s uncer-

tainty principle ∆E∆τ > h̄, one can introduce an effective energy-broadening term Γ that

enters the BKT theory by replacing E with (E − iΓ). The effect of finite quasi-particle

life-times can be seen in Fig. 1.8 (c) leading to an overall broadening and reduction of the

typical conductance double-peak shape.

1.4.2 Magnetic field dependent Andreev reflections

Electrically coupling graphene to a type-II SC with relatively high upper critical fields Hc2

allows to study the effect of magnetic fields on the ARs. In general, when AR’s are taking

place in B-fields, both the injected electron and the reflected hole are bend onto cyclotron

orbits. Here, as has been shown in the previous section, in a typical retro-reflection process

the electrons and holes cyclotron motion rotates in the same direction, so forcing these

to spatially separate, with the exact opposite happening for specular-reflection, where the

electrons and holes rotate in opposite directions.

Employing the ideal 2D nature and ballistic transport properties of graphene, the above

discussed peculiarities can be studied in simple focusing experiments. For specific values of

B-fields electrons can be injected onto a SC with the reflected holes being detected by a

symmetrically arranged collection electrode (Fig. 1.9 (a) and (b)). Depending on whether

the reflected holes are retro- or specular-reflected the measured current on the collection

electrode would differ substantially, since while a retro-reflected hole would be focused on

the collection electrode, a specular-reflected hole would be focused back onto the injector
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Figure 1.9: (a) and (b) Electron focusing setup where electrons are injected on a SC under a
smallB-field. Here, whether the hole is retro- (a) or specular-reflected (b) can be detected by
a symmetrically arranged collection electrode. (c) Andreev bound states (ABS) of skipping
electron and hole orbits are formed along the SN interface if graphene is in the quantum Hall
regime. In ultra clean samples the ABS can retain phase-coherence over several scattering
cycles forming propagating Andreev edge states.

electrode [19]. Furthermore, the high probability of specular ARs at the Dirac point, and

vice versa the high probability of retro ARs away from it would allow to continuously

tune these probabilities with a gate. Due to time reversal symmetry, this process is in all

generality equivalent to the crossed AR or Cooper pair splitting process [60; 61], a process

that aims to study the dissipation process of a Cooper pair in the normal metal. Here the

electron-hole pairs, that are created by the injection of a Cooper pair into N, are spatially

split apart by the B-field.

In the limit of strong magnetic fields where the cyclotron orbits are extremely small, a

retro-reflected hole is bent back onto the SC with the then retro-reflected electron being

bent back onto it again. The B-fields hence bind the electron-hole pairs to the SN interface

effectively defining these as Andreev bound states (ABS) [29; 49; 50]. The formation of the

ABS at the SN interface can severely modify its conduction properties, where in the ultra

clean limit when the electron-hole pairs can retain phase-coherence even after several ARs

a phase-coherent propagating edge state of alternating electron and hole orbits is created,

the so-called Andreev edge state (AES) (Fig. 1.9 (c)) [51].
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Chapter 2

Strong carrier density modulation

with electrolytic gates

2.1 Electrolytic gating

2.1.1 Electric field effect in material science - an overview

The electric field effect (EFE) is a very powerful technique in the field of low dimensional

condensed matter physics as it allows to alter the physical properties of various low di-

mensional material classes by electrostatically changing its carrier density n by inducing a

perpendicular electric field. This technique can be applied to a wide variety of materials

like metallic and semiconducting thin films [62], two dimensional electron gases such as in

GaAs hetero-structures and graphene [2], and one dimensional systems like nanowires or

carbon nanotubes. Typically the thicknesses of the materials are chosen such that these

are thinner than the Debey screening length λD, which is typically in the order of 10 nm,

guaranteeing that the electric field can penetrate the whole sample. Since by employing

the EFE n can be altered without introduction of chemical dopants, detailed n-dependent

physical properties can be studied in a clean way without introducing additional disorder

into the system as it is the case for chemical doping techniques. In general, this technique

also allows to study n-dependent properties of materials where chemical doping proved to
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Figure 2.1: (a) Schematic of the electrolytic gate (top) and the typical silicon based back
gates (bottom). The close proximity of the Debey layers of d ∼ 1 nm to the samples surface
in the electrolytic gates results in two orders of magnitude higher capacitances as compared
to the back gates with their d = 300 nm gate dielectrics. (b) Overview of n-dependent
physical properties for various material groups as taken from [63].

be very challenging.

In many different classes of materials not only simple physical properties are strongly n-

dependent, like f.e. the conductance in semi-conductors, but also complex phase-transition

like for example the anti-ferromagnetic (AFM) to high-temperature superconductor tran-

sitions in cuprates [63; 24]. The carrier density ranges needed to induce these changes can

vary dramatically from material to material. Fig 2.1 (b) shows an overview of different

classes of materials and the corresponding electronic phases vs. n. Here, whereas some

phase transition can be induced by adding relatively low n ∼ 1012 cm−2 like in the case

of the insulator-superconductor transition in the complex oxide SrTiO3, many other tran-

sitions can only take place by inducing much higher n ∼ 1015 cm−2. As it was discussed

previously, in the case of graphene the expected n to reach the vHSs in the M -points are

n ∼ 5× 1014 cm2.

Traditionally the EFE is induced by semi-conductor-based field effect transistor devices

with rather thick gate dielectrics, the commonly used 300 nm thick thermally grown SiO2
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backed by a gate electrode made of highly doped silicon - the so-called “back-gates” (Fig.

2.1 (a) bottom) [2]. These gates can be treated as parallel plate capacitors and allow to

induce n only up to n < 5 × 1012 cm−2. Here, the limiting factors to achieve higher n are

mainly the low capacitances C ∼ 10 nFcm−2 due to the very thick gate dielectrics and the

dielectric breakdown of the SiO2 when gate voltages of Vbg > 60V are applied, resulting

in a discharge across the capacitor. Whereas it is in general possible to grow thinner gate

dielectrics it can result in proportionally reduced dielectric breakdown voltages hence not

allowing to increase maximal n.

A recently developed alternative to such gates are electrolytic gates [25; 26; 20; 21;

24]. As is shown in Fig 2.1 (a) an electrolytic gate employs an electrolyte solution that

is covering the sample. By applying a voltage Veg to a gate electrode charged ionic layers

accumulate in direct proximity of the sample. These Debey layers are typically only a

distance of d ∼ 1 nm away from the direct sample surface and therefore result in much higher

capacitances of C ∼ 5 µFcm−2. Here, just like for the dielectric gates, the limiting factor

to achieve even higher n is the onset of leakage currents, the Faradaic currents [64], from

the gated material into the electrolyte, which are generally accompanied by electrochemical

reactions on the sample. As these occur at voltages of about Veg = 5 V, maximal n reported

for electrolyte gates are in the range of n ∼ 1015 cm−2 allowing to approach many of the

transition described in Fig. 2.1 (b) [20; 21].

2.1.2 Solid polymer electrolytes and ionic liquids

In order to induce strong modulation of n with electrolytic gates several conditions con-

cerning the gated material, the electrolyte itself and the interaction between the two have

to be fulfilled [20; 26]. The gated material has to have an atomically sharp surface which

is typically achieved for thin films grown by molecular beam epitaxy (MBE) or for me-

chanically exfoliated van der Waals (vdW) materials. In general, considering the spatial

proximity of the Debye layers to the surface of only d ∼ 1 nm, a surface roughness greater

than this value would result in very strong inhomogeneities of n, a highly undesirable effect
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that would effectively deplete the surface into charged puddles. Furthermore the material

and the electrolyte should be chemically inert to one another as any chemical reactions can

severely modify the surfaces properties, potentially resulting in insulating sacrificial layers

that would severely reduce C. Additionally it is crucial to have a large voltage range ∆Veg

where no electrochemical reactions between the electrolyte and the material occur. As such

reactions are accompanied with Faradaic currents across the interface these hinder the ac-

cumulation of additional charge in the sample, and as these are intimately linked to the

chemical decomposition of the material, these lead to irreversible degradation of the ma-

terials surface. Therefore, as many electrolytes have similar C, a large ∆Veg is the crucial

factor for achieving highest possible n,

Although there are seemingly countless electrolytic systems, so far only very few have

been shown to work well with low dimensional condensed matter systems. These are the

solid polymer electrolyte gates and the ionic liquids. Although very similar, these two kinds

of electrolytes can differ significantly for different purposes and when applied to different

materials.

Solid polymer electrolytes

This electrolyte is very versatile and simple and is being used in many different commer-

cially available products, most prominently in lithium ion batteries. The solid polymer

electrolyte consists of the polymer poly(ethylene)oxide (PEO) and the salt lithium perchlo-

rate (LiClO4), although many other salts and ionic species are compatible with it as well [25;

26]. The PEO acts as a solvent to LiClO4 separating it into positively Li+ and negatively

ClO−
4 charged ions. As is shown in Fig. 2.2 (a) the microscopic structure of the resulting

electrolyte is such, that the PEO chains wrap around the Li+ ions establishing van der

Waals bonds between the Li+ and the oxygen atoms in the PEO chain. Such wrapping is

very advantageous as it protects the gated material from the highly reactive Li+ ions and

so dramatically enhances the ∆Veg ranges.

The ions in this electrolyte are mobile down to a temperature of about 290 K, the freezing

point of the electrolyte. It is very viscous at room temperature, typically referred to as being
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Figure 2.2: (a) Chemical composition of the solid polymer electrolyte based on PEO and
LiClO4. PEO chains wrap around the dissolved Li+ ions, hence acting as a protection
layer between the sample and the highly reactive Li+ ions. (b) Chemical composition of
the ionic liquid DEME-TFSI. (c) Schematic of the Stern-Gouy-Chapman electronic double
layer (EDL) with the spatially varying electrostatic potential Φ(x). Due to adsorbed ions
at the interface that form the so-called Stern layer, Φ(x) scales linearly in proximity to the
interface. Away from it the ions are solvated and due to their thermodynamic distribution
Φ(x) scales exponentially.

solid, which has great experimental advantages especially when the measurement setup is

confined to very tight spaces such as low temperature cryostats and optical chambers. Here

the electrolyte can be deposited on-chip by spin-coating, allowing to avoid the typical liquid

cell setups needed for liquid electrolytes.

This electrolyte works well with chemically non-reactive materials such as graphene,

graphite and some stable complex oxide compounds such as strontium titanate SrTiO3.

Though, due to the reactive nature of the Li+ ions, for materials known for their chemical

instability such as the cuprates, it was found to almost instantly distort their surfaces.

In addition, the presence of Li+ ions, the smallest ions in nature, has also proven to be

very advantageous, as here besides the electrostatic gating, adsorption and intercalation

processes can be reversibly induced when voltages beyond ∆Veg are applied. For chemically

stable materials such as graphene or graphite these additionally adsorbed ions can help to

induce additional n into the material.
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Ionic liquids

In contrast to the solid polymer electrolyte, the ionic liquid DEME-TFSI (Fig. 2.2 (b)) [20;

21] is solvent free and can be described as a molten salt of large ionic molecules. Here,

similarly to the polymer electrolyte, the ions charge is localized in the center of the molecules

and allows to avoid direct contact with the sample surface. As these ions do not contain

highly reactive species like Li+ the ∆Veg ranges can be quite large and can be even further

increased since the ions are mobile down to much lower temperatures of 220 K where many

electrochemical reactions are suppressed.

Due to its chemical stability the ionic liquids can be combined with almost any material

without inducing strong chemical degradations. So far these gates showed the strongest n

modulations for any gate, reaching values of n ∼ 1015 cm−2. One mysterious and rather

unexplained disadvantage of the ionic liquid gates is though that C seems to decrease as the

gated material becomes thinner, ultimately resulting in very low C for single layer crystals

such as graphene.

2.1.3 Electric double layer model for metal-electrolyte interfaces

The microscopic nature of the interfacial region between an electrolyte and a metal surface

is still an active area of research today, however rather simple electrostatic models can be

addressed that allow to shed light on the structure and the ionic distribution at the interface.

Here we derive a classical model in the field, the Stern-Gouy-Chapman electronic double

layer (EDL) model [64]. This model has certain limitations, as it assumes only Coulomb

interactions between the ions, constant permittivity for the solvent throughout the double

layer, neglects the molecular nature of the solvent and the viscosity of the fluid (which can

be crucial for a solid polymer electrolyte). Still it can provide deep insights in the properties

of the EDL and can be used to obtain quite accurate predictions for the capacitance C of

the electrolyte.

As is demonstrated in Fig. 2.2 (b), this model is based on the thermodynamic Gouy-

Chapman model, that is based on the assumption of a diffuse layer of ions close to the metal
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interface that can be described by a Poisson-Boltzmann equation. In this layer the ions are

fully solvated with excess charge concentrations increasing in proximity to the interface,

so giving rise to an exponential increase of the electrostatic potential Φ(x). Additionally,

as ionic species tend to adsorb directly at the surface one has to account for the compact,

unsolvable ionic layers at the interface, that give rise to a steep linear increase of Φ(x).

We can write the Poisson equation for the spatially varying electric potential Φ(r⃗) :

∇2Φ(r⃗) = −ρ(r⃗)
ε

(2.1)

with ε the dielectric constant of the medium, ρ(r⃗) =
∑

iNi(r⃗)zie the volume charge

density, with e the electronic charge, the valence of the ions zi and the number of ions

Ni(r⃗) for the different ionic species with index i.

Assuming a Boltzmann distribution of the ions along the electrostatic potential, that

starts a distance d away from the metal surface to account for the Stern layer of adsorbed

ions, Ni(r⃗) has the following spatial dependence :

Ni(r⃗) = Ni0 exp

(
−zie(Φ(r⃗)− Φ(d⃗))

kT

)
(2.2)

with Nio the number of ions at r⃗ = d⃗. This formula can be simplified for the case of a two

dimensional boundary conditions (here a 2D metal interface) and taking only one ionic

specie into account. We get the Boltzmann-Poisson equation :

d2Φ(x)

dx2
=

2N0ze

ε
sinh

(
zeΦ(d)

2kT

)
= −ρ(x)

ε
(2.3)

The charge density in the diffuse layer σd is directly related to ρ(x) :

σd =

∫ ∞

d
ρ(x)dx =

∫ ∞

d
ε
d2Φ(x)

dx2
dx = ε

[
dΦ(x)

dx

]∞
d

(2.4)
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and with the integration of
∫

d
dx

(
dΦ(x)
dx

)
dx =

∫
4N0ze

ε sinh
(
zeΦ(x)
2kT

)
dΦ results in :

dΦ(x)

dx
=

−2κkT

ze
sinh

(
zeΦ(x)

2kT

)
(2.5)

introducing here the Debye-Hückel parameter κ =
√

2NAIe2

εkT , with Avogadros number NA,

the ionic strength I = 1
2

∑
ciz

2
i representing the concentration of all ions present in the

solution (here ci is the molar concentration), and finally can be written as :

σd =
−2εκkT

ze
sinh

(
zeΦ(d)

2kT

)
(2.6)

The resulting total differential capacitance of the so modeled interface is therefore :

Cd = − dσd
dΦ(d)

= εκ cosh

(
zeΦ(d)

2kT

)
(2.7)

The addition of a Stern layer (see Fig. 2.2 (b)) to the here derived Gouy-Chapman model

shifts the position of the diffuse layer away from the interface, accounting for the finite size

of the ions. The Stern model adds effectively a charged plane to the interface that sits at

a distance equal to the atomic thickness, resulting in a linear electric potential dependence

in that region. The strength of the linear potential drop is in general proportional to the

concentration of the adsorbed ions, but cannot be easily quantified in the framework of this

model.

