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A General Class of Heuristics for Minimum Weight
Perfect Matching and Fast Special Cases with Doubly

and Triply Logarithmic Errors 1

C. Imielińska2 and B. Kalantari3

Abstract. We give a class of heuristic algorithms for minimum weight perfect matching on a complete edge-
weighted graphK (V) satisfying the triangle inequality, whereV is a set of an even number,n, of vertices.
This class is a generalization of the Onethird heuristics, the hypergreedy heuristic, and it possibly employs any
given exact or approximate perfect matching algorithm as an auxiliary heuristic to an appropriate subgraph
of K (V). In particular, by using the heuristic of Gabowet al. [3] as its auxiliary heuristic, our algorithm can
obtain a solution whose weight is at most( 3

2 log3 log3 log3 n+ 2) times the weight of the optimal solution in
O(n2 log log logn) time, or a solution with an error of 3(log3 log3 n)0.125− 1 in O(n2) time.

Key Words. Perfect matching, Heuristic algorithms.

1. Introduction. We considerK (V), a complete edge-weighted graph, satisfying the
triangle inequality on a set of even numbern = |V | of vertices. Aperfect matchingof V
is a set of edges such that each vertex ofV is incident to exactly one edge. Anoptimal
perfect matchingof V is a perfect matching with minimum total edge weight. The optimal
perfect matching can be obtained by Edmonds’ algorithm [1], and its modifications by
Gabow [2] and Lawler [7] inO(n3) time.

Because for largen the exact algorithms are not efficient enough, finding approximate
solutions, fast and within some error bounds, has been of both practical and theoreti-
cal interest. By theerror of a heuristic algorithm we mean the worst-case ratio of an
approximate solution produced by the heuristic to that of the optimal solution.

We propose a class of heuristics for perfect matching, called the(t, k)-heuristic, where
t andk are given integer parameters satisfying 0≤ t, k ≤ blog3 nc. The (t, k)-heuristic is
a generalization of thehypergreedyheuristic of Plaistedet al. [9], [10], and theOnethird
class of heuristics by Grigoriadis and Kalantari [5]. The (t, k)-heuristic consists of(r+1)
stages, wherer ≤ k. The firstr stages are based on a combination of the above two
heuristics. Ifr < k, the error of the (t, k)-heuristic is bounded above by(2t+1)r+1−1. If
r = k, its(r+1)th stage makes use of any auxiliary exact or approximate perfect matching
algorithmA, and its error is bounded above by(2t +1)r [1+ fA(nr )]−1, wherefA(nr )

is the error of the algorithmA, applied to a complete graph withnr ≤ (1/3t )r n vertices.
With appropriate choice ofk the time complexity of the (t, k)-heuristic isO(tn2).
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For t = blog3 nc, andk = 1, the (t, k)-heuristic reduces to the hypergreedy and runs
in O(n2 logn) time. If t = 1, and 0≤ k ≤ blog3 nc, the (t, k)-heuristic becomes a greedy
version of the Onethird class of heuristics, which runs inO(max{n2, tA(nk)}) time, where
O(tA(nk) is the time complexity of the auxiliary algorithmA, possibly applied in the last
stage of the heuristic. The class of (t, k)-heuristics generalize the Onethird heuristics and
uses some properties of the hypergreedy heuristic. This combination results in a class of
heuristics, which improves the error bounds of the corresponding Onethird heuristics.

Goemans and Williamson [4], have obtained a heuristic for perfect matching in com-
plete graphs satisfying the triangle inequality which produces an approximate solu-
tion bounded above by twice the optimal weight, and runs inO(n2 logn) time. Later,
the running time was improved by Gabow, Goemans, and Williamson [3] (GGW) to
O(n2√log logn). Although theGGWalgorithm has the interesting property of obtain-
ing solutions to within the constant error of two, one might be interested in obtaining
even faster heuristics with reasonably small theoretical error. Clearly, on the surface the
GGW algorithm is superior to the hypergreedy and does not leave any incentive ever
to use the latter. In fact using theGGWalgorithm in the last stage of Onethird, already
produces a better heuristic than the hypergreedy (see below). As we shall see the (t, k)-
heuristic, which make use of the hypergreedy, is more powerful than the Onethird, and in
conjunction with theGGWalgorithm, as its auxiliary heuristic, results in fast heuristics
with doubly and triply logarithmic errors.

