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1.1 Introduction

Image segmentation is the process of identifying and delineating objects in
images. It is the most crucial among all computerized operations done on
images acquired by using an image acquisition device. Any image visual-
ization, manipulation, and analysis tasks require directly or indirectly image
segmentation. In spite of several decades of research [76, 87], this still largely
remains an open problem. It is the most challenging among all operations
done on images such as interpolation, filtering, and registration. Since these
latter operations require object knowledge in one way or another, they all
depend to some extent on image segmentation.

Methods for performing segmentations vary widely depending on the spe-
cific application, imaging modality, body region and other factors. There is
currently no single segmentation method that can yield acceptable results
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for every medical image. Combining several segmentation techniques to-
gether to form a hybrid framework can sometimes significantly improve the
segmentation performance and robustness comparing to each individual com-
ponent. The hybrid segmentation approach integrates boundary-based and
region-based segmentation methods that amplify the strength but reduce the
weakness of both approaches. However, most previous work still requires sig-
nificant initialization to avoid local minima. Furthermore, most of the earlier
approaches use prior models for their region-based statistics, which we would
rather avoid to increase usefulness in situations where a comprehensive set of
priors may not be available. Although this area of research is in its infancy,
several promising strategies have been reported. These pioneering methods
include: utilizing the results of region-based approach to assist in boundary
finding [14, 15, 16, 17, 20, 21, 81, 94], and combining fuzzy connectedness
and deformable boundary approaches [45, 56, 57, 58, 90].

We propose a Hybrid Segmentation Engine that consists of component
modules, for automated segmentation of radiological patient and the Visible
Human data. We integrate boundary-based and region-based segmentation
methods to exploit the strength of each method hopefully to cover the weak-
ness of the other method. This powerful and promising approach combines
fuzzy connectedness (FC) [113, 114], Voronoi Diagram classification method
[7, 51], Gibbs prior models (GP) [38] and the deformable models (DM) [66],
that constitute respective components of the engine. Each of the component
modules in the engine represents a stand-alone segmentation method, but the
possibility and advantages of combining the modules in a cooperative fashion,
irrespective of the class they represent, may improve performance. We can
derive a large number of hybrid segmentation methods by integrating differ-
ent subsets of the modules, and tailor them to serve the best a specific med-
ical imaging application. Although this area of research is in its infancy, the
preliminary results are very encouraging. The hybrid segmentation engine
has been fully developed under the NLM funding for Visible Human Project
Segmentation and Registration Toolkit Insight Toolkit (www.itk.org). In
this chapter we describe one instance of such a hybrid method that combines
fuzzy connectedness, Voronoi Diagram classification and deformable models
(FC-VD-DM), and Gibbs Prior with Deformable Models (GP-DM) and test
them on a number of clinical data sets and the Visible Human data [110].

The following is the organization of the chapter. In the next section,
we overview the image segmentation methods and present the rationale for
proposing the hybrid segmentation engine. Subsequently, in following three
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sections, we describe the hybrid segmentation engine and the hybrid methods
derived from it, respectively. In the next section, we describe implementation
of the hybrid methods in the itk. The final section contains experimental
results that include segmentations of radiological and Visible Human data
sets, together with (limited) evaluation of segmentation using quantification
of accuracy for true delineation [115].

1.2 Review of Segmentation Methods

For brevity, throughout this paper, we shall refer to any multidimensional
vector-valued image as a scene, and represent any scene C by a pair C =
(C, f), where C is a rectangular multidimensional array of volume elements,
referred to as voxels, and f is a function that assigns a vector to each voxel
in C whose components represent imaged property values called scene inten-
sities. Scene segmentation may be thought of as consisting of two related
processes recognition and delineation. Recognition is the high-level process
of determining roughly the whereabouts of an object of interest in the scene.
Delineation is the low-level process of determining the precise spatial extent
and point-by-point composition (material membership percentage) of the ob-
ject in the scene. Humans are more qualitative and less quantitative. Com-
puters are more quantitative and less qualitative. Incorporation of high-level
expert human knowledge algorithmically into the computer has remained a
challenge. Most of the drawbacks of current segmentation methods may thus
be attributed to the latter weakness of computers in the recognition process.
We envisage, therefore, that the assistance of humans, knowledgeable in the
application domain, will remain essential in any practical image segmentation
method. The challenge and goal for image scientists are to develop methods
that minimize the degree of this required help as much as possible. In the
following subsections, we shall review the strategies currently available for
delineation.

Approaches to delineation are studied far more extensively than those for
recognition in image segmentation. In fact, as indicated at the last para-
graph, commonly delineation is itself considered to be the entire segmenta-
tion process. At the outset, three classes of approaches to delineation may
be identified boundary-based, region-based and hybrid as described below.
Boundary-based approaches focus on delineating the interface between the
object and the surrounding co-objects in the scene. Region-based approaches
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concentrate on delineating the region occupied by the object in the scene.
Hybrid approaches attempt to combine the strengths of both boundary-based
and region-based approaches. In all three groups, it is possible to use hard
(crisp) or fuzzy (in the sense of fuzzy subset theory) strategies to address ge-
ometric, shape-related, and topological concepts. In the rest of this section,
we shall briefly review these three groups of approaches to delineation.

