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Abstract

Three Essays on Asset Pricing

Bingxu Chen

The first essay examines whether risk is explained based on cash flow (CF)

or discount rate (DR). Realized returns comprise (ex-ante) expected returns

plus (ex-post) innovations, and consequently both expected returns and re-

turns innovations can be broken down into components reflecting fluctuations

in CF and DR. I use a present-value model to identify the CF and DR risk fac-

tors which are latent from the time series and cross sections of price–dividend

ratios. This setup accommodates models where CF risk dominates, like Bansal

and Yaron (2004), and models where DR risk dominates, like Campbell and

Cochrane (1999). I estimate the model on portfolios, which capture several of

the most common cross-sectional anomalies, and decompose the expected and

unexpected returns into CF and DR components along both time-series and

cross-sectional dimensions. I find that (1) the DR risk is more likely to explain

the variations of expected returns, (2) the CF risk drives the variations of unex-

pected returns, and (3)together they account for over 80% of the cross-sectional

variance of the average stock returns.

The second essay develops a liability driven investment framework that in-

corporates downside risk penalties for not meeting liabilities. The shortfall

between the asset and liabilities can be valued as an option which swaps the

value of the endogenously determined optimal portfolio for the value of the

liabilities. The optimal portfolio selection exhibits endogenous risk aversion

and as the funding ratio deviates from the fully funded case in both directions,

effective risk aversion decreases. When funding is low, the manager “swings for



the fences” to take on risk, betting on the chance that liabilities can be covered.

Over-funded plans also can afford to take on more risk as liabilities are already

well covered and so invest aggressively in risky securities.

The third essay introduces a methodology to estimate the historical time

series of returns to investment in private equity. The approach is quite gen-

eral, requires only an unbalanced panel of cash contributions and distributions

accruing to limited partners, and is robust to sparse data. We decompose pri-

vate equity returns into a component due to traded factors and a time-varying

private equity premium. We find strong cyclicality in the premium compo-

nent that differs according to fund type. The time-series estimates allow us

to directly test theories about private equity cyclicality, and we find evidence

in favor of the Kaplan and Strmberg (2009) hypothesis that capital market

segmentation helps to determine the private equity premium.



Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Cash-flow or Discount-rate Risk? Evidence from the Cross

Section of Present Values 1

1.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 General Present-Value Model: M0 . . . . . . . . . . . . 6

1.1.1.1 Market Portfolio Price . . . . . . . . . . . . . . 7

1.1.1.2 Individual Stock Price . . . . . . . . . . . . . . 9

1.1.1.3 Returns and Expected Returns . . . . . . . . . 11

1.1.2 Models with CF and DR Risk . . . . . . . . . . . . . . . 14

1.1.2.1 Constrained Model with CF risk: MCF . . . . . 14

1.1.2.2 Constrained Model with DR Risk: MDR . . . . 16

1.1.3 Estimation Strategy . . . . . . . . . . . . . . . . . . . . 18

1.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



1.2.1 Data Description . . . . . . . . . . . . . . . . . . . . . . 19

1.2.2 Data Summary . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 CF vs DR: Which is the more likely risk to model ex-

pected return? . . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1.1 Proposition 1.1: CF Risk at Market Level . . . 25

1.3.1.2 Proposition 1.2: CF Risk at Individual Portfolio

Level . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.1.3 Proposition 1.3: DR risk at Individual Portfolio

Level . . . . . . . . . . . . . . . . . . . . . . . . 36

1.3.1.4 Variance Decomposition in lnpd under M0 . . . 40

1.3.2 CF vs DR: Which is More Important in Determining Re-

alized Returns . . . . . . . . . . . . . . . . . . . . . . . . 43

1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2 Liability Driven Investment under Downside Risk 51

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.2.1 Sharpe and Tint (1990) . . . . . . . . . . . . . . . . . . . 55

2.2.2 Liability Driven Investment with Downside Risk . . . . . 56

2.2.3 Valuing the Shortfall Risk . . . . . . . . . . . . . . . . . 59

2.2.4 Optimal Portfolios . . . . . . . . . . . . . . . . . . . . . 60

2.2.5 Endogenous Risk Aversion . . . . . . . . . . . . . . . . . 63

2.3 Empirical Application . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.3.2 Cash and Equities . . . . . . . . . . . . . . . . . . . . . 65

ii



2.3.2.1 Comparison with Mean-Variance and Sharpe-

Tint LDI . . . . . . . . . . . . . . . . . . . . . 66

2.3.2.2 Funding Ratios and Endogenous Risk Aversion 67

2.3.2.3 Funding Ratios and Option Values . . . . . . . 72

2.3.3 Equities and Bonds . . . . . . . . . . . . . . . . . . . . . 72

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3 Estimating Private Equity Returns from Limited Partner

Cash Flows 79

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Empirical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.1 Time-series estimates of private equity total returns and

premiums . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4.2 Factor exposures and private equity premium . . . . . . 99

3.4.3 Factor exposures and private equity premium broken down

by fund type . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.4 Comparison to industry indices . . . . . . . . . . . . . . 106

3.4.5 Vintage year comparisons . . . . . . . . . . . . . . . . . 109

3.4.6 Private equity return cycles . . . . . . . . . . . . . . . . 114

3.4.7 Test of the market segmentation hypothesis . . . . . . . 117

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

iii



Bibliography 122

Appendices 134

A.1 Proof of the Propositions . . . . . . . . . . . . . . . . . . . . . . 134

A.2 Detail of Portfolio Sorting . . . . . . . . . . . . . . . . . . . . . 136

A.3 Details of Calculating Bayes Factor . . . . . . . . . . . . . . . . 137

A.4 Details of Calculating Fractions of Variation in Variance Decom-

position . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.4.1 Time-series Variance Decomposition . . . . . . . . . . . . 138

A.4.2 Cross-sectional Variance Decomposition . . . . . . . . . . 139

B.1 Spread Option Interpretation . . . . . . . . . . . . . . . . . . . 141

B.2 Valuation of the Shortfall Option . . . . . . . . . . . . . . . . . 142

B.3 Equity and Risky Bond Case . . . . . . . . . . . . . . . . . . . . 144

C.1 Identification of Private Equity Returns . . . . . . . . . . . . . . 145

C.2 Estimation of the Model . . . . . . . . . . . . . . . . . . . . . . 148

C.3 Robustness Checks And Small Sample Properties . . . . . . . . 154

iv



List of Figures

1.1 Quality of Fitting Market Price-dividend Ratio under M0 and

MCF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.2 CF and DR Predict Dividend Growth and Return under M0, but

not under MCF . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 Estimates of Time-Varying beta under M0 and Short-window

Regression Benchmark under MDR . . . . . . . . . . . . . . . . 37

1.4 Determinants of Cross-sectional Returns under MDR . . . . . . 47

2.1 Downside Risk Penalty: Stocks and Cash . . . . . . . . . . . . . 68

2.2 Funding Ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.3 Shortfall Penalty Option Value and Option’s Sensitivity to Op-

timal Portfolio Weight . . . . . . . . . . . . . . . . . . . . . . . 73

2.4 Stocks and Bonds . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 Private Equity Total Return Index v.s. US Index Funds . . . . . 95

3.2 Decomposition of Private Equity Return Index into Passive and

Premium Components . . . . . . . . . . . . . . . . . . . . . . . 96

3.3 Private Equity Premium . . . . . . . . . . . . . . . . . . . . . . 97

v



3.4 Quarterly Private Equity Premium per Sub-classes . . . . . . . 98

vi



List of Tables

1.1 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2 Estimates of Market Parameters under M0 and MCF . . . . . . 26

1.3 Rejecting the CF Risk Model MCF at Individual Level . . . . . 34

1.4 Supporting DR Risk Model MDR at Individual Level . . . . . . 39

1.5 Variance Decomposition of Log Price-dividend Ratio . . . . . . 41

1.6 Variance Decomposition of Return . . . . . . . . . . . . . . . . . 45

2.1 Data Summary Statistics . . . . . . . . . . . . . . . . . . . . . . 65

2.2 Optimal Portfolio Choice Over Equities and Risk-Free Cash . . 67

2.3 Optimal Portfolio Choice Over Stocks and Bonds . . . . . . . . 74

3.1 Descriptive Statistics . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Private Equity Factor Exposures . . . . . . . . . . . . . . . . . 100

3.3 Risk Exposures Broken Down by Fund Type . . . . . . . . . . . 103

3.4 Comparison of Private Equity Index with Industry Indices . . . 108

3.5 Alternative Performance Measures and Capital Flows . . . . . . 110

3.6 Private Equity Premium Return Cycles . . . . . . . . . . . . . . 115

3.7 Private Equity Premium Return Cycles . . . . . . . . . . . . . . 123

vii



C.1 Literature Estimates of the Risk Exposures of Private Equity

Funds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.2 Risk Exposures of Private Equity Funds – Robustness Tests . . 155

C.3 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . 159

viii



Acknowledgements

I owe my gratitude to my advisor, Andrew Ang, for his invaluable guidance

and unconditional support. He always encourage me, and give me a broader

perspective on the field of finance and my research. I also would like to thank

the other members of my committee Suresh Sundaresan, Bob Hodrick, Lars

Lochstoer and Jushan Bai for their constant feedback, encouragement and sup-

port. I am also indebted to other faculties and PhD students at Columbia

Business School and other schools. Wei Jiang, Tano Santos, Itamar Drechsler,

Gur Huberman, Geert Bakaert, Jules van Binsbergen, Paul Tetlock, Tomasz

Piskoski, Martijn Cremers, Michael Brandt, Will Goetzmann, Ludovic Phalip-

pou and seminar participants at Columbia University, provided helpful sugges-

tions and comments in the preparation of this dissertation. Last but not least,

I would like to thank Netspar for research support.

ix



To my parents and Yun

x



Chapter 1
Cash-flow or Discount-rate Risk?

Evidence from the Cross Section of

Present Values

Prices are the sums of cash flows discounted by risk-adjusted discount rates.

Thus, variations in price–dividend ratio and returns are due to change in cash

flow (CF), or discount rate (DR), or both. I propose a present-value model

to investigate how CF and DR risk drive the stock return variations from (ex-

ante) expected and (ex-post) unexpected perspectives. This model treats the

time-varying CF and DR risk factors as latent, following an exogenous time-

series dynamics. Upon observations of the log of price–dividend ratio (lnpd) , I

identify the latent factors and parameters in the model on portfolios capturing

several of the most common cross-sectional anomalies. Then I decompose the

realized returns into expected and unexpected CF and DR components based on

the model estimates. I find the DR risk is more likely to explain the variations

in expected returns, while CF risk drives the unexpected returns innovations.
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Together, they can account for the common anomalies of cross-sectional stock

returns.

In the model, the present-value and the latent-factor approaches function

respectively in the analysis of expected and unexpected returns. On the ex-

pected return side, using lnpd, which reflects the ex-ante expectations in both

of the future CF and DR, the present-value approach facilitates to bring the

CF and DR fluctuations together and evaluate their likelihood of being priced

as risks. Testing whether CF or DR risk dominates the expected return has

a fundamental bearing on the theoretical modeling of asset prices. Theories

characterized by either CF or DR risk quantitatively explain a wide range of

asset-pricing phenomena. For example, the long-run risk literature argues that

the CF risk explains stock returns in time series and cross sections,1 while the

models with changing risk aversion or sentiment emphasize DR risk as the main

factor in pricing the stocks.2

In this paper, the present-value framework is general enough to accommo-

date both types of theories, featuring CF risk as in Bansal and Yaron (2004)

and DR risk as in Campbell and Cochrane (1999). The model’s building blocks

include factors for the following states. Market-level dividend growth and ex-

pected return represent marketwise CF and DR. The stochastic volatilities of

dividend growth and return characterize the marketwise prices of CF and DR

risk. Moreover, for a piece of individual asset, the exposures of its CF and DR

to the marketwise CF and DR factors capture its CF and DR risk. Either CF or

1 See Bansal and Yaron (2004), Bansal, Dittmar and Lundblad (2005), Bansal, Dittmar
and Kiku (2009), Bansal, Kiku, Shaliastovich and Yaron (2013), Drechsler and Yaron (2011),
Hansen, Heaton and Li (2008), Lettau and Ludvigson (2009), Koijen, Lustig, Van Nieuwer-
burgh and Verdelhan (2010), Parker and Julliard (2005).

