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ABSTRACT 

 

Toward a Mechanistic Understanding of Hepatic Insulin Action and Resistance 

Joshua R. Cook 

 

The development of insulin resistance (IR) in the liver is one of the key pathophysiologic events in the 

development of type 2 diabetes mellitus, but most patients do not become uniformly resistant to the 

hepatic actions of insulin. Although insulin loses its ability to blunt glucose production, it largely retains its 

capacity to drive lipogenesis. This “selective IR” results in the characteristic hyperglycemia and 

dyslipidemia of type 2 diabetes. In this thesis, we take two approaches to better understand the 

mechanisms underlying selective IR. First, the compensatory chronic hyperinsulinemia (CHI) of insulin 

resistance downregulates levels of the insulin receptor (InsR). We have therefore modeled CHI in primary 

hepatocytes to demonstrate that the reduction in InsR number results in insufficient signaling capacity to 

halt glucose production while still leaving enough residual signaling capacity to promote lipogenesis. That 

is, the two processes are inherently differentially sensitive to insulin. Second, we hypothesize that FoxO1, 

a key insulin-inhibited transcription factor, coordinately regulates both hepatic glucose and lipid 

homeostasis. We have developed a transgenic mouse model heterozygous for a knocked-in allele of DNA 

binding-deficient FoxO1 and have proceeded to dissect the mechanisms by which FoxO1 differentially 

regulates glucose and lipid handling. We found that while the former requires FoxO1 to bind to its 

consensus sequences in target-gene promoters, the latter proceeds via a co-regulatory action of FoxO1. 

Taken together, these findings reveal novel connections between the glucose and lipid “arms” of the 

insulin-signaling pathway and how they may go awry in the run-up to diabetes. 
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grandchildren, and pet birds.  

Pa passed away in 2013 at the age of 88. Remarkably, however, although he never strayed 

above the lean BMI range, he had lived with type 2 diabetes since his initial diagnosis in the late 1960s. 

Pa was truly a model patient, keeping copious records of his FSBG readings and using them, as his 

scientific training no doubt inspired him, to better understand his metabolism and how best to control it. 

Because of his conscientious and analytic approach, he was well controlled on oral medications for many 

years. Only in the last decade or so of his life did he require basal insulin injections, which he 

administered religiously and without complaint.  

Given this history, it is no coincidence that I have dedicated the entirety of my time in biomedical 

research thus far – and very likely in the future – to studying various aspects of insulin action and 

production. During my time as a PhD student, I even presented Pa’s story as a model of how much 

diabetes research has improved quality and length of life for so many to the CUMC Board of Advisors. 

Near the end of his life, however, his insulin dosage requirements dropped and neither I nor apparently 

his doctors considered the possibility that it might be a sign of a problem. We will never know if it was or 
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not, but I will never forgive myself for not thinking to question it at the time. I will take this as a lesson in 

the importance of bridging the knowledge we obtain through our work in laboratory to the lives of our 

patients and loved ones.  

Pa was living proof of the old adage that still waters run deep. He never sought to draw attention 

but it was clear that behind his smiling eyes lay the soul of somebody who not only noticed but even 

reveled in the small wonders of life. He derived happiness from living in a world in which even the 

individual flowers and birds he sketched were imbued with a quiet dignity and intricate beauty that made 

everything feel as though it were meant to hang together by some benevolent grand design. He derived 

happiness from assembling his long and rich life into carefully curated and annotated photo albums and 

collections that tell of a journey well taken. But most of all, he derived happiness from giving everything he 

could for the ones he loved. For his country, he lied about his age to be able to begin his army service 

early. For his neighbors, he was eloquent and charming; everyone he knew around town from the 

pharmacist to the manager at Wendy’s remarked that their days felt brighter for having enjoyed his 

company. For his colleagues, he led always by example of patience and grace, spurring them to keep up 

with their former boss even a quarter century into his retirement.  

As for his family, however, there is no real way to express succinctly all that he gave, and of how 

much I miss all of that now. Yes, he gave of his considerable wisdom, he gave hugs and kisses, he gave 

countless memorable Thanksgiving dinners and hunts for the afikomen. Much as I miss those things, 

however, the hole in my heart that is left by his passing would not be refilled merely were those to return. 

Rather, I miss him, my real-life example of what a true human being is. I miss his warm smile and the way 

that it made me feel as though any worries I had were not so enormous that they could not be solved by 

approaching them as he would. I miss the way that he proved that the chaos of life in the modern world 

could be wrangled into order by being proactive yet patient. I miss his gentle sense of humor and how he 

laughed in his characteristic chuckle with and never at people. I miss the way he wanted to learn about 

everything. I miss the way he seemed to deeply understand everything I told him, even when some of it 

was not explicitly spoken. I miss the way that the world felt more humane and more purposeful because 

he was there to contribute his spirit to it.  
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I want all of this to be entered into the record forever in this dissertation because this work would 

not have been possible without Pa there to keep my head held high. And, just in case it was not already 

clear enough, I want to restate how incredibly much I will always love Pa. 
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1.1. Hormonal Regulation of Energy Homeostasis 

The First Law of Thermodynamics implies that energy must be supplied in at least equal measure to what 

the body must expend in carrying out the myriad processes of living [1]. The monosaccharide glucose is 

the metabolic fuel favored by most cell types in the body, in particular neurons and erythrocytes. Thus 

maintaining a relatively consistent, moderate blood glucose concentration (termed euglycemia) is a matter 

of grave physiologic importance.  Evolution has devised an intricate network of hormonal signals that 

coordinate nutrient catabolism and anabolism in a variety of tissues in order to maintain euglycemia 

regardless of the time of day or feeding state [2].  

Although much of the regulatory control of carbon metabolism remains controversial, a basic 

framework underpinning bodily energy flux has emerged through years of study. Following ingestion of 

food, nutrients are absorbed across the intestinal epithelium to enter the circulation. Upon passing 

through the islets of Langerhans, the endocrine compartment of the pancreas, these nutrients – especially 

glucose – trigger the secretion of the peptide hormone insulin from islet-resident pancreatic β cells [3 pp. 

753-756]. Other mechanisms also exist to link nutrient ingestion with insulin secretion, including the 

secretion of “incretin” hormones from the gut epithelium as well as neural pathways [4].  

Insulin in the bloodstream circulates to its various target organs whose cells express the insulin 

receptor (InsR). Insulin binds to this receptor to activate its downstream signaling pathways, as will be 

discussed in greater detail. Insulin is the body’s key anabolic signal, triggering the uptake and utilization of 

glucose from the bloodstream—especially by skeletal muscle and adipose tissue—as well as its storage 

as glycogen in liver and other sites. Insulin also coordinates the metabolism of lipids, including their 

biosynthesis by liver and adipose tissue as well as their inter-organ shuttling. In keeping with this general 

anabolic drive, insulin also promotes protein synthesis in a variety of tissues [3 pp. 744-756].  

 In the hours following food intake, insulin acts to partition dietary carbohydrates and lipids among 

various tissues in order to maintain euglycemia. As the energetic demands of cellular activity remain even 

while no new nutrients are absorbed, glucose is siphoned from the circulation, resulting in a lowering of 

blood glucose termed hypoglycemia. Even slight drops in blood sugar trigger the cessation of insulin 

secretion, thus curtailing the postprandial anabolic drive in order to reallocate energy reserves for 
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catabolic use. There are several overlapping mechanisms the body uses to signal this fed-to-fasting 

transition, including secretion of the peptide hormone glucagon from endocrine pancreatic α cells and 

glucocorticoids from the adrenal cortex as well as action of the sympathetic autonomic nervous system [3 

pp. 744-756, 5 pp. 1503-1508].  

 These “counterregulatory” responses serve to buoy blood glucose levels back toward normal by 

halting glucose uptake by muscle and fat, stimulating β-oxidation of fatty acids by multiple cell types, and 

by stimulating hepatic glucose production (HGP). This latter mechanism involves both the breakdown of 

stored glycogen (glycogenolysis) and the regeneration of glucose from its glycolytic breakdown products 

and from certain amino acids (gluconeogenesis). The counterregulatory response also relieves insulin’s 

inhibition of the export of free fatty acids (FFA) and glycerol from adipose tissue to liver (the process of 

lipolysis) for use as β-oxdiative and gluconeogenic precursors, respectively. Following the next feeding 

period, the hormonal balance shifts back from counterregulatory factors to insulin [3 pp. 744-756, 5 pp. 

1503-1508]. Both insulin and glucose itself work to suppress fasting-induced HGP in addition to insulin’s 

aforementioned anabolic actions [2, 6]. 

 Under cases of prolonged fasting and starvation, the ability of the liver to produce glucose wanes 

due to diminished supply of gluconeogenic precursors. In this case, fatty acids liberated by lipolysis can 

be partially oxidized in the liver to ketone bodies, such as acetoacetate and β-hydroxybutyrate, which can 

then be further oxidized by the brain. This state, known as ketoacidosis, although meant to help fuel vital 

processes, comes at a great cost, as the disruption of acid-base balance if unchecked can result in 

altered mental status, coma, and death [3 pp. 744-756, 5 p. 1407].  

 This work focuses on metabolic regulation in the liver, arguably the most important orchestrator of 

peripheral energy homeostasis. Indeed, as mentioned, the liver acts as the body’s major rheostat for fine-

tuning levels of glucose and lipids in the blood, and thus throughout the body. As will be discussed, the 

liver is also a relatively late but indubitably substantial contributor to the development of perhaps the most 

pressing public-health crisis of our time, diabetes mellitus.  
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1.2. Diabetes Mellitus Results from Functional Insulin Deficiency 

1.2.1. Overview of Diabetes Mellitus 

The hormonal control of metabolism as described above is an elegant and intricate balance carefully 

stricken between the actions of insulin and counterregulatory factors [5 pp. 1503-1509]. Perturbations in 

this delicate balance result in metabolic disease, the most epidemiologically pressing of which is diabetes 

mellitus [7]. Diabetes mellitus, however, is actually a constellation of metabolic disorders united by a 

common etiology: the failure of insulin to counterweigh the counterregulatory hormones [7, 8]. This 

imbalance is reflected in the etymology of diabetes mellitus, “honeyed discharge,” refers to the spilling of 

glucose into the urine (glycosuria) [7, 9]. Glycosuria is the result of prolonged hyperglycemia, which in turn 

is due to the inability of insulin to fulfill all of its aforementioned goals in promoting glucose storage and 

utilization [9]. Meanwhile, counterregulatory hormones continue to drive their opposing processes, 

mobilizing glucose and decreasing its peripheral catabolism [7]. Based on epidemiologic data, the medical 

community has established three bright-line diagnostic criteria for diabetes [5 p. 1330, 10]: (i) a fasting 

blood glucose reading of 126 mg/dL or greater, (ii) a random blood glucose reading of above 200 mg/dL, 

and (iii) a HbA1c value of 6.5% or greater. This last metric is based on glycosylation of hemoglobin that is 

proportional to ambient blood glucose levels; it is therefore an index of chronic glycemic control [11].  

The “insulin failure” of diabetes, in practice, arises due to two main and related causes – either an 

absolute deficiency of insulin or a relative deficiency of insulin [8] . The most common cause of the first is 

autoimmune destruction of pancreatic β cells, referred to as type 1 diabetes mellitus (T1DM) [8]; less 

common causes of insulin deficiency include mutations in genes necessary for proper β-cell function 

(maturity onset diabetes of the young, or MODY) [12], pancreatitis [13], pancreatectomy [14], and the 

development of neutralizing antibodies to circulating insulin [15]. Treatment of these disorders requires 

first and foremost replacement of insulin to physiologic levels [16].  

By far the most prevalent form of the disease, however, is type 2 diabetes (T2DM), which arises 

from relative insulin deficiency [17]. Relative deficiency relates not only to production of insulin but also to 

its action [17-19]. That is, the target cells of insulin become less responsive to its actions, a state referred 

to as insulin resistance (IR) [17, 20]. This problem can also be formulated as a particular dose of insulin 
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not triggering a particular response to its normal maximal level; reaching that usual maximum requires a 

higher-than-normal dose of insulin [17]. Pancreatic β cells are able to compensate for IR, sometimes for 

many years, by undergoing hyperplasia to produce enough insulin as necessary to maintain euglycemia 

[5 pp. 1351-1352]. Over time, however, β cells fail to keep up production of insulin sufficient to overcome 

IR. This two-hit model – IR followed by β-cell failure – encapsulates the pathogenesis of T2DM [17] .  

Treatment of T2DM is in many ways more complex than treatment of T1DM [5 pp. 1364-1365]. 

Replacing “lost” insulin bypasses the pathologic lesion of T1DM, but in T2DM insulin therapy alone does 

not solve the underlying problem of IR [21]. In fact, type 2 diabetic patients often do not require insulin 

therapy unless their disease is quite advanced [22, 23]. Instead, they can be treated with a variety of 

drugs that act as insulin “sensitizers” [24]. By decreasing the severity of IR, patients’ own β cells – which, 

unlike in T1DM, are still at least partially active – may be able to pick up the slack [21]. In reality, the ideal 

therapy for T2DM would not address IR but rather the root cause of IR itself. The literature on the causes 

of IR is extensive, but epidemiologically speaking, it appears in Western societies often to boil down to 

years of living an unhealthy lifestyle, usually manifested as diet-induced obesity (DIO) [25-27]. 

Concordantly, prescribing a “lifestyle intervention” focusing on diet and exercise in and of itself is a proven 

means of combatting T2DM, and acts in a powerful synergy with pharmacotherapy [5 pp. 1360-1364, 28].  

Problematically, however, many diabetic patients do not adhere to their prescribed therapies, and 

thus the disease’s many complications are able to rear their ugly heads. Untreated diabetes appears to 

wreak havoc in particular on blood vessels, and thereby secondarily damage the organs served by the 

affected vasculature [5 pp. 1417-1432]. The complications of diabetes have therefore traditionally been 

grouped into two main categories: microvascular and macrovascular [29]. The microvascular 

complications of diabetes arise largely due to hyperglycemia, while the macrovascular complications of 

diabetes are believed to relate more to derangements in lipid metabolism [30-34]. Because of these 

complications, it has been estimated that diabetes shortens life expectancy by up to 10 years [35]. 
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1.2.2. Consequences of Hyperglycemia – Microvascular Complications 

Persistent hyperglycemia results over time in damage to small-caliber blood vessels and by extension to 

the tissues they serve; this is referred to as the microvascular complications of diabetes [29]. Although the 

relationship between glycemia and the incidence of particular complications is not strictly linear, large 

public-health studies demonstrate a strong and continuous correlation between the two in both T1DM and 

T2DM [16, 30, 31]. In particular, the correlation between glycemia and diabetic complications becomes 

much tighter above HbA1c levels of 7%, and thus this value represents a common target for glycemic 

control [10].  

 Three sites in particular, each richly vascularized with small-caliber vessels, represent major foci 

of hyperglycemic complications: the retina, the renal glomerulus, and the peripheral nerve [5 pp. 1417-

1420]. Over time, uncontrolled diabetes at these sites results in diabetic retinopathy, nephropathy, and 

neuropathy, respectively [5 pp. 1417-1420]. Diabetic retinopathy manifests as macular edema and has 

become the leading cause of adult-onset blindness in the United States [5 p. 1432]. Diabetic nephropathy 

has become the most common cause of end-stage renal disease (ESRD) [36], typically fatal within 4 

years of diagnosis [5 p. 1417]. Over 60% of diabetic patients suffer from neuropathies [5 p. 1417], which 

includes a variety of presentations including neuropathic pain, autonomic dysfunction (e.g., urinary 

incontinence, erectile dysfunction), and impaired motor coordination [37].  

 

1.2.3. Consequences of Dyslipidemia – Macrovascular Complications 

Diabetes had historically been thought of primarily as a disorder of carbohydrate metabolism, the 

microvascular complications of the disease serving as stigmata of chronic hyperglycemia. However, 

T2DM is also a disorder of lipid metabolism, and as a result rarely occurs in isolation. It is more typically 

associated with obesity, hypertension, and atherosclerosis, a pathologic assemblage referred to as 

“metabolic syndrome” and rooted in insulin resistance [38, 39]. T2DM, as with the IR state of metabolic 

syndrome generally, brings about characteristic lipid-metabolic abnormalities termed dyslipidemia. The 

typical abnormal blood lipid profile of T2DM includes high concentrations of TG and small, dense LDL and 

low concentrations of HDL [40]. Dyslipidemia, in turn, is thought to be responsible for the accelerated 
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development of atherosclerosis in major blood vessels including coronary and carotid arteries, hence 

“macrovascular complications” [41].  

Macrovascular complications are responsible for the largest portion of diabetic morbidity and 

mortality [42]. Indeed, the leading cause of death among people with diabetes, affecting as many as 80% 

of diabetic patients, is cardiovascular disease (CVD), including heart attack and stroke [43]. In fact, 

diabetic patients are up to four times more likely to develop CVD than non-diabetics [44]. Although 

hyperglycemia can contribute to and exacerbate CVD [45], CVD arises in large part as a primary result of 

insulin resistance rather than solely secondary to derangements in glucose metabolism as do the 

microvascular complications [46]. This is not necessarily surprising, however, as insulin is a dominant 

regulator of lipid metabolism in a variety of tissues.  

 

1.2.4. Hepatic Steatosis 

Despite the importance of serum lipid profile and events at the arterial wall in the pathogenesis of CVD, 

the main focus of this thesis is on insulin action in the liver. The importance of this is not to be 

underestimated, however, as IR in the liver alone is sufficient to foment dyslipidemia and atherosclerosis 

[47]. Moreover, the liver itself is vulnerable to lipid abnormalities. Obesity and IR are strongly correlated 

with the buildup of triglyceride in the liver, a condition termed hepatic steatosis [48-50]. Although “simple” 

hepatic steatosis may be clinically benign, it can progress to increasing degrees of liver dysfunction in 

non-alcoholic steatohepatitis (NASH) and even to cirrhosis [50]. This spectrum of pathologies is 

collectively referred to as non-alcoholic fatty liver disease (NAFLD) [48]. The seriousness of NAFLD as a 

public-health problem is highlighted by the fact that NAFLD has become the leading cause of liver failure 

requiring transplant in the United States. 

 Hepatic steatosis appears to result largely from two main sources: (i) increased influx of fat from 

adipocyte lipolysis (especially in obesity) and (ii) increased de novo lipogenesis (DNL) in the liver itself 

[48, 51]. Increased TG stores in the liver may in turn give rise to increased secretion in the form of VLDL, 

contributing to dyslipidemia and atherosclerosis, and potentially to worsening IR. It is important to note, 
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however, that there is not a strictly linear relationship between liver TG content and VLDL secretion [47, 

48, 52, 53].  

Despite the strong epidemiologic correlation between IR and NAFLD, the direction of causality (if 

any) remains difficult to define. Triglycerides in and of themselves do not appear to be injurious to 

hepatocytes [54], although TG metabolites such as ceramides [55] or diacylglycerols (DAG) [56, 57] may 

interfere with insulin signaling. Consequently, TG may even be beneficial to hepatocytes as a “safe” 

storage form for lipid species that may otherwise adversely affect cellular function [58, 59]. In other words, 

histologic hepatic steatosis may represent a compensatory epiphenomenon roughly proportional in extent 

to the concentrations of the invisible “true” bad actors [60, 61]. Consistent with this interpretation, 

transgenic mice with liver-specific overexpression of enzymes catalyzing the esterification of FFA and 

DAG to TG are protected from IR despite florid hepatic steatosis [62, 63]. Even in the more clinically 

relevant model of high-fat diet feeding, hepatic steatosis did not impair the direct actions of insulin on 

isolated rat livers, implicating extrahepatic factors in the development of steatosis-correlated hepatic IR 

[64]. In addition to these models of steatosis without IR, it should also be noted that some of the most 

severe cases of IR – the insulin receptoropathies, as will be discussed in Section 1.6 – are associated 

with normal or even low liver TG levels [65].  

Taken together, this evidence suggests that, if generalized IR does precede steatosis, it may be 

secondary to unchecked WAT lipolysis that would furnish ostensibly harmful FFA to the liver and further 

hinder hepatic insulin action [51, 60, 66]. This model is consistent with the widely held idea that the 

development of IR in WAT generally antedates hepatic IR by many years in the natural history of T2DM 

[67-71]. This may be especially important in obesity due to the enormously expanded pool of releasable 

fat and potentially detrimental alterations in fat composition [51, 66, 72].  

Finally, although increased FFA flux appears to be an integral contributor to hepatic steatosis, the 

liver itself is not passive in the process. Rates of hepatic DNL have been found to be as much as fivefold 

higher than normal in NAFLD even during fasting and may be increasingly important even relative to FFA 

re-esterification as the disease progresses [48, 73, 74]. Patients with type 2 diabetes (i.e., with hepatic IR) 

also exhibit higher rates of DNL [75]. Thus, whether or not hepatic IR is causally related to the initiation of 
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NAFLD, it may well be relevant to the disease’s progression both as cause and effect. These issues will 

be revisited in Chapter 5. 

1.3. The Proximal Insulin Signaling Pathway 

In order to be able to understand the pathogenic mechanisms underlying insulin resistance, it is 

necessary first to consider the actions of insulin under normal circumstances (illustrated in Fig. 1.1A). 

Insulin acts by binding to the insulin receptor (InsR) on the surface of target cells. InsR is a heterodimeric 

receptor tyrosine kinase consisting of two extracellular α subunits and two integral membrane β subunits 

[76]. The α and β subunits are the product of a single precursor polypeptide that undergoes 

posttranslational cleavage followed by the association of the cleaved subunits by disulfide bonds [76].  

The binding of insulin to its receptor triggers a conformational change that is translated through 

the receptor’s transmembrane domains, ultimately resulting in the autophosphorylation and activation of 

the receptor’s intracellular tyrosine kinase domains [77]. The autophosphorylation of tyrosine residues on 

InsR itself recruits several phosphotyrosine-binding proteins including the insulin receptor substrate (IRS) 

proteins, most importantly IRS1 and IRS2 [78]. InsR is able to phosphorylate several tyrosine residues 

within IRS1/2; these phosphotyrosines are then able to serve as docking sites for several SH2 domain-

containing proteins [79, 80]. Thus, IRS1/2, which are themselves devoid of enzymatic activity, serve as 

scaffolds upon which the insulin-signaling complex can be arranged in response to the activation of InsR 

[78, 81, 82].  

Arguably the most metabolically important Irs-binding protein is phosphoinositol-3-kinase (PI3K) 

[83]. PI3K is a modular enzyme composed of a regulatory subunit for which three genes exist (PIK3R1, 

PIK3R2, PIK3R3, encoding p85α, p85β, and p55γ, respectively) and a catalytic subunit, also encoded by 

three different genes (for p110α, β, and δ) [83]. The PI3K regulatory subunit contains an SH2 domain that 

binds to phosphotyrosine residues within IRS1/2 that, in turn, releases its inhibition of the associated 

catalytic subunit [83, 84]. The PI3K catalytic subunit is then able to phosphorylate the inner-leaflet plasma 

membrane glycolipid phosphatidylinositol-4,5-bisphosphate (PIP2) to phosphatidylinositol-3,4,5-

triphosphate (PIP3) [84]. The generation of PIP3 within the vicinity of the InsR/Irs complex allows for the 
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recruitment of protein kinase B, also known as AKT, one of the principal mediators of the metabolic 

effects of insulin signaling, via its pleckstrin homology (PH) domain [85]. Once localized to the plasma 

membrane by binding to PIP3, AKT can be activated by 3-phosphoinositide-dependent kinase-1 (PDK1) 

via phosphorylation of threonine 308 within AKT’s activation loop [86]. Several studies have indicated that 

the mammalian target of rapamycin complex-2 (mTORC2) is responsible for a second phosphorylation of 

AKT at Ser 473 [87-89]. Nevertheless, Ser 473 phosphorylation is also responsive to insulin, and the 

mechanism linking insulin signaling to Ser 473 phosphorylation by mTORC2 remains unclear [88].  

Although the upstream components of the insulin-signaling pathway are able to regulate other 

pathways, such as the MAPK signaling pathway through ERK1/2 [83], the preponderance of existing 

scientific evidence suggests that AKT is the most distal step of the pathway that unites insulin’s major 

effects on glucose and lipid metabolism [90]. In other words, it appears that these pathways diverge 

downstream of AKT. Having established this basic paradigm, more detailed descriptions of the 

mechanism of insulin’s actions on glucose and lipid metabolism in the liver follow below. 

 

1.4. Insulin Regulation of Hepatic Glucose Metabolism 

1.4.1. Overview of Hepatic Glucose Metabolism 

Two major peripheral target organs of insulin, skeletal muscle and adipose tissue, generally require 

insulin signaling to stimulate glucose uptake by inducing translocation of the GLUT4 glucose transporter 

to the cell surface [91]. Liver, however, expresses a different major glucose transporter, GLUT2, whose 

subcellular localization is not directly regulated by insulin and allows for the equilibration of glucose 

concentrations within the blood and the hepatocyte [92]. In order to retain glucose within the cell for 

further metabolism, hepatocytes express glucokinase (GCK), a hexokinase unique to liver and pancreatic 

β cells, which phosphorylates glucose to form glucose-6-phosphate (G6P) [93]. G6P is not subject to 

transport by GLUT2 and thus can be efficiently shunted to the various carbohydrate-metabolic pathways 

[93].  

 The two most important roads down which G6P proceeds are (i) the synthesis of glycogen, the 

major storage form of glucose, and (ii) catabolism via glycolysis and, ultimately, either lipid biosynthesis or 
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oxidative phosphorylation to generate energy in the form of adenosine triphosphate (ATP) [3 pp. 744-

752]. In the case of glycogen synthesis, G6P is converted to glucose-1-phosphate (G1P) that reacts with 

a molecule of uridine triphosphate (UTP) to generate UDP-glucose. UDP-glucose units are then coupled 

to the growing end of a glycogen chain with the subsequent release of UDP [3 pp. 481-487]. Glycogen is 

broken down in the process of glycogenolysis by the action of glycogen phosphorylase, which re-

generates G1P from glucose monomers within the glycogen chain. G1P can then be enzymatically 

converted back into G6P, which in turn can be dephosphorylated by glucose-6-phosphatase (G6Pase, the 

catalytic subunit of which is encoded by the G6PC gene) to yield glucose that can be released into the 

circulation [3 pp. 474-481].    

 The process of glycolysis transforms one molecule of G6P ultimately into two molecules of 

pyruvate [3 pp. 428-431]. Along the way, glycolysis results in the net generation of two molecules of ATP 

and of two molecules of NADH that act to shuttle electrons to the mitochondrial electron-transport chain 

for oxidative generation of more ATP [3 p. 446]. The two molecules of pyruvate are each converted by the 

pyruvate dehydrogenase complex (PDC) into acetyl-CoA that can proceed through the citric acid cycle to 

yield the net generation of two more molecules of ATP and six of NADH [3  pp. 517-524]. Acetyl-CoA is 

also the principal building block utilized in de novo lipogenesis, as will be described later [3 pp. 650-651]. 

Gluconeogenesis represents the reverse of glycolysis – the regeneration of glucose from 

pyruvate. Although this process proceeds merely by reversing most of the steps of glycolysis using the 

same enzymes, there are three main enzymatic transformations that differ between these processes and 

therefore are ideal loci of hormonal regulation [3 pp. 500-501]. First, pyruvate is produced from 

phosphoenolpyruvate (PEP) in one highly exergonic step by the ATP-generating enzyme, liver-type 

pyruvate kinase (L-PK, encoded by the PKLR gene) [3 pp. 443-445]. The reverse reaction therefore 

requires the input of significant energy and is not merely reversible through L-PK [3 pp. 500-501]. Instead, 

pyruvate is tagged with a CO2 adduct by pyruvate carboxylase to produce oxaloacetate, which is in turn 

converted back to PEP by PEP carboxykinase (PCK1, commonly known as PEPCK), classically 

considered the main rate-limiting step of gluconeogenesis [3  pp. 502-503, 94]. The next glycolytic 

reaction requiring a gluconeogenic workaround is the conversion of fructose-6-phosphate (F6P) to 
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fructose-1,6-bisphosphate (F1,6BP) by phosphofructokinase-1 (PFK-1) [3 pp. 433-434]. F1,6BP is 

converted back into F6P in the gluconeogenic pathway by the action of FBPase-1 [3 pp. 504-507]. The 

third non-reversible reaction required to complete gluconeogenesis is the same as the final step of 

glycogenolysis: the dephosphorylation of G6P to glucose by G6Pase, the reverse reaction of Gck [3 pp. 

480-481].  

As will be described, each of these pathways can be regulated via both posttranslational and 

transcriptional mechanisms. One of the most important mechanisms of exacting this control is through the 

modulation of the relative circulating levels of insulin and glucagon [7]. As mentioned earlier, during times 

of fasting, glucagon levels rise causing the liver to switch from storage and utilization of glucose to HGP in 

order to maintain euglycemia [3 pp. 752-756]. Thus, in this scenario, glycogen synthesis (glycogenesis) is 

decreased in favor of glycogen breakdown (glycogenolysis) while glycolysis also gives way to its reverse 

pathway, gluconeogenesis [3 pp. 752-756]. The processes of glycogenolysis and gluconeogenesis that 

are stimulated by counterregulatory factors are subject to negative regulation by insulin, also both by 

posttranslational and transcriptional mechanisms [3 pp. 752-756].  

The rate of HGP is highly sensitive to changes in the relative concentrations of insulin and 

glucagon [2]. The shift to higher concentrations of insulin following a meal reduces HGP within a matter of 

minutes, suggesting a predominance of posttranslational regulation of the proteins involved; over the 

course of a physiologic fast of several hours, about 75% of HGP results from glycogenolysis in response 

to counterregulatory signaling [95-97]. It therefore makes sense that the vast majority of the HGP-

suppressing effect of insulin during physiologic fasting is due to its net inhibition of glycogenolysis in favor 

of glycogen synthesis [98-102].  

The importance of gluconeogenesis is not to be overlooked, however. The relative contribution of 

gluconeogenesis to HGP appears to be greater in humans suffering from obesity and type 2 diabetes, as 

the percentage of HGP attributable to gluconeogenesis, as well as total HGP, are positively correlated 

with fasting plasma glucose [103]. Overall, the contribution of gluconeogenesis to HGP may be 50% 

higher in diabetic patients [103-105]. In fact, using an NMR-tracer method to follow carbon flux revealed 
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that glycogenolysis may even be decreased in diabetic patients and that increased gluconeogenesis is 

the culprit behind the fasting hyperglycemia of diabetes [106]. 

 

1.4.2. Posttranslational Regulation of Glycogenolysis by Insulin 

Multiple mechanisms contribute to insulin’s ability to shut down HGP. Insulin stimulates the activity of 

protein phosphatases such as PP1 that undo the activating phosphorylation events carried out by cAMP-

dependent protein kinase (PKA) in response to glucagon [107, 108]. Targets of this form of regulation 

include glycogen phosphorylase [109] and glycogen synthase (GS) [110]. Insulin signaling also promotes 

Akt-dependent phosphorylation of glycogen synthase kinase-3α and -3β (GSK3α/β). Phosphorylated 

GSK3α/β are then unable to carry out their glucagon-stimulated inhibitory phosphorylation of GS, thus 

allowing glycogen synthesis to proceed [111]. Although insulin’s inhibition of GSK3α/β has long been 

considered a major link between InsR and glycogen synthesis, the in vivo significance of this pathway in 

liver has recently been called into question [112].   

 

1.4.3. Posttranslational Regulation of Gluconeogenesis by Insulin 

Only following a prolonged fast of 24-48 h are hepatic glycogen stores depleted in humans, thus 

rendering the liver dependent upon gluconeogenesis to maintain euglycemia [113]. The ability of insulin to 

directly suppress gluconeogenesis, however, has been controversial [2]. Indeed, glycogenolysis appears 

to be far more sensitive to inhibition by insulin than does gluconeogenesis [98, 99]. A series of studies in 

dogs undergoing portal-vein insulin infusion has demonstrated that only at very high concentrations of 

insulin is there a net inhibition of net gluconeogenic flux [94, 114]. Even when insulin does appear to 

suppress net gluconeogenesis, the effect is transient except at the highest of insulin concentrations and 

may be due more to an increase in glycolysis than to a suppression of gluconeogenesis per se [94, 114]. 

In any event, inhibition of gluconeogenesis by insulin may be somewhat beside the point, as even in the 

fed state gluconeogenesis proceeds to produce G6P from pyruvate [94, 100, 101, 114]. The key 

difference lies in the fact that this G6P is shunted into insulin-stimulated glycogen synthesis rather than 

dephosphorylated and released into the circulation [97, 100, 115, 116].  
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The major effects of insulin on the acute regulation of gluconeogenesis in vivo may therefore be 

indirect [117, 118]. Insulin strongly suppresses the secretion of glucagon from pancreatic α cells, thus 

dampening the pro-gluconeogenic signal in fasting [119, 120]. Insulin also potently inhibits adipose-tissue 

lipolysis, thereby cutting off the supply of glycerol, an HGP substrate, and free fatty acids, which have 

been shown to potentiate HGP in a variety of ways [121-126]. Finally, insulin also decreases the release 

of gluconeogenic substrates such as lactate and alanine from skeletal muscle and other organs [127, 

128]. 

