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Abstract

We propose a semi-automated region-based color segmentation algorithm to extract anatomical structures, including soft tissues, in the
color anatomy slices of the Visible Human data. Our approach is based on repeatedly dividing an image into regions using Voronoi diagrams
and classifying the regions based on experimental classification statistics. The user has the option of reclassifying regions in order to improve
the final boundary. Our results indicate that the algorithm can find accurate outlines in a small number of iterations and that manual
interaction can markedly improve the outline. This approach can be extended to 3D color segmentation.q 2000 Published by Elsevier
Science Ltd. All rights reserved.
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1. Introduction

Over the last decade, rapid advances in computer
graphics hardware and software have spawned a variety of
new fields. Medical informatics has quickly become one of
the most active of these pursuits. Research in medical infor-
matics hinges primarily on integrating computer technology
into the practice of medicine to improve all areas of the field
from education to diagnosis and treatment. In particular,
many applications in the field involve the visualization
and manipulation of medical image data, such as MRI,
CT, and PET scans, which require sophisticated techniques
from computer graphics and other disciplines. In an effort to
advance the state of the art in medical imaging and to
improve upon the tools currently available for medical
education and diagnosis, the National Library of Medicine
initiated the Visible Human Project [1,2].

Participants in the project are working toward producing
a complete library of high-resolution color 3D representa-
tions of an adult male and a female cadaver. The initial
phase of the project, carried out by the University of Color-
ado, involved the generation of true-color 2D slides from
cryosections of the male and female cadavers [2]. The slides

allow for the representation of details which had been all but
invisible in more traditional data sets. However, in order to
make the best use of the data, an accurate and efficient
method must be developed to identify structures within
the individual 2D slices. Outlines of the structures can
then be used to extract 3D voxel-based models and 3D
surface-defined wrappings from the 2D data, see Fig. 1.
These models must not only be accurate enough to allow
for labeling of all important anatomical structures, but must
also be space efficient enough to be usable in interactive
applications, such as the The Vesaliuse Project,1 an inter-
disciplinary effort at Columbia University to create a
network-based, platform-independent electronic “course”
in anatomy [3–9].

Generating outlines for the structures, which falls under
the umbrella of image segmentation, stands out as one of the
most challenging and vital phases of the project, primarily
because the results of all subsequent steps in the process
depend on the quality of the initial 2D segmentation. For
many years, work in the field centered on segmenting gray
scale images, due primarily to the fact that, until recently,
computer systems were not powerful enough to display and
manipulate large, full-color data sets. Research focused
primarily on two different approaches to the segmentation
problem: region-based and edge-based methods. Region-
based methods take the basic approach of dividing the
image into regions and classifying pixels as inside, outside,
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or on the boundary of a structure based on its location
and the surrounding 2D regions. On the other hand, the
edge-based approach classifies pixels using a numerical
test for a property such as image gradient or curvature
[10]. In particular, there are model-based techniques
like snakes [11] which start with an initial deformable
boundary curve and try to align this estimated boundary
with the actual boundary of the region of interest using
gradient features. Recently, hybrid methods combining
the model-based and region-based techniques have been
considered [12].

The advent of more powerful and easily accessible hard-
ware brought about a shift in the flow of research toward the
more widely applicable and more complex problem of color
segmentation. Indeed, the field has finally begun to witness
the publication of a sizable body of research in the area of
color image segmentation as opposed to gray scale [13–15].
Much of the work currently being pursued involves the
extension of various gray scale methods to the realm of
color images. These efforts represent a challenging advance
considering that working with color images requires one to
address a variety of issues, such as conversion between
different color spaces and manipulation of larger volumes
of data as opposed to gray scale. The introduction of the
Visible Human data sets by the National Library of Medi-
cine provides an opportunity to test new color segmentation
methods against the most detailed and complete color anato-
mical images ever created.