2Campbell and Cochrane (1999), Menzly, Santos and Veronesi (2004), Santos and
Veronesi (2005, 2010), Wachter (2006)
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DR risk channel imposes constraints on the pricing kernels of the correspond-

ing nested model, and these constraints can be translated into hypothetical

conditions on latent factors and parameters. This hierarchy of models enable

the Bayes factor test to examine whether the proposed risk channel is likely to

generate the cross-sectional data of lnpd. The results from this test emphasize

the DR risk as the more likely risk channel.

Results beyond the Bayes factor test highlight the DR risk as having the

main role in expected return. First, return and growth predictability is consis-

tent with previous empirical findings under the DR risk model, but not under

the CF risk model. When the DR risk dominates, the expected returns and

growth constructed from DR and CF factors are significant predictors of real-

ized returns and growth at both market and individual stock levels, with R2

ranging from 1.9% to 8.5% for returns and 1.2% to 14% for dividend growth.

The predictability of both return and dividend growth is much poorer under

the model with CF risks. Second, the DR news leads CF news in contributing

to the variations of lnpd. If the DR risk is more influential than the CF risk in

pricing, the movement of prices should be driven more by DR changing, and

vice versa. In the time-series variances of lnpd of all test portfolios, the inno-

vation in market DR accounts for a fraction of 91.1% on average, compared

with a fraction of 26.9% from the innovation in market CF. In explaining the

cross-sectional variation of level of lnpd, the R2 value attributed to the level of

DR exposure is 81% and the R2 value attributed to the level of CF exposure is

-18% under the unconstrained model.

On the unexpected return side, the latent-factor approach highlights the

importance of the difference between the ex-ante expected return and the ex-

3



post realized return. In my model, the CF and DR state factors describe the

ex-ante expected dividend growth and expected return. They are not observable

directly and subject to exogenous dynamics. Discounting the future CF with

time-varying DR, I develop an exact form of lnpd as a function of these latent

factors. This observation equation together with the dynamics of the latent

factors constitute a state-space model, and the latent CF and DR factors are

readily estimated using Bayesian Gibbs sampling method. I therefore separate

the ex-ante expected CF and DR from their ex-post unexpected shocks with

the estimated latent factors. Under this approach, one considers lnpd as a

proxy for both DR and CF and is able to estimate the latent factors without

bias (Binsbergen and Koijen 2010). Without the latent-factor approach, one

considers lnpd as a proxy only for DR (Fama and French 2002; Chen, Petkova

and Zhang 2008), and it may result in bias in DR and CF. As a consequence

of the latent approach, anomalies in cross-sectional returns may result from ex-

ante conditional DR risk or ex-post unexpected realizations in CF and DR that

are not priced in the expected returns. Given that the DR risk model is a version

of the conditional CAPM, I find that the conditional CAPM explains well the

cross section of the ex-ante expected return. The average of ex-ante expected

return is totally explained by its level and stability of the time-varying market

beta. To explain the ex-post realized return, the ex-ante expected return is in

line with but not sufficient. Decomposing the time-series and cross-sectional

variance of realized returns, one can see that the unexpected CF shocks mainly

move the return. Intuitively, the value stocks, past winner stocks and etc, have

more positive surprises than negative surprises in their dividends in the sample,

which results in their high average realized returns. Together, the ex-ante DR

4



risk and the ex-post CF shock can account for 81.2% of the cross-sectional

variance of average returns.

This paper adds to the recent literature employing present-value structure

to identify the DR and expected CF by using information of dividend yield and

dividend growth. Ang and Liu (2004), among others,3 provide expression for

the price–dividend ratio as an infinite sum of exponentially quadratic forms of

expected CF and DR. The information about DR of a portfolio is characterized

by a one-factor model, and it is decomposed into information from marketwise

DR and time-varying DR exposure (beta). To extend this framework, I inte-

grate a one-factor structure on the CF side by bringing in marketwise CF and

time-varying CF exposure to explain the CF of a portfolio. Adding this new

ingredient, I endow the reduced-form model with the ability to embed CF risk

in cross sections and conform to the motivations in long-run risk theories.

This paper is related to the literature focused on determining the main

driving force between CF news and DR news in movement of prices and returns,

including Vuolteenaho (2002), Campbell and Vuolteenaho (2004), Chen and

Zhao (2009), and Chen, Da, and Zhao (2013).4 These studies evaluate the

importance of DR news and CF news in the movement of stock prices or returns.

This paper focus on the validity of risk channels related to fluctuations in DR

and CF, specifically, test the likelihood of two models emphasizing different

risks. This is the first paper jointly test the DR risk model and CF risk model

in time series and cross sections under the present-value framework. From the

aspect of results, this paper provides answers unifying the seemingly conflicting

3 See Kelly and Pruitt (2012), Lettau and van Nieuwerburgh (2008), Cochrane (2008),
van Binsbergen and Koijen (2010), Pastor and Veronesi (2003, 2006), Pastor, Sinha and
Swaminathan (2008), Ang and Bakaert (2007), and Goyal and Welch (2003).

4Also see Cohen, Polk and Vuolteenaho (2003) and Vuolteenaho (2002), among others.
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results in previous literature. Emphasizing the DR risk, I argue that the DR

news causes larger movement in prices or expected returns, consistent with

Campbell and Vuolteenaho (2004). On the other hand, unexpected CF news,

although not priced in expected returns, strongly moves realized returns. This

is on the same wavelength as Chen, Da, and Zhao (2013).

1.1 Model

In this section, I construct a present-value model to analyze variations in

expected and realized return. The cornerstone of the framework is the assump-

tion that the price of an asset is equal to the present value of all the dividends

discounted by the expected returns. I derive the closed-form expressions of

the prices and returns in a general setup M0 in subsection 1.1.1. Afterward, I

show that both types of models characterized with CF and DR risks (MCF and

MDR) can nest into the general framework in subsections 1.1.2. This approach

facilitates a head-to-head comparison of the models featuring the two risks. In

subsection 1.1.3, I briefly discuss the strategies of estimating the model.

1.1.1 General Present-Value Model: M0

Let Pt be the price at time t; it is the discount value of all the future cash

flows.

Pt = Et[
∞∑
s=1

(
s−1∏
k=0

exp(−µt+k))Dt+s], (1.1)

where Dt is the dividend distributed in the period [t − 1, t). In this paper,

all the measures of price, return and dividend are in real terms, adjusted for

inflation. The DR over the period [t, t+ 1) is µt, which is defined as the log of

6



expected return,

exp(µt) ≡ Et[
Pt+1 +Dt+1

Pt
] (1.2)

Let ∆dt+1 denote the log of dividend growth,

∆dt+1 ≡ log(
Dt+1

Dt

) (1.3)

I can rewrite Equation (1.1) as

Pt
Dt

= Et[
∞∑
s=1

(
s−1∏
k=0

exp(−µt+k + ∆dt+k+1))] (1.4)

As a result, the price–dividend ratio reflects variations in both CF (∆dt) and

DR (µt). I use conditional factor models to characterize CF and DR. This

creates a hierarchy in the pricing of assets: the pricing of individual stocks

depends on the pricing of the market portfolio.

1.1.1.1 Market Portfolio Price

I first focus on the market portfolio. I label the market-level variables

with superscript M from here on. There are five factors in the market-level

state vector to describe the information of aggregate CF and DR: XM
t =

[rft gMt (σMg,t)
2 zt (σMz,t)

2]′. The first is the risk-free rate. The next four are

conditional expectations and variances of the log of market dividend growth

and excess return, as defined in the following equations:

∆dMt+1 = gMt + σMg,tu
d
t+1 (1.5)
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where gMt = Et(∆d
M
t+1) and (σMg,t)

2 = vart(∆d
M
t+1); and

rMt+1 ≡ log
Pt+1 +Dt+1

Pt+1

− rft = zt + σMz,tu
r
t+1 (1.6)

where zt = Et(r
M
t+1) and (σMz,t)

2 = vart(r
M
t+1). These definitions are based on the

assumption that the realized log of dividend growth and excess return are their

conditional expectations with heteroskedastic shocks.

I include the state variables of volatility to address Jensen’s terms, which are

potentially important components in the risk premium. Combining equation

(1.3) and equation (1.5), the log of expected dividend growth is written as

log Et(exp(∆dMt+1)) = gMt +
1

2
(σMg,t)

2 (1.7)

Combining equation (1.2) and equation (1.6), the DR µMt , which is the log of

expected return, is of the form as

µMt = rft + zt +
1

2
(σMz,t)

2 (1.8)

Among the state factors, the risk-free rate is exogenous, and the other four

factors are treated as latent and endogenous. For simplicity of estimation, I

use the state factors as the demeaned ones, and their unconditional means are

treated as model parameters. The state vector evolves as a VAR(1) process.5

XM
t+1 = ΦMX

M
t + Σ

1
2
Mεt+1 (1.9)

5It has been argued that price–dividend rates have a persistent component; see, for
example, Fama and French (1988), Campbell and Cochrane (1999), Ferson, Sarkissian, and
Simin (2003), and Pastor and Stambaugh (2009). Further, many authors argue that the
expected dividend growth is persistent, for instance, Bansal and Yaron (2004) and Lettau
and Ludvigson (2005).
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I specify ΦM as diagonal for parsimonious reasons, but the variance is a set

of full entries, which allows all possible correlations in the shocks to the state

vector.

Under the VAR dynamic, the state vector of current CF and DR is able to

capture the information of all future CF and DR. Therefore, I can link the latent

state vector with the observable market price–dividend ratio in the following

form.

PM
t

DM
t

=
∞∑
n=1

exp(aMn + bM
′

n XM
t ) (1.10)

The detail of the derivation is documented in Internet Appendix.

Equation (1.10) shows the price–dividend ratio is an infinite sum of expo-

nential functions, a nonlinear form of the state vector. To estimate the state

vector more efficiently, I apply the log-linearization6 to equation (1.10). The

observable market lnpd is then approximated by a linear function of the state

vector.

lnpdMt = AM +BM ′XM
t + σMv v

M
t (1.11)

I approve the validity of this approximation method using simulations. There

is little difference between lnpd calculated using the exact form and the linear

proxy.7

1.1.1.2 Individual Stock Price

I next develop the individual level pricing based on the market-level pricing.

I label all factors related to a specific stock P with superscript P . To capture

the CF and DR of individual stocks, I each employ a conditional one-factor

6This methodology is proposed by King, Plosser and Rebelo (1988) and Campbell (1994)
7See Internet Appendix.
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model:

gPt +
1

2
(σPg,t)

2 = cP + γPt (gMt +
1

2
(σMg,t)

2) (1.12)

µPt − r
f
t = αP + βPt (µMt − r

f
t ) (1.13)

In equation (1.12), γPt stands for the exposure of stock P’s CF to the mar-

ket CF, and cP is the error in the level of CF under the conditional factor

model. Similarly in equation (1.13), βPt is the sensitivity of stock P’s DR to

the aggregate DR and αP is the conditional alpha (pricing error) in the level of

DR.8

As a result, the state vector for individual stock P includes the time-

varying CF and DR exposures in addition to the market state vector XM
t :

XP
t = [XM

t
′
γPt βPt ]′. Again, the dynamics of the state vector are subject to an

exogenous VAR(1) process:

XP
t+1 = ΦPX

P
t + Σ

1
2
P εt+1 (1.14)

Since the first five state factors of XP
t are identical to XM

t , the upper left 5× 5

blocks of ΦP and ΣP are the same as ΦM and ΣM .

Following a similar procedure as for the market, one can represent the ob-

servable price–dividend ratio of an individual stock as a function of current

state vector. Notice that the CF and DR of stock P are quadratic forms of the

state vector XP
t . The price–dividend ratio is an infinite sum of the exponential

8Ample evidence support time-varying expected market returns (Ferson and Harvey,
1991,1993; Lettau and Ludvigson, 2001; among others) and time-varying market beta (Fer-
son and Harvey, 1999; Ang and Chen, 2007; Ang and Kristensen, 2012; among others). The
structure of the model is therefore originally motivated by these empirical findings.
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quadratic forms of XP
t .

P P
t

DP
t

=
∞∑
n=1

exp(aPn + bP
′

n X
P
t +XP

t

′
HP
nX

P
t ) (1.15)

Applying log-linearization in equation (1.15), the linear observation equation

for stock P is

lnpdPt = APt +BP
t

′
XP
t + σPv v

P
t (1.16)

The details for deriving these equations can be found in Internet Appendix.

In summary, the present-value model is a state-space model. The state

vector XP
t is latent and subject to a VAR(1) process. The observation equations

link the latent vector to the observable realized returns, dividend growth, and

especially price–dividend ratios via the discounted cash flow formula for both

market and individual stocks. This model structure enables me to estimate the

latent factors given the observable information.