1.2.1 Boundary-Based Approaches

Mouse-controlled manual boundary tracing [112] is the simplest and the most
readily available among all delineation methods. Unlike other methods, man-
ual tracing does not require an initial developmental phase (which often can
be very time consuming) wherein the method is adapted and fine-tuned to
each new application. Major drawbacks of manual tracing, however, are
(1) the drudgery and time involved in tracing, and (2) its poor precision,
which may vary considerably depending on the fuzziness/sharpness of the
boundaries, window level setting used for scene display, brightness/contrast
of the monitor, and on the actual size of the object/boundary. First attempts
toward automating boundary tracing took optimum boundary detection ap-
proaches [61, 69, 70, 89], which pose boundary delineation as an optimization
problem that is, to pick that among all possible boundaries that can be drawn
in the scene which optimizes a properly chosen objective function.

Inadequacies of these methods, especially globally optimal boundaries of-
ten differing substantially from the real boundaries, led to the so-called active
contour or deformable boundary methods [24, 25, 39, 59, 62, 64, 65, 66, 72,
119], initiated by the ideas first presented in [59]. In these approaches, an
initial boundary is specified somewhat close to the desired boundary (either
explicitly by a human operator, or in an implicit fashion such as considering
the segmented boundary in the previous slice as the initial boundary for the
current slice in a slice-by-slice approach). A mechanical system is then set up
to deform the boundary through external forces originating from the scene
(such as from scene gradients), through internal forces exerted by the stiffness
properties assumed for the boundaries, and external forces specified through
user input. The final segmented boundary is taken to be that boundary for
which an energy functional is minimized. An advantage of these methods is
that, even when boundary information is missing in the scene in some parts
of the object boundary, such gaps are filled in simply because of the closure
and connectedness properties of the boundary as it is deformed. However,
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there is no guarantee that the resulting boundary would match well the real
boundary of the object. In an attempt to avoid the post-delineation correc-
tion required by these methods, a different family of user-steered delineation
methods called live-wire have emerged [34, 35, 36, 71, 105]. In these tech-
niques, recognition by a human operator and delineation by the computer
take place cooperatively, synergistically, and with a certain degree of con-
tinuity in a tightly coupled manner. By changing this degree, they allow
within a single framework various degrees of automation and human inter-
action. These methods have been shown to be more reproducible and about
3-10 times faster than manual tracing [36] in certain applications and can
be quickly (within minutes) adapted to a new application without requiring
developmental time [35, 71].

Active shape and appearance methods [26, 27, 28, 29, 33, 43, 67] have
emerged recently (and have become popular) in an attempt to overcome some
of the inadequacies of the deformable boundary methods. These methods
bring in constraints explicitly based on the shape of the boundary as well
as the intensity patterns (appearance) in the vicinity of the boundary. The
main premise is that, by creating statistical shape and appearance models (in
some normalized fashion) for the objects to be segmented in the particular
application, and by matching these models through smooth deformation to
the information presented in a given scene, the object can be segmented.

Another class of boundary-based delineation techniques called level-set
methods [63, 74, 106, 107] have emerged also for overcoming the inadequa-
cies of the deformable boundary methods. They have several advantages
compared to deformable models. They can handle changing topology nat-
urally, and can deal with local voxel level deformations. In this approach,
the boundary of an object is implicitly represented as the zero-level set of a
time dependent function called the level set function. The manner in which
this function evolves over time can be controlled by several entities includ-
ing the geometric properties of the evolving boundary, scene gradients, and
prior boundary shape information. The zero-level set of this function yields
the segmentation. Level set methods have been actively pursued in scene
segmentation and other applications [55, 106, 107].

1.2.2 Region-Based Approaches

The simplest among region-based methods is intensity thresholding [92].
Many methods to automatically find the thresholds in some optimum fash-
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ion have also been devised [1, 60, 75, 99, 102]. Region growing methods
[44, 88, 90, 120] evolved in an attempt to overcome the drawbacks of thresh-
olding. The basic idea in region growing techniques is to start from some
specified seed voxels and subsequently add voxels in the vicinity of the grow-
ing region to the growing region if voxel intensity-based properties satisfy
some conditions. If these conditions change adaptively with the growing re-
gion, then the repeatability of segmentations with respect to different seed
points cannot be guaranteed.

Clustering or feature space partitioning methods [30, 32, 111] are among
the popular region-based delineation techniques. This is particularly true
in brain MR image analysis [9, 12, 22, 40, 48, 68, 84, 85, 86]. The basic
premise of these methods is that object regions are manifest as clusters in an
appropriate feature space, and therefore, to segment the object regions, we
need to identify and delineate the clusters in the scatter plot defined in the
feature space. The commonly used clustering methods in medical imaging are
k-nearest neighbor [30], c-means [9], and fuzzy c-means [9] techniques. One
drawback of clustering techniques as employed commonly is the requirement
of multiple (2 or more) features associated with every voxel. In MR image
analysis, these are the imaged properties (such as T2, PD, and T1 values).
This also implies that the multiple acquisitions should be in registration or
should be registered post hoc. Neural network techniques have also been used
[42, 83, 93, 102, 120] for the classification of voxels into tissue classes based
on the voxels’ feature values. Graph-based approaches [96, 97, 98, 99, 100,
101, 113, 116, 117, 118, 121], to region delineation pose delineation as a graph
problem and present a solution via graph search algorithms. Two actively
pursued classes of methods in this group are graph-cut [10, 11, 116, 117, 118]
and fuzzy connectedness [31, 46, 96, 97, 98, 99, 100, 101, 121, 113]. In graph-
cut formulation, the scene is represented as a graph with voxels as its nodes
and adjacency defining edges. Costs are assigned to edges based on scene
intensity properties. A minimum cost cut then generates a segmentation.
Such a cut is determined using various types of graph cut algorithms. In
fuzzy connectedness, affinity between two nearby voxels defines their local
hanging-togetherness in the same object. Affinity is determined based on
the distance between voxels as well as on the similarity of their intensity-
based features. Fuzzy connectedness is a global fuzzy relation that assigns to
every pair of voxels a strength of connectedness which is the strength of the
strongest among all paths between the two voxels in the pair. The strength
of a path is simply the smallest affinity of pair wise voxels along the path.
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Fuzzy connectedness captures the notion of a Gestalt even in the presence of
noise, blurring, slow background variation, and natural heterogeneity. The
objects are segmented via dynamic programming. The framework has been
extended to relative, scale-based, iterative, and vectorial fuzzy connectedness
[31, 46, 97, 98, 99, 100, 101, 113, 121], and to a variety of image segmentation
applications.