Along this line, we propose a new method of 2D color
image segmentation which builds upon previous work in
gray scale segmentation. Bertin and Chassery have
presented a gray scale region-based segmentation method
for microscopic data which makes use of Voronoi diagrams
to divide the image into regions [16]. In 2D, a Voronoi
diagram is a structure which divides the Euclidean plane,
for a given set of input seed points, into regions called
Voronoi regions each of which contains all the points closer
to its seed point than any other seed point [17]. The gray
scale method involves distributing seed points in a micro-
scopy data set and generating a Voronoi diagram for

these seeds. Each Voronoi region is visited in order to
determine if it is homogeneous, either inside or outside
of the structure, or heterogeneous, i.e. on the boundary
of the structure of interest. The boundary regions are
further subdivided by adding more seed points and the
classification is repeated until all regions are found to
be homogeneous.

In extending this approach to color anatomical images,
we have addressed a variety of new problems. For example,
in a typical slide from the Visible Human data, it is possible
to define a set of classification statistics which describes a
particular anatomical structure. However, the rest of the
image is filled with various other anatomical structures
that form an extremely heterogeneous environment. This
heterogeneity outside the region of interest prevents us
from identifying homogeneous exterior regions and leads
us to an algorithm based on identifying interior and non-
interior regions, as described below. In addition, we provide
the user with the option of interactively reclassifying
regions while the algorithm iterates. As will be shown, a
minimal amount of interaction markedly improves the
segmentation results. Rather than terminating when all
regions are homogeneous, our algorithm runs for a user-
specified number of iterations. Also, we are using a more
accurate and efficient algorithm for the classification of
Voronoi regions.

The existing segmentation algorithms used in most appli-
cations for the Visible Human data can allow for a good
quality rendering of skin, bones, and muscles, but not for
most of the “soft-tissue” organs like the heart, bronchial tree
or lungs. Unless a thorough color and texture classification
of different types of human tissues is created, complete
processing of new cadavers will have to be done manually.
We have developed a color segmentation algorithm for the
lung extraction as a first attempt to build a collection of
similar tools for the other organs. When applied to the Visi-
ble Human Project cryosection slides, our semi-automated
system produces accurate outlines for the lungs, which have
in the past presented difficulties for more traditional
approaches.
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Fig. 1. Vesaliuse project—right lung.



2. Region-based segmentation algorithm

In approaching the problem of segmenting color anato-
mical data, we recognized a need for a new method to
supplement the traditional techniques used in segmentation.
We propose a region-based algorithm which quickly
converges to an accurate boundary and requires minimal
user interaction. Our basic approach is to subdivide an
image into regions, classify each region as either inside or
outside the target structure, and then break up the regions on
the boundary between the two classifications into smaller
regions and repeat the classification and subdivision on the
new set of regions. This process can be repeated as many
times as the user wishes, within the bounds of hardware
limitations, in order to refine the calculated boundary.

Voronoi diagram and Delaunay triangulation play a
central role in the algorithm. In 2D the Voronoi diagram
for a set ofuVu seed points is a partition of the Euclidean
plane into Voronoi regions of points closer to one point ofV
than to any others, see Fig. 2(a). The Voronoi region of a
point v [ V is a set of points in the plane closer tov than to

any other pointu [ V; v ± u; [17]. Two Voronoi regions
are adjacent if they share a Voronoi edge. The Delaunay
triangulation ofV can be derived from the corresponding
Voronoi diagram by joining each of the two points whose
Voronoi regions are adjacent, see Fig. 2(b).

We divide an image, using the Voronoi diagram, into
regions by distributing, either manually or automatically,
a number of seed points throughout the plane of the image
and then generating the Voronoi diagram of these points.
(We will show later that the automatic point distribution is
sufficient.) Each Voronoi region is a convex polygon that
can be efficiently analyzed for various statistics, including
the mean color intensities and their variances. After collect-
ing data for a region, we can classify it as interior or exterior
with respect to the structure of interest. Of course, the clas-
sification criteria vary according to the type of image being
analyzed and the particular structure being sought (e.g. a
color anatomical image, a general purpose video frame
etc.). Hence the statistics collected for the regions will
also change.