1.1.1.3 Returns and Expected Returns

In addition to the variation in lnpd revealed by equation (1.15), this paper

also focuses on the variation in expected and realized returns. As shown by

Campbell and Shiller (1988), the log of return relates to lnpd by

rPt+1 = κ0 + κ1lnpd
P
t+1 − lnpdPt + ∆dPt+1 (1.17)
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Taking conditional expectations on both sides of equation (1.17), one can obtain

the expected return as

Et(r
P
t+1) = κ0 + κ1Et(lnpd

P
t+1)− lnpdPt + Et(∆d

P
t+1) (1.18)

According to this equation, the expected return reflects the expected updates

in price level, as well as the expected CF. Since the expected updates in price

level include updates of information about DR and CF, the expected return is

supposed to be a function of both DR and CF factors. Even though the DR

factors in the state vector are designed to capture the expected returns, the

expected returns may still have bearings on the CF factors because (1) the DR

and CF factors are potentially correlated, and (2) the expected return is related

to all future DR and CF.

In addition to the variations in expected returns, the variations in real-

ized returns also consist of variations in unexpected components. Subtracting

equation (1.18) from equation (1.17), one can divide the realized returns into

expected and unexpected returns. The expected returns are driven by the

state variables of expected CF and DR. The unexpected returns can be sep-

arate into DR innovation (IDR), as the unexpected update in future DR, and

CF innovation (ICF ), as the unexpected update in future CF and realization in

distribution.

rPt+1 = Et(r
P
t+1) + IPDR,t+1 + IPCF,t+1 (1.19)

For a detailed explanation of the separation, I redirect the reader to Appendix

A.4.

Equation (1.18) and (1.19) not only describe the time-series variations in

12



expected and realized returns, but also decide the cross-sectional variations

of their average. The average of the expected return is determined by the

averages of DR and CF. The conditional one-factor model depicting DR with

time-varying exposure is a version of conditional CAPM. As in Jagannathan

and Wang (1996) and Lewellen and Nagel (2006), the average DR of stock P

features an unconditional two-factor model.

µPt − r
f
t = αP + βP (z̄ +

1

2
(σMz )2) + cov(βPt , zt +

1

2
(σMz,t)

2) (1.20)

The level of expected return results from conditional alpha (αP ), the level of

DR exposure (βP ), as well as the covariance terms describing the stability of

DR exposure. Furthermore, the present-value model also allows influence on

the mean of expected returns from the CF side. By the same token as DR, the

average of CF is

gPt +
1

2
(σPg )2 = cP + γP (gM +

1

2
(σMg )2) + cov(γPt , g

M
t +

1

2
(σMg,t)

2) (1.21)

The average of expected return may also depend on the level of CF exposure

and covariance terms relevant to CF.

For unexpected return, I relax the rational expectation assumptions on CF

and DR and summarize the average of realized returns of stock P as the sum

of the mean of expected returns, DR innovations, and CF innovations.

rPt+1 = Et(rPt+1) + IDR + ICF (1.22)

A high level of realized returns may result from a high average of expected

13



return, as well as positive realizations of CF and DR innovations.

1.1.2 Models with CF and DR Risk

Notice that the model I present in the previous subsection is quite general,

and the source of risks driving the expected return is not yet specified. I next

show how the models featuring CF and DR risk can be nested in as special

cases of the general model M0. This hierarchy of model facilitates my choice

of the more likely risk to explain expected return as choice of the more likely

model to fit the data.

1.1.2.1 Constrained Model with CF risk: MCF

Long-run risk in cash flows is a potential way of explaining the risk premium

puzzle and cross-sectional anomalies.9 In this subsection, I also present a long-

run risk model following the models of Bansal and Yaron (2004), Bansal, Kiku,

Shaliastovich and Yaron(2013) rather closely, as a special case of the present-

value model featuring cash-flow risks. A crucial assumption in the long-run

risk literature is the existence of a persistent long-run risk component in the

dividend growth. The specification equation (1.5) of cash flow is in accordance

with this assumption. The utility function the long-run risk models try to

maximize is the Epstein and Zin (1989) utility function, and the log pricing

kernel is therefore

mt+1 = θ log δ − θ

ψ
∆dMt+1 + (θ − 1)ra,t+1 (1.23)

9see Bansal and Yaron (2004), Bansal Dittmar and Lundblad (2005), Bansal Kiku and
Yaron (2009), Bansal, Kiku, Shaliastovich and Yaron (2013).
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Here δ is the discount factor, θ ≡ 1−ν
1−ψ−1

, with ν as risk aversion and ψ as the

intertemporal elasticity of substitution, and ra,t is the log return of the claim

to aggregate consumption.

The following proposition provides necessary conditions on the market state

variables in the specification of long-run risk.

Proposition 1.1 Given the present-value model setup on market level as in

equation (1.5), (1.6), (1.9), and (1.11), if the pricing kernel takes the form in

equation (1.23), the conditional expectation and variance in excess return, zt

and σMz,t, are linear in conditional variance in dividend growth. There exists

parameters of χ0, χ1 and υ0, υ1, such that

zt = χ0 + χ1(σg,t)
2 (1.24)

(σz,t)
2 = υ0 + υ1(σg,t)

2 (1.25)

As a result, the VAR coefficients of (σg,t)
2, zt and (σz,t)

2 are the same, and the

correlation between the shocks on the three state variables are ±1.

Φσg = Φz = Φσz (1.26)

ρσgz = ρσgσz = ρzσz = ±1 (1.27)

For the proof, I redirect the reader to the Appendix A.1.

At the market level, this proposition emphasizes the key implications from

long-run risk models, that the market CF (gMt ) and the CF volatility ((σMg,t)
2)

are the only state factors. (σMg,t)
2 determines the market DR (zt) and the DR

volatility ((σMz,t)
2). This requires the persistence in the dynamics of (σMg,t)

2, zt

and (σMz,t)
2 are all the same, and the shocks to these state variables are perfectly

15



correlated.

Regarding the portfolio-level implications, I state in the next proposition.

Proposition 1.2 With the present-value model setup for Stock P as in equation

(1.14), (1.16), and the pricing kernel of long-run risk model in equation (1.23),

the risk exposure βPt linearly depends on the dividend growth’s loading in cash-

flow γPt . There exists parameters of η0 and η1, such that

βPt = η0 + η1γ
P
t (1.28)

As a result, the VAR coefficients of βPt and γPt are the same, and the correlation

between the shocks on these two state variables is 1.

Φβ = Φγ (1.29)

ρβγ = ργβ = ±1 (1.30)

The proof is also shown in Appendix A.1.

At an individual stock level, the constraints characterizing MCF , require the

DR exposure βPt to reflect the sensitivity of the individual’s CF to aggregate

CF. This proposition shows that the market risk in this setting is identical to

the risks from CF exposure γPt , and this risk is related to the fluctuation in

CF. As a result, the dynamics of βPt and γPt are supposed to have the same

persistence and common shocks.

1.1.2.2 Constrained Model with DR Risk: MDR

In this subsection, I embed the market risk of DR in the framework, specifi-

cally patterning it after the habit formation models as in Campbell and Cochrane (1999)
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and Santos and Veronesi (2004, 2010).

I follow the notation in Campbell and Cochrane (1999), and review the

model in Appendix A.1. The habit formation model can be captured by two

key features, the habit state variable and its dynamics. Here st is the log of

consumption ratio surplus, reflecting the external habits, and it is subject to a

heteroskedastic AR(1)

st+1 = (1− φ)s̄+ φst + Λ(st)σc,tvt+1

where Λ(st) is the sensitivity function characterizing the heteroskedastic inno-

vation in st.

The following proposition shows how Campbell and Cochrane (1999) is

linked to the present-value model as a special case.

Proposition 1.3 Given the above notation of the habit formation model, there

exists a specification of Λ(st), such that the expected market excess returns is a

function of st, zt = f(st); and the expected excess return of asset P is given as

Et(r
P
t+1) +

1

2
vart(r

P
t+1)− (rft + πt) = βPt (zt +

1

2
(σMz,t)

2) (1.31)

where

βPt = covt(r
P
t+1, r

M
t+1)/vart(r

M
t+1) (1.32)

For the details of the proof, I redirect the reader to Appendix A.1.

At market level, this proposition does not impose any constraints to ac-

commodate MDR. Comparing the structures of model MDR and M0, the state

variables st in MDR can be mapped to the state variable zt in M0, showing that
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the DR factors may reflect the states of external habit. Because one can arbi-

trarily select Λ(st), there must exist a choice of Λ(st) to ensure that the state

variable zt, which st is mapped to, characterizes the DR. Since the empirical

analysis of this paper focuses on the pricing in cross sections, the exact form

of Λ(st) is not of interest for studying. Given this choice of Λ(st), one can see

MDR and M0 as equivalent to price the market.

At an individual stock level, the special case of MDR requires the time-

varying beta to purely reflect conditional sensitivity of individual stock returns

to market returns. In the general model M0, the time-varying beta may reflect

other information. This restriction, however, specially clarifies that beta is a

risk channel associated with fluctuations in DR. Also it constitutes a crucial

observation equation for the time-varying beta.

1.1.3 Estimation Strategy

In this section, I sketch the Gibbs sampling algorithm for estimating the

present-value model, which is applicable to both general model M0 and the two

constrained models MDR and MCF . The estimates of the latent variables and

relevant parameters are used to investigate the importance of CF and DR risks

in expected returns and explain the realized returns.

Notice that present-value model is a state-space model, and the latent state

variables and the parameters describing their dynamics are readily estimated

by using the Gibbs sampling method. The evolution dynamics are described

by equation (1.14), for both the market level and the individual level. The

observation includes equations (1.5), (1.6), and (1.11) for the market level, as

well as equation (1.12), (1.13), and (1.16) for the individual stocks.
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Since the pricing is ordered from the market level to the individual stock

level, the estimation strategy also adheres to this sequence. I first estimate

the market-level state variables of [gMt , (σ
M
g,t)

2, zt, (σ
M
z,t)

2] using Kalman filtering

with the evolution equations and observation equations on market level.10 The

set of market level parameters, Θ = (r̄f , ḡM , (σ̄Mg )2, z̄, (σ̄Mz )2,ΦM ,ΣM , (σ
M
v )2)

are estimated via iteration of the Gibbs sampling method. Provided with the

uniform estimates of the market-level state vector and parameters, I then draw

the posterior distributions of state vectors and parameters of individual stocks

using the individual-level data. The state variables [γPt , β
P
t ] are estimated using

Kalman filtering, and the parameters Θ = (γ̄P , β̄P ,ΦP ,ΣP , (σPv )2) are obtained

using iteration of the Gibbs sampler.The details of the algorithm including

specification of the prior distributions are documented in Internet Appendix.

1.2 Data

In this section, I first describe the data and test portfolios employed by

the empirical study. I then summarize the observable variables from which the

latent variables can be inferred.

1.2.1 Data Description

In the empirical work, I use all NYSE, Amex, and NASDAQ common stocks

for the period 1964 to 2012 from Center for Research in Security Price (CRSP)

monthly files, merged with accounting data from Compustat. To address time-

series and cross-sectional returns, I estimate the model on the market and

10See Carter and Kohn (1994).
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seven groups of quintile portfolios reflecting anomalies in averages of returns.

The market portfolio is formed as the value-weighted portfolio containing all

common stocks in the CRSP universe. The test portfolios are sorted by size,

book-to-market ratios, past returns, past idiosyncratic volatility, accrual com-

ponent in earnings, capital investment, and liquidity separately. I document

the labels and the details of constructing the test portfolios in Appendix A.2.

For each test portfolio, the observable variables are calculated as follows.

Assuming the dividends are reinvested in 3-month T-bills (nominal risk-free

rate),11 one is able to compute the observable dividend growth and lnpd from

the value-weighted return with and without dividends.12 All the dividend

growth and returns are aggregated at an annual horizon to avoid seasonal-

ity, but sampled at quarterly frequency to include more observations. The data

structure brings up an overlapping observation issue, as addressed by Hodrick

(1992). My model can adapt to the overlapping data, and Internet Appendix

address the technical details of specifications and model with overlapping data

structure.

When the model MDR is being estimated, there is one more observation

equation about the time-varying beta itself. The observable benchmark of beta

reflects the conditional covariance between market and portfolio returns, and

is directly estimated from short-window regressions, following Lewellen and

Nagel (2006). At the end of month t, one can simply run OLS with all the

daily returns in the following quarter after the month t to get the benchmark

11I follow Chen (2009) argument that when stock returns enter the calculation of dividend,
the CF effect on lnpd from dividend growth is contaminated.