The Finite Mixture (FM) model is a commonly used method for statisti-
cal scene segmentation because of its simple mathematical formula and the
piecewise constant nature of ideal tissue images. However, being a histogram-
based model, the FM model has an intrinsic limitation no spatial informa-
tion is taken into account. Using Markov Random Field (MRF), the spatial
information in an image can be encoded through contextual constraints of
neighboring voxels [123, 125]. More importantly, MRF-based approaches can
be combined with other techniques, (e.g., bias field correction) to form an
effective approach for tissue segmentation.

Another important class of methods referred to as watershed is commonly
used for region delineation [104, 101, 95, 82, 80, 8, 6]. In this approach, the
n-dimensional scene is considered as a surface in an (n+1)-dimensional space.
In the 2D scene, the region occupied by an object in the scene is considered
to be the set of all those voxels which get flooded under certain conditions
when the water level is gradually raised from a starting basin in the surface
that corresponds to a set of voxels (seed region) in the object in the scene.

1.2.3 Hybrid approaches

Each of boundary- and region-based approaches has its own strengths and
weaknesses. Boundary-based methods are more sensitive to noise than region-
based methods. Also, the latter are less affected when high frequency infor-
mation is missing or compromised in the scene. Further, when the shape of
the boundary is extremely complex, model-dependent boundary-based meth-
ods run into difficulties. On the other hand, boundary-based methods are
better suited for incorporating prior object shape information into delineation
as demonstrated by deformable boundary and active shape and appearance
methods. They are also less affected by changes in gray level distributions
such as those caused by background intensity inhomogeneity [4] and scene-
to-scene gray scale variation [73](both are problems encountered in MR im-
age analysis), although region-based methods such as fuzzy connectedness
[31, 46, 97, 98, 99, 100, 101, 113, 114, 121] have been shown to be resistant to
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these variations. The premise of hybrid methods is to exploit the strength of
each method hopefully to cover the weakness of the other method. Although
this area of research is in its infancy, several promising strategies have been
reported. These methods include: the results of region-based approach to
assist in boundary finding [14, 15, 16, 17, 20, 21, 81, 94], combining fuzzy con-
nectedness and deformable boundary approaches [90, 55, 58, 57, 56, 45], and
combining fuzzy connectedness with Voronoi-diagram classification method
[54, 53, 49, 3].

1.3 Hybrid Segmentation Engine

The Hybrid Segmentation Engine, that has been implemented in the Insight
Toolkit (www.itk.org) is an open collection of region and boundary based seg-
mentation methods with its component modules as described in Figure 1.1,
namely: Fuzzy Connectedness (FC), Voronoi Diagram classification (VD),
Gibbs prior models (GP-MRF), and deformable models (DM). We are ca-
pable of generating a large number of hybrid segmentation methods derived
from the four modules that can be tailored to a specific medical imaging
application and evaluated under a proposed framework for evaluation of seg-
mentation [115]. We show examples, in Figure 1.2, of hybrid methods that
we can generate. The modules are implemented in the itk filters. We note
that under the FC and DM modules, several different filters have been imple-
mented as it is explained in the next section. Some results using these meth-
ods have been already published [121, 100, 49, 53, 55, 54, 3, 18]. [113, 114]
and has been successfully used for segmentation of multi-channel images in
several applications. This method uses the fact that medical images are in-
herently fuzzy (inhomogeneous), and we will describe the method in more
detail below. In particular, the Fuzzy Connectedness module is implemented
under a number of the itk filters for: simple fuzzy connectedness [113, 114],
vectorial scale-based fuzzy connectedness [121], vectorial relative fuzzy con-
nectedness [101], and vectorial iterative relative fuzzy connectedness [100].
Boundary-based deformable model module [66] has been implemented in the
itk as: 2D and 3D balloon force filters, marching cubes methods to con-
struct deformable meshes close to the object surface, derived from a binary
mask of a prior. Region-based Markov Random Field segmentation module
that is driven by high order Gibbs prior models has been implemented in
the itk to handle single and multi-channel data [125]. Similarly, the Voronoi
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Figure 1.1: The itk-Hybrid Segmentation Engine.

diagram classification has been made available under the itk to handle both
single channel and three-channel (RGB and multi-channel radiological) data.
In this chapter, we limit our focus to a description of two classes of hybrid
methods only, one that integrates fuzzy connectedness (FC), Voronoi diagram
classification (VD) and deformable models (VD, and second that integrates
Gibbs Prior (GP) with Deformable Model.
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Figure 1.2: Examples of hybrid segmentation methods derived from the itk-
hybrid segmentation engine.
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1.4 Hybrid Segmentation: Integration of FC,

VD and DM

We present a hybrid segmentation method which requires minimal manual
initialization, that integrates Fuzzy Connectedness) Fuzzy Connectedness
(FC), Voronoi Diagram Classification) Voronoi Diagram Classification (VD)
and Deformable Model) Deformable Model (DM). We will start with fuzzy
connectedness algorithm to generate a region with a sample of tissue that
we plan to segment. From the sample region, we generate automatically ho-
mogeneity statistics for the VD classification that will return, in a number
of iterations an estimation of the boundary. Below, we describe briefly, the
component FC, VD and DM methods.