More specifically, suppose that in the (k + 1)th stage we use theGGW algorithm.
Onethird (or (t, k)-heuristic with t = 1) with k = 1

4 log3 log3 log3 n gives a heuris-
tic with O(n2) time complexity and 3(log3 log3 n)0.25 − 1 error. Even this heuristic is
better than the hypergreedy, both in time complexity and error. In the (t, k)-heuristic
with t = 4, k = 1

16 log3 log3 log3 n, we again get anO(n2)-time heuristic whose error,
3(log3 log3 n)0.125 − 1, is even better than that of the Onethird. Finally, fork = 1,
t = 1

4 log3 log3 log3 n, we obtain a heuristic whose error is( 3
2 log3 log3 log3 n + 2).

The corresponding time complexity isO(n2 log log logn), still an improvement over the
O(n2√log logn) time of theGGWalgorithm.

The (t, k)-heuristic makes use of a subgraph ofK (V), called thet-basic graph,
denoted byBGt (V), which is a collection of sparse connected components, selected
from K (V). In Section 2 we describe the construction of thet-basic graph. In Section 3
we describe the (t, k)-heuristic. In Sections 4 and 5 we analyze the error and the time
complexity of the (t, k)-heuristic, respectively. In Section 6 we analyze the (t, k)-heuristic
with theGGWas its auxiliary algorithm.

2. Thet-Basic Graph. In this section we describe the construction of thet-basic graph
and we analyze its time complexity. Fort = blog3 nc, the t-basic graph was made use
of in the hypergreedy heuristic [9]. Its time complexity was also analyzed in that paper.
However, in this section we reanalyze the construction and the time complexity, in a
more clear and simplified fashion than that of [9]. We construct thet-basic graph for any
given 0≤ t ≤ log3 n. Actually the 1-basic graph is simply the nearest-neighbor graph
and it was used in the Onethird heuristic.

Given a subsetW of the verticesV , the t-basic graphBGt (W), is a forest of trees,
spanningW. Thet-basic graph is constructed recursively from the (t − 1)-basic graph
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Fig. 1.The 1-basic graph—the nearest-neighbor graph ofK (W).

using edges inK (W). The (t − 1)-basic graph is a subgraph of thet-basic graph. The
main feature of thet-basic graph is that its total weight is bounded above by a certain
factor of the weight of the optimal perfect matching ofK (W). By apartial matchingof
W we mean a perfect matching of a subset ofW. From thet-basic graph we extract a
partial matching which will become a part of the final approximate solution.

The 1-basic graph,BG1(W), is the first graph formed and it is the nearest-neighbor
graph ofK (W) (Figure 1). LetO1(W) andE1(W) be theodd and theevenconnected
components ofBG1(V), with odd and even number of vertices, respectively. We refer
to these components ashypervertices.

To get BG2(W) from BG1(W), for each odd hypervertex inO1(W) we find its
nearest odd hypervertex, where the two are connected either by an edge or a set of edges
forming a shortest path inK (W), possibly passing through the even hypervertices of
E1(W) (Figure 2). The nearest-neighbor graph of the odd hypervertices contains old and
new even components,E2(W), and new odd components,O2(W), which all together
form BG2(W) (Figure 3).

This recursive procedure is repeated until thet-basic graph is formed. In general,
given BGi−1(W) we obtainBGi (W) by adding a set of edges inK (W) whose total
weight is bounded above by twice the weight of the optimal perfect matching ofK (W).
We denote byM∗W andω(M∗W) an optimal perfect matching ofK (W) and its total edge
weight, respectively.
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Fig. 2.The nearest-neighbor graph of odd hypervertices.