Overall, from this formula it is evident that the total capacitance of the electrolyte Cd

is directly related to four variables, such as the valence of the used ions z, the concentration

of the ions in the solution, here expressed by the ionic strength parameter I, the dielectric

constant of the electrolyte solvent and the temperature. When designing a new electrolyte

with the goal to induce even stronger carrier densities, all these parameters can be adjusted

by choosing different ions, solvents and concentrations.
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2.1.4 Tailoring electrolytic gates towards better performance

Looking through the literature it becomes evident that for different materials very different

electrolytes are used [25; 26; 27; 24; 20]. While a certain electrolyte can induce extremely

high n for one material, they can completely fail for another. In general, as it is often the

case in material science and electrochemistry, both, the material and the electrolyte have

to be chemically compatible with another, having minimal chemical reactions between each

other and have a large electrochemically stable voltage range ∆Veg. There is no one best

electrolyte for every material, only for a material.

In general, trying to increase C of an electrolyte by changing the different parameters

that influence it, such as the valence of the ions or the dielectric constant of the solvent,

might eventually not overall result in an increase of the maximal n. Here, as the change

of these parameters goes along with changing the ionic species or polymers, the chemical

interaction of these with the material can be altered as well and result in smaller ∆Veg,

and in the worst case in chemical distortions of the materials surface. Overall, the EDL

model has rather low predictive power in the search for better electrolytes, hence a rather

systematic sampling approach has proven to be more successful.

As discussed before, to reach highest possible n, one needs both, a high C and a large

∆Veg. To measure the C, we employ Hall measurements in a low magnetic field for different

values of the electrolyte gate voltage Veg. As the Hall Voltage VH = − IB
ne is inversely

proportional to n we can extract the capacitance C = ne
Veg

of the electrolyte (Fig. 2.3 (b)).

Furthermore, in order to map out the ∆Veg range, we perform cyclic voltammetry (CV)

measurements which measure the leakage current of the sample vs. Veg [64]. The measured

leakage current I is negligibly small for low Veg, but exponentially increases for higher Veg.

The cross-over region between these two regimes defines ∆Veg.
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2.1.5 Graphene devices with highest possible carrier densities

Here we demonstrate the use of a solid polymer electrolyte gate with mesoscopic graphene

devices [65; 25]. This approach has previously been applied to graphene samples [66; 67;

68] and carrier densities of n ∼ 1013 cm−2 have been reported under ambient conditions.

Following this experimental approach, we increase the efficiency of the electrolyte gate

by employing a rapid cooling method which prevents sample degradation, and reach n >

1014 cm−2 for both electrons and holes.

Fig. 2.3 (a) shows a working principle of the solid polymer electrolyte gate used in our

experiment. Li+ and ClO−
4 ions are mobile within a solid ”mesh” formed by the polymer

poly(ethylene)oxide (PEO). By applying a voltage Veg to the electrolyte gate, the ions form

Debye layers on top of the graphene and the gate electrode, respectively. The extreme

proximity of these charged layers, separated only by the Debye length λD ∼ 1 nm from the

graphene surface, results in huge capacitances per unit area Ceg = 1/ϵλD. Under ambient

conditions the electrolyte gate Veg can be swept continuously, doping the graphene samples

to either electrons or holes, inducing a modulation of ρ(Veg) (Fig. 2.3 (a)).

The maximal |n| that can be induced by the solid polymer electrolyte is mainly limited

by the onset of electrochemical reactions of the ions with the graphene, which typically turn

on when Veg ∼ 3 V are applied. Although the threshold of the electrochemistry, signaled

by a steady increase of ρ with time, depends on the details of the particular device and

sample quality, the time span until complete degradation of the sample is typically just a

few minutes. We could apply extremely high Veg of up to 15 V to the electrolyte, avoiding

electrochemically induced sample degradation by immediate cooling of the sample (< 1 min)

below T < 250 K. At this temperature, both, the Li+ and ClO−
4 ions “freeze” out and are

no longer mobile within the PEO, fixing the accumulated charges in the Debye layers to

the graphene surface. The induced charge carrier densities do not vary significantly over

time and temperature until after the sample is warmed up again. Accumulated |n| for each

applied gate voltage Veg are characterized directly by performing Hall measurements (Fig.

2.3 (b) inset). Fig. 2.3 (b) shows the measured n as a function of Veg. The capacitive
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Figure 2.3: (a) Resistivity as a function of applied electrolyte gate voltage Veg at T = 300 K.
Right inset: a schematic view of the electrolyte gated device. The Debye layers are formed
d ∼ 1 nm above the graphene surface. Left inset shows an optical microscope image (false
colors) of a typical etched Hall bar device. (b) Inset shows the Hall voltage VH as a function
of magnetic field B for different Veg (current across sample I = 100 nA). The main panel
shows the extracted densities n from the various Hall measurements as a function of Veg
for 4 different samples. The slope of the line fit represents the capacitive coupling of the
electrolyte gate to the graphene.

coupling of the electrolyte can be then estimated from the slope of n(Veg) where we obtain

Ceg ≈ 3.2 µFcm−2, which is more than 250 times higher than that for typical 300 nm thick

SiO2/Si back gates.
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2.2 Ionic liquid gating of complex oxide thin films

Mott insulators are typically the parent phases for high-Tc superconductivity, colossal mag-

netoresistance and metal-insulator transitions [69; 70]. Transition metal oxides (TMOs),

particularly 3d-TMOs, are excellent model systems for Mott insulators, where localized d-

orbitals cause strong electron correlation effects. As we move down the periodic table, 4-d

and 5-d TMOs show weaker electron correlation but larger spin-orbit coupling, due to large

atomic number. Specifically, in the case of 5-d TMOs, the correlation and spin-orbit coupling

energy scales become very comparable. Among the 5-d TMOs, Ruddlesden-Popper series of

iridates such as Srn+1IrnO3n+1 (n > 0), specifically Sr2IrO4 (SIO), show an unusually robust

insulating ground state with a spectroscopic gap of ∼ 0.1 eV, which persists despite all the

efforts on chemical doping and pressure [71; 72]. The exact origin of the robust insulating na-

ture of SIO remains controversial [73; 74; 75; 76; 77]. This compound also shows a weak fer-

romagnetic moment [78] and is attributed to its canted antiferromagnetic ground state [79;

80; 81]. Due to the interplay between electron correlation, spin-orbit coupling, magnetism

and crystal field effects, understanding the nature of insulating state of SIO remains com-

plicated and yet interesting. Existing transport studies report insulating and/or non-ohmic

behavior in SIO [71; 78; 82] and have provided little insight into the role of disorder and

transport mechanisms of the insulating state. Moreover, predictions of superconductivity

in the electron doped SIO and its similarities to La2CuO4 [83] invites a thorough transport

study to identify means to achieve metallicity in Mott insulating SIO.

The EFE doping with ionic liquids provides a good platform to explore the electronic

phase diagram of this Mott insulator without significant chemically induced disorder. Due

to the persistent insulating nature, SIO is a good model system to study the interplay of

electron localization mechanism in a lightly doped Mott insulator. This discussion on ionic

liquid gating of the spin-orbit coupled Mott insulator Sr2IrO4 was published in better detail

elsewhere [27].
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2.2.1 Density dependent transport studies of Sr2IrO4

In this section we investigate the electric field effect (EFE) induced magnetoelectric trans-

port in thin films of undoped and La-doped Sr2IrO4 using ionic liquid gating.

Thin films of SIO (10-25 nm thick) were grown on (LaAlO3)0.3-(Sr2AlTaO6)0.7 (LSAT)

and SrTiO3 (STO) substrates using pulsed laser deposition. The details of the growth pro-

cedures are discussed in detail elsewhere [84]. The transport measurements were carried out

in both Hall bar geometry for all the ionic liquid based measurements and van der Pauw

geometry in some cases. All the patterns were fabricated using electron beam lithography

with PMMA as the resist. Pd (10 nm)/Au (70 nm) electrical contacts and side gate elec-

trodes were deposited using e-beam metal evaporation. The films were then etched into Hall

bars using Ar ion milling. A small drop of ionic liquid, N, N-diethyl-N-(2-methoxyethyl)-

N-methylammonium bis (trifluoromethyl sulphonyl)-imide (DEME TFSI), was applied on

to the device with the liquid covering the entire channel and the side gates (inset of Fig.

2.4 (a)).

We applied gate voltage (Vg) to the side gate in contact with ionic liquid at 260 K

and subsequently the sample was cooled at a fixed gate voltage. Below 220 K, the ionic

liquid freezes out completely and a stable electrical measurement becomes possible. The

gate modulation in the range of -2 V to 3 V was achieved without significant degradation

of samples. Vg applied outside of this regime caused electrochemical reactions producing

irreproducible R(T ). We measured the resistance R of the samples as a function of the

temperature T in the range between 1.5-200 K. Fig. 2.4 (a) shows R(T ) for SIO films

doped chemically with La (filled symbols) and using an ionic liquid gate (open symbols).

All samples exhibit dR/dT < 0, i.e., an insulating behavior, regardless of chemical doping

(up to 10% La doping).

The resistance of ionic liquid gated samples changes rapidly with decreasing T , whose

behavior can be modulated by Vg. To quantify this gate dependence, we replot R(T ) in an

Arrhenius form at fixed gate voltage Vg (inset of Fig. 2.4 (b)). The temperature dependence

of these samples could be divided broadly into two regimes: (i) high temperature activated
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Figure 2.4: (a) Temperature dependence of resistance of an undoped, 10 nm thick SIO thin
film with ionic liquid gating (for different applied gate voltages) and chemically doped films
(5 and 10% La). The resistance values of chemically doped films were normalized to a 10
nm thick film for comparison. The inset shows the optical image of the Hall bar device
with the ionic liquid. (b) The extracted activation energy (black open squares) is shown
as a function of applied gate voltage. The inset shows the channel resistance plotted as
a function of inverse of temperature. The symbols and the color code used are the same
as in (a). The grey lines show the fits for activated transport, whose slopes were used to
obtain the activation energy at the high temperature regime. The horizontal dotted lines
corresponds to activation energy obtained in the 5% (blue) and 10% La (red) doped samples,
respectively.

regime (T >150 K); and (ii) low temperature variable range hopping (T <150 K). The

exact nature of the hopping conduction will be addressed later. The activation energy can

be obtained from the slope of the linear fit in the high temperature range of the Arrhenius

plot. Fig. 2.4 (b) shows the activation energy versus gate voltage. Interestingly, the

activation energy, Ea, drops as |Vg| increases with a peak value of ∼ 50 meV at Vg = 0 V.

This ambipolar behavior suggest that the Fermi level EF of the undoped (Vg = 0 V)

sample is close to the middle of the gap. The Hall measurement (data not shown) also

indicates that Vg > 0 (< 0) corresponds to n-type (p-type) carriers. Thus, the bell-shape

plot Ea(Vg) establishes ambipolar transport behavior in the Mott insulating SIO. Until

recently[85], demonstration of ambipolar doping in a Mott insulator was not realized and it

is worth noting that the recent demonstration was also achieved by chemical doping across

many samples. In our experiment, similar ambipolar doping of a Mott insulator (SIO) is
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Figure 2.5: (a) Temperature dependent sheet conductances of the ionic liquid gated surface
layers measured at different gate voltages. The conductance of the surface layer ∆G was
obtained by subtracting the conductance of the ungated portion of the samples (see the
lower inset for a schematic bi-layer model). The solid lines are fits using activation to the
mobility edge (see text). The upper inset shows the variation of the Gmin (black squares)
and EME − EF (red circles) with the applied gate voltage. (b) Gate modulated resistivity
(black squares) and Hall mobility (red circles) for a 10 nm thick 10% La doped SIO thin film
(filled symbols) and a 25 nm thick ’undoped’ SIO thin film (open symbols) as a function of
the Hall sheet carrier density (modulated by the gate voltage). The data were obtained at
similar temperatures of 190 and 150 K respectively. The inset shows the schematic diagram
of free and bound charge distributions in the samples.
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demonstrated in a single sample via electrochemical modulation.
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Figure 2.6: The measured magnetoresistance as a function of both applied magnetic field
and temperature for (a) undoped SIO, (b) ionic liquid gated SIO (hole doped with Vg =
−2 V), (c) electron doped La0.1Sr1.9IrO4 thin film, and (d) electron doped La0.1Sr1.9IrO4

thin film with applied field parallel to a− b plane. For all the other three cases, except (d),
the magnetic field was applied parallel to c-axis.

In order to understand the nature of the gated surface layer, we used a simple two

layer model as depicted in the lower inset of Fig. 2.5 (a). Hall measurements show that

the ’undoped’ bulk sample has a weak p-doping (Fig. 2.5 (b)), with the carrier density

n ≈ 9 × 1019 cm−3. Upon applying electrolyte gating, EFE induced charges accumulate

on a surface layer, which has a different conductivity as compared to the bulk of the film.

For the hole accumulation side (Vg < 0), the conductance of surface layer, Gs, can be

estimated from the difference of the conductance with reference to R0 = R(Vg = 0V):

Gs(Vg) = R(Vg)
−1 −R−1

0 .
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In the case of electron doping (Vg > 0), depletion layer forms in between the electron

accumulated n-type surface conduction layer and weak p-type bulk. Therefore R(Vg) de-

creases initially when Vg increases as shown in Fig. 2.4 (a). For undoped samples, R(Vg)

is the largest for Vg ≈ 1 V. The thickness of depletion layer, ℓd, thus can be estimated

from ℓd = (R(V g = 1 V)/R0 − 1)d ≈ 4 nm, where d = 10 nm is the thickness of the

sample. Using ℓd, we can estimate Gs for this inversion regime by subtracting the sheet

conductance of depleted layer using the formula : Gs = R(Vg)
−1 −

(
d−ℓd
d

)
R−1

0 . Fig. 2.5

(a) shows Gs (T ) for fixed Vg. The conductance steeply drops as T decreases, as expected

from the transport through localized states. We employ a simple activation model to mobil-

ity edge to describe the temperature dependent transport through the surface conduction

layer: Gs = Gmin exp
[
−(EME−EF )

kBT

]
, where EME , EF , and Gmin are the mobility edge,

Fermi energy, and Mott minimum conductance, respectively. Typically such an analysis is

performed on semiconductors which show disorder induced mobility edge [86], where char-

acteristic carrier density and temperature dependence of the mobility is observed. Using

this simple activation formula, we fit the experimental data of temperature dependent Gs

for fixed Vg (solid lines in Fig. 2.5 (a)) and obtain EME - EF and Gmin for different gate

voltages are shown in the upper inset of Fig. 2.5 (a). The activation fits are reasonable

for higher temperature range (T ) for the most of gate voltages. The obtained values of

∆E = EME - EF are similar to the activation energy, Ea, and the Gmin is ∼ few e2/h, as it

is expected for 2D localization [87]. While the disorder driven localization seemingly explain

the observed behavior of Gs, there are a few factors that are not captured by a simple local-

ization theory. Fig. 2.5 (b) shows that the measured Hall mobility remains roughly constant

(∼0.08 cm2/Vsec), despite Gs and ∆E decreases almost an order of magnitude for a wide

range of carrier density (both electrons and holes). This filling independent mobility is not

expected for disorder induced localization, where one expect a steep increase of mobility as

the EF is getting close to the mobility edge [86]. In a system such as SIO, the origin of the

mobility edge can be a very delicate question to address, due to the significant interplay

between electron correlation, spin-orbit coupling and magnetism affecting the localization
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behavior.