Despite the foregoing, insulin has been shown to posttranslationally regulate several steps of 

gluconeogenesis [2]. As in the case of glycogenolysis, insulin triggers the activation of phosphatases such 

as PP1 that undo the pro-gluconeogenic actions of glucagon-stimulated PKA activity. Perhaps the most 

important example of this is in the regulation of fructose-6-phosphate (F6P)/fructose-1,6-bisphosphate 

(F1,6BP) balance by phosphfructokinase-1 (PFK1) and F1,6BPase (FBP1) [129, 130]. PKA stimulates the 

activity of fructose-2,6-bisphosphatase (FBP2), converting fructose-2,6-bisphosphate (F2,6BP) to F6P. 

FBP2, however, is a bifunctional enzyme that also possesses a phosphofructokinase activity that is 

stimulated by insulin-dependent dephosphorylation of FBP-2. Upregulation of FBP2’s 

phosphofructokinase activity by insulin converts F6P back to F2,6BP, which acts as an allosteric activator 

of PFK1, thus driving the equilibrium between the PFK1/FBP1 reactions toward the former and driving net 

glycolysis [129, 130]. The increase in intracellular F2,6BP concentration has been posited to be the 

principal means by which insulin does exert its acute, if minor, repressive effect on gluconeogenesis [94, 

114, 131]. Nevertheless, insulin also triggers the reversal of PKA-mediated inhibition of L-PK as well, both 

by directly activating phosphatase activity [132, 133] as well as by increasing intracellular levels of 

F1,6BP, an allosteric activator of the enzyme [129]. Finally, insulin can inhibit the activities of pyruvate 

dehydrogenase kinase-2 and -4 (PDK2/4), which serve as negative regulators of the PDC [134]. Thus, in 

effect, insulin can facilitate the conversion of pyruvate to acetyl-CoA, effectively preventing its becoming a 

potential substrate for gluconeogenesis [2].   
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1.4.4. Transcriptional Regulation of HGP by Insulin Through FoxO1 

Although insulin and glucagon are able to cause rapid changes in HGP through purely posttranslational 

modifications of the enzymes involved, signaling by these hormones is also able to alter the long-term 

program of hepatic glucose metabolism by regulating gene expression [2]. Indeed, given the evolutionary 

imperative of preventing hypoglycemia, multiple overlapping transcriptional mechanisms have arisen to 

promote HGP in the long term [2]. Moreover, perhaps in order to prevent hypoglycemia, not all of these 

pathways are inhibited by insulin. To wit, glucose production in the fed state is significantly lower than 

during fasting but is not absent; input from other hormones (e.g., adrenal corticosteroids) [135], the 

autonomic nervous system [136], and circadian factors [137] all modulate HGP independently of insulin 

signaling [138, 139].  

The forkhead box O (FoxO) proteins, in particular FoxO1, FoxO3, and FoxO4, are a widely 

expressed class of transcription factors characterized by a common forkhead DNA-binding domain [140, 

141]. We focus in particular on FoxO1 (also known as FKHR, encoded by Foxo1 in mice and FKHR in 

human), the best-characterized and most abundant FoxO family member in hepatocytes [2, 142, 143]. 

Importantly, the FoxO proteins – especially FoxO1 – appear to represent the major insulin-regulated 

transcriptional coordinator of HGP [2, 144, 145]. Akt downstream of InsR phosphorylates FoxO1 at three 

sites – Thr 24, Ser 256, and Ser 319 – causing its exclusion from the nucleus and cytoplasmic 

sequestration through interaction with 14-3-3 proteins [143, 146-150]. This inhibitory effect of insulin is 

rapid, potent, and persistent. Glucagon signaling in the postabsorptive state activates FoxO1 [151], which 

in turn upregulates the expression of several fasting-inducible genes, most notably including G6pc [152], 

IGF binding protein-1 (Igfbp1) [148, 153], Pdk4 [154], and Pck1, although the last is controversial [142, 

144, 145, 155]. FoxO1 acts on these genes through binding to conserved recognition motifs in their 

promoters termed insulin response elements (IRE). The phosphorylation and nuclear exclusion of FoxO1 

in response to insulin then shows a strong temporal correlation with the decrease in G6pc and Pck1 

mRNA [94]. 

 Whole-body knockout of FoxO1 is embryonically lethal due to the occurrence of arteriovenous 

malformations [156, 157]. Liver-specific deletion of FoxO1, dubbed the L-FoxO1 mouse model, results in 
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a significant enhancement in whole-body glucose tolerance due to decreased HGP [145]. 

Hyperinsulinemic-euglycemic clamp studies have shown L-FoxO1 livers to exhibit decreases in both 

gluconeogenesis and glycogenolysis [145]. Although blood glucose is normal in L-FoxO1 mice following a 

standard overnight fast, hypoglycemia becomes apparent following prolonged fasting [145]. Despite their 

reduced HGP, L-FoxO1 mice are not overall more sensitive to insulin; they do not show any difference in 

fasting or fed insulin levels or in insulin tolerance [145, 158]. Concomitant deletion of FoxO3 and FoxO4 in 

the liver (L-FoxO1,3,4) results in an enhancement of glucose tolerance beyond that of the L-FoxO1 

mouse due to a further reduction in HGP [144, 159]. Conversely, transgenic expression of an insulin-

insensitive mutant FoxO1 in liver results in glucose intolerance due to an inability of insulin to blunt HGP 

and tonically increases expression of G6pc [142, 160]. Similar findings were obtained with adenoviral 

overexpression of wild-type FoxO1 [161].  

Multiple lines of evidence support the primacy of FoxO1 repression in insulin’s overall regulation 

of HGP. In C. elegans, for example, deletion of the Foxo1 orthologue daf-16 rescues the developmentally 

arrested dauer phenotype of nematodes lacking the Insr orthologue, daf-2 [145, 162, 163]. In a similar 

vein, deletion of Foxo1 only in liver significantly extends the lifespan of whole-body Insr knockout mice 

[145]. Although most of these mice still die prematurely, they are spared the lethal neonatal 

hyperglycemia, ketoacidosis, and hepatic steatosis of Insr-/- mice [145, 164]. That the compound l-Foxo1 ; 

Insr-/- mice phenocopy mice lacking Insr in all tissues except the liver further suggests the centrality of 

FoxO1 in mediating insulin’s actions on hepatic metabolism [145, 165].  These striking findings of genetic 

epistasis between Insr and Foxo1 are substantiated by further mechanistic studies on the InsR signaling 

pathway. Liver-specific deletion of Irs1/2 [166] or Akt1/2 [167] both result in hyperglycemia and glucose 

intolerance due to the inability of insulin to blunt HGP, associated with constitutively increased expression 

of G6pc and Pck1 and decreased expression of Gck. In both of these cases all of these abnormalities can 

be completely reversed by concurrent liver-specific deletion of Foxo1 [166, 167].  

FoxO1 appears to represent a promising if elusive target in the treatment of diabetes; multiple 

studies have shown that inhibition of FoxO1 in insulin-resistant states has beneficial effects on glucose 

metabolism [155]. L-FoxO1 mice rendered insulin resistant by Western-type diet feeding showed a 
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significant reduction in fasting blood glucose, fasting insulin, and glucose intolerance relative to controls 

[168]. In the acute setting, anti-Foxo1 antisense oligonucleotide (ASO) therapy of insulin resistant, diet-

induced obese (DIO) mice resulted in decreased blood glucose and HGP, improving glucose tolerance 

and whole-body insulin sensitivity [169]. Similarly, infection of diabetic db/db mice with an adenovirus 

encoding the dominant-negative Foxo1-∆256 also dropped blood glucose levels and reduced expression 

of G6pc and Pck1 in liver [170].   

 

1.4.5. Transcriptional Regulation of HGP by FoxO1-Associated Proteins 

FoxO1 acts in tandem with other transcriptional effectors to regulate the HGP transcriptional program in 

mice. A particularly prominent FoxO1 co-regulator is PPARγ coactivator-1α (Pgc1α, encoded by the 

Ppargc1a gene), which is itself a FoxO1 target gene [145]. Pgc1α is induced in response to fasting, and 

adenoviral overexpression in liver activates the expression of G6pc, Pck1, and Fbp2 and consequently 

upregulates glucose production [171, 172]. FoxO1 and Pgc1α synergistically activate the expression of 

G6pc and Pck1 through a direct interaction [173] and Pgc1α, like FoxO1, can be inhibited by Akt-

mediated phosphorylation [174]. Interestingly, FoxO1 is required for Pgc1α induction of G6pc and Pck1 

but not for the action of Pgc1α on mitochondrial oxidative gene targets [145]. 

FoxO1 also coordinates gluconeogenesis through functional interactions with CREB-regulated 

transcription coactivator-2 (CRTC2, formerly known as TORC2). CRTC2 is a co-activator of cAMP-

response element binding protein (CREB), a major downstream effector of glucagon-induced 

gluconeogenic gene expression [175, 176]. CRTC2/CREB-induced gluconeogenic gene expression 

appears to predominate during very early fasting but then gives way to FoxO1 activity, through 

coordinated deacetylation of the two proteins [177]. Furthermore, CRTC2 itself can be degraded in 

response to insulin signaling, providing a FoxO1-independent means of tamping down glucagon-induced 

transcriptional activity [178]. Finally, FoxO1 has also been demonstrated to interact with hepatocyte 

nuclear factor-4α (HNF-4α) to regulate the expression of G6pc and Gck in fasting and feeding, 

respectively [179].  
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1.5. Insulin Regulation of Hepatic Lipid Metabolism 

1.5.1. Overview of Hepatic Lipid Metabolism: Lipid Biosynthesis 

The influx of nutrients into the liver in the fed state results in a net production of acetyl-CoA, most 

classically following the glycolytic breakdown of glucose to pyruvate, but also from other carbohydrates as 

well as certain amino acids [180]. Acetyl-CoA can be further metabolized via the citric acid cycle to yield 

ATP and NADH, although more is produced in the immediate postprandial state than is required for the 

generation of energy [180]. The liver therefore seeks to preserve the chemical energy stored in acetyl-

CoA for use during fasting periods by polymerizing these carbons into fatty acids. This process is termed 

de novo lipogenesis (DNL) [180].  

 The liver strikes a balance between the anabolism and catabolism of fatty acids that responds to 

the metabolic conditions of the moment [3 pp. 744-747]. The liver takes into account signaling inputs from 

hormones (e.g., insulin, glucagon) as well as changes in the relative concentrations of nutrients 

themselves [3 pp. 743-784]. The main regulator responsible for setting this balance is acetyl-CoA 

carboxylase-α (ACC1, encoded in liver by the ACACA gene), which catalyzes the first committed step of 

fatty acid biosynthesis [181, 182]. As its name indicates, ACC1 transforms acetyl-CoA into its 

carboxylated adduct, malonyl-CoA [181]. Malonyl-CoA, then, serves two functions: it both serves as the 

major substrate for polymerization to fatty acids and inhibits the import of fatty acids to the mitochondrion 

in order to prevent catabolism of the newly synthesized products [181-183].  

 The major enzyme responsible for transforming individual two-carbon units of malonyl-CoA into 

fatty acids is the enzyme fatty acid synthase (FAS, encoded by the FASN gene) [3 pp. 653-658]. This 

single enzyme remarkably performs the seven different catalytic activities necessary for fatty-acid 

biosynthesis, powering these reactions through the cleavage of malonyl-CoA’s highly energetic thioester 

bond [3 pp. 653-658]. The end product of the FAS reactions is the sixteen-carbon saturated fatty acid, 

palmitate [3 p. 656]. Much as in the case of malonyl-CoA, palmitate serves both as substrate and 

allosteric regulator [3 pp. 660-662]. Palmitate can be transformed into longer-chain fatty acids through the 

action of fatty acid elongases, as well as into desaturated fatty acids by desaturases such as stearoyl-
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CoA desaturase-1 (SCD1) [3 pp. 657-658]. Palmitate also allosterically inhibits ACC1 in an example of 

negative feedback [3 pp. 660-662].  

Three individual fatty acyl-CoA esters can be esterified (or, in the case of free fatty acids derived 

from adipose-tissue lipolysis, hepatically re-esterified) with the three carbons of glycerol to form 

triacylglycerol, or triglyceride (TG), the major storage form of fatty acids [3 pp. 658-660]. Triglycerides can 

be stored in the liver or can be exported for uptake and use by other tissues. For this purpose, the liver 

packages triglycerides along with cholesterol esters and apolipoproteins into very low-density lipoproteins 

(VLDL) [184]. Insulin has been shown to inhibit the secretion of VLDL by stimulating the degradation of its 

major protein component, apoB [46, 185]. 

 In the healthy liver, DNL accounts for only about 4% of TG secreted into the circulation basally, 

although this number rises to a high of 23% at 4 h following a meal [186, 187]. By comparison, 

esterification of FFA liberated from WAT accounts for 77% and 44% of secreted TG in the fasted and fed 

states, respectively [188-190]. Meal composition also plays a role in determining the relative contribution 

of DNL to circulating TG, with high-carbohydrate foods more potently driving lipogenesis than fat- or 

protein-rich foods [189, 191-197]. However, in the pathologic state of hepatic steatosis associated with 

insulin resistance, a far greater percentage of the hepatic TG and associated VLDL secretion is derived 

from DNL [73-75]. 

 

1.5.2. Transcriptional Control of Lipid Biosynthesis 

The transcriptional control of lipid biosynthesis is largely, although not exclusively, driven by two “master” 

regulators, sterol regulatory element binding proteins (SREBP) and carbohydrate response element 

binding protein (ChREBP), as well as by FoxO proteins. Their respective contributions to the process are 

described below. 
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Sterol regulatory element binding protein-1c (SREBP-1c) 

The program of biosynthesis of lipids in liver is remarkably well coordinated at the transcriptional level by 

the SREBPs, a trio of transcription factors that recognize and bind to sterol-response elements (SRE) in 

the promoters of target genes [198]. There are two genes encoding SREBPs, namely Srebf1 and Srebf2; 

the latter encodes SREBP-2, which is directly responsible for the transcriptional activation of all of the 

major enzymes involved in cholesterol biosynthesis and transport [198]. SREBF1 contains two different 

transcriptional start sites to yield two isoforms, SREBP-1a and SREBP-1c, differing in their first exon 

[198]. SREBP-1c is the most abundant SREBP-1 in liver [199]. Target genes of this transcriptional 

complex include all of the major lipogenic enzymes described above, including Fasn, Acaca, Scd1 and 

the enzymes involved in the esterification of TGs from fatty acids. SREBP-1c also positively regulates its 

own expression [198]. Whole-body knockout of Srebf1 leads to embryonic lethality in a considerable 

majority of animals [200]. In those that survive, it appears that upregulation of SREBP-2 partially 

compensates for the loss of SREBP-1 at the price of markedly upregulated cholesterol synthesis [200].  

Whole-body knockout specifically of the exon unique to the -1c isoform results in blunted feeding-induced 

expression of Fasn, Acaca, Scd1, and other lipid-biosynthetic enzymes, resulting in decreased circulating 

and hepatic TG in response to re-feeding [201].  

The derangements in feeding-induced lipid synthesis underscore the fact that regulation of 

SREBP-1c is one of the principal methods of insulin’s control of liver fat metabolism [202]. Although it is a 

transcription factor, regulation of SREBP-1c by insulin occurs in large part outside of the nucleus [198]. At 

baseline, SREBP-1c is an integral membrane protein localized to the ER membrane in complex with 

SCAP, another integral membrane protein that shepherds SREBP-1c into vesicles bound for the Golgi 

apparatus [203, 204].  Preventing this translocation event are INSIG-1 and INSIG-2a [205]. Once arrived 

at the Golgi, the proteases S1p and S2p catalyze sequential cleavage events that liberate a cytosolic, N-

terminal fragment of the SREBP-1c precursor protein [206]. This cleaved SREBP-1c is then free to 

translocate to the nucleus to perform its function as a transcription factor [207]. 

Insulin affects SREBP-1c at each of these stages [208]. First, insulin promotes the packaging of 

the precursor SREBP-1c/SCAP complex into Golgi-bound vesicles at the ER [203]. Second, insulin 
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decreases protein levels of INSIG2a, presumably relieving its inhibition of SREBP-1c/SCAP translocation 

[209]. Third, insulin triggers the phosphorylation and inhibition of LIPIN-1, a negative regulator of SREBP 

activity within the nucleus [210]. Finally, insulin positively regulates Srebf1 gene expression, again at least 

in part due to positive feedback of SREBP-1c [209, 211-213].  

The intermediaries linking insulin signaling to SREBP-1c expression and cleavage have been 

elucidated in recent years. Both the cleavage and expression of SREBP-1c require signaling from InsR 

through PI3K and Akt [213]. Akt’s activation of SREBP-1c proceeds via mammalian target of rapamycin 

complex-1 (mTORC1) [214, 215]; Akt activates the mTORC1 kinase through inhibition of its inhibitors, 

TSC-1/2 [216]. Blocking hepatocellular mTORC1 via treatment with rapamycin or by deletion of TSC-1 

results in an inability of insulin to promote SREBP-1c expression or cleavage, thereby suppressing 

insulin-induced DNL and lipogenic gene expression [213, 217, 218]. Insulin’s regulation of SREBP-1c 

diverges downstream of mTORC1, however, as insulin-induced cleavage of SREBP-1c requires the 

activity of mTORC1 substrate S6 kinase (S6K) while expression of SREBP-1c in response to insulin does 

not [218]. A further potential mechanistic link between insulin and SREBP-1c is through GSK3β, which 

has been shown to phosphorylate SREBP-1c and thereby inhibit its activity [219]. The inhibition of GSK3β 

by Akt downstream of InsR, therefore, would relieve GSK3β’s inhibition of SREBP-1c, further promoting 

its activity [185, 219, 220]. A gap in our understanding persists, however, between these distal signaling 

events and the actual processing and transcription of SREBP-1c.   

Increasing our understanding of the regulation of SREBP-1c is of great clinical importance given 

its alleged role in the pathogenesis of NAFLD and potentially hepatic insulin resistance. Liver samples 

from humans with obesity [221] and NAFLD [222] have been shown to have higher expression of SREBP-

1c and its targets. Several animal models of fatty liver disease, such as the leptin-deficient ob/ob mouse 

and the sucrose-fed hamster, likewise demonstrate elevated levels of SREBP-1c in liver [223-225]. 

Supporting the importance of increased SREBP-1c levels, mice engineered to express a constitutively 

active mutant SREBP-1c in the liver developed hepatic steatosis and insulin resistance [226, 227]. 

Conversely, deletion of SCAP (resulting in an inability to cleave SREBP-1c) prevented hepatic steatosis in 

both ob/ob and sucrose-fed hamster models of NAFLD by reducing DNL [225].  
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Carbohydrate response element binding protein (ChREBP) 

In a manner similar to SREBP-1c, ChREBP is a transcription factor capable of coordinately inducing many 

genes in the lipogenic program [228]. While SREBP-1c is primarily controlled by insulin signaling, 

ChREBP activity, as its name implies, is induced following exposure to carbohydrates acting in a signaling 

capacity [228-230]. At least three metabolites of glucose, each requiring the initial action of glucokinase 

[231, 232], have been reported to induce ChREBP to stimulate glucose-induced gene expression [233-

236]. As the expression of Gck is itself strongly influenced by insulin, even ChREBP activity is indirectly 

affected by insulin signaling [202]. 

 ChREBP shares many common targets with SREBP-1c, including Fasn, Acaca, and Scd1 [228]. 

This helps to explain why livers lacking nuclear SREBP-1c, for example due to deletion of InsR, still 

demonstrate some feeding-induced expression of these lipogenic genes [201, 202, 237]. Furthermore, it 

appears that synergism between insulin-stimulated SREBP-1c activity and glucose-stimulated ChREBP 

activity is required for maximal activation of several lipogenic genes [232, 238]. On the other hand, only 

ChREBP is able to induce the expression of liver-type pyruvate kinase (Pklr), responsible for catalyzing 

the final step of the glycolytic pathway [239, 240].  

 

FoxO proteins (FoxO1, FoxO3, FoxO4) in Lipid Biosynthesis 

The importance of FoxO proteins in the regulation of HGP is now firmly established [2]. Empirical 

evidence has also mounted to implicate FoxO proteins in the control of hepatic lipid metabolism as well 

but the interpretation of these data has been more nuanced [158, 161, 168, 241-245]. Nevertheless, it 

appears overall that inhibition of FoxO proteins, in particular of FoxO1, may represent another important 

modus operandi of insulin’s control of fat anabolism in the liver.   

 Our laboratory’s initial publication of the liver-specific FoxO1 knockout mouse (L-FoxO1), though 

highly supportive of a key role for FoxO1 in the control of hepatic glucose metabolism, did not 

demonstrate any notable abnormalities in lipid parameters [145]. L-FoxO1 mice generated by another 

group (albeit using a different liver-specific promoter to drive Cre expression) did demonstrate slight but 

significant elevation in liver TG in the fed state [158]. One potential reason for the absence of a lipid 
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phenotype as dramatic as the glucose phenotype in the L-FoxO1 mice may be the fact that these 

measurements were performed in chow-reared mice. Indeed, subsequent studies done in mice subjected 

to various metabolic challenges have elicited a more robust connection between FoxO1 and hepatic lipid 

metabolism. L-FoxO1 mice rendered insulin resistant by Western-type diet (WTD) feeding show 

exacerbated hepatic steatosis compared to controls in the fed state [168]. This phenotype is due at least 

in part to an impaired ability to generate 12α-hydroxylated bile acids, which serve as endogenous 

signaling molecules that limit TG deposition, in the absence of liver FoxO1 [168].  

Gain-of-function models also have helped to uncover potential connections between FoxO1 and 

hepatic lipid handling. Compared to controls, livers from mice overexpressing a constitutively nuclear 

FoxO1 showed decreased feeding-induced DNL coupled with lower expression of lipogenic genes 

including Gck, Pklr, Fas, Acaca, and Srebf1 [160]. In keeping with an effect of FoxO1 on lipogenic gene 

expression, FoxO1 has been shown to block the activating O-glycosylation of ChREBP, reducing its 

stability and ability to transactivate expression of lipogenic genes [246]. Interestingly, mice overexpressing 

a constitutively nuclear form of FoxO1 acutely rather than congenitally show increased hepatic TG, due 

apparently to increased insulin sensitivity potentially driving SREBP-1c [247]. 

Altered TG secretion may also underlie FoxO1 regulation of hepatic lipid homeostasis, although it 

is important to note that secreted (i.e., circulating) TG levels are not necessarily reflective of hepatic TG 

storage [63, 248-251]. FoxO1 has been shown to induce expression of microsomal TG transfer protein 

(MTP), which in turn regulates lipid loading onto apoB for secretion as VLDL [242, 243]. Mice 

transgenically overexpressing a constitutively nuclear FoxO1 exhibited increased TG secretion 

proportional to increased MTP levels while acute knockdown of FoxO1 expression by siRNA led to the 

opposite [243], although other studies on the constitutively nuclear mutant have shown decreased TG 

secretion [160]. Some data have suggested that FoxO1 can directly regulate the expression of apoB [243, 

252] and apoC-III [244] as well, in both cases leading to accumulation of TG in plasma. On the other 

hand, in the context of insulinopenic hyperglycemia, L-FoxO1 mice exhibit increased VLDL secretion 

leading to higher serum TG without an effect on liver TG content [241]. 
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Most of these models have attempted to cast FoxO1’s ostensible regulation of hepatic lipid 

metabolism as mechanistically separate from its canonical regulation of HGP. However, recent studies in 

our laboratory have argued in favor of a unified, parsimonious explanation for FoxOs’ dual effects on 

glucose and lipid handling in the liver [253]. L-FoxO1,3,4 mice show significantly higher levels of liver TG 

attributable to higher rates of DNL [245, 253] and potentially to lower rates of fatty acid oxidation [245]. 

The significant increase in DNL in these mice is not, however, associated with increased expression of 

most classical lipogenic enzymes (e.g., Fasn, Acaca) [253]. Rather, it appears that a robust and 

reproducible increase in Gck expression independent of feeding state coupled with decreased G6pc in the 

absence of FoxO may be responsible [253]. This constitutively decreased G6pc:Gck ratio results in 

significantly increased flux through glycolysis and DNL regardless of feeding state [253].  

Thus, FoxOs may be the key to the transcriptional control of the fasting/feeding transition [253]. 

During fasting, when insulin signaling is low, active FoxO orchestrates an increase in G6pc expression 

while inhibiting the expression of Gck, thereby shunting carbons into HGP at the expense of DNL [253]. In 

the fed state, when insulin signaling inhibits FoxO activity, these effects are reversed, favoring DNL over 

HGP [253]. These mechanisms may also be at play in L-FoxO1 mice, which also show increased Gck 

expression with decreased G6pc [144, 145, 167], but may be, as in the case of glucose metabolism by 

FoxO, partially compensated for by intact FoxO3 and FoxO4 [144, 159, 160, 179, 254].  

The establishment of Gck as a FoxO target gene is a seminal contribution given its utter centrality 

in insulin’s control of carbon flux through the hepatocyte [255-258]. Although its vaunted insulin 

responsiveness had previously been thought to be due to regulation by SREBP-1c [211, 259], this view is 

no longer generally accepted [258] leaving an explanatory void now filled by FoxO. Indeed, mice with 

liver-specific deletion of Akt1/2 show a near total loss of Gck, but concomitant knockout of Foxo1 restores 

Gck levels nearly to normal (presumably knockout of Foxo3 and Foxo4 would result in a complete rescue) 

[167]. Thus, insulin signaling appears to orchestrate DNL at least partially in parallel through regulation of 

FoxO à Gck and SREBP-1c à Fasn/Acaca/etc. [253]. Naturally, the coordinated control of G6pc vs. Gck 

expression also need not be mutually exclusive with FoxO regulation of other lipid-regulatory pathways 

(e.g. bile acid metabolism, etc.).  
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1.5.3. Overview of Hepatic Lipid Metabolism: Fatty Acid Oxidation 

During times of fasting the liver and other tissues produce glucose in order to maintain euglycemia. This is 

not the only mechanism for fueling the processes of life in the absence of dietary nutrients, however. In 

the post-absorptive state, as insulin levels fall, the inhibition of adipocyte lipolysis decreases, allowing for 

adrenergic signaling to stimulate the release of free fatty acids for transport back to the liver where they 

can be oxidized to provide energy [183]. 

 The process of fatty acid oxidation (FAO) occurs in the mitochondrial matrix [3 pp. 636-637]. In 

order to enter the mitochondrion, however, the fatty acid must first be “activated” through coupling to 

acetyl-CoA, forming an acyl-CoA. The energy stored in the acyl-CoA thioester bond can then be 

expended in coupling the fatty acid to carnitine through the action of carnitine palmitoyltransferase-1 

(CPT-1). The fatty acyl-carnitine adduct is then whisked through to the mitochondrial matrix where the 

carnitine moiety is removed by carnitine palmitoyltransferase-2 (CPT-2) and the fatty acid is recoupled to 

acetyl-CoA. The mitochondrial fatty acyl-CoA is then free to undergo oxidation. Fatty acids are oxidized 

through the removal of two-carbon acetyl-CoA units (i.e., the exact reverse of the process of DNL) 

proceeding from the β (carboxyl) end of the fatty acid chain. A series of four enzymatic reactions are 

necessary to catabolize saturated fatty acid chains. Catabolism of unsaturated fatty acids requires 

additional enzymes [3 pp. 636-642]. 

Each of the acetyl-CoA units removed from a fatty acid chain can then be further metabolized by 

the citric acid cycle and oxidative phosphorylation, both of which also take place inside the mitochondrion, 

just as for acetyl-CoA derived from glycolysis [3 pp. 660-662, 182]. Fatty acids are therefore able to 

provide fuel for the liver as it engages in energetically costly processes of HGP, as the brain and 

erythrocytes are themselves unable to oxidize fatty acids and strongly “prefer” to metabolize glucose [3 

pp. 649-662, 744-752]. Fatty acids themselves, however, are unable to be converted to glucose in 

animals due to the net loss of the lipid-derived carbons as CO2 during the irreversible steps of the citric 

acid cycle [3 pp. 535-538]. Fatty acids do not only provide the fuel for gluconeogenesis, however; they 

also allosterically prevent glucose oxidation and promote gluconeogenesis, thus sparing glucose for the 

brain [125]. During times of prolonged fasting or starvation, acetyl-CoA derived from FAO can be used 
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directly to provide energy to the brain. That is, the liver is able to condense two molecules of acetyl-CoA 

to generate acetoacetate, which can be further metabolized to acetone and to β-hydroxybutyrate. These 

three “ketone bodies” can then be converted back to acetyl-CoA in other tissues and used in place of 

pyruvate-derived acetyl-CoA [3 pp. 649-650]. 

A key transcriptional coordinator of the FAO program is peroxisome proliferator-activated 

receptor-α (PPARα) [260, 261]. PPARα is a nuclear hormone receptor that, in conjunction with retinoid X 

receptor (RXR), responds to a variety of fatty acid species by inducing FAO genes [262] including lipid 

transporter Cd36 [263], Cpt1, various acyl-CoA dehydrogenases (e.g., Acadm), and acyl-CoA oxidase-1 

(Acox1).  In addition to its role in promoting HGP, PGC-1α also stimulates FAO at least in part by serving 

as a co-activator of PPARα [174, 264]. Interestingly, it appears that the hypolipidemic action of PPARα 

may also include transrepression of FoxO1, particularly with respect to its induction of apoC-III expression 

[252]. 

No liver-specific PPARα knockout model has yet been published. Whole-body PPARα-knockout 

mice show decreased fasting β-oxidation of long-chain fatty acids [265-267], although these mice are also 

protected from the development of obesity-induced insulin resistance [268]. Nevertheless, the relatively 

easy activation of PPARα with synthetic ligands such as the fibrate class of drugs has allowed it to be 

harnessed as a therapeutic avenue in the treatment of hyperlipidemia [269]. 

 

1.5.4. Regulation of Hepatic Fatty Acid Oxidation by Insulin 

In an oft-quoted article from 1992, J. Denis McGarry posited that Oskar Minkowski, who is credited with 

linking diabetes mellitus to the pancreas, had focused too much on the sweet taste of his 

pancreatectomized dog’s urine and not sufficiently on the acetone scent of the dog’s breath in pondering 

the pathogenesis of diabetes [270]. Had Minkowski instead been more attuned to olfactory stimuli, 

McGarry argued, he and his successors would have come to think of diabetes as primarily a disorder of 

fatty acid metabolism [270]. Insulin deficiency, as in type 1 diabetes, results in unchecked lipolysis that 

leads to extremely high levels of FFA in the blood [183]. FFAs exacerbate hyperglycemia at multiple 

levels, including by hindering glycolysis and promoting gluconeogenesis in liver [121, 125, 126, 270]; 
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reducing FFA levels has been shown to ameliorate hyperglycemia [271]. Furthermore, the skyrocketing 

FFA levels also drive very high rates of FAO and ketone body production, hence the aroma of nail polish 

remover that Minkowski was meant to have noticed emanating from his dog [270]. In patients with type 1 

diabetes, this buildup of ketone bodies can result in radical alterations in blood pH, termed diabetic 

ketoacidosis (DKA), and results in short order in coma and death [5 p. 1407].    

The exact mechanism of insulin’s suppression of FAO however, has not garnered as much 

experimental attention in recent years as has its promotion of DNL. It is apparent from what has been 

heretofore discussed that insulin exerts indirect control over the process. Insulin inhibits adipose tissue 

lipolysis, thereby cutting off the supply of ketogenic precursors to the liver [270]. Insulin also stimulates 

the uptake of glucose directly by promoting Glut4 translocation in muscle and adipose tissue and 

indirectly by “trapping” glucose as G6P in hepatocytes through its induction of Gck and posttranslational 

regulation of various steps of glycolysis [3 pp. 749-755]. Insulin-stimulated glycolytic flux in liver and 

skeletal muscle generates acetyl-CoA that, through mass action, will be metabolized to malonyl-CoA by 

ACC1 for DNL [3 pp. 744-750]. Malonyl-CoA is a potent inhibitor of CPT-1, preventing the import of fatty 

acids into the mitochondrion for FAO [181]. Insulin is also able to regulate ACC1 activity by promoting the 

removal of inhibitory phosphates placed by PKA in response to glucagon or epinephrine. This, then, also 

stimulates the production of malonyl-CoA to inhibit FAO [3 pp. 660-662]. 