12Given the surge in the share repurchase activity in this sample, I follow Bansal Dittmar
and Lundblad (2005) to adjust capital gain and cash payment incorporating a candidate
measure of repurchase.
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of beta.

1.2.2 Data Summary

Table 1.1 summarizes the observable variables of the market and other test

portfolios. For each sorting group, I choose the two extreme and the median

portfolios for representative reporting. In columns 1-6, I report the mean and

the standard error of the excess return, dividend growth, and the log price–

dividend ratio. The last two columns report OLS estimates of the unconditional

alpha (α̂OLS) and the market beta (β̂OLS) under the unconditional CAPM.

The summary statistics reflect two features of the data. First, all three ob-

servables exhibit large time-series and cross-sectional variations. The standard

deviations of the three observables are large for all portfolios, and the averages

of the observables are dispersed. The valuation of CF and DR risk is based on

how well the corresponding model fits these patterns. Second, the test port-

folios demonstrate anomalies in the average of excess returns, which cannot

be explained by unconditional CAPM.13 For example, the portfolios sorted by

momentum display a spread of (9.4%− 0.8% =) 8.6% between average returns

of “past winners” (MOM5) and “past losers” (MOM1). Taking CAPM market

factor into account unconditionally, the spread between unconditional alpha’s

become even higher as 9.1%. The model in this paper breaks through with a

new approach from an unexpected perspective to explain these anomalies.

13An extensive literature documents the anomalies in return associated with these seven
sorting: size (Fama and French 1992, 1993), book-to-market (Fama and French 1992,1993),
momentum (Jagadeesh and Titman 1993), idiosyncratic volatility (Ang, Hodrick, Xing, and
Zhang 2006) , accruals (Sloan 1996), capital investment (Titman, Sheridan, Wei, and Xie
2004; Liu, Whited, and Zhang 2009), illiquidity (Amihud 2002; Pastor and Stambaugh 2003).
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Table 1.1: Summary Statistics

I report summary statistics of the market portfolio, as well as the other test portfolios which

are sorted on size, book-to-market, momentum, idiosyncratic volatility, accrual component in

earnings, capital investment and liquidity. I choose the two extreme and the median portfolio

within each quintile sorting group to report. Data are from CRSP and Compustat, spanning

from Jan 1964 to Dec 2012. The variables are sampled at quarterly frequency but measured at

annual horizon. The mean and standard error are annualized. The excess returns are defined

as returns in excess of the annualized 3-month Treasury bill rate. In the last two columns, I

report OLS estimates of the alphas and betas from unconditional CAPM, by regressing the

quarterly portfolio annual excess return on the market excess returns.

OLS Estimates
µ(Re) σ(Re) µ(g) σ(g) µ(lnpd) σ(lnpd) αu βu

Market Portfolio 0.054 0.174 0.011 0.069 3.616 0.406 0.000 1.000

Size Portfolios

SIZE1 (Large Cap) 0.051 0.169 0.006 0.069 3.575 0.442 0.000 0.948
SIZE3 0.074 0.204 0.026 0.121 3.932 0.546 0.016 1.082
SIZE5 (Small Cap) 0.078 0.259 0.036 0.176 4.372 0.516 0.014 1.186

B/M Portfolio

BM1 (Growth) 0.046 0.188 0.010 0.125 4.083 0.387 -0.009 1.026
BM3 0.063 0.169 0.008 0.111 3.400 0.448 0.016 0.882
BM5 (Value) 0.096 0.193 0.031 0.265 3.436 0.476 0.046 0.928

Momentum Portoflios

MOM1 (Losers) 0.008 0.249 -0.059 0.410 3.769 0.540 -0.057 1.216
MOM3 0.044 0.164 0.000 0.142 3.506 0.403 -0.004 0.886
MOM5 (Winners) 0.094 0.209 0.059 0.362 4.087 0.588 0.034 1.098

Idiosyncratic Portfolios

VOL1 (Volatile) -0.007 0.349 -0.073 0.712 5.428 1.070 -0.092 1.572
VOL3 0.067 0.246 0.011 0.247 4.379 0.799 -0.004 1.310
VOL5 (Stable) 0.058 0.151 0.012 0.067 3.469 0.410 0.013 0.829

Accural Portfolios

ACC1 (High Accrual) 0.023 0.206 -0.012 0.214 4.201 0.580 -0.037 1.110
ACC3 0.057 0.169 0.002 0.166 3.579 0.508 0.008 0.912
ACC5 (Low Accrual) 0.071 0.199 0.041 0.198 3.798 0.528 0.013 1.068

Capital Investment Portfolios

CI1 (High Cap Invest) 0.050 0.181 0.007 0.190 3.860 0.499 -0.004 0.999
CI3 0.054 0.160 0.009 0.163 3.542 0.413 0.006 0.887
CI5 (Low Cap Invest) 0.080 0.202 0.038 0.222 3.924 0.602 0.021 1.099

Liquidity Portfolio

LIQ1 (Liquid) 0.050 0.162 0.007 0.094 3.464 0.391 0.002 0.905
LIQ3 0.083 0.200 0.025 0.183 3.704 0.466 0.029 0.986
LIQ5 (Illiquid) 0.090 0.238 0.043 0.319 4.002 0.456 0.031 1.095
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1.3 Results

In this section, I report a comprehensive analysis of the variations in ex-

pected and realized returns using the proposed present-value model. First, in

examining the variation in expected return, I test whether the fluctuation of CF

or DR is likely to be priced as risk, with both market-level and individual-level

stock data. Second, in examining the variation of realized return, I evaluate the

power of risk from expected return, as well as that of unexpected CF and DR

innovations, in explaining the time-series and cross-sectional realized return.

1.3.1 CF vs DR: Which is the more likely risk to model

expected return?

To begin with, I argue that the DR risk is the more likely risk channel

than the CF risk. One can draw this conclusion by testing the hypotheses as

summarized in the propositions characterizing the CF and DR risk models. I list

the hypothesized constraints associated with the risks at market and individual

levels in the diagram below. Proposition 1.1 governs the CF risk constraints

at market level, and Proposition 1.2 characterizes the CF risk at individual

stock level. For DR risk, there are no market-level constraints, because M0

is equivalent to a version of MDR at market level, as shown in section 1.1.2.2.

Proposition 1.3 specifies the constraints of DR risk at the individual stock level.
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MCF MDR

Proposition 1.1:
Market Level Φσg = Φz = Φσz -

ρσgz = ρσgσz = ρzσz = ±1
Proposition 1.2: Proposition 1.3:

Individual Stock Level Φβ = Φγ βPt =
covt(rPt+1,r

M
t+1)

vart(rMt+1)

ργβ = ±1

One can test these propositions with classical statistical tests using the pos-

terior mean and posterior standard error of the factors and parameters from

the Gibbs estimates. However, there is one major drawback to the classical

tests using Bayesian estimates: the low statistical power. In Bayesian statis-

tics, the Bayes factor test is the formal practice for quantifying the evidence

in favor of a scientific theory (Jeffreys 1935, 1960; Kass and Raftery 1995).

For a model M1 under hypothesis constraints and the general model M0 as

the alternative, the Bayes factor (LR1) is defined as twice the difference be-

tween posterior log-likelihood of M0 and M1 given the observable data Y :

LR1 ≡ 2(L(M0 | Y ) − L(M1 | Y )). The higher the Bayes factor, the more

likely the unconstrained model is true and the greater the evidence against the

hypothesis. This test is positively against the hypothesis (model M1) if the

Bayes factor is greater than 2, and strongly against it if greater than 6 (Kass

and Raftery 1995). I calculate the posterior likelihood of the models with the

Gibbs outputs, following Chibs (1995). The details of the calculation can be

found in Appendix A.3.

In addition, to make a choice of the more likely risk model for expected

return, I examine whether the predictability of returns or dividend growth

under each risk model is consistent with the existing literature. Furthermore,

I evaluate the importance of CF and DR in driving lnpd by decomposing the
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time-series and cross-sectional variance of lnpd. The relative importance of DR

and CF variations in lnpd has great relevance to modeling the expected return.

For example, the crucial assumption of the long-run risk model is that lnpd is

purely driven by the CF factors. As a result, under the general model M0, the

higher the portion of the variance of lnpd that is attributed to a factor, the

more likely fluctuation in this factor is a risk.

1.3.1.1 Proposition 1.1: CF Risk at Market Level

To begin with, I test Proposition 1.1 to examine CF risk at the market level.

Recall this proposition hypothesizes that the state variables of (σg,t)
2, zt, and

(σz,t)
2 have the same VAR coefficients and perfectly correlated shocks under

M0. In this subsection, I provide three reasons for rejecting these hypotheses.

First, I reject these hypotheses by using a classical test with the Bayes esti-

mates. Table 1.2 reports the Bayes estimates of the market model parameters

under M0 and MCF , separately in panel A and panel B. For each row, the pos-

terior mean is reported as the upper number and the posterior standard error is

reported as the lower one in parenthesis. The pertinent parameters in Proposi-

tion 1.1 are the last three estimates in the second row as VAR coefficients, and

the last three in the bottom of correlation matrix of the shocks. Using these

estimates, I jointly test this proposition with a χ2
5 test and reject MCF overall,

since the p-value is less than 0.001.
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Table 1.2: Estimates of Market Parameters under M0 and MCF

Panel A: Estimates under General Model M0

rf gM (σMg )2 z (σMz )2

Average 0.009 0.011 0.004 0.057 0.032
(0.002) (0.005) (0.000) (0.013) (0.000)

VAR coeff. Φ 0.938 0.958 0.671 0.984* 0.709
(0.017) (0.034) (0.321) (0.008) (0.182)

Shock Variance Σ 0.084 0.041 0.007 0.011 0.461
(0.009) (0.047) (0.006) (0.006) (0.240)

Correlation Between Shocks:ρ
gt (σMg,t)

2 zt (σMz,t)
2

rft -0.244 -0.041 0.269 0.148
(0.302) (0.368) (0.260) (0.377)

gt -0.053 -0.369 -0.142
(0.401) (0.277) (0.355)

(σMg,t)
2 -0.027* -0.032*

(0.412) (0.395)
zt 0.199*

(0.358)
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Panel B: Estimates under CF Model MCF .

rf gM (σMg )2 z (σMz )2

Average 0.009 0.012 0.004 0.056 0.033
(0.002) (0.005) (0.000) (0.012) (0.000)

VAR coeff. Φ 0.939 0.975 0.684 0.684 0.684
(0.017) (0.009) (0.184) (0.184) (0.184)

Shock Variance Σ 0.084 0.017 0.008 1.017 0.444
(0.009) (0.016) (0.004) (1.045) (0.630)

Correlation Between Shocks:ρ
gt (σMg,t)

2 zt (σMz,t)
2

rft -0.548 0.551 0.551 0.551
(0.316) (0.289) (0.289) (0.289)

gt -0.514 -0.514 -0.514
(0.299) (0.299) (0.299)

(σMg,t)
2 1.000 1.000

(0.000) (0.000)
zt 1.000

(0.000)

Note to Table 1.2 I report the Gibbs estimates of posterior mean and standard error of
the parameters related to the market. For each parameter, the upper row is the posterior
mean, and the posterior standard error is reported in the lower row with parenthesis. Panel
A shows estimates under M0 or MDR, as they are equivalent at market level. Panel B shows
estimates under MCF . For each parameter, I perform a t-test on the equality of estimates
under different models, and using asterisk showing the significance (“*”: p < 0.01) in panel
A.
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To further examine the difference in model structure introduced by CF risk,

I compare the corresponding parameters in panel A and panel B, and perform a

t-test on each parameter to check whether the estimates under the two different

models are equal. As shown in the second row of both panels, the market CF

and DR factors are persistent under both M0 and MCF , consistent with findings

in Ferson et al. (2003) and Campbell and Cochrane (1999). However, there

are significant differences between the VAR coefficients in zt in the two panels.

Under the general model, the market DR factor is more persistent than when it

is restricted to reflect CF volatility only. Furthermore, the correlation between

shocks of zt, (σz,t)
2, and (σg,t)

2 are significantly different from 1 as proposed

in the hypothesis. In summary, the hypothesis is rejected due to the fact that

variation in DR factor cannot be solely attributed to the change in CF volatility.

Second, the Bayes factor test rejects Proposition 1.1 and disproves CF risk

as being plausible in modeling market prices. I calculate the Bayes factor

statistics as 10.8, which can be interpreted as M0 being about (e10.8/2 =) 221

times more likely to generate the market data than MCF .

The inferior performance of the CF risk model also appears in fitting lnpd.