Magnetoresistance (MR) measurements can uncover the details of transport mechanisms

and has been used as a good check for disorder induced Anderson localization. Fig. 2.6

shows the transverse MR for (a) undoped, (b) ionic liquid gated hole doped, and (c) chem-

ically electron doped samples, and (d) longitudinal MR for electron doped samples, all of

which demonstrate a MR sign change at ∼ 90 K. At low temperatures, the MR was positive

and shows quadratic scaling with field, but at high temperatures, the MR becomes negative

and scales linearly with field. For electron doped samples, similar crossover and field depen-

dence was observed in longitudinal MR but the MR values tended to saturate at high fields

unlike the transverse MR. The high temperature linear negative MR is often attributed to

the quantum interference in the case of hopping conduction [88] and has also been observed

experimentally [89; 90]. The low temperature positive MR could be attributed to several

possibilities such as the shrinking of electronic impurity wave function under a magnetic

field [88], spin dependent MR (Kamimura effect) [91] or due to superconducting or mag-

netic fluctuations [92]. We eliminate the role of superconducting fluctuations as we are far

from the metallic limit. We also exclude the possibility of a magnetic fluctuation based

mechanism, since a decreasing MR with temperature is expected as we approach the or-

dering temperature. We performed magnetization measurements on the undoped and 10%

La doped samples to compare the Curie temperature with the MR crossover temperature.

The ferromagnetic transition temperatures were ∼ 240 K and ∼ 150 K for the undoped

and the La 10% doped SIO respectively. This suggests that the magnetic transition does

not correlate with the observed MR sign crossover. While we cannot rule out any other

scenario that can cause the filling independent MR sign change, for now we attribute the

shrinking of the electronic impurity wave function as the probable cause for the observed

positive MR at low temperatures.

The observed MR sign change and field dependence can be explained considering the

ES-VRH to Mott-VRH transition. In particular, the suppression of negative MR at low

temperatures is considered a signature of crossover from Mott (M-VRH) to Efros-Shklovskii
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variable range hopping (ES-VRH) as predicted theoretically [93] and observed experimen-

tally in a variety of systems [94; 95; 89; 90]. The formation of Coulomb gap during ES-

VRH is the consequence of electron interaction and is also shown to be independent of the

band filling [96], in agreement with our observations. This explains the universality of the

crossover temperature across the doping in this system.

In conclusion, we have shown that ionic liquid gating can be used to realize ambipolar

transport in thin films of SIO. Despite large carrier injection, the insulating state persists for

both electron and hole doping with ionic liquid and chemical doping with La. We observe

a clear MR crossover in terms of sign change, which could signify a crossover from Mott

VRH to Efros-Shklovskii VRH. The conduction along Coulomb gap states is speculated as

a probable origin of the persistent insulating state in SIO. A clear understanding of the

routes to overcome the electron correlation can help us realize metallicity out of the Mott

insulating gap in layered perovskite iridate systems.
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2.3 Driving intercalation reactions with electrolytic gates

As has been discussed in chapter 1, graphite intercalation compounds (GICs) are stoichio-

metric, thermodynamically stable materials [38]. In these compounds in-plane electrical

conductivity is significantly increased by electron or hole doping from various species that

are intercalated between the graphene layers, and new physical phenomena such as for

example superconductivity are predicted to emerge [37].

As mentioned earlier in this chapter it is typically highly undesirable to apply too large

Veg to electrolytic gates as unwanted electrochemical reactions begin to take place that can

chemically distort the sample. Though, owing to graphenes chemically inert nature, it is

know that Li+ ions can be reversibly adsorbed and desorbed at graphenes surface without

any chemical degradation. Employing this peculiarity we can now try to specifically induce

Li+ reactions by applying Veg’s higher than the electrochemically stable window ∆Veg where

we find clear signatures of intercalation reactions. The electrolytic gates can therefore be

used as a new method to create GICs down to single layer thickness.

2.3.1 Optical imaging of lithium intercalation kinetics in graphite

In this section we demonstrate direct, time-resolved and spatially-resolved optical mea-

surements of Li+ intercalation in GICs using a solid polymer electrolyte gate to drive the

reaction. We use a single crystal graphite electrode with lithographically defined disc ge-

ometry to facilitate quantitative data analysis. A combination of Raman spectroscopy and

optical reflectance microscopy allows us to identify the different Li GIC phases observed as

a function of time. The optical measurements distinguish the intrinsic intercalation process

against side reactions.

Kish graphite samples were mechanically exfoliated onto a Si substrate with 285 nm

thermal oxide, and selected by visual inspection. A ∼ 100 nm thick chromium mask was

defined by standard e-beam lithographic techniques and deposited by e-beam evaporation.

Reactive ion etching with O2 plasma was carried out to shape the underlying graphite
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Figure 2.7: The equilibrium phase diagram for Li GIC [97; 98]. Li+ ions diffuse between
graphene layers from the graphite crystal edge. The stage number n refers to the number of
graphene layers existing between two complete, crystalline intercalated Li monolayers. The
equilibrium GIC undergoes diffusion-driven first order phase transitions through the shown
sequence.

sample, followed by the removal of the chromium mask with chrome etchant. Ti contacts

were defined by a second round of e-beam lithography and deposited by e-beam evaporation.

Here Ti was chosen as the metal contact to utilize its dense native oxide layer to passivate

its surface [99]. After lift-off in an acetone bath, the device was wire bonded to a chip

carrier. At the side of the device, a blank Si substrate with e-beam evaporated Ti was

also wire bonded to the same chip carrier. This served as a relay pad for attaching Li

counter/reference electrodes.

The LiClO4 and PEO were mixed to achieve a molar ratio of 36 : 1 [CH2-CH2-O]/Li+ and

dissolved in 10 ml acetonitrile [100]. A typical amount of 5 µl was applied to the device area

under a stereo microscope. After the acetonitrile evaporated and the polymer electrolyte

film dried, a fresh cut Li strip was brought into contact with the polymer electrolyte. Bulk

Li metal was used as a counter and reference electrode in our study. The Li strip was

attached to the Titanium covered blank Si substrate on the side. The assembled device was

transferred into an optical cryostat and sealed.
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Figure 2.8: Sequential optical images of a disc-shaped graphite sample during the process
of Li+ intercalation over a period of 5 hours. This process is represented by the dilute stage
1 (0 h), stage 3 (1 h), formation of stage 2 and stage 1 (2 h), co-existence of stage 3, 2,
and 1 (3 h), co-existence of stage 2 and stage 1 (4 h), stage 1 (5 h). The entire process was
reversible when the voltage was reduced to zero.

Fig. 2.8 shows sequential optical images observed following a 5 V voltage step which

initiates the Li intercalation from the edge towards the center of the 50 µm graphite disk.

The images are also compiled into the time lapse movie in supporting information. Different

stages of GIC exhibit distinct colors. These color changes during the intercalation result

from the increasing density of delocalized in-plane graphene electrons donated by charge-

transfer from the intercalated Li+ ions. With increasing Li+ concentration, the Drude

plasma edge shifts into the visible region from the infrared region [101; 102; 103; 104],

resulting in the distinct reflective color change. Stage 3 is green, stage 2 is red and stage 1

is golden in color.

These phase assignments are further confirmed by Raman spectra in Fig. 2.9 (a). The

graphene G peak near 1580 cm−1 shows electronic resonance intensity enhancement and
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Figure 2.9: (a) Raman spectra of the Li/graphite intercalation system in different stages.
The spectra are vertically offset for a clearer display. The peak around 1580 cm−1 is graphite
G peak. The peak around 2700 cm−1 is the graphite 2D peak. The peaks below the G
peak originate from the PEO and the (PEO)-Li complexes [105]. (b) and (c) Direct optical
measurement of Li intercalation kinetics. Both, the total content of Li within the graphite
disc (b) and the area of the distinct stages (c) are extracted from optical images by image
segmentation.

shifts to higher frequency with the concentration of electrons donated from Li. It is di-

agnostic for the electronic structure, clearly evolving from one phase to the next. For

n = 3 and higher stages, the G peak splits into two peaks as there are two physically

inequivalent graphene layers : highly doped graphene in direct contact with intercalated

Li and interior graphene with little doping, similar to pristine graphite. Similar two-peak

Raman spectra have been recently observed in few layer graphenes with adsorbed NO2,

which is a strong electron acceptor [106]. For stage 2 GIC, in which all graphene layers

are equivalent, there is only one G peak with weaker intensity. It is softened to a lower

frequency than the direct contact G peak in stage 3, indicating a higher doping level in

stage 2, explained by an in plane lattice expansion which sets in at higher doping lev-

els [38]. For stage 1, the G mode is absent, or indistinguishable from the background.
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This vanishing behavior, and the weak intensity of the G mode in stage 2, in part, oc-

cur because of a loss of electronic resonance intensity enhancement due bleaching of the

graphene interband visible optical absorption that accompanies a large Fermi level shift

on the order of 1 eV. Recent studies of few layer graphenes with adsorbed potassium, a

similarly strong electron donor as Li, show essentially a complete loss of the interband

optical absorption [107]. Note that several theoretical calculations have suggested that in

stage 1 LiC6, the charge transfer from the Li atoms to graphene approaches 100% [37;

108].

We can distinguish between different kinetic mechanisms directly from the optical images

in Fig. 2.9 (a). If Li diffusion from the edge to the center is fast with respect to Li injection

from electrolyte solution at the edge, then the concentration of Li will be the same across the

disk. Nucleation of higher concentration phases would occur homogeneously across the disk.

This behavior is observed for the initial transformation from dilute stage 1 to stage 3, with

possibly stage 4 as an unobserved intermediate. In dilute stage 1 as concentration increases,

the graphite domain gradually darkens as a whole. This darkening can be explained by the

reduction of electron free carrier lifetime in the presence of randomly distributed Li. As the

Li concentration rises, green stage 3 homogeneously nucleates across the disk.

However, the red phase 2 subsequently nucleates at the boundary. This indicates that

diffusion of Li from the edge through stoichiometric stage 2, to the stage 3-stage 2 boundary

that is moving towards the center, is far slower than the initial diffusion in dilute stage 1. Li

concentration builds up at the edge following injection, and nucleates stage 2 before diffusion

to the disk center occurs. Furthermore, nucleation of the golden stage 1 occurs almost

immediately at the edge after stage 2 begins to form. The system is out of equilibrium, as

evidenced by the fact that three different phases (3, 2, and 1) are observed simultaneously.

The phase diagram indicates that only two phases (2 and 1 for x > 0.5 in LixC6) will

simultaneously exist at equilibrium. As the phase boundaries propagate towards the disk

center, the green phase 3 first disappears, followed by the disappearance of stage 2, leaving

only stage 1. The diffusion is fast enough to produce well formed boundaries between



CHAPTER 2. STRONG CARRIER DENSITY MODULATION WITH
ELECTROLYTIC GATES 51

phases, but not fast enough to distribute Li across the disk in the correct balance of phases,

for an injection rate corresponding to the initial 5 V step.

After stage 3 forms, the total Li content in the graphite disk can be obtained directly

from the optical images, since we know the stoichiometry of each of the stages 3, 2, and 1.

The Li content in each phase is the geometrical area multiplied by the phase Li density. The

sum from all phases present yields the total disk Li content, free from any other complicating

simultaneous electrochemical processes. Indeed we observed blue film formation around the

electrodes resulting from chemical reduction of the polymer electrolyte. The total Li content

evolution is shown in Fig. 2.9 (b). The evolution of stage 1, stage 2 and stage 3 are presented

in Fig. 2.9 (c).

The injection rate of Li along the disk circumference is the slope of the total Li content

curve. It is clear that the injection rate slows down as the intercalation process proceeds.

Here the dotted line indicates the presence of a dilute stage 1 and stage 3 and the first data

point corresponds to the first image after phase boundaries between stage 3 and stage 2

appear. Comparing with the early fast injection in dilute stage 1, the Li content increases

more slowly when it is more concentrated and the slope of this Li content curve decreases.

Eventually the injection rate approaches zero as stage 1 forms completely. This slowing-

down injection rate serves as a consistency check and supports the idea that Li transport

within the graphite electrode is the rate limiting step.

In summary, we have employed an all optical imaging method to measure Li intercalation

kinetics into a graphite single crystal in situ, free of complication from electrochemical side

reactions. Our method offers direct visualization and a clean measurement of microscopic

intercalation kinetics. We expect this method to provide new insight in studies of other 2D

materials and in design of energy storage applications.
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Chapter 3

Transport properties of graphene

in the metallic limit

3.1 Graphene at high carrier densities

Graphenes properties close to the Dirac point, for Fermi energies not higher than ϵF <

0.3 eV, or, correspondingly, a carrier density n < 5×1012 cm−2, are studied quite extensively.

In this regime graphene is a typical semi-metal with a very small Fermi surface, orders of

magnitude smaller than the size of the Brillouin zone (BZ). It has a linear dispersion relation

with a circularly symmetric Fermi surface and has two distinct valleys that can be described

by the Dirac equation.

The above mentioned energy/density limits are mainly due to experimental conditions

under which graphene was studied, where the vast majority of experiments were performed

using the typical 300 nm thick Si/SiO2 back gates, which do not allow to reach higher

Fermi energies. For this reason, up to this point in time, graphenes properties at higher ϵF

were almost unexplored. Though, with the use of electrolytic gates, as was shown in the

previous chapter, ϵF can now be brought to values of ϵF ∼ 1 eV, or n > 1014 cm−2. In this

regime graphene is better described as a metal, rather than a semi-metal, with the size of

the Fermi surface now reaching values that are comparable to the size of the BZ. At these
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energies the band-structure of graphene starts to deviate from the linear dispersion relation

and the Fermi surface becomes strongly trigonally warped, losing its circular symmetry and

failing to be approximated by the Dirac equation. The enhanced energies of the electrons

also alter the specifics of the interactions of the electrons with phonons and impurities and

are ultimately predicted to be drastically modified when ϵF is in close proximity to the van

Hove singularities (vHS) in the M -points, potentially leading to more complex electronic

interactions. In addition, for the case of bilayer graphene, the high energy sub-bands can

be populated at ϵF ∼ 0.4 eV and thus conduction will be now described by a two-liquid

model.

In general, due to graphene’s amazing tunability, it is now possible to directly study a

material at the transition from a semi-metal, or a zero band-gap semiconductor, to a metal,

with multiple new observations, such as the first time demonstration of a gate tunable

Bloch-Grüneisen temperature ΘBG.

3.2 Electron-phonon interactions at the cross-over from a

semi-metal to a metal

At finite temperatures electrons in typical conductors are scattered by phonons, producing

a finite, temperature dependent resistivity ρ [109]. If the temperature T is comparable

to or larger than the Debye temperature ΘD - the representative temperature scale for

the highest phonon energies - all phonon modes are populated. In this high temperature

regime, ρ(T ) ∼ T , reflecting a classical equipartition distribution of the phonons. As T

decreases below ΘD, however, the bosonic nature of the phonons becomes important : only

the acoustic phonon modes within the phonon sphere of diameter kph = kBT/h̄vs < kD

(where kD is the radius of the Debye sphere and vs is the sound velocity) are populated

appreciably, leading to a more rapid decrease of the resistivity, ρ(T ) ∼ T 5, known as the

Bloch-Grüneisen (BG) regime for typical 3-dimensional (3D) metals [110; 111; 112].