LEMMA 2.1. For each1≤ i ≤ t the total weight of all the edges added to BGi (W) to
form a nearest neighbor graph of odd hypervertices is bounded above by2ω(M∗W).

PROOF. We consider, for a giveni , the union ofBGi (W) and an optimal perfect match-
ing of K (W), M∗W. Edges ofM∗W partition the set of odd hypervertices into pairs, which
are connected by either an edge inM∗W or a chain of edges inM∗W passing through even
components ofEi (W).

In Figure 4 we show one such pair of odd hypervertices,A andB. Let A1 andB1 be
the nearest odd hypervertices ofA andB, respectively. The weight of the shortest path
connectingA andA1 is less than or equal to the weight of the shortest path connecting
A to B. Similarly the weight of the shortest path connectingB and B1 is less than or
equal to the weight of the shortest path connectingA to B. Thus the total weight of the
nearest-neighbor graph of all the odd hypervertices ofBGi (W) is bounded above by
twice the weight ofM∗W. From Lemma 2.1 we set,

THEOREM2.1. The total weight of the t-basic graph BGt (W) of K(W) is bounded
above by2tω(M∗W).

In particular, whent = blog3|W| − 1c, thet-basic graph is a collection of only even
hypervertices, and if additionallyW = V , this corresponds to the original hypergreedy
heuristic [10]. In the hypergreedy, the even hypervertices, where each of them admits a
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Fig. 3.The 2-basic graph with its odd and even hypervertices.

perfect matching, are converted into a perfect matching of the input graph, and the total
weight of the matching does not exceed the weight of thet-basic graph.

2.1. Time Complexity. Here we analyze the time complexity for constructing thet-
basic graph. Thet-basic graph is constructed int steps. The 1-basic graph, i.e., the
nearest neighbor graph ofW, is formed inO(|W|2) time. The time complexity of one

Fig. 4.A pair of odd hypervertices and their nearest odd neighbors; ——, edge in the nearest-neighbor graph,
, edge in the optimal perfect matching.
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Fig. 5.Generalized Voronoi Diagram.

step of the recursive procedure, when thei -basic graph is obtained from the (i −1)-basic
graph (1< i ≤ t), is the time complexity for the construction of the nearest-neighbor
graph of the odd hypervertices.

The construction of the nearest neighbor graph, consists of two stages. First, we build
theGeneralized Voronoi Diagram(GVD) relative to the set of odd hypervertices, which
is a partition of all hypervertices with respect to which odd hypervertex they are closest to
(Figure 5). Then we find for each odd hypervertex its nearest odd neighbor. In a GVD, for
every even hypervertex a shortest path to its nearest odd hypervertex (possibly through
other even hypervertices) is found. Each odd hypervertex and all the even hypervertices,
which are closer to it than to any other odd hypervertex, form aGeneralized Voronoi
Region(GVR). Every even hypervertex is connected to its nearest odd hypervertex by a
path constructed from the edges inK (W). We say that two GVRs areadjacentif there
is an edge inK (W) with endpoints in the corresponding GVRs. Since there is always
such an edge, each two GVRs are adjacent.

Before we analyze the time complexity of the construction of thet-basic graph, we
consider the problem of computing the nearest-neighbor graph of the odd hypervertices
in BGi (W), 1≤ i ≤ t − 1.

THEOREM2.2. Computing the nearest-neighbor graph of the odd hypervertices in
BGi (W) can be done in O(|W|2) time.
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The proof of Theorem 2.2 follows from the following two lemmas.

LEMMA 2.2. The time complexity of constructing the GVD of BGt (W) is O(|W|2).