The above means of insulin control of FAO at the global level require contributions from 

extrahepatic tissues. Whether hepatocyte insulin signaling per se controls FAO more proximally than 

solely by altering malonyl-CoA production outside of the mitochondrion [272] remains unclear. Mice 

lacking InsR specifically in hepatocytes (LIRKO) show elevated plasma ketones in the fed state, 

associated with increased expression of Cpt1 and Hmgcs2, the latter a ketogenic enzyme [202], 

suggesting a transcriptional element of regulation. One way in which insulin signaling may influence FAO-

related gene expression is via Akt phosphorylation of PGC-1α at Ser 570, which has been shown to 

prevent its activation of FAO in a hepatoma cell line [174]. This issue will be further discussed in Chapter 

5. 
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1.6. Molecular Mechanisms of Insulin Resistance 

1.6.1. Insulin Receptoropathies as a Model of Pure Insulin Resistance 

Insulin resistance is a sine qua non of type 2 diabetes mellitus; fasting hyperglycemia results from 

inadequate insulin signaling. While hyperglycemia is thought to account for the microvascular 

complications of diabetes, it is insufficient to explain the characteristic dyslipidemia and attendant 

atherosclerosis associated with the disease [5 pp. 1420-1421, 46]. Thus, dysregulated insulin action per 

se may drive such lipid abnormalities. Moreover, as the liver is one of the principal regulators of bodily 

glucose and lipid metabolism, it is thought to be central to the pathophysiology of insulin resistance. 

 Based on our understanding of the hepatic insulin-signaling pathway as described earlier, we can 

formulate predictions as to the consequences of impaired insulin action (illustrated in Fig. 1.1B). We can 

consider, for instance, the case of the liver InsR knockout (LIRKO) mouse, in which all insulin signaling is 

curtailed specifically in the liver [273]. In this case, the hepatocyte is indifferent to the presence of insulin. 

As a result, there is no activation of the insulin-signaling cascade (e.g., phosphorylation of Irs or Akt). If 

we first consider the glucose arm of the pathway, the inability to activate Akt in response to insulin results 

in the inability to phosphorylate and thereby inactivate FoxO proteins. FoxOs therefore remain largely 

nuclear in localization and promote glucose production, perhaps by inducing the expression of 

gluconeogenic enzymes. Insulin also is unable to engage in its normal posttranslational regulation of 

enzymes involved in glucose flux. Thus, on the whole, the hepatocyte moves to release glucose through 

glycogenolysis and gluconeogenesis, contributing to the characteristic hyperglycemia of diabetes. This 

prediction is borne out by the glucose intolerance exhibited both by the LIRKO mouse prior to liver failure 

[273, 274] and, more importantly, in humans with insulin receptoropathies due to Insr mutations or 

acquired autoantibodies against InsR [65].  

 We also predict that dysfunction of InsR would abrogate the stimulatory effect of insulin on 

hepatic lipid biosynthesis. Specifically, insulin-stimulated cleavage of SREBP-1c downstream of Akt would 

be impaired, thus resulting in decreased expression of lipogenic enzymes. In addition, as in the case of 

the glucose arm, insulin would not be able to engage in posttranslational regulation of lipid partitioning, 
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such as its normal inhibition of VLDL secretion. Thus, on the whole, insulin-stimulated lipid biosynthesis 

would be expected to be low.  

Again, these mechanistic predictions are validated both in mouse and human models of insulin 

receptoropathy. The LIRKO mouse liver shows significantly reduced SREBP-1c processing in response to 

re-feeding, thus resulting in defective induction of Fasn and Scd1 expression [47], which in turn translates 

into decreased DNL [202]. Interestingly, liver TG content is normal at steady state in the LIRKO mouse, 

potentially due to homeostatic compensation by ChREBP [202]. Human insulin receptoropathy patients 

likewise exhibit low to normal liver fat content and normal rates of DNL, the latter value not frankly low 

perhaps due to minor residual signaling capacity of the defective receptors or hyperglycemia-associated 

ChREBP activity [65]. Diminished TG biosynthesis by InsR-deficient livers both in mouse and man also 

results in low to normal plasma TG levels, although this often translates into pro-atherogenic small, dense 

VLDL enriched in cholesterol relative to TG [47, 65, 275].  

 

1.6.2. Garden-Variety Insulin Resistance Is Selective in Nature 

Although the phenotype of patients with insulin receptoropathies tidily comports with our basic 

understanding of the hepatic insulin-signaling pathway, it partially contradicts the prevailing epidemiologic 

picture of IR. All type 2 diabetic patients by definition manifest fasting hyperglycemia due to impaired 

insulin action, but the vast majority of these patients do not exhibit the benign triglyceride profiles of 

insulin-receptoropathy patients [40, 41]. Instead, these individuals, who often have developed IR 

associated with diet-induced obesity, are prone to dyslipidemia including elevated circulating triglycerides 

and LDL cholesterol as well as excessive deposition of triglyceride in the liver (hepatic steatosis) [40, 41, 

248]. As aforementioned, this radically altered lipid phenotype is thought to account for the increased risk 

of cardiovascular disease in IR and diabetic patients [40, 41]. Thus, understanding the connection 

between garden-variety IR and defective lipid homeostasis is of paramount clinical importance.  

 In an influential essay [276], Brown and Goldstein argued that the underlying abnormality in the 

garden-variety IR leading to most cases of type 2 diabetes is actually an uncoupling of insulin’s normal 

actions on the glucose and lipid arms of the pathway. In this paradigm (illustrated in Fig. 1.1C), the 
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glucose arm (including downstream of the FoxOs) becomes resistant to insulin, both as predicted and 

empirically verified in diabetic patients. On the other hand, the excessive hepatic lipogenesis exhibited by 

most IR patients may actually represent some preservation of insulin’s normal stimulation of this process. 

In other words, the lipogenic pathway including SREBP-1c remains relatively sensitive to insulin 

compared to the glucose arm. IR in these patients is “selective,” unlike the “pure” IR of insulin 

receptoropathy. 

Chronic hyperinsulinemia (CHI) may represent a primary etiologic linkage between the combined 

excessive glucose production and excessive lipogenesis of the insulin-resistant liver. That is, excessive 

glucose released by the liver triggers compensatory secretion of insulin, resulting in the well-documented 

hyperinsulinemia of all forms of IR [276, 277]. In the case of insulin receptoropathies, InsR itself is 

defective and so is minimally responsive to any concentration of insulin [65]. In common forms of IR, 

however, InsR itself is not necessarily qualitatively defective, and thus the heightened levels of insulin can 

continue to activate its signaling cascade in the hepatocyte [276]. Evidently this compensatory 

hyperinsulinemia is sufficient to drive the lipid arm of the pathway, thus resulting in excessive lipid 

deposition, but is not able to adequately affect the glucose arm, hence excessive glucose production 

[276]. The mechanism of this CHI-induced IR, which is likely to result from downregulation of InsR [278], 

will be discussed at greater length below. 

 

1.6.3. Differential Sensitivity to Insulin May Drive Selective IR 

The most important question, then, is the biochemical mechanism underlying this apparent uncoupling of 

the glucose and lipid arms. One possibility with considerable support in the literature is that the glucose 

and lipid arms are inherently differentially sensitive to insulin. Specifically, a greater degree of insulin 

signaling is ordinarily required to blunt glucose production (i.e., less sensitive) than to stimulate 

lipogenesis (i.e., more sensitive). In biochemical terms, the ED50 for insulin’s action on lipogenesis is 

expected to be lower than the ED50 for insulin’s action on HGP (Fig. 1.2). 

Based on this idea, we propose that pure IR and selective IR do not necessarily represent a 

paradox. Rather, as illustrated in Fig. 1.2, we hypothesize that they represent different stages along a 
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single continuum of insulin action. In either case, IR can stem from a quantitative defect in InsR signaling 

that alters the effective concentration of insulin “seen” by the hepatocyte rather than arising solely from 

some postreceptor defect as some have posited. At one end of the IR spectrum, as indicated by the blue 

shading in Fig. 1.2, lies the effective absence of InsR that leads to pure IR. In this region, the effective 

insulin concentration lies below the ED50 of both the glucose and lipid arms. Thus, pure IR would 

represent a state with too few functional InsR available to transduce any metabolic signals efficiently, 

resulting in the expected defects in both pathways. 

On the other hand, in garden-variety (selective) IR, some degree of signaling through InsR 

remains intact. As indicated by the pink shading in Fig 1.2, the effective insulin concentration experienced 

by the cell is less than the ED50 for the glucose arm but is greater than the ED50 for the lipid arm. Thus, in 

practical terms, the residual capacity for transducing the insulin signal would be sufficient to drive the 

more-sensitive lipid arm relative to its effect on the less-sensitive glucose arm. This model implies that, if 

one’s degree of hepatic insulin action were hypothetically to deteriorate, one could in theory proceed from 

selective toward pure IR. In other words, were signaling through InsR to worsen, insulin would 

progressively lose its ability to drive lipogenesis. Any residual ability to properly regulate HGP that were 

retained in the partially IR state – albeit insufficient to keep blood glucose levels below the clinical cutoff 

for diabetes – would then be completely lost in pure IR, further exacerbating glucotoxicity.  

This theoretical construct presents two major questions. First, what is the mechanism behind the 

loss of functional InsR? Second, how does incremental loss of InsR differentially affect downstream 

signaling pathways? 

 

1.6.4. Downregulation of InsR Signaling by Hyperinsulinemia 

The reason behind the effective absence of InsR is clear in the case of pure IR, but what causes this loss 

of functional InsR in selective IR? We suspect that the mechanism responsible for diminished InsR 

signaling in selective IR is the same as that driving the inappropriate deposition of lipid: hyperinsulinemia.  

 As described above, hyperinsulinemia results from the attempt of pancreatic β cells to 

compensate for excessive HGP. Chronic hyperinsulinemia per se, however, is a known cause of IR, even 
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in the absence of inchoate IR preceding the development of hyperinsulinemia [277]. For example, patients 

with insulinoma, a benign insulin-secreting tumor, can be considered a model of primary 

hyperinsulinemia. These patients often exhibit reduced insulin action (e.g., by hyperinsulinemic-

euglycemic clamp) in proportion to their hyperinsulinemia that is reversed following removal of the tumor 

[277, 279]. Moreover, mice engineered to express 8 or 32 copies of the human insulin gene (resulting in 

circulating insulin levels 2 or 4 times control) display marked glucose intolerance along with 

hypertriglyceridemia, characteristic of selective IR. Studies of first-degree relatives of patients with T2DM 

provide further evidence of a more “physiologic” primary hyperinsulinemia as an early event in the 

development of IR [270]. Even though these supposedly healthy people showed completely normal 

glucose tolerance test (GTT) profiles, their insulin levels both before and during the test were twice as 

high as controls [280]. This finding appears to dovetail with an apparent genetic predisposition toward 

primary hyperinsulinemia in these family members [281], suggesting that the GTT findings may actually 

have been inappropriately normal for the high insulin and thus reflective of early IR [270]. It merits 

reemphasizing that the physiologic importance of CHI to IR need not be limited to rare case of primary 

hyperinsulinemia, as CHI is a cardinal feature of all forms of IR prior to β-cell failure. 

 CHI is believed to induce IR at least in part by causing a functional downregulation of InsR, an 

example of negative feedback employed by numerous receptor-ligand pairs [277, 278, 282, 283]. The 

extent of IR downregulation in the face of CHI would be expected to dampen signaling through InsR in a 

dose-dependent manner [284, 285]. Thus, in a patient experiencing mounting IR, the steady rise in insulin 

levels over time would result in a progressive loss of hepatic InsR function such that the effective 

hepatocyte “insulinization” falls in parallel [286]. Were garden-variety IR to deplete InsR such that the 

effective insulin concentration were delimited to the pink-shaded region in Fig. 1.1, the clinical stigmata of 

selective IR would arise. Again, in the case of pure IR, the severe defect in InsR function renders the 

hepatocyte utterly indifferent even to the extreme hyperinsulinemia described in such patients.   

 The paradigm described above suggests that most IR patients should show a partial loss of 

functional InsR [287]. Specific binding of insulin to purified human liver plasma membranes isolated during 

liver biopsy was found to be significantly decreased—but not absent—in both non-diabetic and diabetic 
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obese patients compared to non-obese controls [288, 289]. Several studies provide evidence of InsR 

downregulation in a variety of other human cell types as well [290-293]. Such studies have not, however, 

directly assessed the simultaneous effect of partial InsR downregulation on the differential insulin 

signaling to lipid vs. glucose metabolism. 

The biochemical mechanism behind CHI-induced InsR downregulation is complex and involves 

both alterations in receptor numbers and affinity for insulin. Hormone-bound InsR, as in the case of other 

receptor tyrosine kinases, is internalized and degraded in a variety of cell types including liver, thereby 

decreasing the total population of InsR. CHI may also modulate InsR number by decreasing levels of Insr 

mRNA [294], although others have not found such an effect [295]. Second, CHI decreases insulin’s 

affinity for its receptor. Each InsR has two insulin binding sites, the second of which is only occupied at 

high concentrations of insulin. Binding of a second insulin to InsR occurs at a lower affinity than the first, 

decreasing the overall average affinity of insulin binding [296]. CHI also alters the splicing of Insr mRNA to 

favor the lower affinity long form (InsR-B) versus the higher affinity short form (InsR-A) [297], although the 

significance of this mechanism in liver, where InsR-B predominates under normal circumstances, is 

unclear [298]. 

 

1.6.5. Insulin Signaling Diversity Results from Isoform Combinations 

The second major question posed by our model is how a functional loss of InsR translates into differential 

effects on residual insulin signaling to downstream pathways. In other words, what is the molecular 

mechanism behind the phenomenological dose-response curve difference between glucose and lipid 

metabolism?  

Thus far, the only documented cause of the pure IR phenotype is insulin receptoropathy. This 

suggests that the various defects that result in selective IR lie at the postreceptor level. It is convenient to 

think of insulin signaling in a streamlined fashion (e.g., InsR à Irs à PI3K à Akt), a model that is difficult 

to reconcile with selective IR. However, in reality, each of these upstream steps in the pathway is actually 

represented by a group of effectors. There are, in fact, four IRS isoforms, three catalytic and five 

regulatory PI3K subunit isoforms, and three Akt isoforms. Consequently, activation of the singular InsR 
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can actually engage many different, albeit related, downstream signaling pathways that can generate the 

signaling diversity needed to account for inherent differences in the insulin sensitivity of metabolic 

pathways [83].   

In order for this model to be plausible, there must exist demonstrable differences in the ability of 

isoforms of each of these upstream signaling “nodes” to transduce the insulin signal to downstream 

metabolic pathways [83]. Transgenic mouse models manipulating these signaling intermediates show this 

indeed to be the case. Below we consider the cases of the Irs and Akt isoforms, although similar work has 

also been done with regard to the various PI3K subunit combinations. 

Insulin-receptor substrates (IRS) 

There are two major IRS isoforms in liver, IRS1/2. Deletion of both of these isoforms in the liver results in 

glucose and insulin intolerance due to increased HGP that can be rescued by concomitant deletion of 

FoxO1 [166]. As in the LIRKO model, although hepatic TG levels are normal on a chow diet, liver-specific 

Irs1/2-deficient mice show a significant decrease in induction of Srebf1c expression and its lipogenic gene 

program in response to re-feeding as well as reduced serum TG [166]. The liver phenotypes of the whole-

body knockouts of IRS1 and IRS2 are confounded by detrimental effects on other tissues [299].  

Loss of IRS1/2 together resembles a total loss of insulin signaling [166]. On the other hand, loss 

of individual Irs isoforms result in different phenotypes, consistent with the idea of isoform-specific 

signaling driving differential insulin responsiveness. Liver-specific deletion either of IRS1 or IRS2 resulted 

in decreased insulin sensitivity under hyperinsulinemic-euglycemic clamp conditions due to a complete 

loss of insulin inhibition of HGP [300] but a similar study found no difference in these parameters in IRS2 

liver knockout mice [301]. Although there was no difference in liver TG content on chow diet, deletion of 

Irs1 decreased the degree of steatosis in the livers of HFD-fed mice compared to control while liver 

deletion of Irs2 had no effect [300]. This was mirrored by dampened feeding-responsive expression of 

lipogenic genes such as Fasn and Gck that are more dramatic in the IRS1- versus IRS2-deficient liver 

[300]. An RNAi-based approach to acute silencing of Irs1 and/or Irs2 expression in adult liver, however, 

suggested that IRS1 is more integral to insulin’s control of glucose metabolism and IRS2 to the lipid arm, 
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although this conclusion was largely based on gene-expression patterns rather than on physiologic 

readouts [302].  

Although reconciling such data may be difficult due to acute versus chronic effects of IRS 

knockdown, they emphasize the overall possibility that insulin signaling may differentially regulate far-

downstream aspects of glucose and lipid metabolism through differential activation of IRS isoforms. This 

interpretation is bolstered by mechanistic data from primary rat hepatocytes demonstrating that CHI-

induced insulin resistance specifically leads to decreased mRNA and protein levels of IRS2 but not of 

IRS1 [295]. Insulin-stimulated tyrosine phosphorylation of IRS2 and association of IRS2 with PI3K in 

response to insulin are abrogated in CHI-treated cells [295]. On the other hand, these parameters are 

preserved with respect to IRS1, in addition to insulin-induced expression of Srebf1c [295]. (Similar 

experiments performed in rat hepatoma cells have, however, found decreased protein levels of IRS1 in 

response to CHI [303].) While these experiments suggest that SREBP-1c is more under the control of 

IRS1 than IRS2, generally consistent with the transgenic mouse data, experiments in cultured MEFs 

suggest that IRS2 more efficiently affects the phosphorylation of FoxO proteins [304]. 

Akt 

As in the case of IRS, there are two major isoforms of Akt operating in liver, Akt1/2. Liver-specific 

deletion of both major isoforms, in a fashion again similar to both the LIRKO and liver-specific IRS1/2-

knockout mice, develop glucose intolerance due to the inability of insulin to suppress HGP. This 

phenotype is associated with increased expression of G6pc and Pck1 and these abnormalities can be 

rescued by concomitant deletion of FoxO1 [167]. Although the effect of liver-specific Akt1/2 knockout on 

hepatic or plasma lipids has not been reported, insulin-stimulated expression of Srebf1c and Gck were 

significantly decreased relative to controls [167]. Again, prior experimental evidence suggests the 

possibility of differential regulation of metabolism by Akt1 versus Akt2. In cultured adipocytes, for 

example, CHI treatment suppressed insulin-stimulated glucose uptake by Glut4 but did not prevent the 

blunting of lipolysis downstream of FoxO1 because the latter process is controlled by both Akt1 and 

Akt2 while the former is regulated only by Akt2 [305].   
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In the context of liver, tissue-specific elimination of Akt2 results in a significant impairment of 

insulin inhibition of HGP (specifically of glycogen synthesis and catabolism) without effects on G6pc or 

Pck1 expression [112]. Hepatic Akt2-knockout livers do not manifest obvious deficiencies in lipid 

metabolism in the chow-fed state, although short-term feeding with a high-carbohydrate diet unmasks a 

significant lowering of DNL in the Akt-deficient liver [158, 306]. Moreover, induction of metabolic stress 

through various genetic (e.g., leptin deficiency) and dietary (e.g., Surwit HFD feeding) manipulations 

reduced steatosis in the Akt2-deficient livers due to decreased lipogenic gene expression and 

coordinately lower rates of DNL [306]. Interesting, subsequent experiments demonstrated that the 

decreased rates of DNL in HFD-fed Akt2-null livers occurs alongside decreased expression of Fasn and 

Gck despite normal induction of Srebf1c [158]. Thus, on the whole, Akt2 plays a role in hepatic lipid 

metabolism under conditions of metabolic stress but is a prime regulator of hepatic glucose metabolism 

under normal physiologic conditions.  

There has been no study to date focusing solely on liver-specific Akt1 deficiency. Whole-body 

Akt1 knockout mice, unlike global Akt2 knockouts, are susceptible to perinatal mortality and exhibit growth 

defects but, also unlike Akt2-/- animals, do not demonstrate notable perturbations in glucose metabolism 

[307-309]. This suggests that the bulk of insulin’s effects on metabolism are mediated through Akt2 while 

Akt1 is more important in mediating mitogenic aspects of insulin and growth factor signaling [310-313]. It 

is important, however, to note these studies did not explore aspects of whole-body or hepatic lipid 

metabolism in depth in the Akt1 knockout mice. 

Signaling diversity may be generated through the Akt “node” not only through the unique activities 

of Akt1 versus Akt2 but also through differential activating phosphorylation of Akt1/2. Both Akt1 and Akt2 

are phosphorylated in response to insulin signaling on two main residues, Thr 308 (in Akt1)/Thr 309 (in 

Akt2) and Ser 473 (in Akt1)/Ser 474 (in Akt2). Again, although both of these sites are phosphorylated in 

response to insulin signaling, the individual kinases responsible for phosphorylating these two residues 

differ. In the case of Thr 308/309, the phosphate transfer is catalyzed by PDK1 following PI3K activation 

within the classical upstream insulin-signaling paradigm [86, 314]. On the other hand, Ser 473/474 does 

not appear to be phosphorylated by PDK1, but rather by mTOR complex 2 (mTORC2) [87-89]. A number 
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of other kinases have also been implicated in the phosphorylation of Ser 473 [315]. Although some have 

speculated that phosphorylation of Thr 308 is dependent on an initial “gatekeeping” phosphorylation at 

Ser 473, the two phosphorylation events have been shown to be capable of independent regulation and 

are both required for full activation of Akt activity [88, 316-318].  

Experimental evidence suggests that differential phosphorylation of Thr 308 versus Ser 473 

results in selective regulation of downstream signaling pathways [316]. Liver-specific deletion of rictor 

(LiRiKO), the defining constituent of mTORC2, abrogates Ser 473 phosphorylation in response to insulin 

signaling while leaving Thr 308 phosphorylation intact [88]. This manipulation results in the loss of Akt’s 

ability to phosphorylate and inhibit FoxO1 and GSK3β but not of its ability to trigger the activation of 

mTORC1 and its substrates, S6K1 and 4EBP1 [88]. Interestingly, however, despite the preservation of 

mTORC1 activation, LiRiKO mice exhibit defects in insulin regulation of both HGP and DNL [88]. Cells 

from whole-body rictor knockout mice have also demonstrated defects in phosphorylation of FoxO but not 

of TSC2 à mTORC1 à S6K1 [89]. On the other hand, liver-specific deletion of Pdk1 (L-Pdk1KO) resulted 

in deficient phosphorylation of FoxO1 and S6K1 but not of GSK3β [319]. In both LiRiKO (i.e., phospho-

Ser 473-deficient) and L-Pdk1KO (i.e., phospho-Thr 308-deficient) livers there was a significant decrease 

in Gck expression [88, 319]. Moreover, in both of these models, rescuing Gck expression via adenovirus 

rescues the expression of some or all of the classical ChREBP-inducible lipogenic genes but not Srebf1c 

[88, 319]. Interestingly, in the LiRiKO mouse, even the restoration of glucose flux and lipogenic gene 

expression is not sufficient to rescue DNL [88].   
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1.7. Hypotheses and Specific Aims 

Although we know a great deal about how insulin acts and how resistance to those actions can contribute 

to metabolic disease, a great many questions remain outstanding. Perhaps principal among these stands 

the phenomenon of selective IR, as the unfavorable combination of escalated HGP and DNL give rise to 

the mutually reinforcing hyperglycemia and dyslipidemia of T2DM. A great part of our problem in 

elucidating the pathogenesis of selective IR is the fact that we still do not completely understand the 

intimate relationship between insulin’s actions on hepatic glucose and lipid metabolism even in the 

healthy liver. However, I have identified two promising avenues of investigation that may lend us greater 

insight into these pressing questions. 

 First, as discussed at length above, I hypothesize that chronic hyperinsulinemia drives 

selective IR due to inherent differences in the insulin responsiveness of the glucose and lipid 

arms of the pathway. Thus, in Chapter 3, I describe a model of chronic hyperinsulinemia in isolated 

primary hepatocytes that does indeed recapitulate selective IR. I further substantiate InsR downregulation 

as a potential mechanism of CHI-induced selective IR by demonstrating that acute titration of InsR levels 

per se differentially affects insulin’s ability to halt glucose production versus stimulating de novo 

lipogenesis. 

 Second, although I make reference to the glucose and lipid “arms” of the insulin-signaling 

pathway, this is merely shorthand based in part on the largely historical portrayal of these pathways as 

divergent downstream of Akt. Aside from the evident allosteric and thermodynamic coordination of HGP, 

DNL, and FAO, insulin appears to exert long-term control over these processes at the transcriptional level 

as well through FoxO proteins, particularly FoxO1. Indeed, no other insulin-regulated protein downstream 

of Akt has been so extensively validated as essential to the regulation of both glucose and lipid 

metabolism. Yet most of the evidence linking FoxO1 to control of glucose and lipid metabolism, though 

convincing in a phenomenological sense, does not adequately explain how this transcription factor can 

affect metabolic processes outside of the nucleus. In other words, we do not know which of FoxO1’s 

hundreds of purported target genes are truly essential for fulfilling its clear roles in metabolic control. 
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In Chapter 4, I describe an unbiased first step in this direction by taking a genetic approach. 

Specifically, I hypothesize that determining whether FoxO1 acts as a direct transcription factor or as 

a transcriptional co-regulator with respect to a particular physiologic parameter will allow us to 

rule out or rule in subsets of its target genes as responsible for that effect. To that end, I will 

describe the L-DBD mouse, which expresses only a DNA binding-deficient form of FoxO1 in its liver. By 

comparing the L-DBD mouse to L-FoxO1 and control animals, I have determined the primary “mode” of 

FoxO1’s action on hepatic glucose and lipid metabolism. I have then coupled this physiologic information 

with transcriptomic analysis of each of these mouse models to drastically narrow down the list of 

candidate target genes for each metabolic process. 

Finally, in Chapter 5, I attempt to integrate the information learned from these two systems to 

advance our overall mechanistic understanding of hepatic insulin action and resistance. 
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Figure 1.1!
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Figure 1.2!

Figure 1.2. Theoretical Continuum of Insulin Action!
!
Effective [insulin] is a general reflection of the amount of InsR on the cell 
surface.!
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2.1. In Vivo Studies 

2.1.1. Mice and Diets 

Male and female C57Bl6/J mice aged over 8 weeks were used for all experiments in Chapter 3. Male 

mice aged 12-20 weeks were used for all experiments in Chapter 4 with the exception of L-FoxO1,3,4 

mice and associated Cre- controls, aged 8-10 weeks. L-FoxO1 mice have been previously described 

[145]. Heterozygous DBD knock-in mice were generated by two previous postdoctoral fellows in the lab, 

Tadahiro Kitamura and Alex Banks, through homologous recombination by recombinase-mediated 

cassette exchange (RMCE) [157, 320] (Fig. 2.1). Breeding for the L-DBD colony was begun by Kyoichiro 

Tsuchiya before the author joined the lab. All L-FoxO1, L-DBD, and respective Cre- control mice were 

bred on to the C57Bl6/J background. Genotyping was performed by Thomas Kolar; primer sequences are 

listed in Table 2.1. Mice were weaned at 3 weeks of age to standard (chow) diet (Harlan; 4% fat). 

Western-type diet (Harlan; 21% anhydrous milk fat, 34% sucrose, 0.2% cholesterol) was fed to animals 

as indicated beginning at 6 weeks of age for 10 weeks. L-FoxO1,3,4 mice and Cre- controls, all on a 

mixed genetic background, were furnished by Rebecca Haeusler and Samuel Lee. The Columbia 

University IACUC approved all animal procedures.  

 

2.1.2. Metabolic Testing 

Overnight fasts were conducted for 16 hr, from 17:00 to 09:00. Mice to be re-fed were then given ad 

libitum access to chow from 09:00 to 13:00. Blood glucose measurements were made from tail vein blood 

using OneTouch glucose monitor and strips, immediately before sacrifice for terminal procedures 

(Lifescan). Intraperitoneal glucose and pyruvate tolerance tests were performed in overnight-fasted mice 

using a dose of 2 g/kg dextrose (aq) or sodium pyruvate (aq). Insulin tolerance test was performed in 5-

hr-fasted mice using a dose of 0.8 U/kg Novolog insulin. Oral lipid tolerance test (OLTT) and TG secretion 

experiments were performed in mice fasted for 5 h. OLTT was performed using olive oil administered 

orally at 10 μL/g body weight. TG secretion was measured following intraperitoneal injection of Poloxamer 

407 (aq) at 10 μL/g. In both cases tail vein blood was collected at indicated time points and TG content 

measured by colorimetric assay (Wako). Tolerance tests were performed by Ana Flete-Castro. 
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2.1.3. In Vivo Insulin Signaling 

Mice for in vivo insulin signaling assessment were fasted for 5 hr, anesthetized, and injected in the inferior 

vena cava with 0.5 mU/g NovoLog insulin (Novo Nordisk). After 3 min, samples of liver, soleus muscle, 

and epididymal white adipose tissue were snap frozen using liquid nitrogen.  

 

2.1.4. Biometrics and Indirect Calorimetry 

Body composition of ad libitum-fed adult male mice was performed via MRI (Bruker Optics) by Ana Flete-

Castro and percent composition was calculated based on total body weight. Indirect calorimetry and 

measurement of activity was performed as previously described [157, 321] using a TSE Labmaster 

Platform (TSE Systems). Mice were acclimated to metabolic cages for 24 h before beginning 

measurements. Measurements were carried out for 72 h and averages were calculated over the three 

light cycles and three dark cycles of that period. Illustration of cumulative food intake over 24 h reflects the 

second day of measurement.  

 

2.1.5. Tissue Sample Collection 

Mice were sacrificed using CO2 in accordance with the laboratory animal protocol. Blood was drawn by 

cardiac puncture immediately after sacrifice. After being allowed to clot, bloods were centrifuged and 

serum withdrawn. Measurements of serum insulin were made by ELISA (Mercodia) and lipids by 

colorimetric assays (Wako for non-esterified fatty acids and cholesterol, Thermo for TG), respectively. 

Tissue samples were removed within 3 min following sacrifice and snap frozen on liquid nitrogen except 

for liver samples used for histology, which were preserved in formalin. Histology procedures were 

performed by the Pathology Core in the Naomi Berrie Diabetes Center. 

 

2.1.6. Hepatic Lipid Measurement 

Hepatic lipids were extracted from ~50 mg snap-frozen tissue samples using a modified method of Folch 

[322]. Briefly, tissue samples were homogenized in PBS via bead mill and were then extracted 

successively in 2:1 chloroform:methanol and then 86 chloroform:14 methanol:1 water. The hydrophobic 
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phases of each extraction were pooled in glass scintillation vials and blown to dryness under N2 gas. 

Dried lipids were then resuspended and solubilized in 8.5:1.5 chloroform:Triton X-100. Solubilized lipids 

were then blown to dryness again and resuspended in water. TG and cholesterol content were assayed 

colorimetrically and normalized to sample weight.  

 

2.2. Primary Hepatocyte Studies 

2.2.1. Primary Hepatocyte Isolation and Culture 

Primary hepatocytes were isolated from anesthetized mice using a collagenase perfusion protocol. A 

vascular clip was placed over the supradiaphragmatic inferior vena cava. A 24G¾ Exel Safelet catheter 

was then inserted into the inferior vena cava at the level of the left renal vein and connected to a 

peristaltic pump to infuse 40 mL perfusion solution (HBSS with 0.5 mM EGTA) following cutting of the 

portal vein. Next we infused 100 mL collagenase solution (Medium 199 containing 1% BSA, 20 mM 

HEPES, and type 4 collagenase [Worthington] at 3 mg/g body weight). The liver was then excised and 

finely minced in plating medium (Medium 199 with 10% FBS, and antibiotics [100 U/mL 

penicillin/streptomycin (Invitrogen), 50 µg/mL gentamicin (Sigma)]). The hepatocyte suspension was 

filtered through a 100-µm nylon mesh (BD). Following a series of low-speed centrifugations followed by 

medium replacements, cells were plated at a density of 400,000/mL on collagen-coated cultureware (BD). 

90 min after plating, cells were washed with PBS and plating medium was replaced. For most 

applications, 3 h later cells were washed twice again with PBS and incubated overnight in serum-free 

medium (Medium 199 supplemented with 1% fatty acid-free BSA and antibiotics). For cells treated with 

the chronic hyperinsulinemia (CHI) protocol in Chapter 3, medium was supplemented with 100 nM 

Novolog insulin at every step from plating onward, including during overnight serum starvation. 

 

2.2.2. Glucose Production Assay 

For glucose production assay, cells were washed twice with PBS and serum-free medium was replaced 

with glucose production medium (glucose- and phenol red-free DMEM supplemented [Sigma] with 1% 

BSA, 3.3 g/L sodium bicarbonate, 20 mM calcium lactate, 2 mM sodium pyruvate, and antibiotics). Cells 
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were incubated with 100 µM 8-chlorophenylthio-cAMP (Sigma) with or without 1 µM dexamethasone 

(Sigma) or vehicle for 5 hr. In experiments in which acute insulin was employed, cells were pre-treated for 

1 h with insulin before adding glucose-production cocktails. For experiments with S961 (Novo Nordisk) or 

Akti-1/2 (Akt inhibitor VIII, Sigma), inhibitor or vehicle (DMSO for Akti-1/2) was added at the indicated 

concentrations 30 min before the insulin pre-treatment and was continued throughout the experiment. At 

indicated time points, aliquots of medium were sampled, centrifuged, and glucose content was measured 

via peroxidase-glucose oxidase assay (Sigma) and normalized to protein content. 

