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ABSTRACT 

Behavioral consequences of increasing adult hippocampal neurogenesis 

Alexis S. Hill 

The hippocampus is a brain structure involved in memory as well as anxiety and 

depression-related behavior. One unique property of the hippocampus is that adult neurogenesis 

occurs in this region. Rodent studies in which adult hippocampal neurogenesis is ablated have 

shown a role for this process in the cognitive domain, specifically in pattern separation tasks, as 

well as in mediating the behavioral effects of antidepressants. These studies have furnished the 

intriguing hypothesis that increasing adult hippocampal neurogenesis may improve these 

functions and therefore serve as a target for novel treatments for cognitive impairments as well 

as depression and anxiety disorders. Here, we use both genetic and pharmacological models to 

increase adult neurogenesis in mice. Under baseline conditions, we find that increasing adult 

hippocampal neurogenesis is sufficient to improve performance in a fear-based pattern 

separation task, but has no effect on exploratory, anxiety or depression-related behavior. In mice 

exposed to voluntary exercise, increasing adult hippocampal neurogenesis increases exploration, 

without affecting anxiety or depression-related behavior. Finally, in mice treated with chronic 

corticosterone, a model of anxiety and depression, increasing adult hippocampal neurogenesis is 

sufficient to prevent the behavioral effect of CORT on anxiety and depression-related behavior. 

Here, we therefore describe dissociations between the effects of increasing adult hippocampal 

neurogenesis under baseline, voluntary exercise and chronic stress conditions. Together, our 

results suggest that increasing adult hippocampal neurogenesis has therapeutic potential for both 

cognitive, and anxiety and depression-related disorders. 
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Chapter 1: Introduction 

1.1  The hippocampus 

The hippocampus is a large, bilateral brain region that has been implicated in playing a 

role in both memory and mood-related behavior. The hippocampus is made up of subregions 

with distinct connectivity and functions, which are highly homologous in humans and mice. 

Therefore, extensive experimentation has been conducted in mice to understand the structure and 

function of this brain region, with presumed implications for memory and mood-related function 

in humans. 

 

1.1.1 Anatomy  

The hippocampus is comprised of three main connected subregions: the dentate gyrus, 

area CA3 and area CA1, as originally described by Lorente de No (Lorente de No 1934). 

Additionally, the hippocampal complex includes two cortical regions located posterior to the 

hippocampal proper: the entorhinal cortex, which provides the main glutamatergic input to the 

hippocampus, and the subiculum, which along with CA1, provides the main hippocampal output. 

In addition to glutamatergic input from the entorhinal cortex, the hippocampus also receives 

excitatory input from the mammillary bodies (Wyss et al. 1979, Kiss et al. 2000) as well as 

serotonergic input from the raphe nucleus (Conrad et al. 1974, Moore and Halaris 1975), 

cholinergic input from the medial septum (Mosko et al. 1973, Amaral and Kurz 1985), 

noradrenergic input from the locus coeruleus (Swanson and Hartman 1975), and dopaminergic 

input from the ventral tegmental area (Gasbarri et al. 1997). 
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Within the hippocampus, the main pathway of synaptic connectivity is described by the 

trisynaptic circuit, which consists of projections from entorhinal cortex to dentate gyrus 

(perforant path), dentate gyrus to CA3 (mossy fibers) and CA3 to CA1 (Schaffer collaterals) as 

depicted in Figure 1.1. However, there are additional synaptic connections between these 

regions, including projections from entorhinal cortex to CA3 and CA1, as well as numerous 

excitatory and inhibitory interneurons that project within and between subregions (not shown in 

diagram). The hippocampus extends from an antero-dorsal pole to a postero-ventral pole, 

referred to as the longitudinal axis. Throughout the longitudinal axis, circuitry within the 

hippocampus is maintained such that the principal cells of each hippocampal subregion (dentate 

gyrus, CA3, CA1) project to cells located within a similar plane of the longitudinal axis. 

 

 

Figure 1.1 Diagram of the hippocampus 

Hippocampal circuitry consists of the trisynaptic circuit (shown in blue), additional projections from the 
entorhinal cortex to areas CA3 and CA1 (shown in black), as well as many classes of interneurons that 
project within and between subregions (not shown). Dentate gyrus (DG). 
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The dentate gyrus is easily recognized by the densely packed cell bodies of granule cells, 

the principle cells of this region, which are found in what is referred to as the granule cell layer, 

organized into two blades that make up a sideways v-shaped structure (Figure 1.1). Dentate 

granule cells project to CA3 via axons referred to as mossy fibers, due to the many varicosities 

found along these axons that give them a “mossy” appearance. The mossy fibers form a powerful 

“detonator”-like synapse onto CA3 pyramidal cells, where bursting from one single mossy fiber 

has been found to be sufficient to induce firing in a downstream CA3 pyramidal cell (Henze et 

al. 2002). Between the two blades of the dentate gyrus is the hilus, a polymorphic region filled 

with interneurons, as well as granule cell mossy fiber axons. Between the hilus and the granule 

cell layer is a thin layer referred to as the subgranular zone (SGZ), a vascular niche where stem 

cells are located that produce adult-born granule cells. 

 

1.1.2 Function 

Through various studies in both rodents and humans, the hippocampus has been shown to 

play a role in both memory-related tasks as well as anxiety and mood-related behavior. 

Patient and animal lesion studies initially implicated the hippocampus as an important 

brain region for memory. In the famous case study of H.M., resection of the temporal lobes, 

which includes the hippocampus, led to severe anterograde amnesia, an inability to create new 

explicit memories (Scoville and Milner 1957). Hippocampal lesions have also been shown to 

impact memory in rodents, impairing performance in fear conditioning tasks, in which a mouse 

learns to associate a shock with a context (Phillips and LeDoux 1992), and in spatial memory 

tasks such as the Morris water maze, where a mouse uses visual cues to learn the location of a 

hidden platform in an arena filled with water (Morris et al. 1982). 
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There has long been interest in understanding how the hippocampus encodes memories, 

and the connectivity of hippocampal subregions has been used to develop theoretical hypotheses 

underlying memory processes. As relevant to this thesis, there are two distinct and unique 

characteristics of hippocampal circuitry that have generated hypotheses about memory. The first 

is the dense recurrent collateral projections between CA3 pyramidal cells, forming an auto 

associational network (Swanson et al. 1981, Rolls 2013). This type of connectivity is thought to 

connect cells representing different aspects of a given experience, underlying the process of 

pattern completion, through which a full memory or experience can be remembered when only 

partial cues are presented (Marr 1971, O'Reilly and McClelland 1994, Rolls 1996, McHugh et al. 

2007). 

A second characteristic of hippocampal circuitry that is theorized to be important for 

memory, are the mossy fiber inputs from dentate granule cells to CA3 pyramidal cells. These 

inputs are relatively sparse (Amaral et al. 1990), and granule cells are known to have relatively 

low levels of activity (Jung and McNaughton 1993, Chawla et al. 2005), therefore allowing a 

large coding space, through which there are many possible patterns of activation. This is thought 

to orthogonalize the activity from similar inputs, thus underlying pattern separation, the process 

through which similar experiences are distinguished (O'Reilly and McClelland 1994). Supporting 

this hypothesis, the activity of dentate granule cells has been shown to be sensitive to slight 

changes in environment (Leutgeb et al. 2007). Additionally, the large mossy fiber terminal 

boutons provide a powerful input (Henze et al. 2002), enabling the relatively sparse input from 

the dentate gyrus to significantly influence CA3 activity. This input is therefore thought to 

override activity in recurrent collaterals, allowing for the formation of new associations between 

CA3 pyramidal cells, which may underlie new memory formation (Treves and Rolls 1992).  
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The dentate gyrus has been implicated as playing a role in pattern separation based on 

animal behavioral studies thought to require pattern separation. Rodents with dentate gyrus 

lesions display impaired behavior in a matching to place task, in which animals must 

discrimination between subtle differences in object placement (Gilbert et al. 2001, Hunsaker et 

al. 2008). Pattern separation has also been tested using contextual fear discrimination learning, 

where animals are exposed to two similar contexts, only one in which they receive a shock 

(Wehner and Radcliffe 2004), and it has been shown that mice lacking the NR1 subunit of the 

NMDA receptor specifically in dentate granule cells are impaired in contextual discrimination in 

this type of task (McHugh et al. 2007). In humans, when people are shown two pictures of 

similar items and need to determine whether the pictures are the same or different, increased 

activation in functional magnetic resonance imaging (fMRI) experiments is seen in the dentate 

gyrus and CA3 (Bakker et al. 2008, Lacy et al. 2011), suggesting that in humans these brain 

regions may also be involved in pattern separation and completion. Together, rodent and human 

studies have implicated a role for the hippocampus in memory, yet the precise hippocampal 

mechanisms underlying processes such as pattern separation and completion are not fully 

understood. 

The hippocampus has also been shown to play a role in regulating mood. Human imaging 

studies have reported decreased hippocampal volume in patients with a history of depression 

(Sheline et al. 1996, Videbech and Ravnkilde 2004), and increased hippocampal volume 

following antidepressant treatment (Frodl et al. 2008), suggesting that hippocampal processes 

may be involved in depression and antidepressant action. 

Animal studies have further implicated the hippocampus as an important brain structure 

in mediating the effects of antidepressants, as several changes in the hippocampus are observed 
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after antidepressant treatment, some of which have been shown to be necessary or sufficient for 

the effects of antidepressants on mood-related behavior. For example, in rodents, adult 

hippocampal neurogenesis has been shown to be necessary for some of the behavioral effects of 

antidepressants (Santarelli et al. 2003), while overexpression of CREB or BDNF in the dentate 

gyrus is sufficient for antidepressant-like effects on behavior (Chen et al. 2001, Shirayama et al. 

2002). The hippocampus is therefore a key structure for modulating mood. 

 

1.1.3 Dorsal and ventral hippocampal subregions 

Accumulating evidence suggests that the hippocampus can be split into two 

compartments along the longitudinal axis, referred to as dorsal and ventral subregions, which 

vary in anatomical connectivity, genetic expression and function (Fanselow and Dong 2010).  

Anatomical differences along the longitudinal axis have been described in detail 

(Fanselow and Dong 2010). Although the internal synaptic connectivity within the hippocampus 

is preserved throughout the longitudinal axis, input and output to the hippocampus varies. The 

distinction between connections of the dorsal and ventral hippocampus was initially described in 

extensive tracing studies by Swanson and Cowan, showing that efferent projections vary along 

the longitudinal axis (Swanson and Cowan 1977). Interestingly, projections from the dorsal 

hippocampus project to regions thought to be involved in navigation and locomotion, such as the 

mammillary nuclei and anterior thalamus (Taube 2007), as well as to the ventral tegmental area 

through a relay in the lateral septum (Swanson and Kalivas 2000, Luo et al. 2011). On the other 

hand, the ventral hippocampus projects to regions thought to be involved in emotion, motivated 

behavior and regulation of the neuroendocrine systems, such as the amygdala, bed nucleus of the 

stria terminalis (BNST) and hypothalamus (Fanselow and Dong 2010). Hippocampal input also 
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varies along the longitudinal axis. Entorhinal projections to the dorsal and ventral hippocampus 

originate from different regions of the entorhinal cortex (Dolorfo and Amaral 1998), which 

receive input from different cortical regions (Burwell and Amaral 1998). Additionally, 

serotonergic input is more dense in the ventral dentate gyrus (Gage and Thompson 1980), and 

serotonin receptors have different expression levels along this axis (Tanaka et al. 2012). 

Genomic studies have shown that dozens of genes have varied expression along the 

hippocampal longitudinal axis (Leonardo et al. 2006) (Allen Brain Atlas). The dentate gyrus, 

CA3 and CA1 subregions can each be further divided along this axis into subregions with 

different expression profiles based on this data (Thompson et al. 2008, Dong et al. 2009). 

Initial indications that dorsal and ventral hippocampal regions have distinct functions 

came from lesion studies, which showed that lesions specifically of the dorsal hippocampus 

impair performance on cognitive-related tasks including the Morris water maze, fear 

conditioning and the radial arm maze (Moser et al. 1995, Pothuizen et al. 2004), while lesions 

specifically of the ventral hippocampus decrease anxiety-like behavior, in tests such as the 

elevated plus maze (Kjelstrup et al. 2002, McHugh et al. 2004). Within the dentate gyrus, this 

distinction has been further characterized using optogenetics, which has shown that disruption of 

activity of dorsal dentate granule cells impairs contextual fear conditioning, while activation of 

ventral dentate granule cells decreases anxiety (Kheirbek et al. 2013). Together, anatomical, 

genetic expression and functional studies show that dorsal and ventral hippocampal regions have 

distinct properties. 
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1.2 Adult hippocampal neurogenesis 

An interesting feature of the hippocampus is the presence of neural stem cells that 

continue to produce new neurons throughout adulthood. This process of neurogenesis has been 

observed in humans, and in rodents, it has been shown to play an important role in mediating 

hippocampal function. 

Although neurogenesis was long thought to only occur during development, we now 

know that it continues in specialized regions of the adult brain. In the 1960s, Altman and Das 

first described the presence of neurogenesis in the adult hippocampus of the rat (Altman and Das 

1965), and many subsequent studies have characterized two neurogenic niches in the adult rodent 

brain: the subgranular zone in the dentate gyrus, and the subventricular zone, where adult-born 

cells are produced that migrate to the olfactory bulb (Altman 1969, Lois and Alvarez-Buylla 

1994). In the 1980s, this finding was extended to the presence of adult neurogenesis in the 

female canary (Goldman and Nottebohm 1983), and to many regions in other fish, amphibians, 

reptiles and birds (Barker et al. 2011). 

In the 1990s, the first report of neurogenesis in the adult human hippocampus was 

reported in cancer patients who were injected with bromodeoxyuridine (BrdU), a thymidine 

analog that becomes incorporated into the DNA of dividing cells at the time of injection 

(Eriksson et al. 1998). This technique is also widely used in rodent studies. BrdU becomes 

incorporated not only into cells that are dividing at the time of injection, but also into any 

progeny from these cells, allowing assessment of levels of neurogenesis from the time of 

injection until death.  

Adult neurogenesis in humans has also been assessed using Carbon-14 levels in brain 

tissue samples. Since the environmental levels of Carbon-14 have varied over the last several 
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decades due to nuclear bomb testing in the 1950s and 1960s, comparison of Carbon-14 levels in 

brain tissue with the expected levels that would be found in cells born either at the time of an 

individual’s birth or during an individual’s adult life, indicates whether adult neurogenesis has 

occurred (Spalding et al. 2005). These studies have provided additional evidence for adult-born 

neurons in the human hippocampus (Spalding et al. 2013). Unexpectedly, a recent study using 

this method also reported evidence of adult-born neurons in the striatum (Ernst et al. 2014). It 

has therefore been suggested that in humans, adult-born cells may migrate from the SVZ to the 

striatum rather than to the olfactory bulb, as has been found in rodents, since cells have not been 

found in the human olfactory bulb that were born after the 1
st
 year of life (Bergmann et al. 2012). 

 

1.2.1 Process of adult hippocampal neurogenesis 

 Since these initial discoveries, much work has been conducted to elucidate the detailed 

process of adult hippocampal neurogenesis. Adult-born neurons in the hippocampus are 

generated from radial glia-like stem cells located in the subgranular zone (SGZ), a thin region 

inside the inner granule cell layer, which is characterized by dense vasculature, forming a niche 

for the production of new neurons (Palmer et al. 2000). During the process of adult hippocampal 

neurogenesis, stem cells in the SGZ divide to primarily produce cells that mature into neurons, 

however astrocytes, and possibly oligodendrocytes, are also produced (Bonaguidi et al. 2011, 

Dranovsky et al. 2011, Chetty et al. 2014). 
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Figure 1.2 Adult hippocampal neurogenesis schematic 

Schematic of adult hippocampal neurogenesis and properties of maturing adult-born cells. Adapted 
from (Duan et al. 2008). 

 

Stem cells located in the adult SGZ have been characterized into three types based on 

morphology and genetic expression. The first, ‘Type I’ stem cells, also referred to as radial glia-

like cells, are characterized by an apical dendrite that courses through the granule cell layer, 

while Type II and Type III cells have only short processes (Seri et al. 2001, Duan et al. 2008). As 

can be seen in Figure 1.2, different cell types can be defined based on genetic expression 

profiles. Type I stem cells express glial fibrillary acidic protein (GFAP), an intermediate filament 

protein that is also expressed by astrocytes; Type I and Type II cells both express nestin, another 
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intermediate filament protein expressed transiently during development; and Type III cells 

express neither of these proteins (Fukuda et al. 2003). 

The promoters of these genes have been used to make transgenic mouse lines, which 

have been used to characterize and manipulate adult hippocampal neurogenesis. These studies 

have shown that Type I stem cells are generally quiescent, slowly dividing cells, while Type II 

cells, also referred to as transient amplifying cells, divide more rapidly (Filippov et al. 2003, 

Kronenberg et al. 2003). 

 An additional complexity to the process of adult hippocampal neurogenesis is that during 

maturation, 60-80% of adult-born neurons undergo cell death between 1 day and 2 weeks of age 

(Cameron et al. 1993, Sierra et al. 2010). Adult-born neurons that survive this period continue to 

mature by extending dendrites into the molecular layer (ML in Figure 1.2) of the dentate gyrus, 

and an axon through the hilus to CA3. Immature adult-born neurons can be identified by 

expression of doublecortin (DCX), a microtubule binding protein involved in migration of 

developing neurons, which is expressed in granule cells until four weeks of age (Brown et al. 

2003). By four weeks of age, adult-born neurons express mature neuronal markers (van Praag et 

al. 2002). 

 Adult-born hippocampal neurons have unique electrophysiological properties as they 

develop into mature granule cells. During the maturation process, young neurons display 

increased excitability (Wang et al. 2000, Schmidt-Hieber et al. 2004, Esposito et al. 2005), which 

is thought to affect the dentate gyrus and hippocampal signaling in a unique manner (Deng et al. 

2010). As opposed to fully mature granule cells, developing adult-born granule cells express the 

chloride importer NKCC1 (Ge et al. 2006), and the NMDA receptor subunit NR2B (Ge et al. 

2007), which lead to a depolarized resting membrane potential, high levels of intracellular 
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chloride and high input resistance, which produce a hyperexcitable state (Ge et al. 2006, Mongiat 

et al. 2009). When adult-born neurons are four to six weeks old, they exhibit NR2B-dependent 

enhanced excitability, which is thought to confer a critical period of enhanced plasticity (Ge et 

al. 2007). After this stage, adult-born cells appear to be electrophysiologically equivalent to 

granule cells generated during development (Laplagne et al. 2006). 

Adult-born granule cells have been estimated to comprise up to 10% of the granule cells 

in the mouse dentate gyrus (Imayoshi et al. 2008). Activity of adult-born cells can be detected in 

slice recordings by inducing a specific form of long-term potentiation (LTP). Most granule cells 

are normally inhibited, therefore LTP is typically assessed in the presence of gamma-

aminobutyric acid (GABA) receptor blockers (Wigstrom and Gustafsson 1983). However, in a 

slice bathed in artificial cerebrospinal fluid (ACSF) without GABA receptor blockers, a smaller 

LTP can be detected, which has been shown to be dependent on adult-born granule cells, as it is 

lost upon ablation of adult neurogenesis by x or gamma-irradiation (Snyder et al. 2001, Saxe et 

al. 2006). This form of LTP (referred to as ACSF-LTP) is enhanced by manipulations that 

increase neurogenesis, such as antidepressant treatment (Wang et al. 2008). The role of adult-

born neurons in ACSF LTP provided the initial evidence that these cells have unique firing 

properties that may allow them to serve a unique function.  

In addition to the hyperexcitable state of adult-born neurons, mounting evidence shows 

that adult hippocampal neurogenesis decreases overall activity in the dentate gyrus. Ablation of 

neurogenesis has been shown to increase perforant path evoked responses (Lacefield et al. 2012), 

and calcium imaging has shown a similar effect, while also showing that increased levels of adult 

hippocampal neurogenesis decrease overall activity in the dentate gyrus (Ikrar et al. 2013). 

Adult-born neurons have been hypothesized to decrease activity in the dentate gyrus through 
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disinhibition of mature granule cells, via connections through inhibitory interneurons (Kheirbek 

et al. 2012, Lacefield et al. 2012, Song et al. 2012), and our lab has recently found that 

optogenetically stimulating adult-born neurons inhibits mature granule cells in a slice preparation 

(Hen Lab, unpublished). 

 

1.2.2 Functions of adult hippocampal neurogenesis  

Initial studies characterizing the process of adult hippocampal neurogenesis showed that 

levels of neurogenesis are increased in mice exposed to learning tasks (Gould et al. 1999), and 

decreased by treatment with the stress hormone corticosterone (Cameron and Gould 1994), 

leading to the hypotheses that adult neurogenesis might be involved in memory and mood. Just 

as the hippocampus as a whole plays a role in both cognitive and mood-related functions, adult 

hippocampal neurogenesis also appears to be involved in both of these domains. In order to 

directly assess the role of adult hippocampal neurogenesis, techniques were developed to ablate 

adult-born cells, including focal x-irradiation and transgenic mouse lines to kill adult-born 

neurons (Santarelli et al. 2003, Garcia et al. 2004). 

 

The contribution of adult hippocampal neurogenesis to learning and memory 

Ablation of adult hippocampal neurogenesis has implicated this process in various 

hippocampal-dependent memory paradigms. Ablated adult hippocampal neurogenesis has been 

shown to impair trace eye blink and trace fear conditioning (Shors et al. 2001, Shors et al. 2002), 

as well as contextual fear conditioning in some studies (Saxe et al. 2006, Winocur et al. 2006, 

Imayoshi et al. 2008), but not in others (Shors et al. 2002, Clark et al. 2008). A study from the 
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Hen lab has suggested that it is specifically in difficult fear conditioning paradigms with little 

training where adult hippocampal neurogenesis affects learning (Drew et al. 2010). 

Other studies have suggested that four to six week old neurons uniquely contribute to 

performance in these learning tasks. Along with their distinct electrophysiological properties, 

four to six week old neurons are preferentially activated and incorporated into circuits for spatial 

memory (Kee et al. 2007), and uniquely contribute to contextual fear conditioning (Denny et al. 

2012). 

Adult neurogenesis has also been shown to contribute to pattern separation-based tasks. 

Since the dentate gyrus is thought to act as a pattern separator by reducing overlap between 

inputs to CA3, the addition of new neurons is thought to increase this capacity in two possible 

ways. One way is through the constant addition of new units that have increased excitability and 

plasticity during the critical period of their maturation (Aimone et al. 2010, Sahay et al. 2011). 

The second way is through decreasing overall activity levels of the dentate gyrus (Lacefield et al. 

2012, Ikrar et al. 2013). Since the ability of the dentate gyrus to act as a pattern separator is 

partially dependent on sparse activity, decreasing overall activity levels would make this region 

even more sparsely activated, thereby enhancing pattern separation. 

Experimentally, ablation of adult neurogenesis in rodents has been shown to impair 

performance in pattern separation-based tasks, in both spatial and contextual learning paradigms 

(Clelland et al. 2009, Nakashiba et al. 2012, Tronel et al. 2012). Interestingly, transgenic mice 

with NR2B deleted specifically from adult born neurons do not display neurogenesis-dependent 

ACSF-LTP (Snyder et al. 2001, Ge et al. 2007), and are impaired in a pattern separation-based 

task (Kheirbek et al. 2012), suggesting that NR2B-dependent enhanced plasticity of adult-born 

cells is required for their role in pattern separation. Additionally, voluntary exercise, which 
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increases neurogenesis, has been shown to improve performance in a spatial pattern separation 

task (Creer et al. 2010). Together, these studies suggest that changes in levels of adult 

hippocampal neurogenesis impact the performance of rodents in tasks requiring pattern 

separation, supporting a role for adult hippocampal neurogenesis in this process. 

While the majority of initial studies supported a positive role for adult hippocampal 

neurogenesis in improving learning and memory, other studies have suggested that adult 

hippocampal neurogenesis may not be beneficial for all types of memory. Saxe et al. found that 

ablation of adult neurogenesis enhanced performance in a radial arm maze task, specifically in 

paradigms that require discrimination between similar cues presented closely in time after a 

temporal delay, a task in which mice may need to disregard conflicting information from 

previous trials (Saxe et al. 2007). A more recent study has further supported the hypothesis that 

adult hippocampal neurogenesis may disrupt the stability of previously formed memories, 

providing evidence that increasing neurogenesis impairs performance in a remote contextual fear 

conditioning task (Akers et al. 2014). Adult hippocampal neurogenesis might therefore 

bidirectionally modulate different memory processes, in potentially beneficial or harmful 

manners. 

 

The contribution of adult hippocampal neurogenesis to mood-related behavior 

 Evidence for a role of adult hippocampal neurogenesis in mood-related behavior initially 

stemmed from the findings that adult hippocampal neurogenesis is decreased by stress and 

increased by manipulations that counter the effects of stress, such as environmental enrichment 

and antidepressant treatment. 
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The first class of environmental factors found to impact adult neurogenesis was stress. 

Initially, it was found that stress affects proliferation during development. In rats, developmental 

neurogenesis can be downregulated by stress, as observed by decreased proliferation due to acute 

injection of corticosterone (CORT), a hormone released following stress (Gould et al. 1991), as 

well as due to exposure to predator odor (Tanapat et al. 1998). 