PROOF. First, we define an auxiliary graph with a root nodeR to be connected to
each odd hypervertex by a zero-weight edge. LetE andO be the sets of the even and
odd hypervertices, respectively. We apply Dijkstra’s shortest-path algorithm to find all
shortest paths from the hypervertices to the rootR. Consider an even hypervertexe1 ∈ E
and the first odd hypervertexo1 ∈ O which appears on the shortest path frome1 to R. We
claim thato1 is the nearest odd neighbor ofe1. We assume thato2 6= o1 is the nearest odd
neighbor ofe1. Then the weight of the path frome1 to the root viao2 would be smaller
than the weight of the corresponding path frome1 to the root viao1, a contradiction.
Therefore, the time complexity of constructing the GVD ofBGt (W) is O(|W|2).

The following was proved in [9].

LEMMA 2.3. Given an odd hypervertex y and GVR(y), the GVR containing y, assume
z is a nearest odd neighbor of y. Then there exists an edge(u, v), such that shortest path
from y to z consists of the path from y to u, u ∈ GVR(y), the edge(u, v), v ∈ GVR(z),
and the path fromv to z.

By the above lemma, given the GVD, we can determine inO(|W|2) operations the
nearest odd neighbor for each odd hypervertex inBGi (W), 1≤ i ≤ t−1, using edges in
K (W). We examine all the edges inK (W) and regard those with endpoints in different
GVRs, and select for each pair of GVRs such edge, which minimizes the lengths of the
shortest path between the corresponding odd hypervertices. Thus,

THEOREM2.3. The time complexity of constructing BGt (W) is O(t |W|2).

3. Description of the(t, k)-Heuristic. The (t, k)-heuristic is a generalization of the
Onethird heuristic for perfect matching, and the hypergreedy. The (t, k)-heuristic is
defined by two given integer parameters,t andk ranging from 1 toblog3 nc. It consists
of (r+1) stages,r ≤ k, where at each stagej = 0, 1, . . . , r−1, a complete graphK (Vj ),
Vj ⊆ V , is processed. GivenK (Vj ), V0 = V , we extract thet-basic graph,BGt (Vj ).
By using thet-basic graph, we select a partial matching which covers a portion or
possibly all the vertices inVj . We remove fromVj all the vertices matched by the partial
matching, while all the remaining unmatched vertices form a complete graphK (Vj+1),
to be processed in the next stage. Afterr stages, ifr = k, the remaining unmatched
vertices,Vr+1, are matched by any auxiliary perfect matching algorithmA, which can
be either another heuristic for perfect matching, or an exact algorithm.

For t = 1, the (t, k)-heuristic uses only the nearest-neighbor graph (1-basic graph),
and reduces to the greedy variation of the Onethird heuristic which in turn allows the
selection of a partial matching with at leastd 1

3nj e edges,nj = |Vj |. The crucial property
of the (t, k)-heuristic is that by using thet-basic graph we can select a partial matching,
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with at leastd 1
2((3

t − 1)/3t )nj e edges. This is because the size of each of the odd
hypervertices (if there are any) in thet-basic graph is at least 3t . Thus at each stage, the
larger the parametert , the more edges can be selected into a partial matching and this
results in a stronger class of heuristics than the Onethird. The appropriate choice of the
parameterst andk depend on the specific auxiliary algorithmA, to be used in the last
stage. More formally,

(t, k)-heuristic for general weights satisfying the triangle inequality

Input: K (V), V0 = V , (0≤ t, k ≤ blog3 nc) and auxiliary heuristicA.
Output: A perfect matching ofV .

For each stagej = 0, 1, . . . , k− 1, if Vj 6= ∅: do
begin
1. Construct thet-basic graph,BGt (Vj ).
2. In every connected component ofBGt (Vj ):

(a) Duplicate edges.
(b) Extract an Euler tour.
(c) Convert the tour into a Hamiltonian cycle of lesser weight.
(d) Find maximum cardinality minimum weight perfect matching in

the cycle.
3. Select a matching formed by the union of the maximum cardinality mini-

mum weight matchings obtained in Step 2(d), which is either a partial or
a perfect matching ofVj .