 

2.2.3. De Novo Lipogenesis 

Following overnight serum starvation, medium was changed to serum-free medium with or without 10 nM 

insulin. For experiments with S961 (Novo Nordisk), inhibitor was added at the indicated concentrations 30 

min before the insulin pre-treatment and was continued throughout the experiment. After 2 hr, the medium 

was spiked with 0.6 µCi/mL [1,2-14C]-acetic acid (PerkinElmer Life Sciences) and incubated for an 

additional 3 hr. Lipids were extracted twice using 3:2 hexane:isopropanol and pooled extracts were dried 

in glass scintillation vials under N2 gas. For measurement of total DNL, lipids were resuspended in 2:1 

chloroform:methanol and were then counted using a liquid scintillation counter (PerkinElmer). For specific 

measurement of TG synthesis, dried lipids were resuspended in 2:1 chloroform:methanol and transferred 

onto TLC plates using a SpotOn TLC Sample Applicator (Analtech). TLC was performed using a mobile 

phase of 70:30:1 hexane:diethyl ether: acetic acid. Areas of silica containing TG, as identified by staining 

with iodine vapor, were scraped into glass scintillation vials and counted as above. In both cases, CPM 

readings were normalized to total cellular protein. 

 

2.2.4. Fatty Acid Oxidation 

Primary hepatocytes were cultured overnight in plating medium (i.e., not serum starved). Cells were 

washed three times with PBS and incubated for 4 hr in Medium 199 supplemented with 1.5% fatty acid-

free BSA, 0.2 mM unlabeled oleic acid, and 1 µCi/mL [1-14C]-oleic acid. Media from each well were 

transferred to glass Erlenmeyer flasks sealed with rubber plugs containing a suspended center well 
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(Kontes) holding grade 4 filter paper (Whatman) alkalinized with 1N potassium hydroxide. 70% (v/v) 

perchloric acid was then injected into each flask followed by agitation of the flasks at room temperature 

for 1 hr. Radiolabeled CO2 content of each filter paper was then assessed by scintillation counting and 

normalized to total cellular protein after correcting for specific activity of the original labeling medium in 

each well. 

 

2.3. Gene and Protein Expression Analyses 

2.3.1. mRNA Studies 

Samples of frozen liver (~10 mg) were homogenized in QiaZOL (Qiagen) using an electric homogenizer 

(Fisher Scientific, Model 500). Lysates were extracted with chloroform and the aqueous phase 

precipitated with 70% ethanol. Primary hepatocytes were lysed in Buffer RLT (Qiagen) supplemented with 

10 µL/mL β-mercaptoethanol. Samples were processed using the RNeasy Mini Kit (Qiagen) following 

manufacturer’s instructions, including on-column digestion with DNase-I (Qiagen). RNA concentrations 

were measured using a NanoDrop Spectrophotometer (Thermo). 1 µg of RNA was reverse transcribed 

using the GoScript Reverse Transcription System (Promega) following manufacturer’s instructions. 

cDNAs were diluted 1:10 and RT-PCR was performed using a DNA Engine Opticon 2 System (Bio-Rad) 

with SYBR Green (Promega). Primers were synthesized by Invitrogen; sequences are available in Table 

2.2. Gene expression levels were normalized by TATA-binding protein (Tbp) using the 2-∆∆Ct method. 

 

2.3.2. Western Blotting 

Frozen livers (~50 mg) were homogenized in or primary hepatocytes directly lysed in ice-cold lysis buffer 

(20 mM Tris-HCl, 150 mM sodium chloride, 10% glycerol, 2% NP-40, 1 mM EDTA, 20 mM sodium 

fluoride, 30 mM sodium pyrophosphate, 0.2% SDS, 0.5% sodium deoxycholate) supplemented with 

protease/phosphatase inhibitors (Cell Signaling). Protein concentration was assessed by bicinchoninic 

acid assay against a standard solution of albumin (Sigma). Electrophoresis was performed using 

homemade 8% polyacrylamide gels at 125 V for 2 h in a running buffer of 25 mM Tris base, 0.192 mM 

glycine, and 0.1% SDS. Precision Plus Protein Kaleidoscope Standards (Bio-Rad) were used as 
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molecular weight marker. Gels were transferred at 4ºC to PVDF membranes (Bio-Rad), sandwiched 

between Whatman paper, at 100 V for 2 h in a transfer buffer of 25 mM Tris base, 0.192 mM glycine, and 

10% methanol. Following transfer, membranes were stained with a solution of Ponceau Red S and cut 

into strips covering appropriate molecular weight ranges. The membrane strips were then destained in 

TBS-T (1X Tris-buffered saline with 0.05% Tween-20 [Sigma]) and blocked for 1 h at room temperature in 

blocking buffer (TBS-T with 5% nonfat dry milk [Parmalat]). Incubation with primary antibody was carried 

out overnight at 4ºC in a solution of 2.5% BSA in TBS-T. A list of antibodies used is available in Table 2.3. 

The next morning, membrane strips were washed several times in TBS-T followed by incubation with 

secondary antibody (1:2000 in blocking buffer). Following several additional washed with TBS-T, 

membrane strips were treated with Pierce Enhanced Chemiluminescent (ECL) Western Blotting Substrate 

(Thermo) and were exposed to radiography film (Fisher). Films were developed using an X-OMAT 

Developer (Kodak). Densitometric analysis was performed using ImageJ software (NIH). 

 

2.3.3. Luciferase Assay 

Luciferase assays were performed by Dr. Michihiro Matsumoto, a former postdoctoral fellow in the 

laboratory. HEK293 cells were transiently transfected with plasmids encoding either Foxo1wt, Foxo1dbd, or 

empty vector as well as 3X IRE-luc reporter plasmid or empty vector using Lipofectamine 2000 

(Invitrogen) in DMEM supplemented with 10% FBS. 36 h after transfection of plasmids, media was 

changed to serum-free DMEM/PCSM. 12 h after serum starvation, cells were lysed and luciferase assay 

was performed using the Dual Luciferase Reporter Assay System (Promega) in a Monolight 310 

luminometer (PharMingen).  

 

2.4. RNA-Seq 

2.4.1. Physical Procedures 

mRNA samples from three fasted and three re-fed mice of each genotype (control, L-FoxO1, L-DBD) and 

purified as described above were submitted to the Columbia University Molecular Pathology Core for 

assay using an Agilent Bioanalyzer 2100. All mRNA samples submitted demonstrated RNA integrity 
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number (RIN) values of greater than 8.0. Samples were then submitted to the Columbia Genome Center 

(CGC). The CGC prepared the RNA-seq library via poly(A) pulldown using TruSeq RNA Sample Prep Kit 

v2 (Illumina). Libraried cDNA was then sequenced using a HiSeq 2000/2500 sequencing system 

(Illumina) at a read depth of 30 million over 100 bp fragments.  

 

2.4.2. In Silico Analysis 

Sequence alignment, statistical analysis, and heat mapping were performed by Dr. Bin Fang of the 

University of Pennsylvania. Statistical significance was defined more stringently by q < 0.05 or less 

stringently by p < 0.05. Gene-ontology analysis was performed using DAVID Bioinformatics Database, 

http://david.abcc.ncifcrf.gov/. 
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Section 2.5: CHAPTER 2 FIGURE  
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Figure 2.1!

Figure 2.1. RMCE Strategy for Generating Foxo1dbd!
!
Figure was generated by Tadahiro Kitamura and Alex Banks.!
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Allele! Forward! Reverse!

Foxo1 (flox)! GCTTAGAGCAGAGATGTTCTCACATT! CCAGAGTCTTTGTATCAGGCAAATAA!

Foxo1 (dbd)! TGCACATGTCTCCATACTTGTTA! TGTAATCACACTCTGCCGAGGT!

Foxo1 (het)! ACTTCCAGTTCAACATCAGCCG! TTCCCGCTTCAGTGACAACGTC!

Cre (univ.)! ACCTGAAGATGTTCGCGATTATCT! ACCGTCAGTACGTGAGATATCTT!

Table 2.1. Primers Sequences Used for Genotyping!
!
All sequences are written as 5’ ! 3’.!

Table 2.1!



54 

Gene! Forward! Reverse!

Acaca! GGCCAGTGCTATGCTGAGAT! TATCACACAGCCAGGGTCAA!

Cyp27a1! GCCTCACCTATGGGATCTTCA! TCAAAGCCTGACGCAGATG!

Cyp7a1! AGCAACTAAACAACCTGCCAGTACTA! GTCCGGATATTCAAGGATGCA!

Cyp7b1! GCATGGCCCTGAAATTCTT! AGTGAGCCACAGAATGCAAA!

Cyp8b1! GCCCACAGCCTTCAAGTATG! CGACCAGCTTGAAGTCGAAG!

Enho! ATGGCCTCGTAGGCTTCTTG! GGCAGGCCCAGCAGAGA!

Fasn! CTGACTCGGCTACTGACACG! TGAGCTGGGTTAGGGTAGGA!

Foxo1 (total)! GCGTGCCCTACTTCAAGGATAA! TCCAGTTCCTTCATTCTGCACT!

Foxo1 (wt)! GAAGAATTCAATTCGCCAC! CTGCACTCGAATAAACTTGC!

Foxo1 (dbd)! GAAGGCTTCAATTCGCCGC! CTGCACTCGAATAAACCTGC!

G6pc! GTCTGGATTCTACCTGCTAC! AAAGACTTCTTGTGTGTCTGTC!

Gck! TCGGGAGTCAGGAACATCTC! AAGAAGGGACAAAGCCAGGT!

Hsd3b5! GCTCTTGGAAACCACAAGGAAC! GACAATCCTCTGGCCAAGAAAC!

Igfbp1! AGATCGCCGACCTCAAGAAAT! CTCCAGAGACCCAGGGATTTT!

Irs2! TCCAGAACGGCCTCAACTAT! AGTGATGGGACAGGAAGTCG!

Pck1! CCTGGAAGAACAAGGAGTGG! AGGGTCAATAATGGGGCACT!

Pklr! TCGAAAGTGGAAAGCTTCGT! ATGGGGTGCAACTAGGTCAG!

Ppargc1a! CCCTGCCATTGTTAAGACC! TGCTGCTGTTCCTGTTTC!

Rgs16! GGGCTCACCACATCTTTGAC! TTGGTCAGTTCTCGGGTCTC!

Scd1! CATCATTCTCATGGTCCTGCT! CCCAGTCGTACACGTCATTTT!

Srebp1c! GAAGCTGTCGGGGTAGCGTCT! CTCTCAGGAGAGTTGGCACCTG!

Tbp! CCCTATCACTCCTGCCACAC! ACGAAGTGCAATGGTCTTTAGG!

Table 2.2. Primers Sequences Used for qPCR!
!
All sequences are written as 5’ ! 3’.!

Table 2.2!
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Table 2.3!

Species/Clonality! Manufacturer! Product no.!

R mAb! Cell Signaling! 4970S!
R pAb! Cell Signaling! 9272S!
R mAb! Cell Signaling! 13038S!
R mAb! Cell Signaling! 4060S!
R mAb! Cell Signaling! 3180S!
R mAb! Cell Signaling! 2880S!
R pAb! Cell Signaling! 9461S!
S pAb! N/A*! N/A*!
R mAb! Cell Signaling! 9315S!
R mAb! Cell Signaling! 9322S!
M mAb! Novus Biologicals! 06349-64!
R mAb! Cell Signaling! 3024S!
R mAb! Cell Signaling! 3407S!
R mAb! Cell Signaling! 3089S!
R mAb! Cell Signaling! 2983S!
R mAb! Cell Signaling! 5536S!

Protein Target !
(+ epitope)!

β-Actin (13E5)!
Akt!

p-Akt (T308)!
p-Akt (S473)!

Fasn (C20G5)!
FoxO1 (C29H4)!
p-FoxO1 (S256)!

Gck!
Gsk3β (27C10)!
p-Gsk3β (S9)!

InsRβ (MA-20)!p-
InsRβ (Y1150/1)!
IRS1 (D23G12)!
IRS2 (L1326)!
mTOR (7C10)!

p-mTOR (S2448)!
SREBP-1c (2A4)! M mAb! Novus Biologicals! NB600-582!

Table 2.3. Primary Antibodies Used for Western Blotting!
!
M = mouse, R = rabbit, S = sheep; mAb = monoclonal, pAb = polyclonal!

*Gck antibody was a gift of Mark Magnuson (Vanderbilt University).!
!
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Chapter 3 

MODELING PURE VS. SELECTIVE INSULIN RESISTANCE IN PRIMARY HEPATOCYTES 
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3.1. Introduction 

Our hypothesis for the genesis of selective IR in liver suggests that it is at least in part hepatocyte 

autonomous. We therefore aim to recapitulate selective IR by modeling CHI in primary mouse 

hepatocytes as described previously [247, 295, 305]. The ability to demonstrate that this model works 

would substantiate the idea that CHI per se can contribute to the development of selective IR, rather than 

CHI merely representing an epiphenomenon coinciding with selective IR.  

The kinetics of CHI-induced InsR downregulation in cultured hepatocytes is well described [284, 

285, 288, 323-326]. Incubation of primary hepatocytes with 100-nM insulin results in a ~50% decrease in 

InsR numbers by 24 h that remains steady up to 72 h. Removal of insulin from the culture medium after 

24 h results in a nearly complete rebound in InsR number to the level of untreated cells within hours [285]. 

InsR downregulation can be demonstrated in primary hepatocytes chronically exposed even to lower, 

more physiologic insulin concentrations [324].  

Precedent also exists to suggest the possibility of recapitulating selective IR in isolated cells in 

response to CHI. For example, a model of CHI in primary rat hepatocytes that resulted in significantly 

increased insulin-stimulated de novo lipogenesis compared to control cells in spite of significantly 

decreased InsR binding and insulin-stimulated uptake of 3-aminoisobutyrate [325]. Increased lipogenesis 

in this system may be due to persistent activation of the SREBP-1c pathway despite markedly reduced 

insulin-stimulated PI3K activity [295]. These studies, though consistent with our hypothesis, do not speak 

directly to the dual effects of CHI on glucose and lipid production; our objective is therefore to address this 

outstanding question. 

 

3.2. Results 

3.2.1. Model of Chronic Hyperinsulinemia Recapitulates Selective IR 

We treated mouse primary hepatocytes with or without 100-nM insulin (“chronic hyperinsulinemia,” 

henceforth CHI) for 24 h followed by acute (30 min) treatment with or without 10-nM insulin. CHI treatment 

results in an approximately 50% reduction in InsR protein levels, indicating InsR downregulation (Fig. 3.1). 

In keeping with reduced InsR signaling, insulin-stimulated phosphorylation of Akt at Thr 308 and Ser 473 
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is markedly reduced, although the basal level of Akt phosphorylation at both sites is higher than in control 

(Fig. 3.1). This is consistent with findings in the published literature.  

As Akt is generally considered the “branch point” between the glucose and lipid arms of hepatic 

insulin action [213], we assessed major downstream indices of insulin action on these processes. 

Phosphorylation of FoxO1, as indicated by an upward electrophoretic mobility shift, parallels that of its 

insulin-responsive kinase, Akt, as expected (Fig. 3.1). That this electrophoretic mobility shift in FoxO1 is 

completely lost in CHI-treated cells is consistent with the hypothesis that the glucose arm has been 

rendered resistant to the acute effects of insulin. On the other hand, cleavage of SREBP-1c, a surrogate 

measure of the activation of the lipid arm, appears to be relatively more intact in the CHI-treated cells (Fig. 

3.1). That is, although SREBP-1c cleavage appears to lose much of its acute responsiveness to insulin as 

well, the absolute amount of cleaved SREBP-1c is comparable between insulin-treated control cells and 

CHI-treated cells treated acutely with or without insulin (Fig. 3.1). The preservation of cleaved SREBP-1c 

levels in the CHI-treated cells is likely attributable to increased levels of precursor (uncleaved) SREBP-1c 

that had accumulated in response to high-dose insulin over the 24-h exposure period (Fig. 3.1). CHI-

treated primary hepatocytes interestingly exhibited sharp decreases in protein levels of IRS1/2 (Fig. 3.1 

and data not shown). We confirmed these findings in rat Fao hepatoma cells as well (data not shown). 

Although these indices of insulin action are consistent with our expectations, it is necessary to 

test functional readouts of both arms of the insulin-signaling pathway. We therefore performed glucose 

production (GP) assays in mouse hepatocytes subjected to the CHI paradigm described above (Fig. 

3.2A). As expected, treatment with a cell-permeable cAMP analogue (CPT-cAMP) resulted in a ~35% 

induction of GP over 5 h that was completely reversed by concomitant treatment with insulin. On the other 

hand, although CHI treatment did not affect maximal induction of GP by cAMP, the inhibitory effect of 

insulin was completely lost. qPCR analysis of key enzymes involved in GP were congruent with the 

glucose-production findings (Fig. 3.2B-C). mRNA levels of G6pc and Pck1 were induced 30- and 15-fold, 

respectively, by treatment with cAMP; this effect was, as expected blocked by co-treatment with insulin. 

CHI-treated cells consistently exhibited an attenuated response of G6pc and Pck1 expression to cAMP 

treatment, but again even this blunted response was completely unresponsive to insulin (Fig. 3.2B-C). 



 59 

Thus, we can state that CHI treatment does indeed induce insulin resistance in the glucose arm of the 

pathway.  

 In order to determine whether the IR evoked by CHI is truly selective, we assessed de novo 

lipogenesis (DNL) in the context of the CHI model (Fig. 3.3A). CHI treatment tended to increase basal 

lipogenesis by 23%. Nevertheless, acute insulin treatment still significantly induced DNL by 38%, 

although this was decreased relative to the effect of acute insulin in control cells (53%). Expression of 

Srebp1c and Gck were both increased at baseline in CHI-treated cells, although there was no significant 

effect of acute insulin treatment on expression of these genes in either control or CHI-treated cells (Fig. 

3.3B-C). These observations were confirmed at the protein level as well (Fig. 3.1). Overall, CHI treatment 

renders primary hepatocytes incapable of inhibiting cAMP-induced GP even as they remain able to 

activate lipogenesis in response to the same dose of insulin, hence selective IR.  

 

3.2.2. Variable InsR Antagonism Results in a Spectrum of IR 

The recapitulation of selective IR in response to CHI treatment is consistent with the empirical findings in 

hyperinsulinemic humans and mice. The ex vivo model of CHI, however, is associated with certain 

limitations. First, the reduction in InsR protein levels by ~50% represents only a snapshot of InsR 

impairment that does not allow us to understand at which point the two metabolic arms actually diverge. 

Next, CHI involves exposure of the cells to insulin as a matter of course. Thus, before IR sets in, cells 

would respond to the treatment as they would an acute bolus of insulin. This is reflected, for example, in 

the higher baseline phosphorylation of Akt and protein levels of precursor SREBP-1c and Gck, and may 

therefore mask subtle defects in the acute response of DNL to insulin. Lastly, CHI-induced IR may 

actually represent only one particular even of selective IR and we therefore aimed to take a parallel 

approach to investigating selective IR. 

 We have therefore taken an acute approach to manipulating the insulin sensitivity of hepatocytes 

by employing S961, a peptide competitive inhibitor of InsR derived from insulin [327]. By treating cells with 

a range of concentrations of S961, we expect to generate a spectrum of insulin resistance that will allow 

us to better visualize the differential insulin sensitivities of the glucose and lipid arms [327, 328]. To this 
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end, we have treated mouse primary hepatocytes with or without S961 for 30 min prior to and then along 

with acute treatment with insulin. S961 treatment dose-dependently inhibits the phosphorylation of IRS1, 

Akt (Thr 308), GSK3β (Ser 9), and FoxO1 in response to insulin (Fig. 3.4A).  On the other hand, there is 

no discernible effect on either total or cleaved SREBP-1c levels (Fig. 3.4A). As expected, there is also no 

effect on total InsRβ levels (Fig. 3.4A). By plotting the percentage of maximal insulin action on Akt or 

GSK3β phosphorylation as a function of the logarithm of antagonist concentration, we can calculate the 

IC50 of S961 as an index of the relative IR of these components of the proximal insulin-signaling pathway 

(Fig. 3.5). The calculated IC50 for the response of phosphorylation of Akt Thr 308 to 10-8 M insulin is -9.06 

(0.87 nM), for Akt Ser 473 is -8.57 (2.69 nM), and for GSK3β Ser 9 is -9.01 (0.98 nM) (Fig. 3.5). 

Antagonism of InsR also results in dose-dependent defects in the insulin responsiveness of 

glucose production (Fig. 3.4B). Acute treatment of cells with 10-8 M insulin results in a 31% reduction of 

cAMP-stimulated GP. Co-treatment with S961 at 10-6 and 10-7 M S961 completely blocks this effect of 

insulin, while 10-8 M S961 allows for a 9% reduction of GP by insulin. Treatment with 10-9 and 10-10 M 

S961 allowed for 21% and 24% reductions of glucose production, respectively, by insulin. Thus, even at 

an antagonist concentration 100-fold lower than that of insulin, the cells still are unable to completely 

suppress GP in response to insulin. Treatment even with the maximal dose of S961 did not affect 

maximal GP in response to cAMP. By plotting the percentage of maximal insulin action on GP as a 

function of the logarithm of antagonist concentration, we can calculate the IC50 of S961 as an index of the 

relative IR of the glucose arm (Fig. 3.6). The calculated IC50 for the response of the glucose arm to 10-8 M

insulin is -8.63 (2.3 nM). 

The insulin-responsive lowering of mRNA levels of G6pc and Pck1 is likewise dose-dependently 

inhibited by S961 (Fig. 3.4C). cAMP-induced expression of G6pc and Pck1 were decreased by 96% and 

92%, respectively, by insulin. Surprisingly, G6pc mRNA decreased by about a third in response to insulin 

even at the highest concentration of S961, and was suppressed maximally by insulin in the presence of 

10-9 M S961. Pck1 expression, on the other hand, was not decreased by insulin in the presence of 10-6 or 

10-7 M S961, although, as for G6pc, was fully suppressed at 10-9 M S961. The calculated IC50 for
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suppression of cAMP-induced G6pc and Pck1 expression by 10-8 M insulin are -7.60 (25.1 nM) and -7.79 

(16.2 nM), respectively (Fig. 3.7). 

Variable InsR antagonism resulted in a distinctly different dose-response curve for DNL (Fig. 

3.4E). Treatment with 10-8 M insulin stimulated DNL by 67% in control hepatocytes. This effect was fully 

suppressed by S961 at 10-6 and 10-7 M but treatment with even the highest dose of S961 did not alter 

basal DNL. Treatment with 10-8 M S961 permitted a 29% increase in DNL in response to insulin, roughly 

44% of the maximal response. At 10-9 and 10-10 M the rates of DNL exceeded even that in the insulin-

treated control cells, rising by about 78% in each case. The slightly higher rates of DNL in these cells was 

not, however, statistically significant compared to insulin-only control. The calculated logarithmic IC50 for 

S961 inhibition of DNL in response to 10-8 nM insulin, an index of the relative IR of the lipid arm, is -8.07 

(8.51 nM) (Fig. 3.6).  

We can directly compare the IC50 values obtained for GP and DNL, as each represents the 

relative IR of its respective metabolic process within the same experimental context (Fig. 3.6). Again, the 

IC50 for GP was calculated as -8.63 (i.e., 10-8.63 M, or 2.3 x 10-9 M S961) while that for DNL is -8.07 (i.e.,

10-8.07 M, or 8.5 x 10-9 M S961). Thus, an InsR antagonist concentration of nearly four times greater than 

that needed to half-maximally suppress insulin’s effect on GP is required to half-maximally suppress 

insulin’s effect on DNL. This outcome strongly supports our hypothesis that modulation of effective InsR 

number per se can produce selective IR. 

3.2.3. Inhibition of Akt1/2 Results in Pure IR 

Previous studies have suggested that Akt represents the most distal element of the InsR signaling 

cascade that unites insulin’s effects on glucose and lipid metabolism. We therefore tested the effect of 

inhibition of Akt on GP and DNL in primary hepatocytes. Akti-1/2 is a chemical inhibitor of Akt that 

prevents its phosphorylation. Accordingly, Akti-1/2 treatment completely blocked phosphorylation of Akt in 

response to insulin, and thereby also markedly decreased phosphorylation of FoxO1, GSK3β, and mTOR 

without affecting upstream IRS2 (Fig. 3.8A). Of note, treatment with the inhibitor was without notable 

effect on SREBP-1c cleavage. Akti-1/2 treatment also blocked the ability of insulin to decrease GP in 
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response to cAMP (Fig. 3.8B). Similar to the effect of CHI treatment, Akt inhibition decreased the maximal 

cAMP-induced expression of G6pc and Pck1 (Fig. 3.8C-D). Although Akti-1/2 prevented the lowering of 

G6pc expression to normal by insulin, it did allow for an approximately 50% repression, while Akti-1/2 did 

not prevent the lowering of Pck1 expression to basal levels by insulin (Fig. 3.8C-D). Finally, Akti-1/2 

treatment completely abrogated insulin’s induction of DNL (Fig. 3.8E). These data support the idea that 

Akt signaling unites insulin’s effects on GP and DNL in the context of primary hepatocytes, and thus 

interfering with its action recapitulates a form of pure IR [90]. 

 

3.3. Discussion 

3.3.1. Overview of Findings 

Classical biochemistry teaches that insulin acts in the liver to shift its anabolic activity away from glucose 

production and toward glycogen synthesis and lipogenesis. Accordingly, patients with inactivating 

mutations in Insr cannot suppress glucose production or stimulate lipogenesis in response to insulin. A 

persistent conundrum facing clinical endocrinology, however, has been the selective IR exhibited by so 

many garden-variety type 2 diabetic patients. This study supports the idea that pure and selective IR lie 

along a single spectrum in which decreasing InsR activation differentially alters glucose and lipid 

metabolism because of inherent differences in the relative insulin responsiveness of each process. 

Specifically, as we have shown using a peptide competitive inhibitor of InsR, a greater degree of intact 

InsR is required to properly halt HGP than to stimulate DNL. Thus, at intermediate levels of InsR 

activation, DNL can proceed while HGP fails to respond. At very low levels of intact InsR, neither process 

can go forward.  

This loss of InsR may stem from downregulation due to the chronic hyperinsulinemia that is 

common to those in the run-up to T2DM. Indeed, modeling of CHI in primary hepatocytes shows that 

these cells can be rendered selectively resistant to insulin’s lowering of GP while remaining able to 

engage in insulin-stimulated DNL. In other words, the co-occurrence of CHI and selective IR in garden-

variety pre-diabetic patients may not merely represent an epiphenomenon; rather, the two may be 

etiologically linked.  
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3.3.2. Qualitative and Quantitative Impact of CHI on InsR  

 As discussed extensively in Chapter 1, CHI has been shown to induce IR. That CHI may precede 

the development of hepatic IR is supported by the general consensus that IR in skeletal muscle and WAT, 

the combination of which would induce compensatory CHI, precedes hepatic IR by many years in the 

natural history of T2DM [67-71, 329]. This is manifested clinically in the observation that post-prandial 

hyperglycemia, which in part reflects failure of glucose disposal in muscle, precedes fasting 

hyperglycemia, a reflection of HGP [69, 71, 329]. Much evidence supports the idea that CHI-induced IR is 

due to downregulation of InsR in the hepatocyte, thereby producing a quantitative defect in insulin 

signaling. Indeed, a similar study in rat hepatocytes demonstrated CHI treatment resulting in a ~50% 

reduction in InsR number affected only the maximal rates of insulin-stimulated lipogenesis and glycogen 

synthesis and not their inherent sensitivities to insulin (i.e., ED50) [285]. The studies described here are 

concordant with this paradigm, as ex vivo modeling of CHI in primary mouse hepatocytes also results in a 

~50% reduction in InsR protein levels. Of note, specific binding of insulin to membrane preparations of 

liver from obese humans was also decreased by about 50% relative to non-obese controls, further 

supportive of the physiologic relevance of this model [289].  

It is important to note that this thesis has only shown a decrease in total hepatocellular InsR 

levels, however, which does not necessarily reflect the relative contributions of intracellular vs. cell-

surface receptors. Indeed, cell-surface InsR may even represent a minority of total cellular InsR levels 

[288, 323, 326, 330] but even this pool of InsR has been shown to be reduced in diabetic and non-

diabetic obese livers [288]. Moreover, insulin binding in the short term can reversibly alter subcellular 

localization of InsR [330-333] even if not total InsR number [291], adding another layer of complexity to 

the problem and perhaps accounting for some of the observed variability in the degree of InsR 

downregulation between different studies. Yet another intriguing, albeit controversial possibility behind 

InsR downregulation is the activation of a cell-surface protease following CHI exposure that cleaves the 

extracellular α domain of InsR, thereby abolishing the ability of the residual receptor to bind to insulin 

[334]. Corroborating the potential clinical relevance of this mechanism is the observation that diabetic 

patients exhibit elevated levels of soluble InsR in their circulation [335]. 



 64 

The fact that insulin can and does alter both cellular InsR content and localization may help to 

explain why pulsatile rather than continuous delivery of insulin to the liver leads to a more robust acute 

insulin response and prevents desensitization [277, 336-339], even in primary hepatocytes [333]. 

Prolonged infusion even of supraphysiologic doses of insulin in humans does not result in loss of insulin 

responsiveness if supplied in a pulsatile fashion; in fact, this may even enhance insulin sensitivity [340].  

These observations dovetail with the empirical finding that pancreatic β cells of patients with type 2 

diabetes as well as obese non-diabetic patients exhibit a more continuous, or at least less regularly 

pulsatile, release of insulin, underscoring the “chronic” aspect of CHI [341-345], although some conflicting 

evidence exists [346]. Moreover, first-degree relatives of T2DM patients have been found to show 

impaired pulsatility in insulin secretion, further suggesting a primary role of altered insulin secretion in the 

pathogenesis of selective IR [347]. That incretin-modulating drugs augment insulin secretion in a pulsatile 

fashion [348, 349], as opposed to the continuous effect of sulfonylureas [350], may help to explain their 

ability to improve insulin sensitivity as opposed merely to insulin secretion [4]. Taken together these 

findings suggest that, although patients developing IR are hyperinsulinemic, insulin levels per se do not 

need to be all that high to induce IR. In other words, a loss of normally pulsatile insulin delivery 

experienced by these patients, even if not resulting in frank hyperinsulinemia, would still be tantamount to 

CHI in terms of inducing InsR desensitization.     

Previous studies also suggest that CHI induces post-binding defects that contribute to the overall 

cellular IR, a possibility that is not mutually exclusive with a coincident wholesale downregulation of InsR. 

For example, in primary hepatocytes isolated from diabetic patients, not only were insulin binding per 

surface area and total InsR protein levels decreased but so was insulin-stimulated InsR kinase activity 

even when normalized for amount of insulin bound [288]. In other words, the defect in InsR function is 

disproportionate to the extent of InsR downregulation [351-355]. This is also reflected in the findings of 

this study, as CHI-treated cells show a complete loss of Akt phosphorylation in response to acute insulin 

despite the reduction of InsR by only about 50% (Fig. 3.1). Similarly, acute insulin treatment completely 

curtails the hormone’s ability to suppress G6pc and Pck1 expression (Fig. 3.2B-C). Also consistent with a 

qualitative effect of CHI on InsR function, treatment with increasing doses of S961, which does not alter 
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total InsR levels at least in the acute setting (Fig. 3.4A), resulted in roughly proportional changes in InsRβ 

and Akt phosphorylation (Fig. 3.4A, Fig. 3.5).  

It is also important to consider potential confounding effects of the high doses of insulin used in 

this study. First, CHI treatment may risk “specificity spillover” through activation of the IGF-1 receptor 

(Igf1R) by insulin. This possibility may not be as problematic in our system as in other cell types, however, 

as adult liver and isolated primary hepatocytes have been found to express little or no Igf1R [356, 357], 

although it may be induced in regenerating liver [358]. Second, hepatocytes may contain spare receptors 

for insulin. One study in isolated rat hepatocytes found that only 35% of maximal insulin binding was 

required for full stimulation of glycogen synthesis [359], although other studies in primary hepatocytes 

[285] and whole liver [64] did not find evidence of spare receptors. The presence of spare InsR would be 

problematic for our study in two ways. First, it suggests a priori that the ~50% reduction we observe in 

total InsRβ protein levels is not sufficient to explain the defects in Akt phosphorylation and inhibition of 

GP. Potential explanations for this apparent discrepancy include (i) that some portion of the InsRβ 

detected in Fig. 3.1A has been internalized and/or (ii) that post-binding defects in InsR (e.g., reduced 

kinase activity) may account for a greater share of the loss of insulin action than reduced receptor binding 

per se. Direct assessment of insulin binding to InsR in our model of CHI would address these possibilities. 

A second potential drawback of the presence of spare receptors is that it might mask subtle defects in 

acute insulin action, especially as we have chosen to use somewhat supraphysiologic 10 nM insulin as 

our standard dose for acute treatment. For example, although on average we found that insulin lost the 

ability to significantly blunt GP following CHI treatment, the data from the three individual experiments 

demonstrated some heterogeneity; some wells responded better to acute insulin inhibition of GP than 

others. This is reflected in the residual ~12% average decrease in GP in response to insulin even in CHI-

treated cells. The single-well data in insulin-inhibited GP between control and CHI may have been tighter 

had we used a lower dose of insulin. In the experiment illustrated in Fig. 3.8B, 1 nM insulin was able to 

reduce cAMP-induced GP by about 20%. 

