Algorithmica (1997) 18: 544-559

Algorithmica

© 1997 Springer-Verlag New York Inc.

A General Class of Heuristics for Minimum Weight
Perfect Matching and Fast Special Cases with Doubly
and Triply Logarithmic Errors !

C. Imielihnsk& and B. Kalantad

Abstract. We give a class of heuristic algorithms for minimum weight perfect matching on a complete edge-
weighted graptK (V) satisfying the triangle inequality, wheké is a set of an even number, of vertices.

This class is a generalization of the Onethird heuristics, the hypergreedy heuristic, and it possibly employs any
given exact or approximate perfect matching algorithm as an auxiliary heuristic to an appropriate subgraph
of K(V). In particular, by using the heuristic of Gabawal. [3] as its auxiliary heuristic, our algorithm can
obtain a solution whose weight is at m@tlog3 log; logz n + 2) times the weight of the optimal solution in

O(n? log log logn) time, or a solution with an error of(Bg; logs n)%1%° — 1 in O(n?) time.

Key Words. Perfect matching, Heuristic algorithms.

1. Introduction. We consideK (V), a complete edge-weighted graph, satisfying the
triangle inequality on a set of even numimet= |V | of vertices. Aperfect matchingf V

is a set of edges such that each verte¥ a$ incident to exactly one edge. Aaptimal
perfect matchingf V is a perfect matching with minimum total edge weight. The optimal
perfect matching can be obtained by Edmonds’ algorithm [1], and its modifications by
Gabow [2] and Lawler [7] irD(n%) time.

Because for large the exact algorithms are not efficient enough, finding approximate
solutions, fast and within some error bounds, has been of both practical and theoreti-
cal interest. By thesrror of a heuristic algorithm we mean the worst-case ratio of an
approximate solution produced by the heuristic to that of the optimal solution.

We propose a class of heuristics for perfect matching, called tkg-heuristic, where
t andk are given integer parameters satisfying @, k < [log; n]. The ¢, k)-heuristic is
a generalization of thieypergreedyeuristic of Plaisteét al. [9], [10], and theDnethird
class of heuristics by Grigoriadis and Kalantari [5]. Thekj-heuristic consists af +1)
stages, where < k. The firstr stages are based on a combination of the above two
heuristics. If < k, the error of thet(k)-heuristic is bounded above b8 +1) 1 — 1. If
r =k, its(r +1)th stage makes use of any auxiliary exact or approximate perfect matching
algorithm.A, and its error is bounded above 8t + 1)"[1 + fa(n;)] — 1, wheref 4(n;)
is the error of the algorithm, applied to a complete graph with < (1/3""n vertices.

With appropriate choice &€ the time complexity of thet(k)-heuristic isO(tn?).

1 This research was supported in part by the NSF under Grant No. CCR-9208371 and by the DIMACS Grant
No. NSF-STC 88-09648.

2 Department of Electrical Engineering and Computer Science, Stevens Institute of Technology, Hoboken,
NJ 07030, USA.

3 Department of Computer Science, Rutgers University, New Brunswick, NJ 08903, USA.

Received July 21, 1994; revised November 28, 1995. Communicated by C. H. Papadimitriou.

A General Class of Heuristics for Minimum Weight Perfect Matching 545

Fort = [logzn], andk = 1, the €, k)-heuristic reduces to the hypergreedy and runs
in O(n?logn) time. Ift = 1, and 0< k < [logz n], the ¢, k)-heuristic becomes a greedy
version of the Onethird class of heuristics, which rur®@{max{n?, t 4 (ny)}) time, where
O(t4(nk) is the time complexity of the auxiliary algorithi, possibly applied in the last
stage of the heuristic. The class bfK)-heuristics generalize the Onethird heuristics and
uses some properties of the hypergreedy heuristic. This combination results in a class of
heuristics, which improves the error bounds of the corresponding Onethird heuristics.