 This led to the hypothesis that adult hippocampal neurogenesis might also be 

downregulated by stress. This was first shown for acute administration of CORT in rats 

(Cameron and Gould 1994), and then later shown for acute psychosocial stress in tree shrews and 

monkeys (Gould et al. 1997, Gould et al. 1998). Other stressors have also been shown to 

decrease neurogenesis in the adult rodent hippocampus, including predator odor (Tanapat et al. 

2001), daily restraint stress (Pham et al. 2003), and unpredictable chronic mild stress (Joels et al. 

2004). 

In addition to changes in the levels of adult hippocampal neurogenesis, stress has been 

shown to alter the proportion of cell types generated from neural stem cells in the adult SGZ. 

CORT, social isolation and aging have been shown to shift the balance towards fewer neurons, 

while exercise and enrichment shifts the balance towards more adult-born neurons produced (van 

Praag et al. 2005, Wong and Herbert 2006, Dranovsky et al. 2011, Chetty et al. 2014). To 

compensate for decreased neuronal production following stress, studies have observed increased 

numbers of stem cells (Dranovsky et al. 2011), astrocytes (van Praag et al. 2005), or 

oligodendrocytes (Chetty et al. 2014), but a full understanding of how stress affects the 

proportion of cells produced is lacking, along with the functional implications of these changes. 

The mechanism through which stress impacts neurogenesis is not precisely understood, 

however there is evidence that it might be through regulation of the hypothalamic-pituitary-
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adrenal (HPA) axis. The HPA axis controls the release of glucocorticoids, corticosterone 

(CORT) in rodents, from the adrenal glands, which act on many brain regions, along with other 

parts of the body. While CORT is released throughout the day, in a diurnal cycle of varying 

levels, stress elicits a large increase in CORT release, which changes its effects on the brain. The 

difference in the effects of baseline CORT versus stress-induced CORT is mediated through 

occupancy of two different receptors: mineralocorticoid receptors (MRs) and glucocorticoid 

receptors (GRs). MRs have a tenfold higher affinity for CORT, and are therefore well occupied 

by baseline CORT levels, while the higher levels of CORT that are released following stress 

mainly activate GRs (Reul and de Kloet 1985). GRs mediate the effects of stress on various brain 

regions, and also mediate negative feedback to the HPA axis (Herman et al., 1989). The 

hippocampus contains high levels of GRs, and is therefore particularly sensitive to changes in 

CORT levels, and involved in HPA axis regulation (Reul and de Kloet 1985). 

Many stressors disrupt HPA axis regulation, including unpredictable chronic mild stress 

(Surget et al. 2011) and psychosocial stress (Fuchs and Flugge 1998). Additionally, a recent 

experiment has shown that when the effects of psychosocial stress on the HPA axis are prevented 

by removal of the adrenal glands (along with exogenous CORT provided at baseline levels), 

stress no longer decreases hippocampal neurogenesis (Lehmann et al. 2013). This study suggests 

that HPA axis activity mediates effects of stress on neurogenesis. Notably, neurogenesis is 

decreased by administration of high levels of exogenous glucocorticoids, either acutely (Gould et 

al. 1991, Cameron and Gould 1994) or chronically (Murray et al. 2008, David et al. 2009, 

Gourley and Taylor 2009). Together, these experiments suggest that increased release of 

glucocorticoids is both necessary and sufficient for the effects of stress on neurogenesis. 
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While stress decreases adult hippocampal neurogenesis, other conditions have been found 

to increase neurogenesis. The capacity for levels of adult hippocampal neurogenesis to be 

increased was initially discovered in rodents exposed to environmental enrichment 

(Kempermann et al. 1997) and exercise (van Praag et al. 1999). 

Subsequently, antidepressants have been shown to increase proliferation of adult born 

neurons in the hippocampus of rodents (Malberg et al. 2000), monkeys (Perera et al. 2007), and 

humans (Boldrini et al. 2009). In rodents, antidepressants rescue the effects of stress on 

proliferation (Czeh et al. 2001), and speed up the maturation of adult-born neurons, as evidenced 

by increased dendritic arborization of immature, DCX-positive neurons, as well as increased 

ACSF-LTP (Wang et al. 2008). Alternative therapies for depression also increase neurogenesis 

in rodents, including electroconvulsive therapy (ECT) (Madsen et al. 2000) and transcranial 

magnetic stimulation (TMS) (Czeh et al. 2002). 

Initial studies utilizing x-irradiation showed that adult hippocampal neurogenesis is 

required for the behavioral effects of antidepressants in both rodents (Santarelli et al. 2003) and 

non-human primates (Perera et al. 2011). Since these initial findings, subsequent studies in 

rodents have shown that adult hippocampal neurogenesis is necessary for some, but not all, of 

the behavioral effects of antidepressants (Surget et al. 2008, David et al. 2009). While these 

studies show a neurogenesis dependency of the behavioral effects of fluoxetine and imipramine, 

a selective serotonin reuptake inhibitor and tricyclic respectively, it should be noted that many 

other drugs have neurogenesis-independent antidepressant-like effects on behavior (David et al. 

2007, Surget et al. 2008). 

Similarly, some, but not all, of the beneficial behavioral effects of environmental 

enrichment depend on adult hippocampal neurogenesis. Environmental enrichment has been 
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shown to decrease anxiety-related behavior in a neurogenesis-independent manner (Meshi et al. 

2006), but neurogenesis has been shown to be required for the ameliorative effects of 

environmental enrichment following social conflict stress (Schloesser et al. 2010). 

In these initial studies, no effects were seen of ablation of neurogenesis on behavior at 

baseline, in the absence of antidepressants or environmental enrichment (Santarelli et al. 2003, 

Surget et al. 2008, David et al. 2009, Schloesser et al. 2010). However, since then, some studies 

have found that ablation of neurogenesis at baseline is sufficient to affect anxiety and depression-

related behavior (Revest et al. 2009, Snyder et al. 2011), suggesting that in certain strains of mice 

tested under certain conditions, neurogenesis may affect baseline behavior.  

It should be noted that there are inconsistencies between studies as to which behavioral 

tests are sensitive to levels of neurogenesis. For example, while a handful of studies have found a 

role for neurogenesis in the anxiety-based novelty suppressed feeding test (Santarelli et al. 2003, 

Surget et al. 2008, David et al. 2009, Snyder et al. 2011), other studies have reported effects in 

different anxiety-based tests, such as the elevated plus maze and light/dark test (Revest et al. 

2009). These inconsistencies could be due to differences in strain, neurogenesis ablation method, 

or behavioral testing protocols, and despite these inconsistencies, the literature as a whole 

indicates a role for adult hippocampal neurogenesis in modulating anxiety and depression-related 

behavior. 

It has been hypothesized that adult hippocampal neurogenesis is required for the 

behavioral effects of antidepressants through a role in HPA axis regulation. Regulation of the 

HPA axis has been a long-standing hypothesis of antidepressant action, supported by the 

repeated finding of correlations between improved patient prognosis and restored HPA axis 

regulation (Greden et al. 1983, Vreeburg et al. 2009). However, we note that no study to our 
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knowledge has shown whether changes in HPA regulation are necessary or sufficient for the 

effects of antidepressants on mood. 

Due to the high levels of GRs present in the hippocampus (Reul and de Kloet 1985), this 

region is not only very sensitive to activity of the HPA axis, but also has been implicated as an 

important brain region that provides negative feedback to regulate the HPA axis. Selective 

knockout of hippocampal GRs results in a hyperactive HPA axis and depression-like behavior 

(Boyle et al. 2005). Furthermore, lesions of the hippocampus, hippocampal projection fiber tracts 

or specifically of the ventral subiculum, lead to impaired baseline or stress related HPA axis 

regulation (Herman et al. 1989, Herman et al. 1992, Herman et al. 1995). In this way, a loop is 

formed between the HPA axis, which releases CORT, and the hippocampus, which provides 

negative feedback that is necessary for normal HPA axis regulation.  

A role for neurogenesis in regulating the HPA axis has been supported by findings that 

elimination of adult hippocampal neurogenesis increases the CORT response to acute stress 

(Schloesser et al. 2009, Snyder et al. 2011). Furthermore, another study found that chronic stress 

impairs HPA axis regulation, which is rescued by fluoxetine in a neurogenesis-dependent 

manner (Surget et al. 2011). The mechanism through which adult neurogenesis regulates the 

HPA axis is not known, but could occur through a cell-autonomous mechanism, as a subset of 

maturing adult-born cells have been shown to express GR, but not MR, perhaps allowing these 

cells to respond to CORT in a unique way (Cameron et al. 1993, Garcia et al. 2004), since the 

balance of MR and GR is thought to be important for maintaining neuronal homeostasis (De 

Kloet and Derijk 2004). Alternatively, non-cell autonomous effects on hippocampal activity 

levels may allow levels of adult hippocampal neurogenesis to regulate HPA axis activity 

independent of GR expression in adult-born cells, for example through changing dentate gyrus 
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activity levels. Interestingly, a study in which GR was knocked out of adult-born cells showed no 

effect on CORT levels at baseline or following contextual fear conditioning (Fitzsimons et al. 

2013), suggesting a non-cell autonomous mechanism through which levels of adult hippocampal 

neurogenesis modulate the HPA axis. 

 

Neurogenesis along the Dorsa/Ventral Axis 

 Increasing evidence suggests that along the longitudinal axis of the hippocampus, the 

effects of environmental conditions on levels of adult hippocampal neurogenesis varies, as does 

the functional role of adult-born neurons. 

 The effects of various environmental conditions on adult hippocampal neurogenesis have 

been shown to vary along the longitudinal axis. In rodents, some studies have found that stress 

decreases neurogenesis specifically or more severely in the ventral dentate gyrus (Tanti et al. 

2012, Walker et al. 2014), while environmental enrichment has been shown to increase 

neurogenesis specifically in the dorsal dentate gyrus (Tanti et al. 2012). Additionally, 

agomelatine, a melatonin agonist and 5HT2C antagonist, has been found to specifically increase 

neurogenesis in the ventral hippocampus of rodents (Banasr et al. 2006), and has antidepressant-

like effects on mood (Rainer et al. 2012). In humans, antidepressants appear to affect 

neurogenesis more robustly in the anterior hippocampus (which corresponds to the ventral 

hippocampus in rodents) (Boldrini et al. 2009).  

Functionally, differential roles for adult hippocampal neurogenesis along the longitudinal 

axis has been supported by a recent study from the Hen lab in which x-irradiation was focused 

specifically to ablate adult hippocampal neurogenesis in either the dorsal or ventral half of the 

dentate gyrus. Mice with dorsal x-irradiation displayed impaired pattern separation, while ventral 
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x-irradiation prevented some of the behavioral effects of antidepressant treatment (Wu and Hen 

2014). Together these studies suggest that neurogenesis in the dorsal and ventral regions of the 

hippocampus may be involved in memory and mood-related behavior respectively. 

 

1.3 Hypotheses 

As introduced in this chapter, ablation of adult hippocampal neurogenesis has shown that 

this process is required for certain memory related tasks, specifically involving pattern 

separation, as well as for some of the behavioral effects of antidepressants. Here, we hypothesize 

that increasing the levels of adult hippocampal neurogenesis in mice will impact both cognitive 

as well as anxiety and depression-related behavior, providing a target mechanism for future 

cognitive and mood enhancing treatments. Specifically the following hypotheses are tested: 

 

1) Increasing adult hippocampal neurogenesis will improve performance on discrimination 

learning tasks, such as those in which performance is impaired in mice with ablated adult 

hippocampal neurogenesis.  

2) Increasing adult hippocampal neurogenesis will be sufficient to affect anxiety and 

depression-related behavior. 
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Chapter 2: Increasing adult hippocampal neurogenesis is sufficient to improve 

pattern separation performance at baseline, and increase exploratory 

behavior in mice exposed to voluntary exercise 

2.1 Introduction  

 Adult hippocampal neurogenesis is a prominent feature of the mammalian hippocampus, 

and is responsive to environmental conditions such as age, stress, antidepressants and 

environmental enrichment (Gould et al. 1997, van Praag et al. 1999, Malberg et al. 2000, van 

Praag et al. 2005, Dranovsky et al. 2011). The necessity of adult hippocampal neurogenesis for 

various hippocampal-dependent functions in the cognitive and mood domains has been 

extensively tested by eliminating adult hippocampal neurogenesis using x-irradiation or genetic 

techniques. Together, these studies have shown that adult hippocampal neurogenesis is required 

for pattern separation (Clelland et al. 2009, Nakashiba et al. 2012, Tronel et al. 2012), proper 

HPA axis regulation (Schloesser et al. 2009, Snyder et al. 2011, Surget et al. 2011), and some of 

the beneficial effects of antidepressants and environmental enrichment on mood-related behavior 

(Santarelli et al. 2003, David et al. 2009, Schloesser et al. 2010). 

 Here, we sought to determine whether increasing adult hippocampal neurogenesis is 

sufficient to affect cognition and mood-related behavior. We generated a transgenic mouse 

model in which inducible deletion of the pro-apoptotic gene Bax specifically in neuronal stem 

cells and their progeny increases the number of adult-born neurons. We show that this genetic 

expansion is sufficient to enhance pattern separation in a fear discrimination learning paradigm; 

however, it is not sufficient to affect mood-related behavior in a battery of antidepressant-
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sensitive behavioral tests. Furthermore, when combined with voluntary exercise, genetically 

increasing adult hippocampal neurogenesis is sufficient to increase exploratory behavior.  

 

2.2 Methods 

2.2.1 Mice  

All mice used in experiments were homozygous for a loxP flanked Bax allele (Takeuchi 

et al. 2005). Mice that were also hemizygous for the Nestin-CreERT2 transgene (Dranovsky et 

al. 2011) are referred to as ‘NCff’ mice (for Nestin-CreERT2;floxed/floxed), while mice without 

NestinCreERT2 are referred to as ‘ff’ mice. Since CreERT2 allows for inducible deletion of the 

Bax gene following treatment with tamoxifen, mice of this line are referred to as iBax mice 

(Figure 2.1a). The genotype of mice used for each experiment is labeled in the figures. This 

mouse line is maintained on a mixed C57BL/6 and 129/SvEv background.  

Mice were 8-10 weeks old at the beginning of each experiment. Mice were housed 2-5 

per cage and maintained on a 12 hour light/dark schedule with continuous access to food and 

water. All experiments were conducted with male mice, except for the voluntary exercise 

experiments (Figures 2.12-2.14). For the voluntary exercise experiment, female mice were group 

housed (4-5 mice) in a large cage (29.2 cm x 19.2 cm x 12.7 cm), each containing two running 

wheels, to which the mice had constant access. Female mice were used for this experiment 

because male mice have been observed to display increased aggressive behavior when housed in 

enriched cages, such as those used here (Marashi et al. 2003). All behavioral testing was 

conducted during the light cycle and with approval from the Institutional Animal Care and Use 

Committees at both Columbia University and the New York State Psychiatric Institute. 
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For focal X-ray irradiation, mice received three sessions, each separated by 3-4 days. 10 

week old mice were anesthetized with sodium pentobarbital before each irradiation procedure. 

Mice were then placed in a stereotaxic frame and exposed to cranial irradiation in a Stabilopan 

X-ray system (Siemens), operated at 300 kVp and 20 mA. During the procedure, the animal’s 

body was completely covered by a lead shield, except for a 3.22 mm x 11 mm window centered 

above the hippocampus (interaural 3.00 to 0.00). Dosimetry was conducted using an electrometer 

ionization chamber (model PF-06G, Capintec) and Ready Pack Radiographic XV films (Kodak). 

The corrected dose rate was approximately 1.8 Gy/min at a source-to-skin distance of 30 cm. 

The procedure lasted 2 min 47 seconds per animal per session, during which 5 Gy was delivered. 

Behavioral testing was conducted 4 months after x-irradiation. 

 

2.2.2 Drug administration 

Tamoxifen (TAM) was dissolved in a solution of corn oil (Sigma C8267) and 10% 

ethanol to a 10 mg/ml solution. 8-10 week old iBax mice received 2 mg TAM, or the same 

volume of corn oil and ethanol (vehicle), intraperitoneally once per day for 5 consecutive days.  

Bromodeoxyuridine (BrdU) (150 mg/kg body weight, dissolved in .9% NaCl; Roche) 

was injected intraperitoneally (i.p.) to characterize levels of neurogenesis. Mice received BrdU 

injections once per day for 10 days to assess hippocampal neurogenesis (Figure 2.2), and once 

per day for 2 days to assess adult-born neurons in the olfactory bulb (Figure 2.3) at baseline. 

Mice exposed to voluntary exercise received BrdU injections once per day for 2 days (Figure 

2.11). 
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2.2.3 Cognitive-related behavioral testing  

One-trial contextual fear conditioning was conducted in a 20.3 cm x 15.9 cm x 21.3 cm 

chamber with two clear plexiglass walls, two aluminum walls and a stainless steel grid floor (one 

side of a shuttle box; Med-Associates, ENV-010MC), encased in a sound-attenuating box. On 

each day of testing, mice were allowed to habituate for 1 hour outside of the testing room before 

the experiment was started. During the test, behavior was recorded using digital video cameras 

mounted above the conditioning chamber, and analyzed using FreezeFrame and FreezeView 

software (Actimetrics). For the one-trial contextual fear conditioning protocol, 185 seconds after 

mice were placed in the chamber, they received a single 2 second food shock of .75 mA. The 

mouse was taken out of the chamber 15 seconds after termination of the foot shock, and returned 

to its home cage. For training context A, the fan and lights inside the chamber were on, the 

stainless steel grid floor was exposed, a mild lemon scent was used as an olfactory cue, 70% 

ethanol was used to clean the chamber between mice, and mice were brought into the testing 

room in a rectangular plastic cage. For the distinct context C, the stainless steel grid floor was 

covered with a plastic panel and cage bedding, the chamber walls were covered with plastic 

inserts, the house light and fan were turned off, the door to the sound-attenuating box was left 

ajar, letting in ambient light, a mild anise scent was used as an olfactory cue, and a non-alcoholic 

antiseptic was used to clean the chamber between mice. Mice were brought into the testing room 

in pie shaped cages by a different handler than for the training context A, and the testing room 

was dimly lit during placement of mice in the testing chamber. 

Contextual fear discrimination learning. In this test, mice were exposed to the shock 

context A and a similar context B daily, as diagrammed in figures 2.5d, 2.7a and 2.8a. The 

shock-associated training context A and the similar no-shock context B shared many features, 
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including the exposed stainless steel grid floor. Context A was the same as described above for 

one-trial contextual fear conditioning. Context B differed from Context A in that two plastic 

inserts were used to cover the walls, the light and fan inside the chamber were turned off, the 

chamber door was left ajar during testing, a mild mint scent was used as an olfactory cue, a non-

alcoholic antiseptic was used to clean the box between mice, and mice were brought into the 

testing room in buckets. The shock protocol used here in context A was the same as for one-trial 

contextual fear conditioning. In the similar context B, mice were left in the box for 180 seconds 

with no shock. Freezing levels in both context A (3 minutes preshock) and context B (3 minutes) 

were recorded and analyzed each day. 

Extinction learning and reinstatement: Mice were subjected to a single 2 second foot 

shock (.75 mA) after 185 seconds in context A (as described above). For the following six 

consecutive days (Days 1-6, Figure 2.9), mice were placed back into context A once daily, for 3 

minute re-exposure sessions without foot shocks. On day 7, mice received a single foot shock in 

a novel context C (as described above) and reinstatement of freezing behavior in context A was 

assessed 24 hours later.  

 

2.2.4 Anxiety and depression-related behavioral testing  

Psychiatric disorders under the anxiety and depression umbrellas are thought to represent 

heterogeneous patient populations with various genetic and environmental factors contributing to 

the disease; however, it is the symptomatic behavior of these individuals that defines their 

diagnosis. Therefore, when modeling and testing for these conditions, we are particularly 

interested in behavior relating to anxiety and depression. 
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While anxiety and depression-related behavioral categories can be dissociated, many 

manipulations, such as chronic antidepressant treatment, affect behavior in both categories of 

tests (Dulawa et al. 2004). Similarly, in patients, there is high comorbidity between depression 

and anxiety disorders, as studies have found that around 40-50% of patients with depression also 

have diagnosed anxiety disorders (Sanderson 1990, Fava 2000). This high level of comorbidity 

may be a result of overlapping neural circuitry underlying these disorders, and it is perhaps not 

surprising that many manipulations in rodents affect behavior in both of these domains.  

Anxiety disorders are generally characterized by excessive fear and avoidance, either 

broadly (such as in generalized anxiety disorder), or to selective cues (such as in specific 

phobias). These avoidance symptoms have been modeled in rodents using conflict-based tasks, 

in which subjects must choose between relatively safe and unsafe areas of an arena to which they 

have free access (Bailey and Crawley 2009). In these tasks, there is a conflict between a rodent’s 

tendency for exploratory investigation versus aversive components present in parts of the arena 

(such as bright light). In general, these tests have face validity based on the proposition that 

many physiological and behavioral responses to fear are evolutionarily conserved between 

rodents and humans, such as release of glucocorticoids and avoidance of fearful places (Cryan 

and Holmes 2005). These tests also have predictive validity based on the effects of anxiolytics, 

such as benzodiazepines. A few commonly used conflict-based anxiety tasks, from which data 

will be presented throughout the thesis, are discussed. 

In the open field test, a mouse is placed in a novel, open arena. In this task, the amount 

of time and distance traveled is calculated in a defined center region, as well as for the rest of the 

arena. On the one hand, rodents have been found to generally prefer closed and dark spaces over 

open and brightly lit spaces, which would predict that mice would spend all of their time along 
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the edges of the arena, away from the center region. On the other hand, a propensity for mice to 

explore novel spaces has been observed, which would predict that they would spend time 

exploring the center region. These two drives produce a conflict for the rodent, which must 

spend its time in either the center or peripheral regions. Chronic stress decreases time and 

distance in the center region, while anxiolytics have the opposite effect (although notably, these 

effects are not always seen) (Prut and Belzung 2003), providing both face and predictive validity. 

Here, the open field test was conducted in  a square 43.2 cm x 43.2 cm enclosure with 

infrared beams to detect animal movement (MED Associates), for either 30 or 60 minutes. The 

center region was defined by the inner 21.2 cm x 21.2 cm area. Distance, time in center, center 

entries and rearing were analyzed by MED Associates software. Percent center distance was 

calculated as the percent of total distance travelled in the center region. 

The light/dark test is a variant of the open field test, in which the arena is separated into 

two compartments: one which is dark and covered, and the other, which is light and open. In this 

test, mice are initially placed in the dark compartment. Similar to the open field, the mouse is 

thought to have conflicting drives, to remain in the innately preferred dark compartment or to 

explore the novel, light compartment. The latency to transition into the light compartment, the 

number of transitions between compartments, and the amount of time the rodent spends in the 

light compartment, are assayed as measures of anxiety-related behavior, which are affected by 

models of stress (Ardayfio and Kim 2006), and anxiolytics (Crawley 1981, Belzung et al. 1987, 

Bourin and Hascoet 2003). 

Here, the light/dark test was conducted in the same chambers as for the open field. A dark 

plastic box with opaque sides and ceiling was placed over half of the open field arena, with an 

opening at floor level, allowing the mouse to pass between dark and light compartments. Mice 
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were initially placed in the dark compartment, and allowed to freely move throughout the arena 

for five minutes. Movement was detected by infrared beams, which could pass through the 

opaque plastic box, to measure ambulatory distance, time, and entries for each compartment. 

In the elevated plus maze, mice are placed in a plus shape arena with four arms, elevated 

above the floor. Two opposing arms have tall walls (referred to as the ‘closed arms’), while the 

other two arms have no walls (referred to as the ‘open arms’).  This test comprises a similar 

conflict to the open field and light/dark tests, where the closed arms are analogous to the edges of 

the open field or the dark compartment of the light/dark test, while the open arms are analogous 

to the anxiogenic center region or light compartment. Mice will typically spend the majority of 

their time in the closed arms, but will explore the open arms to varying extents. Much previous 

work has shown that behavior in this test is sensitive to anxiolytic and anxiogenic substances, 

which respectively increase and decrease time spent in the open arms (Pellow et al. 1985, Pellow 

and File 1986, Lister 1987, Walf and Frye 2007).  

Mice were tested in the elevated plus maze for five minutes. The maze used has arms 7.6 

cm wide, 28 cm long and 31 cm above the floor. Two opposing closed arms have 15 cm high 

walls, while two opposing open arms have a 1 cm high lip. Testing was video recorded and later 

analyzed by an observer (blind to genotype) for time spent and entries into the open arms.  

In the novelty suppressed feeding test, mice are placed into a novel, brightly lit, 

rectangular arena containing a food pellet on a raised platform in the center of the arena. This test 

is conducted after food deprivation, and is a conflict-anxiety test where animals must enter the 

anxiety-provoking center of the arena for food. The latency to take a bite of the food pellet is 

assessed as the main measure of anxiety.  Latency is increased in models of stress, such as 

chronic CORT treatment (David et al. 2009), and interestingly, this test is specifically sensitive 
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to chronic, but not acute, treatment with antidepressants, which decrease latency (Santarelli et al. 

2003).  