 Finally, CHI treatment, although resulting in IR in the longer term, activates insulin signaling over 

the first several hours of treatment. Thus, it is possible that the acute effects of CHI treatment may reset 
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the baseline for later measures of insulin action. For example, we found that CHI treatment blunted 

maximal cAMP-induced expression of G6pc and Pck1. Similarly, as discussed in Section 3.3.4, we found 

basal IRS1 and IRS2 levels to be decreased following CHI. IRS1 and IRS2 are known to be positively 

regulated by FoxO proteins, suggesting that their decrease may reflect inactivation of FoxO by insulin 

[145, 360]. These concerns would endorse waiting longer than 24 h for any residual acute effects of 

insulin to dissipate. However, mouse primary hepatocytes rapidly begin to lose their hepatocyte character 

following culture ex vivo. We found, for example, that maximal cAMP-induced GP was reduced by over 

half 48 h after isolation vs. the usual 24 h (data not shown). We therefore have attempted to strike a 

balance between preserving the integrity of the isolated hepatocytes and ensuring sufficient time to 

engender IR. Nevertheless, although we cannot prove that residual acute effects of insulin account for the 

peculiar observations listed above, we have reason to believe that this is not the case. Despite decreases 

in cAMP-induced G6pc and Pck1 expression, basal (untreated) expression of these genes is not 

decreased on average in CHI-treated cells, and in some experiments was even increased (Fig. 3.2B-C). 

More importantly, both basal and maximal cAMP-induced GP are identical in control and CHI-treated 

cells (Fig. 3.2A). Finally, despite the decrease in IRS1/2 protein levels, Irs2 mRNA was unchanged in the 

basal or stimulated states (data not shown). It is therefore likely that these observations genuinely reflect 

the CHI-induced IR state. 

3.3.3. Mechanism of Insulin-Stimulated DNL in Primary Hepatocytes 

Although the topic of cell autonomous vs. non-autonomous effects in DNL (as well as GP) will be 

discussed more extensively in Chapters 4-5, it merits an introduction here. A key finding of these studies 

is the preservation of DNL in the face of CHI-induced IR, consistent with our expectations based on 

garden-variety clinical IR. However, our system on its face does not completely support the model that 

compensatory hyperinsulinemia in insulin resistance drives DNL through a preservation of insulin 

signaling through the Akt à mTORC1 à SREBP-1c branch of the pathway [213, 215, 217, 218, 276]. In 

our studies, SREBP-1c expression and cleavage do not generally correlate well with observed rates of 

DNL, probably because SREBP-1c cleavage is reported not to be particularly sensitive to insulin in 



 67 

isolated mouse hepatocytes (see Chapter 5). Indeed, we found quite a variable responsiveness of 

SREBP-1c cleavage in response to acute insulin treatment (cf. Fig. 3.1 vs. Fig. 3.4A and Fig. 3.8A).  

It is important to bear in mind in the discussion of selective IR that even though we refer to the 

lipid arm as remaining “sensitive” to insulin, it may well not be as sensitive as in a healthy liver. 

Lipogenesis is relatively more sensitive to insulin than is GP, and in selective IR operates under the aegis 

of hyperinsulinemia. Even though we found that SREBP-1c cleavage is not especially sensitive to insulin 

in our system, we did consistently find an increase in both SREBP-1c mRNA and precursor protein levels 

following CHI treatment (Fig. 3.1, 3.3C). This finding has been previously reported in rat primary-

hepatocyte models of CHI [209, 295]. Thus, the steady-state level of cleaved SREBP-1c is likely higher 

than in control cells, especially as basal SREBP-1c cleavage appeared higher following CHI treatment. 

This is consistent with our finding of higher mRNA and protein levels of key SREBP-1c lipogenic target 

gene Fasn (Fig. 3.1, 3.3C). So, even if the acute insulin responsiveness of SREBP-1c cleavage and 

activity is decreased, it is still expected to remain high overall relative to insulin-stimulated FoxO1 

phosphorylation and effects on GP. On the other hand, acute inhibition of insulin signaling, either directly 

by S961 treatment or indirectly by Akt inhibition, may uncouple DNL from SREBP-1c expression, as these 

treatments hindered DNL without systematically affecting SREBP-1c cleavage. We suspect that, due to 

the far shorter time course of these experiments versus the CHI model, changes in basal SREBP-1c 

expression would not be expected to play a dominant role in DNL. However, we cannot make this 

statement conclusively as we did not measure insulin-stimulated mRNA expression of SREBP-1c and its 

targets in S961- or Akti-1/2-treated cells.  

Taken together with the CHI data (and data from Chapter 4, to be discussed at greater length in 

Chapters 4-5), we speculate that, although both “chronic” (i.e., CHI) and “acute” (i.e., S961, Akti-1/2) 

inhibition of InsR signaling betray selective IR, the mechanisms underlying the relative preservation of 

insulin signaling to DNL may be distinct. We therefore have formulated a hypothesis regarding our DNL 

results in CHI-treated vs. control cells that separates out effects on basal (i.e., chronic insulin-stimulated) 

vs. acute insulin-stimulated DNL. In the case of acute insulin treatment (and the effects of S961 or Akti-

1/2 on it), we see no differences in expression of classic lipogenic genes (Fig. 3.3B-D), consistent with 
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previous observations in primary mouse hepatocytes. Thus, the increase in DNL likely occurs via 

posttranslational mechanisms (see Chapters 1 and 5). If this hypothesis is true, then even these 

posttranslational mechanisms of insulin-stimulated DNL are relatively more sensitive to insulin than those 

inhibiting GP (also likely to be largely posttranslational, as discussed in Chapter 5).  

On the other hand, as stated above, long-term treatment with high-dose insulin increases mRNA 

and protein levels of SREBP-1c, Fasn, and Gck, and decreases mRNA levels of G6pc. This essentially 

represents the Brown and Goldstein model of CHI-driven increased DNL [276]. The increased expression 

of lipogenic genes in the basal state may account for the increased basal DNL of CHI-treated cells. That 

the levels of these genes still trend higher than control in the acute insulin-stimulated state therefore may 

also explain the persistent trend of higher rates of DNL even with insulin treatment. This possibility is 

concordant with our finding that the increase in DNL in response to acute insulin is only slightly decreased 

in CHI-treated cells (38%) to that in control cells (53%). This suggests that the posttranslational effect of 

acute insulin treatment is nearly normal in CHI-treated cells.  

In summary, we propose a model whereby CHI (e.g., in the post-absorptive state) increases 

basal expression of lipogenic genes and proportionally increases rates of DNL. Moreover, CHI does not 

impair acute insulin-stimulated DNL (e.g., in the postprandial state) relative to GP even on top of the 

increase in basal DNL. This model is oversimplified, as it does not account for other mediators of DNL in 

response to fasting and feeding in whole liver. For instance, cultured hepatocytes are exposed to a 

constant ambient level of glucose that is uncoupled from insulin levels. In vivo, however, an influx of 

insulin would normally be preceded by an increase in glucose levels, which in turn could drive lipogenic 

gene expression through ChREBP independently of SREBP-1c [63, 202]. In the case of selective IR, 

therefore, decreased control of HGP would be expected to increase ChREBP-driven lipogenesis. 

Carbohydrates can also directly drive lipogenesis via allosteric activation of glycolytic enzymes including 

glucokinase [180, 361, 362]. In our system, increased Gck expression in CHI would be expected to further 

accentuate ChREBP signaling as well [232]. Thus, even though there may be a slight decrement in the 

ability to increase DNL in response to acute insulin post-CHI treatment, this may not manifest in vivo due 
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to increased carbohydrate-driven lipogenesis [202, 325]. Indeed, even in LIRKO mice, re-fed expression 

levels of several lipogenic genes are normal or nearly so due to ChREBP and other factors [202]. 

In spite of these caveats, however, our finding that CHI-induced IR spares DNL even in isolated 

hepatocytes represents an important conceptual step forward in our understanding of the connection 

between IR and hepatic steatosis. That is, our findings suggest that processes autonomous to the 

hepatocyte can contribute to steatosis independently of alterations in WAT-liberated FFA, namely both 

transcriptional and posttranslational changes in insulin-stimulated DNL [48]. Although previous studies 

investigating expression of lipogenic genes in primary hepatocytes suggested this possibility, these 

studies did not generally measure DNL directly [209, 213, 218, 295]. On the other hand, older studies that 

also provide evidence that DNL continues unabated in the face of CHI did not correlate these data with 

lipogenic gene expression or compare them to GP [285, 288, 325]. 

Overall, the idea that the development of steatosis requires some participation of hepatic insulin 

signaling is consistent with data indicating that humans with pure IR due to Insr mutations do not develop 

fatty liver even though their fasting FFA levels may be somewhat elevated [65]. Nevertheless, although 

the fractional contribution of DNL to hepatic TG is increased in IR states, the contribution of re-esterified 

WAT released by lipolysis is still significant, especially in the fasting state [48, 363]. For instance, mice 

lacking hormone-sensitive lipase (HSL), which are unable to liberate FFA from WAT, show increased 

hepatic insulin sensitivity and reduced hepatic TG [364, 365]. Thus, the combination of selective IR in 

WAT and liver may together drive the development of NAFLD [48]. The potential mechanisms of selective 

IR will be discussed further in Chapter 5. 
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Figure 3.1. Modeling Chronic Hyperinsulinemia in Primary Hepatocytes 

Western blots demonstrating alterations in InsR signaling cascade components in response to acute 

and/or chronic insulin treatment. Each lane contains equal amounts of protein pooled from three 

independent experiments. 
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Figure 3.2. Effect of CHI Treatment on Glucose Production 

Relative glucose production (A) and gene expression (C-D) in control or CHI-treated primary hepatocytes 

incubated for 5 h with vehicle, 100 µM CPT-cAMP, or 100 µM CPT-cAMP + 10 nM insulin. Data are 

normalized to vehicle-treated control. In (A) data are mean ± SEM of three independent experiments 

performed in quadruplicate; in (B) data are mean ± SEM of one representative experiment of three 

performed in triplicate. 

* p < 0.05 by Bonferroni’s post-hoc analysis following two-way ANOVA. 
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Figure 3.3. Effect of CHI Treatment on De Novo Lipogenesis 

(A) De novo lipogenesis in control or CHI-treated primary hepatocytes. Following overnight serum 

starvation cells were treated with vehicle or 10-nM insulin for 2 hr and then 14C-labeled acetic acid was 

added for an additional 3 hr. Data are presented as mean ± SEM normalized to vehicle-treated control of 

five independent experiments performed in triplicate. 

(B-D) Gene expression in control or CHI-treated primary hepatocytes incubated for 5 h with vehicle or 10 

nM insulin. Data are presented as mean ± SEM normalized to vehicle-treated control and are 

representative of three independent experiments performed in triplicate.  

* p < 0.05 by Bonferroni’s post-hoc analysis following two-way ANOVA. 
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Figure 3.4. Dose-Response Study of InsR Antagonism 

(A) Western blots demonstrating alterations in InsR signaling cascade components in response to 

treatment with 10 nM insulin and/or the indicated concentration of S961. Each lane represents pooled 

samples of equivalent amounts of lysate from three independent experiments.  

(B-D) Relative glucose production (B) and gene expression (C) in primary hepatocytes incubated for 5 h 

with 100 µM CPT-cAMP with or without 10 nM insulin and the indicated concentrations of S961.  

(E) De novo lipogenesis in control or S961-treated primary hepatocytes. Following overnight serum 

starvation cells were treated with or without S961 and with or without insulin for 2 hr and then 14C-labeled 

acetic acid was added for an additional 3 hr.  

Data are normalized to insulin-/S961-untreated control and represent mean ± SEM of three independent 

experiments performed in triplicate. * p < 0.05 vs. vehicle-treated control by Bonferroni’s post-hoc analysis 

following two-way ANOVA. 

 

 

 

 

 

 

 

 



 79 

S961 conc. 
(M)!

Akt pT308!
(% max)!

Akt pS473!
(% max)!

Gsk3β pS9!
(% max)!

0! 100! 100! 100!

10-6! -6.7! -7.2! -4.6!

10-7! -4.1! -4.7! 3.2!

10-8! 12.5! 12.2! 21.8!

10-9! 45.2! 78.2! 49.6!

10-10! 131.0! 131.1! 82.2!

Figure 3.5!

A!

B!

S961 (log M)!

In
su

lin
 re

sp
on

se
 (%

 m
ax

im
al

)!

0

50

100

150

−10 −9 −8 −7 −6

Akt pT308 (IC50 = -9.06)!

Akt pS473 (IC50 = -8.57)!

Gsk3β pS9 (IC50 = -9.01)!

IC50 ! IC50 !IC50 !



 80 

Figure 3.5. Relative Insulin Responsiveness of Akt and GSK3β  Phosphorylation 

(A) % maximal insulin response of phosphorylation of Akt T308, Akt S473, and GSK3β S9 as a function of 

S961 concentration. Figures are calculated from densitometric analysis of the Western blots shown in Fig. 

3.4A as the percentage of the departure from baseline at the indicated S961 concentration relative to the 

maximal change with insulin in the absence of antagonist.  

(B) Graphical representation of calculations in (A) for Akt and GSK3β phosphorylation IC50 is calculated 

as log10 of the S961 concentration at which each dose-response curve intercepts 50% maximal insulin 

response. Data are derived from densitometric analysis of Fig. 3.4A. 
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Figure 3.6. Relative Insulin Responsiveness of GP and DNL 

(A) % maximal insulin response of Akt T308 phosphorylation, glucose production, and de novo 

lipogenesis as a function of S961 concentration. Figures are calculated from the data in Fig. 3.2 as the 

percentage of the departure from baseline at the indicated S961 concentration relative to the maximal 

change with insulin in the absence of antagonist.  

(B) Graphical representation of calculations in (A) for glucose production and de novo lipogenesis. IC50 is 

calculated as log10 of the S961 concentration at which each dose-response curve intercepts 50% maximal 

insulin response. Data are derived from Fig. 3.2 and represent mean ± SEM of three independent 

experiments performed in triplicate. 
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Figure 3.7. Relative Insulin Responsiveness of GP and gene expression 

(A) % maximal insulin response of glucose production and expression of G6pc and Pck1 as a function of 

S961 concentration. Figures are calculated from the data in Fig. 3.2 as the percentage of the departure 

from baseline at the indicated S961 concentration relative to the maximal change with insulin in the 

absence of antagonist.  

(B) Graphical representation of calculations in (A) for glucose production and gene expression. IC50 is 

calculated as log10 of the S961 concentration at which each dose-response curve intercepts 50% maximal 

insulin response. Data are derived from Fig. 3.2 and represent mean ± SEM of three independent 

experiments performed in triplicate. 
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Figure 3.8. Effect of Akt Inhibition on Glucose Production and Lipogenesis 

(A) Western blots demonstrating alterations in InsR signaling cascade components in response to 

treatment with 0, 1, 10, or 100 nM insulin with or without pre-treatment with 5 µM Akti-1/2. Blots are 

representative of three independent experiments. Data are representative of mean ± SEM of three 

independent experiments. 

(B-D) Relative glucose production (B) and gene expression (C-D) in primary hepatocytes pre-treated with 

Akti-1/2 or vehicle and incubated for 5 h with 100 µM CPT-cAMP with or without 1 nM insulin. Data are 

representative of of mean ± SEM three independent experiments performed in triplicate. 

(E) Relative de novo lipogenesis in primary hepatocytes pre-treated with Akti-1/2 or vehicle and incubated 

for 5 h with or without 1 nM insulin. Data are mean ± SEM of one representative experiment of two 

performed in triplicate. 

* p < 0.05 by Bonferroni’s post-hoc analysis following two-way ANOVA. $ p < 0.05 relative to control by

Tukey’s post-hoc analysis following one-way ANOVA.
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4.1. Introduction 

As discussed in Chapter 1, several mechanisms have been proposed to explain FoxO1’s effects on 

hepatic glucose and lipid metabolism. While these models, even if all true, are not mutually exclusive, 

some may trump others in controlling a specific metabolic process; their relative control strengths have 

never been simultaneously tested. If we are to push forward in developing therapeutics aimed at FoxO1, 

which by itself represents a relatively poor drug target in liver, it will be of paramount importance to 

understand which of its many target genes would be most suited to pharmacologic manipulation. We 

therefore took an unbiased approach to parsing out which of FoxO1’s multiple actions are most directly 

responsible for its observed phenotypic outputs. 

An under-appreciated aspect of FoxO1 biology that we believe an ideal inroad into our question is 

its ability to act both dependently and independently of direct binding to its DNA consensus sequence, the 

insulin-response element (IRE). In other words, FoxO1 can act both as a transcription factor (“TF mode”) 

and as a transcriptional co-regulator (“CR mode”). Crystallographic analysis of FoxO1 bound to an IRE 

has identified two residues within its forkhead domain – Asn 208 and His 212 – as essential for sequence-

specific DNA binding [366]. Alteration of these residues to Ala and Arg, respectively, produces a mutant 

that retains proper nucleocytoplasmic partitioning in response to insulin but is incapable of binding to the 

IRE [147, 367]. Importantly, this mutant FoxO1 is not merely a hypomorphic variant of wild-type FoxO1; 

microarray analysis of a carcinomatous cell line has revealed a distinct subclass of genes that are 

induced to a greater extent by overexpressed FoxO1-HRAA than by wild-type FoxO1 [368].  

Thus, a logical step toward better understanding of FoxO1 action is to take a genetic approach in 

parsing out the metabolic effects of hepatic FoxO1 that proceed via its action as a transcription factor 

versus those in which FoxO1 plays a co-regulatory role. We have accomplished this goal by generating 

the L-DBD mouse, whose liver expresses only DNA binding-deficient FoxO1, and comparing it to control 

and L-FoxO1 mice completely lacking FoxO1 in the liver. By complementing metabolic phenotyping 

studies with transcriptomic analysis by RNA-seq, we can effectively home in on a uniquely delimited pool 

of candidate genes whose differences in expression among the three groups best correlate with observed 

phenotypic differences. 
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The pattern of differential findings between genotypes – whether in terms of metabolism or gene 

expression – implies the mechanistic basis of FoxO1’s regulation of those processes. For example, a 

process significantly altered in L-FoxO1 mice but not in L-DBD mice must require FoxO1 to act in CR 

mode. We therefore could suppose that the process is most dominantly controlled by gene(s) whose 

expression would be regulated by FoxO1 independent of DNA binding. In this way our strategy builds 

upon previous studies that have compared control mice only to those completely lacking FoxO1 in the 

liver; such an approach can only yield information as to whether FoxO1 plays a net activating or inhibiting 

role in a given process. Using these insights, we can evaluate the relative importance of previously 

proposed means of FoxO1 action as well as potentially uncovering novel mechanisms to boot. 

 

4.2. Results 

4.2.1. Generation and Analysis of L-DBD Mice 

We have developed a mutant allele of Foxo1 (Foxo1dbd) containing the N208A and H215R mutations 

described above in addition to the naturally occurring variant K219R (Fig. 4.1A). We confirmed that 

FoxO1-DBD, unlike wild-type FoxO1, is incapable of driving luciferase activity from a reporter-gene 

construct containing canonical FoxO1 consensus binding sites (Fig. 4.1B). We have then employed 

recombinase-mediated cassette exchange (RMCE) to insert a cDNA cassette encoding Foxo1dbd  into the 

Foxo1 locus by homologous recombination. These transgenic mice therefore are of the genotype 

Foxo1wt/dbd. Homozygosity for alleles encoding FoxO1-DBD results in embryonic lethality. Although we did 

not determine the cause, we presume that it results from arteriovenous malformations, as in the case of 

global Foxo1 knockout [369].  

To dissect the role of the transcriptional vs. co-regulatory functions of FoxO1 in liver, we 

introduced the Foxo1dbd allele in mice bearing a floxed allele of Foxo1 (Foxo1fl). This breeding strategy 

(Fig. 4.1C) generates mice in which each cell contains one copy of Foxo1fl and one copy of Foxo1dbd 

(Foxo1fl/dbd) henceforth termed DBD-het, as well as Foxo1fl/fl mice as controls. By breeding controls and 

DBD-hets with mice bearing a Cre recombinase transgene driven by the liver-specific α1-antitrypsin (AT) 

promoter we can generate two additional genotypes for study, as illustrated in Fig. 4.1C. First, the AT-
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Cre+ Foxo1fl/fl (L-FoxO1) mouse lacks all FoxO1 specifically in liver. Second, the AT-Cre+ Foxo1fl/dbd 

(henceforth, L-DBD) mouse lacks all floxed (i.e., wild type) FoxO1 in liver, thus leaving only DNA binding-

deficient FoxO1-DBD. In all non-hepatocyte cells the mice have one allele of Foxo1fl and one allele of 

Foxo1dbd, as do DBD-het mice. 

Quantitative RT-PCR with allele-specific primers demonstrated the generation of the desired 

genotypes (Fig. 4.1D). Western blot analysis verified the absence of FoxO1 protein in liver extracts from 

L-FoxO1, but of the retention of about half of the normal complement of FoxO1 in L-DBD mice (Fig. 4.1E), 

indicating that L-DBD mice express purely DNA binding-deficient FoxO1 in liver.  

 

4.2.2. Metabolic Features of Heterozygous Foxo1dbd Mice and Hepatocytes 

To rule out extra-hepatic metabolic effects of Foxo1dbd heterozygosity per se, we compared adult male 

controls (Foxo1fl/fl) and DBD-hets (Foxo1fl/dbd) with mice heterozygous for a null allele of Foxo1 (FoxO1fl/–; 

henceforth, FoxO1-het) (Fig. 4.1C-D, 2E). We found no differences in fasting or re-fed glucose or insulin 

levels, glucose, pyruvate, or insulin tolerance tests, body weight and composition (Fig. 4.2A-D, Table 4.1), 

or in the expression of known hepatic FoxO1 target genes following an overnight fast (Fig. 4.2E). These 

data are consistent with prior findings in FoxO1-het [142, 370]. Primary hepatocytes from control, FoxO1-

het, and DBD-het mice showed no impairment of basal or cAMP/dexamethasone-stimulated glucose 

production (Fig. 4.3A-B) in spite of decreased G6pc expression in mice of both heterozygous genotypes 

(Fig. 4.3C), although Igfbp1 and Ppargc1a expression were normal (Fig. 4.3D-E). Thus, we conclude that 

Foxo1dbd heterozygosity per se does not result in a metabolic phenotype that might confound the 

interpretation of data from the L-DBD mouse.  

 

4.2.3. Metabolic Characterization of L-DBD Mice 

We analyzed the metabolic features of adult L-DBD male mice. They gained weight at the same 

rate as L-FoxO1 and control mice (Fig. 4.4A and data not shown), and showed no differences in body 

composition (Fig. 4.4B). Indirect calorimetry revealed no significant differences in food intake, energy 

expenditure, oxygen consumption, or respiratory quotient (RQ) (Fig. 4.4C-G), further suggesting that 
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Foxo1dbd heterozygosity alone does not perturb whole-body metabolism. Likewise, there were no 

differences between L-DBD and control mice in glucose or insulin levels following an overnight fast or a 4-

hr re-feed, whereas L-FoxO1 mice showed a modest decrease in re-fed insulin levels compared to 

controls (Fig. 4.5A-B).  

L-DBD mice exhibited an enhancement of glucose tolerance (GTT) identical to L-FoxO1 mice 

(Fig. 4.5C) [144, 145], suggesting that Foxo1dbd is effectively a null mutant with respect to glucose 

tolerance. These results were borne out by pyruvate tolerance tests (PTT), showing superimposable 

curves in L-FoxO1 and L-DBD mice (Fig. 4.5D) [145]. Intraperitoneal insulin tolerance tests (ITT) on 

fasted animals failed to reveal differences between control and L-FoxO1, in accordance with previous 

data [145], but showed a modest enhancement in L-DBD mice (Fig. 4.5E). Quantitative analyses of the 

areas under the curve (AUC) from experiments on multiple cohorts confirmed these conclusions (Fig. 

4.5F). Moreover, qPCR analysis of RNA extracted from livers of overnight-fasted mice showed decreased 

G6pc and Igfbp1 (Fig. 4.5G). As we have previously reported [145], Pck1 expression was not significantly 

decreased in the absence of FoxO1 (Fig. 4.5G). These results indicate that deletion of hepatocellular 

FoxO1 results in decreased HGP.

FoxO1 regulates insulin sensitivity in part through a homeostatic loop with Akt. That is, we have 

found that a constitutively nuclear mutant form of FoxO1 is capable of increasing basal Akt 

phosphorylation, partially through upregulation of Irs2 expression (see Section 5.3.1)  [247, 371]. 

However, we detected no genotypic differences in the activation of Akt and its substrates, FoxO1 and 

GSK3β, in liver (Fig. 4.6A), skeletal muscle (Fig. 4.6B), or white adipose tissue (Fig. 4.6C) following 

intravenous administration of insulin in 5-hr-fasted mice. We saw a subtle decrease of Akt and GSK3β 

phosphorylation in L-FoxO1 mice in the more physiologic context of re-feeding (Fig. 4.7A-C). However, 

the effect may be attributable to lower insulin levels in re-fed L-FoxO1 mice since the difference 

disappeared when we compared mice matched for insulin levels (Fig. 4.7D-F). As a prototypical FoxO1 

target gene involved in the regulation of insulin sensitivity, we measured levels of Irs2 [371], and saw a 

significant reduction in livers from fasted L-FoxO1 and L-DBD animals (Fig. 4.7G). Taken together, these 
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data indicate that insulin signaling is similarly preserved in L-FoxO1 and L-DBD mice, and that Irs2 

expression requires FoxO1 to act in transcription factor mode. 

4.2.4. Impaired Glucose Production in Hepatocytes from L-DBD Mice 

Next, we isolated primary hepatocytes from control, L-FoxO1, or L-DBD mice and assessed their ability to 

generate glucose from pyruvate and lactate either basally or in the presence of CPT-cAMP and 

dexamethasone (cAMP/dex). Glucose production nearly doubled in control hepatocytes in a time-

dependent manner following the addition of cAMP/dex (Fig. 4.8A-B). In contrast, primary hepatocytes 

from L-DBD mice showed a nearly 30% decrease in basal and cAMP/dex-stimulated glucose production, 

similar to L-FoxO1 hepatocytes (Fig. 4.8A-B). Consistent with these findings, L-FoxO1 and L-DBD 

primary hepatocytes showed a >80% decrease in the effect of cAMP/dex on G6pc and a ~40% decrease 

of Pck1, as a result of which the suppressive effect of insulin on both genes was virtually abolished (Fig. 

4.8C-D). In contrast, neither L-FoxO1 nor L-DBD hepatocytes showed substantial effects on the 

expression of Ppargc1a, another gene implicated in FoxO1’s control of HGP (Fig. 4.8E) [372]. This finding 

is consistent with data indicating that FoxO1 is required for the effect of Ppargc1a on glucose production 

[145]. Nevertheless, there was a small but significant decrease in the expression of Ppargc1a in L-FoxO1 

hepatocytes versus L-DBD (Fig. 4.8E), mirroring a similar though non-significant trend in fasted liver (Fig. 

4.5G), suggesting that Ppargc1a is a co-regulatory target of FoxO1. 

4.2.5. Hepatic Triglyceride Metabolism in L-DBD Mice 

We then examined features of hepatic lipid metabolism in L-DBD mice. We found no differences in 

circulating levels of FFA, TG, or cholesterol among mice of different genotypes (Table 4.2) [145, 168]. 

Liver weight was modestly increased in re-fed, but not in overnight-fasted L-FoxO1 mice (Fig. 4.9A). This 

difference was due at least in part to increased TG content (Figure 4.9B) but surprisingly was not 

observed in L-DBD mice. There was no difference in liver cholesterol content among genotypes in the 

fasted or re-fed states (Table 4.2). 
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We analyzed different aspects of hepatic lipid handling in order to parse out the mechanism 

underlying differential liver triglyceride content. Oral lipid tolerance tests and hepatic TG secretion were 

normal (Fig. 4.9C-E). In contrast, β-oxidation of radiolabeled oleic acid decreased by ~40% in L-FoxO1 

hepatocytes, and by ~60% L-DBD hepatocytes (Fig. 4.9F). Analysis of de novo lipogenesis (DNL) using 

radiolabeled acetic acid demonstrated a non-significant ~35% increase in 14C incorporation into the TG 

pool of primary hepatocytes from L-FoxO1 mice under basal as well as insulin-stimulated conditions. 

Hepatocytes of L-DBD mice showed an even greater increase of ~75% (Fig. 4.9G). The inability of L-DBD 

hepatocytes to restore lipid oxidation and lipogenesis to their control levels indicates that these cell-

autonomous effects require FoxO1 to bind directly to DNA. 

To determine the mechanism of the alteration in DNL, we measured expression of several 

lipogenic genes (Fig. 4.10A-F). There were significant elevations in fasting levels of glucokinase (Gck) 

and stearoyl-CoA desaturase-1 (Scd1) in L-FoxO1, but not L-DBD mice compared to controls. On the 

other hand, fasting levels of pyruvate kinase (Pklr), a target of the lipogenic transcription factor Chrebp 

[373], were significantly lower, while those of acetyl-CoA carboxylase-1 (Acaca) were unchanged in L-

FoxO1 and L-DBD livers compared to controls. We also measured the expression of four key bile-acid 

metabolic genes (Fig. 4.10G-J), as we have previously attributed some of FoxO1’s ability to regulate 

hepatic TG to alterations in bile-acid pool composition [168]. This study replicates the decreased 

expression of Cyp8b1 and Cyp27a1 but not of Cyp7a1 in L-FoxO1 mice. That the expression pattern of 

these genes in L-DBD mice parallels that of L-FoxO1 mice indicates that this particular role of FoxO1 

requires its action as transcription factor.  

As our laboratory’s work has implicated Gck as a link between FoxO1 and DNL, we also 

measured its expression in primary hepatocytes in parallel with our DNL assay. Unlike in whole liver, we 

did not detect any significant differences in Gck expression between genotypes or in response to insulin 

(Fig. 4.11A), although expression did trend higher in L-DBD hepatocytes. For the sake of comparison, 

Gck expression was significantly increased by up to 78 times control levels in primary hepatocytes from L-

FoxO1,3,4 mice (Fig. 4.11B). In keeping with higher Gck expression, total de novo lipogenesis was 

increased 2.5-fold in vehicle-treated L-FoxO1,3,4 primary hepatocytes compared to control but unlike 
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control did not further increase with insulin treatment (Fig. 4.11C).  Although this is a measure of total 

DNL rather than specifically of TG synthesis, we have found the two to be interchangeable in this system.  

We also sought to determine whether the significant increase of DNL in insulin-treated L-DBD 

hepatocytes was due to enhanced insulin signaling. However, phosphorylation of Akt (T308) and Gsk3β 

(S9) in response to insulin was rather decreased in primary hepatocytes from L-FoxO1 and L-DBD mice 

(Fig. 4.11D). These experiments indicate that loss of FoxO1 function increases lipogenesis and 

decreases FFA oxidation, and that FoxO1-DBD fails to restore these functions. We conclude that FoxO1 

physiologically inhibits these processes in a DNA binding-dependent manner. 

 

4.2.6. Lipid Metabolism in WTD-Fed L-DBD Mice 

We have previously demonstrated that FoxO1 ablation increases hepatic TG deposition in mice fed a 

Western-type diet (WTD) [168]. We therefore placed L-DBD, L-FoxO1, and control mice on WTD for ten 

weeks and analyzed them in either the ad libitum-fed or 5-hr-fasted state. At the completion of the diet 

there were no significant differences among genotypes in body weight or circulating levels of glucose, 

insulin, FFA, TG, and cholesterol in either state (Table 4.3). Liver weight increased by ~25% in fed L-

FoxO1 and L-DBD mice (Fig. 4.12A), accompanied by a near doubling of liver TG, although this 

difference did not reach statistical significance owing to large individual variance (Fig. 4.12B). Histologic 

examination of liver sections taken from these mice confirmed the presence of hepatic steatosis in L-

FoxO1 and L-DBD mice (Fig. 4.12C). These findings were accompanied by coordinate increases in levels 

of mRNA encoding Fasn, Gck, and Scd1 (Fig. 4.12D-G). 

Finally, we analyzed whether FoxO1-DBD modified the effects of WTD feeding on insulin 

signaling in liver and primary hepatocytes. Fasting levels of p-Akt (Thr 308 and Ser 473) and p-GSK3β 

(S9) were uniformly increased in WTD-fed mice of all genotypes, blunting the increase in response to 

feeding (Fig. 4.13A-D). This is probably due to hyperinsulinemia [185]. We investigated this process by 

pre-incubating primary hepatocytes with insulin as a surrogate of in-vivo hyperinsulinemia (Fig. 4.11C), as 

previously described. Following this treatment, basal (i.e., “fasted”) phosphorylation levels of Akt and 

GSK3β increased relative to non-exposed cells, but were not further augmented by acute insulin 
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treatment (“fed” state). As in fed livers, L-FoxO1 and L-DBD hepatocytes exhibited a trend toward lower 

levels of Akt and GSK3β phosphorylation following acute insulin challenge. Thus, it appears that FoxO1-

DBD does not exert independent effects on insulin signaling in this context. 