Goemans and Williamson [4], have obtained a heuristic for perfect matching in com-
plete graphs satisfying the triangle inequality which produces an approximate solu-
tion bounded above by twice the optimal weight, and run®im?logn) time. Later,
the running time was improved by Gabow, Goemans, and Williamsond&Ww) to
O(n?/logTogn). Although theGGW algorithm has the interesting property of obtain-
ing solutions to within the constant error of two, one might be interested in obtaining
even faster heuristics with reasonably small theoretical error. Clearly, on the surface the
GGW algorithm is superior to the hypergreedy and does not leave any incentive ever
to use the latter. In fact using tl&GW algorithm in the last stage of Onethird, already
produces a better heuristic than the hypergreedy (see below). As we shall ge&)the (
heuristic, which make use of the hypergreedy, is more powerful than the Onethird, and in
conjunction with theaGGW algorithm, as its auxiliary heuristic, results in fast heuristics
with doubly and triply logarithmic errors.

More specifically, suppose that in thie € 1)th stage we use th@GW algorithm.
Onethird (or €, k)-heuristic witht = 1) with k = %Iogs log; log; n gives a heuris-
tic with O(n?) time complexity and 8og, log; n)®2° — 1 error. Even this heuristic is
better than the hypergreedy, both in time complexity and error. Intthg-beuristic
witht = 4,k = 1—16 log, log, log, n, we again get a® (n?)-time heuristic whose error,
3(logz logyn)®1%° — 1, is even better than that of the Onethird. Finally, ko= 1,

t = %Iogslog3 logz n, we obtain a heuristic whose error@ logs logzlog; n + 2).
The corresponding time complexity@(n? log log logn), still an improvement over the
0O(n?,/TogTogn) time of theGGW algorithm.

The ¢, k)-heuristic makes use of a subgraphkKfV), called thet-basic graph
denoted byBG;(V), which is a collection of sparse connected components, selected
from K (V). In Section 2 we describe the construction oftHesic graph. In Section 3
we describe thet(k)-heuristic. In Sections 4 and 5 we analyze the error and the time
complexity of the{, k)-heuristic, respectively. In Section 6 we analyze th&)-heuristic
with the GGW as its auxiliary algorithm.

2. Thet-Basic Graph. Inthis section we describe the construction oftthasic graph
and we analyze its time complexity. Foe= |log; nJ, thet-basic graph was made use
of in the hypergreedy heuristic [9]. Its time complexity was also analyzed in that paper.
However, in this section we reanalyze the construction and the time complexity, in a
more clear and simplified fashion than that of [9]. We construct-ib&sic graph for any
given 0< t < logz n. Actually the 1-basic graph is simply the nearest-neighbor graph
and it was used in the Onethird heuristic.

Given a subsetV of the verticesV, thet-basic graptB G; (W), is a forest of trees,
spanningW. Thet-basic graph is constructed recursively from the-(1)-basic graph

546 C. Imieliiska and B. Kalantari

‘@
I ESY

G

Fig. 1. The 1-basic graph—the nearest-neighbor grapk GiV).

using edges irK (W). The ¢ — 1)-basic graph is a subgraph of théasic graph. The
main feature of the-basic graph is that its total weight is bounded above by a certain
factor of the weight of the optimal perfect matchingkofW). By apartial matchingof

W we mean a perfect matching of a subseWbf From thet-basic graph we extract a
partial matching which will become a part of the final approximate solution.

The 1-basic graphB G, (W), is the first graph formed and it is the nearest-neighbor
graph ofK (W) (Figure 1). LetO;(W) and E1(W) be theodd and theevenconnected
components 0BGy (V), with odd and even number of vertices, respectively. We refer
to these components hgpervertices

To get BG,(W) from BGy (W), for each odd hypervertex i@, (W) we find its
nearest odd hypervertex, where the two are connected either by an edge or a set of edges
forming a shortest path iK (W), possibly passing through the even hypervertices of
E1(W) (Figure 2). The nearest-neighbor graph of the odd hypervertices contains old and
new even component&, (W), and new odd component®, (W), which all together
form BG,(W) (Figure 3).

This recursive procedure is repeated until thHesic graph is formed. In general,
given BG;_1(W) we obtainBG; (W) by adding a set of edges i (W) whose total
weight is bounded above by twice the weight of the optimal perfect matchikgf).