1.4.1 Fuzzy Connectedness Algorithm (FC)

The simple fuzzy connectedness method, introduced in [114], uses the fact
that medical images are inherently fuzzy. We define affinity between two
elements in an image (e.g. pixels, voxels, spels ) via a degree of adjacency
and the similarity of their intensity values. The closer the elements are and
more similar their intensities are, the greater is the affinity between them.
There are two important characteristics of a medical image. First, it has
graded composition coming from material, blurring, noise and background
variation. Second, the image elements that constitute an anatomical object
hang together in a certain way. Both these properties, graded composition
and hanging togetherness are fuzzy properties. The aim of fuzzy connected-
ness is to capture the global hanging togetherness using image-based local
fuzzy affinity.

Let us define a scene over a digital space (Zn, α) as a pair Ω = (C, f),
where C is an n-dimensional array of spels (elements) and f : C → [0, 1].
Fuzzy affinity κ is any reflexive and symmetric fuzzy relation in C, that is:
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κ = {((c, d), µκ(c, d))|c, d ∈ C}

µκ : C × C → [0, 1]

µκ(c, c) = 1, for all c ∈ C

µκ(c, d) = µκ(d, c), for all c, d ∈ C

(1.1)

The general form of µκ can be written as follows. For all c, d ∈ C,

µκ(c, d) = g(µα(c, d), µψ(c, d), µφ(c, d), c, d) (1.2)

where: µα(c, d) represents the degree of adjacency of c and d, µψ(c, d)
represents the degree of intensity homogeneity of c and d; µφ(c, d) represents
the degree of similarity of the intensity features of c and d to expected object
features. Fuzzy κ-connectedness K is a fuzzy relation in C, where µK(c, d)
is the strength of the strongest path between c and d, and the strength of a
path is the smallest affinity along the path. To define the notion of a fuzzy
connected component, we need the following hard binary relation KΘ based
on the fuzzy relation K. Let Ω = (C, f) be a membership scene over a fuzzy
digital space (Zn, α), and let κ be a fuzzy spel affinity in Ω. We define a
(hard) binary relation KΘ in C as

µKΘ
= { 1 iff µκ(c, d) ≥ Θ ∈ [0, 1]

0 otherwise
(1.3)

Let OΘ be an equivalence class [123]( Chap.10) of the relation KΘ in C.
A fuzzy κ- component ΓΘ of C of strength Θ is a fuzzy subset of C defined
by the membership function

µΓΘ
= { f(c) iff c ∈ OΘ

0 otherwise
(1.4)

The equivalence class OΘ ⊂ C, such that for any c, d ∈ C, µκ(c, d) ≥ Θ,
Θ ∈ [0, 1], and for any e ∈ C − OΘ, µκ(c, d) < Θ. We use the notation [o]Θ
to denote the equivalence class of KΘ that contains o for any o ∈ C. The
fuzzy κ- component of C that contains, o, denoted ΓΘ(o), is a fuzzy subset
of C whose membership function is
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µΓΘ(o) = { f(c) iff c ∈ [O]Θ
0 otherwise

(1.5)

A fuzzy κΘ-object of Ω is a fuzzy κ-component of Ω of strength Θ. For
any spel o ∈ C, a fuzzy κΘ-object of Ω that contains o is a fuzzy κ-component
of Ω of strength Θ that contains o. Given κ, o, Θ and Ω, a fuzzy κΘ-object
of Ω of strength Θ ∈ [0, 1] containing o, for any O ∈ C, can be computed via
dynamic programming [114].

1.4.2 Voronoi Diagram Classification (VD)

This algorithm, which is described in detail in [51], is based on repeatedly
dividing an image into regions using VD and classifying the Voronoi regions
based on a selected homogeneity classifier for the segmented anatomical tis-
sue. We will use the algorithm as a component in the hybrid method where
the classifiers for different tissue type will be generated automatically from
the region segmented by the fuzzy connectedness method. VD and Decanal
triangulation (DT) play a central role in the algorithm. In 2D, the VD for
a set V of points is a partition of the Euclidean plane into Voronoi regions
of points closer to one point of V than to any other seed point [91]. For any
pi ∈ V , V = {p1, , pn}, pi ∈ V , V = p1, ..., pn

V D(pi) = {x ∈ R
2|d(x, pi) ≤ d(x, p

j
), ∀j 6= i, 1 ≤ j ≤ n (1.6)

Similarly, we define the VD in 3D:

V D(pi) = {x ∈ R
3|d(x, pi) ≤ d(x, p

j
), ∀j 6= i, 1 ≤ j ≤ n (1.7)

Two Voronoi regions are adjacent if they share a Voronoi edge. The DT,
of V is a dual graph of the Voronoi diagram of V , obtained by joining two
points whose Voronoi regions are adjacent.

1.4.3 Deformable Model (DM)

3D deformable models used in [127], [128], [129] and [126] are defined as
models whose geometric forms (usually are deformable curves and surfaces)
deform under the influence of internal and external forces. There are two ma-
jor classes of 3D deformable models: explicit deformable models ([127], [128],
[130] and [129]) and implicit deformable models ([131], [?], [133] and [134]).
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Although these two classes of models are different at the implementation
level, the underlying principles are similar.

