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Patch contribution to near-field radiative energy transfer and van der Waals pressure between
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Near-field effects in fluctuational electrodynamics leads to enhancement of radiative energy transfer as well
as the emergence of van der Waals and/or Casimir pressure. While much has been learned from the analysis of
near-field interactions between two half-spaces separated by a vacuum gap, we shed new light on the problem
by finding how much of a surface patch on one of the half-spaces contributes to the energy transfer or van der
Waals pressure at any location within the vacuum gap. We show that energy transfer and fluctuation-induced van
der Waals pressure at any point on the surface of one half-space are qualitatively and quantitatively different due
to the dissimilar zones of influence of interactions. We also show that the contributions from different surface
patches are qualitatively similar for half-spaces with dielectric materials (silica, silicon carbide) and half-spaces
with metals (gold).
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I. INTRODUCTION

Energy and momentum transfer via electromagnetic waves
due to zero-point and thermal fluctuations are best described by
Rytov’s theory of fluctuational electrodynamics [1,2]. Though
of common origin, the two phenomena are different in one
significant way: Finite thermal energy transfer is a thermal
nonequilibrium phenomenon, whereas van der Waals pressure
can exist irrespective of temperatures of the objects. In fact,
it is the equilibrium contribution to pressure that dominates
over thermal nonequilibrium contribution at small gaps [3].
Both energy and momentum transfer between parallel half-
spaces separated by a vacuum gap have been studied by many
researchers over the last seven decades [4–9]. The expressions
for thermal radiative and momentum transfer between two
half-spaces (as shown in Fig. 1) separated by a gap d can be
obtained as follows:

Q1→2 =
∫ ∞

0

dω

2π
�(ω,T1)T (e)

1→2(ω), (1a)

F1→2 =
∫ ∞

0

dω

2π
�(ω,T1)T (m)

1→2(ω), (1b)

where T
(e)

1→2 and T
(m)

1→2 are the generalized transmissivities
for energy [10,11] and momentum transfer [11]; Q1→2 and
F1→2 are the energy flow rate per unit area and pressure
(or momentum flow rate per unit area), respectively, on the
surface of half-space 2 due to fluctuational sources within half-
space 1; �(ω,T1) = (�ω/2) coth(�ω/2kBT1). 2π� is Planck’s
constant, kB is Boltzmann constant, and T1 is the temperature
of half-space 1. Expressions for T

(e)
1→2 and T

(m)
1→2 between two

parallel half-spaces separated by a vacuum gap are given
by [10,11]

T
(e)

1→2(ω) =
∑

μ=s,p

[∫ k0

0

kρdkρ

2π

(
1 − ∣∣R̃(μ)

v1

∣∣2)(1 − ∣∣R̃(μ)
v2

∣∣2)∣∣1 − R̃
(μ)
v1 R̃

(μ)
v2 ei2kzvd

∣∣2
+

∫ ∞

k0

kρdkρ

2π

4 Im
(
R̃

(μ)
v1

)
Im

(
R̃

(μ)
v2

)
e−2|kzv |d∣∣1 − R̃

(μ)
v1 R̃

(μ)
v2 e−2|kzv |d

∣∣2
]

, (2)
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T
(m)

1→2(ω) =
∑

μ=s,p

[
−

∫ k0

0

kρdkρ

2π

kzv

ω

(
1 − |R̃(μ)

v1 |2)(1 + ∣∣R̃(μ)
v2

∣∣2)∣∣1 − R̃
(μ)
v1 R̃

(μ)
v2 ei2kzvd

∣∣2
+

∫ ∞

k0

kρdkρ

2π

|kzv|
ω

4 Im
(
R̃

(μ)
v1

)
Re

(
R̃

(μ)
v2

)
e−2|kzv |d

|1 − R̃
(μ)
v1 R̃

(μ)
v2 e−2|kzv |d |2

]
,

(3)

where the integrals of the form
∫ k0

0 dkρf (kρ) and
∫ ∞
k0

dkρf (kρ)
correspond to contributions due to propagating and evanescent
waves, respectively, and the superscripts e and m stand for
energy and momentum transfer, respectively. k0 = ω/c, kρ is
the magnitude of the in-plane wave vector, kzv =

√
k2

0 − k2
ρ

is z-component wave vector in vacuum, d is the vacuum gap,
R̃

(μ)
vi is the generalized Fresnel reflection coefficient [12,13]

for μ-polarized plane waves at the interface between vacuum
and half-space i = 1,2, and superscript μ = s,p stands for
transverse electric and transverse magnetic polarizations,
respectively.

In what way are we adding anything new to this vast
amount of literature? First, we are not calculating only the
energy flux or van der Waals pressure at any point in the
vacuum gap. What we are calculating is the contribution to
the energy flux or van der Waals pressure at any location
on the surface of one half-space attributable to different
portions of the surface of the other half-space. The key
result of this work is encapsulated in Fig. 5. As we will
show, the calculation is by no means a trivial extension
of existing methods [3,14]. Second, for calculating van der
Waals pressure, we could no longer use Lifshitz’ elegant (and
better suited for computations) method of evaluating Green’s
functions at imaginary frequencies (Matsubara frequencies)
[15]. We have had to rely on computations along the real
frequency axis [14,16]. Third, we show that different portions
of a half-space contribute differently to energy flux and
van der Waals pressure at any location in the vacuum gap.

The structure of this paper is as follows: In Sec. II, we
use the fluctuational electrodynamics to express the electric
and magnetic field correlation functions in terms of surface
integrals of the dyadic Green’s functions. In Sec. III, we show
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FIG. 1. (Color online) A schematic diagram of surface patch
contribution between two half-spaces. The surfaces S1 and S2

correspond to the planes z = 0 and z = d . r̃ is the location with
coordinate (0,0,d). Radiative energy and momentum transfer are
evaluated at vector r̃ due to a surface patch of area ρdρdθ containing
the source vector r on S1.

how the contribution to energy flux and van der Waals pressure
at any point in the vacuum gap can be attributed to any patch on
the surface. In Sec. III A, we show how to achieve the surface
decomposition for energy flux and van der Waals pressure.
In Sec. III B, we give details of the computations along the
real frequency axis, especially important at high frequencies
because of the oscillations that occur in the contribution to
van der Waals pressure as a function of frequency as well as
position of the surface patch relative to the point at which
the van der Waals pressure is calculated. In Secs. III A–III B,
we assume that the half-spaces are made of silica in order
to elaborate our method. In Sec. IV, we calculate the partial
contributions to radiative transfer and pressure from different
portions of one half-space to any point in vacuum. We also
show that the contributions from different surface patches are
qualitatively similar for half-spaces with dielectric materials
(silica, silicon carbide) and half-spaces with metals (gold). For
all the materials in this work, optical data are taken from Palik
[17]. We summarize our work in Sec. V.