Figure 3.1 compares the fitting of observable lnpd from estimates of M0 and

MCF . The fitting R2 values are 99% and 96%, respectively. Both models fit

lnpd well overall; however, we can still observe that there is more deviation in

the fitting by model MCF .

Third, the predictabilities of market return and dividend growth under MCF

are less consistent with previous findings than those under M0. A large liter-

ature documents the existence of predictability in equity returns and dividend
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Figure 1.1: Quality of Fitting Market Price-dividend Ratio under M0 and
MCF

Model M0 Fitted and Realized log of Price-dividend Ratio, R2 = 99%
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The plots compare the realized market log of price–dividend ratio and its fitted val-
ues from the models M0 and MCF . The R2 is calculated by 1 − var(Real lnpd −
Fitted lnpd)/var(Real lnpd).
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growth.14 As a result, a model characterized by an appropriate risk should

produce expected returns and growth consistent with realizations. Since the

predictability patterns for market return and dividend growth under MCF con-

tradicts former findings, I consider this as evidence for disqualifying CF risk.

Compared with the general model M0, MCF contradicts the existence of

return and dividend growth predictability. I present estimates of the latent

expected dividend growth gMt and expected excess returns zt at market level in

Figure 1.2. Under M0, the predictive R2 is 15% for the dividend growth, and

4.8% for the excess return.15 My results are comparable to the predictability

results shown by van Binsbergen and Koijen (2010),16 and consistent with some

other literature on predictability; for instance, Ang and Bakaert (2007), Lettau

and van Nieuwerburgh (2008), and Cochrane (2008). All these papers report an

R2 of predictability in return is between 2% and 5%. In contrast, the expected

dividend growth and excess return have negative R2 under CF risk model MCF ,

indicating the expectation is not a proper proxy for the realization.

The predictability literature better supports that lnpd predicts market re-

turns but not dividend growth (van Binsbergen and Koijen 2010). When lnpd

goes up, one expects a drop in return, not a rise in dividend growth. The

estimates under M0 are consistent with this argument, while the estimates un-

der MCF show the opposite. Considering the left two panels in Figure 1.2 for

M0, one can see that lnpd well predicts the market returns, as zt negatively

correlates with lnpd. When lnpd was low in the late 1970s and early 1980s, zt

14See Fama and French (1988), Campbell and Shiller (1988), Cochrane (2008), Menzly,
Santos, and Veronesi (2004), Goetzmann and Jorion (1995), among others.

15 R2 is calculated as 1− var(Realized V alue−Expected V alue)
var(Realized V alue) .

16van Binsbergen and Koijen (2010) estimate a reduced-form present value model. Using
the data of dividend reinvested in cash, they show R2 of predicting return is 8.2%, and R2

of predicting cash flow is 13.9%.
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Figure 1.2: CF and DR Predict Dividend Growth and Return under M0, but
not under MCF

M0 MCF
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The plots compare the filtered series of expected dividend growths and excess returns (soild
lines) with their realized values (dotted lines) under two specifications of risks. The upper
two panels show the expected and realized log of dividend growth, while the lower two panels
compare the expected and realized excess returns. The left two panels reflect estimations in
the general model M0, and the right panels represent the CF risk model MCF . The R2 is

calculated by 1− var(Realized V alue−Expected V alue)
var(Realized V alue)
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reached its peak, but when lnpd was historically high around 2000, zt was in

the trough. According to nontabulated results, this correlation is -0.92. The

CF factor gMt is less correlated with lnpd, and the correlation is about 0.44. In

contrast, the two right panels tell a different story under MCF . The estimates

demonstrate predictability for dividend growth by lnpd, as the CF factor gMt

becomes more correlated with lnpd. The correlation between gMt and lnpd is

0.96. And the expected return zt covaries less with lnpd, with a correlation of

0.28. However, this is inconsistent with the established empirical findings.

1.3.1.2 Proposition 1.2: CF Risk at Individual Portfolio Level

In the following steps, I test the CF risk using data at the individual portfolio

level. There are two reasons for employing the cross-sectional data. First, the

risk is mostly reflected by cross-section of expected returns since different levels

of risks the stocks bear result in different levels of awards in the expected

returns. Second, bringing more information in relative pricing increases the

sample size, therefore enhancing the power of the test.

Again, I begin with the classical statistical test. Proposition 1.2, associated

with this scenario, hypothesizes that the DR and CF exposures have the same

persistence and perfectly correlated shocks. Panel A of Table 1.3 reports the

Gibbs estimates of Φβ and Φγ and the correlation between their innovations

ρβγ under general model M0. Overall, Proposition 1.2 is rejected by a joint

χ2
70-test, with a p-value of 0.001.

Taking a closer look at this proposition, I find the first part, Φγ = Φβ,

cannot be rejected using the t-test. Comparing the top left block with the

middle left block in panel A of Table 1.3, one can see the means of Φγ and Φβ
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for the same test portfolio are almost identical. Moreover, the standard error

of both estimates in the top and middle right blocks are large enough that this

part of the proposition cannot be rejected with a t-test.

The second part of Proposition 1.2, ρβγ = ±1 gets rejected. In the bottom

left block of panel A, I show that the correlations between the shocks of β and

γ are significantly different from ±1 for all portfolios, using a t-test. All ργβ’s

are around zero, among which the largest deviation from zero belongs to the

second largest size portfolio (SIZE2), as 0.121. The standard errors of all the

estimates in the bottom right block are below 0.4. As a result, ±1 is outside of

the two standard error boundary around the posterior mean.

Furthermore, the Bayes factor test also rejects Proposition 1.2. In panel B

of Table 1.3, the LR statistics is 17.58 given all the test portfolios, indicating

M0 is more than 6000 times more likely to generate the cross-section of lnpd

as observed. I also report the Bayes factors given the observation as portfolios

within each sorting group and portfolios with different levels of returns; the

model with CF risks can only weakly explain these data because the Bayes

factors are larger than 6 in all cases.

At last, I show that CF risk is inconsistent with predictability of return

and growth. Panel C of Table 1.3 compares the predictive R2 for return and

dividend growth under M0 with R2 under MCF .17 The predictive R2 for returns

of all test portfolios are around 2% under M0 as shown in the top left block.

This result is consistent with the predictability at market level. In contrast, as

shown in the top right block, 21 out of the 35 test portfolios have a negative

17R2 is calculated in the same way as for the case of the market portfolio. The expected
return and dividend growth is calculated using CF and DR exposures and the corresponding
market factors, as given by equation (1.12) and equation (1.13).
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Table 1.3: Rejecting the CF Risk Model MCF at Individual Level

Panel A: Classical Test

Joint χ2 test of Proposition 1.2: pχ2 = 0.001

m(Φβ) s(Φβ)
Low Return 2 3 4 High Return Low Return 2 3 4 High Return

SIZE 0.845 0.780 0.886 0.904 0.908 0.469 0.464 0.469 0.469 0.469
BM 0.876 0.832 0.914 0.903 0.865 0.473 0.467 0.475 0.474 0.468
MOM 0.831 0.830 0.716 0.776 0.789 0.454 0.456 0.453 0.455 0.459
VOL 0.868 0.858 0.809 0.842 0.867 0.448 0.458 0.460 0.469 0.474
ACC 0.763 0.700 0.683 0.671 0.725 0.452 0.447 0.450 0.448 0.446
CI 0.638 0.988 0.812 0.714 0.825 0.430 0.494 0.424 0.442 0.463
LIQ 0.895 0.903 0.912 0.930 0.906 0.479 0.469 0.470 0.475 0.464

m(Φγ) s(Φγ)
Low Return 2 3 4 High Return Low Return 2 3 4 High Return

SIZE 0.851 0.764 0.866 0.895 0.901 0.474 0.461 0.476 0.474 0.468
BM 0.877 0.787 0.892 0.891 0.863 0.476 0.466 0.482 0.471 0.455
MOM 0.827 0.816 0.674 0.773 0.772 0.451 0.473 0.442 0.449 0.437
VOL 0.872 0.866 0.825 0.821 0.847 0.447 0.452 0.456 0.474 0.472
ACC 0.773 0.682 0.673 0.671 0.748 0.451 0.444 0.451 0.446 0.442
CI 0.643 0.929 0.909 0.721 0.833 0.435 0.464 0.455 0.449 0.459
LIQ 0.901 0.892 0.905 0.923 0.896 0.485 0.472 0.476 0.476 0.463

m(ργβ) s(ργβ)
Low Return 2 3 4 High Return Low Return 2 3 4 High Return

SIZE 0.042* 0.140* -0.062* 0.071* 0.119* 0.336 0.393 0.320 0.356 0.377
BM 0.121* -0.038* 0.076* 0.058* 0.025* 0.351 0.280 0.384 0.368 0.358
MOM 0.060* -0.038* 0.039* 0.063* 0.128* 0.362 0.287 0.359 0.387 0.368
VOL 0.080* 0.041* 0.008* -0.010* 0.048* 0.354 0.357 0.355 0.306 0.381
ACC 0.109* 0.004* -0.018* 0.123* 0.036* 0.390 0.320 0.309 0.382 0.375
CI 0.088* -0.200* 0.036* -0.012* -0.010* 0.377 0.260 0.236 0.341 0.329
LIQ 0.002* 0.048* 0.104* 0.115* -0.057* 0.322 0.354 0.367 0.396 0.308

Panel B: Bayes Factor Test

ALL Size B/M MOM VOL ACC
LRCF 17.6 12.6 8.3 12.3 7.6 25.2

CI LIQ High Ret Med Ret Low Ret
LRCF 21.7 10.5 14.0 7.3 33.2
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Panel C: Predictive R2 in under M0 and MCF

R2 for Return

M0 MCF

Low Return 2 3 4 High Return Low Return 2 3 4 High Return
SIZE 0.021 0.020 0.020 0.022 0.023 0.050 -0.025 -0.029 -0.003 -0.025
BM 0.017 0.020 0.024 0.026 0.019 0.046 -0.022 -0.023 -0.005 -0.022
MOM 0.017 0.022 0.022 0.023 0.022 0.049 -0.004 -0.008 0.061 -0.003
VOL 0.016 0.014 0.020 0.022 0.025 0.022 0.052 0.031 0.027 0.018
ACC 0.021 0.020 0.020 0.021 0.020 -0.025 0.050 -0.029 -0.033 -0.016
CI 0.020 0.022 0.026 0.020 0.022 -0.008 -0.025 -0.050 -0.020 -0.023
LIQ 0.023 0.021 0.021 0.030 0.029 0.045 -0.011 -0.016 0.050 0.050

R2 for Dividend Growth

M0 MCF

Low Return 2 3 4 High Return Low Return 2 3 4 High Return
SIZE 0.137 0.051 0.066 0.068 0.032 -0.151 0.013 -0.044 -0.001 0.092
BM 0.040 0.041 0.039 0.062 0.048 0.010 0.074 0.048 0.022 0.060
MOM 0.018 0.015 0.055 0.031 0.015 0.058 -0.012 -0.079 -0.027 0.017
VOL 0.021 0.013 0.015 0.050 0.120 -0.009 -0.011 0.065 0.028 -0.071
ACC 0.037 0.034 0.022 0.057 0.006 0.012 -0.018 -0.095 -0.088 -0.079
CI 0.022 0.052 0.031 0.027 0.018 0.040 -0.002 -0.180 -0.059 0.049
LIQ 0.093 0.038 0.033 0.028 0.008 0.006 0.061 0.014 0.013 -0.023

Note to Table 1.3 I provide evidence that rejects MCF using individual stock data from
three aspects. The associated hypothesis is Proposition 1.2: the CF and DR exposure has
the same VAR coefficients and their shocks are perfectly correlated.

Φγ = Φβ ; ρβγ = ±1

Panel A reports the posterior mean (m(·)) and standard error (s(·)) of the pertinent pa-
rameters for the 35 test portfolios. For each parameter I also perform t-test on its specified
hypothesis in the proposition and report the significance using asterisk (“*”:p < 0.01).
Panel B reports Bayes factor as the log of the posterior likelihood ratio of the general model
M0 over the CF risk model MCF , given various test data D.

LRCF = 2 log
Pr(M0 | D)

Pr(MCF | D)

Panel C compare the predictive R2 under M0 and MCF at individual portfolio level, for return
and growth. The R2 for dividend growth of stock P is calculated by

R2
g = 1−

var(∆dPt+1 −Et(∆d
P
t+1))

var(∆dPt+1)

The R2 for excess return is calculated as

R2
r = 1− var((RP,et )−Et((R

P,e
t )))

var((RP,et ))
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predictive R2 for returns under MCF . For the dividend growth, the bottom left

block shows predictive R2 under M0 ranges between 0.8% to 13.8%, while the

R2 values under MCF in the bottom right block are mostly smaller and negative.