Due to the quasi-elasticity of the electron-phonon (e-ph) interactions, the maximal
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Figure 3.1: (a) to (c) Electron-acoustic phonon scattering for normal metals. Here, owing
to the large Fermi surface, all phonon modes can scatter off electrons, with the highest
phonon momenta qD = kBΘD/vs < qmax = 2kF being smaller than the momenta needed to
quasi-elastically back-scatter an electron at the Fermi surface. (a) For T > ΘD all phonon
modes are occupied resulting in a ρ ∼ T dependence, as the number of occupied phonon
modes does not change with T . (b) and (c) For T < ΘD only the low energy modes are
occupied, resulting in a ρ ∼ T 5 dependence, as the number of occupied phonon modes
now changes with T . (d) to (f) Electron-acoustic phonon scattering for graphene. Due to
graphenes small Fermi surface the highest phonon momentum qD = kBΘD/vs > qmax = 2kF
is bigger than the highest momentum allowed to quasi-elastically back-scatter an electron
at the Fermi surface, allowing now only a small fraction of all occupied phonons to scatter
electrons. This defines a new characteristic temperature the Bloch-Grüneisen temperature
ΘBG = 2h̄vskF /kB < ΘD. (d) While for T > ΘD and (e) for ΘBG < T < ΘD, all phonon
modes that are allowed to scatter electrons are occupied, the number of these modes does
not change with T , resulting in a ρ ∼ T dependence. (f) Only for T < ΘBG the number of
these modes reduces with T , resulting in a ρ ∼ T 4 dependence. This figure is taken from a
ViewPoint on our article [113].
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phonon momentum in an e-ph scattering event is limited to 2h̄kF , representing a full

backscattering of the electrons across the Fermi surface of radius kF . Since in metals

kF is of the size of the BZ, 2kF > kD, all populated phonons can scatter off electrons.

For low density electron systems, however, the Fermi surface can be substantially smaller

than the size of the BZ, and hence kF ≪ kD. In this case, only a small fraction of the

acoustic phonons with energies h̄vskph ≤ 2h̄vskF can scatter off electrons. This phase space

restriction defines a new characteristic temperature scale for the low density e-ph scatter-

ing, the BG temperature ΘBG = 2h̄vskF /kB < ΘD. It was explicitly shown in low density

2-dimensional (2D) electron gases formed in semiconductor hetero-junctions [114] that ρ(T )

drops at temperatures below T < ΘBG rather than ΘD. However, the 3D nature of the

phonons in the host material, and the low level of tunability of n, make this system ineligible

for studying 2D BG physics and the explicit density dependence of ΘBG.

The advance of graphene [14; 16] brings new aspects to the study of e-ph interactions

in a low dimensional system. Graphene has a Debye temperature ΘD ≈ 2300K almost an

order of magnitude higher than for typical metallic systems, and the electrostatic tunability

of kF ∝
√
n allows for a wide range of control of ΘBG. In addition, the single atomic plane

structure of graphene provides not only a strictly 2D electronic system, but a 2D acoustic

phonon system as well. These unique properties have been considered theoretically, leading

to the prediction that graphene exhibits a smooth crossover behavior between the high

temperature ρ(T ) ∼ T and the low temperature ρ(T ) ∼ T 4 dependence [115]. The slower

reduction of ρ(T ) at low T as compared to the T 5 dependence observed in typical 3D

conductors can be understood by the reduced spatial dimensionality. The main discussion

on e-ph interactions at the cross-over from a semi-metal to a metal discussed in this chapter

was published in better detail in our article [26].
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3.2.1 Theory of electron-acoustic phonon interactions in graphene

In the present section we use a simple Boltzmann-transport theory to calculate the effect of

electron-phonon scattering on the conductivity of graphene for various temperatures below

300 K, following closely the derivation by Hwang [115]. Here we consider only the interaction

with the longitudinal acoustic phonons (LA), an approximation which is well justified,

since the coupling to the transverse, out-of plane vibrational modes, the transverse acoustic

phonons (TA), is very weak and can be neglected. All other phonon energies, such as

graphenes own optical phonons or the substrate polar optical phonons, are extremely high,

and can therefore be neglected as they are almost not populated at relevant temperature

scales T < 250 K considered here.

Using the general expression for Boltzmann transport in graphene, the expression for

the energy and temperature dependent resistivity is :

ρ(ϵF , T ) =
πh̄2

e2ϵF

⟨
1

τ

⟩
(3.1)

with the general relations for the Fermi energy and the Fermi wave-vector ϵF = h̄vF |⃗kF |

and |⃗kF | =
√
πn, where vF the Fermi velocity and τ(n, T ) the density and temperature

dependent scattering rate. The expression for the scattering time of an electron with

wave-vector k⃗ can be in all generality written as :

⟨
1

τ(ϵ
k⃗
)

⟩
=

1

2

∑
k⃗′

(1− cos θ
k⃗·k⃗′)(1 + cos θ

k⃗·k⃗′)Wk⃗→k⃗′
1− f(ϵ

k⃗
)

1− f(ϵ
k⃗
)

(3.2)

Here the term 1
2(1+cos θ

k⃗·k⃗′) specifically accounts for the pseudo-spin of graphene which

prohibits backward scattering of the electrons. W
k⃗→k⃗′

is the transition probability from a

state k⃗ to k⃗′ as derived from calculations of Fermi’s Golden rule, and for the case of electron-

acoustic phonon interactions can be approximated as :
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W
k⃗→k⃗′

≈
2πD2

A

ρmvsA

∑
k⃗−k⃗′

kF sin(θ
k⃗·k⃗′/2)∆(ϵ

k⃗
, ϵ

k⃗′
) (3.3)

with DA the acoustic deformation potential, vs the sound velocity of LA acoustic phonons

in graphene, ρm graphenes mass density, A the area of the sample and ∆(ϵ
k⃗
, ϵ

k⃗′
) :

∆(ϵ
k⃗
, ϵ

k⃗′
) = N

k⃗−k⃗′
δ(ϵ

k⃗
− ϵ

k⃗′
− vs(k⃗ − k⃗′)) + (N

k⃗−k⃗′
+ 1)δ(ϵ

k⃗
− ϵ

k⃗′
− vs(k⃗ − k⃗′)) (3.4)

with N
k⃗−k⃗′

= (exp(vs |⃗k − k⃗′|/kbT )− 1)−1 the temperature dependent bosonic occupation

number of the phonons.

Having these expressions in place, the integration over all k⃗ and k⃗′ will give an effective

overall scattering time τ . Here, since kBT ≪ ϵF for all relevant energies (ϵF > 0.1 eV) and

temperatures (T < 300 K), one can restrict all scattering events to within the Fermi surface,

which is equivalent to setting ϵ
k⃗
= h̄vF |⃗k| = h̄vFkF = ϵF . This quasi-elasticity condition

effectively pins the whole integration to transitions at the Fermi energy and results in the

definition of an effective maximal cut-off energy for phonons that can interact with the

electrons, the Bloch-Grüneisen temperature kBΘBG = 2h̄vskF . This energy scale is equal

to the maximal energy transfer to an electron at the Fermi surface, in the case of an exact

backscattering process with a momentum transfer of 2kF , matching a phonon energy of

2h̄vskF . Under this quasi-elasticity condition all higher energy phonons are therefore not

allowed to scatter electrons and are neglected in the following calculation. After several

expansions and integration over all k⃗ the final expression for the overall resistivity ρ(kF , T )

becomes :

ρ(kF , T ) =
1

4e2h̄

kFD
2
A

ρmvsv2F

ΘBG

T

∫ π

0

sin2(θ/2) sin2(θ)

sinh2((ΘBG/2T ) sin(θ/2))
dθ (3.5)

We can now examine the asymptotic behaviour of this expression. In the limit of high

temperatures, when T ≫ ΘBG, one can expand the sinh in the denominator and obtain :
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ρ(kF , T ) ≈
1

e2h̄

kFD
2
A

ρmvsυ2F

T

ΘBG

∫ π

0
sin2(θ)dθ =

πkFD
2
A

2e2h̄ρmvsυ2F

T

ΘBG
(3.6)

and in the limit of low temperatures, when T < ΘBG, one can expand sin(θ/2) and sin(θ)

integrating now to infinity, with x = ΘBG
4T θ :

ρ(kF , T ) ≈
64

e2h̄

kFD
2
A

ρmvsv2F

(
T

ΘBG

)4 ∫ ∞

0

x4

sinh2(x)
dx =

192ζ(4)

e2h̄

kFD
2
A

ρmvsv2F

(
T

ΘBG

)4

(3.7)

using the identity
∫∞
0

x4

sinh2(x)
dx = 1

84!ζ(4), where ζ is the Riemann-Zeta function

3.2.2 Temperature dependent transport in density controlled graphene

In this section, we study the experimental observation of the 2-dimensional Bloch-Grüneisen

(BG) behavior in graphene. Using a polymer electrolyte gate as discussed in chapter 2, we

achieve extremely high carrier densities up to 4×1014cm−2 for both electrons and holes,

tuning ΘBG to values of up to ∼ 1000 K. In the low T limit, T ≪ ΘBG, a ρ(T ) ∼ T 4 is

observed, reflecting the 2D nature of the electrons and the acoustic phonons in graphene. At

high temperatures, the resistivity shows a semiclassical ρ(T ) ∼ T behavior. From analysis

of the experimental data of ρ(T ), we obtain ΘBG(n) and show that ρ(T ) scales as a universal

function ρ(T/ΘBG) of the normalized temperature T/ΘBG for all densities |n|, which agrees

well with the theoretical expressions.

In previous graphene experiments employing thermally grown SiO2 layers as the gate

dielectric [116; 117], ρ(T ) could be measured only in the density range |n| < 5× 1012 cm−2.

In this relatively low range of carrier density, ρ(T ) ∼ T was reported for all T < 150 K, and,

at higher temperatures, T ≥ 150 K, ρ(T ) exhibited a rapid increase presumably due to the

scattering by thermally activated SiO2 polar optical phonons [116], by thermally quenched

graphene ripples [117], or by Coulomb impurities [118]. In addition, the low temperature

behavior of ρ(T ) below T < 20 K was found to be completely dominated by disorder in the

samples. These extrinsic effects become less pronounced at higher carrier densities where
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the carrier screening is enhanced [116]. Furthermore, an increased carrier density would

result in an increase of ΘBG, allowing to access the non-linear ρ(T ) of the BG regime in a

much wider temperature range.

In this experiment we have measured ρ(T ) for more than 10 single layer graphene sam-

ples, in the temperature range 1.5 < T < 300 K and for |n| < 2× 1014 cm−2. Fig. 3.2 (a)

shows a representative data set for the measured ρ(T ) at various fixed n. Generally, ρ(T )

decreases monotonically as T decreases, saturating to ρ0 in the low temperature limit (in our

experiment, ρ0 is determined from the measured ρ at the lowest temperature (≈ 2 K)). This

residual resistance ρ0 stems from almost temperature independent scattering mechanisms,

such as static impurity and point defect scattering, as discussed in previous studies [117;

116]. As shown in Fig. 3.2 (b) inset, the corresponding mobility follows µ−1
0 = (ρ0en) ≈

a + bn [119] with the fitting parameters a = 3.3 × 10−4 Vs/cm2 and b = 3.9 × 10−18 Vs,

representing long and short range impurity scattering, respectively.

At a first glance, the temperature dependent ρ(T ) can be subdivided into two different

temperature regimes: (i) the high temperature linear T regime (For |n| ≤ 1013 cm−2, a

strong activation behavior of ρ(T ) is observed for T ≥ 150 K as shown in [117; 116]);

and (ii) the low temperature non-linear T regime. This transitional trend of ρ(T ) at low

temperatures can be better scrutinized by subtracting off ρ0 from ρ(T ). Fig. 3.2 (b)

displays ∆ρ(T ) = ρ(T )− ρ0 as a function of T in the logarithmic scale. At a given density

n, each curve of ∆ρ shows a clear transition from a linear high temperature behavior

(ρ ∼ T ) to a superlinear (ρ ∼ T 4) behavior at low temperatures, as is expected from the

BG model applied to electron-acoustic phonon scattering in graphene [115]. The cross-over

temperature between these two different regimes appears to be higher for higher carrier

densities, in good accordance with the BG description presented above, where ΘBG ∝
√
n.

We now quantitatively analyze our data in terms of the BG model. As derived in

the previous section, considering the e-ph interaction as the major source of scattering,

the temperature dependent resistivity of graphene can be obtained using the Boltzmann

transport theory [115]:
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Figure 3.2: (a) Temperature dependence of the resistivity for different charge carrier den-
sities of sample G8A4. (b) The temperature dependent part of the resistivity ∆ρ(T ) scales
as T 4 in the low T range and smoothly crosses-over into a linear T dependence at higher
T . Dashed lines represent fits to the linear T and T 4 dependency, respectively. Inset shows
the mobility µ0 at T = 2 K as a function of the density n. Grey line is the theoretically
expected mobility due to short and long range impurity scattering.

∆ρ(T ) =
8D2

AkF
e2ρmvsv2F

fs(ΘBG/T ), (3.8)

where the generalized BG function for graphene is given by the integration form :

fs(z) =
∫ 1
0

zx4
√
1−x2ezx

(ezx−1)2
dx.

Here we remark that Eq. 3.8 is different from a typical BG formula for a 3D metal in three

points. First, the integrand contains x4 instead of x5, reflecting the 2D nature of both, the

electrons and acoustic phonons in graphene. Second, the relevant normalized temperature

scale is ΘBG instead of ΘD, considering the fact ΘBG < ΘD in our experimental range.

Third, the absence of backscattering for the carriers manifests itself in the factor
√
1− x2

in the integrand, representing the chiral nature of the carriers in graphene.

Taking the two opposite limits of the temperature ranges, Eq. 3.8 we further approximate
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Figure 3.3: (a) Scaling of the prefactors α(n) (∆ρ ≈ α(n)T 4). Data points were obtained
from T 4 fits of the ρ(T ) traces at different carrier densities and for different samples. The

dashed line represents a theoretically predicted fit ∝ |n|−
3
2 . (b) ΘBG at different carrier

densities (symbols are defined as in (a)). The grey line is a fit to the theoretically predicted
ΘBG = 2h̄vs

√
πn/kB.

to ∆ρ ≈ γT for T > ΘBG and ∆ρ ≈ αT 4 for T ≪ ΘBG, where the temperature independent

proportionality coefficients are explicitly given by [115]:

γ =
πD2

AkB
4e2h̄ρmv2sv

2
F

(3.9)

and

α =
12ζ(4)D2

Ak
4
B

e2h̄4ρmv5sv
2
F

(πn)−
3
2 (3.10)

Here we particularly note that α ∝ |n|−3/2, while, γ is density-independent. Using these

properties, we obtain γ and α(n) from the experimentally observed ∆ρ at fixed n. First,

γ ≈ (0.14 ± 0.01) Ω/K is estimated from the converging high temperature limit, scaling

almost linearly down to T ∼ 0.2ΘBG (dotted line in Fig. 3.2 (b) for example). This value
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is in reasonable agreement with the previous studies [117; 116]. We then estimate α from

each ρ(T ) curve at different densities by fitting to ∆ρ ∼ T 4 for the temperature range

T < 0.1ΘBG. Fig. 3.3 (a) shows the resulting α versus |n| in a wide range of experimentally

accessible |n| for 4 different samples. A clear trend of α(n) ∼ |n|−3/2 can be seen (dashed

trace in accordance with Eq. 3.10).