Here, mice were food deprived in their home cages for 24–26 h before testing. The 

testing apparatus consisted of a plastic arena (45 cm long, 15 cm high and 30 cm wide) with the 

floor covered by about 2 cm of wood-chip bedding. A single food pellet (familiar laboratory 

mouse chow) was placed on a circular piece of white filter paper (12 cm in diameter) in the 

center of the arena. Mice were placed in a corner of the arena, and the latency to begin feeding 

on the food pellet was recorded (up to a maximum time of 10 minutes). Testing was conducted 

under bright light conditions. Each mouse was weighed before food deprivation and just before 

testing to assess changes in body weight during food deprivation. Immediately after the test, each 

mouse was transferred to its home cage, and the amount of food consumed within 5 minutes was 

assessed. 

Tests of depression-related behavior generally have been characterized either by 

predictive validity in that behavior of rodents is affected following treatment with 

antidepressants, or by face validity in that the tests appear to assess a phenotype observed in 

human patients, including behavioral despair and anhedonia. 

The forced swim test was one of the earliest rodent behavioral tests found to be sensitive 

to antidepressants (Porsolt et al. 1978, Petit-Demouliere et al. 2005). In this test, mice are placed 

in a beaker of room temperature water for two sessions on subsequent days. Animals will 

initially swim for the majority of the first session. However, in the second session, animals 

typically display floating behavior. The amount of time mice spend floating in the second session 

(referred to as immobility time) has been interpreted as a measurement of learned helplessness, 

or the willingness of an animal to give up. Although this test has sometimes been considered as 
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only a screen for antidepressants (Gardier and Bourin 2001), it is also sensitive to various  

procedures thought to induce depression-like behavior, such as chronic mild stress (Molina et al. 

1994, Bielajew et al. 2003), thereby validating this test as relevant to depression-related behavior 

(Cryan et al. 2005). 

For the forced swim test, mice were placed in clear plastic buckets (19 cm diameter and 

23 cm deep) filled with water (23–25 °C) for 6 minutes, and their behavior was recorded using an 

automated video-tracking system. Testing was carried out over two consecutive days, with the 

first day serving the purpose of pre-exposure. Mobility (swimming and climbing behavior) was 

analyzed using ViewPoint Life Sciences Software. 

The tail suspension test is also widely used to assess antidepressant-like activity in mice 

(Cryan et al. 2005). In this test, mice are suspended by their tails for five minutes. As animals are 

placed in this inescapable position, they initially display attempted escape behavior and then 

transition to an immobile, hanging posture, often referred to as a state of behavioral despair. Like 

in the forced swim test, mobility is interpreted as a measurement of this escape-related behavior 

and ability to cope in a stressful situation. This test has been validated primarily by the finding 

that many antidepressants increase mobility time (Steru et al. 1985). Furthermore, mice with high 

levels of immobility in this test have been used to breed ‘helpless’ mice, which are sensitive to 

antidepressants and display serotonergic dysfunction similar to that found in human patients with 

depression (Vaugeois et al. 1996, El Yacoubi et al. 2003). Here, mice were suspended from a 

table-top by their tails for 5 minutes. This test was video recorded and mobility was analyzed by 

ViewPoint Life Sciences software.  
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2.2.5 Plasma corticosterone  

HPA axis activity was assessed in two paradigms. In the first, mice were taken from their 

home cage, placed in a decapicone plastic restraining device (Braintree Scientific) for 30 

minutes, and then placed in a novel cage (as in (Snyder et al. 2011)). Blood was taken either 

immediately after removal from the home cage (before restraint), immediately after restraint, or 

after 30 or 60 minutes in the novel cage (following restraint). Different groups of mice were used 

for each time point. Blood was collected via submandibular bleed using a Goldenrod Animal 

Lancet (MEDIpoint), into a tube containing EDTA. Blood was centrifuged at 2000 rpm for 5 

minutes for separation of plasma, which was stored at -20°C until assayed using a commercially 

available EIA kit (Arbor Assays). 

In the second paradigm, mice were placed in a novel cage without bedding for 15 minutes 

(as in (Schloesser et al. 2009)). Blood was collected immediately afterwards, and treated as 

described above. 

 

2.2.6 Electrophysiological recordings 

For electrophysiological recordings, brains were collected from animals after inducing 

deep anesthesia with halothane, followed by decapitation. Transverse hippocampal slices 

(400 µm) were cut on a vibratome. Slices were incubated in an interface chamber at 32 °C and 

perfused with oxygenated artificial cerebrospinal fluid (ACSF) (containing 119 mM NaCl, 

2.5 mM KCl, 1.3 mM MgSO4, 2.5 mM CaCl2, 26.2 mM NaHCO3, 1 mM NaH2PO4 and 11 mM 

glucose). Slices equilibrated for 2 hours before positioning electrodes and beginning stimulation. 

To record from the dentate gyrus, the medial perforant path (MPP) was stimulated using a 

stimulation isolation unit and a bipolar tungsten electrode (World Precision Instruments). Evoked 
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potentials were recorded in the molecular layer above the upper blade of the dentate gyrus using 

a glass capillary microelectrode filled with ACSF (and with a tip resistance of 1–3 MΩ). 

Isolation of the MPP was confirmed by assessing paired-pulse depression of the MPP–dentate 

gyrus synaptic connection at 50 ms, which generated the highest level of depression. Input–

output curves were obtained after recordings had been stable for 10 min. The stimulation 

intensity that produced one-third of the maximal response was used for the test pulses and 

tetanus. After a stable baseline response to test stimulation (once every 20 s) had been observed 

for 15 min, the ability to elicit LTP was assessed. LTP was induced with a weak stimulation 

protocol consisting of four trains of 1 s each, at 100 Hz within the train, repeated every 15 s. 

Responses were recorded every 20 s for 60 min after LTP induction. A similar protocol was used 

to elicit and record LTP of mature dentate granule neurons except that 10 μM bicuculline 

(bicuculline methobromide, Sigma, B7561) was added to the ACSF to block GABAA receptors. 

 

2.2.7 Immunohistochemistry 

At sacrifice, mice were anesthetized with ketamine and xylazine (100 and 7 mg/kg 

respectively). Mice were then transcardially perfused with cold saline and 4% paraformaldehyde. 

Brains were postfixed in 4% paraformaldehyde overnight, and then transferred to 30% sucrose 

for cryoprotection. Brains were coronally sectioned (35 um) throughout the hippocampus.  

 For doublecortin (DCX) and Ki67 immunohistochemistry (stained separately), tissue was 

washed in PBS, quenched for endogenous peroxidases with 1% hydrogen peroxide in 

PBS/methanol, washed in PBST (PBS with .3% Triton), blocked for 1 hour at room temperature 

in PBST and 10% normal donkey serum, and then incubated in primary antibody (goat anti-DCX 

[Santa Cruz, SC-8066] 1:500 or rabbit anti-Ki67 [Vector Laboratories, VP-RM04] 1:100 in 
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PBST) overnight at 4°C. Sections were then washed in PBS and incubated in secondary antibody 

(biotin donkey anti-goat or anti-rabbit 1:500 [Jackson ImmunoResearch] in PBS) for 2 hours at 

room temperature. Sections were washed in PBS, incubated for 1 hour with avidin/biotin (ABC 

kit, Vector Laboratories), washed in PBS, and then incubated with DAB peroxidase (Vector 

Laboratories) for 5 minutes. Sections stained for Ki67 were incubated in Nuclear Fast Red 

(Vector Laboratories) for 5 minutes after they were mounted onto slides. An investigator blind to 

treatment counted every 6
th

 section throughout the dentate gyrus for both the total number of 

DCX-positive neurons, and the number of DCX-positive neurons with tertiary dendrites. 

Similarly, the total number of Ki67-positive cells was counted in the granule cell layer and 

subgranular zone of the dentate gyrus of every 6
th

 section. Here, Fast Red was used to determine 

the boundaries of the granule cell layer. Analysis was conducted and images were taken using a 

Zeiss Axio Observer A.1 microscope. 

For BrdU and NeuN immunohistochemistry, sections were mounted onto SuperFrost Plus 

charged glass slides, and then heated for 1 hour in citric acid buffer for antigen retrieval, washed 

in PBS, blocked in PBST and 10% normal donkey serum for 2 hours at room temperature, and 

then incubated in primary antibody (rat anti-BrdU [Serotec OBT0030] 1:100 and mouse anti-

NeuN [Chemicon MAB377] 1:500 in PBST) overnight at 4°C. The following day, sections were 

washed in PBS and then incubated in secondary antibody (donkey anti-rat Cy3 and donkey anti-

Mouse Cy5 [Jackson ImmunoResearch] 1:200 in PBS). An investigator blind to treatment 

counted every 6
th

 section throughout the dentate gyrus for the total number of BrdU-positive 

cells using a Zeiss Axiovert 200 microscope. For quantification of survival of adult-born cells in 

the main olfactory bulb, two 20x magnification images of randomly selected regions in the 

granule cell layer were taken from six matched sagittal sections for each mouse. BrdU-positive 
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cells were quantified using a cell counter plug-in for the software ImageJ (NIH), and surface 

density was computed. BrdU and NeuN colabel analysis was conducted by scanning z-stacks of 

BrdU-positive cells from the hippocampus of each mouse on an Olympus Fluoview 1000 

confocal microscope at 60x magnification. 

 

2.2.8 Statistical methods 

Statistical analysis was conducted using StatView software or Microsoft Excel. Statistical 

significance was assessed by unpaired two-tailed Students t test or ANOVA and Fisher’s 

predicted least-square difference test for post hoc analysis. Significance was set at p<0.05. 

 

2.3 Results 

2.3.1 Characterization of iBax mice 

To genetically increase levels of adult neurogenesis, we utilized a bi-transgenic mouse 

model that expresses the inducible recombinase CreERT2 under the Nestin promoter (Dranovsky 

et al. 2011), as well as floxed alleles of the pro-apoptotic gene Bax (Takeuchi et al. 2005). In this 

mouse line, tamoxifen (TAM) treatment induces deletion of three exons in the Bax gene, 

specifically in nestin-expressing neural stem cells, and therefore also in their progeny (iBax 

mice). In these cells, no functional BAX protein is produced. Normally, 60-80% of adult-born 

dentate granule neurons undergo cell death before reaching maturity through a process that 

requires BAX (Dayer et al. 2003), therefore we hypothesized that deletion of Bax in these cells 

would increase levels of adult hippocampal neurogenesis via increased survival (Fig 2.1). We 

note that although some ectopic expression has been reported in the Nestin:CreERT2 transgenic 
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mouse line (Sun et al. 2014), it is unlikely to influence our phenotype since these ectopic cells 

are not undergoing apoptosis, and are therefore unlikely to be affected by Bax deletion. 

 

 

 

Figure 2.1 Adult hippocampal neurogenesis in iBax mice. 

a) Genetic strategy to inhibit cell death. The floxed Bax allele contains loxP sites before exon 2 and after 
exon 4. In the absence of tamoxifen, this Bax allele produces normal BAX protein, which promotes cell 
death. In mice that express CreERT2 under the Nestin promoter, tamoxifen enables CreERT2 to excise 
exons 2-4 of the floxed Bax allele, no functional BAX protein is produced, and therefore cell death is 
inhibited. Schematic of the Bax gene was adapted from (Takeuchi et al. 2005). b) Schematic illustrating 
increased adult hippocampal neurogenesis in mice lacking BAX. Nestin-expressing Type I and Type II 
stem cells (green) divide to produce adult-born granule cells. In the adult dentate gyrus of control mice, 
a substantial fraction of adult-born neurons undergo BAX-dependent cell death during maturation (pale 
red). Nestin-CreERT2 mediated ablation of Bax results in the generation of adult-born neurons that lack 
BAX, thereby preventing their death and increasing the number of immature (red) and mature (blue) 
adult-born neurons. 

 

Analysis of adult hippocampal neurogenesis was conducted by immunostaining for the 

immature neuronal marker doublecortin (DCX) in mice carrying one Nestin-CreERT2 and two 

floxed Bax alleles ("NCff" mice) that were injected with Vehicle or TAM. In mice sacrificed 

four weeks after vehicle or TAM injection, we see that TAM treated mice have a small increase 

in the number of DCX-positive neurons with tertiary dendrites, which represents a mature subset 

of DCX-positive neurons (p=0.05) (Figure 2.2 a,b). By eight weeks after vehicle or TAM 

injection, we observed that TAM treated animals have a significant increase in both the total 
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number of DCX-positive neurons (1.8 fold increase, p = 0.038), as well as the total number of 

DCX-positive neurons with tertiary dendrites (2 fold increase, p = 0.006) (Figure 2.2 c,d). The 

larger increase in the number of DCX-positive cells at 8 weeks compared to 4 weeks following 

TAM injection is consistent with the fact that CreERT2 mediated recombination occurs in both 

the slowly dividing self-renewing Type I neural stem cells as well as in Type II transient 

amplifying cells. The expansion of adult hippocampal neurogenesis in iBax mice is comparable 

to, if not greater than, that observed following chronic antidepressant treatment (Malberg et al. 

2000, Santarelli et al. 2003, Li et al. 2008, David et al. 2009), environmental enrichment (van 

Praag et al. 2000), and exercise (van Praag et al. 2000).   

 Since BAX is involved in cell death, we expected that levels of neurogenesis would be 

increased by changes in survival rather than proliferation. The rate of proliferation was assessed 

with immunostaining for Ki67, a cellular marker of proliferation. As expected, we saw no effect 

of TAM treatment on Ki67 levels 4 or 8 weeks following TAM treatment (Figure 2.2 e-f). The 

rate of survival was assessed using BrdU pulse-chase labeling. Here, BrdU was injected over ten 

consecutive days, and mice were sacrificed six weeks later. We saw a 3.6 fold increase in levels 

of BrdU-labeled cells in mice treated with TAM compared to controls (p = 0.0004) (Figure 2.2 

g,h). We assessed the percent of BrdU-positive cells that are colabeled with the mature neuronal 

marker NeuN, and found similar levels in both groups of mice (Figure 2.2 h). 

BrdU pulse-chase labeling was also used to assess neurogenesis in the olfactory bulb. 

Here, BrdU was injected over two consecutive days, and mice were sacrificed eleven weeks 

later. We saw a 1.6 fold increase in the levels of BrdU-labeled cells in mice treated with TAM 

compared to controls (p = 0.01) (Figure 2.3). This represents a significant increase, but less than 

that observed in the hippocampus. 
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Further characterization of this line has shown no difference between groups in dentate 

granule cell markers, granule cell layer volume, apical dendrite maturation or axonal extension 

and targeting in CA3 (Sahay et al. 2011), suggesting that aside from the increase in adult-born 

cells, the dentate gyrus maintains normal structure. 
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Figure 2.2 TAM increases hippocampal neurogenesis in iBax mice. 

a,c) Representative images of DCX immunostaining in mice sacrificed 4 (a) or 8 (c) weeks after vehicle or 
TAM administration. Higher magnification insets include arrows indicating DCX-positive neurons with 
tertiary dendrites. Scale bars 100 µm.  b) Quantification of DCX at 4 weeks reveals no significant 
difference in the total number of DCX-positive neurons (5,866±4,344 (Vehicle), 6,787±409 (TAM), 
(p>0.05)), but a trend for increased DCX-positive neurons with tertiary dendrites in TAM treated animals 
(1,620±187 (Vehicle), 2,469±305 (TAM), (p=0.05)). n=4 mice/group. d) Quantification of DCX at 8 weeks 
reveals that TAM treatment significantly increases both the total number of DCX-positive neurons as 
well as the number of DCX-positive neurons with tertiary dendrites. (Total DCX-positive neurons: 
6,974±600 (Vehicle), 12,636±1,764 (TAM) (p =0.038). DCX-positive neurons with tertiary dendrites: 
1,800±340 (Vehicle), 4,090±285 (TAM) (p=0.006)). n=3 mice/group. e) Representative images of Ki67 
immunostained coronal hippocampal sections in mice sacrificed 4 or 8 weeks after vehicle or TAM 
administration. Scale bar = 100 µm.  f) There are no significant differences in Ki67 between groups at 
either 4 weeks (p=0.1, n=4 mice/group), or 8 weeks (p=0.3, n=5 mice/group) post vehicle or TAM 
administration. g) Representative images of BrdU and NeuN immunostaining. Scale bars 100 µm (top), 
50 µm (bottom). h) TAM treatment increases the number of BrdU-positive cells in the granule cell layer 
(GCL) (3,004±733 (Vehicle), 11,113±874 (TAM), (p=0.0004)). There is no difference between groups in 
the percent of BrdU-positive cells that are also NeuN-positive (54.6±7.3% (Vehicle), 67.2±4.7% (TAM)). 
*p<0.05, **p<0.01. Results are presented as mean ± SEM. 
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Figure 2.3 TAM increases neurogenesis in the olfactory bulb in iBax mice. 

Representative images of BrdU and NeuN-labeled cells in the olfactory bulb (left). Scale bar = 100 µm. 
TAM treatment significantly increases the density of BrdU-positive cells (196.14±4.5 (Vehicle), 328±29 
(TAM), p=0.01), n=3 mice/group. *p<0.05. Results are presented as mean ± SEM. 

 

To assess the functional contribution of increased levels of adult hippocampal 

neurogenesis, we performed electrophysiological experiments, assessing long-term potentiation 

(LTP) at medial entorhinal perforant path to granule cell synapses. This synapse has been 

previously shown to exhibit strong LTP in the presence of bicuculline. In the absence of 

bicuculline, a much weaker LTP is observed (referred to as ACSF-LTP), which is abolished in 

the absence of adult hippocampal neurogenesis (Snyder et al. 2001, Saxe et al. 2006). Here, we 

observed that slices from TAM treated animals display increased ACSF-LTP (p = 0.039) (Figure 

2.4, top panel), while there is no difference between groups for LTP in the presence of 

bicuculline, a GABA A receptor antagonist (Figure 2.4, bottom panel), a form of LTP mediated 

by mature granule cells. These findings suggest that increasing the number of adult-born neurons 

is sufficient to enhance neurogenesis-dependent LTP, and that additional adult-born neurons in 

TAM-treated iBax mice functionally integrate into the hippocampal network. 
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Figure 2.4 TAM treated iBax mice show enhanced ACSF-LTP.  

TAM treatment increases ACSF-LTP over vehicle treated animals (top panel), (p=0.039), n=8-11 slices 

from 6-7 mice/group. There is no difference in LTP in the presence of bicuculline (bottom panel), n=4-6 

slices from 3 mice/group. Results are presented as mean ± SEM. 

 

2.3.2 Levels of adult hippocampal neurogenesis impact performance in a fear-based 

pattern separation task. 

Since the dentate gyrus has been shown to play a role in pattern separation (Marr 1971, 

O'Reilly and McClelland 1994, McHugh et al. 2007), we were interested in exploring the role of 

adult hippocampal neurogenesis in this process. To do this, we used fear discrimination learning 

as a behavioral test thought to require pattern separation (McHugh et al. 2007), and tested the 

effects of ablation of neurogenesis in mice that underwent x-irradiation, as well as the effects of 

increased neurogenesis in iBax mice. In order to rule out effects on encoding or retrieval, we also 

tested both groups of mice in a single-trial contextual fear conditioning paradigm. 
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Many rodent learning and memory tasks involve associative learning processes that elicit 

quantifiable behavioral responses. One commonly used paradigm is fear conditioning, through 

which a rodent learns to associate an aversive unconditioned stimulus (for example a foot shock) 

with a conditioned stimulus (such as a context or a tone) which is initially of neutral salience. 

Contextual fear conditioning has been shown to be hippocampal-dependent (Phillips and 

LeDoux 1992). In this test, animals are trained by receiving shocks in a specific context. When 

animals are re-exposed to the context in which they were shocked, they normally display 

freezing behavior, which increases with shock intensity (Curzon et al. 2009). The percent of time 

that an animal freezes during re-exposure to a shock-paired context is therefore interpreted as the 

strength of the memory of the shock experience. Importantly, following contextual fear 

conditioning, animals do not display freezing behavior when exposed to a novel context, 

suggesting that freezing behavior is specifically associated with the shock context. 

Mice that underwent hippocampal irradiation have very low levels of neurogenesis. X-ray 

significantly decreases the number of DCX-positive neurons as compared to sham treated 

animals (p=0.011) (Figure 2.5 a,b). Irradiated mice and sham controls were first tested in a single 

trial fear conditioning paradigm. When mice were shocked in context A and tested in that same 

context 24 hours later, both x-ray and sham groups displayed similarly increased freezing levels 

(Figure 2.5 c), suggesting that both groups encode and express fear of context A equally.  

Sham and irradiated mice were then tested in contextual discrimination learning, where 

each day they were exposed to both the shock context A, as well as a similar, but safe, no shock 

context B (Figure 2.5 d). The contextual fear discrimination learning task has been developed as 

a variant of contextual fear conditioning, to test an animal’s ability to distinguish between similar 

experiences (Sahay et al. 2011). In this task, animals are exposed to two similar contexts daily, 
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one in which they receive a shock, the other in which they do not. Freezing behavior is measured 

during exposure to both contexts, and initially, animals generally display similarly high freezing 

levels in both contexts. However, after several days, animals tend to display higher freezing 

levels in the shock context than in the similar, no-shock context. The difference in freezing levels 

between the two contexts has been interpreted as an ability of the animal to distinguish between 

the two similar contexts, which is thought to require pattern separation. 

In the contextual discrimination learning task, freezing in each context was used to 

represent the relative fear expressed by mice, from which an assessment of whether they have 

learned to distinguish between the two contexts can be extrapolated. While initially, both sham 

and irradiated groups of mice displayed equal freezing levels in both contexts A and B (Figure 

2.5 e,f), by day 5, sham mice displayed a more robust difference in freezing between the two 

contexts compared to irradiated mice (p=0.04) (Figure 2.5 f). 
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Figure 2.5 Ablation of adult hippocampal neurogenesis impairs performance in a fear discrimination learning 

task. 

a) Representative images of DCX immunostaining in coronal hippocampal sections. Scale bar 100 µm. b) 
Quantification of DCX shows that x-irradiation greatly diminishes neurogenesis. (Total DCX-positive 
neurons: 3,120±659 (sham), 144±75 (x-ray) (p=0.011)), n=3 mice/group. c) There is no difference in 
freezing levels between x-ray and sham treated mice before or after contextual fear conditioning using a 
single foot shock-context pairing protocol (p>0.05), n=8-9 mice/group. d) Contextual fear discrimination 
learning paradigm. e) Freezing levels over days in each context, separated by treatment group, reveal a 
significant difference in freezing between contexts over days in the sham, but not x-ray group. (Sham 
p=0.004. X-ray p=0.1) f) Freezing levels of each group in each context on days 3, 4, and 5. By day 5, sham 
mice display a more robust discrimination between the two contexts as compared to x-ray mice 
(p=0.04). *p<0.05, **p<0.01. Results are presented as mean ± SEM. 

 

Next we used iBax mice to assess the effect of increasing adult hippocampal 

neurogenesis on contextual fear conditioning and discrimination learning. 24 hours after fear 

conditioning in context A, both TAM and vehicle treated mice displayed similar high freezing 
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levels (Figure 2.6 b), suggesting that both groups acquired and retained contextual fear 

conditioning equally well. Furthermore, both groups of mice froze at low levels when tested in a 

distinct context C that is very different from the training shock context A (Figure 2.6 b), 

suggesting that increasing adult hippocampal neurogenesis does not impact an animal’s ability to 

distinguish between two distinct contexts. 

 

 

Figure 2.6 Increasing adult hippocampal neurogenesis does not affect one-trial contextual fear conditioning. 

a) Experimental design. b) Mice initially display low freezing levels in context A on Day 1, before training. 
On Day 2, high levels of freezing were observed in both groups, with no significant difference between 
groups (p>0.05). On Day 3, mice show low levels of freezing in the distinct context C. Both groups show 
significantly lower freezing in context C than context A (p<0.0001). Results are presented as mean ± 
SEM. 

 

 Next, we tested pattern separation in mice with increased neurogenesis using a contextual 

fear discrimination learning task. As before, this paradigm initially consisted of daily 

presentations of the shock context A, following by presentation of the similar context B. 

Additionally, to make the task more difficult, the order of context presentations was reversed on 

day 7. Both groups displayed significantly different freezing levels between the two contexts 

over days (Vehicle: p<0.0001; TAM: p=0.0002) (Figure 2.7 b). Post hoc tests revealed more 
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days where freezing between contexts was significantly different in TAM compared to vehicle 

treated mice, especially after the order of context presentation was reversed (days 7-9, Figure 2.7 

b).  

 

 

Figure 2.7 Increasing adult hippocampal neurogenesis improves performance in a fear discrimination 

learning task. 

a) Contextual fear discrimination learning paradigm. The order of context presentation is reversed on 
day 7 of testing. b) Freezing behavior of both treatment groups over the duration of the experiment 
shows that TAM treated mice distinguish between contexts more consistently than vehicle treated mice. 
There were significant interactions between day and context for each treatment group (Vehicle 
p<0.0001, TAM p=0.0002). Days in which freezing differs significantly between contexts are indicated. 
*p<0.05. Results are presented as mean ± SEM. 