II. FLUCTUATIONAL ELECTRODYNAMICS AND
GREEN’S FUNCTION FORMALISM

Because our focus is on determining the energy transfer
rate and pressure at any point on one of the half-spaces due
to a part of the second half-space, we cannot use Eqs. (2) and
(3) directly. Consider the electric and magnetic fields E and H,
respectively, due to thermal sources within an object i (i = 1,2
for the configuration shown in Fig. 1). Since the electric and
magnetic fields are assumed to be stationary, 〈E(r̃,t)E(r̃,t)〉(i),
〈H(r̃,t)H(r̃,t)〉(i), and 〈E(r̃,t)H(r̃,t)〉(i) are independent of time
[18]. The superscript (i) is used to indicate that the field
correlation is due to fluctuations within object i. The equal time
correlation functions are related to the cross-spectral densities

by

〈Ep(r̃,t)Eq(r̃,t)〉(i)
s =

∫ ∞

0

dω

2π
〈Ep(r̃)E∗

q (r̃)〉(i)
s , (4a)

〈Hp(r̃,t)Hq(r̃,t)〉(i)
s =

∫ ∞

0

dω

2π
〈Hp(r̃)H ∗

q (r̃)〉(i)
s , (4b)

〈Ep(r̃,t)Hq(r̃,t)〉(i)
s =

∫ ∞

0

dω

2π
〈Ep(r̃)H ∗

q (r̃)〉(i)
s , (4c)

where the subscript s in Eqs. (4a)–(4c) implies a symmetric
sum. 〈·〉 denotes the ensemble average. In Eqs. (4a)–(4c),
though ω does not appear explicitly as an argument of Ep(r̃)
and Hp(r̃) (p = 1,2,3), they are ω dependent.

Using Rytov’s theory of fluctuational electrodynamics
[19,20], the cross-spectral densities of the components of the
electric and magnetic fields at r̃ in vacuum due to the thermal
sources within object i (i = 1,2), occupying volume Vi and
bounded by closed surface Si (if the objects are half-spaces, as
shown in Fig. 1, the surfaces are not closed surfaces), are [11]

〈E(r̃)E∗(r̃)〉(i)
s = 2ωμo�(ω,Ti)E

(i)
(r̃), (5a)

〈H(r̃)H∗(r̃)〉(i)
s = 2ωεo�(ω,Ti)H

(i)
(r̃), (5b)

〈E(r̃)H∗(r̃)〉(i)
s = �(ω,Ti)X

(i)
(r̃) , (5c)

where E
(i)

(r̃), H
(i)

(r̃), and X
(i)

(r̃) are given by

E
(i)

(r̃) = 2 Im
∮

Si

[μ(r)G
T

e (r,r̃)]∗ · [ni(r) × GE(r,r̃)]ds(r),

(6a)

H
(i)

(r̃) = 2 Im
∮

Si

[
ε(r)G

T

m(r,r̃)
]∗ · [ni(r) × GM (r,r̃)]ds(r),

(6b)

X
(i)

(r̃) = −
∮

Si

{
G

T

E (r,r̃) · [ni(r) × G
∗
M (r,r̃)] + ω2

c2

×μ(r)G
T

e (r,r̃) · [ni(r) × ε(r)Gm(r,r̃)]∗
}

ds(r),

(6c)

where ni(r) is the outward pointing unit normal vector at r ∈
Si , Ge(r,r̃) and Gm(r,r̃) are electromagnetic dyadic Green’s
functions (DGFs) of the vector Helmholtz equation [21,22],

and GE(r,r̃) = ∇ × Ge(r,r̃), GM (r,r̃) = ∇ × Gm(r,r̃). The
∇× operation is done on the position vector r. From Eq. (6c),
the normal component of the Poynting vector at a location r̃
on the surface of object 2 due to the thermal sources on the
surface of object 1 is given by [11]

Q1→2(r̃) =
∫ ∞

0

dω

2π
�(ω,T1)

∮
S1

ds(r)S(e)
1→2(r̃,r,ω), (7)

where S
(e)
1→2(r̃,r,ω) is given by

S
(e)
1→2(r̃,r,ω) = 2 Re Tr

[
ω2

c2
[n1(r) × μ(r)Ge(r,r̃)]

·[n2(r̃) × ε(r̃)Gm(r̃,r)]∗ + [n1(r) × GE(r,r̃)]

· [n2(r̃) × GE(r̃,r)]∗
]

. (8)
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In Eq. (8), the vectors n1(r) and n2(r̃) are outward pointing
unit normal vectors at r and r̃ on the surfaces of objects 1 and
2, respectively. Re stands for “real part” and the operator Tr
denotes “trace.”

van der Waals pressure in vacuum can be determined from
the Maxwell stress tensor [15,23], σ = σ

e + σ
m

, where σ
e

and σ
m

are the electric and magnetic field contributions,
respectively. σ

e
and σ

m
are given by

σ
e
(r̃) = εo

[〈E(r̃,t)E(r̃,t)〉 − 1
2I 〈E2(r̃,t)〉], (9a)

σ
m

(r̃) = μo

[〈H(r̃,t)H(r̃,t)〉 − 1
2I 〈H2(r̃,t)〉]. (9b)

The traction at a location r̃ on the surface of object 2 can
be obtained by evaluating n(r̃) · [σ

e
(r̃) + σ

m
(r̃)]. The normal

component of the traction at r̃ is given by

F1→2(r̃) = n2(r̃) · [σ
e
(r̃) + σ

m
(r̃)] · n2(r̃)