4. All unmatched vertices, if there are any, formK (Vj+1).
end
Auxiliary Stage (k+1): Match all the remaining vertices using an auxiliary
algorithmA for perfect matching.

For eachj , we denote byETj , Hj , Sj , the union of Euler tours, Hamiltonian cycles,
and maximum cardinality minimum weight perfect matchings obtained from all the
connected component ofBGt (Vj ).

For t = 1 the above algorithm is equivalent to a greedy variation of the Onethird.
However, the selection of the partial matchingSj in Step 3 is different in the original
Onethird, where we first sort all the edges inHj , the union of all Hamiltonians, then
instead of Step 2(d) we select exactly1

2b(3t − 1)/3tc shortest edges in such a way that
one edge is chosen at a time and all the edges incident to it are removed.

For j = 0, 1, . . . , k − 1, let M∗j be an optimal perfect matching ofK (Vj ). At each
stagej , j = 0, 1, . . . , k − 1, we construct thet-basic graphBGt (Vj ) (Step 1), whose
total weight does not exceed 2tω(M∗j ). There are two types of hypervertices in thet-
basic graph, even and odd, with an even and odd number of vertices, respectively. Each
even hypervertex admits a perfect matching.

To select a partial matchingSj of K (Vj ) from thet-basic graph, we first duplicate the
edges inBGt (Vj ) (Step 2(a)), which results in a new graph, where each component is
Eulerian. A graph is said to be Eulerian if each of its vertices has an even degree. Such a
graph admits a closed tour, called an Euler tour, which visits each edge exactly once, e.g.,
see [8]. We construct an Euler tour in every connected component of thet-basic graph
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Fig. 6.Hamiltonian cycles,Hj , extracted from Euler tours,ETj .

(Step 2(b)), andETj is the union of all such tours. Figure 3 can be viewed as the duplicated
2-basic graph. The weight of the edges inETj is bounded above by twice the weight of
thet-basic graph. The Euler tours are converted into Hamiltonian cycles (Step 2(c) and
Figure 6), whereHj is their union. A Hamiltonian cycle of a connected component is
a cycle where each vertex is visited exactly once. From the triangle inequality, the total
weight of the edges inHj is less than or equal to the total weight of the edges inETj .

We find a maximum cardinality minimum weight matching in each Hamiltonian cycle
(Step 2(d) and Figure 7). The union of such matchings contains at most half of all the
edges inHj , and the total edge weight of the union is bounded above by1

2ω(Hj ). These
edges (Figure 8) form a partial matchingSj . The total weight ofSj does not exceed
half the weight of the Hamiltonians. The remaining unmatched vertices, if there are any,
result in a new complete graphK (Vj+1), to be processed in the( j +1)th stage (Figure 8).
We repeat this process until either we obtain a perfect matching ofV in r ≤ k stages or
at the completion ofkth stage we apply a perfect matching algorithmA.

Each j th stage of the heuristic can be implemented inO(t (nj )
2) time. We show that

if the parameterk is selected appropriately, the (t, k)-heuristic runs inO(tn2) time.

4. Analysis of the(t, k)-Heuristic. In this section we present the analysis of the error
of the (t, k)-heuristic. Given a subsetW of V , let Sbe a partial matching selected from
W and letM∗W and M∗W′ be the optimal perfect matchings ofW andW′, respectively,
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Fig. 7.The union of maximum cardinality minimum weight matchings, represented by the thick edges, obtained
from Hj .

whereW′ is the set of unmatched vertices ofW left after selectingS. The following
relates the weights ofM∗W′ , M∗W, andS.

LEMMA 4.1 [5]. ω(M∗W′) ≤ ω(M∗W)+ ω(S).

LEMMA 4.2. At each stage j= 0, 1, . . . , r − 1, r ≤ k of the (t, k)-heuristic we
can always select from K(Vj ) a partial matching Sj containingd 1

2((3
t − 1)/3t )nj e

edges.