 

We next tested a separate cohort of mice on a more difficult version of this pattern 

separation task in which the order of contexts was changed throughout the experiment in a 

pseudo-randomized fashion (Figure 2.8 a). Analysis of freezing behavior over days showed that 
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TAM treated mice displayed different levels of freezing between the two contexts by Day 5, four 

days before control mice, suggesting that mice with increased neurogenesis have improved 

pattern separation (Figure 2.8 b).  

 

 

Figure 2.8 Increasing adult hippocampal neurogenesis improves performance in a fear discrimination 

learning paradigm with pseudo-randomized order of context presentation. 

a) Contextual fear discrimination learning paradigm. The order of context presentation was pseudo-
randomized. b) Freezing behavior of both treatment groups over the duration of the experiment. Both 
vehicle and TAM treated mice show significant differences in freezing levels between contexts over days 
(Vehicle: p=0.004, TAM: p=0.0008). TAM treated mice display different levels of freezing between 
contexts A and B by Day 5, while Vehicle animals do not display this difference until Day 9.  c) Freezing 
behavior of both treatment groups on days 1, 8 and 9 show that TAM treated mice display different 
levels of freezing between contexts before vehicle treated mice. n=9-11/group. * p<0.05, **p<0.01. 
Results are presented as mean ± SEM. 
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In a separate cohort of mice, we found that TAM and vehicle treated mice show similar 

extinction and reinstatement to learned fear (Figure 2.9), suggesting that the difference in fear 

discrimination learning is not due to differences in either of these processes. 

 

 

Figure 2.9 TAM and Vehicle treated animals show similar extinction and reinstatement of learned contextual 

fear. 

Experimental design of extinction and reinstatement (Rs) learning paradigm (top). Both vehicle and TAM 
treated groups show similar freezing behavior during extinction learning and reinstatement (bottom). 
Results are presented as mean ± SEM.  

 

2.3.3 Increasing adult hippocampal neurogenesis has no effect on mood-related behavior. 

Many environmental conditions that increase neurogenesis also impact mood-related 

behavior, including exercise, environmental enrichment and antidepressants. We therefore 

wondered whether specifically increasing adult hippocampal neurogenesis, without the other 

effects of these environmental manipulations, would be sufficient to impact mood-related 

behavior. In order to test this, a cohort of iBax mice was administered either TAM or vehicle, 
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and behavioral testing started six weeks later (Figure 2.10 a). No significant differences were 

seen between treatment groups in the open field, elevated plus maze, tail suspension or forced 

swim tests (Figure 2.10 b-e). 

 

 

Figure 2.10 Increasing adult hippocampal neurogenesis has no effect on anxiety or depression-related 

behavior. 

a) Experimental design. b) There were no statistically significant differences between groups in the open 
field test for total distance, percent center distance, total center distance, center entries or time in 
center (all p>0.05). c) There was no effect of TAM in the elevated plus maze for time in open arms and 
open arm entries (p>0.05). d) There was no effect of TAM in the tail suspension test for total mobility 
(p>0.05). e) There was no effect of TAM in mobility on either day 1 or day 2 of the forced swim test 
(p>0.05). n=8/group. Results are presented as mean ± SEM. 
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 Neurogenesis has been hypothesized to impact behavior by affecting HPA axis 

regulation, since ablation of adult hippocampal neurogenesis has been shown to impair this 

process (Schloesser et al. 2009, Snyder et al. 2011, Surget et al. 2011). We therefore sought to 

determine whether increasing adult hippocampal neurogenesis would affect HPA axis regulation 

in response to acute stress. In order to test this, we used two paradigms that have been shown to 

be affected by ablation of neurogenesis. We found that increasing adult hippocampal 

neurogenesis in iBax mice has no effect on plasma CORT levels in response to thirty minutes of 

restraint stress, or fifteen minutes in a novel cage, a milder stressor (Figure 2.11). These data 

suggest that increasing adult hippocampal neurogenesis on its own is not sufficient to affect 

behavior or HPA axis regulation at baseline. It appears that while neurogenesis is necessary for 

proper HPA axis regulation, increasing neurogenesis above control levels does not have an 

additive effect. 

 

 

Figure 2.11 Increasing adult hippocampal neurogenesis has no effect on HPA-axis regulation 

There are no differences in plasma CORT levels between TAM and vehicle treated iBax mice at baseline 
(Left, time point 0), following restraint stress (left, time points 30, 60 and 90) or following the mild stress 
of placement in a novel cage (right) (all p>0.05). n=4-11/group/time point. Results are presented as 
mean ± SEM. 
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2.3.4 Increasing adult hippocampal neurogenesis in mice exposed to voluntary exercise 

increases exploratory behavior. 

Voluntary exercise is an environmental manipulation known to increase adult 

hippocampal neurogenesis (van Praag et al. 1999), and to increase dendritic complexity and 

spine density of dentate granule cells (Eadie et al. 2005). We therefore wished to determine 

whether these conditions would enhance the contribution of increased levels of adult 

hippocampal neurogenesis to behavior. To do this, female iBax mice were placed in large cages 

with running wheels. Under these conditions, TAM treated animals displayed increased levels of 

neurogenesis, with a modest effect on the number of DCX-positive neurons (p=0.05) and a large 

increase in the number of BrdU-positive cells (4.4 fold increase, p<0.0001) (Figure 2.12 b). 

Notably, there was no difference in the percent of BrdU-labeled cells that were colabeled with 

the neuronal marker NeuN (Figure 2.12 c). 
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Figure 2.12 TAM increases neurogenesis in iBax mice exposed to voluntary exercise. 

a) Experimental design. Mice were injected with vehicle or TAM. Voluntary exercise began 5 weeks later, 

and behavioral testing began after another 4 weeks. BrdU was injected over 2 days, 11 weeks before 

sacrifice. b) Representative images of DCX and BrdU immunostaining with higher magnification insets 

(Scale bar 100 µm). TAM treated animals show a modest increase over vehicle treated animals in total 

levels of DCX-positive neurons (14,527±987 (vehicle), 19,893±2,022 (TAM) (p=0.5)). (Note that analysis 

of DCX-positive neurons with tertiary dendrites was not feasible due to the high number of overlapping 

DCX-positive dendritic trees.) TAM treated animals showed a large increase in BrdU-positive cells 

compared to vehicle treated animals (2,119±204 (vehicle), 9,324±463 (TAM) (p<0.0001)). c) There was 

no difference between groups in the percent of BrdU-positive cells that were also NeuN-positive 

(84.2±2.3% (vehicle), 83±3.7% (TAM), (p>0.05)). Scale bar 50µm. n=4-5 mice/group for all analyses 

presented. **p<0.01. Results are presented as mean ± SEM. 
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 Mice were tested in a variety of behavioral assays for exploratory, anxiety and 

depression-related behavior. We observed that TAM treated mice displayed increased 

exploratory and decreased anxiety-like behavior in the open field test, as demonstrated by 

increased total path length, rearing, percent pathlength center and time in center (all p<0.05) 

(Figure 2.13 b). However, we observed no differences in anxiety and depression-like behavior 

between groups in the light/dark test, novelty suppressed feeding, or forced swim tests (p>0.05) 

(Figure 2.14). This suggests to us that differences in open field behavior are likely due to 

increased exploration rather than an effect on anxiety. Notably, we also observed no difference in 

home cage activity (Figure 2.14), suggesting that the increased exploration in the open field test 

is novelty induced. 
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Figure 2.13 TAM treatment in iBax mice exposed to voluntary exercise increases exploratory behavior. 

a) Experimental Design. b) TAM mice showed significantly increased locomotor activity over time, as 

well as increased rearing events, percent pathlength center and time in center in the open field test 

compared to vehicle treated mice. n=10-11 mice/group. *p<0.05, **p<0.01. Results are presented as 

mean ± SEM. 
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Figure 2.14 TAM treatment in iBax mice exposed to voluntary exercise does not affect mood-related 

behavior. 

Following voluntary exercise, iBax mice and controls exhibit similar anxiety and depression-related 
behavior. (a) Groups behave similarly in the Light-Dark test. (b) There is no difference between groups in 
latency to feed or home cage food consumption in the Novelty Suppressed Feeding paradigm. c) There is 
no difference between groups in mobility on day 2 of the Forced Swim test. d) Home cage activity 
following voluntary exercise is similar between groups, as assessed by average number of grid crossings 
in the home cage. For a-c, n=10-11 mice/group. For d, n=7 mice/group. Results are presented as mean ± 
SEM. 
 

2.5 Discussion 

 Here we characterize a transgenic mouse line used to increase the number of adult-born 

neurons. We show that this expansion is sufficient to improve behavior in contextual fear 

discrimination learning paradigms, suggesting enhanced pattern separation; however, it is not 

sufficient to affect mood-related behavior or HPA-axis regulation under baseline conditions. 
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When combined with voluntary exercise, genetic expansion of adult hippocampal neurogenesis 

is sufficient to increase exploratory behavior in the open field test, but still does not affect 

anxiety and depression-related behavior in other tests. 

 

2.5.1 Characterization of iBax mice 

iBax mice provide a genetic mouse model to increase adult hippocampal neurogenesis. 

Since neurogenesis is increased by rescuing adult-born cells from cell death, we expect to see 

differences in levels of neurogenesis when assessed after the cell death phase. Supporting this 

expectation, we see no difference in proliferation, as assessed by the number of cells expressing 

Ki67 (Figure 2.2 f). Since the cell death phase overlaps with the timing of DCX expression 

(Figure 2.1), we expected and observed an effect of TAM on the total number of DCX-positive 

cells, and a larger effect on the number of DCX-positive cells with tertiary dendrites, the more 

mature subset of DCX- expressing cells, most of which are beyond the cell death phase. 

Furthermore, we see even larger effects using BrdU to look at survival of adult-born cells. When 

BrdU is injected, it becomes incorporated into dividing cells and at a later time point, BrdU 

therefore labels cells that were undergoing division at the time of BrdU injection, as well as 

additional progeny of those cells. BrdU therefore amplifies the observed increase in neurogenesis 

by labeling cells born at various time points, all of which have increased survival. 

 

2.5.2 iBax mice and pattern separation 

Hippocampal-dependent contextual fear conditioning has been shown to be impaired by 

ablation of adult hippocampal neurogenesis in some studies (Saxe et al. 2006, Winocur et al. 

2006, Imayoshi et al. 2008), but not in others (Shors et al. 2002, Clark et al. 2008). A study from 
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the Hen lab has shown that it is specifically in fear conditioning tasks with little training (one 

trial, one shock), where adult hippocampal neurogenesis affects learning, while there is no effect 

in paradigms with more extensive training (Drew et al. 2010). Here we do not see any effect of 

ablation or increase of adult hippocampal neurogenesis on contextual fear conditioning, using a 

minimal training paradigm (Figures 2.5 c and 2.6); however, mice of different strains respond 

differently to fear conditioning, therefore it is possible that increasing adult hippocampal 

neurogenesis in this mixed strain could impact contextual fear conditioning under a different 

paradigm, or that increasing adult hippocampal neurogenesis in a different strain might affect 

performance in this task. 

 We found that ablation of adult hippocampal neurogenesis impairs behavior in a fear 

discrimination learning task (Figure 2.5), supporting other findings that neurogenesis is required 

for normal pattern separation (Nakashiba et al. 2012, Tronel et al. 2012). Using iBax mice, we 

then show that increasing adult hippocampal neurogenesis is sufficient to improve behavior, 

especially in a more difficult version of this task where the daily order of context presentation 

varies (Figures 2.7 and 2.8). In these experiments, it is unclear whether increased adult 

hippocampal neurogenesis improves performance over controls when context presentation order 

is varied due to a specific role for adult-born cells in utilization of temporal cues. Alternatively, 

adult-born cells may play a non-specific role that only becomes relevant in more difficult pattern 

separation tasks, regardless of modality. Future experiments could be conducted to vary other 

modalities, such as scent or lighting, to make the contexts more similar in order to determine 

whether adult hippocampal neurogenesis plays a role in contextual fear discrimination learning 

paradigms made more difficult in these ways. Another outstanding question is whether 

increasing adult hippocampal neurogenesis can improve pattern separation in additional tasks 
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that do not involve contextual fear learning, for example radial arm maze and touch screen 

paradigms that require fine spatial discrimination in which performance is impaired in mice with 

ablated adult hippocampal neurogenesis (Clelland et al. 2009). In additional experiments not 

shown here, increasing neurogenesis in iBax mice had no effect on object recognition of similar 

objects in the novel object test, on spatial learning and memory in the reference version of the 

Morris water maze, nor on reversal learning in the active place avoidance task (Sahay et al. 

2011). However additional testing is required to determine the full extent of pattern separation 

tasks that may be affected by increasing levels of adult hippocampal neurogenesis. 

It is worth noting that in the adult brain, the Nestin promoter governs expression in neural 

stem cells in both the SGZ and SVZ, and therefore Bax is knocked out of adult born cells in both 

of these regions in iBax mice. In fact, we do see increased neurogenesis in both the hippocampus 

and the olfactory bulb, as observed following BrdU injections (Figures 2.2 and 2.3). The fact that 

the dentate gyrus has been implicated as playing a role in pattern separation, and that x-

irradiation specifically of the hippocampus impairs performance in this task (Figure 2.5), 

suggests that the increase in adult hippocampal neurogenesis underlies enhanced performance in 

the pattern separation task described here. However it is possible that the addition of new 

neurons from the SVZ to the olfactory bulb could be involved in this task as well. Young, adult-

born granule cells in the olfactory bulb have been shown to be more responsive to novel odors 

(Magavi et al. 2005), and to be involved in odor discrimination (Moreno et al. 2009). However, a 

study which blocked cell death specifically in the olfactory bulb, thereby increasing the number 

of surviving adult-born cells in this region, found that this manipulation impaired performance in 

an odor discrimination task (Mouret et al. 2009). Therefore it is unclear whether increased 
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survival of adult-born cells in the olfactory bulb affects behavior in the fear discrimination 

learning task. 

In order to determine whether neurogenesis in the SVZ is involved in this task, focal x-

irradiation could be delivered selectively to the SVZ in iBax mice with increased neurogenesis. If 

ablation of neurogenesis in the SVZ does not prevent the enhanced pattern separation in TAM 

treated iBax mice, this would suggest that neurogenesis in the SVZ is not involved in this task. 

Alternatively, experiments could be designed to specifically increase adult hippocampal 

neurogenesis without affecting the olfactory bulb through viral delivery of Cre to the dentate 

gyrus of mice homozygous for the floxed Bax allele. Additionally, an experiment such as this 

could deliver virus specifically to the dorsal or ventral halves of the dentate gyrus in order to test 

the hypothesis that increasing neurogenesis in the dorsal, but not ventral dentate gyrus would be 

sufficient for the enhanced pattern separation observed here. This hypothesis stems from the 

recent finding that ablation of adult hippocampal neurogenesis in the dorsal, but not ventral, 

hippocampus impairs pattern separation (Wu and Hen 2014). 

 

2.5.3 Increasing adult hippocampal neurogenesis does not affect anxiety or depression-

related behavior, or HPA axis regulation under baseline conditions 

Since various studies in which adult hippocampal neurogenesis is ablated have shown 

that neurogenesis is required for some of the behavioral effects of antidepressants (Santarelli et 

al. 2003, David et al. 2009), we hypothesized that increasing adult hippocampal neurogenesis 

might also be sufficient to elicit similar behavioral effects as antidepressants. However, under 

baseline conditions, we observed no effect of increasing adult hippocampal neurogenesis on 

anxiety and depression-related behavior (Figure 2.10). Although the lack of an effect on anxiety 
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and depression-related behavior initially suggested to us that increasing adult hippocampal 

neurogenesis is not sufficient for the behavioral effects of antidepressants, we also note that 

antidepressants often do not have effects under baseline conditions, but rather only affect 

behavior in stressed animals (David et al. 2009, Surget et al. 2009). Experiments testing the 

effects of increasing adult hippocampal neurogenesis in stressed animals will be presented in 

Chapter 3. 

Interestingly, we also do not see any effect of increasing adult hippocampal neurogenesis 

on HPA axis activity at baseline or in response to acute stress (Figure 2.11). Since studies have 

shown that ablation of adult hippocampal neurogenesis impairs regulation of the HPA axis 

(Schloesser et al. 2009, Snyder et al. 2011, Surget et al. 2011), we expected that increasing adult 

hippocampal neurogenesis might improve HPA axis regulation, which we expected to observe as 

decreased plasma CORT following acute stress. However, our data suggest that increasing adult 

hippocampal neurogenesis does not affect this process. It is relevant to note that glucocorticoids, 

and signaling through their receptors, are involved in many cellular processes, and therefore that 

maintaining normal HPA axis regulation in the presence of increased adult hippocampal 

neurogenesis may in fact be adaptive. 

 

2.5.4 An increase in adult hippocampal neurogenesis combined with voluntary exercise 

increases exploration. 

We find that in iBax mice exposed to voluntary exercise, mice with a genetic expansion 

of adult hippocampal neurogenesis display increased exploratory behavior in the open field test 

(Figure 2.13). This finding further supports an emerging role for the dentate gyrus, and the 

hippocampus as a whole, in mediating exploratory behavior. 
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A role for the hippocampus in motivated behavior, such as exploration and foraging, has 

been suggested (Swanson 2000), although the evidence for this role is inconsistent. Increased 

exploration in the open field has been observed following lesion of the hippocampus (Jarrard and 

Bunnell 1968, Rossi-Arnaud and Ammassari-Teule 1992, Ammassari-Teule and Passino 1997), 

although this effect is not always observed (Markowska and Lukaszewska 1981), and recent 

optogenetic studies from our lab have implicated the dentate gyrus in playing a role in 

exploratory behavior, in that stimulation of dorsal dentate granule cells increases exploration 

(Kheirbek et al. 2013). Here, we find that increasing adult hippocampal neurogenesis in mice 

exposed to voluntary exercise also increases exploration (Figure 2.13). All of these results 

together suggest that shifting hippocampal activity in many different ways may lead to increased 

exploration. 

Interestingly, we observed an effect of increasing adult hippocampal neurogenesis on 

exploratory behavior, but only in mice exposed to voluntary exercise. Although it is difficult to 

precisely compare the effects of TAM on levels of neurogenesis between mice at baseline and 

voluntary exercise due to different experimental designs, it appears that the increases in 

neurogenesis are similar (3.6 fold increase in BrdU at baseline 8 weeks post injection compared 

to a 4.4 fold increase in BrdU in mice exposed to voluntary exercise 11 weeks post injection). 

Therefore, we suggest that the observed exploratory effect in mice exposed to voluntary exercise 

is not due solely to the increase in neurogenesis, but rather that exercise modifies the properties 

of the increased numbers of excitable adult-born neurons in a way that impacts exploratory 

behavior. In the dentate gyrus, exercise has been shown to enhance LTP (van Praag et al. 1999), 

increase expression of BDNF, as well as the NR2B subunit of the NMDA receptor (Farmer et al. 

2004), and to increase spine density (Eadie et al. 2005). These effects of exercise likely alter 
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incorporation of adult-born granule cells into hippocampal circuits in such a way that increasing 

the number of adult-born neurons in the presence of voluntary exercise may affect circuits 

differently than at baseline. 

 

 Together, the data presented here suggest that increasing adult hippocampal neurogenesis 

is sufficient to enhance certain cognitive processes such as pattern separation, providing a 

potential therapeutic target for impairments in this process, for example as observed during aging 

(Yassa et al. 2011) and during post-traumatic stress disorder (Lissek et al. 2010). Furthermore, 

we observed that increasing adult hippocampal neurogenesis in mice subjected to voluntary 

exercise increases exploration, while this effect was not seen under baseline conditions. This 

disparity suggests that levels of adult hippocampal neurogenesis can affect distinct behaviors 

when combined with different environmental conditions. This dissociation, along with potential 

downstream circuits that may mediate the behaviors sensitive to changes in adult hippocampal 

neurogenesis, will be further discussed in Chapter 4. 

 

2.6 Involvement 

 The work presented in this chapter was conducted in collaboration with many members 

of the Hen Lab. I was specifically involved in immunohistological characterization and 

behavioral testing of iBax mice, contributing to some of the experiments performed at baseline 

and all of the experiments performed following voluntary exercise. 
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Chapter 3: Increasing adult hippocampal neurogenesis is sufficient to reduce 

anxiety and depression-like behaviors.  

3.1 Introduction 

As previously discussed in more detail (Chapter 1), adult hippocampal neurogenesis is a 

process through which additional granule cells are added to the dentate gyrus throughout life. 

These cells are produced from progenitors located in the subgranular zone of the dentate gyrus, 

and their rates of proliferation, maturation and survival are impacted by environmental 

conditions such as age, stress, exercise and antidepressants (Gould et al. 1997, Malberg et al. 

2000, van Praag et al. 2005, Dranovsky et al. 2011). 

Many antidepressants are known to act through monoamine systems, however the 

downstream mechanisms through which they affect mood are still not entirely understood. While 

many antidepressants change monoamine levels within hours, effective changes in mood are not 

seen for three to four weeks. This disparity, along with the findings that antidepressants increase 

the number of adult-born neurons (Malberg et al. 2000, Boldrini et al. 2009), which take about 

four weeks to form synaptic connections (Toni et al. 2007) and contribute to behavior in rodents 

(Kee et al. 2007, Denny et al. 2012), led to the hypothesis that antidepressants might affect mood 

by increasing adult hippocampal neurogenesis (Duman et al. 2001). Since these initial 

observations, adult hippocampal neurogenesis has been shown to be required for some, but not 

all, of the behavioral effects of antidepressants (Santarelli et al. 2003, David et al. 2009). 

However, one important remaining question is whether increasing levels of adult hippocampal 

neurogenesis is sufficient for antidepressant-like effects on behavior. Tangential support for this 

hypothesis includes a study in which deletion of neurofibromin 1 (Nf1) from adult-born cells 

increased levels of adult hippocampal neurogenesis and had an antidepressant-like effect on 
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behavior; however this manipulation not only increased the number of adult-born neurons, but 

also affected these cells in other ways, such as by activating ERK signaling (Li et al. 2012). 

More recently, the P7C3 compound has been shown to increase adult neurogenesis, and has an 

antidepressant-like effect on social interaction behavior following social defeat; however the 

mechanism by which this drug increases neurogenesis, as well as additional effects of the drug 

that may contribute to behavior, are unknown (Walker et al. 2014). 

In order to directly assess the effects of selectively increasing the number of adult-born 

neurons, we used a transgenic mouse line with increased adult hippocampal neurogenesis. Under 

baseline conditions, increased adult neurogenesis enhances pattern separation, but does not 

impact anxiety or depression-related behavior (Chapter 2). Here, we show that increasing adult 

hippocampal neurogenesis using this same transgenic mouse model is sufficient to provide 

resilience to chronic corticosterone (CORT) administration, a model of anxiety and depression, 

but does not affect performance in a discrimination learning task in mice treated with CORT. In 

a separate set of experiments in wild-type mice, we find that treatment with the BAX antagonist 

iMac2 in mice treated with chronic CORT increases adult hippocampal neurogenesis and 

decreases anxiety-like behavior, but also does not affect performance in a discrimination learning 

task. Furthermore, we find that both genetic and pharmacological manipulations alter the 

proportion of adult-born cells that become neurons or oligodendrocytes specifically in the ventral 

dentate gyrus, lending support to the recent hypothesis that changes in adult-born cell fate and 

oligodendrogenesis may impact anxiety and depression-related behavior (Edgar and Sibille 2012, 

Chetty et al. 2014). These findings extend our understanding of the contribution of adult 

neurogenesis to anxiety and depression, provide insight into the role of adult-born cell fate in 
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mediating the effects of stress and antidepressants, and suggest that neurogenesis may be 

targeted in the development of novel antidepressants.  

 

3.2 Methods 

3.2.1 Mice  

 iBax mice are described in Section 2.2.1. Wild type C57BL/6 mice (Taconic, 

Germantown, NY) were used for the iMac2 experiments. All mice were 8-10 weeks old at the 

beginning of each experiment. Mice were housed 2-5 per cage and maintained on a 12 hour 

light/dark schedule with continuous access to food and water. All behavioral testing was 

conducted during the light cycle with approval from the Institutional Animal Care and Use 

Committees at both Columbia University and the New York State Psychiatric Institute. 

 

3.2.2 Drug administration 

Tamoxifen (TAM) was dissolved in a solution of corn oil (C8267, Sigma, St. Louis, MO) 

and 10% ethanol. 8-10 week old iBax mice received 2 mg TAM (10 mg/ml, Sigma), or the same 

volume of corn oil and ethanol (vehicle), intraperitoneally once per day for 5 consecutive days.  

iMac2 (a generous gift from Inception Sciences, San Diego, CA) was dissolved to 1 

mg/ml in water and administered at 10 mg/kg via daily gavage, starting when mice were 8-10 

weeks of age. Control animals received an equivalent volume of water via gavage. 

Bromodeoxyuridine (BrdU) (150 mg/kg body weight, dissolved in .9% NaCl; Roche, 

Indianapolis, IN) was injected intraperitoneally once per day for 2 days at the time points 

designated in the experimental timelines. 
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3.2.3 CORT administration 

Here, we chose to model anxiety and depression using chronic CORT administration. 