=
∫ ∞

0

dω

2π

2ω

c2
�(ω,T1)

∮
S1

ds(r)S(m)
1→2(r̃,r,ω), (10)

where
∮
S1

ds(r)S(m)
1→2(r̃,r,ω) is given by

∮
S1

ds(r)S(m)
1→2(r̃,r,ω) = n2(r̃) · E (1)

(r̃) · n2(r̃) − E (1)
pp (r̃)

2

+ n2(r̃) · H(1)
(r̃) · n2(r̃) − H(1)

pp(r̃)

2

(11)

and E (1)
pp (r̃) = Tr E

(1)
(r̃). For the case of two half-spaces, the

contribution to van der Waals pressure at any location on the
surface of half-space 2 due to half-space 1 can be calculated by

putting n2(r̃) = −ẑ. The term n2(r̃) · E (1)
(r̃) · n2(r̃) − 1

2E (1)
pp (r̃)

is then − 1
2 (E (1)

xx + E (1)
yy − E (1)

zz ), where the x and y axes are in the
plane of the interface and the z axis is out of plane (see Fig. 1).

Similarly, the other term n2(r̃) · H(1)
(r̃) · n2(r̃) − 1

2H(1)
pp(r̃) =

− 1
2 (H(1)

xx + H(1)
yy − H(1)

zz ).
The dyadic Green’s functions in Eq. (8) and those required

to evaluate Eq. (10) for a planar multilayered configuration

are given by Ge(r,r̃) = G
(o)

(r,r̃) + G
(sc)

e (r,r̃) and Gm(r,r̃) =
G

(o)
(r,r̃) + G

(sc)

m (r,r̃), where G
(o)

(r,r̃), the DGF in a
homogeneous medium, is given by [11,24]

G
(o)

(r,r̃)

= i

8π2

∫ ∞

0

∫ 2π

0

dkρkρdφ

kzv

eikρ ·(ρ−ρ̃)

×
∑

μ=s,p

{
x̂(μ)(+kzv)x̂(μ)(+kzv)ei(z−z̃)kzv if z > z̃

x̂(μ)(−kzv)x̂(μ)(−kzv)ei(z̃−z)kzv if z < z̃,

(12)

and the scattered DGFs G
(sc)

e (r,r̃) and G
(sc)

m (r,r̃) are given by

G
(sc)

e (r,r̃) = i

8π2

∫ ∞

0

∫ 2π

0

dkρkρdφ

kzv

∑
μ=s,p

eikρ ·(ρ−ρ̃)

D̃(μ)

×
∑
ν=±1

∑
ξ=±1

C
(μ)
ν,ξ x̂

(μ)(νkzv)x̂(μ)(ξkzv)ei(νz−ξ z̃)kzv ,

(13)

G
(sc)

m (r,r̃) = i

8π2

∫ ∞

0

∫ 2π

0

dkρkρdφ

kzv

∑
μ=s,p

eikρ ·(ρ−ρ̃)

D̃(μ′)

×
∑
ν=±1

∑
ξ=±1

C
(μ′)
ν,ξ x̂(μ)(νkzv)x̂(μ)(ξkzv)ei(νz−ξ z̃)kzv ,

(14)

where ρ = xx̂ + yŷ, ρ̃ = x̃x̂ + ỹŷ, kρ = kρk̂ρ = kxx̂ +
kyŷ, x̂(s)(±kzv) = k̂ρ × ẑ = (kyx̂ − kxŷ)/kρ , x̂(p)(±kzv) =
(∓kzvk̂ρ + kρẑ)/k0, μ′ = p if μ = s and μ′ = s if μ = p,
and D̃(μ) = 1 − R̃

(μ)
v1 R̃

(μ)
v2 ei2kzvd and

C
(μ)
ν,ξ =

⎧⎪⎨⎪⎩
R̃

(μ)
v1 if ν = 1, ξ = −1

R̃
(μ)
v2 ei2kzvd if ν = −1, ξ = 1

R̃
(μ)
v1 R̃

(μ)
v2 ei2kzvd if ν = ξ.

(15)

The position vectors r = ρ and r̃ = ρ̃ + dẑ lie on the interfaces
of half-spaces 1 and 2 with vacuum, respectively.

III. DECOMPOSITION INTO SURFACE CONTRIBUTIONS

We can give the following physical interpretations
to S

(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω): S

(e)
1→2(r̃,r,ω)ds(r)dω and

S
(m)
1→2(r̃,r,ω)ds(r)dω are the contributions to energy flow rate

per unit surface area and pressure, respectively, at r̃ from
a patch of area ds(r) at the position vector r ∈ S1 from
the frequency interval (ω,ω + dω). In reality, the sources
for these interactions are spread throughout half-space 1 but
the effect of these sources at r̃ can be decomposed into
contributions from the surface of half-space 1. In Ref. [11],
the authors have derived expressions for radiative energy
and momentum transfer between two objects in terms of
volume integrals and corresponding surface integrals of dyadic
Green’s function of the vector Helmholtz equation (satisfying
appropriate boundary conditions). One of the advantages of
using the surface integral formalism is the potential reduction
in computational cost from a three-dimensional domain to two
dimensions.

Without loss of generality, r̃ will be chosen such that it lies
on the z axis. The origin of the coordinate system is chosen to
lie on the surface of half-plane 1. Hence the coordinate of r̃ is
(0,0,d). Since the configuration has translational symmetry
in the x-y plane, the contributions to the energy transfer
rate and pressure at r̃ are axisymmetric. Hence, we choose
r = ρ cos θx̂ + ρ sin θŷ, as shown in Fig. 1, where ρ and θ

are coordinates of r in plane polar coordinates. ds(r) has a
magnitude ρdρdθ . The in-plane wave vector kρ is defined as
kρ = kρ(x̂ cos φ + ŷ sin φ).
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From the expressions for the DGFs in Eqs. (12)–(14), we
can see that computing S

(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω) will

involve integrals of the following form:[∫ ∞

0

∫ 2π

0

dkρkρdφ

kzv

eikρ ·ρf (kzv)x̂(μ)(νkzv)x̂(μ)(ξkzv)

]∗

·
[∫ ∞

0

∫ 2π

0

dk̄ρ k̄ρdφ̄

k̄zv

ei k̄ρ ·ρg(k̄zv)x̂(μ̄)(ν̄k̄zv)x̂(μ̄)(ξ̄ k̄zv)

]
.