PROOF. First we claim that if there is an odd hypervertex in thet-basic graph, its size
is at least 3t . Note, if there is no odd hypervertex in thet-basic graph, thenSj is simply a
perfect matching ofVj and the lemma is true. Clearly, this is true fort = 1. Fort > 1, we
only need to observe that an odd hypervertex in thet-basic graph is created from at least
three odd hypervertices in the(t −1)-basic graph. LetC1,C2, . . . ,Cl be the odd cycles,
and letCl+1, . . . ,Cp be the even cycles inHj . There are(|Ci | − 1)/2 ≥ (3t − 1)/2,
i = 1, . . . , l , and|Ci |/2, i = l + 1, . . . , p, edges in any maximum cardinality matching
of each odd and even cycle, respectively. Thus we can select from each cycle at least
d((3t − 1)/2)(|Ci |/3t )e, i = 1, . . . , p, vertex disjoint edges. The proof of the lemma is
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Fig. 8. Partial matchingSj formed the maximum cardinality minimum weight matchings of the Hamiltonian
cycles (t = 2), and the remaining unmatched vertices to be processed in the next stage.

now immediate from the following inequalities:⌈
1

2

(
3t − 1

3t

)
nj

⌉
≤

p∑
i=1

⌈
3t − 1

2

|Ci |
3t

⌉
.

LEMMA 4.3. The partial matching Sj selected at each stage j, j = 0, 1, . . . , r − 1,
r ≤ k, of the(t, k)-heuristic has weight bounded above by

ω(Sj ) ≤ 2tω(M∗j ).

PROOF. The partial matchingSj is selected fromHj . The total weight ofHj is bounded
above by 4tω(M∗j ), a bound on the duplicated weight of thet-basic graph ofK (Vj ).
We find a maximum cardinality minimum weight matching in each Hamiltonian cycle.
If the size of each cycle is even, then, clearly,ω(Sj ) ≤ 1

2ω(Hj ), so that the lemma is
proved. If the size of a cycle is odd, then using the triangle inequality it is easy to argue
that the maximum cardinality minimum weight matching of that cycle must have weight
less than half of that of the cycle.

A perfect matching ofK (V), produced by the (t, k)-heuristic is the union of partial
matchings,Sj , selected at stagesj = 0, 1, . . . , r − 1, r ≤ k. Let Mj be the perfect
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matching ofK (Vj ), produced by the heuristic. ThusMj is the union of partial matchings
produced at stagesj, j + 1, . . . , k, i.e., Mj =

⋃r
i= j Si . In particular,M0 is a perfect

matching ofK (V) produced by the heuristic.
The error for stagej is the ratio of the weight ofMj to the weight ofM∗j , the

optimal perfect matching ofK (Vj ). We denote the error byf (nj ) = ω(Mj )/ω(M∗j ),
for ω(M∗j ) 6= 0. For a degenerate case, whenω(M∗j ) = 0, Vj can be viewed as a set
of double points, and the distance between each two such points is 0, and the perfect
matchingMj , produced by the heuristic is identical toM∗j , thereforef (nj ) can be defined
to be 1. In the following lemma, we relate errors in two consecutive stages.

LEMMA 4.4. For each j= 0, 1, . . . , r − 1, r ≤ k, we have

f (nj ) ≤ 2t + [2t + 1] f (nj+1).

PROOF. From Lemma 4.1 we getω(M∗j+1) ≤ ω(M∗j )+ω(Sj ). From this and Lemma 4.3
we get

ω(M∗j+1)

ω(M∗j )
≤ 1+ 2t.

Given Mj andMj+1, the perfect matching produced by the heuristic forK (Vj ) and
K (Vj+1), respectively, we have

ω(Mj ) = ω(Sj )+ ω(Mj+1).

From Lemma 4.3 we get

ω(Mj ) ≤ 2tω(M∗j )+ ω(Mj+1).