When modeling human conditions in rodents, it is important to consider the validity of the 

model, which is typically assessed in three domains: face, construct and predictive validity 

(Willner and Mitchell 2002). Models of anxiety and depression are designed and validated based 

on whether they are elicited by risk factors for depression (construct validity), whether they lead 

to depression-like behavior (face validity), and whether they are reversed by chronic 

antidepressant treatment (predictive validity). 

Depression and anxiety disorders have often been modeled in rodents using chronic 

stressors, such as restraint, social isolation or electric shocks. Chronic unpredictable stress (CUS) 

or chronic unpredictable mild stress (CUMS) consist of a protocol where mice are subjected to 

variable stressors over a period of weeks, including isolation, light/dark cycle reversal, foot 

shocks, restraint, sleep deprivation or a dirty home cage environment. This type of stress model 

has been shown to produce depression-like behavior (face validity), which can be reversed with 

chronic antidepressant treatment (predictive validity) (Willner 2005).   

Another more recently used model of anxiety and depression is chronic administration of 

high levels of CORT. The use of this model is based on the finding that individuals with 

increased CORT levels due to pituitary or adrenal tumors (diagnosed as Cushing’s disease), have 

an increased risk of depression (construct validity) (Sonino et al. 1998). Furthermore, some 

depression patients who do not have Cushing’s disease display impaired HPA axis regulation 

(Greden et al. 1983, Vreeburg et al. 2009), suggesting that a model based on increased CORT 

levels may be relevant to the larger patient population. CORT has been administered over several 

weeks as a model of chronic stress in rodents, leading to anxious and depressed phenotypes (face 
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validity) as well as decreased adult hippocampal neurogenesis (Ardayfio and Kim 2006, Murray 

et al. 2008, Zhao et al. 2008). The effects of chronic CORT on various behavioral tests can be 

rescued by antidepressants, providing predictive validity (Gourley et al. 2008, David et al. 2009). 

Here, CORT (C2505, Sigma) was dissolved in .45% beta-cyclodextrin, administered ad 

libitum in opaque bottles, and replaced every 3-4 days. iBax mice received 70 µg/ml CORT, 

equivalent to 10 mg/kg/day, an effective dose in this strain (data not shown). In the iMac2 

experiment, C57BL/6 mice received 35 µg/ml CORT, equivalent to 5 mg/kg/day (David et al. 

2009). Non-CORT treated mice received .45% beta-cyclodextrin alone. 

 

3.2.4 Behavioral testing 

Behavioral testing was performed as described in Sections 2.2.3 and 2.2.4. 

 

3.2.5 Plasma corticosterone 

To examine HPA axis response to acute stress in the chronic CORT model (Figure 2e), 

mice were subjected to a 1 minute swim stress, where animals were placed in a beaker of room 

temperature water. Trunk blood was collected 5 minutes later (as in (David et al. 2009)) and 

treated as described in Section 2.2.5. 

 

3.2.6 Immunohistochemistry 

Sacrifice and immunostaining for DCX and BrdU alone were conducted as described in 

Section 2.2.7. For triple label of BrdU, NeuN and MBP, sections were washed in TBS, placed in 

a solution of 50% formaldehyde and 50% 2x SSC for 2 hours at 65°C, followed by 10 mins in 2x 
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SSC at room temperature, 2N HCl for 30 mins at 37°C, .1M boric acid for 10 mins at room 

temperature, and then washed in TBST (.1% Triton). Section were blocked in TBST and 3% 

normal donkey serum for 1 hour and placed in primary antibodies (sheep anti-BrdU 1:200 

[ab1893, abcam, Cambridge, MA], rat anti-MBP 1:100 [ab7349, abcam], mouse anti-NeuN 

1:500 [MAB377, Millipore, Billerica, MA] in blocking solution) overnight at 4°C. Sections were 

then washed in TBST and incubated in secondary antibodies (488 donkey anti-sheep 1:500, Cy3 

Donkey anti-rat 1:500, Cy5 Donkey anti-mouse 1:200 [Jackson] in PBS) for 2 hours at room 

temperature. Colabel analysis was conducted by scanning z-stacks of at least 20 BrdU-positive 

cells from both the dorsal and ventral hippocampus of each mouse on an Olympus Fluoview 

confocal microscope at 60x magnification.  

 

3.2.7 Organ weights 

In the iMac2 experiment, a subset of mice that were not transcardially perfused were 

decapitated. The spleen and thymus were immediately dissected and weighed. 

 

3.2.8 Statistical methods 

To assess effects on behavior, HPA axis regulation and neurogenesis in the iMAC2 

experiments, one way ANOVA was used. Due to our a priori hypotheses about the interactions 

between increasing neurogenesis and CORT, in the iBax and CORT experiments, we performed 

planned comparisons on vehicle vs CORT groups and CORT vs TAM+CORT groups using one 

way ANOVAs. Statistical analysis was conducted using StatView software (SAS Institute, Cary, 

NC). Results were considered statistically significant if p < 0.05. 
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3.3 Results 

3.3.1 In CORT treated mice, genetic deletion of Bax in adult neural stem cells and progeny 

increases neurogenesis. 

It has been repeatedly shown that ablation of adult neurogenesis has no effect on anxiety- 

or depression-related behavior at baseline, but can prevent the enhancing effects of 

antidepressants and enriched environments (Santarelli et al. 2003, Schloesser et al. 2010). We 

therefore reasoned that even though increasing adult neurogenesis shows no effect on behavior at 

baseline, it might prevent the effects of stress. Furthermore, in some strains of mice, 

antidepressants have no effect at baseline, but do rescue the effects of chronic unpredictable mild 

stress (Surget et al. 2009) or chronic CORT (David et al. 2009). 

First, we assessed whether genetic deletion of Bax from adult neural progenitors would 

maintain increased levels of adult hippocampal neurogenesis in mice treated with chronic CORT 

using the immature neuronal marker doublecortin (DCX) (Figure 3.1 b). CORT treatment 

significantly decreased the number of DCX-positive cells compared to vehicle (24% decrease, 

F(1,7)=15.994, p<0.01, Figure 3.1 d), while this was increased in the TAM+CORT group (69% 

increase, F(1,10)=16.789, p<0.01). We next assessed the number of DCX-positive neurons with 

tertiary dendrites, which represent a more mature subset of adult-born granule cells. Here, there 

was a trend for an effect of CORT (31% decrease, F(1,7)=4.754, p=0.07), and a significant 

increase in TAM+CORT treated mice (120% increase, F(1,10)=18.025, p<0.01).  

Additionally, mice were injected with the thymidine-analog BrdU to assess the survival 

of adult-born neurons (Figure 3.1 c). While there was no significant difference between vehicle 

and CORT (F(1,6)=1.086, p>0.05), TAM+CORT animals had significantly greater numbers of 

BrdU-labelled cells compared to CORT alone (168.5% increase, F(1,9)=5.33, p<0.05, Figure 3.1 
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e), with similar effects in both dorsal and ventral subregions (Figure 3.2). Genetic deletion of 

Bax therefore increases survival of adult-born neurons in the presence of chronic CORT. 

 

  

Figure 3.1 Genetic ablation of Bax in neural stem cells and progeny increases adult hippocampal 

neurogenesis in mice treated with chronic CORT. 

(a) Experimental design. (b-c) Representative images of DCX and BrdU (scale bars 100 um). (d) CORT 
treatment decreases the total number of DCX-positive neurons (p=0.005), and there is a trend for a 
decrease in the number of DCX-positive neurons with tertiary dendrites (p=0.07). TAM+CORT prevents 
these effects (p=0.002 for total DCX-positive neurons, p=0.002 for DCX-positive neurons with tertiary 
dendrites). (e) TAM treatment increases the number of BrdU-positive cells (p=0.047). All error bars 
represent SEM. *p<0.05, ** p<0.01. 

 

3.3.2 Increased adult hippocampal neurogenesis provides resilience to the behavioral 

effects of chronic CORT administration, but does not affect HPA axis regulation. 

After 4 weeks of CORT administration, mice were tested on various measures of anxiety 

and depression-related behavior. Only a subset of these tests (elevated plus maze and tail 

suspension test) were affected by CORT, but interestingly, these same tests were affected by an 
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increase in neurogenesis (TAM+CORT group). In the elevated plus maze, CORT had an 

anxiogenic effect, manifested by decreased time spent in the open arms (F(1,25)=6.86, p<0.05) 

as well as fewer open arm entries (F(1,25)=6.547,  p<0.05, Figure 3.2 b). This was reversed in 

TAM+CORT treated mice (F(1,28)=6.273, p<0.05 for open arm time, F(1,28)=4.252, p<0.05 for 

open arm entries), showing that increasing adult hippocampal neurogenesis is sufficient to 

produce an anxiolytic effect in this test. In the tail suspension test, CORT decreased mobility as 

compared to vehicle (F(1,26)=5.13, p<0.05, Figure 3.2 c), and TAM+CORT treatment increased 

mobility (F(1,26)=9.597, p<0.01), providing evidence that increased adult hippocampal 

neurogenesis is sufficient to provide stress resilience in this test of depression-related activity. 

Interestingly, in the open field test, where there is no effect of CORT for either total 

distance traveled (F(1,17)=1.162, p>0.05) or percent center distance (F(1,17)=1.754, p>0.05), we 

observed no effect of TAM (total distance: F(1,16)=0.032, p>0.05, percent center distance: 

F(1,16)=1.554, p>0.05, Figure 3.2 a). We also observed no effects of CORT or TAM+CORT in 

the light/dark, forced swim or novelty suppressed feeding tests (not shown). Consistent with the 

lack of an effect of increasing adult neurogenesis in the baseline, no-stress group, this suggests 

that neurogenesis specifically affects behaviors that are impacted by chronic CORT.  

Next, we were interested in assessing the effect of increasing adult hippocampal 

neurogenesis on HPA axis regulation. Ablation of neurogenesis has been shown to impair HPA 

axis regulation, which has been hypothesized as the mechanism through which changes in 

neurogenesis may affect anxiety and depression-related behavior (Schloesser et al. 2009, Snyder 

et al. 2011, Surget et al. 2011). Furthermore, previous work has shown that chronic 

administration of exogenous CORT alters HPA axis regulation by providing constant negative 

feedback to the HPA axis, and thereby preventing release of endogenous CORT from the adrenal 
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glands. In mice treated with chronic CORT, the adrenal glands shrink, and mice are unable to 

launch a normal, endogenous CORT response to acute stress (Murray et al. 2008).  

In order to determine whether increasing adult hippocampal neurogenesis prevents the 

effects of chronic CORT on HPA axis regulation, mice were subjected to acute swim stress, a 

paradigm in which we have shown that animals treated with chronic CORT do not display the 

stress-induced increase in plasma CORT that is seen in controls (David et al. 2009). Here, we 

found a strong trend for a blunted response to this acute stressor in CORT treated mice compared 

to controls (F(1,8)=5.155, p=0.05, Figure 3.2 d), and no difference between CORT and 

TAM+CORT treated mice (F(1,9)=0.016, p>0.05), suggesting that both of these groups have 

similar impairment of the endogenous HPA axis response to acute stress. In the context of 

chronic CORT, there is therefore a dissociation, where increased neurogenesis affects anxiety- 

and depression-related behavior, but not HPA axis regulation. 
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Figure 3.2 Genetically increasing adult hippocampal neurogenesis in iBax mice prevents the effects of chronic 

CORT on mood-related behavior, but not HPA axis regulation. 

(a) No statistically significant differences were seen between groups in total distance or percent center 
distance in the open field test (p>0.05). n=8-10/group. (b) In the elevated plus maze, CORT treated mice 
spent significantly less time in the open arms (p=0.015) and had fewer open arm entries (p=0.017) than 
controls. These effects were reversed in TAM+CORT treated mice (p=0.018 for open arm time, p=0.049 
for open arm entries). n=12-15/group. (c) In the tail suspension test, CORT treated mice displayed 
decreased mobility (p=0.032), which was reversed in TAM+CORT treated mice (p=0.005). In the line 
graph, data is represented in 1 minute bins for the duration of the test. n=14-15/group. (d) There is a 
strong trend for CORT treated mice to have lower plasma CORT levels than controls following forced 
swim stress (p=0.05), but no difference between CORT and TAM+CORT groups (p=0.91). n=5-6 group. All 
error bars represent SEM. *p<0.05, ** p<0.01. 

 

3.3.3 Increased adult hippocampal neurogenesis does not affect behavior in a contextual 

discrimination task in mice treated with chronic CORT. 

Next, we tested whether increasing adult hippocampal neurogenesis in mice treated with 

chronic CORT would improve behavior in cognitive-based tasks. First, mice were tested in 

contextual fear conditioning (Figure 3.3 a). Here, we saw no differences between groups in 

levels of freezing before fear conditioning (Day 1 Context A: all F<0.170, p>0.05), or after fear 

conditioning in either the shock context (Day 2 Context A: all F<0.514, all p>0.05), or in a novel 
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context (Day 2 Context C: all F<0.857, all p>0.05) (Figure 3.3 b). Furthermore, on day 2, all 

groups froze significantly more in context A than in context C, suggesting that they could 

discriminate between these two different contexts (Vehicle F(1,8)=30.479, p<0.001; CORT 

F(1,8)=17.052, p<0.01; TAM+CORT F(1,12)=62.389, p<0.0001). 

Next, mice were tested in a fear discrimination learning paradigm, where they were 

exposed daily to the shock context A and the similar no shock context B, presented in a pseudo-

randomized order (Figure 3.3 a). In this test, no treatment groups displayed significantly different 

freezing levels between Contexts A and B by Day 10 of this task (Vehicle F(1,8)=2.143, p>0.05; 

CORT F(1,8)=0.088, p>0.05; TAM+CORT F(1,12)=0.023, p>0.05), although vehicle mice 

appear to be closer to discriminating than the other groups (Figure 3.3 c, d). Increasing adult 

hippocampal neurogenesis did not improve behavior in this fear discrimination learning 

paradigm. 
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Figure 3.3 Genetically increasing adult hippocampal neurogenesis is not sufficient to affect freezing levels in a 

contextual discrimination learning task in mice treated with chronic CORT. 

a) Experimental design. On days 1 and 2, mice were tested in contextual fear conditioning. 
Discrimination learning began on Day 3. The daily order of context presentation was pseudo-
randomized. b) There were no differences between groups in freezing levels before conditioning (Day 1 
Context A), after conditioning in the shock context (Day 2 Context A), or in a novel context (Day 2 
Context C). c) Freezing levels in contexts A and B over days during the discrimination learning task. d) 
Freezing levels in both contexts on Days 5 and 10. There is no difference between freezing levels in mice 
treated with CORT alone, or treated with TAM+CORT. n=5-7/group. Results are presented as mean ± 
SEM. 

 

3.3.4 Pharmacological administration of a BAX antagonist increases neurogenesis and 

alters the proportion of adult-born neurons and MBP-positive putative oligodendrocytes in 

the ventral dentate gyrus. 

Next, we used a pharmacological agent to increase adult hippocampal neurogenesis, a 

more translationally relevant approach. We chose to use iMac2, a synthetic small molecule 

designed for its activity as a BAX antagonist, ability to suppress apoptosis, as well as its low 



 
 

77 
 

toxicity (Bombrun et al. 2003, Peixoto et al. 2009). Mice were administered iMac2 before and 

during chronic CORT treatment (Figure 3.4 a). As in the previous experiment, DCX and BrdU 

immunohistochemistry were used to assess adult hippocampal neurogenesis (Figure 3.4 b,c). 

There was a trend for an increased number of DCX-positive neurons in mice treated with 

iMac2+CORT compared to CORT alone (27% increase, F(1,9)=4.336, p=0.07, Figure 3.4 d) and 

a significant increase in DCX-positive neurons with tertiary dendrites (23% increase, 

F(1,9)=5.129, p<0.05). However, we observed no effect on the total number of BrdU-positive 

neurons (F(1,10)=1.123, p>0.05, Figure 3.4 e). 

   

 

Figure 3.4 The BAX antagonist iMac2 increases adult hippocampal neurogenesis. 
 (a) Experimental design. (b-c) Representative images of DCX and BrdU (scale bars 100 µm). (d) There is a 
trend for an effect of iMac2 to increase the total number of DCX-positive neurons (p=0.07), and a 
significant effect on the number of DCX-positive neurons with tertiary dendrites (0.0498). (e) There is no 
difference between groups in the total number of BrdU-positive cells (p=0.31). n=5-6/group in all 
analyses. All error bars represent SEM. * p<0.05. 



 
 

78 
 

Since iMac2 was administered systemically, and could therefore act as a BAX antagonist 

throughout the body, we were initially concerned about effects it might have in other tissues. 

Whole life genetic deletion of BAX increases the weights of the spleen and thymus (Knudson et 

al. 1995), therefore we assessed the weights of these organs. Here, we saw no significant effect 

of iMac2 treatment on the weights of the spleen or thymus (all F<4.55, all p>0.05, Figure 3.5), 

suggesting that these organs were not largely affected. 

 

 

Figure 3.5 Organ weights in mice treated with iMac2 

There is no significant effect of iMac2 treatment on the weights of the thymus (p=0.416) or spleen 
(p=0.086). n=3/group. Error bars represent SEM. 

 

3.3.5 Pharmacological administration of a BAX antagonist has an anxiolytic effect in mice 

treated with chronic CORT. 

Mice treated with CORT alone or iMac2+CORT were tested using various behavioral 

tests in order to determine whether iMac2 treatment affects anxiety and depression-related 

behavior. While there were no significant differences between CORT and iMac2+CORT groups 

in the open field or tail suspension tests (total distance open field F(1,23)=0.63, p>0.05; percent 

center distance open field F(1,23)=0.06, p>0.05; mobility tail suspension test F(1,24)=0.809, 

p>0.05; Figure 3.6 c), in the elevated plus maze, mice treated with iMac2+CORT displayed an 
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anxiolytic phenotype as compared to mice treated with CORT alone, observed by increased time 

spent in the open arms (F(1,23)=9.416, p<0.01) and increased open arm entries (F(1,23)=5.802, 

p<0.05, Figure .3.6 b). 

 

 

Figure 3.6 The Bax antagonist iMac2 has an anxiolytic effect in the elevated plus maze. 
 (a) There are no differences between groups in total distance traveled (p=0.44) or percent center 
distance in the open field test (p=0.81). (b) iMac2+CORT treated mice spend more time in the open arms 
(p=.005) and have more open arm entries (p=0.024) in the elevated plus maze compared to mice treated 
with CORT alone. (c) There is no difference between groups in mobility during the tail suspension test 
(p=0.38). In the line graph, data is represented in 1 minute bins for the duration of the test. n=12-
13/group in all analyses. All error bars represent SEM. *p<0.05, ** p<0.01. 

  

3.3.6 iMac2 does not impact behavior in a fear discrimination learning paradigm in mice 

treated with chronic CORT. 

 We were also interested in whether mice treated with iMac2 would have improved 

performance in a fear discrimination learning paradigm. Here, we found that both groups display 

different freezing levels between contexts A and B over days (CORT: F(5,120)=13.286 
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p<0.0001, iMac2+CORT: F(5,120)=21.537, p<0.0001, Figure 3.7 b). Both groups rapidly 

displayed differences in freezing levels between Contexts A and B, which were observed starting 

on Day 3 (CORT F(1,24)=4.832 p<0.05, iMac2+CORT F(1,24)=9.610, p<0.01, Figure 3.7 c). 

Here we observed no difference between mice treated with CORT alone or with iMac2+CORT, 

although the rapid learning displayed in these mice may have precluded observation of a 

difference between groups. 

 

Figure 3.7 The Bax antagonist iMac2 does not affect freezing levels in a fear discrimination learning 

paradigm. 

a) Experimental design. Context presentation was alternated on subsequent days. b) Both CORT and 

iMac2+CORT groups display different freezing levels between contexts A and B over days (CORT: 

p<0.0001, iMac2+CORT: p<0.0001 ) c) Both CORT and iMac2 groups display different freezing levels 

between contexts on Days 3 and 6 (Day 3: CORT p=0.038, iMac2+CORT p=0.0049; Day 6: CORT p<0.0001, 

iMac2+CORT p<0.0001). n=12-13/group. Results are presented as mean ± SEM. * p<0.05, ** p<0.01, *** 

p<0.001. 
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3.3.7 Increasing neurogenesis, either genetically or pharmacologically, alters the 

proportion of adult-born neurons and MBP-positive putative oligodendrocytes produced 

specifically in the ventral dentate gyrus. 

Next, we were interested in exploring the mechanism through which increasing adult 

neurogenesis impacts anxiety and depression-related behavior in mice treated with chronic 

CORT. We were especially intrigued by the potential dissociation between the effects of 

increasing adult neurogenesis on cognitive, but not mood-related, behavior at baseline, and 

effects on mood-related, but not cognitive, behavior in mice treated with CORT. Interestingly, 

different regions of the hippocampus have been implicated in modulating different behaviors, 

with the dorsal region of the hippocampus shown to be primarily involved in cognitive related 

behavior, and the ventral hippocampus shown to be primarily involved in mood related behavior 

(Kjelstrup et al. 2002, Fanselow and Dong 2010). Furthermore, recent evidence suggests that the 

function of adult-born neurons in these two regions is similarly dissociated (Wu and Hen 2014). 

We therefore hypothesized that increasing adult hippocampus neurogenesis in mice treated with 

chronic CORT might specifically alter properties of the ventral hippocampus, leading to the 

observed effects in mood-related, but not cognitive, behaviors. 

In iBax mice, we first assessed neurogenesis levels in both the dorsal and ventral 

hippocampus subregions using immunostaining for DCX and BrdU (Figure 3.8). Here we 

observed that TAM treatment had similar effects in both subregions. 
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Figure 3.8 Dorsal and ventral neurogenesis data in iBax mice treated with CORT.  

 (a) Experimental design. (b,c) In the dorsal and ventral subregions of the dentate gyrus (DG), the total 
number of DCX-positive neurons is decreased by CORT (dorsal p=0.07, ventral p=0.039), and rescued in 
TAM+CORT treated mice (dorsal p=0.028, ventral p=0.002); the number of DCX-positive neurons with 
tertiary dendrites is increased in TAM+CORT treated mice compared to mice treated with CORT alone 
(dorsal p=0.013, ventral p=0.001); and the number of BrdU-positive cells is increased in TAM+CORT 
treated mice compared to mice treated with CORT alone (dorsal p=0.06, ventral p=0.027). All error bars 
represent SEM. *p<0.05, ** p<0.01. 

 

Next, we looked more closely at the BrdU-labeled cells produced in the dorsal and 

ventral subregions. While neurons make up the majority of adult-born cells labeled with BrdU in 

the hippocampus, stem cells, astrocytes and oligodendrocytes are also found. Various 

environmental factors have been shown to shift the balance of adult-born cell types (van Praag et 

al. 2005, Dranovsky et al. 2011), including a recent finding that chronic CORT treatment 

increases the percent of adult-born cells labeled with BrdU that are colabeled with 

oligodendrocyte markers (Chetty et al. 2014). In order to determine the proportions of adult-born 

cell types produced in our model, we determined the identity of BrdU-labeled cells by assessing 
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co-expression with the neuronal marker Neuronal Nuclei (NeuN) and the oligodendrocytic 

marker Myelin Basic Protein (MBP) (Figure 3.9 a,b). While we saw no differences in these 

proportions between groups when assessing BrdU-positive cells in the dorsal dentate gyrus (all 

F<0.275, all p>0.05, Figure 3.9 c), we observed differences in the ventral subregion (Figure 3.9 

d). Here, there appears to be a decrease in the percent of BrdU-positive cells that are colabeled 

with NeuN in CORT treated mice compared to vehicle, although this is not statistically 

significant (F(1,6)=2.670, p>0.05). However, there is a significant increase in the percent of 

BrdU-positive cells colabeled with NeuN in TAM+CORT treated mice (from 65±11.1% to 

91±2.4%; F(1,8)=7.987, p<0.05). For the percent of adult born cells that are colabeled with 

MBP, we found no significant effect of CORT (F(1,6)=2.059, p>0.05), but a trend for 

TAM+CORT mice to have a lower percentage of BrdU-positive cells colabeled with MBP 

compared to mice treated with CORT alone (26±12.4% to 4±2.3%; F(1,8)=4.633, p=0.06). This 

data suggests that increasing adult hippocampal neurogenesis in the CORT model shifts the 

proportions of adult-born cells in the ventral hippocampus to relatively more neurons and fewer 

MBP-positive, putative oligodendrocytes.  
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Figure 3.9 Genetic ablation of Bax in neural stem cells and progeny restores the balance of neuron and 

oligodendrocyte production in the ventral dentate gyrus of mice treated with chronic CORT. 

(a,b) Representative images of BrdU colabeled with NeuN (a) and MBP (b). 20x images are on the left 
(scale bars 100 µm). 60x zoomed in image of area in the yellow box is on the right, including xz and yz 
planes in the merged image (scale bars 20 µm).  (c) In the dorsal dentate gyrus, there is no difference 
between groups for the percent of BrdU-positive cells colabeled with NeuN, MBP or neither (all p>0.62). 
(d) In the ventral dentate gyrus, animals treated with TAM+CORT have a significantly higher percent of 
BrdU-positive cells colabeled with NeuN (p=0.022) and a trend for a lower percent of BrdU-positive cells 
colabeled with MBP (p=0.06), as compared to mice treated with CORT alone. There are no significant 
differences between animals treated with vehicle and CORT (p>0.05). n=4-7/group in all analyses.  All 
error bars represent SEM. *p<0.05, ** p<0.01. 