We denote byMyy, andw (My,) an optimal perfect matching & (W) and its total edge
weight, respectively.

A General Class of Heuristics for Minimum Weight Perfect Matching 547

@
)
T

Fig. 2. The nearest-neighbor graph of odd hypervertices.

LEMMA 2.1. Foreachl <i <t the total weight of all the edges added to R®) to
form a nearest neighbor graph of odd hypervertices is bounded abo2e (Wy},).

PrROOF We consider, for a given the union ofB G; (W) and an optimal perfect match-
ing of K (W), My,. Edges ofMy, partition the set of odd hypervertices into pairs, which
are connected by either an edgeMsj, or a chain of edges iy}, passing through even
components oE; (W).

In Figure 4 we show one such pair of odd hypervertideandB. Let A; andB; be
the nearest odd hyperverticesAfand B, respectively. The weight of the shortest path
connectingA and A; is less than or equal to the weight of the shortest path connecting
A to B. Similarly the weight of the shortest path connectB@nd B; is less than or
equal to the weight of the shortest path connecity B. Thus the total weight of the
nearest-neighbor graph of all the odd hypervertice8 & (W) is bounded above by
twice the weight oMy;,. From Lemma 2.1 we set,

THEOREM2.1. The total weight of the t-basic graph B@V) of K(W) is bounded
above by2tw (My).

In particular, whent = [log;|W| — 1], thet-basic graph is a collection of only even
hypervertices, and if additionalgyw = V, this corresponds to the original hypergreedy
heuristic [10]. In the hypergreedy, the even hypervertices, where each of them admits a

548 C. Imieliiska and B. Kalantari

(o

E
| g
E
E

Fig. 3. The 2-basic graph with its odd and even hypervertices.

perfect matching, are converted into a perfect matching of the input graph, and the total
weight of the matching does not exceed the weight ot thasic graph.

2.1. Time Complexity Here we analyze the time complexity for constructing the
basic graph. The-basic graph is constructed tnsteps. The 1-basic graph, i.e., the
nearest neighbor graph W, is formed inO(|W/|?) time. The time complexity of one

(&)

Al

Fig. 4. A pair of odd hypervertices and their nearest odd neighbors; ——, edge in the nearest-neighbor graph,
—, edge in the optimal perfect matching.

B1

A General Class of Heuristics for Minimum Weight Perfect Matching 549

Fig. 5. Generalized Voronoi Diagram.

step of the recursive procedure, whenithmsic graph is obtained from thie{ 1)-basic
graph (1< i <), is the time complexity for the construction of the nearest-neighbor
graph of the odd hypervertices.

The construction of the nearest neighbor graph, consists of two stages. First, we build
the Generalized Voronoi DiagrartGVD) relative to the set of odd hyperverticeghich
is a partition of all hypervertices with respect to which odd hypervertex they are closest to
(Figure 5). Then we find for each odd hypervertex its nearest odd neighbor. Ina GVD, for
every even hypervertex a shortest path to its nearest odd hypervertex (possibly through
other even hypervertices) is found. Each odd hypervertex and all the even hypervertices,
which are closer to it than to any other odd hypervertex, for@eaeralized Voronoi
Region(GVR). Every even hypervertex is connected to its nearest odd hypervertex by a
path constructed from the edgesri(W). We say that two GVRs aradjacentif there
is an edge irk (W) with endpoints in the corresponding GVRs. Since there is always
such an edge, each two GVRs are adjacent.

Before we analyze the time complexity of the construction ofttbasic graph, we
consider the problem of computing the nearest-neighbor graph of the odd hypervertices
inBG(W),1<i<t-1.

THEOREMZ2.2. Computing the nearest-neighbor graph of the odd hypervertices in
BG; (W) can be done in QW|?) time

550 C. Imieliiska and B. Kalantari
The proof of Theorem 2.2 follows from the following two lemmas.

LEMMA 2.2. The time complexity of constructing the GVD of B\@) is O(|W|?).