(16)

In Eq. (16), the functions f (kzv) and g(k̄zv) are
functions of the reflection coefficients as well as
the gap between the two half-spaces. The vectors
x̂(μ)(νkzv), x̂(μ)(ξkzv), x̂(μ̄)(ν̄k̄zv), and x̂(μ̄)(ξ̄ k̄zv), defined
after Eq. (14), could be functions of φ or φ̄ too. It should
also be kept in mind that dot products of vectors associated
with different polarizations could arise (when μ �= μ̄). This
is not surprising since we are, at this stage, considering the
interactions between parts of the two half-spaces. When
this result is integrated appropriately from ρ = 0 to ρ = ∞,
the dot products between cross polarizations drop out to
give results similar to Eq. (2) or Eq. (3). The calculations
of S

(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω) involve computing the

trace of a dyad [Eq. (8)] or finding − 1
2 (E (1)

xx + E (1)
yy − E (1)

zz

and − 1
2H(1)

xx + H(1)
yy − H(1)

zz ). Because of these operations,

S
(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω) can be written in the

form

S
(α)
1→2(r̃,r,ω)

=
∫ ∞

0

∫ 2π

0

dkρkρdφ

k∗
zv

∫ ∞

0

∫ 2π

0

dk̄ρ k̄ρdφ̄

k̄zv

ei(kρ−k̄ρ )·ρ

×
[(

kxk̄x ± kyk̄y

kρk̄ρ

)2

[· · · ] +
(

kxk̄x + kyk̄y

kρk̄ρ

)
[· · · ]

]
,

(17)

where α = e,m, and the coordinates of r̃ and r are (0,0,d)
and (ρ cos θ,ρ sin θ,0), respectively. The terms within [· · · ]
denote products of different f (kzv) and g(k̄zv) functions. It is
important to keep in mind that the terms represented as [· · · ]
are functions of only kρ,k̄ρ and not of φ or φ̄.

Since kρ = kρ(x̂ cos φ + ŷ sin φ) and k̄ρ = k̄ρ(x̂ cos φ̄ +
ŷ sin φ̄), we can write

kxk̄x + kyk̄y

kρk̄ρ

= cos(φ − φ̄), (18a)

kxk̄x − kyk̄y

kρk̄ρ

= sin(φ − φ̄), (18b)

(
kxk̄x ± kyk̄y

kρk̄ρ

)2

= 1

2
[1 ± cos 2(φ − φ̄)]. (18c)

Using the relation Jn(x) = i−n

2π

∫ 2π

0 dφei(x cos φ+nφ), the inte-
gration over φ or φ̄ in Eq. (17) yields the following relations:∫ 2π

0

∫ 2π

0
dφdφ̄ei(kρ−k̄ρ )·ρ [1 ± cos 2(φ − φ̄)

]
= 4π2

[
J0(kρρ)J0(k̄ρρ) ± J2(kρρ)J2(k̄ρρ)

]
, (19a)∫ 2π

0

∫ 2π

0
dφdφ̄ei(kρ−k̄ρ )·ρ cos(φ − φ̄) = 4π2J1(kρρ)J1(k̄ρρ).

(19b)

The position vector r now appears only in the argument of the
Bessel functions as ρ in Eqs. (19a) and (19b). By using the
identity∫ ∞

0
dρρJn(kρρ)Jn(k̄ρρ) = 1

kρk̄ρ

δ(kρ − k̄ρ), (20)

we have shown that integration of S
(e)
1→2(r̃,r,ω) and

(2ω/c2)S(m)
1→2(r̃,r,ω) over S1 yield exactly the same results

as Eqs. (2) and (3), respectively.
In order to simplify the terms within [· · · ] in Eq. (17), we

define a general form of the integral over qρ as

I
a,b,(μ)
n,±± =

∫ ∞

0
dqρq

a
ρqb

zvJn(qρk0ρ)eiqzvk0d (1 + f
(μ)
±±), (21a)

I
a,b,(μ)
n,±∓ =

∫ ∞

0
dqρq

a
ρqb

zvJn(qρk0ρ)eiqzvk0d (1 + f
(μ)
±∓), (21b)

where qρ = kρ/k0 is a nondimensionalized in-plane wave
vector, qzv = kzv/k0 is the nondimensionalized z-component
wave vector, 1 + f

(μ)
±± = (1 ± R̃

(μ)
v1 )(1 ± R̃

(μ)
v2 )/D̃(μ),

1 + f
(μ)
±∓ = (1 ± R̃

(μ)
v1 )(1 ∓ R̃

(μ)
v2 )/D̃(μ), and D̃(μ) =

1 − R̃
(μ)
v1 R̃

(μ)
v2 ei2qzvk0d . The functions f

(μ)
±± and f

(μ)
±∓ are

given by

f
(μ)
±± = ±R̃

(μ)
v1 ± R̃

(μ)
v2 + R̃

(μ)
v1 R̃

(μ)
v2 (1 + ei2qzvk0d )

D̃(μ)
, (22a)

f
(μ)
±∓ = ±R̃

(μ)
v1 ∓ R̃

(μ)
v2 − R̃

(μ)
v1 R̃

(μ)
v2 (1 − ei2qzvk0d )

D̃(μ)
. (22b)

By substituting the definitions from Eqs. (21)
into Eq. (8), we obtain the following equation for
S

(e)
1→2(r̃,r,ω):