 

The same analyses were completed in mice treated with iMac2. Looking specifically in 

the dorsal and ventral subregions of the dentate gyrus, we observed a trend for an effect in total 

DCX in the dorsal but not ventral subregion, and a trend for total 3’ DCX in the ventral but not 

dorsal subregion, but no large differences in total levels of neurogenesis between these areas 

(Figure 3.10). 
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Figure 3.10  Dorsal and ventral dentate gyrus neurogenesis data in mice treated with iMac2 and CORT 

 (a) In the dorsal dentate gyrus, there is a trend for mice treated with iMac2+CORT to have more DCX-
positive neurons than mice treated with CORT alone. (b) In the ventral dentate gyrus, there is a trend for 
mice treated with iMac2+CORT to have more DCX-positive neurons with tertiary dendrites than mice 
treated with CORT alone. n=5-6/group in all analyses. All error bars represent SEM.   

 

Next, we performed colabeling of BrdU with NeuN and MBP (Figure 3.11 a,b). Just as in 

iBax mice, we found no differences in the dorsal dentate gyrus (all F<0.637, all p>0.05, Figure 

3.11 c), however in the ventral dentate gyrus, iMac2 treatment increased the percent of BrdU-

positive cells colabeled with NeuN (from 61±3.7% to 76±4.4%, F(1,10)=7.189, p<0.05), and 

decreased the percent colabeled with MBP (from 27±2.1% to 13±3.2%, F(1,10)=13.095, p<0.01, 

Figure 3.11 d). Here, even though there is no change in the total number of BrdU-positive cells, 

iMac2 treatment shifts the balance of neurons and oligodendrocytes produced. 
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Figure 3.11  iMac2 shifts the balance of neurons and oligodendrocytes produced in the ventral dentate gyrus.  

 (a-b) Representative images of BrdU colabeled with NeuN (a) and MBP (b). 20x images are on the left 
(scale bars 100 µm). 60x zoomed in image of area in the yellow box is on the right, including xz and yz 
planes in the merged image (scale bars 20 µm). (c) In the dorsal dentate gyrus, there are no differences 
in the percent of BrdU-positive cells colabeled with either NeuN (p=0.73) or MBP (p=0.44). (d) In the 
ventral dentate gyrus, iMac2+CORT treated mice have a significantly higher percentage of BrdU-positive 
cells colabeled with NeuN (p=0.023) and lower percentage of BrdU-positive cells colabeled with MBP 
(p=0.005). n=5-6/group in all analyses. All error bars represent SEM.  *p<0.05, ** p<0.01. 

 

Together, these data from both iBax mice, and mice treated with iMac2, suggest that 

increasing neurogenesis in mice treated with CORT specifically alters the balance of cell types 

produced in the ventral, but not dorsal, hippocampus. Since the ventral hippocampus is also the 

region of the hippocampus involved in mood-related behavior, this provides a possible 

mechanism through which increasing neurogenesis in mice treated with CORT might impact 

behavior.  
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3.4 Discussion 

Here we have shown that increasing adult hippocampal neurogenesis is sufficient to 

provide resilience to chronic CORT administration. In iBax mice, we genetically blocked cell 

death in adult-born cells from neural precursors, which increases the number of adult-born 

neurons that reach maturation. In this way, we specifically mimicked this single property of 

antidepressants to increase adult neurogenesis, and showed that it is sufficient for antidepressant-

like behavioral effects in mice treated with chronic CORT, although interestingly, we do not see 

an effect of increasing neurogenesis on performance in a fear discrimination learning task. We 

suggest the possibility that increasing adult hippocampal neurogenesis may impact behavior by 

shifting the balance of neuronal and oligodendrocyte production, which we observe specifically 

in the ventral dentate gyrus. Additionally, we support these findings with similar results using a 

pharmacological BAX inhibitor, iMac2, showing that chronic administration of this drug also 

decreases anxiety, increases adult neurogenesis and shifts the balance of neuronal and 

oligodendrocyte production specifically in the ventral dentate gyrus. 

 

3.4.1 Increasing adult hippocampal neurogenesis prevents the effects of chronic CORT on 

anxiety and depression-related behavior, but not HPA axis regulation. 

In iBax mice, we show that chronic CORT has anxiogenic and depressive effects in a 

subset of behavioral tests, which are prevented in mice with increased adult hippocampal 

neurogenesis (Figure 3.2). Conversely, in tests in which CORT has no effect, increasing 

neurogenesis also has no effect. In this case, the behavior of all groups is similar to controls, and 

mimics the lack of an effect under baseline, no-stress conditions (Chapter 2). The disparity 

between the effects under these two conditions, baseline and chronic CORT, suggests that 
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increased neurogenesis only affects anxiety and depression-related behavior when animals are in 

a stressed-like state. 

This disparity parallels the effects of antidepressants when given to certain strains of 

mice where antidepressants do not affect behavior at baseline, but do following chronic CORT or 

chronic unpredictable mild stress (David et al. 2009, Surget et al. 2009). Furthermore, in humans, 

antidepressants have been shown to be more effective in severely depressed patients (Fournier et 

al. 2010), suggesting a similar disparity. Since adult hippocampal neurogenesis is a component 

of the mechanism of action of antidepressants, the constraint that antidepressants only affect 

behavior in depressed patients might also apply to increasing adult hippocampal neurogenesis, 

such that this manipulation only affects ‘stressed’ mice. 

One prevailing hypothesis in the literature is that adult neurogenesis affects anxiety and 

depression-related behaviors through altered regulation of the HPA axis, since the absence of 

adult neurogenesis impairs HPA axis regulation following acute stress (Schloesser et al. 2009, 

Snyder et al. 2011) and prevents the effects of antidepressants on the HPA axis (Surget et al. 

2011). While these studies show that intact adult hippocampal neurogenesis is required for 

proper HPA axis activity, our data suggests that increasing adult hippocampal neurogenesis is 

not sufficient to affect this process (Figure 3.2). This data therefore suggests that increased 

neurogenesis likely can affect behavior through a mechanism independent of HPA axis 

regulation. Nevertheless, we do note that under different stress conditions, where the endogenous 

HPA axis is active, increased neurogenesis could affect behavior through an additional 

mechanism involving the HPA axis. 
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3.4.2 Increasing adult hippocampal neurogenesis in mice treated with chronic CORT does 

not impact fear discrimination learning behavior. 

Interestingly, in mice treated with chronic CORT we do not see an effect of increasing 

adult hippocampal neurogenesis on performance in fear discrimination learning paradigms in 

either iBax mice (Figure 3.3) or mice administered iMac2 (Figure 3.7). In the iBax experiment, 

no groups showed different freezing levels in the two contexts that reached statistical 

significance, while in the iMac2 experiment, all groups rapidly showed significantly different 

freezing levels. Different behavior between these two strains of mice (the mixed strain iBax mice 

and pure C57BL/6 mice treated with iMac2) is not entirely unexpected since different strains of 

mice have been shown to behave differently in memory-related behavioral tests (Crawley et al. 

1997). The lack of an effect of increasing adult hippocampal neurogenesis on behavior in these 

experiments may be because the tasks were not optimized to detect differences between these 

groups, since all mice appear to either have not learned (in the iBax experiment) or to have 

learned very quickly (in the iMac2 experiment). Alternatively, neurogenesis may have different 

effects on the circuitry underlying pattern separation at baseline or in mice treated with chronic 

CORT, a possibility that will be further discussed in Chapter 4. 

 

3.4.3 Increasing adult hippocampal neurogenesis shifts the proportions of adult-born 

neurons and oligodendrocytes produced. 

Different environmental factors have been shown to shift the balance of adult-born cell 

types (van Praag et al. 2005, Wong and Herbert 2006, Dranovsky et al. 2011), and a particularly 

interesting recent study showed that chronic CORT treatment decreases the percent of adult-born 
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cells that become neurons, while increasing the percent that become oligodendrocytes (Chetty et 

al. 2014).  

Adult-born oligodendrocytes are produced by NG2-positive oligodendrocyte precursor 

cells, which are located throughout the brain, including in the dentate gyrus (Kang et al. 2010). It 

is unclear whether oligodendrocytes can also be produced from the Nestin-positive stem cells in 

the SGZ that give rise to adult-born granule cells. This was observed in one study using a Nestin-

CreERT2 transgenic mouse line crossed to a reporter line to label adult-born cells from the 

Nestin lineage, some of which were found to express MBP in adult mice treated with CORT 

(Chetty et al. 2014). However, another study characterizing the cell types produced by Nestin-

positive stem cells in the adult SGZ did not detect any oligodendrocytes, although this was done 

in naïve mice, not treated with chronic CORT (Bonaguidi et al. 2011). This discrepancy may be 

because production of oligodendrocytes in no-stress conditions is very low and therefore was not 

detected in the second study, or because these two studies used different Nestin-CreERT2 

transgenic mouse lines, which have been shown to label Nestin-positive stem cells with different 

levels of efficiency and ectopic expression (Sun et al. 2014). Whether oligodendrocytes are 

produced from Nestin progenitor cells is therefore unclear. 

In the experiments presented here, we did not observe significant effects of CORT on the 

proportions of adult-born neurons and oligodendrocytes produced, although this may be because 

BrdU was injected weeks before the onset of CORT treatment. Nevertheless, we found that 

genetically or pharmacologically increasing adult hippocampal neurogenesis modulated the 

proportions of neurogenesis and oligodendrogenesis in the opposite directions than expected due 

to CORT, and also reversed the behavioral effects of CORT. Notably, irregular myelination has 

been detected in several mental illnesses (reviewed in (Edgar and Sibille 2012)), therefore 
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maintaining appropriate levels of myelination by balancing neuronal and oligodendrocyte 

production may be important for mood regulation. 

The role of oligodendrogenesis in the adult dentate gyrus, and how this process may 

impact behavior, is not fully understood. Although dentate granule cells themselves are not 

myelinated (Blackstad and Kjaerheim 1961), axons that project onto granule cells from the 

entorhinal cortex (Jensen et al. 1999) as well as mossy cells (Ribak et al. 1985) are myelinated. 

Whether oligodendrogenesis in the adult hippocampus is involved in incorporation of adult-born 

neurons into existing circuits is unknown, but provides an intriguing hypothesis for the 

importance of maintaining balance in the production of neurons and oligodendrocytes. Our 

results extend the hypothesis that changes in myelination may underlie the behavioral effects of 

stress that lead to psychiatric illness (Edgar and Sibille 2012, Chetty et al. 2014), and further 

suggest that manipulations to prevent the effects of stress on oligodendrogenesis may provide 

resilience. 

Interestingly, we observed high levels of myelin basic protein (MBP) staining in the 

SGZ, an area with few myelinated axons. In fact, the hilus has been previously identified as a 

hippocampal subregion with a high density of oligodendrocytes, despite relatively few 

myelinated axons (Vinet et al. 2010). There are a few possible reasons that oligodendrocytes 

would be located in the SGZ. First, the SGZ is a niche for the production of adult-born granule 

cells from Nestin-positive progenitors. Oligodendrocyte production from oligodendrocyte 

precursors or nestin-positive progenitors may thrive on similar factors as neurogenesis, which are 

present in the SGZ. For example, oligodendrocytes are often found adjacent to blood vessels 

(Vinet et al. 2010), which are more dense in the SGZ than elsewhere in the hippocampus. 

Second, increasing evidence shows that oligodendrocytes have receptors and respond to various 
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neurotransmitters (Karadottir et al. 2005), and it has therefore been suggested that 

oligodendrocytes with cell bodies in the hilus may receive input that could affect processes that 

myelinate entorhinal axons in the molecular layer of the dentate gyrus (Vinet et al. 2010). 

It is particularly interesting that differences in the proportion of adult-born neurons and 

oligodendrocytes produced are observed specifically in the ventral, but not dorsal dentate gyrus. 

Numerous studies have now shown that the dorsal and ventral hippocampus have different 

genetic expression, connectivity and function (Fanselow and Dong 2010, Kheirbek et al. 2013). 

Furthermore, many studies have observed larger effects of chronic stressors and antidepressants 

on ventral than dorsal neurogenesis (Tanti and Belzung 2013, Wu and Hen 2014, Wu et al. 

2014). Although we do not see a large difference due to the effects of chronic CORT on total 

levels of neurogenesis in the dorsal and ventral subregions (Figures 3.8 and 3.10), we do see an 

effect of increasing neurogenesis on the balance of adult-born neuron and putative 

oligodendrocyte production specifically in the ventral dentate gyrus (Figures 3.9 and 3.11), 

supporting the hypothesis that neurogenesis in the ventral subregion is particularly important for 

anxiety and depression-related behavior. 

 

3.4.4 iMac2 is a candidate anxiolytic that acts by increasing adult hippocampal 

neurogenesis. 

iMac2 is a small molecule in the class of 2,6-dibromocarbazole piperazine derivatives of 

2-propanol, which act as BAX antagonists (Bombrun et al. 2003). A similar molecule in this 

class has been previously shown to increase adult hippocampal neurogenesis (Serono compound 

1 (Pieper et al. 2010)), and we have confirmed that iMac2 increases adult hippocampal 

neurogenesis in C57BL/6 mice (unpublished results). While genetic deletion of Bax is sufficient 
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to block cell death in adult-born neurons, many other cell types require deletion of both Bax and 

Bak, another pro-apoptotic gene, in order to block cell death (Takeuchi et al. 2005, Biswas et al. 

2010). In fact, the only other tissues with increased weights following whole life genetic deletion 

of Bax are the spleen and thymus (Knudson et al. 1995). Here we observed no change in the 

weights of these organs following systemic iMac2 administration (Figure 3.5), suggesting that 

the previously observed effects may be due to the absence of Bax during development, or that 

iMac2 does not infiltrate these tissues. These results and the literature suggest the possibility that 

systemic administration of a BAX antagonist such as iMac2 may selectively impact neurogenesis 

in the adult, however more extensive testing is needed to support this claim. 

 Genetic deletion of bax has a larger effect on neurogenesis than iMac2 treatment, 

however even the smaller effect in the iMac2 experiment is sufficient to impact behavior. In the 

iMac2 experiment, we see an increase in neurogenesis as assessed by DCX, but not by BrdU. 

This discrepancy suggests to us that the cellular populations represented by these two measures 

may have been impacted differently by iMac2. BrdU was injected after 1 week of iMac2 

treatment, and the majority of BrdU-positive cells were likely born around the time of BrdU 

injection. On the other hand, the population of DCX-positive cells assessed was born 1-3 weeks 

before sacrifice. It is therefore possible that the effects of iMac2 on neurogenesis increased 

throughout treatment, leading to a larger effect on the DCX population. 

Additional understanding of the developmental stage at which adult-born neurons 

contribute to mood-related behavior will also be useful. Here, levels of neurogenesis were 

increased 7-9 weeks before behavioral testing (7 weeks in the iMac2 experiment and 9 weeks in 

the iBax experiment). At the time of behavioral testing, there were likely increased levels of 

adult-born neurons aged 0-7 or 0-9 weeks. Development of more sophisticated techniques could 
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allow increase of adult-born neurons only within a specific time window, allowing determination 

of whether there is a precise age range at which adult-born neurons contribute to mood-related 

behavior. Precise ablation studies probing the contribution of adult-born cells to cognitive tasks 

have identified 4 to 6 weeks as the age range during which maturing neurons influence these 

tasks (Kee et al. 2007, Denny et al. 2012), but it is not yet known whether adult-born cells in the 

same age-range contribute to mood-related behavior. 

 

While the results presented here suggest that increasing adult hippocampal neurogenesis 

can protect against the effects of a chronic stressor, it remains to be seen whether this 

manipulation can rescue behavior if neurogenesis is increased after a chronic stressor. As 

antidepressants are generally prescribed after the onset of depression, this is an important point 

to be addressed for the translational feasibility of targeting neurogenesis. Preliminary data 

addressing this point is presented in Appendix A, and suggest that increasing adult hippocampal 

neurogenesis may be sufficient to rescue the anxiety phenotype of chronic CORT in the elevated 

plus maze. Additionally, imaging tools being developed to detect levels of adult hippocampal 

neurogenesis in depressed patients may allow increased adult hippocampal neurogenesis to serve 

as a biomarker for antidepressant efficacy (Couillard-Despres and Aigner 2011, Tanti and 

Belzung 2013).  

The data presented here suggest that neural stem cells in the adult mammalian brain 

provide a resource that may be harnessed to treat various disorders. Expanding the production of 

adult-born neurons may be beneficial for the treatment of depression and anxiety disorders. 
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3.5 Involvement 

I was directly involved in all experiments presented in this chapter, with input from many 

members of the Hen lab and assistance from several lab volunteers.  
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Chapter 4: Discussion 

4.1 Summary of results 

 This thesis describes the effects of increasing adult neurogenesis in mice under three 

conditions: baseline, voluntary exercise and chronic CORT. Interestingly, increasing 

neurogenesis has different behavioral effects in each of these conditions: improving performance 

in contextual fear discrimination tasks at baseline, increasing exploratory behavior in mice 

exposed to voluntary exercise, and affecting anxiety and depression-related behavior in mice 

treated with chronic CORT. In these experiments, two manipulations were used to increase adult 

hippocampal neurogenesis: a genetic method using iBax mice to specifically increase survival of 

adult neuronal stem cells, and iMac2 a systemically administered BAX antagonist. In mice 

treated with chronic CORT, iMac2 replicated a subset of the behavioral effects observed in iBax 

mice, providing an anxiolytic effect in the elevated plus maze. Furthermore, increasing adult 

hippocampal neurogenesis, either genetically or pharmacologically, in mice treated with chronic 

CORT altered the proportions of neurons and oligodendrocytes produced in the ventral 

hippocampus, providing a potential mechanism through which increasing adult hippocampal 

neurogenesis impacts behavior, and suggesting regional specificity of the effects of this 

manipulation in mice treated with chronic CORT. 

 

4.2 Roles of adult hippocampal neurogenesis under different environmental 

conditions  

It was found that increasing adult hippocampal neurogenesis has different behavioral 

effects under different environmental conditions: effects on mood-related behavior in mice 
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treated with CORT, effects on pattern separation in mice at baseline, and effects on exploration 

in mice exposed to voluntary exercise. At first glance, it appears that these different effects could 

be because the initial and altered levels of neurogenesis are at different absolute values for each 

condition. Neurogenesis levels are relatively low in mice treated with CORT, and high in mice 

exposed to voluntary exercise, as compared to mice at baseline. Together, a possible framework 

could be proposed: changes in neurogenesis at low levels (by increasing neurogenesis in mice 

treated with CORT) would affect mood-related behavior, changes in neurogenesis at 

intermediate levels (by increasing neurogenesis at baseline) would affect pattern separation, and 

changes in neurogenesis at high levels (by increasing neurogenesis in mice exposed to voluntary 

exercise) would affect exploration. However, experimental data from mice at baseline with 

ablated neurogenesis argues against this explanation; the absolute values of neurogenesis levels 

in these groups fall closest to the low levels of neurogenesis in the above framework, yet these 

experiments have found differences in pattern separation (Figure 2.5), but generally not in mood-

related behavior (at least not without additional interventions) (Santarelli et al. 2003). While 

additional experiments will be informative to further explore this proposed framework, it is not 

entirely consistent with the published literature. 

Instead, the different observed behavioral effects may be because the environmental 

conditions used are known to have various different physiological effects, which may alter the 

integration of adult-born neurons into hippocampal circuits. Physiological effects of each 

condition provide potential mechanisms through which increasing adult hippocampal 

neurogenesis may affect different behaviors depending on environmental condition. 
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4.2.1 Pattern separation is improved in animals with increased adult hippocampal 

neurogenesis at baseline, but not in mice treated with chronic CORT. 

At baseline, increasing adult hippocampal neurogenesis enhances ACSF-LTP (Figure 

2.4) and improves performance in contextual discrimination learning paradigms (Figures 2.7 and 

2.8), but does not impact exploratory, anxiety or mood-related behavior (Figure 2.10).  

As presented in Chapter 1, adult-born neurons have been hypothesized to contribute to 

pattern separation in two ways. First, in a cell autonomous manner, the increased excitability of 

adult born cells may allow them to encode information in a unique way (Aimone et al. 2010). 

Here, iBax mice with increased adult hippocampal neurogenesis display enhanced ACSF-LTP, 

as well as enhanced performance in the discrimination learning paradigm, further supporting this 

hypothesis. 

Second, the dentate gyrus is thought to be involved in pattern separation partially through 

its sparse activity (O'Reilly and McClelland 1994). Adult neurogenesis has been hypothesized to 

contribute to the sparse activity of the dentate gyrus through the addition of young, excitable 

cells that synapse onto inhibitory interneurons throughout the dentate gyrus, increasing inhibitory 

tone (Kheirbek et al. 2012, Lacefield et al. 2012, Song et al. 2012). Since voltage-sensitive dye 

imaging in iBax mice has shown that increasing adult hippocampal neurogenesis decreases 

activity in the dentate gyrus (Ikrar et al. 2013), increasing adult hippocampal neurogenesis may 

therefore improve pattern separation by increasing sparseness in the dentate gyrus. 

It is interesting that behavioral effects are observed in the pattern separation task, which 

has been shown to be dependent on neurogenesis in the dorsal hippocampus, but behavioral 

effects are not seen in mood-related tasks, which have been shown to involve neurogenesis in the 

ventral hippocampus (Wu and Hen 2014). More precise analysis of ACSF-LTP and hippocampal 
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activity levels along the longitudinal axis will shed light on whether hippocampal circuitry is 

differentially affected in the dorsal and ventral subregions. Potential downstream brain regions 

that receive projections from the dorsal hippocampus and may mediate the effects of increased 

levels of adult hippocampal neurogenesis on fear discrimination learning behavior are discussed 

in Section 4.3. 

 

4.2.2 Exploratory behavior is increased in mice exposed to voluntary exercise, while it is 

not impacted in mice at baseline or exposed to chronic CORT. 

 Various environmental factors increase adult hippocampal neurogenesis, including 

exposure to learning tasks, antidepressants and voluntary exercise. Importantly, these 

environmental factors induce many changes in the hippocampus, which may affect the function 

and behavioral contribution of adult-born neurons alongside increases in adult-born cell number. 

 Voluntary exercise has been shown to enhance short and long term potentiation in the 

dentate gyrus, change expression levels of various receptors, and increase dendritic complexity 

and spine density of dentate granule cells (Fordyce and Farrar 1991, van Praag et al. 1999, 

Farmer et al. 2004, Eadie et al. 2005). Due to these effects of voluntary exercise, combining an 

increase in adult-born cell number with voluntary exercise might change the functional 

contribution of the increased number of adult-born cells. Under these conditions, it is likely that 

increasing adult hippocampal neurogenesis could impact the hippocampal network in a manner 

that is different from the impact at baseline, or in mice treated with chronic CORT. In future 

experiments, ACSF-LTP, voltage sensitive dye imaging, or calcium imaging of the dentate gyrus 

could be used to test this point, in order to determine whether there is a different magnitude 

effect in mice exposed to voluntary exercise. 
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 Increasing adult hippocampal neurogenesis in mice that have experienced voluntary 

exercise increases exploration in the open field test (Figure 2.13), but has no effects on anxiety or 

depression-related behaviors in other tests (Figure 2.14). Mice that experienced voluntary 

exercise were not tested in the discrimination learning paradigm. Since mice that have 

experienced voluntary exercise display enhanced performance in various memory related tasks 

(Fordyce and Farrar 1991, van Praag et al. 1999, van Praag et al. 2005), a more difficult 

discrimination learning task would be necessary to test the role of increasing adult hippocampal 

neurogenesis in these mice. 

It is unknown whether the effect on exploration is unique to voluntary exercise, or could 

be achieved with other conditions that increase granule cell plasticity, such as other forms of 

environmental enrichment or increased levels of trophic factors, like BDNF. Additional 

experiments using these manipulations would provide insight into how these different 

manipulations affect integration of adult born neurons into the hippocampal circuitry to affect 

different behavioral constructs. 

 

4.2.3 Anxiety and depression-related behavior are impacted by increased adult 

hippocampal neurogenesis in mice treated with chronic CORT, but not at baseline or in 

mice exposed to voluntary exercise. 

In Chapter 3, data was presented showing that in mice treated with chronic CORT, 

increasing adult hippocampal neurogenesis does not impact behavior in a discrimination learning 

paradigm (Figures 3.3 and 3.7) , but is sufficient to prevent the effects of CORT on anxiety and 

depression-related behavior (Figure 3.2 and 3.6). The different effects of increasing adult 

hippocampal neurogenesis in mice treated with chronic CORT compared to mice at baseline or 
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exposed to voluntary exercise suggests that in the chronic CORT condition, adult born neurons 

contribute to hippocampal function in an additional, unique way. The lack of an effect at baseline 

also parallels the lack of an effect of antidepressants on mood in healthy humans, suggesting that 

a similar constraint may prevent baseline effects of these manipulations. 