PrOOF First, we define an auxiliary graph with a root noReto be connected to
each odd hypervertex by a zero-weight edge. Eetnd O be the sets of the even and
odd hypervertices, respectively. We apply Dijkstra’s shortest-path algorithm to find all
shortest paths from the hypervertices to the RdEonsider an even hypervertexe E

and the first odd hypervert@x € O which appears on the shortest path freyto R. We
claim thato, is the nearest odd neighbor&f We assume thab £ 0, is the nearest odd
neighbor ofe;. Then the weight of the path from to the root viao, would be smaller
than the weight of the corresponding path fremto the root viao;, a contradiction.
Therefore, the time complexity of constructing the GVDRB (W) is O(|W|?). O

The following was proved in [9].

LEMMA 2.3. Given an odd hypervertex y and G the GVR containing yassume
z is a nearest odd neighbor of Jhen there exists an edge, v), such that shortest path
from y to z consists of the path from y towe GVRY), the edg€g(u, v), v € GVR2),
and the path from to z

By the above lemma, given the GVD, we can determin®{iwW|?) operations the
nearest odd neighbor for each odd hyperverteB® (W), 1 <i <t—1, using edgesin
K (W). We examine all the edges (W) and regard those with endpoints in different
GVRs, and select for each pair of GVRs such edge, which minimizes the lengths of the
shortest path between the corresponding odd hypervertices. Thus,

THEOREM2.3. The time complexity of constructing B@V) is O(t|W|?).

3. Description of the (t, k)-Heuristic. The ¢, k)-heuristic is a generalization of the
Onethird heuristic for perfect matching, and the hypergreedy. THe-beuristic is
defined by two given integer parametdrandk ranging from 1 to|log; n]. It consists
of (r +1) stages; <k, whereateachstage=0, 1,...,r —1,acomplete grapK (V;),

V; C V, is processed. GiveK (V;), Vo = V, we extract the-basic graphBG; (V).
By using thet-basic graph, we select a partial matching which covers a portion or
possibly all the vertices ikj. We remove fronV; all the vertices matched by the partial
matching, while all the remaining unmatched vertices form a complete d€&ph, 1),

to be processed in the next stage. Aftestages, if = k, the remaining unmatched
vertices,V, ;1, are matched by any auxiliary perfect matching algoritdgrwhich can
be either another heuristic for perfect matching, or an exact algorithm.

Fort = 1, the (, k)-heuristic uses only the nearest-neighbor graph (1-basic graph),
and reduces to the greedy variation of the Onethird heuristic which in turn allows the
selection of a partial matching with at Ie:iétnﬂ edgesn; = |V;|. The crucial property
of the ¢, k)-heuristic is that by using thiebasic graph we can select a partial matching,

A General Class of Heuristics for Minimum Weight Perfect Matching 551

with at Ieast[%((3t — 1)/3Yn;] edges. This is because the size of each of the odd
hypervertices (if there are any) in thdasic graph is at least.3Thus at each stage, the
larger the parametdr the more edges can be selected into a partial matching and this
results in a stronger class of heuristics than the Onethird. The appropriate choice of the
parameter$ andk depend on the specific auxiliary algorith#) to be used in the last
stage. More formally,

(t, k)-heuristic for general weights satisfying the triangle inequality

Input K(V), Vo =V, (0 <t, k < [logzn]) and auxiliary heuristicA.
Output A perfect matching o¥/.

Foreachstagg =0,1,... ., k—1,if V; # ¢:do
begin
1. Construct the-basic graphBG; (V).
2. In every connected componentBG; (V;):
(a) Duplicate edges.
(b) Extract an Euler tour.
(c) Convert the tour into a Hamiltonian cycle of lesser weight.
(d) Find maximum cardinality minimum weight perfect matching in
the cycle.
3. Select a matching formed by the union of the maximum cardinality mini-
mum weight matchings obtained in Step 2(d), which is either a partial or
a perfect matching o¥;.
4. Allunmatched vertices, if there are any, fokgV;1).
end
Auxiliary Stage (k+ 1): Match all the remaining vertices using an auxiliary
algorithm A for perfect matching.