The lack of predictability undermines the rationality of the expectations under

the CF risks.

1.3.1.3 Proposition 1.3: DR risk at Individual Portfolio Level

Since there are no constraints associated with DR risk at market level,

testing the DR risk with the data of individual portfolios is sufficient. The

proposition characterizing DR risk requires the time-varying β to reflect the

covariance between individual stock returns and the market returns. The results

of classical test, Bayes factor test, and examination of predictability all support

the DR risk.

To test this proposition in the classical way, one needs to compare β es-

timated under M0 with the time-varying benchmark of β. The benchmark is

calculated using short-window regression of daily data as mentioned in section

1.1.3.

I find that this proposition cannot be rejected for all test portfolios. As

representative illustrations, Figure 1.3 shows the comparison of the estimated

β under M0 and the benchmark for four test portfolios. The two left panels

are for the cases of two extreme portfolios sorted by book-to-market ratio,

and the two right panels are for the cases of two extreme portfolios sorted by

past returns. The solid lines are the benchmark of conditional β calculated by

rolling regression of daily returns. The dash-dotted lines represent the posterior

mean of estimated β under M0, and the dashed lines contour the boundary of

36



Figure 1.3: Estimates of Time-Varying beta under M0 and Short-window
Regression Benchmark under MDR
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The plots compare the filtered series of beta under the general model M0 with the Benchmark
of beta under DR risk model MDR. The Benchmark of MDR (solid line) is calculated using
short-window regression of daily individual stocks returns on daily market returns. The
posterior mean of the time-varying beta (dash-dotted line) and its 95% confidence interval
(dashed line) is estimated using Kalman filtering iterated in the Gibbs sampling method.
The p-value is associated to the χ2 test on the equality between point estimates of beta and
the benchmark.
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the 95% confidence interval of the posterior distribution of β. Although the

correlations between posterior mean of β and the benchmark vary for different

test portfolios, the 95% confidence intervals mostly enclose the benchmark of

β for all panels. In addition, the p-values of a χ2 test of the identity in the

proposition are above 0.05 for all test portfolios.

The Bayes factor test on this proposition agrees that DR risk is an eligible

risk channel given individual portfolio data. The test statistics of Bayes factors

are reported in panel A in Table 1.4. Based on the data containing all test

portfolios, the Bayes factor is -0.93, which slightly favors the model with DR

risks. In the test using the seven portfolios with the highest/medium/lowest

return in each sorting groups, the model with DR risks fits the data well, with

negative Bayes factor in all three scenarios. When testing the model by sorting

groups, four out of seven sorting groups have negative Bayes factors as evidence

for the DR risk model MDR. Moreover, the evidence against the DR risk model

from the other three sorting groups is not strong, with all three LR statistics

being less than 6.
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Table 1.4: Supporting DR Risk Model MDR at Individual Level

I provide evidence supporting MDR with individual stock data. Panel A shows Bayes factor
as the log of the posterior likelihood ratio of the general model M0 over the DR risk model
MDR, given various test data D.

LRDR = 2 log
Pr(M0 | D)

Pr(MDR | D)

Panel B reports individual portfolio level predictive R2 for return and growth under MDR.
The R2 for dividend growth of stock P is calculated by

R2
g = 1−

var(∆dPt+1 −Et(∆d
P
t+1))

var(∆dPt+1)

The R2 for excess return is calculated as

R2
r = 1− var((RP,et )−Et((R

P,e
t )))

var((RP,et ))

Panel A: Bayes Factor Test

ALL Size B/M MOM VOL ACC
LRDR -0.93 2.0 0.3 3.0 5.6 0.1

CI LIQ High Ret Med Ret Low Ret
LRDR -1.2 -2.1 -2.8 -1.1 -1.2

Panel B: Predictive R2 under MDR

Predictive R2 for Return Predictive R2 for Dividend Growth

Low Return 2 3 4 High Return Low Return 2 3 4 High Return

SIZE 0.028 0.019 0.038 0.038 0.019 0.139 0.050 0.065 0.070 0.031

BM 0.030 0.027 0.022 0.025 0.025 0.041 0.041 0.038 0.062 0.047

MOM 0.025 0.025 0.029 0.049 0.083 0.016 0.015 0.055 0.030 0.014

VOL 0.014 0.017 0.017 0.023 0.028 0.019 0.013 0.015 0.051 0.120

ACC 0.022 0.023 0.024 0.027 0.024 0.037 0.034 0.022 0.057 0.006

CI 0.026 0.032 0.032 0.025 0.018 0.022 0.051 0.033 0.027 0.017

LIQ 0.037 0.021 0.020 0.020 0.025 0.098 0.037 0.033 0.030 0.007
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In examining the predictability under MDR, I find that the predictive R2

for returns and dividend growth under MDR is consistent with the existence of

predictability. In panel B of Table 1.4, the R2 values for returns range between

1.4% to 8.3%, and the R2 values for growth range between 0.6% to 13.9%

under MDR across all test portfolios. They are similar to corresponding R2

values under M0, as reported in panel C of Table 1.3. Unlike CF risk, the DR

risk can result in expectations that feature in predicting their realizations.

1.3.1.4 Variance Decomposition in lnpd under M0

The result of this exercise demonstrates that DR dominates over CF in

determining both dimensions of time-series and cross-sectional variations in

lnpd, therefore it adds credit to the DR risk.

First, I decompose the time-series variance of lnpdt into fractions driven by

CF and DR factors under the general model M0, following a general approach

in the literature.18 I report the estimated fractions in var(lnpdPt ) of each state

variable in Panel A of Table 1.5. The details of calculating the fractions are

relegated to Appendix A.4.

18see Campbell (1991), Campbell and Vuolteenaho (2004), Chen and Zhao (2009), Bins-
bergen and Koijen (2010), and others.
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Table 1.5: Variance Decomposition of Log Price-dividend Ratio

Panel A decomposes the time-series variance of lnpd and reports the percentage fractions of
total variance driven by the state variables under M0. AVG row presents the simple average
of the fraction among all test portfolios. The “Min”, “Med” and “Max” reports the minimum,
maximum and median of the fractions across all the portfolios. The “High Ret”, “Med Ret”
and “Low Ret” report the median of the fraction among the portfolio with high, medium
and low returns, respectively. Panel B decomposes the cross-sectional variance of lnpd and
reports the fractions attributed to the influencing components,including average of CF and
DR factors, conditional errors in CF and DR , and the covariance in CF and DR exposure
with the aggregate factors. Column 1 is for the general model M0, Column 2 is for the DR
risk model MDR and Column 3 is for the CF risk model MCF .

Panel A: Decompose Time-series Variance of lnpd

rf g σ2
g z σ2

z γ β

AVG 6.4% 26.9% 0.0% 91.1% 0.1% 0.4% 1.0%
Max 10.1% 56.3% 0.0% 107.0% 0.1% 2.7% 6.5%
Median 6.2% 25.3% 0.0% 98.1% 0.1% 0.1% 0.3%
Min 2.4% 7.1% 0.0% 51.7% 0.0% 0.0% 0.0%
High Ret 5.9% 23.3% 0.0% 90.4% 0.1% 0.6% 1.0%
Med Ret 5.9% 27.4% 0.0% 91.6% 0.1% 0.5% 1.2%
Low Ret 6.1% 31.0% 0.0% 85.8% 0.1% 0.4% 1.4%

Panel B: Decompose Cross-sectional Variance of lnpd

M0 MDR MCF

β̄ 81% 53% 31%
α 8% 6% 3%
cov(β, z) 22% 11% 11%
cov(β, σ2

z) -9% -9% -8%
γ̄ -18% -17% -17%
c -5% -1% -3%
cov(γ, g) 14% 10% -36%
cov(γ, σ2

g) 3% 2% 27%
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The results take the DR factor as the more important driving force of move-

ment in prices, and the market-level variation as more influential than the vari-

ation in portfolio specific exposures. In the first row, I show that, on average

over all test portfolios, the market DR (z) explains 91.1% of the total variance

of lnpd, dominating over the market CF (gM), which accounts for a fraction of

26.9%. The fractions attributed to variation in CF and DR exposure (γ and

β) are 0.4% and 1.0% in the total variance of lnpd on average. The exposure

information is insignificant compared with market DR and CF factors, yet the

DR exposure slightly outperforms the CF exposure. To show that the rank in

explanatory power is not due to a special test portfolio, I report the maximum,

median, and minimum of the estimated fractions over all test portfolios in row

2-4 of Panel A, as well as the decompositions using test portfolios with highest,

medium, and lowest returns within each sorting group in row 5-7 in Panel A.

The pattern of importance in attribution is consistent in all cases.

Second, one can cross-sectionally examine how the average of lnpd is affected

by the average of factors. The average of lnpd depends on the average of CF

and DR. Therefore, the cross-section variance is decomposed into variation in

(1) the average of CF and DR exposures (γ̄ and β̄), (2) the conditional errors

of CF and DR (c and α), and (3) the covariances describing the stability of

the CF and DR exposures (cov(γ, gM), cov(γ, σ2
g), cov(β, z), and cov(β, σ2

z)).

In Table 1.5, panel B reports the fraction of the cross-sectional variance of lnpd

attributed to each component. The details of the calculation of the fraction are

also relegated to Appendix A.4. As the covariances of these statistics depicting

cross-sectional pricing are double calculated, the sum of these fractions is not

necessarily equal to one.
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In explaining the average of lnpd, the determinants on the DR side oc-

cupy the dominant roles. β̄ accounts for 81% cross-sectional variation in lnpd.

cov(βt, zt) explains a fraction of 22%, and α explains a fraction of 8%. On

the other hand, the determinants on the CF side make a poor contribution to

the variation in lnpd. The R2 values explained by γ̄ and c are negative. Yet

cov(γt, σ
2
g) is an exception, contributing 14% to the cross-sectional variation in

lnpd. These results are bases on the estimation from M0, but they are robust

and don’t rely on the model used for estimation.

1.3.2 CF vs DR: Which is More Important in Determin-

ing Realized Returns

Given the DR risk as the more likely risk channel being priced in the ex-

pected return, it is natural to investigate the following ideas: (1) how the ex-

pected and unexpected components together drive the realized return in time

series, and (2) whether the cross-section of average expected return can fully

justify the cross-section of average realized return.

To answer these two questions, I decompose the time-series and cross-

sectional variance in realized returns using the same method that was applied

to lnpd in Section 1.3.1.4. Recall that the realized return is the sum of expected

return and unexpected DR and CF innovations as expressed in equation (1.19).

The variation in realized return is therefore due to the state factors affecting

expected returns, as well as the DR and CF innovations.

In the time-series variance dimension, I argue that the unexpected CF plays

the largest role in driving the realized returns. Panel A of Table 1.6 shows the

fractions of time-series variance of returns attributed to the changes in expected
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state factors and unexpected DR and CF innovations under MDR, as the DR

risk is highlighted in the last section. The weights of expected DR and CF

factors are dwarfed by the unexpected DR and CF innovations. According to

the first row of panel A, the variation in z only accounts for 25.9% of the total

variance of return on average, and gM only accounts for 12.5%. In contrast,

the CF innovation explains 59.1% on average, and the DR innovation explains

10.6% of the total variance in returns. To make sure these results are not due

to only a few test portfolios, I provide a robustness check in the other rows of

panel A.
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Table 1.6: Variance Decomposition of Return

Panel A reports statistics of the percentage of variance in realized return driven by the state
variables (covariances between state variables) over test portfolios under MDR. AVG row
presents the simple average of each fraction among all test portfolios. The “Min”, “Med” and
“Max” reports the minimum, maximum and median of each fraction across all the portfolios.
The “High Ret”, “Med Ret” and “Low Ret” report the median of each fraction among the
portfolio with high, medium and low returns, respectively. Panel B reports the fractions of the
cross-sectional variance of realized return attributed to the determinants, including average
of CF and DR factors, conditional intercept of CF and DR , the covariance in CF and DR
exposure with the aggregate factors, and average of DR and CF shocks. Column 1 is for the
DR risk model MDR, Column 2 is for the general model M0 and Column 3 is for the CF risk
model MCF .