The proof of the lemma follows by dividing the above inequality byω(M∗j ), writing

ω(Mj+1)

ω(M∗j )
= ω(Mj+1)

ω(M∗j+1)
· ω(M

∗
j+1)

ω(M∗j )
,

and using the bound of the last ratio.

The overall error of the (t, k)-heuristic can be expressed by the ratio

f (n) = f (n0) = ω(M0)

ω(M∗0)
,

whereM0 is a perfect matching ofK (V), produced by the (t, k)-heuristic, andM∗0 is the
optimal perfect matching ofK (V).

LEMMA 4.5. For j = 0, 1, . . . , r we have

nj ≤
(

1

3t

) j

n.
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PROOF. There are at leastd((3t − 1)/3t )nj )e vertices matched bySj at stagej and the
remainingnj+1 vertices which will be processed in the next stage satisfy

nj+1 ≤ nj − 2

⌈
1

2

(
3t − 1

3t

)
nj

⌉
.

Note that we can write((3t − 1)/2)nj = 3tm− r , wherem and 0≤ r ≤ 3t − 1 are
integers. Thus

nj+1 ≤ nj − 2

⌈
3tm

3t
− r

3t

⌉
= nj − 2m.

Sincem= 1
2((3

t − 1)/3t )nj + r/3t , we get

nj+1 ≤ nj − 2m= nj − 2
1

2

3t − 1

3t
nj − 2

r

3t
= nj

3t
− 2

r

3t
≤ nj

3t
.

From the above the proof of the lemma is immediate.

THEOREM4.1. Let K(V) be a complete edge-weighted graph with n vertices, satisfying
the triangle inequality, the error of(t, k)-heuristic is bounded above by

f (n) ≤
{
(2t + 1)r+1− 1 for r < k,
(2t + 1

)r
[1+ fA(nr )] − 1 for r = k,

where nr ≤ (1/3t )r n, and fA(nr ) is the error of the auxiliary algorithmA.

PROOF. After r stages the (t, k)-heuristic either matches all the vertices inK (V), or
there arenr unmatched vertices left. We apply recursively Lemma 4.4, and get the overall
error f (n) = f (n0),

f (n) ≤ 2t
r−1∑
i=0

(2t + 1)i + (2t + 1)r z,

wherez= 2t if r < k, andz= fA(nr ) if r = k. Equivalently,

f (n) ≤ (2t + 1)r [1+ z] − 1.

5. Time Complexity of the(t, k)-Heuristic. In this section we derive a bound on the
worst-case time complexity of the (t, k)-heuristic.

THEOREM5.1. The(t, k)-heuristic can be implemented in T(n) = O(tn2) time.

PROOF. For j = 0, . . . , r − 1, from Theorem 2.3, thet-basic graph ofK (Vj ) can be
implemented inO(t (nj )

2) time. From thet-basic graph, we construct a collection of
Euler tours, then Hamiltonian cycles, inO(nj ) time. We claim that finding a maximum
cardinality minimum weight matching of a Hamiltonian cycle is linear in the size of the
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Fig. 9.One of eleven maximum cardinality matchings of a cycle of size 11.

cycle. Let the sequence{0, 1, . . . ,q − 1} correspond to the edges in a cycle of sizeq,
in the order they appear. Ifq is even, then there are two different maximum cardinality
matchings, each of sizeq/2, and we compute the weight of each of the two and select
the one with the smaller weight. Forq odd, there areq different matchings, each of size
(q − 1)/2. We can view the cycle as a circular list ofq edges and each of its maximum
cardinality matching as a list of(q − 1)/2 edges, see Figure 9. First we generate the
maximum cardinality matching corresponding to{0, 2, 4, . . . ,q − 3}. We compute the
weight of this matching inO(q) time. We replace the first (the edge 0) with the last
edge in the cycle (the edge(q − 1)), and compute in a constant time the weight of the
resulting new matching. We repeat this processO(q) times and obtain the weight of
all the maximum cardinality matchings from which we select the one with the smallest
weight. Hence the proof of the above claim.