Once the regions have been classified, the algorithm iden-
tifies as boundary regions all those exterior regions that
share an edge with an interior region. We construct the
Delaunay triangulation and select those edges that connect
the seed points in the neighboring boundary regions. This
defines an approximation of the outline of the processed
structure. In order to improve the accuracy of the results,
we add a seed point on the midpoint of each edge of every
boundary region, recalculate the Voronoi diagram with
these new seeds, and repeat the process. Before adding
new seed points, though, the user has the option of manually
reclassifying some boundary regions as exterior regions in
order to prevent the algorithm from focusing on unwanted
details and to minimize the inaccuracies introduced by defi-
ciencies in the classification statistics. In addition, the user
may stipulate that the algorithm runs automatically for a
fixed number of iterations and then views the results, or
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Fig. 2. (a) Voronoi diagram. (b) Delaunay triangulation.

Fig. 3. Pseudocode for the 2D region-based color segmentation algorithm.



he/she can choose to interact with the data after each step. A
pseudo-code for the algorithm is described in Fig. 3.

Our algorithm benefits, in particular, from its robustness.
No limitations are imposed by the design on the nature of
the statistics used to classify the Voronoi regions, so the
algorithm can accommodate a wide variety of measure-
ments for each region. Flexibility in the specification of
classification statistics allows the algorithm to operate on
virtually any type of image from full-color anatomical
images to video frames. In addition, our algorithm can be
easily extended to include considerations such as geometric
location in an image in its classification scheme due to the
region-based nature of our approach. Such extensions could
conceivably improve segmentation results in cases in which
the search can be concentrated on only one section of an
image.

2.1. Implementation

In order to test our segmentation algorithm, we have
developed an interactive program to generate outlines of
the lungs in full-color slides of cross-sectional slices of
the Visible Human male. In designing the program we
addressed a variety of important issues, including generat-
ing and displaying Voronoi diagrams overlayed on the color
slices, developing an efficient method for visiting each
region, creating useful classification criteria for identifying
the color lung regions, and numerous interface details.

In light of the above discussion, our program must be able
to generate and manipulate Voronoi diagrams and Delaunay
triangulations for various seed point distributions. We use
the qhull, version 2.1, program from the Geometry Center
[21], which implements a variant of the Quickhull algorithm
to calculate convex hulls, Voronoi diagrams, and Delaunay
triangulations.

Our program generates an initial Voronoi diagram for a
test image by first allowing the user to choose to identify
interactively seed points by clicking on the image with the
cursor or to have the program generate some number of
random seed points and then running qhull on the seed
points distribution. In order to display accurately the result-
ing Voronoi diagram, including proper representation and
display for infinite regions, we have developed a utility
which processes the data output by qhull, and renders the
Voronoi regions using our own algorithm. Once the initial
Voronoi diagram has been generated, the program visits
each region to accumulate classification statistics and
makes a determination as to the identity of the region.

We determined the experimental statistics for the lung by
analyzing a number of sample matrices (around 60) of size
5 × 5 pixels; in different color spaces. We looked at different
statistics (e.g. average, variance) in the RGB (Red, Green,
Blue) and HVC (Hue, Value Chroma) color spaces. The
HVC system represents images with hue, value, and chroma
(or saturation) levels, which in effect separate the luminant
and chromatic constituents of a color [19]. The hue indicates

the wavelength of light reflected from or transmitted
through an object and is normally indicated with a color
name, whereas the value, or brightness, indicates the total
amount of light in a color, with a zero value being back. The
saturation (chroma) denotes the proximity of the color to
monotone with a zero value meaning gray [18]. We found
that the lungs could be characterized by a relatively high
variance in saturation values and a low variance in the red
intensity. Thus, we used these statistics as our classification
criteria. Specifically, a region is classified as interior if the
variance in saturation in the region is$21.5 and the red
variance is#0.01 or if the saturation variance is$20.0
and the red variance is#0.0015. Otherwise, the program
identifies the region as exterior. Since the image data we
used for our experiments were stored in RGB format, we
had to include code to perform a transformation from the
RGB color space to the HVC color space in order to
measure values for saturation.