S
(e)
1→2(r̃,r,ω) = k4

0Re
∑

μ=s,p

[
I

1,−1,(μ)∗
0,++

[
I

1,1,(μ)
0,−− + I

1,1,(μ′)
0,++

] + I
1,0,(μ)∗
0,+−

[
I

1,0,(μ)
0,−+ + I

1,0,(μ′)
0,+−

]
+ I

1,−1,(μ)∗
2,++

[
I

1,1,(μ)
2,−− − I

1,1,(μ′)
2,++

] + I
1,0,(μ)∗
2,+−

[
I

1,0,(μ)
2,−+ − I

1,0,(μ′)
2,+−

]]
, (23)

where μ′ = p if μ = s and μ′ = s if μ = p.
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Similarly, by substituting the definitions from Eqs. (21) into Eq. (10), we obtain the following equation for S
(m)
1→2(r̃,r,ω):

S
(m)
1→2(r̃,r,ω) = k3

0Re
∑

μ=s,p

[
I

1,−1,(μ)∗
0,++

[
I

1,0,(μ)
0,+− + I

1,0,(μ′)
0,−+

] + I
1,1,(μ)∗
0,−−

[
I

1,0,(μ)
0,−+ + I

1,0,(μ′)
0,+−

]
+ I

1,−1,(μ)∗
2,++

[
I

1,0,(μ)
2,+− − I

1,0,(μ′)
2,−+

] + I
1,1,(μ)∗
2,−−

[
I

1,0,(μ)
2,−+ − I

1,0,(μ′)
2,+−

] − 2I
2,−1,(μ)∗
1,++ I

2,0,(μ)
1,+−

]
, (24)

where μ′ = p if μ = s and μ′ = s if μ = p.

A. Evaluating S(e)
1→2(r̃,r,ω) and S(m)

1→2(r̃,r,ω)

To calculate S
(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω), we take

the two half-spaces to be silica. The real and imagi-
nary parts of the dielectric function of silica [17] are
shown in Fig. 2(a). We plot the spectral contributions
of radiative energy transfer and van der Waals pres-
sure in Fig. 2(b),

∮
S1

ds(r)S(e)
1→2(r̃,r,ω) = T

(e)
1→2(ω) and

2ω
c2

∮
S1

ds(r)S(m)
1→2(r̃,r,ω) = T

(m)
1→2(ω), using Eqs. (2) and (3),

respectively, in order to identify frequency intervals of interest
in evaluation of S

(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω). The calcula-

tions are done for d = 10 nm, T1 = 300 K, and T2 = 0 K.
We can see from Fig. 2(b) that T

(e)
1→2(ω) has contributions

from lower frequencies compared to T
(m)

1→2(ω). This is because
only temperature dependent fluctuations give rise to net
radiative energy transfer, whereas van der Waals pressure at
any location has contributions from zero-point fluctuations
as well [25]. For far-field thermal radiation, approximately
97% of the total energy transfer lies in 1

5
2πc
λT

� ω � 5 2πc
λT

,

where λT = 1.27 �c
kBT

is wavelength corresponding to the peak
of the blackbody spectrum [26]. The contribution to van
der Waals pressure is skewed towards the ultraviolet portion
of the electromagnetic spectrum because of the zero-point
fluctations. Using ωc = 2 × 1016 rad/s and ωc = 2πc/λT as
the characteristic frequencies for van der Waals pressure and
energy transfer, respectively, we see that a nondimensional size

FIG. 2. (Color online) (a) Real and imaginary parts of dielectric
function of silica. (b) Spectral contributions of radiative energy
transfer (dashed line) and van der Waals pressure (solid line). Because
of the logarithmic x axis, we have plotted ω ln(10)T (α)

1→2 (α = e,m)
so that the area under the plotted graph is proportional to the integral
of T

(α)
1→2.

parameter, defined as ωcd/c is �0.6 for van der Waals pressure
and ≈0.006 for energy transfer. Hence, the computation for
van der Waals pressure is expected to be much tougher than
for energy transfer.

S
(e)
1→2(r̃,r,ω) is evaluated directly by computing Eq. (23).

To compute S
(m)
1→2(r̃,r,ω), we split it into two parts. We write

S
(m)
1→2(r̃,r,ω) = S

(m)h
1→2(r̃,r,ω) + S

(m)sc
1→2 (r̃,r,ω). S

(m)h
1→2(r̃,r,ω) is

the contribution to S
(m)
1→2(r̃,r,ω) when the half-spaces are

replaced by vacuum. S
(m)sc
1→2 (r̃,r,ω) contains the effect of

reflections at the interfaces between vacuum and half-spaces
as well as the d-dependent part of S

(m)
1→2(r̃,r,ω). S

(m)sc
1→2 (r̃,r,ω)

can be written as

S
(m)sc
1→2 (r̃,r,ω)

= k3
0Re

[
2

∑
μ=s,p

[(
I

1,−1
0 + I

1,1
0

)∗
X

(μ)
0 + (

I
1,−1
2 − I

1,1
2

)∗
Z

(μ)
2

+ I
1,0∗
0 Y

(μ)
0 − I

2,0∗
1 V

(μ)
1 − I

2,−1∗
1 U

(μ)
1 − U

(μ)∗
1 V

(μ)
1

]
+ (

X
(s)
0 + X

(p)
0

)∗(
Y

(s)
0 + Y

(p)
0

)
+ (

X
(s)
2 − X

(p)
2

)∗(
Y

(s)
2 − Y

(p)
2

)]
, (25)

where I a,b
n are the functions with homogeneous contributions,

given by [27]

I
1,−1
0 = −i

eik0R

k0R
, (26a)

I
1,0
0 = −i

eik0R

k0R

(
1 + i

k0R

)
d

R
, (26b)

I
1,1
0 = −i

eik0R

k0R

[
d2

R2

(
1 + i3

k0R
− 3

k2
0R

2

)
− i

k0R

(
1 + i

k0R

)]
, (26c)

I
1,−1
2 = 2

k2
0ρ

2
(eik0d − eik0R) + i

eik0R

k0R
, (26d)

I
1,0
2 = 2

k2
0ρ

2

(
eik0d − d

R
eik0R

)
+ i

eik0R

k0R

(
1 + i

k0R

)
d

R
,

(26e)