Panel A: Time-series Variance Decomposition

rf g σ2
g z σ2

z γ β IDR ICF
AVG 7.4% 12.7% 0.0% 25.7% 0.1% 0.2% 0.5% 10.6% 59.1%
Max 16.6% 41.0% 0.2% 40.3% 0.2% 1.3% 2.5% 17.1% 91.7%
Median 7.1% 11.7% 0.0% 25.8% 0.1% 0.0% 0.2% 10.3% 59.5%
Min 0.5% 3.3% 0.0% 2.5% 0.0% 0.0% 0.0% 2.3% 32.9%
High Ret 7.6% 9.8% 0.0% 23.4% 0.1% 0.3% 0.5% 9.4% 63.2%
Med Ret 9.0% 11.6% 0.0% 28.3% 0.2% 0.1% 0.2% 10.0% 59.5%
Low Ret 9.1% 18.6% 0.0% 26.4% 0.1% 0.1% 0.3% 12.6% 54.8%

Panel B: Cross-sectional Variance Decomposition

MDR M0 MCF

β̄ -7.5% -5.4% -6.6%
α -1.4% -1.9% -1.01%
cov(β, z) 22.2% 24% 19.2%
cov(β, σ2

z) 14.0% 8.6% 7.7%
γ̄ -2.5% -3.1% -2.3%
c 10.0% 13.2% 4.9%
cov(γ, g) 5.6% 6.4% 8.5%
cov(γ, σ2

g) 0.3% 0.3% 0.5%

IDR 0.2% 0.5% 0.3%
ICF 64.6% 56.2% 55.2%
Total 81.2% 80.8% 78.2%
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In the cross-sectional dimension, the results demonstrate that the cross-

section of average expected returns, which are explained by the conditional

risks, contribute to but are not sufficient to explain the cross-section of average

realized returns. When estimating the model, I pin down the cross-sectional

averages of DR and CF with the information about lnpd only. By doing so, I

relax the assumption of rational expectation for returns and growth. Therefore,

the averages of unexpected DR and CF innovations may not be zero, and a

large fraction of average return spread is due to the average of unexpected CF.

Bringing expected and unexpected components together, I can readily explain

the cross-section of average realized returns.

Before jumping to the decomposition results in detail, I first exhibit the

cross-sectional patterns of the determinants affecting the level of realized re-

turns to intuit some meanings. In Figure 1.4, I display the cross-sections of

these determinants under the DR risk model. The patterns are robust if one

chooses M0 or even MCF .

The upper left panel plots the cross-section of the conditional DR error α.

I choose four representative sorting groups as SIZE, B/M, MOM, and LIQ to

show the patterns. For all portfolios, α is very small, mostly under 0.5% annu-

ally, and the cross-sectional pattern is flat, hardly explaining any dispersions

in returns.

The upper right and the lower left panels in Figure 1.4 exhibit cov(β, zM)

and cov(β, (σMz )2). For all four sorting groups, the cross-sections of cov(β, zM)

and cov(β, (σMz )2) are in line with the patterns of cross-sectional returns. The

portfolios with higher excess returns also have higher covariance terms describ-

ing the stability of β. This relation is consistent with the conditional CAPM
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Figure 1.4: Determinants of Cross-sectional Returns under MDR
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The figure shows cross-sectional patterns of the statistics that affect the cross-sectional av-
erage realized returns. I choose four sorting groups as representatives. All the statistics are
obtained under DR risk model MDR. α is the conditional intercept as the pricing error in the
expected return. cov(β, z) and cov(β, (σz)

2) characterize the stability of time-varying β. The
unexpected cash flow is the average of the difference between realized CF and the expected
CF.
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literature, such as Jagannathan and Wang (1996). However, quantitatively, the

covariance terms are still too small to fill the gap.

Lastly, the lower right panels show the average of unexpected CF innova-

tions (ICF ), which is calculated as the difference between the level of realized

and expected dividend growth. One can see that the patterns of ICF are in

line with the realized returns for all sorting groups. For example, ICF for the

value portfolio (BM5) is higher than that for the growth portfolio (BM1) by 4

percentage points. For momentum sorted portfolios, the spread of ICF between

past winner (MOM5) and past loser (MOM1) is 8%. The quantity scale is large

enough to potentially match the spreads in the unconditional alpha (αu) shown

in the summary Table 1.1.

The decomposition results substantiate the power of unexpected CF in ex-

plaining the spreads in realized returns. Panel B of Table 1.6 reports the frac-

tions in the cross-sectional variation in realized returns explained by each de-

terminant. The first column shows results under MDR. The largest portion,

a fraction of 64.6%, of the cross-sectional variance of returns is attributed to

ICF . The covariance terms reflecting the stability of market beta determine the

cross section of ex-ante expected return, hence realized return, as motivated by

conditional CAPM: cov(β, z) accounts for 22.2%, and cov(β, σ2
z) accounts for

14% of the cross-sectional variance of returns. The component influencing the

expected CF c and cov(γ, gM) also contribute to the returns dispersion, but in

a weaker way, accounting for 10% and 5.6% of the total cross-sectional variance

of return, respectively. The levels of DR exposure β̄ and CF exposure γ̄, how-

ever, do not explain the return spreads. Taking all the factors into account,

81.2% of the cross-sectional average returns can be justified. These results are
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robust to the model I choose, and one can observe similar results in columns 2

and 3 in the table.

In summary, the realized returns reflect not only the variations in expec-

tation, but the variations outside expectation as well. These unexpected vari-

ations are primarily attributed to the CF innovations. The unexpected CF

innovations drive the realized returns’ time-series variations. Furthermore, the

overall level of the unexpected outcomes in dividend distribution is a key aspect

affecting the average of realized returns.

1.4 Conclusion

This paper presents a general present-value model that treats CF and DR

factors as time-varying and latent. Assuming the exogenous VAR(1) dynamic

for these factors, I develop closed-form formulae linking the state factors with

the observable price–dividend ratios, realized returns and dividend growths.

Estimating the model using Gibbs sampling method on portfolios capturing

the most common anomalies, I provides a comprehensive analysis on the time-

series and cross-sectional variations of stock returns.

First, the model can make a judgment of the likelihood of CF risk and DR

risk. Both the model characterized by CF risk, as in Bansal and Yaron (2004),

and the model characterized by DR risk, as in Campbell and Cochrane (1999),

can nest as a special case of the model by imposing constraints on the pricing

kernel. I argue that the DR risk dominates according to the Bayes factor test

constructed by the estimates. Moreover, under the model dominated by DR

risk, the expected return and dividend growth display predictability in the

realizations.
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Second, since the DR risk model is a version of conditional CAPM, I find

the conditional CAPM can explain well the cross section of ex-ante expected

return. The dispersions in the ex-ante expected return are due to the level and

stability of time-varying market beta.

Third, the ex-ante return is not sufficient to justify the ex-post realized

return. The difference is mainly due to unexpected CF shocks. Integrating

both expected and unexpected variations, the model can explain 80% of the

dispersions in realized excess returns cross-sectionally.

A future possible extension from this paper is to apply its reduced-form

model to evaluate liquidity effects by including time-varying and latent liquidity

factors. The liquidity effects may be a breakout in explaining asset prices,

especially those in an illiquid market.
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Chapter 2
Liability Driven Investment under

Downside Risk

2.1 Introduction

The fall in both interest rates and equity prices during the global financial

crisis over 2007-2008 took a large toll on pension funds. Despite the rebound

in asset values since 2009, funding ratios (asset values / projected benefit obli-

gations) have not yet rebounded. In 2011, the funded status of the top 100

U.S. companies with the largest defined benefit pension assets was around 80%

compared to above 100% in 2007 and was approximately 400 billion dollars

lower than at year-end 2007.1 The average funding ratios were close to 80% for

these funds over 2009-2011. These downside risks are costly both for corpora-

tions, which need to pay higher insurance premiums, hold higher reserves, and

transfer money to pension plans that could be used for other investments, and

beneficiaries, who must bear higher default risk which is often highly correlated

1See Milliman 2012 Pension Funding Study.
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with their main source of labor income.2

We present a liability-driven investment (LDI) approach to take into ac-

count downside risk. The approach is different from the surplus management

approach developed by Sharpe and Tint (1990), Ezra (1991), and Leibowitz

and Kogelman and Bader (1992) as we include a penalty term associated with

not meeting liabilities.3 Downside risk has a large effect on pension invest-

ments: optimal asset allocation is affected both by a current shortfall, when

the value of the pension assets falls below the liabilities today, but also by the

risk of a potential shortfall in the future. We show that the shortfall penalty

can be valued as an option to exchange the optimal portfolio for the random

value of the liabilities. The optimal portfolio, however, must be solved simul-

taneously with the value of the option. When the liabilities exceed the assets,

the option is in the money. A cost factor parameter which multiplies the value

of the exchange option in the manager’s utility function can be interpreted as

a downside risk aversion parameter. As the cost factor decreases to zero, the

standard mean-variance framework holds.

The downside risk we address here is the failure of meeting liability. This

is different from just taking into account liabilities in standard Sharpe-Tint

surplus management. There are significant penalties in failing to meet liabilities

in the real world. The 2006 Pension Protection Act requires that plan funding

should equal 100% of the plan’s liabilities. Sponsors of severely underfunded

plans are required to fund their plans according to special rules that result in

2See, for example, Rauh (2006) for evidence that higher than expected contributions to
pension plans reduces firm investment and Poterba (2003) on the excessive concentration of
employer stock in pension plans.

3 Some notable contributions in the area of optimal asset allocation of pension funds are
Sundaresan and Zapatero (1997), Rudolf and Ziemba (2004), and van Binsbergen and Brandt
(2009).
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higher employer contributions to the plan. In addition, FAS 158, implemented

in 2006, requires plan sponsors to “flow through” pension fund deficits into their

financial statements. These have real impacts on earnings and stockholders’

equity. A case study is AT&T whose funding status changed from $17 billion

surplus in 2007 to a nearly $4 billion dollar deficit in 2008. This played a role

in the decline of AT&T’s equity from 2007 to 2008.

Taking into account downside risk leads to endogenous risk aversion. The

funding ratio affects the likelihood of the assets being sufficient to cover the

liabilities in the future, which affects the option value. There are pronounced

non-linear effects of the funding ratio on risk taking. The fund manager’s risk

aversion peaks when the plan is close to fully funded. As the funding ratio

deviates from the fully funded position, risk aversion decreases. An under-

funded plan investment manager displays much lower risk aversion than the

manager of a fully funded plan leading to a “swing for the fences” effect. If the

fund is poorly funded, then only by taking on risk can the manager hope to

avoid the shortfall. Managers of over-funded plans also act in a less risk averse

manner because they can afford to take on more risk as the probability of the

option being exercise falls as the funding ratio increases.

Our framework of LDI with downside risk is related to a portfolio choice

literature that specifies drawdown constraints, such as Grossman and Zhou

(1993) and Chekhlov, Uryasev and Zabarankin (2005). Constraints that cap-

ture shortfall risk have also been employed in surplus optimization problems

by Leibowitz and Henriksson (1989), Jaeger and Zimmermann (1996), Amenc

et al. (2010), and Berkelaar and Kouwenberg (2010). These approaches do not

directly take into account the downside risk in the utility function of the man-
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ager, but instead specify a constraint that the surplus or the portfolio needs to

satisfy. This constraint is usually that the surplus or portfolio return must be

above a certain threshold with some probability. As an extension of the Sharpe

and Tint (1990) to a dynamic setting, Detemple and Rindisbacher (2008) allow

for a fund sponsor to exhibit aversion over a shortfall when a plan terminates.

Their shortfall has a utility cost, whereas ours has an actual real-world value

through an option calculation. Our shortfall cost is determined simultaneously

with the optimal portfolio.

In addition, our research belongs to the literature studying the pension ben-

efit guarantees as contingent claims. Bodie (1990) identifies the shortfall payoff

be a put option payoff. Rudolf and Zimmerman (2001) evaluate this shortfall

risk as a function of the underlying maturity mismatch. Steenkamp (1998)

examines the liability of pensions based on this assumption of shortfall risk

being valued as put option. Our work integrates this idea into the portfolio

management with shortfall risk, and obtaining endogenous optimal strategies.

2.2 Model

LDI models treat fund liabilities as a state variable and specify an objective

function of assets relative to liabilities. The investor takes into account the cor-

relation between the liabilities and assets in determining the optimal portfolio

allocation. We start by reviewing the simple LDI model of Sharpe and Tint

(1990). Then we present our model with downside risk and show how to value

the shortfall risk as an option.
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2.2.1 Sharpe and Tint (1990)

Sharpe and Tint (1990) define surplus, St to be St = At − Lt, where At

represents the plan’s market value of assets and Lt is the value of the liabilities.