For eachj, we denote byET;, H;, §, the union of Euler tours, Hamiltonian cycles,
and maximum cardinality minimum weight perfect matchings obtained from all the
connected component &G (V;).

Fort = 1 the above algorithm is equivalent to a greedy variation of the Onethird.
However, the selection of the partial matchifigin Step 3 is different in the original
Onethird, where we first sort all the edgesH, the union of all Hamiltonians, then
instead of Step 2(d) we select exac%l},/(?;t — 1)/3!] shortest edges in such a way that
one edge is chosen at a time and all the edges incident to it are removed.

Forj =0,1,...,k—1, let M be an optimal perfect matching &f(V;). At each
stagej, j = 0,1, ...,k — 1, we construct thé-basic graptBG; (V;) (Step 1), whose
total weight does not exceeda2(M"). There are two types of hypervertices in the
basic graph, even and odd, with an even and odd number of vertices, respectively. Each
even hypervertex admits a perfect matching.

To select a partial matchir§ of K (V;) from thet-basic graph, we first duplicate the
edges inBG; (V;) (Step 2(a)), which results in a new graph, where each component is
Eulerian. A graph is said to be Eulerian if each of its vertices has an even degree. Such a
graph admits a closed tour, called an Euler tour, which visits each edge exactly once, e.g.,
see [8]. We construct an Euler tour in every connected component ditthsic graph

552 C. Imieliiska and B. Kalantari

&

E
O Z
E

E

Fig. 6. Hamiltonian cyclesH;, extracted from Euler tour& T;.

(Step 2(b)), andE T; is the union of all such tours. Figure 3 can be viewed as the duplicated
2-basic graph. The weight of the edgedHii; is bounded above by twice the weight of
thet-basic graph. The Euler tours are converted into Hamiltonian cycles (Step 2(c) and
Figure 6), whereH; is their union. A Hamiltonian cycle of a connected component is

a cycle where each vertex is visited exactly once. From the triangle inequality, the total
weight of the edges ii; is less than or equal to the total weight of the edgeSTh.

We find a maximum cardinality minimum weight matching in each Hamiltonian cycle
(Step 2(d) and Figure 7). The union of such matchings contains at most half of all the
edges inH;, and the total edge weight of the union is bounded abov@w—!j). These
edges (Figure 8) form a partial matchigy The total weight of§ does not exceed
half the weight of the Hamiltonians. The remaining unmatched vertices, if there are any,
resultin a new complete graph(V; 1), to be processed in thi§ + 1)th stage (Figure 8).

We repeat this process until either we obtain a perfect matchikgiofr < k stages or
at the completion okth stage we apply a perfect matching algorithm

Eachjth stage of the heuristic can be implemente®ii (n;)2) time. We show that
if the parametek is selected appropriately, thi k)-heuristic runs inO(tn?) time.

4. Analysis of the(t, k)-Heuristic. In this section we present the analysis of the error
of the ¢, k)-heuristic. Given a subs#®V of V, let Sbe a partial matching selected from
W and letMy;, and My;, be the optimal perfect matchings & andW’, respectively,

A General Class of Heuristics for Minimum Weight Perfect Matching 553

CE i
O
F
Fig. 7.The union of maximum cardinality minimum weight matchings, represented by the thick edges, obtained
from Hj.

whereW’ is the set of unmatched vertices \f left after selectingS. The following
relates the weights d¥ly},, My, andS.

LEMMA 4.1[5]. w(My,) < o(My) + o(9).