I
1,1
2 = 2

k2
0ρ

2
(eik0d − eik0R) + i

eik0R

k0R

×
[
− i3

k0R
+ 3

k2
0R

2
+ d2

R2

(
1 + i3

k0R
− 3

k2
0R

2

)]
,

(26f)
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I
2,0
1 = −eik0R

k0R

(
1 + i3

k0R
− 3

k2
0R

2

)
ρ

R

d

R
, (26g)

I
2,−1
1 = −eik0R

k0R

(
1 + i

k0R

)
ρ

R
(26h)

and the functions with scattering parts are given by

X(μ)
n =

∫ ∞

0
dqρqρJn(qρk0ρ)eiqzvk0d

(
f

(μ)
+− + f

(μ)
−+

2

)
,(27a)

Y (μ)
n =

∫ ∞

0
dqρ

qρ

qzv

Jn(qρk0ρ)eiqzvk0d
(
f

(μ)
++ + q2

zvf
(μ)
−−

)
,

(27b)

Z(μ)
n =

∫ ∞

0
dqρqρJn(qρk0ρ)eiqzvk0d (f (μ)

+− − f
(μ)
−+), (27c)

U (μ)
n =

∫ ∞

0
dqρq

2
ρJn(qρk0ρ)eiqzvk0df

(μ)
+−, (27d)

V (μ)
n =

∫ ∞

0
dqρ

q2
ρ

qzv

Jn(qρk0ρ)eiqzvk0df
(μ)
++. (27e)

In Eq. (26), R = |r − r̃| =
√

ρ2 + d2 is the distance between
vectors r and r̃.

To determine S
(m)h
1→2(r̃,r,ω), we evaluate S

(m)
1→2(r̃,r,ω)

[Eq. (24)] when R̃
(μ)
v1 = R̃

(μ)
v2 = 0. Substituting Eqs. (26a)–

(26h) into Eq. (24), we get S
(m)h
1→2(r̃,r,ω) to be

S
(m)h
1→2(r̃,r,ω) = 8k0

R2

d3

R3
. (28)

Though S
(m)h
1→2(r̃,r,ω) is dependent on d and ρ, we can evaluate

the contribution from the whole of S1 to give∮
S1

ds(r)S(m)h
1→2(r̃,r,ω) = 2π

∫ ∞

0
dρρ

8k0

R2

d3

R3
= 16

3
πk0.

(29)

As expected, integration of the homogeneous part S(m)h
1→2(r̃,r,ω)

over the entire surface S1 is independent of the spacing between
the two half-spaces [28].

B. Stationary phase method for computing
high frequency integrals

Equations (27a)–(27e) are one-dimensional integrals and
are computed numerically using adaptive quadrature (we
used the SciPy function quad for numerical integration).
However, the oscillations at higher frequencies render this
method unreliable. To overcome this problem, we use the
stationary phase method for frequencies such that k0d � 1
or k0ρ � 1. The basic idea of the stationary phase method
is that if the integrand is rapidly oscillating about a mean
value of 0, the contribution to the integration is small because
of the cancellation of the positive and negative parts of
the integrands. Therefore, most of the contribution to the
integral is from the neighborhood of point qρs at which the
oscillations are least. This point qρs is called the stationary
phase point [12,29] (the subscript s indicates that at qρs ,
the integrand attains a stationary phase). The integrals of the
form

∫ ∞
0 dqρqa

ρqb
zvJn(qρk0ρ)eiqzvk0df (qρ) can be rewritten as

FIG. 3. (Color online) (a) Comparison of calculated van der
Waals pressure contribution from one half-space to the other located
10 nm away by two methods: (1) direct integration over entire
surface of half-space [using Eq. (3)] and (2) computing contribution
from each ρ and subsequent integration from ρ = 0 to ρ = ∞. The
legend “quad + SPM” stands for numerical integration using adaptive
quadrature for k0R � 200 and the stationary phase method for k0R �
200. As in Fig. 2, we are plotting ω ln(10)T (m)

1→2 (continuous line) and
2ω2

c2 ln(10)
∮

S1
ds(r)S(m)

1→2(r̃,r,ω) (circular markers), respectively. (b)
Relative error between the two methods.

∫ ∞
−∞ dqρq

a
ρqb

zv
1
2H (1)

n (qρk0ρ)eiqzvk0df (qρ), where f (qρ) can be
any even function of qρ , as are any of the corresponding
functions that appear in Eqs. (27a)–(27e). When k0ρ � n,
we can use the following limiting form for Hankel functions
of the first kind (see Secs. 2.5 and 2.6 in Ref. [12]):

H (1)
n (qρk0ρ) ≈

√
2

πqρk0ρ
exp

[
i
(
qρk0ρ − nπ

2
− π

4

)]
.

(30)

Using Eq. (30), we can see that the oscillations of the
integrands in Eqs. (27a)–(27e) originate from the term
exp[i(qρk0ρ + qzvk0d)]. Here, the integration is in the form
like Eq. (21). The stationary phase point qρs is calculated by
setting d

dqρ
(qρρ + qzvd) = 0. Hence qρs = ρ√

ρ2+d2
= ρ

R
⇒

qzvs = d
R

. The stationary phase method approximation of an
integral as k0R � 1 can then be shown to be∫ ∞

0
dqρq

a
ρqb

zvJn(qρk0ρ)eiqzvk0df (qρ) ≈ I a,b
n f (qρs), (31)

where explicit forms for I a,b
n are given in Eqs. (26), and

function f (qρs) is evaluated at stationary phase point.
To determine the accuracy of our computational method, we

calculate 2ω
c2

∮
S1

ds(r)S(m)
1→2(r̃,r,ω) for d = 10 nm and compare

it with direct computation of T
(m)

1→2(ω) through Eq. (3) [contin-
uous line in Fig. 3(a) is from Eq. (3)]. As shown in Fig. 3(a), the
spectral contributions to van der Waals pressure from surface
patches are obtained by evaluating two integrations over qρ

at each ρ and over ρ in that order. Since direct numerical
integration over qρ is not reliable at either high frequencies or
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large values of k0R, we choose a value N such that we use the
stationary phase method for k0R � N and use direct numercial
(adaptive) integration only for smaller frequencies. We then
use adaptive integration from ρmin = 0.001d to ρmax = 100d

to retrieve 2π
∫ ρmax

ρmin
dρρS

(α)
1→2(r̃,r,ω) ≈ ∮

S1
ds(r)S(α)

1→2(r̃,r,ω)
(α = e,m) for each frequency. To generate the results in Fig. 3,
N is set to be 200. The relative error between the evaluation of
2ω
c2

∮
S1

ds(r)S(m)
1→2(r̃,r,ω) and computation of T

(m)
1→2(ω) through

Eq. (3), as shown in Fig. 3(b), is �1.4% for 1016 � ω � 1018

rad/s. We observed that a smaller value of N reduces the
computation time but also increases the error.