 
4.2.7. Transcriptomic Profiling of L-DBD Mice 

To dissect the mechanistic basis of FoxO1’s actions, we first investigated the phenotypic consequences 

of Foxo1dbd hemizygosity, then turned to transcriptomic analyses to understand changes in gene 

expression that correlate genotypically with metabolic parameters. We performed RNA-seq analysis from 

liver samples from fasted or re-fed Control, L-FoxO1, and L-DBD mice. We found considerable overlap 

with respect to genes significantly altered in L-FoxO1 and L-DBD livers versus control (Fig. 4.14A). Thus, 

it appears that the largest share of FoxO1 target genes are regulated by direct DNA binding of FoxO1 

(i.e., as a transcription factor). Nevertheless, there is indeed a small but distinct pool of target genes that 

are differentially altered in L-FoxO1 vs. L-DBD mice – that is, genes toward which FoxO1 acts in a co-

regulatory manner (Fig. 4.14A-B, 4.15B-C). Analysis of the relative differences in the expression of these 

genes indicates that the FoxO1-DBD acts both as a co-activator and co-repressor toward these target 

genes in roughly equal measure in both the fasted and re-fed states  (Fig. 4.14B, 4.15B-C). In some 

cases, the ostensible mechanism of FoxO1’s regulation of a particular target gene appears to vary 

depending on feeding state (data not shown). We validated the expression patterns of selected genes 

(i.e., toward which FoxO1 acts as co-regulator vs. transcription factor) by qPCR (Fig. 4.15A-C).    

The complete phenotypic concordance between L-FoxO1 and L-DBD mice in terms of glucose 

production indicates that Foxo1dbd represents a complete loss-of-function allele and that FoxO1’s role in 

promoting hepatic glucose production proceeds via a mechanism requiring direct binding to DNA. This 

allows us to focus our transcriptomic analysis on genes that are significantly altered in both L-FoxO1 and 

L-DBD mice relative to control but not to each other as particularly attractive candidates for the major 

effectors of FoxO1’s influence on hepatic glucose production (Fig. 4.14A). In our RNA-seq data, 297 

genes are significantly different in fasted L-FoxO1 mice versus control and 307 are different between 

fasted L-DBD and control. However, those that are significantly altered relative to control but not to each 
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other in both of these sets number only 159. Thus, through our study of the L-DBD mouse, we have 

approximately halved the number of candidate genes that we would have obtained based on merging 

glucose-tolerance and gene-expression data from control vs. L-FoxO1 alone.  

We can apply a similar line of reasoning to the “lipid arm” of hepatic metabolism. We have shown 

that, unlike their L-FoxO1 littermates, chow-reared L-DBD mice retain normal control of hepatic 

triglyceride metabolism in the re-fed state. This demonstrates a relevant metabolic function for FoxO1 as 

a transcriptional co-regulator rather than as a transcription factor. Based on our transcriptomic analysis 

(Fig. 4.14A), we can cut down a list of candidate genes from 275 for refed Control vs. L-FoxO1 only to 44, 

those significantly altered in refed L-FoxO1 vs. control and L-DBD, but not in control vs. L-DBD. If the 

more important changes occur instead in the fasting state, our analysis cuts down the list of candidates 

from 298 (L-FoxO1 vs. control alone) to 31. We have therefore simplified our list of theoretical candidates 

by over 80% by first gating the analysis on the basis of FoxO1’s mode of action with respect to hepatic 

TG metabolism.  

Gene ontology analysis indicates that the genes that differ significantly between L-FoxO1 and L-

DBD livers vary in functional categorization between the fasted and re-fed states (Table 4.4). In the fasted 

state, the ontological categories most highly altered by the presence of FoxO1-DBD relate to metabolism 

of steroids, particularly steroid hormones. On the other hand, in the refed state, those most affected by 

FoxO1-DBD relate to both innate and adaptive immune processes. Selected candidate genes will be 

discussed in Section 4.3.5. 

 

4.3. Discussion 

4.3.1. Overview of Findings 

This study demonstrates that the pleiotropic effects of FoxO1 on hormone- and nutrient-dependent gene 

expression require binding to DNA. There is another, less recognized mode of action, whereby FoxO1 

engages in non-DNA-based interactions with components of the transcriptional complex to regulate gene 

expression. Examples of this mode of action include FoxO1 binding to Maml1 and Csl, central elements in 

Notch signaling [370, 374]. However, the present study indicates that this mode of action does not 
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contribute to the main cell-autonomous effects of FoxO1 on hepatic glucose and lipid metabolism. In fact, 

we show that reconstitution of a FoxO1 DNA-binding-deficient allele in liver of mice that lack endogenous 

FoxO1 fails to restore HGP, lipogenesis, and FFA oxidation. While the conclusion that FoxO1 controls 

HGP by binding to consensus sites on target promoters was predicted by previous work [152, 372] the 

finding of increased lipogenesis in L-DBD mice is surprising, as the inhibition of this process by FoxO1 is 

more easily reconciled with a co-repressor function [375]. Another important finding of the present study is 

the heretofore-unrecognized effect of FoxO1 ablation, mimicked by the DBD mutant, to reduce FFA 

oxidation [158, 166, 167, 245]. 

The segregation of different functional outputs of a transcription factor on the basis of DNA 

binding-dependent vs. independent actions has been observed in other contexts. For instance, it appears 

to be a feature of bHLH transcription factors, including Hand2 and Scl [376, 377]. Prior evidence in this 

vein exists for FoxO1 as well. For instance, FoxO1-DBD can suppress myogenic differentiation of C2C12 

myoblasts as efficiently as FoxO1-WT [374]. Likewise, constitutively nuclear FoxO1-DBD retains the 

ability to enhance basal phosphorylation of Akt in liver [247] (see Section 5.3.1). Overall, FoxO1 has been 

shown to engage in protein-protein interactions with at least a dozen distinct transcriptional regulators, 

although the physiologic significance of many of these interactions has not previously been validated 

[378]. 

 

4.3.2. FoxO1 Regulation of Hepatic Glucose Metabolism 

The centrality of FoxO1 in insulin’s control of HGP is beyond question. This study further cements this 

certainty, as we have found that hepatocyte-specific deletion of FoxO1 results in enhanced glucose 

tolerance due to decreased HGP. As mentioned earlier, however, despite the robust reproducibility of this 

result, the mechanism underlying it is relatively unknown. The well-known regulation of G6pc expression 

by FoxO1, and perhaps also of Fbp2, Pdk4, Ppargc1a, and Pck1, has been essentially taken for granted 

as the explanation. 

 Despite the appealingly straightforward nature of this hypothesis, however, multiple lines of 

evidence suggest that G6pc and Pck1 expression may not be directly responsible for FoxO1’s empirical 



 98 

role in HGP. Complete loss of G6pc or of Pck1 in the liver, far more dramatic than the decrease in 

expression due to FoxO1 deficiency, do not result in a physiologic impairment in glucose production due 

to indirect actions of other tissues on this process, for example through FFA flux from adipose tissue and 

vagal control by the CNS, as well as compensatory increases in glucose production by intestine and 

kidney [379, 380]. Moreover, while concomitant knockout of all three FoxO proteins in the liver results in a 

further enhancement of glucose tolerance, it is not accompanied by any apparent defect in Pck1 

expression [144], and thus we can assume that it is not responsible for FoxO1-associated HGP. Real-

time hyperinsulinemic-euglycemic clamp studies have cast doubt on the temporal correlation between 

physiologic changes in G6pc/Pck1 expression/activity and the blunting of HGP by insulin [94, 114]. 

Finally, type 2 diabetic patients, a group exhibiting inappropriately high FoxO1 activity, do not necessarily 

exhibit increased hepatic expression of G6pc or Pck1 despite inappropriately high HGP [381]. Taken 

together, these observations indicate that although the InsR à FoxO1 axis is crucial to proper regulation 

of HGP, the precise mechanism linking FoxO1 to HGP remains unclear [2].   

 In this study we have taken a first step by demonstrating that L-DBD mice phenocopy L-FoxO1 

mice in terms of glucose-metabolic parameters. That is, direct binding of FoxO1 to the IRE is required for 

its regulation of HGP. Of note, G6pc expression was reduced similarly in L-DBD and L-FoxO1 mice, thus 

still not allowing us to rule out the importance of this gene to overall HGP. The fact that G6pc expression 

does correlate well with FoxO-associated HGP while Pck1 expression does not implies that the effect of 

FoxO1 deficiency on glucose metabolism may reflect more on alterations in glycogen metabolism than in 

gluconeogenesis, consistent with hyperinsulinemic-euglycemic clamp data in L-FoxO1 mice as well as the 

finding that L-FoxO1 livers engage in inappropriately high glycogen storage [2, 145]. Moreover, although 

the significant enhancement of pyruvate tolerance exhibited by L-FoxO1 and L-DBD mice suggests a 

primary change in gluconeogenesis, this effect may also result from increased glycogen synthesis from 

G6P and/or decreased glycogenolysis in the absence of FoxO1. In this case, low G6pc expression would 

prevent the conversion of G6P to releasable glucose. The in vivo change in G6pc expression is only 

about 25%, casting doubt on its physiologic primacy and raising the possibility that other contributors are 

necessary for the effect. Nevertheless, a potential limitation of this study is that it did not assess glycogen 
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content in L-DBD livers, although it is expected that they would demonstrate inappropriately high glycogen 

storage similar to L-FoxO1 mice. Excess glycogen in L-DBD livers may account for the slight, albeit non-

significant elevation in liver weights in L-DBD mice in spite of their normal TG levels.  

 A pertinent negative highlighted by this study is PGC-1α, which we show here to be a bona fide 

co-regulatory target of FoxO1. That is, although L-FoxO1 primary hepatocytes express significantly lower 

levels of Ppargc1a when stimulated with cAMP/dex, gene expression is completely normal in L-DBD 

hepatocytes (Fig. 4.8E) – despite the inability of FoxO1-DBD to activate glucose production above the 

level of L-FoxO1 cells (Fig. 4.8A-B). Thus, although its importance as a FoxO1 co-activator has been 

much touted [155, 372], FoxO1-mediated HGP actually proceeds largely independently of PGC-1α. That 

L-DBD primary hepatocytes also show deficient FAO suggests that FoxO1’s regulation of the process 

does not proceed through PGC-1α regulation of mitochondrial oxidation [145, 174]. 

 We also can consider candidate genes brought to the fore by RNA-seq. As mentioned earlier, the 

conclusion that FoxO1 regulation of HGP requires it to act in TF mode means that we can eliminate nearly 

half of the genes significantly altered in the absence of FoxO1 in fasted liver. The remaining list of 159 

genes includes several intriguing possibilities. Perhaps the most obvious possibility is Pdk4 [134], which 

inhibits the pyruvate dehydrogenase complex to spare pyruvate for glucongeogenesis and has already 

been shown to be regulated by FoxO1 [154]. Another logical candidate, Nr0b2, which encodes small 

heterodimer partner (SHP), also has already been implicated in FoxO1 control of HGP [2]; it acts as a 

nuclear co-repressor to block FoxO1-associated G6pc, Pck1, and Pdk4 gene expression through 

negative feedback [382-384]. In fact, we have already studied Nr0b2 in the context of its negative 

regulation of bile-acid metabolic enzymes Cyp7a1 and Cyp8b1 and shown that its expression is 

decreased in WTD-fed L-FoxO1 livers [168], suggesting another level of coordination of glucose and lipid 

metabolism by FoxO1. Finally, Slc37a4, which encodes the G6P transporter that carries G6P from the 

cytosol into the ER lumen where it can be acted upon by G6Pase [385], is decreased nearly by half in 

both L-FoxO1 and L-DBD samples. This is consistent with decreased glucose release and conceptually is 

reconcilable with a cell-autonomous model of FoxO1 action. Our laboratory has previously found that 
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Slc37a4 mRNA is significantly decreased in L-FoxO1,3,4 livers even though it is not strongly regulated by 

fasting/feeding [253].  

 

4.3.3. FoxO1 Regulation of Hepatic Lipid Metabolism 

The most notable physiologic parameter influenced by hepatic FoxO1 in its co-regulatory capacity is 

triglyceride metabolism. To wit, L-FoxO1 liver TG levels were significantly higher than controls following 

re-feeding; L-DBD mice, on the other hand, had normal re-fed liver TG levels (Fig. 4.9B). Therefore, we 

can conclude that the overall regulation of liver TG storage by FoxO1 proceeds via a co-regulatory 

mechanism rather than through binding to IREs in target-gene promoters. Although our original study of L-

FoxO1 mice did not find any significant alteration in liver TG, it focused only on the fasted and ad libitum 

fed states rather than under the strong lipogenic drive of re-feeding [145]. Indeed, a subsequent study did 

find a trend toward increased liver TG in re-fed L-FoxO1 mice that we now have found to reach statistical 

significance [241].    

We have attempted to dissect the phase of hepatic lipid handling that is defective in L-FoxO1 

livers but not in L-DBD. We detected no differences in oral lipid tolerance (i.e., lipid absorption from the 

gut) or in TG secretion from the liver (Fig. 4.9C-E). Ex vivo experiments in primary hepatocytes 

demonstrate that loss of hepatocellular FoxO1 increases de novo lipogenesis and decreases fatty acid 

oxidation (Fig. 4.9F). These alterations in hepatocellular metabolism would increase liver TG, as observed 

in vivo. Data collected from L-DBD primary hepatocytes, however, appear less straightforward, possibly 

owing to indirect control on the liver. Fatty acid oxidation by L-DBD cells does not differ from L-FoxO1, 

indicating a requirement for direct transcriptional activation by FoxO1.  

While previous in vivo studies of L-FoxO1 mice have not reported abnormalities of ketone bodies 

[145, 241], a relatively specific marker of β-oxidation, direct in vivo measurement in mice lacking all three 

liver FoxO isoforms (L-FoxO1,3,4) show decreased fatty acid oxidation rates relative to control [245]. 

These observations suggest that non-cell-autonomous mechanisms compensate for the ex vivo defect in 

fatty acid oxidation in the absence of functional FoxO1, an interpretation supported by the absence of any 
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difference in oxygen-consumption rate or respiratory quotient between genotypes (Fig. 4.4F-G). However, 

these apparent compensatory mechanisms are insufficient when all liver FoxO genes are knocked out. 

Ex vivo assessment of DNL by measuring the incorporation of radiolabeled acetic acid into TG 

also revealed a requirement for direct DNA binding (Fig. 4.9G). The rate of DNL in L-FoxO1 primary 

hepatocytes was approximately 35% greater than control, both in the basal and insulin-stimulated states. 

It appears that FoxO1-DBD may even stimulate DNL in a gain-of-function capacity beyond the apparent 

ability of wild-type FoxO1 to inhibit it, as L-DBD primary hepatocytes tended to exhibit greater rates of 

DNL even than L-FoxO1 hepatocytes (about 75% higher than control). This may result, for example, from 

FoxO1-DBD sequestration of co-regulators from other FoxO proteins [386-388] and is consistent with 

previous data documenting increased rates of DNL in L-FoxO1,3,4 mice [245, 253]. Taken together, 

therefore, cell-autonomous regulation of de novo lipogenesis and fatty acid oxidation by FoxO1 requires 

direct binding to DNA. 

It is important to emphasize, however, that L-DBD mice did not phenocopy the exaggerated liver 

TG levels of the L-FoxO1 mouse in the re-fed state in spite of its inability to properly control de novo 

lipogenesis and fatty acid oxidation in hepatocytes. We can therefore conclude that the predominant 

mechanism by which FoxO1-DBD regulates TG metabolism in the healthy liver is not solely at the level of 

cell-autonomous TG deposition or FFA oxidation. Again, we did not detect any differences between L-

FoxO1 and L-DBD mice with respect to oral lipid tolerance or TG secretion. However, FoxO1-DBD may 

regulate non-cell-autonomous mechanisms that impact on lipid synthesis or oxidation. Indeed, several 

non-hepatocyte-autonomous mechanisms of controlling hepatic lipid metabolism have been identified to 

date with which hepatic FoxO1 may interact [168, 389-392]. Our laboratory, for example, previously 

demonstrated an ability of FoxO1 to regulate hepatic TG through altered bile acid signaling [168]. In this 

study, however, we did not note any discordance between expression of bile acid metabolic enzymes in 

L-FoxO1 vs. L-DBD mice (Fig. 4.10G-J).  

As opposed to the chow-fed state, WTD-fed L-DBD mice exhibit the same increase of hepatic 

steatosis as L-FoxO1 mice, indicating this type of diet does not alter the balance between the DNA 

binding-dependent and -independent actions of FoxO1. It is possible that the insulin resistance 
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associated with WTD, which would be expected to lead to unrestrained FoxO1 activity, unmasks the 

apparent gain of function exhibited by FoxO1-DBD in primary hepatocytes with respect to de novo 

lipogenesis. In keeping with this possibility, both L-FoxO1 and L-DBD livers present lower levels of Akt 

and GSK3β phosphorylation than controls in spite of similar insulin levels (Fig. 4.13, Table 4.3), 

suggesting that FoxO1-DBD is less restrained by insulin signaling than wild-type FoxO1. This is 

consistent with the fact that steatotic liver derives a much greater percentage of its stored lipid from de 

novo lipogenesis than does healthy liver [73, 74, 306]. That dysregulated bile-acid metabolism appears to 

affect liver TG levels to a greater extent following WTD feeding [168] may also help to explain the lack of 

difference in liver TG between WTD-fed L-FoxO1 and L-DBD mice, as FoxO1 appears to regulate bile 

acid metabolism primarily as a transcription factor (Fig. 4.10G-J).  

The RNA-seq-derived shortlist of genes that may account for FoxO1’s actions on triglyceride 

metabolism in the re-fed state does not include any classical lipogenic enzymes. It does, however, 

contain other types of candidates previously linked to hepatic lipid metabolism, such as the fatty acid 

transporter Cd36 [393], the secreted peptide adropin (Enho) [394], and cell death-inducing DFFA-like 

effector C (Cidec, also known as Fsp27) [395]. Finally, it is important to note that the main effect of FoxO1 

on triglyceride metabolism in the re-fed state may be based at least in part on changes in gene 

expression during fasting. Genes regulated by FoxO1 in a co-regulatory manner that are altered in the 

fasted state and may contribute to an altered lipogenic response to refeeding include 6-phosphofructo-2-

kinase/fructose-2,6,-bisphosphatase (Fbp2), described in Chapter 1, and lipin-1 (Lpin1) [396]. We believe, 

however, that glucokinase (Gck), a gene already well studied by our laboratory is primarily responsible for 

FoxO1’s effects on hepatic lipid metabolism. 

 

4.3.4. FoxO Regulation of Glucokinase May Underlie Effects on DNL  

Data from our laboratory indicate that FoxO proteins are intimately involved in orchestrating the transition 

between fasting and feeding [253]. One potential mediator of this phenomenon is glucokinase, a central 

regulator of glucose flux in the liver and previously demonstrated to be repressed by FoxO1 [144, 167]. 

Compared to controls, expression of Gck is significantly increased by over three-fold in the livers of fasted 
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L-FoxO1 mice as expected but expression of Gck in L-DBD livers is intermediate between Control and L-

FoxO1 (Fig. 4.10C). (There is no difference in Gck expression between groups four hours after re-

feeding.) Higher levels of Gck expression in the L-FoxO1 mice at the onset of re-feeding may result in a 

more efficient accumulation of liver triglyceride than in control and L-DBD, as observed [232, 397, 398]. 

This would also explain the elevated liver TG of L-FoxO1,3,4 mice even relative to L-FoxO1, in line with 

the relative increment in Gck expression in the absence of FoxO3 and FoxO4 [144]. Thus, FoxO1’s 

repression of Gck expression in the fasted state – again, when FoxO1 is most active – proceeds at least 

in part by a co-regulatory mechanism.  

A mechanism based on Gck regulation of the fasting-feeding transition may also help to explain 

the discrepancy between ex vivo DNL and liver TG levels. Insulin has both direct and indirect effects on 

the liver, and therefore primary hepatocytes can only capture some of this complexity. As mentioned 

above, L-DBD livers partially retain the ability to suppress Gck expression in the fasted state while L-

FoxO1 livers show a significant increase in fasting Gck expression. However, in primary hepatocytes, 

there is no significant difference between genotypes in Gck expression (Fig. 4.11A), although the general 

pattern of expression interestingly mirrored that of DNL with a trend toward increased Gck expression in 

L-DBD cells. By comparison, Gck expression was at least fourfold higher in primary hepatocytes from L-

FoxO1,3,4 mice compared to control (Fig. 4.11B and data not shown) and total DNL was accordingly 

increased as well (Fig. 4.11C). This suggests that the regulation of Gck expression by FoxO proteins is 

multifaceted. FoxO3 and FoxO4 are evidently able to compensate for the loss of a cell-autonomous 

inhibitory effect of FoxO1. Meanwhile, some external stimulus modulates regulation of Gck expression by 

FoxO1 in particular in vivo. 

  A further potential clue lies in our observation that Gck expression does not significantly 

increase with insulin treatment alone in mouse primary hepatocytes, as has been previously reported. 

This indicates that the insulin-stimulated (and thus potentially FoxO1-inhibited) Gck expression, for 

example in response to re-feeding, requires the participation of factor(s) beyond hepatic insulin action 

alone. Supporting this conclusion is the finding that LIRKO mice still experience a significant, albeit 

attenuated increase in hepatic Gck expression in response to feeding [202]. Moreover, blockade of insulin 
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signaling specifically in the hypothalamus has been shown to depress the induction of liver Gck 

expression in response to portal insulin infusion [399]. Factors altogether distinct from insulin may also be 

required. We and others have found, for example, that co-treatment of primary hepatocytes with 

dexamethasone can enable insulin responsiveness of Gck expression [400-402]. That normal FoxO1-

mediated expression of Igfbp1 appears to be in part dependent on glucocorticoid signaling opens the door 

to similar requirements for FoxO1 regulation of Gck expression [145], especially as FoxO1 has been 

shown to be capable of functional interactions with the glucocorticoid receptor, potentially independently 

of IRE binding [378].  

Taken together, these data suggest a model in which FoxO1 inhibits DNL at multiple levels, 

depicted graphically in Fig. 4.16. First, in a cell-autonomous fashion, FoxO1 represses DNL via a method 

requiring direct binding to DNA. One possibility lies in the fact that FoxO1 retains the ability to normally 

regulate expression of Gck, unlike G6pc, in primary hepatocytes. Work from our laboratory has shown 

that the ratio of G6pc to Gck expression is a reliable indicator of the direction of glucose flux (i.e., of 

gluconeogenesis/glycogenolysis à HGP vs. glycolysis à DNL) [253]. Thus, in both L-FoxO1 and L-DBD 

primary hepatocytes, a defect in G6pc expression in the absence of a change in Gck would decrease the 

G6pc:Gck ratio. This, in turn, would impede gluconeogenesis, as observed in this study, while increasing 

the availability of acetyl-CoA for use in DNL, especially in the presence of insulin [253]. Again, in L-

FoxO1,3,4 primary hepatocytes, Gck expression is frankly increased and G6pc decreased, consistent 

with the dramatic elevation in DNL compared to control [253]. 

The importance of G6PC in the indirect regulation of lipogenesis is illustrated quite starkly in the 

case of G6PC deficiency. Patients with mutations in the gene, termed von Gierke disease (GSD type Ia), 

demonstrate florid hypertriglyceridemia [403]. Even acute inhibition of G6Pase activity has been shown to 

result in the development of hepatic steatosis associated with increased DNL [404]. Although the above 

discussion has called into question the importance of physiologic fluctuations in hepatic G6pc expression, 

the relative importance of transcriptional control of G6pc to glucose production may be greater in isolated 

hepatocytes. This supposition is based on the far greater reduction in G6pc expression in FoxO1-deficient 

hepatocytes ex vivo compared to whole liver as well as the absence of extrahepatic tissues (e.g., 
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intestine, kidney) to contribute to compensatory glucose production. Even if altered expression of G6pc 

per se is not directly responsible, the process of gluconeogenesis is certainly decreased in L-FoxO1 and 

L-DBD hepatocytes and thus, as in the case of decreased G6Pase action, would be expected to promote 

increased lipogenesis. Indeed, reducing gluconeogenic flux via liver-specific deletion of Pck1, for 

example, also results in significantly increased liver TG accumulation [379, 405]. 

Unlike in primary hepatocytes, fasting and feeding regulation of Gck expression via FoxO1 can 

proceed as normal in whole liver. Thus, by the end of an overnight fast, L-FoxO1 livers have accumulated 

significantly more Gck mRNA than controls. At the onset of re-feeding, these livers are thereby better 

primed for efficient TG synthesis, hence the increase in re-fed liver TG [253]. (During fasting, relatively 

low rates of DNL are eclipsed by re-esterification of FFAs liberated by WAT lipolysis in terms of overall 

liver TG levels [363].) On the other hand, L-DBD livers retain a partial ability to suppress Gck expression, 

thus not allowing these livers as much of a “head start” on DNL after re-feeding. That the expression of 

Gck is elevated to the same extent in both L-FoxO1 and L-DBD livers in the WTD-fed state therefore may 

explain the lack of difference in liver TG levels between these mice, especially given the heightened 

contribution of DNL to hepatic TG in this state. Evidently the apparent ability of haplosufficient FoxO1-

DBD to regulate Gck expression in the chow-fed state is lost in the WTD-fed state, thus altering the 

G6pc:Gck ratio similarly in these mice. Given this hypothesis, it would be of interest to assess whether the 

difference in liver TG levels would be magnified at earlier time points in re-feeding.  

Evidence of a co-regulatory action of FoxO1 on Gck expression already exists in the literature 

[179, 406, 407]. For example, in addition to being able to bind directly to the Gck promoter, FoxO1 has 

also been previously reported to disrupt the activation of Gck expression by HNF-4α by interfering with 

the latter’s binding to the promoter [179, 406]. This dual ability of FoxO1 to regulate Gck expression as 

both transcription factor and co-regulator may be reflected in the intermediate expression of Gck in L-DBD 

between control and L-FoxO1. However, all such studies have been conducted in cultured cells and 

therefore the potential contribution of a FoxO1—HNF-4α interaction to liver triglyceride levels in vivo 

remains unknown.  
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Overall, this model is not necessarily mutually exclusive with other hypotheses regarding FoxO1 

control of hepatic TG, such as via modulation of bile acid metabolism [168]. Indeed, this model alone is 

not sufficient to explain the augmentation in DNL observed in L-DBD primary hepatocytes even relative to 

L-FoxO1. Thus, it is likely that other mechanisms also come into play. One enticing possibility, as 

mentioned above, is a partial dominant-negative effect of FoxO1-DBD on FoxO3/4, especially as Gck 

expression trends slightly higher in L-DBD cells.  

 

4.3.5. Other Potential Co-Regulatory Actions of FoxO1 

The mechanistically complex nature of FoxO1’s regulation of target-gene expression also is not limited to 

glucose- and lipid-metabolic transcriptional programs. Gene-ontology analysis of transcriptomic data from 

L-FoxO1 and L-DBD livers has, in fact, uncovered a variety of cellular processes influenced differentially 

by co-regulatory versus direct transcriptional effects of FoxO1. Furthermore, the transcriptomic signature 

of FoxO1-DBD differs greatly in the fasted and refed states. In the refed state, surprisingly, nearly all of 

the most significantly altered biological processes relate to the immune system. These include elements 

both of innate immunity, such as the acute-phase response and Toll-like receptor signaling, as well as 

adaptive immunity, such as antigen processing and presentation. Although hepatocytes are the source of 

many acute-phase reactants, including serum amyloid A proteins [408], two of the genes for which are 

significantly altered in L-FoxO1 vs. L-DBD livers, the changes noted in expression levels of class II 

histocompatibility-complex components are less easily explained. As the RNA samples used for RNA-seq 

were drawn from whole liver, it is possible that hepatocellular FoxO1 activity influences the population 

and/or behavior of immune-system cells in the liver [409, 410]. However, it has also been reported that 

select populations of hepatocytes can induce expression MHC class II under stress conditions and 

function as antigen-presenting cells [411]. FoxO1 has indeed previously been implicated in the regulation 

of inflammatory pathways in the hepatocyte [412] and other cell types [413, 414]. Whether these actions 

of FoxO1 represent co-regulatory activities, and whether they relate in particular to adaptive immunity in 

the liver, however, have not previously been studied. 
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With respect to the fasted state, the majority of significantly different gene-ontological categories 

relate directly or indirectly to the metabolism of sterols and their hormonal derivatives. As previously 

mentioned, we already have elucidated FoxO1’s role in the regulation of bile acid and cholesterol 

metabolism [168]. Very little prior evidence exists, however, linking FoxO1 to the metabolism of other 

sterol derivatives. Nine of the genes significantly altered in L-FoxO1 vs. L-DBD are represented in the 

KEGG steroid hormone metabolism pathway: Cyp17a1, Cyp2b10, Cyp2c70, Cyp7b1, Hsd17b6, Hsd3b5, 

Sc4mol, Ugt2b37, and Ugt2b38. A potentially notable candidate gene among these is Hsd3b5, 3β-

hydroxysteroid dehydrogenase, type 5. The regulation of the expression of this gene by FoxO1 appears 

multifaceted, for although its expression is increased in L-FoxO1 liver relative to control, it is also strongly 

repressed in L-DBD liver, suggesting that FoxO1-DBD acts to repress it, perhaps even to a greater extent 

than can FoxO1-WT. Hsd3b5, which is expressed only in the male liver, is able to catalyze the catabolism 

of the potent androgen 5α-dihydrotestosterone, but little else is known about its role in vivo [415, 416]. 

Despite the mystery surrounding this gene and its product, however, various lines of evidence suggest a 

potentially important place for it in the regulation of nutrient metabolism in the liver. For example, in a 

comparison of the transcriptomic profile of diabetic (db/db) versus control liver by RNA-seq, Hsd3b5 was 

the second most highly downregulated of all transcripts meeting the study’s inclusion criteria [417].  

If FoxO1 does indeed act as a co-repressor of Hsd3b5, it would be expected that heightened 

FoxO1 activity in the diabetic liver would serve to suppress its expression even more strongly than usual. 

Evidence of this sort of regulation can be found in a microarray study of livers deficient in Akt1 and Akt2 

(“DLKO” mouse) and Akt1/2 as well as FoxO1 (“TLKO” mouse) [167]. Hsd3b5 was by far the most 

strongly suppressed gene in the absence of Akt1/2 in the fed state (500-fold decreased relative to control) 

and was the fourth most highly suppressed in the fasting state (15-fold decreased relative to control). 

Concomitant deletion of FoxO1, however, completely normalized Hsd3b5 expression in the fed state; in 

the fasted state, Hsd3b5 became the fourteenth most highly upregulated gene. Thus, it appears that not 

only does FoxO1 serve dominantly to inhibit the expression of Hsd3b5, but also that FoxO1 mediates this 

inhibition in a co-regulatory fashion. That Hsd3b5 expression is evidently so tightly controlled by insulin 
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signaling via an Akt-FoxO1-dependent pathway substantiates the potential importance of this heretofore-

obscure gene in the regulation of hepatic metabolism. 
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Figure 4.1. Generation and Characterization of the Foxo1dbd Allele 

(A) Schematic diagram of the FoxO1 primary sequence identifying the residues mutated in Foxo1dbd.  

(B) Reporter-gene assay in 293 cells transfected with either Foxo1wt, Foxo1dbd, or empty vector as well as 

with either 3X IRE-Luc reporter construct or control. Data represent mean ± SEM. * p < 0.05 relative to 

control by Tukey’s post-hoc analysis following one-way ANOVA.  

(C) Schematic diagram of mouse models used in this study. 

(D) Liver qPCR using allele-specific primers for total Foxo1, Foxo1wt or Foxo1dbd. Data represent mean ± 

SEM.  

(E) Western blot of liver extracts from fasted mice. 
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Figure 4.2. Metabolic Characterization of FoxO1- and DBD-het Mice 

(A-B) Glucose (A) and pyruvate tolerance tests (B) in overnight-fasted mice (N≥7 for all genotypes). 

(C) Insulin tolerance test in 5-hr-fasted mice (N = 5-6 for all genotypes). 

(D) Quantification of the area under the curve (AUC) for the results in A-C. 

(E) Gene expression levels in fasted livers assessed by qPCR. 

All mice were reared on a chow diet and studies were performed at 16-20 weeks of age, Data represent 

mean ± SEM. 
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Figure 4.3. Glucose Production in Foxo1- and DBD-Het Primary Hepatocytes    

Glucose production assay performed in medium containing either vehicle or 0.1 mM CPT- cAMP + 1 μM 

dexamethasone (cAMP/dex).  

(A) Aliquots of medium were collected at the indicated time points and assayed for glucose content as 

indicated in the experimental procedures. 