LEMMA 4.2. At each stage j= 0,1,...,r — 1,r < k of the(t, k)-heuristic we
can always select from &) a partial matching § containing [5((3" — 1)/3)n;]
edges

PrROOFE First we claim that if there is an odd hypervertex in tHeasic graph, its size

is at least 8 Note, if there is no odd hypervertex in théasic graph, thef, is simply a
perfect matching o¥; and the lemma s true. Clearly, this is truefee 1. Fort > 1, we

only need to observe that an odd hypervertex irtthasic graph is created from at least
three odd hypervertices in tlie— 1)-basic graph. Le€,, Co, ..., C, be the odd cycles,

and letCi,, ..., Cp be the even cycles itf;. There arg(|Ci| — 1)/2 > (3' — 1)/2,
i=1,...,I,and|Ci|/2,i =1 +1,..., p, edges in any maximum cardinality matching

of each odd and even cycle, respectively. Thus we can select from each cycle at least
(@ -1/2(C1/3H1,i =1, ..., p, vertex disjoint edges. The proof of the lemma is

554 C. Imieliiska and B. Kalantari

NS
, /

s
N /

7

Fig. 8. Partial matching5 formed the maximum cardinality minimum weight matchings of the Hamiltonian
cycles ¢ = 2), and the remaining unmatched vertices to be processed in the next stage.

—

Vs /

now immediate from the following inequalities:

RS

LEMMA 4.3. The partial matching Sselected at each stage j = 0,1,...,r — 1,
r <k, of the(t, k)-heuristic has weight bounded above by

o(§) < 2tw(M).

PrOOF The partial matching is selected fronH;. The total weight oH; is bounded
above by 4»(M;"), a bound on the duplicated weight of théasic graph oK (V;).

We find a maximum cardinality minimum weight matching in each Hamiltonian cycle.
If the size of each cycle is even, then, cleady.§) < %w(H,—), so that the lemma is
proved. If the size of a cycle is odd, then using the triangle inequality it is easy to argue
that the maximum cardinality minimum weight matching of that cycle must have weight
less than half of that of the cycle. O

A perfect matching oK (V), produced by thet(k)-heuristic is the union of partial
matchings,§, selected at staggs= 0,1,...,r —1,r < k. Let M; be the perfect

A General Class of Heuristics for Minimum Weight Perfect Matching 555

matching ofK (V;), produced by the heuristic. Thi; is the union of partial matchings
produced at stagejg j + 1,...,k, i.e., Mj = U{:j S. In particular,My is a perfect
matching ofK (V) produced by the heuristic.

The error for stagg is the ratio of the weight oM; to the weight ofM", the
optimal perfect matching oK (V;). We denote the error by (n;) = a)(Mj)/w(Mj*),
for w(Mj*) # 0. For a degenerate case, whe(i\/lj*) = 0, V; can be viewed as a set
of double points, and the distance between each two such points is 0, and the perfect
matchingM;, produced by the heuristic is identicalMy’, thereforef (n;) can be defined
to be 1. In the following lemma, we relate errors in two consecutive stages.

LEMMA 4.4. Foreach j=0,1,...,r —1,r <k, we have
f(ny) < 2t +[2t + 1] F (nj10).
PROOF FromlLemmad4.1weget(M,;) < o(M)+o(S). Fromthisand Lemma4.3
we get
(M0
a)(Mj*)

Given M; and M1, the perfect matching produced by the heuristicKaiv;) and
K (Vj+1), respectively, we have

<1+2t.

o(Mj) = o(§) + o (Mj11).
From Lemma 4.3 we get
o(Mj) < 2to (M) + o (Mj11).
The proof of the lemma follows by dividing the above inequalitydyM;"), writing

®(Mj41) _ oMj1) (M)
U)(Mj*) a)(Mj*Jrl) CU(MJ'*) ’

and using the bound of the last ratio. O

The overall error of thet(k)-heuristic can be expressed by the ratio

®(Mp)
(M)’

f(n) = f(no) =

whereMg is a perfect matching df (V), produced by thet(k)-heuristic, andVi; is the
optimal perfect matching of (V).

LEMMA 45. Forj =0,1,...,r we have

1\/

556 C. Imieliiska and B. Kalantari

PROOF There are at lea$t((3' — 1)/3")n;)7 vertices matched b§ at stagej and the
remainingn; 1 vertices which will be processed in the next stage satisfy

1/3 -1
N1 <N —2 ASEE n|.
Note that we can writ¢(3' — 1)/2)n; = 3'm —r, wheremand O0<r < 3' — 1 are
integers. Thus
3m r

Sincem = 2((3' — 1)/3")n; +r/3', we get

13 -1 rn ron
Nit1 < Nj—2m=n; _ZETnj — §:§—2§ 5?'
From the above the proof of the lemma is immediate. O

THEOREMA4.1. Let K(V) be a complete edge-weighted graph with n vertisatisfying
the triangle inequalitythe error of(t, k)-heuristic is bounded above by

@t+1+ -1 for r <k,

Fm = {(Zt)+ fam)] =1 for =k,

where n < (1/3Y"n, and f4(n,) is the error of the auxiliary algorithrod.