To further determine the accuracy of our computational
procedure, we calculate the total energy flux and van der
Waals pressure at r̃ by (1) integrating contributions from
different surface patches, and (2) direct integration of Eq. (2)
or Eq. (3) along the real frequency axis [11,30]. Since we are
evaluating the contribution from only one of the two (identical
in properties) half-spaces, the van der Waals pressure at any
location in the vacuum gap is half the value of equilibrium
van der Waals pressure between the two half-spaces [30].
Hence, we also evaluate van der Waals pressure by Lifshitz
theory, which involves summation of appropriate functions
evaluated at Masubara frequencies on the imaginary frequency
axis [15]. Each calculation of the total contributions from
surface patches to energy flux and van der Waals pressure
between two half-spaces requires one more integration over
frequency ω besides the integrations over qρ and ρ, which
have been solved for generating Fig. 3. We finally evaluate∫ ωmax

ωmin
dω

∮
S1

ds(r)S(α)
1→2(r̃,r,ω) at equally spaced frequencies

with ωmin = 1013 rad/s and ωmax = 1015 rad/s for energy flux
(α = e), and with ωmin = 1015 rad/s and ωmax = 1018 rad/s for
van der Waals pressure (α = m). For ω � 6 × 1016 rad/s, the
choice of numerical integration over qρ or the stationary phase
method is based on the magnitude of k0R. For the computation
of van der Waals pressure along the real frequency axis, the
spacing, �ω, between successive frequencies at which the
integrand is evaluated is given by �ω = πc/Md, where M

is the number of frequencies per oscillation period of 2π

and is set to be 10. The results are shown in Fig. 4. The
relative error of calculating the van der Waals pressure between
evaluation of Eq. (3) along the real frequency axis and Lifshitz
theory calculation along the imaginary axis is ≈0.8%. The
relative error between the method of surface decomposition
and evaluation of Eq. (2) (for energy) or Eq. (3) (for pressure)
are ≈0.2% and ≈1.1% for energy flux and van der Waals
pressure between two half-spaces, respectively.

IV. ZONES OF INFLUENCE FOR ENERGY TRANSFER
AND VAN DER WAALS PRESSURE

Having ascertained the accuracy of our computation of
S

(e)
1→2(r̃,r,ω) and S

(m)
1→2(r̃,r,ω) (by two measures), we now

determine the contribution to energy flux and van der Waals
pressure at r̃ from a disk of radius ρ [see Fig. 5(a)]. Keep
in mind that the coordinate of r̃ is (0,0,d). We should stress
that the interaction from the disk of radius ρ comes from
thermal sources distributed all over half-space 1. Because
of axisymmetry, the contributions to energy and momentum
transfer from all points within a circular ring of radius ρ and

FIG. 4. (Color online) Variation of energy flux (continuous line,
evaluating integral in Eq. (2); downward triangle marker, integration
of surface patch contributions) and van der Waals pressure (dashed
line, evaluating integral in Eq. (3); square marker, calculation
according to Lifshitz method using Matsubara frequencies; upward
triangle marker, integration of surface patch contributions) between
two half-spaces.

thickness dρ are identical. Instead of plotting S
(α)
1→2(r̃,r,ω)

(α = e,m), we plot the fraction of total energy flux (or
van der Waals pressure) from a disk of radius ρ on the surface
of half-space 1, i.e.,

p(e)(ρ,d) =
∫ ∞

0 dω�(ω,T1)
∫ ρ

0 dρ ′ρ ′S(e)
1→2(r̃,r,ω)∫ ∞

0 dω�(ω,T1)
∫ ∞

0 dρ ′ρ ′S(e)
1→2(r̃,r,ω)

, (32a)

p(m)(ρ,d) =
∫ ∞

0 dωω�(ω,T1)
∫ ρ

0 dρ ′ρ ′S(m)
1→2(r̃,r,ω)∫ ∞

0 dωω�(ω,T1)
∫ ∞

0 dρ ′ρ ′S(m)
1→2(r̃,r,ω)

. (32b)

In Figs. 5(b)–5(d), we plot p(e)(ρ,d) and p(m)(ρ,d) as a
function of ρ/d for d = 10 nm and d = 100 nm between two
half-spaces with silica, silicon carbide and gold, respectively.
The two curves show differences which reflect the differences
between energy transfer and van der Waals pressure. Since
energy transfer always takes place from higher to lower
temperatures, all portions of S1 contribute positively to the
total energy transfer [as the curves with triangle markers
show in Figs. 5(b)–5(d)]. Hence, p(e)(ρ,d) is a monotonically
increasing function of ρ. Clearly, momentum transfer has no
such restrictions and one part of S1 contributes an attractive
pressure at r̃ while the rest contributes a repulsive pressure
[31,32], even though the total van der Waals pressure is
attractive. There are three findings: (1) it can be seen clearly
that some portions of the surface contribute to a repulsive
pressure—the contributions of the region ρ � 3d of S1

for silica [as the curves with circular and square markers
show in Fig. 5(b)], the region ρ � 2d for silicon carbide
[Fig. 5(c)], and the region ρ � 5d for gold [Fig. 5(d)], to
van der Waals pressure are repulsive; (2) to make up for the
repulsive contributions from certain regions, van der Waals
pressure from other parts of the surface has to be greater than
the total pressure between two half-spaces; and (3) for the
materials studied here, the extent of the surface required to
reach 90% (or any value close to 100%) of total pressure is less
than that required to capture the same fraction of total energy
transfer. Since the dependence of radiative energy transfer
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0 ρ