Explicit deformable models construct deformable surfaces explicitly using
global and local parameters during the segmentation process. One can con-
trol the deformation process by changing the values of parameters or using
user-defined external forces. Explicit deformable models are easy to represent
and faster in implementation. However, the adaptation of model topology is
difficult.

Implicit deformable models in [131] represent the curves and surfaces im-
plicitly as a level set [106] of higher-dimensional scalar function. Implicit de-
formable models can have topological changes during the model deformation.
However, the description of implicit deformable models is more complicated
and the deformation process takes more time.

There are two different formulations for explicit deformable models: the
energy-minimization formulation [59] and the dynamic-force formulation [24]
[25]. The energy-minimization formulation has the advantage that its so-
lution satisfies a minimum principle; while the dynamic force formulation
provides the flexibility of applying different types of external forces onto the
deformable model. In dynamic force formulation models, external forces push
the model to the features of interest in the image and the model stops when
these external forces equilibrate or vanish. The external forces can be poten-
tial forces, non-potential forces such as balloon forces, and the combination
of both. Potential forces are derived from image information, e.g. the gra-
dient information. They can attract the deformable model to the boundary
of the object or other features of interest in the image. The balloon force
was proposed by Cohen [24]. In [24] the deformable model starts as a small
circle (2D) or sphere (3D) inside the object. The balloon force can help to
push the model closer to the boundary by adding a constant inflation force
inside the deformable model. Therefore the balloon-force-driven deformable
model will expand like a balloon being filled with gas. However, for objects
with complex surface structures, the deformable model may leak out of the
boundary if it uses the balloon force exclusively. In medical imaging appli-
cations, we usually use the combination of both forces to achieve a better
deformation performance.

In our framework, we use the dynamic force formulation of the explicitly
parameterized deformable model. The deformable model has a simple de-
scription, easy to be interacted with, and can segment the object of interest
with high efficiency. We use other modules in the hybrid framework to lead
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it out of local minima during segmentation process.
Traditional deformable models such as snakes and balloons fail to segment

3D objects with complex surface structures. In [66] we use a super-quadric
ellipsoid model which is capable of performing global and local deformation
using tapering, bending, and twisting parameters. Nonetheless, it is difficult
for this model fit to objects with deep concavities on their surface and the
final segmentation result may be over smoothed. Instead of using extensive
user-defined constraints and external forces on the model surface, we try to
initialize the geometry of the deformable model close enough to boundary
features so that the gradient derived forces can directly lead the model to
the object surface. This gives us the motivation of integrating the marching
cubes method [136] [135] into our framework.

We use the marching cubes method to create a surface mesh based on
the 3D binary mask created by a prior model. We define a voxel in a 3D
binary image volume as a cube created from 8 pixels, four each from a slice.
We give an index to the 13 potential locations of nodes on the deformable
model surface in this cube and define 13 possible plane incidences onto which
elements of the deformable model can lie.

Given that the binary mask is close enough to the surface of the object,
the mesh created by the march cubes method should be in the effective range
of the gradient force. One can use this mesh as the initial deformable surface
and apply gradient derived forces onto it from the very beginning of the fitting
process. By doing so, the deformable model can fit well into concavities and
convexities on the object surface. Plus, we skip the balloon fitting process
so that the deformation process is shortened.

There are several other advantages in using the marching cubes method
for 3D deformable mesh construction. The deformable surface created by
the marching cubes method is close to the object surface so that we can
assume that the global displacement is small enough to be neglected during
the deformation. Therefore we only need to consider the local displacement
during the deformable model fitting process. The deformable mesh created
by the Marching Cubes method is composed of sub-pixel triangular elements.
Therefore the final segmentation result can also achieve sub-pixel accuracy.

To integrate fuzzy connectedness, Voronoi diagram classification and the
deformable model into a hybrid segmentation method, we must fit the result
of the Voronoi diagram classification into the deformable model. For a 3D
segmentation task, the marching cubes method [124] s used to create an
initial 3D deformable model surface, from a prior 3D binary mask. A mesh
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surface is constructed that is close enough to the actual surface of the object
[125]. From the mesh, a 3D deformable model is created and a combination
of the edge force and the gradient-based force is applied to the deformable
model to improve the segmentation result, for more details see [125].

1.4.4 The Hybrid Method: Integration of FC, VD and
DM.

The algorithm integrates two methods, the fuzzy connectedness and VD-
based algorithm. We will outline the algorithm first, and explain the com-
ponent steps later. The fuzzy connectedness algorithm is used to segment a
fragment of the target tissue. From the sample, a set of statistics is generated
automatically, in RGB and HVC color spaces, to define the homogeneity op-
erator. The homogeneity operator will be used as a multi-channel classifier
for the VD-based algorithm. As we mentioned, we will use, in the future,
the deformable model, to determine the final (3D) smooth boundary of the
segmented region. Below, we outline the hybrid method:

Step 1. We run the fuzzy connectedness algorithm to segment a sample of the
target tissue, and generate statistics, average and variance, in three
color channels, in two color spaces, RGB and HVC.

Step 2. Run the VD-based algorithm using multiple color channels, until it
converges:

(a) For each Voronoi region, classify it as interior/exterior/boundary
region using multi-channel homogeneity operator;

(b) Compute DT and display segments which connect boundary re-
gions;

(c) Add seeds to Voronoi edges of Voronoi boundary regions;

(d) Go To Step 2(a) until the algorithm converges to a stable state or
until the user chooses to quit.

Step 3. (optional) Use the deformable model to determine the final (3D) bound-
ary and re-set the homogeneity operator.