Our program uses the following equations to convert the
original data first to the CIELpapb color space, as proposed
by Gong and Sakauchi [19], and then to HVC values

X � 0:607·R1 0:174·G1 0:201·B

Y � 0:299·R1 0:587·G1 0:144·B

Z � 0:066·G1 1:117·B

Lp � 116·Y1=3 2 16

ap � 500·�X1=3 2 Y1=3�

bp � 500·�Y1=3 2 Z1=3�

H � tan21 bp

ap

 !

C � Lp

V �
����������
a2 1 b2

p
In order to calculate the variance in saturation and red
values in a particular region, we make use of a modified
seed fill algorithm [20] to visit all the pixels in a region. We
should note that in the original algorithm, by Bertin et al., a
minimal enclosing box (rectangle) was chosen instead,
which included the Voronoi region. All the pixels in the
rectangle were visited, and a search for the nearest seed
was done. Since such enclosing boxes for adjacent Voronoi
regions have to overlap, some pixels were visited more than
once. In our simple and elegant method, we guarantee that
each pixel in each Voronoi region is visited exactly once.

The program stores the Voronoi diagram of a particular
iteration in memory, and starting at a region seed point, it
performs a standard seed fill on the region without rendering
the results to the screen. However, in addition to marking
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each pixel it visits, the program also accumulates the red
value and saturation level for these pixels. Thus, by the time
the fill ends, every pixel has been visited once, and the
variance in the two statistics can be calculated.

After visiting a region, the program applies the tests
discussed above to classify the region as either interior or
exterior. The process repeats for each region in the diagram,
and then the program determines which exterior regions are
adjacent to interior regions. These adjacent regions are clas-
sified as boundary regions. At this point, the user is
presented with a display of the image being processed
with the current Voronoi diagram superimposed upon it.
The regions in the diagram are color coded such that
white indicates an interior region, yellow a boundary region,
and blue an exterior region. The user can select a menu
option to allow for interactive reclassification of boundary
regions as discussed in the previous section, or he/she can
choose to have the program iterate automatically.

If the user reclassifies any boundary regions, they are
removed from the list of boundaries maintained by the
program. When the user has finished reclassifying regions,
or if the program has been set to iterate automatically, only

those regions that appear in the list of boundary regions are
subdivided by having seed points planted on their edges.
The program feeds this new set of seed points into the algo-
rithm as input for the next iteration. When the user is satis-
fied with the results of the segmentation, he/she can choose
to have a boundary line drawn on the image. The program
generates the line by first running qhull to calculate the
Delaunay triangulation of all the seed points in the image
and then drawing only those segments of the triangulation
which join two boundary regions. In testing we found that
the resulting line will, in most cases, approximate the
outline of the lung quite well but will also contain some
loops and dead end off-shoot segments due to the fact that
the algorithm normally cannot generate a one-region thick
layer of boundary regions around the entire lung. Usually, at
least one section of the lung will have a boundary two or
more regions thick due to misidentification of an exterior
region as interior. As might be expected, this problem is
more noticeable in fully automatic runs than in those for
which the user has provided some guidance to the algorithm.
A single continuous boundary line can quite easily be
produced from the triangulation data by simply running a
fill on the boundary generated from the triangulation data by
simply running a fill on the boundary generated from the
triangulation and drawing only those segments that come
into contact with the fill color. Another option is to fit a
spline boundary to the approximate outline. The user also
has some standard choices accessible via pull-down menus,
such as loading and saving images and saving boundary
data. The save boundary option allows the user to save to
a text file the coordinates of and color values at the seed
points of the boundary regions used to form the outline of
the lung. This data will be accumulated for each slide in the
Visible Human data set which contains a section of lung,
and it will be used to help generate a 3D voxel-based repre-
sentation of the lung.