The effects of increasing adult hippocampal neurogenesis on anxiety and depression-

related behavior were seen specifically to prevent the effects of CORT. Chronic CORT 

treatment, like other chronic stressors, leads to many changes in the hippocampus, including 

decreased hippocampal CREB phosphorylation, BDNF levels and dendritic complexity in CA3 

pyramidal cells (Woolley et al. 1990, Gourley et al. 2008, Gourley and Taylor 2009). Reduced 

dendritic complexity of CA3 pyramidal cells due to other stressors has been shown to be 

dependent on excitatory neurotransmission (McEwen and Magarinos 1997, McEwen 1999, 

Christian et al. 2011). Since increasing adult hippocampal neurogenesis reduces excitability 

(Ikrar et al. 2013), this might be sufficient to prevent the effects of CORT on dendritic 

complexity, providing a candidate mechanism through which increasing adult hippocampal 

neurogenesis might prevent the effects of chronic CORT. 

There is also evidence that CORT directly affects adult-born cells. Knockout of the 

glucocorticoid receptor (GR) specifically in adult born cells accelerates maturation and 

migration, and increases dendritic spines, mossy fiber boutons, and basal excitability (Fitzsimons 

et al. 2013). These physiological changes observed following deletion of GR are candidate 

properties that may be affected by chronic CORT treatment. Any of these effects of CORT on 

hippocampal circuit processing may be reversed by increasing adult hippocampal neurogenesis. 

Since involvement of the hippocampus and specifically of adult hippocampal 

neurogenesis in cognitive and mood related tasks has been separated along the longitudinal axis 
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(Fanselow and Dong 2010, Wu and Hen 2014), increasing adult hippocampal neurogenesis in 

mice treated with chronic CORT might specifically impact hippocampal function in the ventral 

region, which is involved in anxiety and depression-related behavior, while not affecting 

hippocampal function in the dorsal region, which is involved in cognitive related behavior. 

Interestingly, in mice treated with chronic CORT, a difference in the effects of increasing 

adult hippocampal neurogenesis was observed between the dorsal and ventral hippocampal 

regions. Increasing adult hippocampal neurogenesis affects the proportion of neurons and 

oligodendrocytes produced in the ventral hippocampus, but not in the dorsal hippocampus, 

suggesting that this manipulation might specifically affect this portion of the hippocampus. A 

recent study has shown that stress or CORT treatment shifts this balance in the opposite direction 

(Chetty et al. 2014). Although we did not observe significant effects of CORT treatment in the 

iBax experiment (Figure 3.9), we note that in this experiment, BrdU was injected five weeks 

before the onset of CORT administration, which may have prevented observation of an effect. A 

reversal of the expected effect of CORT on oligodendrogenesis could represent a mechanism 

through which increasing adult hippocampal neurogenesis provides resilience in this stress 

model, producing effects on anxiety and depression-related behavioral tests in this condition, but 

not in mice at baseline or exposed to voluntary exercise. In these other conditions, increasing 

adult hippocampal neurogenesis had no effect on the proportion of adult-born neurons produced 

(Figures 2.2 h and 2.12 c), suggesting that this effect is specifically found in mice treated with 

chronic CORT. 

A precise understanding of how CORT shifts the production of adult-born cells from 

neurons towards oligodendrocytes is not known. Both oligodendrocyte and neuronal precursors 

have been shown to express GR (Garcia et al. 2004, Matsusue et al. 2014), suggesting that 



 
 

103 
 

proliferation could be directly impacted by CORT. Although the effects of CORT on 

proliferation in these two cell types is in opposite directions, GR has been shown to impact 

various genes in opposite direction in different tissues, depending in part on other transcription 

factors present (Beato et al. 1995, Luca et al. 2013).  

While causation has not been determined, our work adds to the hypothesis that changes in 

neurogenesis and oligodendrogenesis in the adult hippocampus might impact anxiety and 

depression-related behavior. Along with providing myelination, oligodendrocytes are involved in 

transport along and survival of axons, possibly by providing trophic support (Tachikawa et al. 

2004, Nave 2010). Mounting evidence shows that oligodendrocytes are important for proper 

axonal function in a more intricate way than previously thought. Various stressors have been 

shown to affect levels of myelination. While social isolation has been shown to decrease myelin 

in some brain regions (Liu et al. 2012), stress during pregnancy has been shown to increase 

myelination in pups during development (Wiggins and Gottesfeld 1986). Notably, irregular 

myelination in humans has been detected in several mental illnesses (reviewed in (Edgar and 

Sibille 2012)), therefore a precise level of myelination may be important for proper brain 

function. 

There are two possible ways that increasing adult hippocampal neurogenesis could 

prevent detrimental effects of increased oligodendrogenesis. First, as discussed in Chapter 3, it 

may be that the proportions of neurons and oligodendrocytes produced in the adult hippocampus 

need to be at a fixed ratio for proper function. For example, adult-born oligodendrocytes could 

be involved in the integration of adult born neurons into hippocampal circuitry in such a way that 

requires balance. Second, levels of adult hippocampal neurogenesis may affect oligodendrocytes 

via changes in hippocampal activity. A relevant recent study has shown that increasing neuronal 
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activity can increase myelination (Gibson et al. 2014). Since increasing adult neurogenesis has 

been shown to decrease activity in the hippocampus (Ikrar et al. 2013), increasing adult 

neurogenesis may decrease myelination through changes in overall activity levels of the dentate 

gyrus. Additional experiments to assess the effects of CORT and increased levels of 

neurogenesis on myelination in the dentate gyrus may provide evidence for one of these 

possibilities. Further work is needed to determine how shifts in oligodendrogenesis and 

myelination affect behavior, but this is an interesting emerging concept that may be related to the 

behavioral effects observed due to increasing adult hippocampal neurogenesis in mice treated 

with chronic CORT. 

 

4.2.4 Overview of effects of increasing neurogenesis: comparison of pattern separation and 

mood-related behavior. 

As discussed above, different behavioral effects of increasing adult hippocampal 

neurogenesis are observed under three conditions (baseline, voluntary exercise, and chronic 

CORT), suggesting different underlying mechanisms. However, it has been suggested that 

deficits or improvements in pattern separation might affect anxiety and depression-related 

behavior, raising the possibility that the observed behavioral effects may stem from similar 

changes in hippocampal function. 

A role for adult hippocampal neurogenesis in the pathophysiology of anxiety disorders, 

such as post-traumatic stress disorder (PTSD), has been hypothesized based on the possibility 

that stress-induced decreases in neurogenesis may impair pattern separation, making an afflicted 

individual more likely to associate every day experiences with memories from a traumatic event  

(Kheirbek et al. 2012). Furnishing this hypothesis, patients with panic disorder display stronger 
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conditioned generalization as assessed by startle electromyography (EMG) in a fear-

generalization paradigm (Lissek et al. 2010). Conversely, it is therefore possible that the 

observed effect of increasing adult hippocampal neurogenesis on anxiety and mood-related 

behavior in mice treated with chronic CORT may be due to improved pattern separation, even 

though performance in the contextual fear discrimination learning paradigm is not affected. 

Alternatively, we cannot rule out the possibility that changes in mood could affect pattern 

separation, even though we have not seen any evidence for this hypothesis. Nevertheless, these 

possibilities suggest that increasing adult hippocampal neurogenesis in mice exposed to different 

conditions may affect hippocampal processing in similar ways, but may lead to different 

behavioral effects via distinct downstream circuits. 

 

4.3 Possible downstream circuits through which adult hippocampal 

neurogenesis may affect cognitive, exploratory and mood-related behavior 

The dorsal and ventral regions of the hippocampus, which primarily modulate cognition 

and mood respectively, project to distinct brain regions, suggesting that distinct downstream 

circuits mediate the effects of dorsal and ventral hippocampal manipulations. Since increasing 

adult hippocampal neurogenesis affects either cognitive or mood-related behavior under different 

conditions, these effects are likely mediated by different downstream circuits. 

 

4.3.1 Candidate downstream circuits through which adult hippocampal neurogenesis may 

affect memory-related behavior. 

 The dorsal hippocampus is thought to contribute to cognitive and memory related-tasks, 

since dorsal hippocampal lesions impair performance in memory-related tasks (Moser et al. 
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1995, Pothuizen et al. 2004). Furthermore, ablation of adult-born neurons specifically in the 

dorsal dentate gyrus impairs performance in contextual fear discrimination learning (Wu and 

Hen 2014). The dorsal hippocampus sends projections to the lateral septum, thalamus, 

mammillary complex, retrosplenial cortex, and anterior cingulate cortex, in addition to the 

perirhinal cortex and lateral entorhinal cortex (Wyss and Van Groen 1992, Namura et al. 1994, 

Witter 2006).  

One primary subcortical candidate for mediating hippocampal influence on memory is 

the retrosplenial cortex, which has been shown to be involved in spatial (Vann and Aggleton 

2002) and contextual (Keene and Bucci 2008) memory tasks. Furthermore, intermediate early 

gene expression in the retrosplenial cortex is increased following learning tasks, an effect which 

is blocked by hippocampal inactivation, implying a role for hippocampal input to this region 

(Kubik et al. 2012). Another projection that may be involved in memory is from the 

hippocampus to the anterior cingulate (Fanselow and Dong 2010), since this region has been 

shown to be involved in storage of memory associated with contextual fear conditioning 

(Frankland et al. 2004). Other dorsal hippocampal projections may be involved in exploration (as 

discussed in Section 4.3.2). This involvement in exploration may be critically linked to the 

ability to form a cognitive map of an environment, which may be critical for memory (Muller et 

al. 1996), and therefore may also contribute to behavior in cognitive tasks.  

 

4.3.2 Candidate downstream circuits through which adult hippocampal neurogenesis may 

affect exploratory behavior.  

The portion of the hippocampus that impacts exploratory behavior is not well defined. 

Increased exploration in the open field has been observed following lesion of the hippocampus 
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(Jarrard and Bunnell 1968), although this effect is not always observed (Markowska and 

Lukaszewska 1981). In one set of studies, it was shown that while lesions of the dorsal or ventral 

hippocampus increase exploration (Rossi-Arnaud and Ammassari-Teule 1992), a larger portion 

of the ventral hippocampus than the dorsal hippocampus must be lesioned to affect locomotion 

(Ammassari-Teule and Passino 1997). Further supporting the importance of the dorsal 

hippocampus in modulating exploratory behavior, in a recent paper from our lab, optogenetic 

stimulation specifically of the dorsal dentate gyrus increased exploratory behavior in the open 

field (Kheirbek et al. 2013). This manipulation is also blocked by a dopamine receptor 1 

antagonist (Kheirbek et al. 2013), suggesting a possible downstream mechanism through 

dopaminergic cells. 

A primary downstream candidate brain region for hippocampal effects on exploratory 

behavior is the ventral tegmental area (VTA), which contains dopaminergic cells, and receives 

input from the hippocampus through a relay in the lateral septum (Swanson and Kalivas 2000, 

Luo et al. 2011). As presented in Appendix B, preliminary results of optogenetic stimulation of 

hippocampal projections to the lateral septum leads to increased exploration in the open field 

(Figure B.2). However, following testing in the open field, stimulated mice display high levels of 

cFos in the dentate gyrus (Figure B.3), which may lead to activation of additional downstream 

structures. From this experiment, it is therefore unclear whether hippocampal projections to the 

lateral septum mediate the effects of hippocampal manipulations on exploratory behavior.  

The dorsal hippocampus may also mediate exploratory behavior via projections to the 

mammillary bodies or the thalamus, which along with place cells in the hippocampus are thought 

to comprise a circuit involved in spatial navigation (Taube 2007). Optogenetic experiments 
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targeting hippocampal projections to these regions may elucidate the contributions to 

exploration. 

 

4.3.3 Candidate downstream circuits through which adult hippocampal neurogenesis may 

affect anxiety and depression-related behavior. 

The ventral hippocampus is thought to contribute to anxiety and depression-related 

behavior, since lesions of the ventral hippocampus have been shown to affect behavioral tests in 

these categories (Kjelstrup et al. 2002, McHugh et al. 2004). Furthermore, ablation of adult 

hippocampal neurogenesis specifically in the ventral dentate gyrus prevents some of the 

behavioral effects of antidepressants (Wu and Hen 2014). The ventral hippocampus sends 

projections to the hypothalamus, medial prefrontal cortex, nucleus accumbens and amygdala 

(Canteras and Swanson 1992, Namura et al. 1994). The ventral hippocampus has been 

hypothesized to affect anxiety and mood-related behavior through these projections (Fanselow 

and Dong 2010), and the behavioral effects of increasing adult hippocampal neurogenesis are 

therefore likely through these pathways as well. 

One downstream pathway that has been hypothesized to mediate the role of adult 

hippocampal neurogenesis on anxiety and depression-related behavior is via disynaptic 

connections between the hippocampus and the paraventricular nucleus of the hypothalamus, 

which controls the HPA axis. As previously discussed, evidence for this hypothesis comes from 

ablation studies in which the absence of adult hippocampal neurogenesis alters the response of 

the HPA axis to stress, or the effects of antidepressants on HPA axis regulation (Schloesser et al. 

2009, Snyder et al. 2011, Surget et al. 2011). However, using similar paradigms, no changes in 

HPA axis regulation were observed following increased adult hippocampal neurogenesis 
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(Figures 2.11 and 3.2). Furthermore, behavioral effects of increasing adult hippocampal 

neurogenesis were observed in mice treated with chronic CORT, in which the endogenous HPA 

axis is not responsive to stress. This suggests that increasing adult hippocampal neurogenesis in 

this condition most likely affects behavior through a mechanism independent of the HPA axis. 

Nevertheless, under different stress paradigms, increasing adult hippocampal neurogenesis may 

affect behavior in a HPA axis dependent manner. Future studies testing both HPA axis regulation 

and anxiety and depression-related behavior in mice with increased adult hippocampal 

neurogenesis that are exposed to additional stress paradigms will provide further mechanistic 

insight. 

Additional ventral hippocampal projections may underlie the observed behavioral effects 

of increasing adult hippocampal neurogenesis on anxiety and depression-related behavior. 

Projections from the hippocampus to the medial prefrontal cortex have been implicated in 

mediating anxiety-related behavior because synchrony between these two regions increases 

during anxiogenic experiences (Adhikari et al. 2010, Adhikari 2014). Since the nucleus 

accumbens is important for reward processing, hippocampal projections to this region could be 

involved in anxiety and depression-related behavior (Russo and Nestler 2013). Lastly, the ventral 

hippocampus and the amygdala are bidirectionally connected (Pitkanen et al. 2000), and 

optogenetic studies have recently implicated a role for projections from the amygdala to the 

ventral hippocampus in anxiety and social-related behaviors (Felix-Ortiz et al. 2013, Felix-Ortiz 

and Tye 2014). Projections from the hippocampus to the amygdala may also contribute to these 

behaviors, although this has yet to be shown. 

Changes in activity of hippocampal projections to various downstream regions due to 

increased levels of adult hippocampal neurogenesis may underlie the observed changes in 
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contextual fear discrimination learning, exploration, and anxiety and depression-related behavior. 

Future experiments utilizing optogenetics as well as techniques to observe in vivo activity 

patterns in downstream regions may indicate which downstream regions are involved in these 

behavioral phenotypes. 

 

4.4 Development of novel antidepressants to target adult hippocampal 

neurogenesis  

iMac2 is a pharmacological antagonist of BAX, which is part of the Bcl-2 family of pro-

apoptotic and anti-apoptotic proteins that regulate cell death. Small molecule inhibitors of Bcl-2 

(an anti-apoptotic protein in its namesake class) were initially established via structure-based 

computer screening methods (Enyedy et al. 2001). Subsequently, molecules with analogous 

structures were tested for their ability to inhibit pro-apoptotic proteins of this class based on their 

ability to prevent cytochrome c release through mitochondrial channels following induced 

apoptosis. In this way, iMac1 and iMac2 (named as inhibitors of mitochondrial apoptosis-

induced channels) were discovered (Bombrun et al. 2003). Only later was BAX identified as a 

component of these mitochondrial apoptosis-induced channels, which can be formed by 

homodimers of BAX, homodimers of another Bcl-2 family protein BAK, or by heterodimers 

consisting of both proteins (Dejean et al. 2005). Evidence was then obtained that blocking BAX 

is sufficient to block apoptosis (Hetz et al. 2005). Later, iMacs were shown to suppress apoptosis 

through BAX antagonism, and in a screen of several small molecules, iMac2 was shown to be 

the most effective, in addition to having the lowest toxicity (Peixoto et al. 2009). 

The potential systemic effects of iMac2-mediated antagonism of BAX were an initial 

concern. However, whole-life genetic deletion of Bax has only limited systemic effects, mainly 
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leading to increased weight of the spleen and thymus (Knudson et al. 1995). Here, iMac2 

treatment did not significantly impact spleen or thymus weight (Figure 3.5), suggesting that 

iMac2 has limited effects outside of the brain. Additionally, one third of mice with deletion of 

both Bax and Bak in the nestin lineage leads to brain tumors (Katz et al. 2013), however no brain 

tumors have been reported in Bax knockout mice (Knudson et al. 1995), and none were observed 

in the experiments presented here. 

Other drugs with pro-neurogenic properties have been suggested for use as 

antidepressants or to treat cognitive impairment. An in vivo screen of 1000 drugs for candidates 

that increase adult hippocampal neurogenesis led to the identification of P7C3 (Pieper et al. 

2010). This drug increases adult hippocampal neurogenesis, improves performance in cognitive 

tasks in aged mice (Pieper et al. 2010), and increases social interaction time following social 

defeat, which has been interpreted as an antidepressant-like effect (Walker et al. 2014). 

Furthermore, this effect on social interaction is dependent on adult hippocampal neurogenesis, in 

that it is prevented in mice that have undergone hippocampal x-irradiation (Walker et al. 2014). 

These studies highlight P7C3 as a candidate antidepressant compound, however it is still unclear 

whether the observed behavioral effects are mediated solely by increased levels of adult 

hippocampal neurogenesis, or whether this is just one component required for behavioral effects. 

P7C3 has been observed to have BAX antagonist activity (D. Lorain, personal communication), 

but additional effects of this drug are unknown. 

Two other pro-neurogenic compounds have been identified and tested. Isoxazole 9 (isx-9) 

is a pro-neurogenic small molecule. The precise mechanism through which isx-9 increases 

neurogenesis is unknown, but is likely through upregulation of the myocyte enhancer family of 

proteins (Mef2), since isx-9 has no effect on neurogenesis in mice with Mef2a and Mef2d 
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genetically deleted from adult-born neurons (Petrik et al. 2012). In addition to increasing 

neurogenesis, isx-9 also alters expression levels of various genes in neural stem cells, increases 

the dendritic complexity and soma size of adult-born neurons, and enhances performance in a 

spatial Morris water maze task (Petrik et al. 2012). Due to these various effects, it is unclear 

whether the observed behavioral effect of isx-9 is due to changes in the number of adult-born 

cells, changes in other properties of adult born cells, or changes in other cell types due to 

systemic administration of this drug. Furthermore, to our knowledge, this drug has not been 

tested for effects on anxiety and depression-related behavior. Another small molecule KHS101 

has been identified that increases neuronal differentiation through a mechanism that promotes 

cell cycle exit of proliferating cells (Wurdak et al. 2010), but behavioral testing has not been 

performed in mice treated with this compound.  

Along with these other drugs, iMac2 represents a potential novel treatment for anxiety 

and depression-related disorders through the mechanism of increasing adult hippocampal 

neurogenesis. The results presented in Chapter 3 provide the first evidence that such a drug can 

produce an anxiolytic effect in a model of chronic stress. It would be ideal to directly show that 

the observed behavioral effect of iMac2 is due to increased adult hippocampal neurogenesis. The 

proper way to test this would be to determine whether the behavioral effects are blocked in mice 

treated with iMac2 when neurogenesis is lowered to baseline levels, but we do not have a 

technique to do this. Performing an experiment to show that the behavioral effect of iMac2 is 

blocked in mice with completely ablated adult hippocampal neurogenesis (using a transgenic 

ablation model or hippocampal x-irradiation) would be suggestive, but could mean that some 

levels of neurogenesis are required for the behavioral effect, and not necessarily that increasing 

neurogenesis above baseline levels is important. Another control experiment would be to 
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administer iMac2 to CORT treated iBax mice with genetically increased adult hippocampal 

neurogenesis. If any behavioral effects of iMac2 were observed in these mice, they would be due 

to effects on other cells, since there would be no BAX in adult-born cells. The lack of behavioral 

effects in this experiment would support the interpretation that the anxiolytic effect of iMac2 

reported in Chapter 3 is due to increased adult hippocampal neurogenesis. 

 

4.5 In increasing adult hippocampal neurogenesis necessarily beneficial? 

While the data presented here showcases the beneficial effects of increasing adult 

hippocampal neurogenesis, it should be noted that this manipulation may not be beneficial in all 

ways, especially if continued over a long period of time. First, as presented in the introduction, 

some studies have found that neurogenesis impairs performance in remote learning tasks (Saxe et 

al. 2007, Akers et al. 2014). Furthermore, it is possible that a larger increase in adult 

hippocampal neurogenesis than used here might impair pattern separation. This is suggested by 

the finding that increasing the number of adult-born cells in the olfactory bulb impairs 

performance in odor discrimination tasks (Mouret et al. 2009). Optimal memory processing 

requires a delicate balance between pattern separation and pattern completion, therefore tilting 

this balance too far in either direction could be detrimental. 

Second, the generation of adult-born neurons requires energy. Decreasing adult-

hippocampal neurogenesis when exposed to stress may be an adaptive mechanism in order to 

delegate energy to more important processes. Furthermore, one study suggests that adult 

hippocampal neurogenesis generates oxidative stress, which has been implicated in contributing 

to various neurologic and psychiatric diseases (Walton et al. 2012). Increasing adult hippocampal 
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neurogenesis may therefore be maladaptive in ways that may be observed over longer periods of 

time than tested here. 

 

4.6 Conclusion 

The work presented in this thesis shows that increasing adult hippocampal neurogenesis 

differentially impacts cognitive, exploratory, and anxiety and depression-related behavior under 

baseline, voluntary exercise or chronic CORT conditions. These dissociated effects may be due 

to different mechanisms within the hippocampus, or mediated by different downstream circuits. 

Expansion of adult hippocampal neurogenesis using small molecule drugs such as iMac2 

represent potential novel therapeutics for cognitive impairment as well as depression and anxiety 

disorders. Since these disorders represent heterogeneous patient populations, drugs that target 

adult hippocampal neurogenesis may be especially useful to treat patients with dentate gyrus 

dysfunction, identified through imaging or behavioral tests that are currently being developed. 
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 Appendix A: Increasing adult hippocampal neurogenesis after the onset of 

chronic CORT treatment 

 

As presented in Chapter 3, increasing adult hippocampal neurogenesis before the onset of 

chronic CORT treatment is sufficient to prevent the effects of CORT on anxiety and depression-

related behavior. However, a more translationally relevant experiment is to increase adult 

hippocampal neurogenesis after the onset of CORT. After three weeks of CORT treatment, a 

length of time that is sufficient for CORT to affect behavior (David et al. 2009), iBax mice were 

administered either tamoxifen (TAM) or vehicle, and tested on various behavioral tests six weeks 

later (Figure A.1 a). (All experimental methods were conducted as described in Section 3.2.) 

Immunostaining for DCX and BrdU was performed in order to assess levels of adult 

hippocampal neurogenesis (Figure A.1 b,c). In this experiment, there was no effect of CORT 

treatment on the total number of cells labeled with DCX (F(1,6)=0.137, p>0.05), or the number 

of DCX-positive cells with tertiary dendrites (F(1,6)=0.110, p>0.05) (Figure A.1 d). However, in 

mice treated with chronic CORT, TAM treatment induced an increase in both the total number of 

DCX-positive cells (F(1,6)=8.468, p<0.05), as well as the number of DCX-positive cells with 

tertiary dendrites (F(1,6)=10.927, p<0.05). There was no significant effect of CORT 

(F(1,9)=0.155, p>0.05) or TAM (F(1,8)=1.242, p>0.05) for the number of BrdU-positive cells. 
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Figure A.1 TAM treatment increases neurogenesis when administered to iBax mice three weeks into chronic 

CORT treatment. 
a) Experimental design. b-c) Representative images of DCX and BrdU (scale bars 100 um). d) CORT 
treatment has no effect on DCX-positive neurons (p=0.724) or the number of DCX-positive neurons with 
tertiary dendrites (p=0.751). CORT+TAM treated mice have significantly higher numbers of DCX-positive 
neurons (p=0.027) and DCX-positive neurons with tertiary dendrites (p=0.016), as compared to mice 
treated with CORT alone. e) There are no significant effects of either CORT (p=0.703) or TAM (p=0.297). 
n=4-8 mice/group. All error bars represent SEM. *p<0.05. 

  

Mice were tested to determine whether increasing adult hippocampal neurogenesis is 

sufficient to rescue the behavioral effects of chronic CORT. Here, we observed no behavioral 

effects of CORT or TAM in the open field, forced swim or tail suspension tests (Figure A.2 

a,c,d). However, in the elevated plus maze, we observed trends for both an effect of CORT 

compared to vehicle treated animals (F(1,11)=3.718, p=0.08), and an effect of CORT+TAM 

compared to animals treated with CORT alone (F(1,11)=3.698, p=0.08). 