The combination of the two coefficients α(n) and γ allows us to compute the ratios

of D2
A/v

2
s and D2

A/v
5
s , respectively, and thus evaluate the values of DA and vs separately.

Employing ρm = 7.6 × 10−7 kg/m2, and vF = 106 m/sec, we find that the average values

for each parameter are vs = (2.6 ± 0.4) × 104 m/sec and DA = (25 ± 5) eV, in a good

agreement with values reported in previous studies of suspended and substrate supported

graphene devices, as well as for graphite and carbon nanotubes [115; 116; 120; 121; 122;

123; 124]. Using these we can now fit each experimental curve ∆ρ(T ) by Eq. 3.8, using

ΘBG as a single fitting parameter. Fig. 3.3 (b) displays the experimentally determined

ΘBG from this fits as a function of n for both electrons and holes for all measured samples.

The obtained ΘBG exhibit the predicted
√

|n| dependence, explicitly demonstrating our

capability to tune the BG temperature of up to ∼ 1200 K with the solid polymer electrolyte

gate.

We finally discuss the universal scaling of ∆ρ(T ). The experimental estimation of ΘBG

allows us now a direct test of the scaling behavior of ∆ρ(T ) following Eq. 3.8 in all temper-

ature ranges. Taking T/ΘBG as a dimensionless parameter, Eq. 3.8 can be rewritten in a

dimensionless scaling form :

∆ρ(T )

∆ρ(ξΘBG)
=
fs(ΘBG/T )

fs(ξ−1)
(3.11)

where ξ is an arbitrary constant setting the normalization temperature relative to ΘBG.

Fig. 3.4 displays the universal scaling behavior of Eq. 3.11 converted from Fig. 3.2.

Here we simply choose ξ = 0.2 to ensure ∆ρ(ξΘBG) is within the experimentally accessible

range. Remarkably, each normalized curve of ∆ρ with different n (thus different ΘBG) falls
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Figure 3.4: Universal scaling of the normalized resistivity ∆ρ(T )/∆ρ(ξΘBG) as a function
of the normalized temperature T/ΘBG, explicitly using the constant ξ = 0.2. Data points
correspond to ∆ρ(T ) of sample G8A4 at different n and ΘBG and are normalized with
respect to ∆ρ(ξΘBG) - the resistivity at T = ξΘBG. The dashed line trace represents the
theoretically predicted scaling of fs(ΘBG/T )/fs(ξ

−1) without use of fitting parameters.

on top of the theoretical curve, indicating the BG model of e-ph scattering fully explains

ρ(T ) not only in the low and high temperature limits, but for all temperatures.

In conclusion, using the electrolyte we have achieved extremely high carrier densities of

up to |n| = 4 × 1014 cm−2 in graphene samples. This advancement allowed us to observe

a strictly 2D Bloch-Grüneisen behavior in the measured resistivity, exhibiting the linear T

to superlinear T 4 cross-over, defined by the gate tunable characteristic temperature ΘBG.

Our quantitative analysis of the temperature dependent resistivity shows an universal scal-

ing behavior of the normalized resistivity ρ(T ) with the normalized temperature T/ΘBG,

representing the 2D nature of the electrons and phonons along with the chiral nature of the

carriers in graphene.
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3.3 Accessing the high energy sub-bands in bilayer graphene

Multi-band transport is common for many complex metals where different types of carriers

on different pieces of the Fermi surface (FS) carry electrical currents. Conduction in this

regime is controlled by the properties of the individual sub-bands, each of which can have

distinct mobilities, band masses, and carrier densities. Other changes to the single-band

conduction model include inter-band scattering processes and mutual electrostatic screen-

ing of carriers in different sub-bands, which alters the effective strength of the Coulomb

potential and hence adjusts the strength of electron-electron and electron-charged impurity

interactions.

To understand electronic conduction in this regime, it is desirable to study the properties

of the individual bands separately and compare these to the properties in the multi-band

regime. This was achieved in 2-dimensional electron gases (2DEGs) formed in GaAs quan-

tum wells [125], where the sub-bands can be continuously populated and depopulated by

inducing parallel magnetic fields. In these 2DEGs, an increased overall scattering rate

due to inter-band scattering was observed upon the single- to multi-band transition, [126;

127], along with changes in the effective Coulomb potential which led to the observation of

new filling factors in the fractional quantum Hall effect [128].

Bilayer graphene (BLG)[14; 16; 129; 130; 131], with its multi-band structure and strong

electrostatic tunability, offers a unique model system to investigate multiple band transport

phenomena. This discussion on accessing the high-energy sub-bands in bilayer graphene

was published in better detail in our article [27].

3.3.1 Multiband transport in bilayer graphene at high carrier densities

In this section, we present a detailed transport study of multi-band conduction in bilayer

graphene. Using an electrolytic gate, we were able to populate the HES of bilayer graphene,

allowing for both the LES and HES to be occupied simultaneously. The onset of these sub-

bands is marked by an abrupt increase of the sample resistivity, most likely due to the
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opening of an interband scattering channel, along with the appearance of a new family of

Shubnikov-de Haas (SdH) oscillations associated with the HES. A detailed analysis of the

magneto- and Hall resistivities in combination with the HES SdH oscillations in this regime

enables us to estimate the carrier mobilities in each sub-band separately, where we observe

a two-fold enhanced mobility of the HES carriers as compared to the LES carriers at the

same band densities.

k 

 

-50 0 50

0.2

1

 

 

(k
)

-250

0

250

-50 0 50

0.2

1

 

 

 

-500

0

500

 

-50 0 50

1

10

 

 

 V
bg

(V) 

-250

0

250

 R
H
(

)

c

a b

Veg= -1.7 V Veg= 1 VVeg= -0.4 V

Figure 3.5: (a) The tight-binding band structure of bilayer graphene for interlayer asym-
metries ∆ = 0 eV (gray) and ∆ = 0.6 eV (black). (b) Schematic view of the double gated
device, consisting of the SiO2/Si back gate and the electrolytic top gate. Debye layers of
Cs+ or ClO−

4 ions are formed d ∼ 1 nm above the bilayer and the gate electrode, respec-
tively. (c) Longitudinal resistivity and Hall resistance of the bilayer graphene device at
T = 2 K as a function of back gate voltage Vbg for 3 different fixed electrolyte gate volt-
ages Veg = −1.7,−0.4, and 1 V from left to right, corresponding to pre-doping levels of
nH = (−2.9, 0, 2.9)× 1013 cm−2. Inset shows an optical microscope image of a typical Hall
bar device (the scale bar corresponds to 5 µm).
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BLG’s four-atom unit cell yields a band structure described by a pair of low energy

sub-bands (LESs) touching at the charge neutrality point (CNP) and a pair of high energy

sub-bands (HESs) whose onset is ∼ ±0.4 eV away from the CNP (Fig. 3.5 (a)). Specifically,

the tight binding model yields the energy dispersion [129] :

ϵ±1,2(k) = ±

√
γ21
2

+
∆2

4
+ v2Fk

2 ±
√
γ41
4

+ v2Fk
2(γ21 +∆2), (3.12)

where the upper and lower index indicates the conduction (+) and valence (−); and LES

(1) and HES (2), k is the wave vector measured from the Brillouin zone corner,

vF ≈106 m/s is the Fermi velocity in single layer graphene, γ1 ≈ 0.4 eV is the inter-layer

binding energy, and ∆ is the inter-layer potential asymmetry.

Interestingly, since a perpendicular electric field E across the sample gives rise to an

inter-layer potential difference ∆, it opens a gap in the spectrum of the LES [130; 132; 133;

134; 67] and is furthermore predicted to adjust the onset energy of the HES. Whereas the

LESs have been widely studied, the carrier densities needed to fill the HESs, with their

expected onset density of n∗ ∼ 2.4 × 1013 cm−2 [130], are much higher than the maximal

carrier densities achievable with the conventional SiO2/Si back gates, which do not permit

the tuning of carrier densities above n ≈ 0.7 × 1013 cm−2 (ϵF ≈ 0.2 eV). Recent progress

in electrolyte gating techniques now allow to access the carrier densities above n∗ [26;

135], however the nature of multi-band conduction, especially through the HES in BLG has

yet to be investigated.

Bilayer graphene devices were fabricated by mechanical exfoliation of Kish graphite onto

300 nm thick SiO2 substrates, which are backed by degenerately doped Si to form a back

gate. The samples were etched into a Hall bar shape with a typical channel size of ∼ 5 µm

and then contacted with Cr/Au (0.5/30 nm) electrodes through beam lithography (Fig.

3.5 (c) inset). In order to access the HES we utilized a recently developed solid polymer

electrolyte gating technique[65; 66; 68; 25; 67; 26], which was recently shown to induce

carrier densities beyond values of n > 1014 cm−2 [26] in single layer graphene. The working
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Figure 3.6: Landau fan diagram of the differential longitudinal resistivity dρxx/dnH for 3
different density ranges at T = 2 K as a function of the Hall density nH and the magnetic
field. (center) The SdH oscillations in the LES converge at the CNP and flatten out at
higher nH due to decreasing LL separation. (left and right) For |nH | > 2.6 × 1013 cm−2

additional SdH oscillations appear, originating at the resistivity spikes (vertical red (black)
regions) that mark the onset of the HES.

principle of the solid polymer electrolyte gate is shown in Fig. 3.5 (b). Cs+ and ClO−
4 ions

are mobile in the solid matrix formed by the polymer poly(ethylene)oxide (PEO). Upon

applying a gate voltage Veg to the electrolyte gate electrode, the ions form a thin Debye

layer a distance d ∼ 1 nm away from the graphene surface. The proximity of these layers

to the graphene surface results in huge capacitances per unit area Ceg, enabling extremely

high carrier densities in the samples. While CsClO4 has almost the same properties as the

typically used LiClO4 salt, we find a reduced sample degradation upon application of the

electrolyte on top of the sample, resulting in considerably higher sample mobilities.

One major drawback of the electrolyte gate for low temperature studies is that it cannot

be tuned below T < 250 K, where the ions start to freeze out in the polymer and become

immobile (though leaving the Debye layers on the bilayer surface intact) [25; 26]. A detailed

study of the density dependent transport properties at low temperatures can therefore be

quite challenging. In order to overcome this issue, we employ the electrolyte gate only to

coarsely tune the density to high values (|n| <1014 cm−2) at T = 300 K, followed by an

immediate cool-down to T = 2 K in a helium vapor atmosphere. We then use the standard

SiO2/Si back gate to map out the detailed density dependence of the longitudinal sheet

resistivity ρxx and the Hall resistance RH , from which we extract the total carrier density
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of the sample nH = B/eRH , with B the magnetic field and e the electron charge. Here we

find the back gate capacitance to be Cbg = 141 aF/µm2, almost unaltered by the presence

of the Debye layers on top of the sample.

In this experiment, we have measured ρxx and RH of more than 3 BLG devices as a

function of the back gate voltage Vbg at various fixed Veg corresponding to the wide density

range of nH ∼ ±8× 1013 cm−2. Fig. 3.5 (c) shows ρxx and RH for a representative device

for 3 selected cool-downs at Veg = −1.7,−0.4, 1 V from left to right, corresponding to a

pre-doping level of nH = (−2.9, 0, 2.9) × 1013 cm−2. For low doping levels (Veg = −0.4 V,

Fig. 3.5 (c) middle) we observe the expected Dirac Peak in ρxx and the bipolar transition

of RH as Vbg sweeps through the CNP. Away from the CNP, ρxx and RH decrease as |nH |

increases, as was observed before in BLG samples [131]. For the strongly pre-doped gate

sweeps however (Fig. 3.5 (c) left and right), we observe a rather unexpected non-monotonic

feature in the sample resistivity. Instead of a monotonic decrease of ρxx with increasing

|nH |, it exhibits an abrupt increase by ∼ 10% symmetrically at both electron and hole

sides at n∗ ∼ |nH | = 2.6× 1013 cm−2, a carrier density which is consistent with theoretical

expectations for the onset density of the HES [129; 130]. A similarly increasing resistivity

at the opening of a new sub-band was previously observed in 2D electron gases (2DEGs)

formed in wide GaAs quantum wells [125; 126; 127], where it was attributed to a decreased

overall scattering time τ due to the opening of an additional inter-band scattering channel

as the new sub-bands are populated. Such an inter-band scattering mechanism between the

LES and the HES is also expected to give rise to a resistivity increase upon filling of the

HES in BLG samples. However, considering the strong differences between the 2DEG in

GaAs quantum wells and in BLG, including the vastly different densities of states, carrier

dispersion relation, and more importantly the chiral nature of carriers, we cannot rule

out the possibility that the observed resistivity increase in the BLG may differ that of

conventional 2DEG.

The electronic structure of the LES and HES can be further investigated by studying the

effect of the magnetic field B on the longitudinal resistivity ρxx(B) in the various density
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Figure 3.7: (a) Exemplary traces of the longitudinal resistivity as a function of inverse
magnetic field at fixed values of nH beyond the onset of the HES. (b) Carrier densities
inferred from the SdH oscillations vs. the overall Hall densities nH , from 4 cool-downs at
different set electrolyte gate voltages Veg = −2 V (yellow), −1.7 V (orange), 1 V (red), 1.4 V
(blue). (bottom) |nHES | vs. nH , fitted with theoretical expectations for the HES. (top)
|nLES | vs. nH , fitted with theoretical expectations for the LES. Line traces correspond to
theoretical fits for different values of ∆ = 0.31 eV (yellow), 0.17 eV (orange), 0.13 eV (red),
0.26 eV (blue).

ranges. Fig. 3.6 shows the Landau fan diagram of the differential sheet resistivity dρxx/dnH

as a function of B and nH . Close to the CNP (Fig. 3.6 center) the SdH oscillations in the

two LES are quite pronounced, but with increasing density their amplitude quickly decays

as the energy separation of the Landau Levels (LL) decreases. Above the onset of the

HES (Fig. 3.6 left and right), marked by the “spikes” of increased resistivity (here the red

regions) however, we observe another set of SdH oscillations which form LL fans converging

into the onset point of the HES.

In order to analyze the SdH oscillations, we now plot the ρxx(B) traces for various

fixed nH as a function of the inverse magnetic field B−1. Fig. 3.7 (a) displays three

exemplary traces at different nH above the onset density of the HES. All traces show

periodic oscillations in B−1 allowing us to obtain the SdH density, nSdH = 4e
h ∆(B−1),

assuming that each LL is both spin and valley degenerate. Whereas for all |nH | < n∗ we

find that the obtained nSdH ≈ nH , indicating that the SdH oscillations are solely from a
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single band (i.e., the LES), for |nH | > n∗ the obtained nSdH values are much smaller than

the simultaneously measured nH values. This behavior can be well explained by assuming

that these SdH oscillations reflect only the small fraction of charge carriers lying in the HES.

For |nH | > n∗ we hence are able to extract the occupation densities of the LES (nLES) and

HES (nHES) from nLES = nH−nSdH and nHES = nSdH . Fig. 3.7 (b) shows the |nLES | and

|nHES | in this regime as a function of the total carrier density |nH |. For each fixed Veg, the

obtained |nLES | and |nHES | increase as |nH | increases (adjusted by Vbg), for both electrons

and holes. Interestingly, we notice that the |nLES(nH)| are slightly larger for larger |Veg|

while the trend is opposite for the HES, i.e. |nHES(nH)| are smaller for larger |Veg|, even

though their nH values are in similar ranges. These general trends can be explained by

an increase of the interlayer potential difference ∆ for increased values of |Veg|, which are

predicted by the tight-binding model in Eq. 3.12 to result in an increase of the onset density

(energy) of the HES.