2.2. Time complexity

The time complexity of constructing the Voronoi diagram
for uVu seed points is O(uVuloguVu) and the Delaunay triangu-
lation is obtained in additional O(uVu) time [21]. In addition,
since each pixel in a region is visited a constant number of
times, and we visit each region at most once in an iteration,
the entire process of visiting and reclassifying takes O(N)
time, where O(N) is the number of pixels in the image. Thus
one iteration of the algorithm has an overall time complexity
of O(N 1 uVuloguVu). Since the number of iterations is a
constant, user pre-defined parameter, the time complexity
of the algorithm is O(N1 uVuloguVu).

3. Results

We obtained a number of interesting results while experi-
menting with our segmentation system. For example, we
found that using different sorts of random distributions,
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Fig. 4. Sequence of images for an automatic run on an initial random
distribution of 200 seed points: (a) first run; (b) second run; (c) third run;
and (d) fourth run.



such as Poisson and binomial, for the initial seed points
make no appreciable difference in the final results. We
also noticed that a set of manually distributed seed points
produces only a slightly higher quality outline, in the same
number of iterations, than will a random distribution of the
same number of points. In this case, a “high quality” outline
is one which corresponds closely to the outline generated by
an experienced anatomical illustrator viewing the same
slide. Figs. 4 and 5 show a comparison of the intermediate
steps and the final result of running the program in an auto-
matic mode for iterations on random and manual initial
distributions, respectively.

In addition, as might be expected, human interaction can
greatly improve the results of the segmentation process. As
shown in Figs. 6 and 7, the results of four iterations with
interactive reclassification for regions after each step tend to
display a lower density of regions in difficult to segment
areas than do those of a fully automatic run, since the user
can force the program to ignore certain areas on which it
might otherwise concentrate too much effort. Also, the
images are devoid of the excessive noise produced in the
fully automatic mode. As mentioned above, having random

or manual seed distributions make no visible difference in
the final segmentation of the lung region, so a random distri-
bution, which requires less user interaction, should be used
by default.

Clearly, our region-based segmentation technique
produces visually accurate results (validated by an experi-
enced anatomist) even without any user interaction. More
importantly, though, with only a minimal amount of user
input, the program can produce a highly accurate represen-
tation of the boundary of a lung. This low requirement for
user input becomes particularly important in our case when
one considers that the lungs appear in over 300 slices in the
Visible Human data set. Using our approach the slices can
be processed efficiently and accurately.

4. Conclusions

We have proposed a novel and efficient method of color
image segmentation using a semi-automated region-based
approach, and we have proven its effectiveness by imple-
menting it in a system which generates outlines of lungs in
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Fig. 5. Sequence of images for an automatic run on an initial manual
distribution of 200 seed points: (a) first run; (b) second run; (c) third run;
and (d) fourth run.

Fig. 6. Sequence of images for an interactive run on an initial random
distribution of 200 seed points: (a) first run; (b) second run; (c) third run;
and (d) fourth run.



slides from the Visible Human Project. This work is a first
attempt to attack the complex issue of outlining fine anato-
mical structures in color medical images. Building on the
work of Ref. [16], we extended the original gray scale work
to full-color data and developed a variety of improvements
and modifications, chief among them being the inclusion of
user interaction and efficient region processing.

Our experimental results, including determination of an
experimental classifier for the lungs, indicate the efficacy of
our method and point the way toward a number of future
developments. More experiments must be carried out to
determine classification statistics for a wider variety of
anatomical structures so that a more rigorous mathematical
description of such structures can be developed. In this
regard, our experiments lead us to believe that saturation
values will play an important part in distinguishing between
structures. Future work will also focus on adapting recent
work in texture segmentation to our classification scheme.
In addition, as mentioned earlier, our approach allows for
easy extension of classification criteria to include measures

of geometric location and other statistics which should be
implemented and tested on the anatomical data.

The output from our application has already been used as
a foundation for creating 3D representations of the lungs.
After further refinement, the program will play an important
role in providing data for a 3D anatomical imaging system
designed to use the Visible Human Project data to improve
upon current techniques in anatomy education. Extension of
this method to a 3D region-based color segmentation is
possible, if we employ the 3D Voronoi diagram to process
the input data in a color voxel representation.
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