Implementation of Step 1. To initialize the fuzzy connectedness al-
gorithm and establish the mean and standard deviation of voxel values and
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their gradient magnitudes, the user collects the pixels within the region of
interest, by clicking on the image and selecting at each time a square re-
gion with 5× 5 pixels. Then an initial seed voxel is selected to compute the
fuzzy connectedness, using the dynamic programming approach [113, 115].
We determine the strength of the fuzzy connectedness Θ, Θ ∈ [0, 1], by let-
ting the user to select interactively its threshold value, such that the initially
segmented sample of the target tissue resembles the shape of the underlying
image. For a binary image with a roughly segmented sample of a tissue,
we generate the strongest three channels in two color spaces, RGB and HVC
[41], for average and variance, respectively. First, we define for the binary im-
age, the smallest enclosing rectangle, a region of interest (ROI), in which we
identify the segmented image and its background. Within the ROI, we calcu-
late the mean and variance in each of the six color channels (R,G,B,H,V,C)
for the object and its background, respectively. Then three channels with
the largest relative difference in mean value and in variance value between
the object and its background are selected, respectively. The homogeneity
operator for the VD-based algorithm uses the expected mean/variance val-
ues of the object together with tolerance values, computed for each selected
channel, for classifying the internal and external region Implementation of
Step 2. We build an initial VD by generating some number of random seed
points (Voronoi points) and then run the QuickHull, [5], to calculate the
VD. Once the initial VD has been generated, the program visits each region
to accumulate classification statistics and makes a determination as to the
identity of the region. For each Voronoi region, the mean/variance value for
the pre-selected channels are computed, if they are similar, then it is marked
as internal, otherwise external. Those external regions that have at least one
internal neighbor are marked as boundary. Each boundary region is divided
for next iterations until the total number of pixels within it is less than a
chose number. We will describe below, the itk toolkit implementation sec-
tion, other hybrid methods that can be derived from these three: FC, VD
and DM modules.

1.4.5 Hybrid Segmentation: Integration of Gibbs Prior
Model and Deformable Model.

The integration of Gibbs prior with Deformable Models has been described
in the chapter discussing the Gibbs prior.
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1.5 Evaluation of Segmentation

A complete description of the evaluation framework for segmentation can be
found in [115]. We will outline the main points of this approach and demon-
strate using this framework in a limited fashion (namely for assessment of
accuracy of delineation) in our preliminary studies. For evaluating segmenta-
tion methods, three factors - precision (reproducibility), accuracy (agreement
with truth, validity), and efficiency (time taken) need to be considered for
both recognition and delineation. To assess precision, we need to choose a
figure of merit, repeat segmentation considering all sources of variation, and
determine variations in figure of merit via statistical analysis. It is impos-
sible usually to establish true segmentation. Hence, to assess accuracy, we
need to choose a surrogate of true segmentation and proceed as for precision.
In determining accuracy, it may be important to consider different ”land-
mark” areas of the structure to be segmented depending on the application.
To assess efficiency, both the computational and the user time required for
algorithm and operator training and for algorithm execution should be mea-
sured and analyzed. Precision, accuracy, and efficiency are interdependent.
It is difficult to improve one factor without affecting others. Segmentation
methods must be compared based on all three factors. The weight given
to each factor depends on application. Any method of evaluation of seg-
mentation algorithms has to, at the outset, specify the application domain
under consideration. We consider the application domain to be determined
by the following three entities: A: An application or task; example: volume
estimation of tumors; B: A body region; example: brain; P : An imaging
protocol; example: FLAIR MR imaging with a particular set of parameters.
An evaluation description of a particular algorithm α for a given application
domain < A, B, P > that signals high performance for α may tell nothing at
all about α for a different application domain < A′, B′, P ′ >. For example, a
particular algorithm may have high performances in determining the volume
of a tumor in the brain on an MR image, but have low performance in seg-
menting a cancerous mass from a mammography scab if a breast. Therefore,
evaluation must be performed for each application domain separately. The
following additional notations are needed for our description.

Object: A physical object of interest in B for which images are acquired; exam-
ple: brain tumor.

Scene: A 3D volume image, denoted by =(C, f), where C is a rectangular array
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of voxels, and f(c) denotes the scene intensity of any voxel c ∈ C. C
may be a vectorial scene, meaning that f(c) may be a vector whose
components represent several imaged properties. C is referred to as a
binary scene if the range of f(c) is {0, 1}.

S: A set of scenes acquired for the same given application domain: <
A,B, P >.

In this section, we will evaluate segmentation methods using assessment
of accuracy of true delineation by comparing true delineation of the scenes
with the one obtained by a segmentation algorithm. Thus, we will not ad-
dress the other two factors, precision and efficiency, but we have to note that
these factors are extremely important. A complete evaluation of segmenta-
tion methods under all three factors must be done under precisely defined
experiments, where the acquired data and collection of true delineation and
true recognition is done following strict protocols, a task that we were not
able to fulfill under the itk project. For patient images, since it is impossible
to establish absolute true segmentation, some surrogate of truth is needed.
We will use manual delineation where the object boundaries are traced or
regions are painted manually by experts.

Let Std be the set of scenes containing true delineations for the scenes
in S. For any scene C ∈ S, let CM

o be the scene representing the fuzzy
object defined by an object o of B in C obtained by using method M, and
let Ctd ∈ Std be the corresponding scene of true delineation, all under the
application domain < A, B, P >. The following measures are defined to
characterize the accuracy of method M under < A,B, P > for delineation.