While a precise quantitative determination of the expected shift in the onset density of

the HES as a function of Veg and Vbg requires a self-consistent calculation of ∆(Veg, Vbg) and

would go beyond the scope of this paper, we can still qualitatively test the above prediction.

This is possible since ∆ is mostly controlled by Veg, which has a much stronger coupling to

the BLG sample than the Vbg, thus allowing us to approximately treat ∆ as a constant for

fixed Veg. Since the experimental traces displayed in Fig. 3.7 (b) correspond to different

values of Veg but the same ranges of Vbg, ∆ is different for each trace and can be extracted

from the theoretical fits from Eq. 3.12, with ∆ as the only fitting parameter. Indeed for all

4 traces we find good agreement with the theoretical fits; we clearly observe an enhanced

onset density (energy) for the traces with larger set potential differences across the sample,

which is in good qualitative agreement with theoretical predictions.

We now turn our attention to the transport properties of BLG in the limit of nH > n∗.

The filling of these sub-bands creates a parallel transport channel in addition to the one

in the LES, thus defining the transport properties in this regime by two types of carriers

with distinct mobilities µ1,2, effective masses m∗
1,2 and sub-band densities n1,2 (here the
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index corresponds to the LES(1) and HES(2)) [136; 137]. In sharp contrast to a single band

Drude model, where ρxx(B) does not depend on the B field, in a two-carrier Drude theory

it is expected to become strongly modified, resulting in a pronounced B field dependence

[138] (In this analysis we have adopted a two band model instead of using a more involved

multi-band transport which explicitly includes inter-band scattering matrix elements (for

example see [139]) in order to reduce the number of fitting parameters for experimental

comparison.) :

ρxx(B) =
n1µ1 + n2µ2 + (n1µ1µ

2
2 + n2µ2µ

2
1)B

2

e((n1µ1 + n2µ2)2 + µ21µ
2
2(n1 + n2)2B2)

, (3.13)

Fig. 3.8 (a) shows magneto-resistance traces for different fixed Hall densities nH . Close

to the CNP, where only the LES are populated (Fig. 3.8 (a) black trace), the ρxx(B) traces

are nearly flat as expected from the one-fluid Drude theory. When the density is increased

and the HES starts to fill up, however, we observe a smooth transition to an approximately

parabolic B field dependence, resulting in a strong increase of ρxx of up to 25% from 0 T to

8 T. Using the previously extracted carrier densities in the two bands n1,2 we can now fit the

ρxx(B) traces with the two-carrier Drude model in Eq. 3.13, with the mobilities of the two

sub-bands µ1,2 as the only fitting parameters. As shown in Fig. 3.8 (b) the experimental

finding are in excellent agreement with the theory, allowing us to deduce the values of µ1,2

with good accuracy. Moreover, the ability to extract the mobilities of the HES allows us

now to characterize the HES in more detail.

In Fig. 3.8 (c) we plot the extracted mobilities of the HES µ2 against the carrier density

in the HES n2 and compare it to the mobilities µ1 of the LES at a similar range of sub-band

densities in the LES n1. We find that the mobilities in the HES are at least a factor of two

higher than those in the LES. Considering that the effective carrier masses are similar for

the LES and the HES, this feature of the HES may be due to the enhanced screening of

charged impurity scatterers at higher carrier densities, effectively reducing the scattering

rate of the HES carriers on these scatterers. A more detailed theoretical study is required,
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Figure 3.8: (a) Longitudinal resistivity ρxx(B) as a function of magnetic field for nH =
(0.84, 2.88, 3.00, 3.31, 3.83, 4.21, 6.96)× 1013 cm−2, from top to bottom. The ρxx(B) traces
undergo a smooth transition from a nearly B independent behavior when the HES is empty
(below nH < n∗ ∼ 2.6 × 1013 cm−2), to a strong, non-trivial B dependence when the
HES is occupied. (b) An exemplary ρxx(B) trace at nH = 3 × 1013 cm−2 and nSdH =
0.12×1013 cm−2 with accompanying fit (dashed grey line) from Eq. 3.13, using the mobilities
in the LES µ1 = 741 Vs/cm2 and the HES µ2 = 2303 Vs/cm2 as fitting parameters.
(c) The mobilities µ1,2(n) as extracted from ρxx(B) traces at various fixed nH as a function
of the density in the individual sub-bands.

however, to undertake a quantitative analysis of this problem.

In conclusion, using a polymer electrolyte gate we have achieved two-band conduction

in bilayer graphene. We have found that the filling of these bands above a Hall density

of |nH | > 2.4 × 1013 cm−2 is marked by an increase of the sample resistivity by ∼ 10%

along with the onset of SdH oscillations. From simultaneous Hall and magneto-resistivity

measurements, as well as the analysis of the SdH oscillations in the two carrier conduction

regime, we have characterized the distinct carrier densities and mobilities of the individual

sub-bands, where we have found a strongly enhanced carrier mobility in the HES of bilayer

graphene.



CHAPTER 4. INDUCING SUPERCONDUCTIVITY INTO GRAPHENE VIA
PROXIMITY EFFECT 73

Chapter 4

Inducing superconductivity into

graphene via proximity effect

4.1 Highly transparent SN junctions across stacked van der

Waals materials

Vertical stacking of van der Waals (vdW) materials holds great promises [140; 141; 30;

142; 143; 144; 145]. In analogy to oxide hetero-structures grown by molecular beam epi-

taxy (MBE) and pulsed laser deposition (PLD) techniques [146; 147; 148; 149; 150], vdW

stacking allows to engineer clean, atomically sharp and strongly interacting interfaces [30;

145]. Electronic coupling with properly chosen materials can severely modify the physical

properties of the parent compounds and potentially induce complex electronic phases.

So far research on graphene based vdW stacks has predominantly focused on its combi-

nation with gapped materials, most prominently hexagonal boron nitride (hBN) [30; 142;

143] that led to dramatic increases of graphene’s mobility to µ ∼ 106 cm2/Vs and allowed to

build high performance electronic devices [144; 141]. While coupling graphene with hBN en-

hances graphene’s intrinsic properties by isolating it from the environment, the interaction

between these materials is minimal. A direction so far not explored, however, is to couple

graphene with materials that strongly interact with it and could severely modify its elec-
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tronic properties, for example by inducing complex electronic phases, such as magnetism,

spin-orbit coupling, and superconductivity.

Here it is essential to cleanly couple graphene to the interacting material and to create a

highly transparent electronic interface between the two. However, it has proven to be quite

challenging, as the typical deposition techniques, such as sputtering, evaporation, atomic

layer deposition (ALD), and MBE growth, were shown to be often evasive and/or failed

to produce transparent electronic coupling between graphene and the electrodes, resulting

in rough and amorphous interfaces [31; 151; 152; 32; 153; 154]. Interfaces between vdW

materials could be therefore advantageous here, as one can easily couple single crystals with

atomically sharp and clean interfaces. Additionally, the rich variety of choices and the myr-

iads of exotic phases in the vdW materials zoo, reaching from antiferromagnetism (AFM)

and high temperature superconductivity in cuprates, to charge-density wave (CDW) and

strong spin-orbit coupling in transition metal di-chalcogenides, allow for countless combi-

nations.

In this chapter, we demonstrate the formation of electronically coupled vdW inter-

faces with highly transparent Ohmic contact resistances below Rcnt < 200 Ω between

stacked high mobility hBN/graphene devices and the superconducting transitional metal

di-chalcogenide NbSe2 [155; 156; 157; 158; 159]. Due to Andreev reflections (AR) [47;

45] across the superconductor-to-normal (SN) interface formed below NbSe2’s critical tem-

perature Tc ∼ 6.8 K the differential conductance dI/dV becomes highly nonlinear and can

be modeled with a BKT-theory [46; 45] for highly transparent SN interfaces with Z ∼ 0.5,

as was derived in chapter 1. Due to the large SC gap of NbSe2 ∆NbSe2 ∼ 1.2 meV [155]

and the ultra clean properties of the so fabricated interfaces [30; 145] we can test a long

proposed, but experimentally yet to be realized phase space, where the Fermi energy of

graphene can be tuned to values ϵF ∼ ∆NbSe2 . Approaching this regime for a hBN/bilayer

graphene/NbSe2 stack, we observe strongly modulated AR probabilities, which are in good

agreement with theoretical expectations [19; 48; 160].



CHAPTER 4. INDUCING SUPERCONDUCTIVITY INTO GRAPHENE VIA
PROXIMITY EFFECT 75

4.1.1 Andreev reflections in the ϵF ∼ ∆ regime in bilayer graphene

In this section we report on inducing superconducting (SC) correlations into bilayer graphene

across an electrically coupled vdW superconductor NbSe2. In general the SC proximity ef-

fect in graphene is of great interest, as it allows to study the combination of the Dirac

equation with the Bogoliubov-de Gennes equations (BdG) [19; 48], leading to exotic pre-

dictions like the occurrence of specular AR at the monolayer graphene/SC interface when

ϵF ∼ ∆ [19], with very similar effects expected for bilayer graphene [160]. Here, instead

of the typical retro-reflection process for ARs, where the momentum of the reflected hole

is parallel to the momentum of the incident electron, for specular AR’s the hole reflects

back at an angel. In general, the regime ϵF ∼ ∆ has so far not been demonstrated,

as it demands for ultra clean graphene with very small potential fluctuations [161; 162;

163] and a transparent electronic interface to a SC with a large gap ∆.

For this purpose NbSe2 is an ideal candidate, since besides its rich electronic properties

with the coexistence of CDW and SC phases at low temperatures and a relatively large SC

gap of ∆NbSe2 ∼ 1.2 meV, it is also chemically stable and can be obtained at ultra high

purities. Fig. 4.1 (a) demonstrates typical resistance R vs. temperature T measurements of

a mechanically exfoliated 50 nm thick NbSe2 single crystals, with a very sharp SC transition

at Tc ∼ 6.8 K and a wide “hump” due to the CDW transition below Tcdw ∼ 33 K. Here the

resistance was measured in a 4-point geometry after establishing electrical contact by direct

transfer of the freshly cleaved crystal onto four pre-deposited gold electrodes, resulting

in very low, Ohmic contact resistances with typical values of 50-500 Ω. The clear non-

monotonicity of the resistance at the CDW transition and, despite the very thin crystal

thickness, very sharp SC transition of δT ∼ 0.1 K demonstrate the high quality of the used

NbSe2.

In order to fabricate the SN junctions in the cleanest way possible and to reduce any sub-

strate or surface roughness issues, we employ a triple stacked geometry, where vertical stacks

of hBN/graphene/NbSe2 are created as shown in a Fig. 4.1 (b). Typical hBN/graphene

devices are fabricated following the exact recipes as demonstrated previously [30]. After an
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Figure 4.1: (a) Resistance R of the NbSe2 crystal versus temperature T . The crystal
undergoes a CDW and a SC phase transition below Tcdw ∼ 33 K and Tc ∼ 6.8 K respectively,
manifesting itself in a “hump” and a sharp drop to zero resistance with a transition width
of δT ∼ 0.1 K (inset). (b) Top : Fabrication of a hBN/graphene/NbSe2 stack. The cleaved
NbSe2 crystal is transferred onto a clean hBN/bilayer graphene stack from one side and
four pre-patterned gold electrodes from the other side. We perform 4-terminal current-
biased measurements to characterize the junction. Bottom : Sketch of the cross-section of a
vertical hBN/bilayer graphene/NbSe2 stack (left). AFM image of the junction area (right)
demonstrates the sharpness and smoothness of the so created SN junction. (d) Inset :
typical 4-terminal current-biased I-V measurements for different Vbg showing linear, Ohmic
characteristics. Contact resistance Rcnt versus back gate voltage Vbg before (red line) and
after (grey line) current annealing across the junction with Ianneal = 2 mA, resulting in a
clear decrease of Rcnt after the current is applied, obtaining a minimal contact resistance
of Rcnt ∼ 400 Ω (Vbg = −40 V).

annealing step in hydrogen/argon to clean graphene’s surface, we then transfer a freshly

cleaved, never exposed to chemicals 20 − 100 nm thin NbSe2 crystal. The NbSe2 crystal

then has an overlap with graphene on one side and with four pre-deposited gold electrodes

on the other side, which, as mentioned before, make excellent contact with the NbSe2.

To extract the contact resistance Rcnt between graphene and NbSe2, we inject a current

of Isd = 100 nA across the interface and measure the voltage drop across the interface Vsn.

In general the Vsn signal contains not only the voltage drop just across the graphene/NbSe2

interface, but, due to the intrinsic resistivity of graphene, also a small contribution from

the voltage drop inside the graphene channel Vxx. In order to compensate for this effect

we measure Vxx and subtract it from Vsn with Rcnt = (Vsn − Vxx)/Isd. Typical Rcnt vs.

Vbg measurements are shown in Fig. 4.1 (c). Here at negative Vbg, Rcnt has the lowest

values with slightly higher, asymmetric values at positive Vbg and with a sharp peak around
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the CNP at Vbg ∼ 0 V. Overall this behaviour is analogous to typical metal contacts with

graphene [164; 145], such as evaporated gold, or the recently developed side contacts, and

can be explained by pn-junction formation at the junction edge, due to work function

matching of the graphene with the deposited material under the contact area, with NbSe2’s

work-function having very similar values as gold. Here the direct consequence of such pn

junction formation is that most of the current is injected at the contact edge and not

underneath the contact interface.

Directly after transfer of NbSe2 onto graphene the junction characteristics are Ohmic

(inset of Fig. 4.1 (c)) and Rcnt has typically values of about 1 − 10 kΩ at Vbg = −40 V.

By passing a large annealing current of several mA across the interface, Rcnt can be further

reduced to values as low as 200 Ω (Vbg = −40 V) in the tails, one of the lowest values

reported for any graphene contact. In turn Rcnt becomes much higher and sharper in the

CNP region (Fig. 4.1 (c)). These changes due to current annealing could be explained by a

better hybridization of the vdW crystals at the interface resulting in an effectively reduced

size of interfacial potential fluctuations.

To further characterize the junction properties we perform 4-point current biased dV/dI-

measurements as a function of source drain current Isd. While for T > Tc dV/dI does not

show any strong nonlinearities, for T < Tc sharp nonlinearities starts to appear, becoming

stronger as T is lowered (Fig. 4.2 (a)). As is common practice in SC proximity effect

experiments, to better resolve the nonlinearities below Tc, we can take dV/dI traces be-

low and above Tc, here at T = 1.7 K and T = 10 K, and normalize these by dividing

them by each other, so defining the normalized differential conductance G1.7K/G10K =

(dV/dI10K)/(dV/dI1.7K). Furthermore, employing the previously extracted Rcnt’s, we can

find the corresponding junction bias voltage Vsn = RcntIsd. The resulting normalized con-

ductance as a function of Vsn is shown in Fig. 4.2 (b). The so obtained curve has two

pronounced conductance peaks at Vsn ∼ ±1.2 mV, coinciding with the size of SC gap of

NbSe2, ∆NbSe2 ∼ 1.2 meV, with quickly decaying tails at higher voltages and a conductance

dip centered around zero bias.
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Figure 4.2: (a) Differential resistance dV/dI vs. source-drain current Isd for different
temperatures. Below Tc ∼ 6.8 K the dV/dI signal becomes highly non-linear forming
a double-dip structure with a peak around Isd = 0 µA. (b) Normalized differential con-
ductance G1.7K/G10K vs. the voltage drop across the SN interface Vsn, extracted from
dV/dI−traces taken below and above Tc. Fitted with an adjusted BKT-theory, we can
extract the size of SC gap ∆, which is marked by the two conductance peaks, as well as
the Z- and Γ-factors. Inset demonstrates the AR process. (c) Top : normalized differential
conductance G1.7K/G10K vs. source drain current Isd for consecutive current annealing
steps with the annealing current Ianneal across the SN interface with 1. Ianneal = 0.9 mA,
2. Ianneal = 1.5 mA, 3. Ianneal = 2.3 mA and 4. Ianneal = 3 mA. Overall, the shape
of G1.7K/G10K clearly broadens for consecutive annealing steps. Bottom : the extracted
Rcnt, Z- and -factors vs. Ianneal. While Rcnt is dramatically reduced, Z and increase for
consecutive annealing steps.