PrROOF After r stages thet(k)-heuristic either matches all the verticesk(V), or
there aren, unmatched vertices left. We apply recursively Lemma 4.4, and get the overall
error f(n) = f(ng),

r-1
fy <2ty @ +1)' +@&+1)z
i=0

wherez = 2t if r < k, andz = f 4(n;) if r = k. Equivalently,

fm<@&@+D'[1+2 -1 O

5. Time Complexity of the (t, k)-Heuristic. In this section we derive a bound on the
worst-case time complexity of the,)-heuristic.

THEOREM5.1. The(t, k)-heuristic can be implemented in() = O(tn?) time

Proor Forj =0,...,r — 1, from Theorem 2.3, the-basic graph oK (V) can be
implemented inO(t(n,-)Z) time. From thet-basic graph, we construct a collection of
Euler tours, then Hamiltonian cycles, @(n;) time. We claim that finding a maximum
cardinality minimum weight matching of a Hamiltonian cycle is linear in the size of the

A General Class of Heuristics for Minimum Weight Perfect Matching 557

Fig. 9. One of eleven maximum cardinality matchings of a cycle of size 11.

cycle. Let the sequend®, 1, ..., q — 1} correspond to the edges in a cycle of sige

in the order they appear. d¢f is even, then there are two different maximum cardinality
matchings, each of sizg/2, and we compute the weight of each of the two and select
the one with the smaller weight. Fqrodd, there arg different matchings, each of size
(q — 1)/2. We can view the cycle as a circular listepedges and each of its maximum
cardinality matching as a list dafj — 1) /2 edges, see Figure 9. First we generate the
maximum cardinality matching corresponding{® 2, 4, ..., q — 3}. We compute the
weight of this matching irO(q) time. We replace the first (the edge 0) with the last
edge in the cycle (the eddgq — 1)), and compute in a constant time the weight of the
resulting new matching. We repeat this proc€sg)) times and obtain the weight of
all the maximum cardinality matchings from which we select the one with the smallest
weight. Hence the proof of the above claim.

The union of the maximum cardinality minimum weight matchings of all the Hamil-
tonians forms a partial matchir§. Therefore one stage of the k)-heuristic can be
implemented inO(t(n,-)Z) time, and, from Lemma 4.5, the overall time complexity is
bounded above by

r—1 r-1 1 2j r-1 1 2j
(5o -ofs (3))
j=0 j=0 3 i=0 3

1
O (tnzm) == O(tnz) D

T(m

6. Special Cases with Doubly and Triply Logarithmic Errors. As a corollary of
Theorem 4.1 and Theorem 5.1, we show that if we us&tBgValgorithm as the auxiliary
heuristic of thgt, k)-heuristic, the error of the resulting heuristic is a very slowly growing
function of n and its time complexity i€D(tn?). Thus we obtain heuristics which are
faster than th&GWalgorithm and have competitive errors.

COROLLARY 6.1. The error of the(t, k)-heuristic fort= 1,2, ..., %1 log;log;log; n
and after k= (1/4t) log; logs log; n, using the GGW algorithm as the possible auxiliary

558 C. Imieliiska and B. Kalantari
heuristic is bounded above by
f(n) < 3(logg logg n) /40 1egs+20 _ 1

and its time complexity is @n?).