d

1

2

0 ρ

d

1

2

van der Waals pressure, d =100 nm
van der Waals pressure, d =10 nm

van der Waals pressure, d =100 nm
van der Waals pressure, d =10 nm

van der Waals pressure, d =100 nm

van der Waals pressure, d =10 nm

Energy transfer, 
d =10 nm and 100 nm

Energy transfer, 
d =10 nm and 100 nm

Energy transfer, 
d =10 nm and 100 nm

FIG. 5. (Color online) Cumulative partial contributions to energy
and momentum transfer from a disk of radius ρ from 0 to 100d . (a)
Axisymmetric cross section of two half-planes with a circular disk
of radius ρ highlighted as the thicker portion of surface S1. Thermal
sources are distributed throughout the bottom half-space. (b) Silica:
cumulative contribution curves as a function of nondimensional frac-
tion ρ/d to radiative energy (with triangle markers) and momentum
transfer (with circular or square markers) between two half-spaces.
d = 10 and 100 nm. In the inset, the same curves are shown on a
logarithmic x scale. (c) Silicon carbide. (d) Gold.

or van der Waals pressure between half-spaces is taken to
be the basic result from which the rate of energy transfer
or pressure between two curved surfaces is computed by the
proximity approximation [33–36], the results presented here
seem to indicate that a proximity-like approximation might be
more valid for van der Waals and/or Casimir pressure than for
radiative energy transfer.

It is worth noting that the cumulative partial contributions
to radiative energy and momentum transfer as shown in
Fig. 5 are qualitatively similar for both dielectric materials
(silica and silicon carbide) and metals (gold), though their
optical properties can be significantly different [17]. This is
not to say that the magnitudes are similar. In particular, the
radiative energy transfer at any gap between silica and silicon
carbide half-spaces exceeds that between gold half-spaces
considerably [26,28]. It is well known that the surface phonon
polaritons, which are excited at 0.061 and 0.142 eV for silica
and at 0.117 eV for silicon carbide, can enhance the near-field
radiative transfer [37,38], in-plane thermal conductivity of
thin films [39], and the optical force in nanostructures [40].
Unlike silica or silicon carbide, a half-space of a metal such as
gold is a near-perfect reflector in the visible and near-infrared
spectra. Since the plasmon polariton frequencies for metals
(e.g., plasma frequency ωp = 9.019 eV for gold [41]) are
higher, the coupling of surface plasmon polaritons at the gold-
vacuum or gold-dielectric interface contributes significantly to
van der Waals pressure [42,43]. A systematic investigation
of the dependence of p(e)(ρ,d) and p(m)(ρ,d) on the optical
properties of the materials will reveal more information but is
not pursued in this paper.

We also notice that p(e)(ρ,d) for d = 10 nm and d =
100 nm are coincident, whereas they are not for p(m)(ρ,d). This
is because contributions to energy transfer arise from evanes-
cent waves at low enough frequencies such that the electro-
static approximation (ωd/c � 1) is valid. In the electrostatic
approximation, it can be shown that p(e)(ρ,d) is simply a
function of ρ/d. This is not so for van der Waals pressure
since most of the contributions arise from frequencies where
the phase is important.

V. CONCLUSION

To summarize, we have calculated the contribution to the
energy flux or van der Waals pressure at any location on the
surface of one half-space attributable to different portions of
the surface of the other half-space. To do so, we have used
fluctuational electrodynamics and the dyadic Green’s function
formalism. Aside from integration along the real frequency
axis, our analysis of van der Waals pressure contribution stands
apart from most others in literature because of the evaluation of
contribution from different parts of the surface of a half-space
to the pressure in the vacuum gap via surface decomposition.

We have shown that near-field radiative energy and momen-
tum transfer have different zones of influence of interactions,
which could be important to take into consideration when
deriving proofs for the applicability of the proximity or
modified proximity approximation for fluctuational momen-
tum and energy transfer between curved surfaces [35,36,44].
Since certain portions of the surface contribute to a repulsive
pressure, which is confirmed for some materials (silica, silicon
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carbide, and gold) in this paper, it may be possible to create
objects with net repulsive van der Waals pressure by truncating
or texturing the surfaces appropriately [45–48].
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Spectrosc. Radiat. Transfer 110, 2002 (2009).

[21] C.-T. Tai, Dyadic Green Functions in Electromagnetic Theory
(IEEE, New York, 1994), Vol. 272.

[22] A. Narayanaswamy and G. Chen, J. Quant. Spectrosc. Radiat.
Transfer 111, 1877 (2010).

[23] V. A. Parsegian and B. W. Ninham, J. Theor. Biol. 38, 101
(1973).

[24] M. Paulus, P. Gay-Balmaz, and O. J. F. Martin, Phys. Rev. E 62,
5797 (2000).

[25] P. W. Milonni and C. Eberlein, The Quantum Vacuum: An
Introduction to Quantum Electrodynamics (Academic, San
Diego, 1994), Vol. 1.

[26] S. Basu, Z. Zhang, and C. Fu, Int. J. Energy Res. 33, 1203
(2009).

[27] P. Yla-Oijala and M. Taskinen, IEEE Trans. Antennas Propag.
51, 2106 (2003).

[28] K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J.
Greffet, Surf. Sci. Rep. 57, 59 (2005).

[29] C. Eckart, Rev. Mod. Phys. 20, 399 (1948).
[30] M. Antezza, L. P. Pitaevskii, S. Stringari, and V. B. Svetovoy,

Phys. Rev. A 77, 022901 (2008).
[31] F. W. DelRio, M. P. de Boer, J. A. Knapp, E. D. Reedy, P. J.

Clews, and M. L. Dunn, Nat. Mater. 4, 629 (2005).
[32] J. N. Munday, F. Capasso, and V. A. Parsegian, Nature (London)

457, 170 (2009).
[33] K. Sasihithlu and A. Narayanaswamy, Phys. Rev. B 83, 161406

(2011).
[34] H. Gies and K. Klingmüller, Phys. Rev. Lett. 96, 220401 (2006).
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