We can fit this dependence with a modified BKT [18; 46; 59; 165] theory which accounts

for the AR process in the conduction across SN junctions. As is shown in the inset of Fig. 4.2

(b) in an AR process a hole is reflected back in the same direction as the incident electron

effectively doubling the conduction and giving rise to a conduction increase for |eVsn| <

∆. Any realistic interface has a finite potential barrier, which can be approximatively

modeled by a Delta potential Hδ(x) with potential height H. The incident electron to this

barrier can be also just back-scattered, effectively reducing the conductance and leading to

a conductance dip around zero bias. These two different scattering events overall give rise

to the observed double-peak shape, with the magnitude of the central dip being directly

linked to the probability ratios between the two scattering processes which are defined by

the transparency factor Z = H/hvF [18]. Here, for a most realistic fit we also account for
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temperature smearing and a finite life-time of the quasi-particles expressed by Γ (Fig. 4.2

(b)).

Right after deposition of the NbSe2 the SN junction has a highly transparent interface

defined by Rcnt ∼ 1 kΩ (Vbg = −40 V), Z ∼ 0.5 and Γ ∼ 0.5∆, so allowing for a high prob-

ability of AR processes. Though, these characteristics can be altered by current annealing.

Fig. 4.2 (c) top shows G1.7K/G10K vs. Isd for four consecutive annealing steps at increasing

maximal annealing currents Ianneal with 0.9 mA, 1.5 mA, 2.3 mA and 3 mA resulting in a

continuous overall broadening of the double-peak shape, where the extracted Z and Γ are

enhanced, while Rcnt is continuously reduced (Fig. 4.2 (c) right). While, at first it is rather

counterintuitive that an increase of Z can lead to a decrease of Rcnt, it could be explained

by the increased Γ values. Here one possible scenario would be the formation of mid-gap

states in the potential barrier, which would overall lower Rcnt but induce disorder, hence

increase Γ.

Having successfully fabricated and characterized very clean graphene based SN junctions

with a high probability of AR, we can now approach the previously discussed regime where

ϵF ∼ ∆. Previous experiments were performed on low quality SiO2 substrates resulting

in very large potential fluctuations δϵF ∼ 100 meV [161; 31; 151; 152; 32; 153; 154]. Here

this regime could not be probed with the typical SCs, like aluminum, with their very small

SC gaps ∆ < 0.3 µeV. For graphene on hBN, these potential fluctuations can now have

rather small amplitudes of δϵF < 5 meV over spatial variations bigger than several µm [162;

163]. As has been explained before, in our devices the injected electrons enter the SC at

the very sharp SN junction edge (see Fig. 4.1 (b)), with a typical overall junction width

of ∼ 1 µm. Comparing the junction size with the expected spatial variation of δϵF (x),

paired with the large SC gap of NbSe2, it appears now to be feasible that when Vbg is

set at the CNP a large portion of the graphene/NbSe2 junction area fulfills the condition

ϵF ∼ ∆NbSe2 ∼ 1.2 meV.

In the center of Fig. 4.3 we plot G1.7K/G10K(Isd) versus Vbg, choosing here a much

smaller Isd range than in Fig. 4.2 to better resolve the inner gap region where |eVsn| < ∆.
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Figure 4.3: Left : Rcnt vs. Vbg showing the position of the CNP around Vbg ∼ 0 V, with
a corresponding half-width of δV ∼ 0.8 V. Center : G1.7K/G10K vs. Isd vs. Vbg. The
differential conductance is strongly re-normalized for Vbg in close proximity to the CNP.
Here zero bias dips alternate with zero bias peaks. Right : Line cut from the central figure
for Isd = 0 µA. While the conductance is reduced for Vbg far away from the CNP, it is then
enhanced close to it and then much stronger reduced in the CNP.

Here, while for large |Vbg| we obtain a familiar double-peak behavior, for |Vbg| in close

proximity to the CNP, G1.7K/G10K changes quite dramatically : the zero bias dip first

renormalizes into a peak and then changes back to a much more pronounced dip directly

at the CNP. This is better visible in a line-cut for G1.7K/G10K(0 µA) (Fig. 4.3 right),

where it becomes evident that G1.7K/G10K ∼ 0.95 < 1 for large |Vbg| but then is en-

hanced to G1.7K/G10K ∼ 1.02 > 1 around the CNP before it then is reduced even fur-

ther G1.7K/G10K ∼ 0.75 < 1 right at the CNP. Overall the region of the strongly altered

G1.7K/G10K behaviour coincides exactly with the region of the increased Rcnt (Fig. 4.3

left), where the half-width of the Rcnt vs. Vbg peak of ∆Vbg ∼ 0.8 V also is in excellent
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Figure 4.4: (a) T -dependence of G1.7K/G10K vs. Vsn. Several, equidistant conductance
dips appear for eVsn ≫ ∆NbSe2 . These dips scale with temperature as it is expected for the
T -dependence of ∆(T ) from the BCS theory. (b) B-dependence of G1.7K/G10K vs. Vsn.
Here the above gap resonances scale linearly with B-field.

agreement with the half-width of the G1.7K/G10K vs. Vbg region of ∆Vbg ∼ 1 V where

the signal is renormalized. From the half-width of the Rcnt peak we can estimated the

size of the potential fluctuations δϵF ∼ 3 meV matching the estimates above. In general,

this behaviour is in very good agreement with theoretical expectations for the effect of AR

on the conduction properties across the SN interface in the vicinity of the CNP [160] in

bilayer graphene, where the effective AR probabilities are expected to be altered due to the

pseudo-spin degree of freedom of the characteristic scattering probabilities.

One additional peculiarity is observed in the opposite regime where eVsn ≫ ∆NbSe2 .

Although the conduction properties should not be linked to the SC properties of NbSe2

since the electrons are injected at energies way above the SC gap, nevertheless we observe

a set of additional conductance dips that appear to be tightly linked to ∆NbSe2 (Fig. 4.4).

Here, we map out a wide voltage range of G1.7K/G10K vs. Vsn vs. temperature T and

perpendicular magnetic field B. All resonances voltages Vn,res, with n being the index of
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each resonance starting from lower voltages, scale proportionally to the T dependence of

∆NbSe2(T ) ∼ ∆(T = 0K)
√

1− T/Tc as expected from the BCS theory [36]. Overall we

identify four resonances that are at approximately equidistant δVsn voltage steps from each

other (Fig. 4.4 (a) and (b)) .

The explanation of these resonances could be the formation of standing waves of coher-

ent Andreev-pairs along the z-direction inside the NbSe2. Owing to its ultra thin thickness

of only d ∼ 50 nm and its clean vdW boundaries, such Andreev-states could be elasti-

cally reflected at the samples vertical boundaries and constructively interfere forming the

equivalent of Fabry-Perot oscillation inside a SC, the so-called Tomasch oscillations [166;

167; 168]. Such above-gap oscillations are typically observed in ultra thin films of very

pure SCs with very sharp interfaces. Here the resonance voltage is typically scaling as

Vn,res ∼
√

∆2 + (nhvF /2d)2 with h Plack’s constant and vF the Fermi velocity in the SC.

In general this behaviour is in good agreement with our observations, as it also allows for

multiple equidistant resonance dips that scale proportionally to the size of the SC gap.
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4.2 Co-existence of the quantum Hall effect and Andreev

reflections

Inducing superconducting correlations via proximity effect into a two dimensional conduc-

tor in the quantum Hall regime has been a long standing proposition which has recently

reinvigorated attention [28; 169; 29; 51]. Unlike any other conductor, the samples in the

QHE regime have an insulating bulk with conduction occurring only along the edges via

chiral edge states. Here, along the SN interface, Andreev reflected electron-hole pairs are

bound to the SN interface by strong B-fields, forming Andreev bound states (ABS) [29;

170; 49; 50; 51].

The high mobilities of the graphene in the previously introduced hBN/bilayer graphene/

NbSe2 stacks result in a low B-field onset of the QHE below B < 1 T [30; 142]. Together

with the relatively high upper critical field of NbSe2 Hc2 ∼ 4 T, it thus allows for a wide

B-field range of 1-4 T in which the Andreev reflections and the quantum Hall can coexist.

The high electronic transparency and the high probability of ARs at the SN interface of

such devices provide an ideal platform to probe the ABS.

4.2.1 Andreev spectroscopy in the quantum Hall regime in bilayer graphene

In this section we report on Andreev spectroscopy measurements in the quantum Hall regime

in high mobility hBN/bilayer graphene/NbSe2 devices. Here we are employing the stacking

technique presented in the previous section to contact a hBN encapsulated high mobility

bilayer graphene quantum Hall bar with NbSe2. As can bee seen in Fig. 4.5 (a) and (b), the

fabrication process, in comparison to the devices shown in the last section, involves several

extra steps. We start with the assembly of a graphene Hall bar on hBN [30] but leave one

end of the Hall bar un-contacted by a gold electrode. After cleaning the stack in a H/Ar

atmosphere we then cover only the contacted end of the Hall bar with a layer of thin hBN

to ensure the preservation of its ultra clean quality in the following fabrication steps. After

another H/Ar annealing step, we then deposit the freshly cleaved NbSe2 crystal on the hBN
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uncovered end of the Hall bar from one side and four pre-deposited gold electrodes on the

other side.

For such devices, using only the non SC electrodes we measure a Hall bar mobility of

µ ∼ 200.000 cm2/Vs and find fully quantized Hall plateaus in Rxy and zero longitudinal

resistances Rxx below B < 1 T with an onset of spin/valley splitting of the Landau levels

(LL) at B ∼ 4 T (Fig. 4.5 (c)). Furthermore with the four gold electrodes covered by NbSe2

we measure a sharp SC transition at Tc ∼ 7.2 K from R vs. T and a Hc2 ∼ 4 T from R vs.

B for the NbSe2 (Fig. 4.5 (d)). Following a similar scheme as in the previous section, we

measure Rcnt across the so created hBN/bilayer graphene/NbSe2 junction by employing a 4-

terminal current biased measurement setup across the junction with extracted Rcnt ∼ 1 kΩ

(Fig. 4.6 (a)). Fig. 4.6 (b) shows G1.7K/G10K vs. Vsn with the extracted fitting parameters

Z ∼ 0.7, that define the SN junctions electronic transparency, overall confirming a relatively

high probability of AR processes.

The detailed view of the T -dependence and the perpendicular B-dependence of the

G1.7K/G10K vs. Vsn are shown in Fig. 4.6 (c) and Fig. 4.6 (d) respectively. As AR’s can

take place only inside and in close proximity of ∆NbSe2 the differential conductance features

scale with the gap size as it is altered with T and B. Here, starting from Tc ∼ 7.2 K

∆NbSe2 scales in good agreement with the expected T -dependence from the BCS theory

∆NbSe2(T ) ∼ 1.74∆0

√
1− T/Tc [36], with the AR features becoming wider and stronger

as T is lowered. Similarly, as the B-field is increased ∆NbSe2 and the AR features become

linearly smaller and disappear at B ∼ 4 T in good agreement with Hc2. The linear B-

dependence of ∆NbSe2(B) is due to type-II SC properties and vortex formation in the

crystal of NbSe2. Interestingly we find oscillatory variations of the normalized conductance

with the B-field near zero bias, suggesting a potential origin due to Landau level (LL)

formation inside the graphene.

To better demonstrate the interplay of LLs and ARs, we set a constant density at

Vbg = 2 V and cross measure B-dependent Rxx and Rxy of the lowest lying LLs with

filling factors, ν = 4 and ν = 8 [131]. We observe the formation of the corresponding
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Figure 4.5: (a) Optical image of the hBN/bilayer graphene/NbSe2 hetero-structure before
and after deposition of the exfoliated NbSe2 crystal. Inset : layered cross-section of the
stack. (b) Illustration of the transfer assembly of the device. The NbSe2 flake is transferred
on top of the uncovered graphene region from one side and four pre-deposited gold electrodes
from the other side resulting in Ohmic electrical contact of the NbSe2 with all the parts.
(c) R vs. T and R vs. B of NbSe2 revealing the CDW transition Tcdw ∼ 33 K, the
SC transition Tc ∼ 7.2 K and a Hc2 ∼ 4 T. (d) Rxy and Rxx vs. Vbg at B = 8.8 T
demonstrating full quantization of the Hall plateaus and zero longitudinal resistance with
the onset of spin/valley splitting of ν = 2. Inset shows Rxy vs. B for various Vbg showing
fully quantized plateaus forming at B < T.
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Figure 4.6: (a) Schematics of the current biased measurement setup depicting Andreev
reflections at the SN interface. (b) Normalized differential conductance G1.7K/G10K vs. Vsn
fitted with an adjusted BKT model, with the Z ∼ 0.7 factor assuring a high probability of
AR’s. The two conductance peaks identify the SC gap of NbSe2 ∆NbSe2 . (c) T -dependence
ofG1.7K/G10K vs. Vsn showing the closing of ∆NbSe2 with a ∆NbSe2(T ) ∼ 1.74∆0

√
1− T/Tc

dependence, which is in good agreement with the BCS theory (dashed line) with a Tc ∼
7.2 K. (d) T -dependence of G1.7K/G10K vs. Vsn showing an almost linear ∆NbSe2(B)
dependence up to Hc2 ∼ 4 T.

fully quantized plateaus in Rxy and zero resistance in Rxx below Hc2 (Fig. 4.7 (a)). This

experimental scheme has clear advantages since the gaps between these LLs are much larger

than for LLs with higher ν hence allowing for a better resolution of these gaps. The

corresponding G1.7K/G10K vs. Vsn as a function of B is shown in Fig. 4.7 (b). Here,

while the outer gap regions are seemingly featureless, the inner gap region shows clear

variations of high (blue) and low (red) conductance regions that seem to coincide with

the B-field positions of the corresponding plateaus. Zooming in on the inner gap region

|eVsn| ∼ ∆NbSe2 we can resolve two striking features (Fig. 4.7 (c)). Here, additionally to the

approximately triangular region around Vsn ∼ 0 mV with its strong conductance variations

due to ARs we observe diagonal conductance variations cutting through the graph, with

their B-field positions at Vsn ∼ 0 mV exactly coinciding with the plateaus regions in Rxy.