PrOOF LetT4(n) be the time complexity of the auxiliary perfect matching algorithm
A. We want the parametérto satisfyO(T 4(ny)) = O(tn?), which would guarantee
that the overall time complexity of the resulting heuristic to remain woul®lgen?)
time. ForGGW T4 (n) = O(n?y/loglogn), and f4(n) < 2. If r = k we use this
algorithm to match the remaining vertices. In order to find the appropriate choice for
the parameterk andt, the following has to be satisfied:

(nk)?y/logg logsnk < tn?,

Sincen, < (1/3Y%n (see Lemma 4.5), it is easy to check that the above is satisfied
whenk = (1/4t) logzlogzlog;nand 1<t < %1 logs logz logs n. Thus from Theorem 4.1
we obtain

[2t + 1L + fa(no] — 1 < 3[2t + 1] ¥4 logslogslogsn _ 1
3(log; log, n)/40logs(1+2) _ 1 -

f(n)

IA

From Corollary 6.1, thét, k)-heuristic, fort = 1 andk = ;11 log; log; log; n (which
becomes a version of the Onethird heuristic), givesOdn?)-time heuristic with the
error of Jlogg logz N)%2° — 1. This heuristic is better than the hypergreedy both in time
and error. Fot = 4 andk = 1—16 log, log, log, n, the(t, k)-heuristic also gives a@®(n?)-
time heuristic with error bounded above b§f®y, log, n)®12° — 1, which is even better
than that of the Onethird. Finally, fdt = 1 andt = %Iog3log3 logz n, we obtain a
solution bounded above big logs logz log; n + 2). The corresponding time complexity
is O(tn?) = O(n?logloglogn), still an improvement over th®(n?,/log, log,) time
of the GG W algorithm.

REMARKS. Our algorithm is an attractive alternative to @& W algorithm for two
reasons. First, it offers full range of speed-approximation tradegffghereasGGW
has fixed performance. Second, in certain regions of this tradeoff it is fasteGiGaN
(admittedly, only in an asymptotic sense); in other words, it relat€siaVas it relates to
the exact algorithm: It sacrifices optimality for efficiency. However, it is worth noting in
closing that, from the practical point of view, and for the importantlideancase of the
matching problem, even tiveeak greedyeuristic [6], whose theoretical error i¥2— 1,
ironically provides experimental solutions with errors bounded withiag11.45].

Acknowledgments. We would like to thank an anonymous referee for simplifying the
proof of Lemma 2.2, and Christos Papadimitriou for important suggestions.

A General Class of Heuristics for Minimum Weight Perfect Matching 559

(1]
(2]

(3]

(4]
(5]
(6]
(7]
(8]
(9]

[10]

References

J. Edmonds, Paths, trees and flow&anadian Journal of Mathematic$7 (1965), 449-467.

H. N. Gabow, Implementation of algorithms on nonbipartite graphs, Ph.D thesis, Department of Elec-
trical Engineering, Stanford University, 1973.

H. N. Gabow, M. X. Goemans, and D. P. Williamson, An efficient approximate algorithm for the
survivable network design problen&oc. of the Third MPS Conference on Integer Programming and
Combinatorial Optimization1993, pp. 57-74.

M. X. Goemans and D. P. Williamson, A general approximation technique for constrained forest prob-
lems,Proc. of the Third Annual ACM—SIAM Symposium on Discrete AlgorifHri82.

M. D. Grigoriadis and B. Kalantari, A new class of heuristic algorithms for weighted perfect matching,
Journal of the Association for Computing Machings$ (1988), 769—776.

M. D. Grigoriadis, B. Kalantari and C. Y. Lai, On existence of weak greedy matching heuristics,
Operations Research Letteis(4) (1986), 201-205.

E. L. Lawler, Combinatorial OptimizationNetworks and MatroidsRinehart and Winston, New York,
1976.

C. H. Papadimitriou and K. Steiglité;ombinatorial OptimizatiorAlgorithms and ComplexifyPrentice-

Hall, Englewood Cliffs, NJ, 1982.

D. A. Plaisted, Heuristic matching for graphs satisfying the triangle inequabty;nal of Algorithms
5(1984), 163-179.

D. A. Plaisted, E. M. Reingold, and K. J. Supowit, Heuristic for weighted matchngc. of the
Symposium on the Theory of Computih§80, pp. 398-419.