(B) Area under the curve quantified from the data in panel A. 

(C-E) Expression of fasting-inducible genes in primary hepatocytes treated as either above, or including 

100 nM insulin with cAMP/dex. 

Data in (A-B) represent mean ± SEM and in (C-E) are representative of three independent experiments 

performed in triplicate. 

 

 

 

 

 

 

 

 

 

 

 

 



 115 

0

1000

2000

3000

4000

0

5

10

15

20

25

30

35

Bo
dy

 w
ei

gh
t (

g)
!

A!

Fed!
0

20

40

60

80

Lean! Fat! Fluid!

%
 B

od
y 

we
ig

ht
!

B!

0

0.1

0.2

0.3

0.4

Cu
m

. f
oo

d 
in

ta
ke

 (g
/g

 L
M

)!

C!

0

0.05

0.10

0.15

0.20

Light! Dark!

Fo
od

 in
ta

ke
 (g

/g
 L

M
)!

D!

VO
2 (

m
L/

h/
kg

 L
M

)!

Light! Dark!

F!

0

5

10

15

20

25

En
er

gy
 e

xp
en

d.
 (W

/k
g 

LM
)!

E!

Light! Dark!

0

0.2

0.4

0.6

0.8

1.0

RQ
 (V

O
2/V

CO
2)!

G!

Light! Dark!

Control!

L-FoxO1!

L-DBD!

Clock time!

Figure 4.4!



 116 

Figure 4.4. Study of Whole-Body Metabolism by Indirect Calorimetry 

(A-B) Body weight (A) and body composition (B) in fed mice 

(C-D) Cumulative 24-h food intake (C) broken down by light vs. dark cycles (D), normalized to lean body 

weight. 

(E) Energy expenditure normalized to lean body weight 

(F) Oxygen consumption rate normalized to lean body weight 

(G) Respiratory quotient (RQ), calculated as VO2/VCO2 

N = 5-6 for all genotypes. Data represent mean ± SEM. 
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Figure 4.5. Glucose Metabolism in L-FoxO1 and L-DBD Mice 

(A-B) Glucose (A) and insulin (B) in mice fasted overnight or re-fed for 4 hr. 

(C-D) Glucose (C) and pyruvate (D) tolerance tests in overnight-fasted mice. 

(E) Insulin tolerance test in 5-hr-fasted mice. 

(F) Quantification of the area under the curve (AUC) for the results in (C-E). 

(G) Gene expression levels in fasted livers assessed by qPCR. 

All mice were reared on a chow diet and studies were performed at 16-20 weeks of age, N ≥ 9 for all 

genotypes in all experiments. Data represent mean ± SEM. * p < 0.05 by Tukey’s post-hoc analysis 

following one-way ANOVA.  
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Figure 4.6. Insulin-Dependent Akt and GSK3β  Phosphorylation 

(A-C) Western blot analysis of insulin-induced protein phosphorylation in liver (A), soleus muscle (B), and 

epididymal fat (C) after IV saline or insulin injection in overnight-fasted or 4-hr- refed mice (n = 3 for 

insulin and 1 for saline). 
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Figure 4.7. Hepatic Insulin Signaling  

(A) Western blot of insulin-induced protein phosphorylation in fasted or 4 hr-re-fed mice of each genotype. 

Each lane represents three pooled whole-liver extracts from a single cohort.   

(B-C) Densitometric analysis of Akt phosphorylation in Western blots from (A). Each point represents one 

of the two lanes for each genotype × feeding state combination.  

(D) Western blot of insulin-induced protein phosphorylation in 4 hr-refed mice matched for mean insulin 

concentration, noted below each genotype as mean insulin ± SEM. Each lane represents one liver extract 

from the indicated genotype.   

(E-F) Densitometric analysis of Akt phosphorylation in Western blots from (D). Each point represents one 

of the corresponding bands in (D).  

(G) qPCR analysis of Irs2 expression in either fasted or 4-hr-re-fed mice of each genotype (N ≥ 7 for each 

genotype). 

Data represent mean ± SEM. * p < 0.05 by Tukey’s post-hoc analysis following one-way ANOVA. 
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Figure 4.8. Glucose Production in L-FoxO1 and L-DBD Primary Hepatocytes  

(A) Glucose production assays in cells incubated with glucose-production medium supplemented with 

(filled circles) or without (open circles) 0.1 M CPT-cAMP and 1 µM dexamethasone for 5 hr.  

(B) Quantification of the AUC from the data in panel A. Data in (A-B) represent mean ± SEM of three 

independent experiments performed in triplicate.  

(C-E) qPCR of G6pc, Pck1, and Ppargc1a levels in the presence or absence of cAMP/dex and insulin. 

Data are presented as mean ± SEM of a representative experiment of three, each performed in triplicate. 

* p < 0.05 by Tukey’s post-hoc analysis following one-way ANOVA. 
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Figure 4.9. Lipid Metabolism in Mice and Primary Hepatocytes 

(A) Liver weight relative to body weight. Mice of each genotype were fasted overnight or fasted overnight 

and refed for 4 hr (N ≥ 10 for each genotype). 

(B) Liver TG content in fasted or 4-hr-refed mice, normalized to total liver weight (N ≥ 6 for each 

genotype).  

(C) Oral lipid tolerance test (OLTT) in 5-hr-fasted mice, administered by giving olive oil p.o. and drawing 

blood at the indicated time points (N = 6-9 for each genotype).   

(D) TG secretion assay in 5-hr-fasted mice (N ≥ 5 for each genotype). 

 (E) Area under the curve (AUC) of OLTT and TG secretion. Data are normalized to a representative 

control sample for each procedure.  

(F) Fatty acid oxidation in primary hepatocytes from control, L-FoxO1, and L-DBD mice. Data shown as 

average of three independent experiments performed in triplicate.  

Data in (A)-(F) represent means ± SEM. * p < 0.05 by Tukey’s post-hoc analysis following one-way 

ANOVA. 

(G) De novo TG synthesis in primary hepatocytes isolated from control, L-FoxO1, and L-DBD mice. Data 

shown are mean ± Satterthwaite-corrected SEM of three independent experiments performed in triplicate. 

£ p < 0.05 for main effect as assessed by two-way ANOVA and * p < 0.05 using Bonferroni’s post-hoc 

analysis. 
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Figure 4.10. Expression of Genes Related to Hepatic Lipid Metabolism  

(A-F) Expression of lipogenic genes in livers from overnight-fasted or 4-hr-re-fed mice 

(G-J) Expression of bile-acid metabolic genes in livers from overnight-fasted or 4-hr-re-fed mice.  

Data represent mean ± SEM, N ≥ 7 for each genotype. * P < 0.05 as assessed by Tukey’s post-hoc 

analysis following one-way ANOVA. 
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Figure 4.11. Studies on the Mechanism of Lipogenesis in Primary Hepatocytes  

(A-B) Gene expression in primary hepatocytes of indicated genotype serum-starved overnight and then 

treated for 5 h with or without 10 nM insulin. Data in (A) represent the mean of two (insulin) or three 

(vehicle) independent experiments performed in triplicate ± Satterthwaite-corrected SEM and in (B) are 

mean ± SEM representative of two independent experiments performed in triplicate. * p < 0.05 by 

unpaired, two-tailed student’s t test. 

(C) De novo lipogenesis in primary hepatocytes isolated from control and L-FoxO1,3,4 mice. Data 

presented are mean ± SEM representative of two independent experiments performed in triplicate. * p < 

0.05 by Bonferroni’s post-hoc test following two-way ANOVA. 

(D) Insulin signaling in primary hepatocytes treated with saline or with 1 nM insulin for 30 min following 

treatment for 24 hr with saline or 100 nM insulin. Data are representative of three independent 

experiments. 
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Figure 4.12. Metabolic Characterization of Mice on Western-Type Diet 

(A-B) Liver weight relative to body weight (A) and liver TG content (B) in 5-hr-fasted or ad libitum-fed 

mice.  

(C) Hematoxylin and eosin staining of liver sections from WTD-fed mice. 

(D-G) qPCR measurements of hepatic Srebp1c, Fasn, Gck, and Scd1 in ad libitum-fed or 5-hr-fasted 

mice.  

Data represent means ± SEM (N ≥ 7 for each genotype). * p < 0.05 by Tukey’s post-hoc analysis 

following one-way ANOVA. 
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Figure 4.13. Studies of Liver Insulin Signaling in WTD-Reared Mice 

(A) Western blot of livers from ad-libitum fed or 5-hr-fasted mice. Each lane represents pooled liver 

homogenate from three mice of the same cohort.

(B-D) Densitometric analysis of phospho-Akt T308 (B), S473 (C) and GSK3β S9 (D). Bars represent the 

average value of the two lanes for each group and are calculated as the ratio of phosphorylated to total 

protein and normalized to the fed control. 
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Figure 4.14. Transcriptomic Analysis of Livers by RNA-Seq   

(A) Genotypic comparisons of the numbers of genes significantly altered (p < 0.05) in the fasted (upper) 

and re-fed (lower) states.  

(B) Heat map illustrating the magnitude of differences in genes significantly altered in L-FoxO1 vs. L-DBD 

mice in the fasted (left) and re-fed (right) states.  
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Figure 4.15. Validation of Selected RNA-seq Candidate Genes 

(A) FPKM values of genes selected from RNA-seq to illustrate FoxO1’s roles as direct transcriptional 

repressor (Rgs16, left column), co-repressor (Hsd3b5, middle column), and co-activator (Enho, right 

column). 

(B-C) qPCR validation of the above gene targets in whole liver (N ≥ 7 for each genotype) (B) and primary 

hepatocytes (c). 

Data represent means ± SEM. * p < 0.05 by Tukey’s post-hoc analysis following one-way ANOVA. 
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Figure 4.16!
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Figure 4.16. Model of FoxO Action in GP vs. DNL 

Schematic diagram of insulin action on FoxO1 and FoxO3/4 with respect to G6pc expression à GP and 

Gck expression à DNL in (A) primary hepatocytes and (B) whole liver. Black type and strokes indicates 

that the indicated gene/protein or pathway is intact, while dark gray indicates partially intact and light gray 

indicates the absence of the indicated gene/protein or pathway. GP = glucose production, DNL = de novo 

lipogenesis, nl. = normal. 
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Table 4.1!

Control!
(n ≥ 8)!

FoxO1-het!
(n ≥ 7)!

DBD-het!
(n ≥ 9)!

Body weight (g)! Fed! 25.1 ± 0.7! 25.2 ± 0.4! 24.6 ± 1.1!
Lean mass %! Fed! 77.4 ± 0.6! 78.8 ± 1.2! 78.7 ± 0.7!
Fat mass %! Fed! 14.7 ± 0.5! 13.2 ± 0.3! 13.3 ± 0.6!

Fluid mass %! Fed! 7.9 ± 0.2! 8.0 ± 0.1! 8.0 ± 0.2!

Glucose (mg/dL)!
Fasted! 72 ± 2! 74 ± 4! 73 ± 3!
Re-fed! 200 ± 13! 204 ± 17! 177 ± 6!

Insulin (ng/mL)!
Fasted! 0.44 ± 0.08! 0.33 ± 0.04! 0.42 ± 0.08!
Re-fed! 1.06 ± 0.17! 0.96 ± 0.14! 1.03 ± 0.16!

Free fatty acids (mEq/L)!
Fasted! 1.66 ± 0.16! 1.65 ± 0.25! 1.75 ± 0.15!
Re-fed! 0.69 ± 0.07! 0.76 ± 0.13! 0.70 ± 0.08!

Triglycerides (mg/dL)!
Fasted! 70 ± 5! 57 ± 4! 60 ± 4!
Re-fed! 63 ± 5! 55 ± 5! 63 ± 6!

Cholesterol (mg/dL)!
Fasted! 97 ± 5! 83 ± 20! 93 ± 12!
Re-fed! 89 ± 4! 91 ± 1! 93 ± 3!

Table 4.1. Metabolic Features of Heterozygous Mice!
!
Data are means ± SEM. Animals were analyzed as described in 
Experimental Procedures.!
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Table 4.2!

Control!
(n ≥ 10)!

L-FoxO1!
(n ≥ 10)!

L-DBD!
(n ≥ 7)!

Free fatty acids (mEq/L)!
Fasted! 1.09 ± 0.19! 1.23 ± 0.09! 1.14 ± 0.13!
Re-fed! 0.19 ± 0.02! 0.20 ± 0.03! 0.21 ± 0.03!

Triglycerides (mg/dL)!
Fasted! 76 ± 6! 84 ± 4! 72 ± 12!
Re-fed! 102 ± 11! 92 ± 7! 121 ± 9!

Cholesterol (mg/dL)!
Fasted! 92 ± 4! 102 ± 5! 96 ± 6!
Re-fed! 92 ± 3! 85 ± 4! 90 ± 3!

Liver cholesterol (mg/g)!
Fasted! 1.66 ± 0.16! 1.56 ± 0.13! 1.75 ± 0.11!
Re-fed! 1.17 ± 0.10! 1.10 ± 0.07! 1.12 ± 0.13!

Table 4.2. Metabolic Features of L-FoxO1 and L-DBD Mice!
!
Data are means ± SEM. Animals were analyzed as described in 
Experimental Procedures.!
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Table 4.3!

Control!
(n ≥ 9)!

DBD-het!
(n ≥ 11)!

L-FoxO1!
(n ≥ 11)!

L-DBD!
(n ≥ 9)!

Body weight (g)!
Fed! 33.2 ± 1.2! 34.9 ± 1.8! 38.0 ± 1.0! 36.0 ± 2.8!

Fasted! 33.7 ± 0.3! 33.3 ± 1.6! 34.3 ± 1.0! 33.3 ± 1.1!

Glucose (mg/dL)!
Fed! 218 ± 3! 223 ± 2! 190 ± 4! 203 ± 7!

Fasted! 241 ± 14! 242 ± 10! 214 ± 7! 220 ± 9!

Insulin (ng/mL)!
Fed! 2.87 ± 0.22! 2.43 ± 0.55! 4.22 ± 0.95! 6.66 ± 3.15!

Fasted! 2.58 ± 0.30! 2.11 ± 0.27! 2.68 ± 0.32! 2.25 ± 0.42!

Free fatty acids (mEq/L)!
Fed! 0.76 ± 0.04! 0.72 ± 0.08! 0.71 ± 0.05! 0.79 ± 0.06!

Fasted! 0.71 ± 0.06! 0.70 ± 0.05! 0.74 ± 0.05! 0.71 ± 0.07!

TG (mg/dL)!
Fed! 113 ± 11! 118 ± 12! 104 ± 7! 118 ± 7!

Fasted! 59 ± 6! 67 ± 6! 53 ± 3! 63 ± 9!

Cholesterol (mg/dL)!
Fed! 296 ± 21! 344 ± 27! 364 ± 28! 428 ± 42!

Fasted! 337 ± 34! 342 ± 27! 398 ± 31! 376 ± 55!
Table 4.3. Metabolic Features of WTD-reared L-FoxO1 and L-DBD Mice!
!
Data are means ± SEM. Animals were analyzed as described in Experimental 
Procedures.!
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Gene Ontology Category! P value! No. of genes!

Lipid metabolic process! 2.1 x 10-7! 32!
Steroid metabolic process! 3.0 x 10-7! 15!

Oxidation-reduction! 1.0 x 10-6! 30!
Alcohol metabolic process! 1.3 x 10-6! 21!

Monocarboxylic acid metabolic process! 6.4 x 10-6! 17!
Oxo/carboxylic acid metabolic process! 8.6 x 10-5! 21!

Cellular ketone metabolic process! 1.2 x 10-4! 21!
Regulation of catalytic activity! 4.5 x 10-4! 19!

Sterol homeostasis! 7.2 x 10-4! 5!
Lipid metabolic process! 1.3 x 10-5! 26!

Oxidation-reduction! 6.2 x 10-5! 24!
Steroid metabolic process! 8.6 x 10-5! 11!

Monocarboxylic acid metabolic process! 3.8 x 10-4! 13!
Cellular lipid metabolic process! 4.2 x 10-4! 18!
Cholesterol metabolic process! 4.2 x 10-4! 7!

Brown fat cell differentiation! 6.6 x 10-4! 5!
Sterol metabolic process! 7.1 x 10-4! 7!
Acute-phase response! 7.5 x 10-4! 5!
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Table 4.4!

Table 4.4. Gene Ontology Analysis: Control vs. L-FoxO1!
!
Analysis was performed using DAVID Bioinformatics Database.!
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Gene Ontology Category! P value! No. of genes!

Steroid metabolic process! 8.3 x 10-9! 17!
Alcohol metabolic process! 2.4 x 10-8! 24!
Sterol metabolic process! 4.6 x 10-7! 11!

Cholesterol metabolic process! 1.9 x 106! 10!
Lipid metabolic process! 3.3 x 10-6! 30!

Oxidation-reduction! 5.0 x 10-6! 29!
Oxo/carboxylic acid metabolic process! 1.2 x 10-4! 21!
Monocarboxylic acid metabolic process! 1.3 x 10-4! 15!

Steroid biosynthetic process! 1.5 x 10-4! 8!
Oxidation-reduction! 1.3 x 10-7! 28!

Lipid metabolic process! 3.2 x 10-6! 26!
Steroid metabolic process! 7.4 x 10-6! 12!

Monocarboxylic acid metabolic process! 9.7 x 10-6! 15!
Cholesterol metabolic process! 3.2 x 10-5! 8!

Antigen processing/present. via MHC-II! 4.3 x 10-5! 5!
Oxo/carboxylic acid metabolic process! 4.7 x 10-5! 19!

Sterol metabolic process! 5.9 x 10-5! 8!
Cellular ketone metabolic process! 6.4 x 10-5! 19!
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Table 4.5!

Table 4.5. Gene Ontology Analysis: Control vs. L-DBD!
!
Analysis was performed using DAVID Bioinformatics Database.!
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Gene Ontology Category! P value! No. of genes!

Steroid metabolic process! 7.6 x 10-9! 12!
Steroid biosynthetic process! 1.9 x 10-8! 9!

Sterol metabolic process! 3.6 x 10-8! 8!
Lipid metabolic process! 2.3 x 10-6! 18!

Alcohol metabolic process! 3.8 x 10-6! 13!
Oxidation-reduction! 2.8 x 10-5! 13!

Acute-phase response! 4.1 x 10-5! 5!
Sterol biosynthetic process! 4.1 x 10-5! 5!

Monocarboxylic acid metabolic process! 3.7 x 10-4! 9!
Acute-phase response! 2.2 x 10-6! 6!

Immune response! 7.3 x 10-6! 15!
Response to stimulus! 2.5 x 10-5! 36!

Immune system process! 5.0 x 10-5! 18!
Antigen processing/presentation! 1.9 x 10-4! 4!

Regulation of developmental process! 2.3 x 10-4! 14!
Negative regulation of signal transduction! 2.4 x 10-4! 8!

Defense response! 3.9 x 10-4! 12!
Regulation of cell differentiation! 4.8 x 10-4! 11!
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Table 4.6!

Table 4.6. Gene Ontology Analysis: L-FoxO1 vs. L-DBD !
!
Analysis was performed using DAVID Bioinformatics Database.!
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Gene Ontology Category! P value! No. of genes!

Homeostatic process! 7.2 x 10-4! 15!
Regulation of biological quality! 9.3 x 10-4! 22!

Alcohol metabolic process! 1.4 x 10-3! 11!
Cellular amino acid derivative metabolism! 1.7 x 10-3! 7!

Regulation of catalytic activity! 2.8 x 10-3! 12!
Steroid metabolic process! 3.2 x 10-3! 7!
Lipid metabolic process! 3.7 x 10-3! 15!

Second messenger signaling! 4.1 x 10-3! 6!
Glycerolipid metabolic process! 6.0 x 10-3! 6!
Cholesterol metabolic process! 2.9 x 10-5! 6!

Sterol metabolic process! 4.6 x 10-5! 6!
Lipid metabolic process! 4.7 x 10-5! 14!

Monocarboxylic acid metabolic process! 6.7 x 10-5! 9!
Oxidation-reduction! 1.5 x 10-4! 13!

Cellular lipid metabolic process! 1.7 x 10-4! 11!
Steroid metabolic process! 1.7 x 10-4! 7!

Oxo/carboxylic acid metabolic process! 7.4 x 10-4! 10!
Cellular ketone metabolic process! 8.8 x 10-4! 10!
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Table 4.7!

Table 4.7. Gene Ontology Analysis: Transcription Factor Mode!
!
Analysis was performed using DAVID Bioinformatics Database using genes significantly!
altered in both L-FoxO1 and L-DBD relative to control but not to each other.!
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Gene Ontology Category! P value! No. of genes!

Oxidation-reduction! 4.2 x 10-4! 7!
Oxo/carboxylic acid metabolic process! 5.7 x 10-3! 5!

Cellular ketone metabolic process! 6.3 x 10-3! 5!
Monocarboxylic acid metabolic process! 7.8 x 10-3! 4!

Alcohol metabolic process! 1.7 x 10-2! 4!
Lipid metabolic process! 2.1 x 10-2! 5!
Immune system process! 3.1 x 10-2! 5!

Negative regulation of signal transduction! 5.0 x 10-5! 6!
Negative regulation of cell communication! 7.4 x 10-5! 6!
Negative regulation of biological process! 7.8 x 10-4! 11!

Immune response! 7.8 x 10-4! 7!
Negative regulation of cellular process! 1.5 x 10-3! 10!

Immune system process! 2.3 x 10-3! 8!
Neg. regulation of response to stimulus! 1.1 x 10-2! 3!
Regulation of developmental process! 1.1 x 10-2! 6!
Positive regulation of cellular process! 1.1 x 10-2! 9!
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Table 4.8!

Table 4.8. Gene Ontology Analysis: Co-Regulatory Mode!
!
Analysis was performed using DAVID Bioinformatics Database using genes significantly!
altered in both control and L-DBD relative to L-FoxO1 but not to each other.!



 150 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5 

IMPRESSIONS AND CONJECTURES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 151 

5.1. General Summary of Findings 

Through the work described in this thesis I have undertaken to enrich the current understanding of how 

the liver responds to insulin in both normal and pathophysiologic states. Specifically, my goal was to 

understand the etiology of selective insulin resistance – that is, the dissociation of insulin’s effects on 

hepatic glucose and lipid metabolism. I approached this question through the use of two distinct but 

related hypotheses.  

First, in Chapter 3, I surmised that selective IR represents not a pathogenic paradox, but rather a 

manifestation of the inherent differences in the insulin responsiveness of these processes. In order to test 

this hypothesis, I employed two models of insulin resistance in primary hepatocytes: chronic 

hyperinsulinemia (CHI) and acute competitive antagonism. CHI treatment in vitro showed that it is 

possible to recreate the uncoupling of insulin’s effects on glucose production and de novo lipogenesis 

within the context of the clinically relevant in vivo CHI that marks the run-up to type 2 diabetes. Next, 

treatment of hepatocytes with variable doses of S961, a peptide competitive antagonist of InsR, 

demonstrated that insulin’s suppression of GP and its stimulation of de novo lipogenesis (DNL) follow 

distinct dose-response patterns. The half-maximal dose of S961 to inhibit insulin’s effect on GP was about 

four times greater than its ability to halfway inhibit insulin’s effect on DNL. Taken together, these data 

suggest that hepatic IR in vivo may not only cause but also result from CHI, and that the causal 

relationship between CHI and IR occurs at least in part at the level of InsR itself. These findings 

contravene much of the conventional wisdom that intricate and arcane alterations in cellular metabolites 

or distantly related signaling pathways are required for the pathogenesis even of garden-variety IR [2, 51, 

65, 90, 362, 418, 419]. 

Second, in Chapter 4, I consider another possible culprit behind selective IR, FoxO1, the most 

distal insulin-regulated metabolic effector that is agreed to impact on both glucose and lipid metabolism. 

Despite much phenotypic evidence linking FoxO1 to insulin’s control of these processes, surprisingly little 

is known about the actual mechanisms FoxO1 uses to accomplish them. We therefore took an unbiased, 

genetic approach to the question by taking advantage of the fact that FoxO1 has been shown to act both 

as a transcription factor and as a transcriptional co-regulator. We therefore have developed mice (L-DBD) 
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that possess only DNA binding-defective FoxO1 (FoxO1-DBD) in its liver and compared their phenotype 

and gene expression to wild-type controls and to L-FoxO1 mice that completely lack the protein in 

hepatocytes. We found that FoxO1’s well-established role as an activator of hepatic glucose production 

requires its ability to bind to DNA (i.e., act as a transcription factor). On the other hand, while L-FoxO1 

mice exhibited increased liver TG levels, L-DBD mice were equivalent to controls in this regard. Thus, on 

the whole, FoxO1 regulates hepatic TG metabolism in co-regulatory mode. Interestingly, in spite of this in 

vivo conclusion, primary hepatocytes from both L-DBD and L-FoxO1 mice showed higher rates of DNL 

and lower rates of fatty acid oxidation. Thus, the ability of FoxO1-DBD to properly control liver TG 

metabolism in vivo either does not depend strictly upon regulation of hepatocyte-autonomous DNL or 

FAO or requires input from extrahepatic factors.  

Taken together, these results suggest that selective IR can be a phenomenon inherent to the 

hepatocyte and that FoxO1 may play a dual role in its development. This conclusion is further explored in 

the discussion that follows. 

 

5.2. Primary Hepatocytes: Limitations and Lessons 

5.2.1. Rationale for Using Primary Hepatocytes 

The liver exists at the center of a staggeringly complex web of metabolic regulation; extensive mouse 

genetic work emphasizes the particular importance of liver InsR action in the preservation of whole-body 

metabolic health. As discussed extensively in previous chapters, the liver Insr knockout (LIRKO) mouse 

develops diabetes due to unrestrained glucose production [273, 274]. Mice completely lacking Insr die in 

the perinatal period of extreme hyperglycemia and ketoacidosis. However, restoration of Insr expression 

only in liver and, to a lesser extent, in pancreatic β cells and certain brain regions (Ttr-Insr ; Insr-/- “L1” 

mice) largely reverses these effects [165]. Only about 30% of L1 mice go on to develop diabetes later in 

life versus 100% of neonatal mice with complete Insr knockout [164, 420, 421]. On the other hand, 

reconstitution of Insr expression in Glut4-expressing tissues including skeletal muscle and WAT (GIRKI 

mice) did not result in a notable prolongation of lifespan or reprieve from diabetes [422]. Moreover, rescue 

of Insr expression in neurons alone (NIRKI mice) also did not extend lifespan to adulthood or prevent 
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diabetes [422]. This finding further emphasizes the importance of Insr restoration in liver per se rather 

than in brain in the rescue of the L1 mouse [165, 420, 422]. 

  Despite the indubitable importance of liver insulin action in regulating global metabolism and 

preventing diabetes, studying the mechanisms of liver insulin action and resistance in vivo is fraught with 

complications. For example, L1 mice remain markedly hyperinsulinemic and are unable to normally 

suppress HGP during a hyperinsulinemic-euglycemic clamp in spite of normal Akt phosphorylation and 

G6pc/Pck1 expression [420]. It is therefore possible that this apparent defect in liver metabolism is due to 

defects in other, Insr-deficient tissues (e.g., unchecked WAT lipolysis, severely decreased skeletal muscle 

glucose uptake) rather than to primary defects in the liver itself [420]. We therefore undertook to address 

the liver-autonomous aspects of insulin action and resistance. We made extensive use of isolated primary 

hepatocytes to measure the production of glucose and lipids in response to insulin as well as associated 

changes in gene expression. Although we have made significant progress using this model, it is 

necessarily imperfect. In this spirit, our data indicate that the utilization of primary hepatocytes represents 

a double-edged sword; this system does not faithfully recapitulate many important facets of in vivo 

metabolism, but in certain cases this apparent disadvantage has actually proved educational.  

 

5.2.2. Primary Hepatocyte Studies of Glucose Metabolism 

The downsides of using primary hepatocytes, especially from mice, are many and varied, even aside from 

the obvious differences between the signaling and nutrient inputs available to hepatocytes in situ as 

opposed to in culture. If we first consider glucose production, for example, we mentioned in Chapter 1 that 

about 75% of glucose production over the first 16 h or so of fasting results from glycogenolysis and the 

rest from gluconeogenesis. In fact, the most acute effects of glucagon (analogous to cAMP treatment in 

our ex vivo experiments) are entirely attributable to enhanced glycogenolysis [423]. On the other hand, 

work form our laboratory using this glucose-production system has indicated that only about 10% of 

glucose production from primary hepatocytes results from glycogenolysis [370], similar to findings by 

other groups [424]. Whether or not this speaks to an inherent difference in the source of glucose for 

release between liver and primary hepatocyte or merely to the obvious differences in ambient conditions, 
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the conclusions we draw from these experiments are likely more germane to gluconeogenesis (i.e., the 

minor source of HGP in physiologic fasting) than to glycogenolysis.  

There are, however, several upsides to this complication. Although in human liver 

gluconeogenesis plays a minor role in HGP under normal conditions, both the relative and absolute rates 

of gluconeogenesis are significantly increased in patients with diabetes [103, 104, 106, 425]. Similar to 

the case of increased HGP in the L1 mouse, it has been unclear whether the increased gluconeogenesis 

of diabetes is attributable principally to mass action by increased influx of gluconeogenic precursors from 

other insulin-resistant tissues (i.e., a more passive role for the hepatocyte) or if there is some primary 

derangement in the liver’s handling of these substrates [126, 426, 427]. As our studies were performed 

within a milieu of constant glucose, lactate, and pyruvate levels, we can state that the derangement in 

gluconeogenesis in our cell-culture models of hepatic IR is inherent to the hepatocyte. Both CHI and 

acute InsR antagonism hinder the ability of insulin to blunt cAMP-induced glucose production.  Indeed, 

these experiments support an important role of insulin in the regulation of gluconeogenesis in hepatocytes 

even if not so readily in vivo. In fact, although several previous studies have found a similar effect as ours 

of glucagon mimetics on GP in primary hepatocytes, most of these do not remark on its suppression by 

insulin [145, 171, 424, 428, 429]. Several in vivo studies, mostly in dogs undergoing hyperinsulinemic-

euglycemic clamp, have cast doubt on the regulation of gluconeogenesis by insulin [94, 114, 399]. These 

reports have generally concluded that an effect of insulin on gluconeogenesis is transient and requires 

very high concentrations of insulin. Although these studies were performed with great rigor, they do not 

speak directly to processes in the hepatocyte itself. Even studies in whole liver in mice do not consistently 

reveal insulin suppression of gluconeogenesis [112]. The apparent inconsistency with our data may also 

stem from physiologic differences between rodents and large mammals [423, 430].  

Although our data support a dynamic regulation of gluconeogenesis by cAMP (i.e., glucagon) vs. 

insulin that can be perturbed by IR, the most important mechanisms remain unclear. The expression of 

G6pc and Pck1, the two rate-limiting enzymes of gluconeogenesis, are often used as a surrogate marker 

of HGP, but we found a poor correlation between transcript levels and observed GP. Although treatment 

of hepatocytes with InsR antagonist revealed a dose-dependent change in G6pc and Pck1 expression 
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that generally paralleled GP, the IC50 values for gene expression versus GP differed by an order of 

magnitude (Fig. 3.6). Despite this finding, one may still argue that the discrepancy between gene 

expression and GP is merely a quantitative matter. However, several other experiments revealed 

qualitative differences between the regulation of G6pc/Pck1 expression and GP, strongly suggesting that 

the dynamics of these processes are not synchronized within the temporal context of the experiment. In 

all of our GP experiments in both Chapters 3 and 4, cAMP treatment increases G6pc expression by at 

least 30-fold even as GP increases only by 50-100%. In our model of CHI, there was no alteration in 

basal or cAMP-induced GP even as the effect of insulin was nearly lost (Fig. 3.2A). On the other hand, 

both basal and especially cAMP-induced G6pc and Pck1 expression were markedly decreased, the latter 

by up to two thirds (Fig. 3.2B). Perhaps even more strikingly, primary hepatocytes from L-FoxO1 and L-

DBD mice exhibited a tenfold decrease in cAMP/dex-stimulated G6pc expression despite only a roughly 

25% decrement in GP (Fig. 4.8A-C). Interestingly, in vivo G6pc expression was decreased by about 25% 

in L-FoxO1 mice, commensurate with the decreased AUC of the glucose and pyruvate tolerance tests 

(Fig. 4.5). Further indicative of a dissociation between FoxO1-mediated GP and G6pc expression, we 

found G6pc expression to be decreased by about two thirds even in cells from Foxo1-heterozygous mice 

in spite of no defect in GP (Fig. 4.3A-C). As discussed earlier, FoxO1-associated GP has customarily 

been ascribed to its incontrovertible regulation of G6pc; that we have managed to quantitatively and 

qualitatively uncouple these events lends further credence to the hypothesis that FoxO1 affects 

gluconeogenic/glycolytic flux by as yet uncharacterized means.  