False Negative Volume Fraction: FNV F d
M(o) = |Ctd−CM

o |
Ctd

False Positive Volume Fraction: FPV F d
M(o) = |CM

o −Ctd|
|Ctd|

True Positive Volume Fraction: TPV F d
M(o) =

|CM
o

⋂
Ctd|

|Ctd|
The meaning of these measures is illustrated in Figure 1.3 for the binary

case. They are all expressed as a fraction of the volume of true delineation.
FNV F d

M indicates the fraction of tissue defined in Ctd that was missed by
method M in delineation. FPV F d

M denotes the amount of tissue falsely
identified by method M as a fraction of the total amount of tissue in Ctd.
TPV F d

M describes the fraction of the total amount of tissue in Ctd with which
the fuzzy object CM

o overlaps. Note that the three measures are independent;
that is; none of them can be derived from the other two. True negative
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Figure 1.3: A geometric illustration of the three precision factors for delin-
eation.

volume fraction has no meaning in this context since it would depend on the
rectangular cuboidal region defining the scene domain C.

We will use this limited version of the evaluation framework in assess-
ing the accuracy of segmentation compared with true delineation in some
examples presented below.

1.6 Results

We have demonstrated capabilities of the method in segmentation of various
organs and tissues and our results are promising. The hybrid methods that
are derived from the hybrid segmentation engine has been shown effective
in delineating even complex heterogeneous anatomical tissue. We present
results that involve both the Visible Human data and radiological patient
data that have been segmented under a number of different projects. Some
of the results were evaluated for accuracy of delineation using quantified
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Figure 1.4: Fuzzy segmentation of a brain tumor from a patient MRI data,
with FC threshold (a) 0.9, and (b) 0.925.

measures from our proposed framework for evaluation of segmentation.

1.6.1 Segmentation of Brain Tumor from MRI data.

We have recently processed the radiological imaging data from a patient who
underwent an orbito-zygomatic craniotomy for the removal of an anterior
skull base meningioma. The following example shows this patients MRI data
that has been segmented with FC segmentation, Figure 1.4, using two differ-
ent parameters for the strength of FC segmentation. In Figure 1.5, we over-
lay the segmented 3D tumor on intraoperative digital photographs obtained
through the operating microscope during critical portions of the procedure.
These are preliminary results for a project, being developed at Columbia
University Department of Neurological Surgery, to apply augmented reality
for microscope guided skull base surgery.

1.6.2 Segmentation of Visible Human Data

We have developed at Columbia electronic atlases [50] from the Visible Hu-
man [110] data sets that are systematically incorporated into the anatomy
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Figure 1.5: 3D model of the tumor overlaid over two snapshots from a surgery
for the removal of an anterior skull base meningioma: (a) before and (b) after
tumor removal. (Courtesy to Dr. J. Bruce and Dr. A. DAmbrosio)

curriculum at Columbia University College of Physicians and Surgeons. We
have tested our segmentation methods on the color Visible Human data and
compared the results with the hand segmentations delineated by an anatomy
expert. In Figure 1.6 we show segmentation of the temporalis muscle us-
ing FC/VD segmentation. In Figure 1.6, we illustrate steps of the FC/VD
method, where Figure 1.6 (b) shows a sample tissue segmented with FC
method, and from this sample we derive homogeneity operator to classify
Voronoi region in the VD classification. In Figure 1.6 (c)-(g), we show itera-
tions of the VD classification, with the yellow boundary Voronoi regions that
converge into the final boundary of the segmented region. Finally, in Figure
1.6 (h) we outline the boundary with a subgraph of the Decanal triangulation,
a dual graph to Voronoi diagram.

In Figure 1.7, we use FC/VD segmentation to delineate visceral adipose
tissue, that is highly heterogeneous, in the abdomen region.

In Figure 1.8, we segmented left kidney from the Visible Human Male
data set set using: FC, Figure 1.8(b); FC/VD followed by a selection of a
connected component, Figure 1.8(c); and FC/VD/DM, Figure 1.8 (d); and
in Figure 1.9 we show corresponding 3D models generated with our in-house
3D Vesalius Visualizer.

We compared the results for FC, FC/VD, and FC/VD/DM with hand seg-
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mentation of the left kidney using accuracy assessment for true delineation.
In Figure 1.10 we present the quantified accuracy errors. The result shows
that the VD classification improves the FC segmentation, and DM calibrates
the final segmentation. It also shows that we can make a fair comparison of
accuracy of successive segmentation steps using quantified parameters, while
it is impossible to assess the same error by mere observation.

1.6.3 3D Rotational Angiography.

In Figure 1.11 and Figure 1.12, we present segmentation of 3D rotational
angiogram data that is processed by fuzzy connectedness (FC) and fitted
with deformable model and the corresponding 3D model.