 
 

136 
 

 

Figure A.2 Increasing adult hippocampal neurogenesis in iBax mice is sufficient to rescue the anxiogenic 

effect of CORT in the elevated plus maze. 
a) There is no effect of CORT (p=0.642) or TAM (p=0.572) in percent center distance in the open field 
test. b) In the elevated plus maze, there is a trend for decreased time in the open arms in CORT treated 
mice (p=0.08), and a trend for this effect to be rescued in mice treated with chronic CORT (p=0.08). c) 
There is no effect of CORT (p=0.346) or TAM (p=0.497) in mobility in the second day of the forced swim 
test. d) There is no effect of CORT (p=0.670) or TAM (p=0.888) in mobility in the tail suspension test. 
n=4-8 mice/group. All error bars represent SEM. 

 

This result provides preliminary evidence that increasing adult hippocampal neurogenesis 

after the onset of a chronic stressor may be sufficient to rescue the behavioral effects of stress. 

Follow up studies with additional stress paradigms, as well as using pharmacological agents to 

increase adult hippocampal neurogenesis, such as iMac2, will provide more insight into this 

hypothesis. 
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Appendix B: Optogenetic stimulation of hippocampal projections to the 

lateral septum 

 

B.1 Introduction 

Many animal studies as well as patient case studies have implicated a role for the 

hippocampus in mediating many behaviors, including memory, exploratory and mood-related 

behavior. However, it is unclear which downstream projection regions from the hippocampus 

mediate these behavioral effects. Optogenetics has allowed exploration of this question, through 

the activation or silencing of hippocampal terminals in specific downstream brain regions. 

Channelrhodopsin-2 (ChR2) is a light gated cation channel that can be functionally 

expressed in mammalian cells (Nagel et al. 2003). Illumination with 473 nm light opens ChR2, 

allowing an influx of sodium ions, and a depolarization that can be propagated along axons and 

lead to neurotransmitter release (Boyden et al. 2005, Zhang et al. 2006). Additionally, axonal 

terminals with ChR2 expression can be directly illuminated to selectively activate projections 

from one brain region to another (Tye and Deisseroth 2012). 

Here, we wished to determine the behavioral consequences of specifically activating 

hippocampal projections to the lateral septum using ChR2. 

 

B.2 Methods 

B.2.1 Mice  

Experiments were performed using male 129SvEv mice ordered from Taconic. Mice 

were housed 2-5 per cage and maintained on a 12 hour light/dark schedule with continuous 



 
 

138 
 

access to food and water. All behavioral testing was conducted during the light cycle with 

approval from the Institutional Animal Care and Use Committees at both Columbia University 

and the New York State Psychiatric Institute. 

 

B.2.2 Viral injection and chronic implantation of fiber optic  

Mice were anesthetized with sodium pentobarbital (7 mg/kg) and placed in a stereotaxic 

frame. A 26-Gauge Hamilton syringe (Model 701) was placed above the hippocampus 

(coordinates from Bregma: 3.2 ML, -3.0 AP, -3.7 DV), and lowered using a microinjector at a 

rate of 0.5 mm/min. 1 µL of virus was injected into the right hippocampus at a rate of 0.1 µl/min. 

The syringe was left in place for 5 minutes following injection to allow for diffusion of viral 

particles. The syringe was then removed at a rate of 0.5 mm/min. Mice were injected with either 

pAAV5-hSyn-EYFP (referred to as EYFP) or pAAV5-hSyn-hChR2(H134R)-EYFP (referred to 

as ChR2-EYFP) virus (titer 4x10^12 virus molecules/ml), obtained from the University of North 

Carolina viral vector core.  

During the same surgery, a fiber optic was chronically implanted into the right lateral 

septum (coordinates from Bregma: 0.8 ML, +0.2 AP, -2.6 DV), and secured to the skull with 

dental cement (Dentsply, 675570). Fiber optics were constructed similarly to as has been 

described (Sparta et al. 2012), using fiber with a 200 µm core and 0.37 numerical aperture 

(ThorLabs), which was threaded through and glued into a stainless steel ferrule. On one end of 

the ferrule, a 3 mm length of fiber extended for penetration of the brain to the lateral septum. On 

the other end of the ferrule, excess fiber was cut with a diamond pen, and polished, for 

connection to a patch cable during behavioral testing. Ferrules were tested for light output 
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following construction, and all fibers used had output >75%. After surgery, mice were returned 

to their home cage and monitored until recovery. 

 

3.2.3 Behavioral testing  

Behavioral testing was conducted 6 weeks after viral surgery to allow for expression and 

transport of ChR2 to the axon terminals. In order to habituate mice to the behavioral procedure, 

they were handled and attached to a patch-cord for 5 minutes on each of the two days prior to 

testing. Patch cables were constructed as described (Sparta et al. 2012), using 200 µm diameter 

fiber.  

During the behavioral experiment, mice were attached to a patch-cord, which was 

connected to a 1x1 rotary joint optical commutator to prevent twisting of the patch cord during 

locomotion. On the other end, the commutator was coupled to a solid-state 473 nm, 100 mW 

laser (OEM Laser Systems, Inc.). The laser was controlled by a Master-8 stimulator (A.M.P.I.), 

which was programmed to deliver 10 msec duration light pulses at 10 hertz, a frequency within 

the typical firing range observed for hippocampal output cells (Sharp and Green 1994, Hemond 

et al. 2008). Due to the high ChR2 expression levels observed in pilot experiments, light was 

delivered at low power,  <1 mW.  

Mice were placed in an open field (MED Associates) for a total of 15 minutes, which was 

split into 5 minute epochs. During the first and third epoch, there was no laser light allowed 

through the patch cord to the mouse (‘light OFF’ epochs). During the middle ‘light ON’ epoch, 

mice received fiber optic illumination. Behavioral measures were analyzed using MED 

Associates software. Animals were carefully observed throughout behavioral testing. Two 
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animals displayed seizure-like behavior. They were immediately removed from the behavioral 

test, and data from these mice were not analyzed. 

 

B.2.4 Immunohistochemistry 

At sacrifice, mice were anesthetized with ketamine and xylazine (100 and 7 mg/kg 

respectively). Mice were then transcardially perfused with cold saline and 4% paraformaldehyde. 

Brains were postfixed in 4% paraformaldehyde overnight, and then transferred to 30% sucrose 

for cryoprotection. Brains were cut coronally on a cryostat into 35 µm sections. 

Staining for GFP and cFos (or GFP alone) was performed on floating sections. Tissue 

was first washed in phosphate-buffered saline with .1% triton-X (PBST) 3 times for 10 minutes 

each. Sections were then blocked in PBST with 10% normal donkey serum for 2 hours a room 

temperature, and placed in primary antibodies overnight at 4°C (rabbit anti-cFos 1:5000 [EMD 

Millipore, PC38], chicken anti-GFP 1:500 [Abcam, ab13970] in blocking solution). The 

following day, sections were washed in PBS 3 times for 10 minutes each, placed in secondary 

antibodies for 2 hours at room temperature (Donkey anti-rabbit Cy3 1:250, biotinylated donkey 

anti-chicken 1:250 [Jackson ImmunoReasearch] in PBS), washed in PBS for 3 times 10 minutes 

each, placed in tertiary antibody for 1 hour at room temperature (Avidin-Cy2, 1:250 [Jackson 

ImmunoResearch] in PBS), washed in PBS 3 times 10 minutes each, and mounted onto slides. 

Imaging was performed using an Olympus Fluoview confocal microscope. 

 

B.2.7 Statistical methods 

Repeated measures ANOVA was used to assess the interaction between treatment and 

time over the three time bins in the open field test, followed by post-hoc tests where appropriate. 
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Statistical analysis was conducted using StatView software (SAS Institute, Cary, NC). Results 

were considered statistically significant if p < 0.05. 

 

B.3 Results and discussion 

In order to determine the functional capability of hippocampal projections to the lateral 

septum, a virus encoding ChR2 (CHR2-EYFP), was unilaterally injected into the right 

hippocampus (Figure B.1). In the virus used, ChR2 is fused to EYFP for visualization, and is 

expressed under the human Synapsin (hSyn) promoter, which allows expression in all neuronal 

cell types (Kugler et al. 2003). In mice injected with this virus, ChR2-EYFP expression can be 

assessed using immunostaining for GFP. Such staining indicated that the virus is incorporated 

into neuronal cells in the hippocampus: expression is highest in CA3, but also present in CA1 

and the dentate gyrus.  

In neurons that express ChR2, this channel is transported to long-range axonal terminals 

over several weeks (Stuber et al. 2011). Here, ChR2-EYFP expression can be seen in terminal 

projections 6 weeks after viral injection. Labeled terminals were observed in prefrontal cortex 

(PFC), lateral septum (LS), and bed nucleus of the stria terminalis (BNST) (Figure B.1), as well 

as in the amygdala and hypothalamus (not shown). 

The most densely labeled terminals were observed in the lateral septum. This is likely 

because viral incorporation is most dense in CA3, and the lateral septum is the only 

extrahippocampal projection region of CA3 (Swanson and Cowan 1977, Witter 2007). 

Projections observed in the lateral septum may be from cells in CA3, CA1 or subiculum, while 

labeled terminals in other extrahippocampal regions are only from CA1 and subiculum. CA3 

projections are bilateral, while projections from CA1 and the subiculum are unilateral (Swanson 
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and Cowan 1977), leading to the observed bilateral labeling in the lateral septum, and unilateral 

labeling in the PFC and BNST (Figure B.1).  

 

 

Figure B.1 Viral expression of ChR2-EYFP injected into the right hippocampus. 

ChR2 was injected into the right hippocampus. Expression can be seen primarily in CA3, as well as in the 
dentate gyrus (DG) and CA1. ChR2 expressing terminals are observed in the prefrontal cortex (PFC), 
lateral septum (LS), and bed nucleus of the stria terminalis (BNST). 

 

Six weeks after viral injection and fiber optic implantation, mice were tested in the open 

field test for effects of laser stimulation on exploratory and anxiety-related behavior. Here we 

observed a significant interaction between treatment and time for the total distance traveled 

(F(2,24)=3.812, p<0.05) (Figure B.2 a), where ChR2-EYFP mice displayed increased total 
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distance traveled during the ‘light ON’ epoch (F(1,12)=5.585, p<0.05). There were no significant 

interactions between treatment and time for percent center distance (F(2,24)=0.67, p>0.05), time 

in center (F(2,24)=0.291, p>0.05), or rearing behavior (F(2,24)=0.553, p>0.05) (Figure B.2 b-d). 

 

 

Figure B.2 Stimulation of ChR2 expressing hippocampal terminals in the lateral septum increases total 

distance traveled in the open field.  
a) In the open field test, there is a significant interaction between treatment and time for total distance 
traveled (p=0.037). ChR2-EYFP mice display increased total distance traveled during the light on epoch 
as compared to EYFP mice (p=0.036). b-d) There is no significant interaction between treatment and 
time for percent center distance (p=0.521), time in center (p=0.750) or rearing (p=0.582). n=6-8/group. 
Results are presented as mean ± SEM. * p<0.05. 

 

Mice were sacrificed 90 minutes after testing in the open field in order to assess activity 

levels using immunostaining for cFos. Here we observed that mice expressing ChR2-EYFP 
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display dense cFos labeling in the hippocampus, particularly in the dentate gyrus, while mice 

expressing EYFP display sparse cFos activity (Figure B.3).  

 

 

Figure B.3 Stimulation of hippocampal ChR2-EYFP terminals in the lateral septum induces high levels of 

cFos staining in the hippocampus. 
Images of sections from ChR2-EYFP (top row) and EYFP (bottom row) mice stained for EYFP (left column) 
cFos (middle column) and merged (right column). Scale bar 100 µm. 

 

ChR2 excitation at terminals can lead to anterograde action potentials that can activate 

cell bodies. However, since dentate granule cells do not themselves project to the lateral septum 

(or anywhere outside of the hippocampus), the observed cFos expression could not be due to 

direct activation of dentate granule ChR2 expressing terminals. Dentate gyrus activation may be 

due to feed forward circuits through the lateral and medial septum. Since the lateral septum sends 

inhibitory projections to the medial septum (Swanson and Cowan 1979), and the medial septum 

sends inhibitory projections to the dentate gyrus (Kohler et al. 1984), stimulation of hippocampal 
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terminals in the lateral septum may disinhibit dentate granule cells, increasing activation. 

Alternatively, the observed cFos activation in the dentate gyrus may be a downstream result of 

hippocampal activation due to anterograde activation of CA3 and CA1 pyramidal cells whose 

terminals are activated in the lateral septum. Many single CA3 pyramidal cells have been 

observed to send projections to both CA1 and the lateral septum (Swanson et al. 1980), thus 

anterograde activation of these cell bodies would be likely to activate CA1, which could activate 

the entire hippocampus via circuits through the entorhinal cortex. 

 

If the exploration phenotype observed here is due to stimulation of hippocampal 

projections in the lateral septum, this behavior may be mediated by projections from the lateral 

septum to the ventral tegmental area (VTA) (Swanson and Cowan 1979), which likely disinhibits 

dopaminergic cells located there (Luo et al. 2011). Since dopamine is involved in exploratory 

behavior (Smith 1976), the hippocampus-lateral septum-VTA is a candidate circuit for mediating 

hippocampal modulation of exploratory behavior.  

In addition to determining whether hippocampal projections to the lateral septum do 

indeed mediate the observed exploratory phenotype, future studies will also shed light on 

whether this projection mediates hippocampal modulation of other behaviors. The hippocampus 

and VTA have also been hypothesized to form a loop that is involved in the formation of long-

term memory (Lisman and Grace 2005). In addition to the VTA, the lateral septum projects to 

various hypothalamic areas, the raphe nucleus, amygdala and thalamus (Meibach and Siegel 

1977, Swanson and Cowan 1979). The lateral septum has also been implicated in playing a role 

in social behavior (Ophir et al. 2009), anxiety (Le Merrer et al. 2006, Singewald et al. 2011, 

Trent and Menard 2011), memory (Reis et al. 2010) and reward (Luo et al. 2011). The 
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hippocampal projection to the lateral septum therefore has the potential to modulate various 

behaviors. 
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Appendix C: Generation of a transgenic mouse line to target the ventral, 

posterior hippocampus 

 

C.1 Introduction 

As introduced in Chapter 1, much work has differentiated the dorsal and ventral 

subregions of the hippocampus based on anatomical connectivity, gene expression and 

contribution to cognitive and mood-related behavior (Bannerman et al. 2004, Fanselow and 

Dong 2010). While in previous studies subregions along this axis have been targeted 

stereotaxically, genetic tools are needed for more precise targeting. Here, we present a transgenic 

tool that can be used to target the ventral, posterior hippocampus. 

In a microarray screen for genes with different expression levels in the dorsal and ventral 

regions of the hippocampus, decorin was identified as one of the proteins most enriched in the 

ventral hippocampus, with over 11 fold increased expression in the ventral over dorsal 

hippocampus (Leonardo et al. 2006). The microarray finding was validated with in situ 

hybridization, showing decorin expression in ventral, but not dorsal, CA1 and subiculum 

(Leonardo et al. 2006). 

Decorin is a small, leucine-rich proteoglycan, primarily studied for its involvement in 

regulating matrix assembly (Iozzo 1999), along with cell adhesion, growth, migration (Ferdous 

et al. 2010), and possibly neurotrophin signaling (Sometani et al. 2001). Neuronal expression 

outside of the hippocampus has not yet been characterized; however a transgenic mouse line was 

previously made using the decorin regulatory elements from a bacterial artificial chromosome 

(BAC), where neuronal transgene expression was confined to the ventral hippocampus (C. 
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Gross, personal communication). There is also evidence for decorin expression outside of the 

brain, including in muscle, liver and endothelial cells (Brandan et al. 1991, Zanotti et al. 2005). 

BACs typically can contain segments of DNA ranging from 100 to 300 kilobases 

(Shizuya et al. 1992). A BAC containing a gene of interest therefore can encompass not only the 

full coding region, but also many, if not all, cis-regulatory elements that govern the timing and 

location of expression (Muyrers et al. 2001). Recombineering techniques have been developed to 

manipulate DNA in BACs, allowing for efficient insertion of transgenes into BACs (Copeland et 

al. 2001). When BACs are inserted into the genome, they insert randomly. However, due to the 

large size of BACs, expression of genes within a BAC is often not affected by insertion site 

(Gong et al. 2003). 

Here we describe the generation of a transgenic mouse line, using a BAC to express the 

inducible recombinase CreERT2 under the decorin promoter and regulatory elements 

(DCN:CreERT2). Mice hemizygous for DCN:CreERT2 as well as a Cre-dependent tdTomato 

reporter line (Ai9 (Madisen et al. 2010)) express tdTomato in principal cells of the ventral, 

posterior hippocampus. We anticipate that this will be a useful genetic tool to target deletion of 

various genes specifically form the ventral, posterior hippocampus, as well as a means to target 

projections from this region throughout the brain. 

 

C.2 Methods 

C.2.1 Generation of transgenic mice  

A BAC clone containing the decorin gene (RP24-286G12) was obtained from the 

BACPAC Resource Center (Children’s Hospital Oakland Research Institute). The experimental 

design for insertion of CreERT2 into this BAC is depicted in Figure C.1. First, the BAC was 
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electroporated into SW102 cells, a tetracycline resistant strain that contains a temperature-

inducible prophage that can mediate homologous recombination (obtained from the National 

Cancer Institute (Warming et al. 2005, Sharan et al. 2009)) (Figure C.1 Step 1). Next, a loxP site 

that is present in this BAC was replaced so that it would not interfere with future loxP mediated 

recombination. This was accomplished using homologous recombination to insert a cassette 

containing a Zeocin resistance gene, which was used for selection of recombined clones 

(p24loxZeo cassette, a generous gift from Dr. Kosuke Yusa, Wellcome Trust Sanger Institute) 

(Figure C.1 Step 2). Next, the cassette to insert CreERT2 into the BAC was generated, and 

inserted into the BAC, replacing the decorin start site (Figure C.1 Step 3).  

Generation of the CreERT2 cassette is described in Figure C.2. Primers (Integrated DNA 

Technologies) were designed to amplify CreERT2 between the upstream BAC homology arm on 

one side, and a SalI restriction site on the other side. Using these primers, CreERT2 was 

amplified (from a DNA fragment provided as a gift from P. Chambom), and the PCR product 

was cloned using the TOPO PCR cloning method (Life Technologies). Next, PCR was used to 

amplify a kanamycin resistance gene using primers that also contained FRT sites, as well as a 

Sal1 site upstream, and the downstream BAC homology sequence in the reverse primer. This 

PCR product was also TOPO cloned. Next, these two PCR products were digested out of the 

TOPO vectors, and ligated via Sal1 restriction sites. This cassette was used to replace the decorin 

transcription start site in the BAC with CreERT2 via homologous recombination, and positive 

clones were selected by resistance to kanamycin (Figure C.1 Step 3).  

The recombined BAC was then electroporated into SW105 cells, which contain an 

arabinose-inducible flpe  gene (Warming et al. 2005) (Figure C.1 Step 4). Cells containing the 

recombined BAC were grown in Luria Broth (LB) containing .1% L-arabinose for 1 hour (Lee et 
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al. 2001) and then screened for kanamycin sensitivity (Figure C.1 Step 5). A positive clone from 

this screening was verified via PCR and sequencing (Genewiz), and used to generate the BAC 

transgenic mouse. 

 

 

 

Figure C.1 Strategy to insert CreERT2 into the Decorin BAC. 
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Figure C.2 Strategy to generate construct containing CreERT2 for insertion into Decorin BAC.  

 

 

To generate transgenic mice, the Dcn:CreERT2 BAC DNA was linearized with Fse1 and 

sent to the Hochgeschwender laboratory at Duke University. There, the DNA was injected into 

fertilized eggs, which were then implanted into pseudopregnant female mice (Cho et al. 2009). 

From this procedure, three founders were generated that transmitted CreERT2 expression 

through the germline to offspring. 

 

C.2.2 Breeding  

 F1 CreERT2-positive offspring were bred to the Ai9 tdTomato Cre reporter line (The 

Jackson Laboratory) to generate bi-transgenic mice, hemizygous for both DCN:CreERT2 and 
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Ai9. This reporter line was chosen due to the cre-dependent bright labeling of cell bodies, as well 

as visualization of labeled processes (Madisen et al. 2010). 

Genotyping was performed using a designated set of primers for this transgenic line. The 

forward primer is located in the BAC (TGC TAC TGG CAA GGA AAT G), while the reverse 

primer (TAG CGC CGT AAATCA ATC G) is located within CreERT2. Samples containing 

CreERT2 display a band at 1064 base pairs. Genotyping for CreERT2 in this line was initially 

also confirmed using the Jackson Laboratories ‘generic cre’ PCR protocol. 

 

C.2.3 Tamoxifen administration, sacrifice and tissue processing  

F2 offspring hemizygous for both DCN:CreERT2 and the Ai9 tdTomato reporter 

transgene were used to characterize the DCN:CreERT2 line. These mice were administered 

tamoxifen (2 mg/kg/day) i.p. for 5 consecutive days, and sacrificed 6 weeks after the last 

tamoxifen treatment via transcardial perfusion. Brains were post-fixed, cryoprotected and cut 

into 35 µm sections. Sections were mounted onto slides for visualization of tdTomato, which 

does not require immunohistochemistry. 

 

C.3 Results and discussion 

Dcn:CreERT2 transgenic mice were generated as described in the methods section. A 

notable divergence from traditional recombineering protocols was the use of a kanamycin 

resistance cassette flanked by FRT sites for selection of integration of CreERT2 into the BAC. 

The kanamycin resistance cassette was then easily removed by transferring the BAC into a 

readily available cell line that has arabinose-induced flippase activity. This novel recombineering 

technique replaced a difficult homologous recombination step with a simple protocol. The 
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homologous recombination step that this replaces typically has a success rate of about 1% of 

screened clones (Copeland et al. 2001), while here, this novel step had a success rate of 98% of 

positive screened clones. Furthermore, a plasmid was generated containing CreERT2 and the 

FRT site flanked kanamycin resistance cassette, which can now be easily modified with 

homology arms for inserting CreERT2 into the coding region of a BAC containing any gene of 

interest. 

Mice expressing DCN:CreERT2 were crossed to the Ai9 Cre-inducible tdTomato 

transgenic mouse line. Offspring were administered tamoxifen for inducible activation of Cre 

recombinase and sacrificed six weeks later. Of the three founder lines, one line has more robust 

expression than the others, and therefore is presented here. Interestingly, in this line, when a 

CreERT2-positive F1 male was used for breeding, 100% (29/29) of female F2 offspring were 

found to be CreERT2 positive, while 0% (12/12) of male F2 offspring were found to be 

CreERT2 positive, suggesting that the CreERT2 is likely inserted into the X chromosome, 

therefore only being passed to the female offspring of a male carrier. 

Brains from F2 offspring were imaged for tdTomato expression. TdTomato is localized 

predominantly in the cell bodies, but can also be visualized in processes. In DCN:CreERT2;Ai9 

mice, dense expression of tdTomato is seen in the posterior/ventral hippocampus, with some 

expression in CA1, and dense expression in the subiculum, parasubiculum and medial entorhinal 

cortex (Figure C.3 g-i). Sparser expression in also observed in the dorsal posterior subiculum 

(Figure C.3 g). Low levels of ectopic expression are present, but restricted to cingulate cortex, in 

a much sparser pattern than in the ventral, posterior hippocampus (Figure C.3, c compared to 

g,h,i). 
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Terminals within the hippocampus are seen in the middle third of the molecular layer of 

the dentate gyrus, and the stratum lacunosum-moleculare of CA3 and CA1. These are most likely 

terminals of projections from the medial entorhinal cortex, which has been reported to project to 

these layers (van Groen et al. 2003).  

Outside of the hippocampus, labeled terminals are visualized in the anterior olfactory 

nucleus (Figure C.3 a), nucleus accumbens (Figure C.3 b,c), cingulate cortex (Figure C.3 c,d), 

lateral septum (Figure C.3 c,d,e), bed nucleus of the stria terminalis (Figure C.3 d,e), amygdala 

(Figure C.3 f) and hypothalamus (Figure C.3 f). These are the projection regions that have been 

previously reported for the ventral hippocampus following localized dye and viral injections 

(Swanson and Cowan 1977, Canteras and Swanson 1992, Kishi et al. 2000). In all brain sections, 

additional staining of elongated structures is seen, which is likely due to expression of tdTomato 

in endothelial cells of blood vessels (Figure C.3), although the identity of these cells have not 

been confirmed. Expression outside of the brain has not yet been assessed. 
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Figure C.3 TdTomato expression under Dcn:CreERT2. 

Images of tdTomato expression in Dcn:CreERT2;Ai9 mice. Expression can be seen in cell bodies of 
ventral, posterior CA1 (g), subiculum (g,h,I; S), parasubiculum (h,I; PaS) and medial entorhinal cortex (h,I; 
MEnt), with no expression in principal cells of the dorsal hippocampus (f). Projections of labelled cells 
can be visualized in the anterior olfactory nucleus (a; AOM), nucleus accumbens (b,c; NAcc), cingulate 
cortex (c,d; CG), lateral septum (c,d,e; LS), bed nucleus of the stria terminalis (d,e; BNST), amygdala (f; 
Amyg) and hypothalamus (f; Hyp). Atlas images adapted from (Paxinos and Franklin 2001).  

 

This mouse line is the first transgenic tool to allow manipulation of various genes and 

projections from the ventral hippocampus. We anticipate this it will be very useful in continuing 

exploration of the function of this hippocampal region. 
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