To reemphasize, we can be sure that FoxO1 is a key regulator of HGP, but we are skeptical of 

the idea that this occurs primarily through its regulation of G6pc. Finally, both our in vivo and primary 

hepatocyte data cast doubt on the importance of Ppargc1a expression for glucose production despite 

early enthusiasm in its favor [173, 372, 431]. Not only is expression of the gene in hepatocytes unaffected 

by insulin treatment – quite unlike its marked repression by re-feeding, and therefore also representing a 

dual drawback/benefit of primary hepatocytes – but its expression is not decreased in L-DBD mice even 

as GP is. 
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Overall, these conclusions regarding transcriptional regulation of gluconeogenesis are nicely 

concordant even with several in vivo models. As mentioned earlier, even liver-specific deletion of G6pc or 

Pck1 expression do not cause a physiologic impairment in glucose production due to compensation by 

other tissues [379, 380]. Moreover, although the expression of G6pc and Pck1 are clearly regulated by 

insulin, the activity levels of the enzymes are not well correlated with insulin action; flux through 

gluconeogenesis to G6P occurs even in the fed state [94, 114]. Even in the context of diabetes, when 

gluconeogenesis per se is elevated, studies of human liver samples did not reveal differences in G6pc or 

Pck1 expression [381]. It therefore appears that although G6Pase and PEPCK are essential to the 

biochemical process of glucose production, physiologic fluctuations in their mRNA levels may not be as 

important as once thought to the acute and subacute regulation of HGP. 

 

5.2.3. Primary Hepatocyte Studies of Lipid Biosynthesis 

The importance of differences between whole liver and primary hepatocytes with respect to de novo 

lipogenesis has already been extensively discussed in Chapter 4 and is revisited in Section 5.3.1 below. 

Aside from these phenomenological considerations, however, it is important to understand why these in 

and ex vivo differences occur. There are several different causes that are relevant to these studies. 

 First, as has been discussed, the major transcriptional control of lipogenesis by insulin occurs in 

vivo through the cleavage-induced activity of SREBP-1c [237, 276]. However, as discussed in Chapter 3, 

we found considerable variability in insulin’s regulation of SREBP-1c cleavage. This is not surprising, 

however, as mouse primary hepatocytes are generally considered a poor venue for the study of SREBP-

1c dynamics [218, 226]. Whereas SREBP-1c is the dominant SREBP-1 isoform in intact liver, in cultured 

cells including hepatocytes, SREBP-1a appears to predominate [226]. Even though SREBP-1a is far 

more powerful a driver of lipogenesis both in liver and primary hepatocytes than is the 1c isoform, its 

activity is not regulated by insulin [211, 226, 432]. Although we did not measure mRNA or protein levels of 

SREBP-1a in our studies, it is unlikely that 1a could account for the acute induction of DNL we observe 

following insulin treatment. Even the SREBP-1c that does remain in mouse hepatocytes loses its 
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responsiveness to insulin almost immediately after explantation, suggesting the requirement for 

extrahepatic inputs in regulating this system [218]. 

It is for these reasons that we proposed in Chapter 3 a modification to the Brown and Goldstein 

model of selective IR, in which the relative preservation of insulin-stimulated DNL proceeds via SREBP-1c 

activation [276]. That is, even though it may account for the slight increase in basal DNL in CHI-treated 

cells vs. control, it would not likely explain the retained acute increase in DNL, especially as we did not 

detect increases in expression of SREBP-1c target genes such as Fasn or Srebf1c itself over this time 

period [198]. We therefore hypothesize that insulin’s acute regulation of DNL in mouse primary 

hepatocytes proceeds via posttranslational modifications (such as of ACC1, PFK-2, and ACL) that affect 

carbon flux within the hepatocyte [48, 94, 158, 258]. Interestingly, however, rat hepatocytes differ from 

mouse in retaining a considerable degree of insulin-sensitive SREBP-1c cleavage [218]. Although several 

studies have modeled CHI in rat hepatocytes, none to date have directly studied the effect on SREBP-1c 

cleavage [285, 325, 432]. We have performed a pilot experiment in rat primary hepatocytes that showed a 

preservation of SREBP-1c cleavage in response to acute insulin following CHI treatment, however we 

have not yet assessed DNL in this system. 

Aside from SREBP-1c, there are numerous other potential confounders of insulin-stimulated DNL 

in mouse primary hepatocytes. As will be further discussed below, insulin induction of Gck expression via 

FoxO1 inhibition apparently requires some potentiating factor outside of the liver. One possibility in this 

vein is neuronal modulation, as acute infusion of insulin into the head arteries of dogs resulted in 

increased Gck expression in liver [433]. Furthermore, blockade of hypothalamic insulin signaling 

prevented insulin’s induction of Gck expression in liver [399]. Interestingly, this effect may be mediated 

through a downregulation of SHP (Nr0b2), a negative regulator of Gck expression that was identified as a 

FoxO1 target by our RNA-seq analysis and previous studies [168, 423, 434]. Additionally, our laboratory 

has shown that targeted deletion of Foxo1 in AgRP neurons decreases fasting Gck expression in liver 

[435]. Studies are currently underway in on mice lacking Foxo1 both in liver and in AgRP neurons. Finally, 

we have demonstrated that FoxO1 (and therefore, insulin) regulates lipid metabolism in part through 

modulation of bile acid signaling [168], a regulatory circuit not present in isolated hepatocytes.  
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5.2.4. Primary Hepatocyte Studies of Fatty Acid Oxidation 

Those considering the relationship between insulin action and hepatic lipid metabolism generally focus on 

lipid biosynthesis as the primary driver of liver lipid levels. However, as illustrated starkly by poorly 

controlled T1DM patients, insulin also plays an important role in the regulation of fatty acid oxidation. As 

mentioned in the introduction, however, it has been unclear whether the functional inhibition of FAO by 

insulin results primarily from blunted WAT lipolysis or due to direct effects on liver and/or skeletal muscle. 

By addressing this issue in primary hepatocytes, we have begun to parse out the relative contribution of 

liver itself in the absence of acute changes in FFA supply [436]. Specifically, we found that FoxO1 

ablation reduces FAO by over half, suggesting that insulin may exert a primary inhibition of FAO through 

FoxO proteins in the liver in addition to its well-documented effects on WAT lipolysis. Indeed, Insr-/-;  

l-Foxo1 mice have normal levels of β-hydroxybutyrate despite increased circulating FFA [145]. We did 

not, however, directly assess the effect of acute insulin treatment on FAO in primary hepatocytes. 

That insulin might suppress FAO directly in liver is also supported by tracer studies in humans 

with obesity and/or NAFLD that suggest increased rates of FAO [418, 437-440]. (Apparently, even though 

rates of FAO are increased in these patients, it is insufficient to lower liver TG levels to normal.) Although 

this may merely be due to increased delivery of FFA from WAT lipolysis, garden-variety IR is not strictly 

associated with tonically elevated fasting circulating FFA [441]. Indeed, adipocyte lipolysis is exquisitely 

sensitive to insulin – in fact, more so than any other major physiologic process [426, 442]. It is for this 

reason that even many patients with severe IR due to mutations in Insr do not develop DKA [65]. In a 

striking example of selective IR on a global scale, even moderate residual InsR action in these patients 

can evidently suppress lipolysis enough to keep FFA levels from creeping up into the danger zone [65, 

270]. Only in the most severe cases of absolute (e.g., untreated type 1 diabetes) or relative (e.g., Rabson-

Mendenhall syndrome) insulin deficiency does DKA arise, presumably due principally to unchecked 

lipolysis rather than to a primary defect leading to increased hepatic FAO [183, 443]. Going forward, it 

would be of interest to test the effects of CHI or S961 treatment on insulin inhibition of FAO in primary 

hepatocytes. CHI treatment especially may prove a useful model for teasing out the acute vs. chronic 
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effects of insulin on FAO as it would be expected to lead to derepression of FoxO1, thereby helping to 

elucidate its contribution to the process. 

5.3. Toward a Mechanistic Understanding… 

5.3.1. Identifying the True “Branch Point” in Selective IR 

Whether qualitative or quantitative, the defect in CHI-induced IR is at the level of InsR itself. Selective IR, 

on the other hand, has generally been attributed to postreceptor defects [65, 444]. Many different potential 

explanations have been invoked, generally focusing on identifying a discrete branch point beyond which 

the common upstream mediators of insulin signaling diverge to regulate disparate downstream metabolic 

processes [65, 90, 213, 218, 276, 295, 306]. These models generally posit that one branch (i.e., 

controlling hepatic glucose metabolism) becomes resistant to the effects of insulin while the other (i.e., 

controlling lipid metabolism) remains relatively sensitive, potentiated by hyperinsulinemia. Thus, in these 

cases, hyperinsulinemia is largely the result of altered glucose metabolism rather than a cause. These 

models generally ignore the precise mechanism whereby the sensitive vs. resistant pathways are 

differentially activated, although the implication is that this regulatory bifurcation requires signaling input 

from nebulous other pathways. Gonzalez, et al. [305] took a more sophisticated mechanistic approach by 

studying a model of CHI in cultured adipocytes, demonstrating that activation of downstream branches 

are selectively regulated by the different isoforms of Akt. Even this study, however, evaded the question 

of how exactly CHI induces IR in Akt1/2 activation and did not address the possibility of differential 

regulation of IRS1/2 or PI3K [305]. Another valid view that has been articulated posits that the concept of 

“selective IR” is somewhat misguided. That is, although insulin is certainly a key regulator of glucose 

homeostasis, its regulation of lipid metabolism requires a complex crosstalk between different tissues that 

is in some ways independent of insulin and therefore difficult to classify as “sensitive” or “resistant” [362].   

Our studies, on the other hand, have indicated that selective IR can be both hepatocyte-

autonomous and related directly to alterations in InsR number and/or function. Thus, selective IR does not 

require input from other signaling molecules or pathways; it also rebuts the implication that InsR plays a 

somewhat passive role in the development of selective IR [276]. Thus, rather than dividing IR along 
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receptor-level versus postreceptor lines, it behooves us to better understand how common mediators in 

both pathways may differentially regulate glucose vs. lipid metabolism. In this thesis we have employed 

three different models of hepatic insulin resistance; the data offer novel insights into the mechanism by 

which this altered InsR action translates into disparate effects on glucose vs. lipid metabolism. We 

therefore revisit our discussion of the proximal insulin-signaling pathway from Section 1.6.5 in order to 

integrate what we have learned from the experiments in this work. 

IRS1/2 

First, we consider the role of the signaling mediators most proximal to InsR, IRS1/2. Although 

investigators have suspected that IRS1 and IRS2 exert differential control over glucose vs. lipid 

metabolism, much of the data have been conflicting (see Section 1.6.5). Our studies unfortunately do not 

provide much in the way of reconciliation. Previous modeling of CHI in rat primary hepatocytes revealed a 

selective downregulation of IRS2 at the mRNA and protein levels, suggesting that intact insulin signaling 

to SREBP-1c proceeds largely via IRS1 [295]. In our model, however, we found decreases in protein 

levels of both IRS1 and IRS2, similar to findings by another group [303] and consistent with observations 

in the livers of several hyperinsulinemic animal models [303, 445]. Insulin can downregulate IRS1 by 

inducing its proteasomal degradation via a PI3K- and mTORC1-dependent mechanism [303, 446-448], 

although similar studies on IRS2 have yielded conflicting data [303, 449]. Downregulation of IRS2 by 

insulin appears to occur primarily at the transcriptional level [295, 303], although we did not find any 

difference on average in Irs2 mRNA levels in our CHI model. Overall, the similar decreases in both IRS1 

and IRS2 do not allow us to discern any functional differences in their roles in GP vs. DNL in this system. 

A further important aspect of IRS biology is its regulation by FoxO proteins. Our original study 

of the L-FoxO1 mouse demonstrated reductions in fasting-induced expression of Irs2, and FoxO1-

deficient primary hepatocytes exhibited reductions in both Irs1 and Irs2 expression [145]. This 

regulatory scheme suggests a homeostatic loop whereby increased insulin signaling inhibits FoxO1, 

thereby decreasing IRS levels and preventing overstimulation of downstream pathway components; the 

subsequent decline in insulin signaling through InsR leads to the derepression of FoxO1 allowing it to 

restore IRS levels [145, 
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247, 304, 360]. This therefore represents an additional feedback layer in insulin signaling on top of InsR 

downregulation. Our studies confirm a key role for FoxO1 in the expression of Irs2, as fasted L-FoxO1 

livers demonstrated a ~50% decrease in its mRNA. Moreover, Irs2 represents a direct transcriptional 

target of FoxO1, as Irs2 levels were equally decreased in fasted L-DBD livers. Interestingly, a study in 

MEFs deficient in either Irs1 or Irs2 indicates that the latter is required for the phosphorylation of Akt and 

FoxO1 while the former is dispensable, further substantiating an IRS2 à  FoxO1 à  IRS2 

homeostatic loop [304, 360]. 

Akt 

Our studies in primary hepatocytes verify that Akt signaling is required for mediating insulin’s 

effects on both glucose and lipid metabolism (Fig. 3.8), consistent with in vivo data [112, 158, 167, 306]. 

While data such as these have been used in the past to support a neatly bifurcating model of insulin 

signaling (i.e., glucose and lipid arms largely separate), our pharmacologic inhibition of Akt with Akti-1/2 

results in a total abrogation of Akt1/2 signaling [327]. It therefore remains possible that Akt1 and Akt2 

signal differentially to glucose vs. lipid metabolism, as proposed in Chapter 1 and buttressed by 

observations in an adipocyte model of CHI [305]. Nevertheless, the reliance of both glucose and lipid 

metabolism on the combined actions of Akt1 and Akt2 suggest that signaling pathways diverging 

upstream (e.g., MAPK pathway) do not play a critical role. This result has been suggested by previous 

studies [213, 218] but these prior reports do not report directly on GP or DNL. Another potential 

interpretation is that Akti-1/2 does not inhibit both isoforms with equal potency. 

Aside from potential isoform-specific actions of Akt, the kinase’s functional outputs may be 

differentially regulated on the basis of the relative phosphorylation levels of Thr 308 and Ser 473 (see 

Section 1.6.5). Indeed, we have determined in Chapter 3 that the phosphorylation of Akt at these two sites 

does display some differential sensitivity to insulin (Fig. 3.5). The calculated IC50 for the inhibition of Thr 

308 phosphorylation in response to 10 nM insulin by S961 treatment is 0.87 nM while that for Ser 473 is 

2.69 nM. Thr 308 phosphorylation is therefore approximately three times less sensitive to this dose of 

insulin than is phosphorylation at Ser 473. Thus, we expect processes that can be regulated efficiently by 
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Akt phosphorylated at Ser 473 but not at Thr 308 to proceed more potently while those requiring full 

activation of Akt at both sites would be stunted, an example of selective IR.  

Such a situation recalls the L-Pdk1KO mouse model, which interferes with Thr 308 but not Ser 

473 phosphorylation and exhibits deficient phosphorylation of FoxO1 and S6K while that of GSK3β 

remains mostly intact [319]. Interestingly, however, we observed largely the opposite pattern in our 

experiments. That is, phosphorylation of FoxO1 qualitatively paralleled that of Ser 473, such that at 10-9 M 

S961, both were nearly maximal. On the other hand, at that concentration of inhibitor, both 

phosphorylation of Thr 308 and GSK3β were less than half maximal. That FoxO1 phosphorylation 

appears to be relatively more responsive to insulin than other targets is consistent with the CHI model of 

Gonzalez, et al. [305] and in keeping with our own observations regarding the exquisite sensitivity of 

FoxO1 localization even to glancing doses of insulin [143, 149, 150, 450]. Such a conclusion is surprising 

given that FoxO1 in primary hepatocytes appears to be relatively exclusively a mediator of glucose and 

not lipid synthesis, while we found the latter to be more sensitive to insulin than the former. Again, we 

found very limited responsiveness of SREBP-1c cleavage to S961 treatment. Together, these 

observations suggest that the most important mediators of insulin’s acute effect on DNL in primary 

hepatocytes may be still more insulin-sensitive Akt target(s) that we have not assessed. 

As discussed above, FoxO1 participates in a homoestatic loop regulating insulin action via IRS; 

an obligate intermediate in this pathway is Akt. Indeed, FoxO1 induction of IRS2 would be expected to 

increase Akt phosphorylation, as observed. A constitutively active mutant of FoxO1 has been shown to 

increase basal Akt phosphorylation independently of its effects on IRS2, as this effect proceeds via a co-

regulatory mechanism [247] while we now know that its regulation of Irs2 expression does not (Fig. 

4.7G). Our previous work implicated FoxO1 inhibition of the pseudokinase tribble-3 (Trb3), a negative 

regulator of Akt phosphorylation, as the mechanism responsible [247, 451], although the regulation of 

Trb3 expression by FoxO1-DBD was not directly tested. Whether through IRS and/or Trb3, we expect 

Akt phosphorylation to be dampened in the absence of FoxO1. Consistent with this expectation, primary 

hepatocytes lacking FoxO1 do display a notable decrease in insulin-stimulated Akt phosphorylation. 

Interestingly, L-DBD primary hepatocytes have reproducibly shown a defect in Akt phosphorylation even 
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relative to L-FoxO1, suggesting either that Trb3 is not actually a FoxO1 co-regulatory target or that Trb3 is 

not the key mediator of the effect. That insulin’s induction of DNL in L-DBD hepatocytes remained normal 

in spite of the stark decrease in Akt phosphorylation serves as further evidence of the sensitivity of this 

process to insulin. 

The experiments contained in this work do not, however, speak to a functionally significant FoxO1 

à Akt connection in the healthy liver. Although re-feeding-induced Akt phosphorylation (at both sites) was 

decreased in L-FoxO1 and L-DBD livers (Fig. 4.7A-C), this difference disappeared after matching 

samples for mean insulin levels (Fig. 4.7D-F). Intravenous insulin injection also did not reveal any 

difference in hepatic Akt phosphorylation (Fig. 4.6). On the other hand, in the fasted liver, basal 

phosphorylation of Akt at Thr 308 but not at Ser 473 was higher in L-FoxO1 than in control or L-DBD mice 

(Fig. 4.7A-C); this is the opposite of our expectations based on Irs2 expression (Fig. 4.7G). It is tempting 

to speculate that the phenotypic correlation of this finding with differences in Gck expression and liver TG 

reflects differential Akt signaling on the basis of Thr 308 phosphorylation but we have no further data to 

imply causation. The potential importance of FoxO1 feedback may be magnified under conditions of IR, 

as Akt phosphorylation at Thr 308 and especially at Ser 473 were both decreased in the livers of L-FoxO1 

and L-DBD WTD-fed mice versus control. It would be of interest to assess whether the relative worsening 

of Ser 473 vs. Thr 308 phosphorylation produces functional consequences such as altered HGP, although 

we did not detect any significant changes in gluconeogenic gene expression (data not shown). 

Other Potential Mediators 

Other signaling elements downstream of InsR have also been invoked to explain selective IR. Semple, 

et al. (2009) [65] proposed, for example, that selective IR results from a branching downstream of IRS1/2 

wherein Akt signals to FoxO1 to regulate HGP while the path toward DNL proceeds via protein kinase C-λ 

(PKCλ) activation of SREBP-1c. This model is based on studies in demonstrating that overexpression of 

PKCλ increases SREBP-1c and Fasn levels in primary hepatocytes and liver [452, 453]. Liver-specific 

PKCλ-null mice, on the other hand, show decreased expression of SREBP-1c and its lipogenic targets as 

well as decreased TG content [419, 453]. The interpretation of these models, however, is complicated by 
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alterations in circulating insulin levels [90, 419, 453]. Moreover, we know both from experiments here and 

elsewhere using Akti-1/2 [213, 218] and from past studies in mice [112, 158, 167, 306] that Akt signaling 

is required for proper regulation of DNL in addition to HGP. The mechanism linking PKCλ to InsR also 

remains questionable [452, 454].   

Another possible mediator of selective IR is GSK3β. Although this enzyme has classically been 

envisioned as a negative regulator of glycogen synthesis, recent studies have found that both liver-

specific deletion of the protein [455] and expression of a constitutively active form [112] have no effect on 

hepatic glycogen metabolism in vivo, although in the former case this may be due to compensation by 

GSK3α [456]. (GSK3 activity appears to be more important for regulation of skeletal muscle glycogen 

metabolism [455, 457].) On the other hand, as described in Chapter 1, GSK3β may play a role in DNL via 

negative regulation of SREBP-1c stability [185, 215, 219, 220, 458]. Thus, a selective retention of insulin’s 

inhibition of GSK3β would be expected to enhance SREBP-1c signaling and thereby increase DNL 

especially in the face of hyperinsulinemia [185]. Potentially arguing against this mechanism, treatment of 

rat primary hepatocytes with a GSK3β inhibitor had little to no effect on Srebf1c mRNA, the expression of 

which is an indicator of SREBP-1c activity [213, 459]. In fact, the inhibitor had a greater effect to decrease 

Pck1 mRNA, suggesting more of an effect on the glucose than the lipid arm [213]. Furthermore, liver-

specific deletion of GSK3β revealed no metabolic abnormalities in terms of glucose or lipids [455]. We 

have a conducted pilot experiments to test this hypothesis in CHI by infecting cells with an adenovirus 

encoding a constitutively active GSK3β mutant but the data were not consistent with the hypothesis.   

Rather, the data reported in this thesis add considerably to the fund of knowledge regarding the 

dual regulation of hepatic glucose and lipid metabolism by FoxO1. We propose that FoxO1 (as well as 

other FoxOs) may itself be a key mechanistic link between the increased HGP and DNL of selective IR. In 

other words, again, rather than envisioning selective IR only as the product of a bifurcation in the InsR 

pathway, we see it potentially as arising parsimoniously at least in part from altered regulation of this 

single signaling node. 
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5.3.2. FoxO1: A Bridge Not Quite Far Enough 

As discussed in Chapter 1, the prevailing model of insulin signaling anoints Akt as the most distal step in 

the InsR cascade at which insulin’s control of glucose and lipid metabolism are unified [90]. This view, 

however, is inconsistent with repeated observations from our laboratory and others demonstrating FoxO1, 

a substrate of the Akt kinase, as playing a role in both metabolic arms [2, 90, 155]. Indeed, the L-FoxO1 

mouse, completely lacking FoxO1 in hepatocytes, exhibits both decreased HGP and increased liver TG 

content, likely due to increased DNL and decreased FAO. Thus, in a reductionist sense, the phenotype of 

the L-FoxO1 mouse represents the inverse of the LIRKO mouse [202, 273, 274]; the pure IR of InsR 

deficiency could be wholly attributable to FoxO1 hyperactivity. Though oversimplified, the juxtaposition of 

L-FoxO1 and LIRKO models is salient in light of the demonstrated genetic epistasis between Foxo1 and 

Insr, Irs1/2, and Akt1/2 described in Chapter 1 [145, 166, 167]. Indeed, even in the model of acute, 

acquired IR via InsR antagonist treatment employed in this thesis reveals a close relationship between 

relative FoxO1 phosphorylation and the insulin responsiveness of GP and DNL (Fig. 3.2). 

These observations might lead one to redraw the typical diagram of the proximal InsR signaling 

cascade to include FoxO1 as well. Such a remodeling, however, may be a bit premature, for although 

FoxO1 represents a downstream bridge between the glucose and lipid arms, several caveats highlighted 

by this thesis currently imperil the crossing. As discussed in Chapter 1, insulin signaling regulates DNL 

both at the transcriptional and posttranslational levels. The effect of insulin to stimulate DNL in our 

experimental setup likely proceeds largely due to posttranslational effects alone, as lipogenic gene 

expression in mouse primary hepatocytes, including Srebf1c and Gck, is fairly unresponsive to insulin 

(see Section 5.3; Fig. 3.1E) [218, 226]. This explains, at least in part, why we generally see increases 

only of up to 70% in DNL in response to insulin in primary cells compared to the roughly fivefold increase 

in DNL due to re-feeding over a similar time period in vivo [253]. An exception may lie in the increased 

basal expression of Gck and Srebp1c following CHI treatment, consistent with the augmented basal DNL 

in CHI-treated cells (Fig. 3.1D-E); the normal insulin treatment in our DNL assays is for a fraction of the 

time and at one tenth of the dose of CHI treatment. Nevertheless, WTD feeding of wild-type mice (i.e., 
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driving CHI in vivo) results in constitutively increased Gck expression in liver with reduced fasting/feeding 

fluctuations. 

Unlike tampering with InsR function, dysregulation of FoxO1 does not appear to greatly impact 

upon normal regulation of DNL in isolated hepatocytes. CHI treatment, which results in a loss of insulin-

stimulated phosphorylation of FoxO1 and therefore unrestrained FoxO1 activity, was not associated with 

any defect in basal or insulin-stimulated DNL (Fig. 3.1A,D); in fact, both were higher following CHI 

treatment. Conversely, although in vivo studies indicate that loss of FoxO can enhance insulin-stimulated 

DNL [245], we find only a non-statistically significant ~35% increase in TG synthesis in L-FoxO1 primary 

hepatocytes compared to controls (Fig. 4.9G). Moreover, despite the higher baseline, L-FoxO1 (and L-

DBD) cells exhibit the same proportional DNL response to insulin as control cells. This implies that the 

posttranslational modifications activated by insulin treatment – and that appear to be part of what is 

paradoxically “preserved” in selective IR – are still operational in the absence of FoxO1. Thus, it appears 

that FoxO1’s major role in the regulation of DNL is at the transcriptional level, but that this comes into play 

mainly in the context of intact liver. The non-hepatocyte-autonomous nature of FoxO1’s transcriptional 

control of DNL is echoed by our observation that basal Gck expression is increased following CHI 

treatment (Fig. 3.1E), a time when FoxO1 activity is expected to be unrestrained (Fig. 3.1A). The slight 

increase in DNL in the absence of FoxO1 therefore likely reflects alterations that are cell autonomous, 

such as G6pc expression and/or even GP as a whole. Indeed, as discussed extensively in Chapter 4, we 

hypothesize that the discrepancy between in vivo and ex vivo hepatocellular lipid handling in the L-FoxO1 

mouse reflects on the nature of Gck vs. G6pc/GP regulation by insulin generally and FoxO1 in particular 

[253].  

Our understanding does remain incomplete, however, as liver-specific deletion of Akt2 decreases 

DNL and liver TG accumulation despite the expectation of increased FoxO1 activity [158]. Even 

simultaneous deletion of liver Foxo1, which on its own results in increased DNL and liver TG, does not 

overcome the decrease in DNL and liver TG content due to loss of Akt2 [158]. The decrease in DNL in the 

absence of hepatic Akt2 was proposed to be due in part to decreased activation of the mTORC1 à 

SREBP-1c pathway, but that this alone was not sufficient to explain the mouse’s phenotype [158]. Rather, 
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the authors of this study point to decreased Akt-mediated expression and phosphorylation of ATP citrate 

lyase (ACL) [158], an enzyme that participates in lipogenesis by facilitating the shuttling of acetyl-CoA 

from the mitochondrion to the cytosol [460]. 

The compendium of these data supports our hypothesis of a three-pronged control of hepatic 

lipogenesis by Akt (Fig. 5.1). First, as described in Chapter 1, insulin exerts posttranslational control over 

carbon trafficking through the hepatocyte, including via removal of phosphates placed by PKA and by Akt 

phosphorylation of ACL [158, 461, 462], among others. The inability to properly regulate these pathways 

in the absence of Akt2 may account for the aforementioned impairment in DNL [158]. We suspect that this 

pathway is largely responsible for insulin’s acute induction of DNL in primary hepatocytes and may be 

preserved in selective IR. Second, representing the now-classic pathway of transcriptionally controlled 

lipogenesis is stimulation of SREBP-1c cleavage and expression via Akt’s activation of mTORC1 and S6K 

[213, 215, 217, 218]. We believe that upregulation of this pathway underlies the increase in basal DNL we 

observe in CHI-treated primary hepatocytes and thus is also an important contributor to the phenotype of 

selective IR.  Finally, owing in large part to the work of Rebecca Haeusler [253], we now understand that 

Akt’s inhibition of FoxO facilitates DNL by reversing its dichotomous regulation of Gck and G6pc. This 

thesis extends our understanding of this process by indicating that the FoxO1 à ê Gck à ê DNL 

pathway is largely regulated by extrahepatic factors while the putative FoxO1 à é G6pc/GP à é DNL is 

intrinsic to the hepatocyte. Two of these mechanisms – posttranslational control of carbon flux and FoxO 

à Gck/G6pc – complement each other nicely in their ability to bridge the gap between insulin’s control of 

glucose and lipid metabolism at both the transcriptional level and beyond.  
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5.4. One Wonders 

Although the experiments presented in this thesis allow us new insights into hepatic insulin action and 

resistance, it brings up many more questions. Below are three of the more pressing issues and how we 

propose to test them. 

 

5.4.1. Acute vs. Chronic Effects of Insulin on GP and DNL 

We have proposed that selective IR operates both at the levels of acute and chronic insulin regulation of 

GP and DNL. Specifically, the former most likely proceeds via posttranslational modification of existing 

proteins while the latter hinges on de novo expression of new glucongeogenic/lipogenic enzymes. In 

order to test this hypothesis, we will treat hepatocytes with cycloheximide in order to inhibit new protein 

synthesis. We will then test the ability of insulin over the short term both to induce DNL and to inhibit GP. 

It is already known that the acute effect of glucagon on GP still proceeds even in the presence of 

cycloheximide [463], suggesting that the inhibition by insulin will be as well if it is merely a matter of 

reversing the acute effects of glucagon. We will also test the effect of cycloheximide on DNL in the setting 

of CHI treatment in order to assess whether the increase in basal Srebp1c and Gck expression are 

important in either increasing basal DNL or maintaining the acute insulin responsiveness of the process. 

Potential complication lies in our previous observation that cycloheximide treatment alone can increase 

basal Akt phosphorylation [247] and in an earlier report stating that cycloheximide treatment on its own 

can increase DNL in rats [464]. We will therefore be more concerned with the relative change (if any) with 

insulin compared to the cycloheximide/no insulin condition rather than compared to the vehicle/no insulin 

condition.  

 

5.4.2. FoxO1 Regulation of Gck Expression 

A key element of our proposed mechanism as to how FoxO1 mediates insulin’s effects on both lipid and 

glucose metabolism is its coordinate regulation of Gck and G6pc. In the case of the former, our new in 

vivo data suggest that Gck is at least partially a co-regulatory target of FoxO1. This possibility is not 

without precedent in the literature, as FoxO1’s regulation of Gck expression is mediated by interaction 
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with HNF-4α [179, 406]. We therefore are interested in directly testing whether FoxO1-DBD can indeed 

repress Gck expression. We have cloned the liver-specific Gck promoter into a luciferase vector and are 

currently performing reporter-gene experiments in isolated hepatocytes overexpressing FoxO1-WT and 

FoxO1-DBD. A determination that Gck is a bona fide co-regulatory target gene of FoxO1 would be a 

strong argument in favor of our model, as it would parallel the liver TG phenotype of L-DBD vs. L-FoxO1 

mice. We are also interested in pursuing co-immunoprecipitation experiments in order to determine the 

regulatory factors most important for FoxO1 regulation of Gck and other co-regulatory targets (e.g., 

Hsd3b5).  

 

5.4.3. Hepatocyte-Autonomous Regulation of FAO 

Our data provide evidence that insulin can regulate hepatocellular FAO at the transcriptional level through 

FoxO1 rather than only by affecting intracellular metabolite flux in the short term. Moreover, although FAO 

may be elevated in patients with hepatic IR or even NAFLD, the clinical approach to treatment of 

dyslipidemia includes treatment with fibrates, which act as PPARα agonists and thereby upregulate the 

FAO gene program to reduce steatosis and improve IR [465]. It is already well established that chronic 

treatment of primary hepatocytes with FFA induces IR [63, 466], but it is unclear whether the reverse 

holds. It would therefore be of interest to discern whether there is an alteration in FAO capacity in our 

hepatocyte model of CHI. We can test whether the selective IR of CHI affects FAO in the absence of 

confounding fluctuations in lipolysis, and then whether treatment of the cells with fenofibrate can reverse 

any adverse effects that arise. Studies have already demonstrated that treatment of primary hepatocytes 

with fibrates increases expression of genes not only involved in FAO per se but also those in glucose 

metabolism and various cell-stress responses [261, 467]. Indeed, the regulation of FAO in hepatocytes 

has been largely overlooked in favor of studying DNL, but it may well be an important contributor to the 

lipid phenotype of hepatic IR.  

 

 

 



 170 

5.5. Conclusion 

Type 2 diabetes and the metabolic syndrome are the great public-health crises of our day. Although we 

have learned much about their pathophysiology and treatment, even basic questions have remained. One 

of the most vexing of these has been the etiology of “selective” IR that contributes to the metabolic one-

two punch of excessive glucose production and hepatic steatosis. In this work, however, we have taken a 

step forward in unraveling this apparent paradox. Although important questions remain – especially 

regarding the relative importance of insulin’s acute vs. chronic regulation of glucose and lipid homeostasis 

in the liver – we now understand that FoxO1 biology can at least partially to bridge the gap. Discovering 

what will get us all the way across to the other side, however, is our goal for the future. 
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Section 5.6:  

CHAPTER 5 FIGURE 



 172 

 

 

Figure 5.1!

Figure 5.1. Three-Pronged Model of Insulin Action on DNL!
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