The union of the maximum cardinality minimum weight matchings of all the Hamil-
tonians forms a partial matchingSj . Therefore one stage of the (t, k)-heuristic can be
implemented inO(t (nj )

2) time, and, from Lemma 4.5, the overall time complexity is
bounded above by

T(n) = O

(
r−1∑
j=0

t (nj )
2

)
= O

(
r−1∑
j=0

t

(
1

3t

)2 j

n2

)
= O

(
tn2

r−1∑
j=0

(
1

3t

)2 j
)

= O

(
tn2 1

1− 1/32t

)
= O(tn2).

6. Special Cases with Doubly and Triply Logarithmic Errors. As a corollary of
Theorem 4.1 and Theorem 5.1, we show that if we use theGGWalgorithm as the auxiliary
heuristic of the(t, k)-heuristic, the error of the resulting heuristic is a very slowly growing
function of n and its time complexity isO(tn2). Thus we obtain heuristics which are
faster than theGGWalgorithm and have competitive errors.

COROLLARY 6.1. The error of the(t, k)-heuristic for t = 1, 2, . . . , 1
4 log3 log3 log3 n

and after k= (1/4t) log3 log3 log3 n, using the GGW algorithm as the possible auxiliary
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heuristic is bounded above by

f (n) ≤ 3(log3 log3 n)(1/4t) log3(1+2t) − 1,

and its time complexity is O(tn2).

PROOF. Let TA(n) be the time complexity of the auxiliary perfect matching algorithm
A. We want the parameterk to satisfyO(TA(nk)) = O(tn2), which would guarantee
that the overall time complexity of the resulting heuristic to remain would beO(tn2)

time. ForGGW TA(n) = O(n2√log logn), and fA(n) ≤ 2. If r = k we use this
algorithm to match the remainingnk vertices. In order to find the appropriate choice for
the parametersk andt , the following has to be satisfied:

(nk)
2
√

log3 log3nk ≤ tn2.

Sincenk ≤ (1/3t )kn (see Lemma 4.5), it is easy to check that the above is satisfied
whenk = (1/4t) log3 log3 log3 n and 1≤ t ≤ 1

4 log3 log3 log3 n. Thus from Theorem 4.1
we obtain

f (n) ≤ [2t + 1]k[1+ fA(nk)] − 1≤ 3[2t + 1](1/4t) log3 log3 log3 n − 1

= 3(log3 log3 n)(1/4t) log3(1+2t) − 1.

From Corollary 6.1, the(t, k)-heuristic, fort = 1 andk = 1
4 log3 log3 log3 n (which

becomes a version of the Onethird heuristic), gives anO(n2)-time heuristic with the
error of 3(log3 log3 n)0.25− 1. This heuristic is better than the hypergreedy both in time
and error. Fort = 4 andk = 1

16 log3 log3 log3 n, the(t, k)-heuristic also gives anO(n2)-
time heuristic with error bounded above by 3(log3 log3 n)0.125− 1, which is even better
than that of the Onethird. Finally, fork = 1 andt = 1

4 log3 log3 log3 n, we obtain a
solution bounded above by( 3

2 log3 log3 log3 n+ 2). The corresponding time complexity
is O(tn2) = O(n2 log log logn), still an improvement over theO(n2

√
log3 log3) time

of theGGW algorithm.

REMARKS. Our algorithm is an attractive alternative to theGGW algorithm for two
reasons. First, it offers afull range of speed-approximation tradeoffs, whereasGGW
has fixed performance. Second, in certain regions of this tradeoff it is faster thanGGW
(admittedly, only in an asymptotic sense); in other words, it relates toGGWas it relates to
the exact algorithm: It sacrifices optimality for efficiency. However, it is worth noting in
closing that, from the practical point of view, and for the importantEuclideancase of the
matching problem, even theweak greedyheuristic [6], whose theoretical error is 2n/2−1,
ironically provides experimental solutions with errors bounded within [1.29, 1.45].
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