We conclude that these diagonal segments in the Vsn vs. B map mark the LLs. As can

be seen in Fig. 4.7 (e), the LL dispersion relation as a function of B and ϵ scales almost



CHAPTER 4. INDUCING SUPERCONDUCTIVITY INTO GRAPHENE VIA
PROXIMITY EFFECT 87

Figure 4.7: (a) Resistance R of the NbSe2 crystal versus temperature T . The crystal
undergoes a CDW and a SC phase transition below Tcdw ∼ 33 K and Tc ∼ 6.8 K respectively,
manifesting itself in a “hump” and a sharp drop to zero resistance with a transition width
of δT ∼ 0.1 K (inset). (b) Fabrication of a hBN/graphene/NbSe2 stack. The cleaved
NbSe2 crystal is transferred onto a clean hBN/bilayer graphene stack from one side and
four pre-patterned gold electrodes from the other side. We perform 4-terminal current-
biased measurements to characterize the junction. (c) Sketch of the cross-section of a
vertical hBN/bilayer graphene/NbSe2 stack (left). AFM image of the junction area (right)
demonstrates the sharpness and smoothness of the so created SN junction. (d) Inset :
typical 4-terminal current-biased I-V measurements for different Vbg showing linear, Ohmic
characteristics. Contact resistance Rcnt versus back gate voltage Vbg before (red line) and
after (grey line) current annealing across the junction with Ianneal = 2 mA, resulting in a
clear decrease of Rcnt after the current is applied, obtaining a minimal contact resistance
of Rcnt ∼ 400 Ω (Vbg = −40 V).
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linearly. Here, by haven set the Fermi energy ϵF by the back gate Vbg = 2 V and by applying

a bias voltage Vsn across the SN interface we can effectively probe the energy levels of the

different LLs. A Cooper pair can only be injected into graphene as an electron-hole pair if

the energy of the LLs coincides with the Fermi energy level of NbSe2, which here, owing to

a finite tunneling junction at the SN interface can be tuned by Vsn. Indeed, by matching

the Fermi energy shift caused by Vsn, we can overlay the LL dispersion relation with Fig.

4.7 (c) finding good agreement with the measurement. We can hence define each segment

as compressible regions of partially filled LLs (marked as LL) and incompressible regions of

fully filled LLs (the QHP) respectively (Fig. 4.7 (c)).

These segments in the B-Vsn diagram are convoluted with the triangular region that is

marking ∆NbSe2(B), so defining regions where Cooper pairs are injected into the compress-

ible and incompressible QH regime. Having assigned these segments we can now analyze the

interplay between ARs and QHE by comparing G1.7K/G10K vs. Vsn for different B-fields

in Fig. 4.7 (d). We find severe differences when graphene is in the compressible vs. the

incompressible regime, where for the first the inner gap conductance is always decreased

and for the later the inner gap conductance is strongly increased.

This effect can be explained by the formation of ABS at the SN interface. Since in the

incompressible regime the bulk of the device is not conductive, the electrons and holes that

are created by an incident Cooper pair at the SN interface cannot diffuse away into the

bulk, but can only be bent back onto the SN interface, where they are AR again. The so

created alternating electron and hole states are bound to the SN interface so forming ABS.

The existence of these additional conductance states can effectively increase the overall

conductance of the SN junction as now every electron that is injected into the graphene has

multiple attempts to be AR as it is bent back onto the SN interface several times, effectively

increasing the overall AR probability. In addition this effect can be also increased due to

the chiral nature of the edge states. As the edge state are not allowed to back-scatter at

the SN interface an incident electron must have an increased AR probability.
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[121] L. Pietronero, S. Strässler, H. Zeller, and M. Rice. Electrical conductivity of a graphite

layer. Physical Review B, 22(2), 1980.

[122] H. Suzuura and T. Ando. Phonons and electron-phonon scattering in carbon nan-

otubes. Physical Review B, 65(23), 2002.

[123] S Ono and K Sugihara. Theory of the transport properties in graphite. Journal of

Physical Society op Japan, 21(5), 1966.

[124] K. Sugihara. Thermoelectric power of graphite intercalation compounds. Physical

Review B, 28, 1983.

[125] H. L. Störmer, A. C. Gossard, and W. Wiegmann. Observation of intersubband

scattering in a 2-dimensional electron system. Solid State Communications, 41(10),

1982.

[126] D. R. Leadley, R. J. Nicholas, J. J. Harris, and C. T. Foxon. Inter-subband scattering

rates in GaAs-GaAlAs heterojunctions. Semiconductor Science and Technology, 5(11),

1990.



BIBLIOGRAPHY 102

[127] G. Facer, B. Kane, R. Clark, L. Pfeiffer, and K. West. Carrier-lifetime enhancement

and mass discontinuity inferred from transport in a parabolic quantum well during

subband depopulation. Physical Review B, 56(16), 1997.

[128] J. Shabani, Y. Liu, and M. Shayegan. Fractional quantum Hall effect at high fillings

in a two-subband electron system. Physical Review Letters, 105(24), 2010.

[129] E. McCann. Asymmetry gap in the electronic band structure of bilayer graphene.

Physical Review B, 74(16), 2006.

[130] T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg. Controlling the elec-

tronic structure of bilayer graphene. Science, 313(5789), 2006.

[131] K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Falko, M. I. Katsnelson, U. Zeitler,

D. Jiang, Schedin. F., and A. K. Geim. Unconventional quantum Hall effect and

Berry’s phase of 2π in bilayer graphene. Nature Physics, 2, 2006.

[132] E. Castro, K. Novoselov, S. Morozov, N. Peres, J. dos Santos, J. Nilsson, F. Guinea,

A. K. Geim, and A. Neto. Biased bilayer graphene : Semiconductor with a gap tunable

by the electric field effect. Physical Review Letters, 99(21), 2007.

[133] J. B. Oostinga, H. B. Heersche, X. Liu, A. F. Morpurgo, and L. M. K. Vandersypen.

Gate-induced insulating state in bilayer graphene devices. Nature Materials, 7, 2007.

[134] Y. Zhang, T.-T. Tang, C. Girit, Z. Hao, M. C. Martin, A. Zettl, M. F. Crommie,

Y. R. Shen, and F. Wang. Direct observation of a widely tunable bandgap in bilayer

graphene. Nature, 459(7248), 2009.

[135] J. Ye, M. F. Craciun, M. Koshino, S. Russo, S. Inoue, H. Yuan, H. Shimotani, A. F.

Morpurgo, and Y. Iwasa. Accessing the transport properties of graphene and its

multilayers at high carrier density. PNAS, 2011.

[136] S. Cho and M. Fuhrer. Charge transport and inhomogeneity near the minimum

conductivity point in graphene. Physical Review B, 77(8), 2008.



BIBLIOGRAPHY 103

[137] H. van Houten, J. G. Williamson, M. E. I. Broekaart, C. T. Foxon, and J. J. Har-

ris. Magnetoresistance in a GaAs-heterostructure with double subband occupancy.

Physical Review B, 37, 1988.

[138] N. W. Ashcroft and N. D. Mermin. Solid State Physics. New York : Holt, 1976.

[139] E. Zaremba. Transverse magnetoresistance in quantum wells with multiple subband

occupancy. Physical Review B, 45, 1992.

[140] A. K. Geim and I. V. Grigorieva. Van der Waals heterostructures. Nature, 499(7459),

2013.

[141] L. Britnell, R. M. Ribeiro, A. Eckmann, R. Jalil, B. D. Belle, A. Mishchenko, Y. J.

Kim, R. V. Gorbachev, T. Georgiou, S. V. Morozov, A. N. Grigorenko, A. K. Geim,

C. Casiraghi, A. H. C. Neto, and K. S. Novoselov. Strong light-matter interactions in

heterostructures of atomically thin films. Science, 340(6138), 2013.

[142] C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren, K. Watanabe,

T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard. Multicomponent fractional quan-

tum Hall effect in graphene. Nature Physics, 7(9), 2011.

[143] M. Yankowitz, J. M. Xue, D. Cormode, J. D. Sanchez-Yamagishi, K. Watanabe,

T. Taniguchi, P. Jarillo-Herrero, P. Jacquod, and B. J. LeRoy. Emergence of super-

lattice Dirac points in graphene on hexagonal boron nitride. Nature Physics, 8(5),

2012.

[144] N. M. Gabor, J. C. W. Song, Q. Ma, N. L. Nair, T. Taychatanapat, K. Watanabe,

T. Taniguchi, L. S. Levitov, and P. Jarillo-Herrero. Hot carrier-assisted intrinsic

photoresponse in graphene. Science, 334(6056), 2011.

[145] L. Wang, I. Meric, P. Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe,

L. M. Campos, D. A. Muller, J. Guo, P. Kim, J. Hone, K. L. Shepard, and C. R. Dean.



BIBLIOGRAPHY 104

One-dimensional electrical contact to a two-dimensional material. Science, 342(6158),

2013.

[146] S. Gariglio, N. Reyren, A. D. Caviglia, and J. M. Triscone. Superconductivity at the

LaAlO3/SrTiO3 interface. Journal of Physics-Condensed Matter, 21(16), 2009.

[147] A. Ohtomo and H. Y. Hwang. A high-mobility electron gas at the LaAlO3/SrTiO3

heterointerface. Nature, 441(7089), 2006.

[148] J. Son, P. Moetakef, B. Jalan, O. Bierwagen, N. J. Wright, R. Engel-Herbert,

and S. Stemmer. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000

cm2V−1s−1. Nature Materials, 9(6), 2010.

[149] S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart. Tunable

quasi-two-dimensional electron gases in oxide heterostructures. Science, 313(5795),

2006.

[150] A. Tsukazaki, A. Ohtomo, T. Kita, Y. Ohno, H. Ohno, and M. Kawasaki. Quantum

Hall effect in polar oxide heterostructures. Science, 315(5817), 2007.

[151] X. Du, I. Skachko, and E. Y. Andrei. Josephson current and multiple Andreev reflec-

tions in graphene SNS junctions. Physical Review B, 77(18), 2008.

[152] F. Miao, S. Wijeratne, Y. Zhang, U. C. Coskun, W. Bao, and C. N. Lau. Phase-

coherent transport in graphene quantum billiards. Science, 317(5844), 2007.

[153] K. Komatsu, C. Li, S. Autier-Laurent, H. Bouchiat, and S. Gueron. Superconducting

proximity effect in long superconductor/graphene/superconductor junctions: From

specular Andreev reflection at zero field to the quantum Hall regime. Physical Review

B, 86(11), 2012.

[154] P. Rickhaus, M. Weiss, L. Marot, and C. Schonenberger. Quantum Hall effect in

graphene with superconducting electrodes. Nano Letters, 12(4), 2012.



BIBLIOGRAPHY 105

[155] B. P. Clayman and R. F. Frindt. Superconducting energy gap of NbSe2. Solid State

Communications, 9(22), 1971.

[156] R. F. Frindt. Superconductivity in ultrathin NbSe2 layers. Physical Review Letters,

28(5), 1972.

[157] I. Naik and A. K. Rastogi. Charge density wave and superconductivity in 2H-and

4H-NbSe2 : A revisit. Pramana-Journal of Physics, 76(6), 2011.

[158] A. Soumyanarayanan, M. M. Yee, Y. He, J. van Wezel, D. J. Rahn, K. Rossnagel,

E. W. Hudson, M. R. Norman, and J. E. Hoffman. Quantum phase transition from

triangular to stripe charge order in NbSe2. PNAS, 110(5), 2013.

[159] N. E. Staley, J. Wu, P. Eklund, Y. Liu, L. J. Li, and Z. Xu. Electric field effect on

superconductivity in atomically thin flakes of NbSe2. Physical Review B, 80(18), 2009.

[160] T. Ludwig. Andreev reflection in bilayer graphene. Physical Review B, 75(19), 2007.

[161] J. Martin, N. Akerman, G. Ulbricht, T. Lohmann, J. H. Smet, K. Von Klitzing,

and A. Yacoby. Observation of electron-hole puddles in graphene using a scanning

single-electron transistor. Nature Physics, 4(2), 2008.

[162] J. M. Xue, J. Sanchez-Yamagishi, D. Bulmash, P. Jacquod, A. Deshpande, K. Watan-

abe, T. Taniguchi, P. Jarillo-Herrero, and B. J. Leroy. Scanning tunnelling microscopy

and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials,

10(4), 2011.

[163] K. M. Burson, W. G. Cullen, S. Adam, C. R. Dean, K. Watanabe, T. Taniguchi,

P. Kim, and M. S. Fuhrer. Direct imaging of charged impurity density in common

graphene substrates. Nano Letters, 13(8), 2013.

[164] F. N. Xia, V. Perebeinos, Y. M. Lin, Y. Q. Wu, and P. Avouris. The origins and

limits of metal-graphene junction resistance. Nature Nanotechnology, 6(3), 2011.



BIBLIOGRAPHY 106

[165] T. Y. Chen, S. X. Huang, and C. L. Chien. Pronounced effects of additional resistance

in Andreev reflection spectroscopy. Physical Review B, 81(21), 2010.

[166] W. J. Tomasch. Geometrical resonance and boundary effects in tunneling from su-

perconducting In. Physical Review Letters, 16(1), 1966.

[167] C. Visani, Z. Sefrioui, J. Tornos, C. Leon, J. Briatico, M. Bibes, A. Barthelemy, J. San-

tamaria, and J. E. Villegas. Equal-spin Andreev reflection and long-range coherent

transport in high-temperature superconductor/half-metallic ferromagnet junctions.

Nature Physics, 8(7), 2012.

[168] T. Wolfram and G. W. Lehman. Theory of Tomasch effect. Physics Letters A, A

24(2), 1967.

[169] M. Ma and A. Y. Zyuzin. Josephson effect in the quantum Hall regime. Europhysics

Letters, 21(9), 1993.

[170] T. Dirks, T. L. Hughes, S. Lal, B. Uchoa, Y. F. Chen, C. Chialvo, P. M. Goldbart,

and N. Mason. Transport through Andreev bound states in a graphene quantum dot.

Nature Physics, 7(5), 2011.


	List of Figures
	List of Tables
	1 Introduction
	1.1 Overview and outline
	1.2 Theoretical overview of graphene
	1.2.1 Graphenes band structure from the tight-binding approximation
	1.2.2 Van Hove singularities in graphene

	1.3 Predictions of intrinsic superconductivity in graphene
	1.3.1 Superconductivity in graphite intercalation compounds

	1.4 Superconducting proximity effect induced electronic correlations in graphene
	1.4.1 Andreev reflections from the BKT theory
	1.4.2 Magnetic field dependent Andreev reflections


	2 Strong carrier density modulation with electrolytic gates
	2.1 Electrolytic gating
	2.1.1 Electric field effect in material science - an overview
	2.1.2 Solid polymer electrolytes and ionic liquids
	2.1.3 Electric double layer model for metal-electrolyte interfaces
	2.1.4 Tailoring electrolytic gates towards better performance
	2.1.5 Graphene devices with highest possible carrier densities

	2.2 Ionic liquid gating of complex oxide thin films
	2.2.1 Density dependent transport studies of Sr2IrO4

	2.3 Driving intercalation reactions with electrolytic gates
	2.3.1 Optical imaging of lithium intercalation kinetics in graphite


	3 Transport properties of graphene in the metallic limit
	3.1 Graphene at high carrier densities
	3.2 Electron-phonon interactions at the cross-over from a semi-metal to a metal
	3.2.1 Theory of electron-acoustic phonon interactions in graphene
	3.2.2 Temperature dependent transport in density controlled graphene

	3.3 Accessing the high energy sub-bands in bilayer graphene
	3.3.1 Multiband transport in bilayer graphene at high carrier densities


	4 Inducing superconductivity into graphene via proximity effect
	4.1 Highly transparent SN junctions across stacked van der Waals materials
	4.1.1 Andreev reflections in the F  regime in bilayer graphene

	4.2 Co-existence of the quantum Hall effect and Andreev reflections
	4.2.1 Andreev spectroscopy in the quantum Hall regime in bilayer graphene


	Bibliography