1.6.4 Quantification of Adipose Tissue from Whole Body
MRI Scans

One of our collaborative projects, with Dr. Heymsfield, the Director of the
St. Lukes Roosevelt Obesity Research Center, involves quantification of adi-
pose tissue from whole body MRI scans. We are in a process of building an
integrated system for acquisition, imaging, reconstruction and quantification
of body composition. The existing approach at the Center uses manual seg-
mentation of the adipose and other tissue from the MRI scans, a very time
consuming and laborious process. The outcome of manual segmentations
and corresponding 3D visualizations are presented in Figure 1.13(a) and (b).
We used FC/VD hybrid segmentation on a data set that is a scan of an ab-
domen that consists of 6 slices in the volume, and the preliminary results are
promising. We used the existing 16 manual segmentations that have been
collected over time from a number of experts working for the Center who were
asked to segment the same MRI scan of an abdomen, and to repeat the same
segmentation three times in three month-intervals. We used these manual
segmentations as a source for deriving true delineation of adipose tissue. In
Figure 1.14 and Figure 1.15 we show intra- and inter- operator variability for
the manual segmentations, respectively. We must note that even though the
protocol for the manual segmentations was well specified, we cannot say that
was fully controlled. We are know that this is not a perfect set manual delin-
eations, yet we used it to derived true delineation to conduct quantification
of accuracy. We use the from the evaluation framework, as reported in [115].
Below, we present results from the steps of our hybrid method. In Figure
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Figure 1.6: Automated segmentation of temporalis muscle: (a) color Visible
Human Male slice, (b) a fuzzy connected component, (c)-(g) iterations of the
VD-based algorithm , (g) an outline of the boundary.
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Figure 1.7: FC-VD Segmentation of Visible Human Male adipose tissue in
the abdomen region. (a) input data, (b) FC, (b) VD final boundary.

1.16 we show the input slice, the fuzzy map, and the FC segmented region
with user selected fuzzy connectedness value. In Figure 1.17, we segment
visceral and subcutaneous tissue using FC-VD segmentation, followed by a
basic smoothing of the segmented region.

Below, we present accuracy quantification using parameters in equations
comparing the outcome of FC/VD segmentation with the true delineation.
In Figure 1.18, we show three out of 6 slices from our input data set. The
true delineation was established by averaging sixteen manual delineations in
a form of corresponding binary masks into a fuzzy object (with pixel values
between 0 and 1), for details, see [115]. The results of segmentation of the
data with FC/VD were compared with the true delineation. The three factors
(FNVP, FPVF, TPVF) for measuring the accuracy of true delineation for
individual slices in the data (the inter-slice distance in the data set was too
large to treat as a contiguous volume) are computed. We observe, in Figure
1.19 that the simple measurement of area difference does not provide accurate
evaluation in terms of overall performance, while parameters (FNVP, FPVF,
TPVF) give better characterization of the accuracy measurement.

Our segmentation system gives in general 8% 9% accuracy in these slices,
comparing to the best possible accuracy of 5% -7% from Figure 1.19. As for
the efficiency measurement, an experienced human operator usually takes
about 15− 20 minutes to finish a delineations session on adipose tissue for a
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Figure 1.8: Segmentation of the Visible Human Male left kidney. (a) input
data, (b) FC, (c) VD, (d) VD-CC, (e) DM, (f) hand segmentation.
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Figure 1.9: 3D segmented and visualized with V esaliusTM Visualizer, the
Visible Human Male left kidney. 3D models of: (a) FC, (b)VD-CC, (c) DM,
(d) hand segmentation.
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Figure 1.10: Visible Human male: kidney. Quantification of accuracy for
true delineation.

Figure 1.11: 3D rotational angiogram data segmented with fuzzy connected-
ness algorithm: (a)-(c) three segmented slices in the volume.
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Figure 1.12: 3D rotational angiogram, segmented with (a) FC, and (b) fin-
ished with DM segmentation.

Figure 1.13: Obesity Research Center Integrated system for quantification
of Adipose tissue from Whole Body MRI scans. Courtesy of Dr.Heymsfield.
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Figure 1.14: Quantification of adipose tissue from whole body MRI T1
weighted scans- 6 slices from the abdomen. Evaluation of accuracy of seg-
mentation ground truth (delineation) intra-operator variability.
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Figure 1.15: Quantification of adipose tissue from whole body MRI T1
weighted scans- 6 slices from the abdomen. Evaluation of accuracy of seg-
mentation ground truth (delineation) inter-operator variability.

Figure 1.16: Fuzzy Connectedness Segmentation. (a) Input image. (b) Fuzzy
Scene Map. (c) Result: segmented object with fuzzy connectedness level
value (a user-defined threshold) of 0.025.
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Figure 1.17: Quantification of adipose tissue from whole body MRI scans. (a)
Input data MRI T1 image, (b) Training (simple FC), (c) Segmented Image
VD classification, (d) Smoothed segmented image visceral and subcutaneous
tissue.

7-slice MRI T1 data set. While using our semi-automatic system, only a few
mouse-clicks are needed, and the segmentation for 2D slice image is usually
finished in real time (less than 1 second).

1.7 Conclusions.

We have proposed a Hybrid Segmentation Engine with its component mod-
ules that are boundary-based and region-based segmentation methods im-
plemented in the itk. From the Engine, we can derive a number of hybrid
methods that integrate boundary- and region- based approach to segmenta-
tion into powerful new tools that exploit the strength of each method and
hopefully cover the weaknesses of the other method. In particular we pre-
sented an instance of a hybrid method that combines the fuzzy connectedness,
Voronoi diagram classification and deformable models and tested it on the
Visible Human and radiological patient data. In some examples, like the
quantification of adipose tissue from whole body MRI scans, we have quan-
tified accuracy error for true delineation using three factors: FNVP, FPVF,
TPVF. Under the framework, we have demonstrated that the results from
the hybrid segmentation methods are close to those obtained from manual
delineations (surrogates of ground truth). Although this area of research is
still in its infancy, the preliminary results are very encouraging, and hybrid
segmentation methods have a potential to become important tools in medical
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Figure 1.18: Results depicting hybrid and manual segmentation: (a)(e)(i)
input images (MRI T1); (b)(f)(j): ground truth images; (c)(g)(k): FC/VD
hybrid segmentation.
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Figure 1.19: Accuracy measurements of the FC/VD segmentation shown in
Figure 26(c), (g) and (k).

image processing.
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