Normalizing by the assets at the beginning of the period, we can define the

surplus return over assets, z, as

z =
S1

A0

=
A1 − L1

A0

=

(
1− L0

A0

)
+

(
rA −

L0

A0

rL

)
, (2.1)

where rA = A1/A0 − 1 is the return on assets, rL = L1/L0 − 1 is the return on

the liabilities, and L0/A0 is the inverse of the funding ratio.

The objective function is mean-variance over the surplus return:

max
w

E(z)− λ

2
var(z), (2.2)

where w is the portfolio of risky assets and λ is (standard) risk aversion in the

mean-variance context. Sharpe and Tint show that this problem is equivalent

to

max
w

E(rA)− λ

2
var(rA) + λ cov(rA, rL), (2.3)

which emphasizes that the correlation of the liabilities with the asset returns

influences the optimal portfolio holdings.

If the assets are uncorrelated with the liabilities, cov(rA, rL) = 0, then

the surplus problem in equation (2.3) is the standard mean-variance portfolio

weight. Sharpe-Tint LDI does take into account downside covariance of assets

and liabilities but it does this symmetrically with upside covariance through the

cov(rA, rL) term. In our formulation, we will explicitly penalize only shortfall
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loss.

2.2.2 Liability Driven Investment with Downside Risk

We now introduce a LDI framework to include a penalty if the manager fails

to meet the liability of the fund.

Asset Returns

We assume that the portfolio managers can only allocate wealth between two

assets, risky equities (E) and risk-free bonds or cash (B). We analyze the case

of risky bonds in the appendix and also investigate asset allocation over risky

equities and bonds in our empirical calibration. We denote the liabilities by L.

We assume that equities are log normally distributed and and denote the

risk-free rate as rf :

B1 = B0 exp(rf )

E1 = E0 exp

(
(µ− σ2

E

2
) + σEε

E
1

)
, (2.4)

where εE1 ∼ N(0, 1). We also assume that liabilities are log normally dis-

tributed:

L1 = L0 exp

(
(µL −

σ2
L

2
) + σLε

L
1

)
, (2.5)

where εL1 ∼ N(0, 1). The correlation between the equity and liability shock is

ρ.

Liability Shortfall

Following Sharpe and Tint (1990), we work in a one period setting and assume
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the asset weights are set at the beginning of the period, which we interpret as

one year. The value of the assets at time 0 is denoted as A0. The asset payoff

at time 1 is a function of the equity weight, w:

A1 = wA0 exp

(
(µ− σ2

E

2
) + σEε

E
1

)
+ (1− w)A0 exp(rf ). (2.6)

Note that w is chosen at time 0.

The value of the shortfall is a put option on the terminal value of the assets

at a strike price of L1, which is unknown at time 0. The payoff of this option is

max(L1 − A1, 0),

where L1 and A1 are given in equations (2.5) and (2.6), respectively. We denote

the value of this option as P (w,L0, A0). The notation emphasizes that the

downside risk depends on the original funding level given by L0 and A0 and it

also depends on the asset allocation policy, w, chosen by the fund manager.

Downside Liability Risk

We specify the objective function of the fund as mean-variance over asset re-
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turns plus a downside risk penalty on the liability shortfall:4

max
w

E(rA)− λ

2
var(rA)− c

A0

P (w,L0, A0), (2.7)

where c is a penalty cost associated with the downside risk. The parameter

c can be interpreted as a downside risk aversion parameter in the context of

shortfall loss. We scale the funding cost by assets to keep everything on a

per dollar return metric. As the shortfall risk increases on the downside, the

investor’s utility is decreased. It is important to note that the option price,

P , is the value of the shortfall risk at time 0; it is the value the fund manager

would pay today to insure against the shortfall risk tomorrow.

The standard Sharpe-Tint (1990) LDI framework recognizes the fact that

the correlation of assets with liabilities plays a role in driving optimal asset

allocation. Our objective function (2.7) for LDI with downside risk replaces the

Sharpe-Tint λ cov(rA, rL) term with a shortfall penalty term, cP/A0. The value

of the option is endogenous as the fund manager can reduce the value of this

option by increasing the correlation of the optimal portfolio with the pension

liabilities. Thus, the value of the insurance must be computed simultaneously

with the optimal portfolio choice.

It is possible to extend equation (2.7) to include an additional term λ cov(rA, rL).

This would then nest the traditional Sharpe-Tint (1990) surplus optimization

4This defines the downside risk limit as a funding ratio of 100%. The 2006 Pension
Protection Act (PPA) aims at a minimum funding ratio of 100% and in cases of underfunding
requires shortfalls be amortized and increases in contributions over certain horizons. Other
countries, however, have other minimum levels of funding such as the Netherlands where the
minimum funding level is 105%. Plan sponsors may consider other terminal funding levels for
defining the strike of the option. It is also possible to extend the methodology to introduce
a second option with an additional penalty at another strike. For example, under the PPA a
fund is deemed “at-risk” and subject to onerous restrictions and steep contribution increases
if the funding ratio falls below 80%.
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(see equation (2.3)). We do not take this route because by including the

cov(rA, rL) term, we “double count” the effect of downside risk in both the co-

variance and the put option term. We purposely highlight the shortfall penalty

in equation (2.7) to distinguish it from traditional Sharpe-Tint analysis in our

calibrations below.

In their appendix, Amenc et al. (2010) in their appendix consider the related

problem

max
w

E

[
A1

L1

]
such that At ≥ kLt for all t,

which is similar to equation (2.7) in that the portfolio problem also involves an

option. A major difference is that in our formulation the option valuation en-

dogenously depends on the optimal portfolio strategy, and the optimal strategy

simultaneously depends on the cost of the shortfall risk. In Amenc et al., the

option value is stated exogenously.

2.2.3 Valuing the Shortfall Risk

The value of the shortfall risk is a put option. The shortfall process, however,

does not follow a log-normal process and so we cannot use standard methods

to value it. We can interpret the shortfall option as a spread option due to

the stochastic evolution of both pension assets and pension liabilities. While

the literature on spread options has not found a closed-form solution for val-

uation, there are very accurate approximations. The appendix shows how we

can value the spread option following Alexander and Venkatramanan (2011) by

representing the spread option as two compound exchange options.

The important economic concept is that the option value endogenously de-

pends on the portfolio chosen by the pension plan. As the correlation between
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portfolio and the liabilities increases, the likelihood that there will be a short-

fall decreases and the value of the option decreases. As the volatility increases,

the option value increases. This property implies that when the penalty costs

associated with downside risk increase, the optimal portfolio becomes more de-

fensive. The correlation of the liabilities with the asset returns influences the

portfolio weights, just as in a standard LDI problem, but the comovement of

liabilities with assets also directly affects the risk of not meeting the liability

schedules. As the penalty costs of downside risk increase (c increases), these

effects dominate the standard Sharpe-Tint (1990) LDI effects.

2.2.4 Optimal Portfolios

Taking first order conditions of (2.7), we can solve for the optimal portfolio

weight as

w∗ =
1

λ
σ−2
E

[
(µ− rf )−

c

A0

Pw

]
, (2.8)

where Pw = ∂P (w,L0, A0)/∂w. Note that the option value depends explicitly

on the portfolio weight chosen by the pension fund manager. Thus, equation

(2.8) implicitly defines both the optimal portfolio weight and the cost of the

shortfall insurance.

Clearly if there is no downside penalty (c = 0), then the standard mean-

variance efficient portfolio weight arises as a special case. If c → ∞, the man-

ager cares only about hedging the liability and does not care about mean-

variance performance. As a result, we can define the liability hedging portfolio

as

wLH = arg max
w
− 1

A0

P (w,L0, A0). (2.9)
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Let us assume the time interval is small so that a log normal approximation

holds. Then a Margrabe (1978) exchange option formula can be used to value

the shortfall put option. This provides some intuition. In this case, the value

of the exchange put option can be approximated by

P (w,L0, A0) = L0N(d1(w))− A0N(d2(w)), (2.10)

where N(·) represents the normal cumulative density function, the parameters

d1 and d2 are given by

d1(w) =
ln(L0/A0) + Ω2(w)/2

Ω(w)

d2(w) =
ln(L0/A0)− Ω2(w)/2

Ω(w)
,

where

Ω(w) =
√
w2σ2

E − 2wρσEσL + σ2
L

is the volatility of the portfolio relative to the liability.

Using the Margrabe (1978) approximation of the shortfall option in equation

(2.10), we can write the optimal portfolio weight in equation (2.8) as a weighted

average of the mean-variance efficient portfolio and the liability-hedging port-

folio:

w∗ =
λ

λ+ cPΩ

A0Ω

wMV +
cPΩ

A0Ω

λ+ cPΩ

A0Ω

wLH , (2.11)

where

PΩ = A0n(d2)

is the vega of the exchange option and n(·) is the normal probability density
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function. Note that from the chain rule, Pw = PΩ
∂Ω
∂w

.

Equation (2.11) illustrates the trade-off in the optimal portfolio weight be-

tween the mean-variance performance seeking target and the liability hedge.

When the downside risk penalty is very large (c is large), the liability hedging

demand dominates in the optimal portfolio and the pension plan moves towards

the liability hedging portfolio. When the shortfall penalty is close to zero, the

optimal portfolio is just the mean-variance portfolio.

The weight placed on the liability-hedging portfolio is

θ =
cPΩ

A0Ω
.

The funding ratio, A0/L0, enters the vega of the exchange option through d2

and therefore has a large influence on the liability hedging demand. It is easy

to show that the weight on the liability-hedging portfolio increases with the

downside risk penalty, c:

∂θ

∂c
=
n(d2)

Ω
> 0

. We can also show that

∂θ

∂(A0/L0)
=

cn(d2)

A0/L0Ω4

and setting ∂θ/∂(A0/L0) = 0, we obtain a maximum value when (A0/L0)∗ =

exp(−Ω2/2). On either side of the maximum, θ declines with the funding ratio.
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2.2.5 Endogenous Risk Aversion

In the mean-variance efficient portfolio, the risk aversion is λ. When the

LDI objective function embodies downside risk (c > 0), there is an effective

overall increase in risk aversion, which is seen in the denominator in the term

1/(λ + cPΩ

A0Ω
) in equation (2.11). With downside risk in equation (2.8), the risk

aversion has increased by θ = (cPΩ)/(A0Ω). Effective risk aversion increases

as the downside penalty, c, increases and there is a nonlinear relation between

the funding ratio, A0/L0, and risk aversion.

Suppose the funding ratio is very high so that the option value is close to

zero. Mathematically this makes n(d2) ≈ 0 in equation (2.11). The plan’s

assets are very far from liabilities, and so the pension fund manager effectively

ignores the liabilities in setting the asset allocation policy – which is the mean-

variance efficient portfolio, w∗ = wMV . Thus, for very high funding ratios,

there will be little effect of downside risk even if the penalty c is large. On the

other hand, when the funding ratio is around one, and the option value is most

sensitive to the volatility, the investor wishes to avoid the shortfall risk. This

pushes the investor to place a larger weight on the liability-hedging portfolio

when the funding ratio is close to unity.

Interestingly, when the funding ratio is far below one, the liability hedging

portfolio also becomes less important. In these regions, the option value is

not sensitive to the volatility because it is deep in the money. This causes the

optimal portfolio weight to move towards the mean-variance efficient portfolio.

Intuitively, as the funding ratio decreases, the pension fund manager has an

incentive to “swing for the fences” to avoid the shortfall.
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2.3 Empirical Application

Our calibrations are intended to convey intuition; they are deliberately sim-

ple. We start with a cash and equity case because all the intuition can be

conveyed in this benchmark case. We then consider a two-asset case of equities

and bonds without a risk-free asset to show that the intuition carries over to

the setting where there are portfolio constraints. This is also a more realistic

case. We leave to further research the more complex portfolios held in industry

which include alternative asset classes.

We present results for a range of shortfall costs represented by the parameter

c. Just as the Sharpe-Tint (1990) setting does not micro-found the risk aversion

in the objective function (the parameter λ), we do not discuss how the downside

risk parameter, c, should be selected. How each fund selects its own set of

parameters (c, λ) is beyond the scope of this article. The costs of downside

risk, however, are real. Rauh (2006), for example, shows that higher than

expected contributions to pension plans reduce firm investment in profitable

business opportunities. These developments have dramatically increased the

downside costs for sponsors of corporate pension plans.

2.3.1 Parameters

We take the S&P 500 total return index to represent equity, and the Ib-

botson U.S. long-term corporate bond total return index to represent the bond

fund. We sample these at a monthly frequency from January 1952 to Decem-

ber 2011. Over this sample, the mean bond and equity returns are 6.9% and

11.0%, respectively, with volatilities of 8.6% and 14.7%, respectively. We set

the risk-free rate to be 4%. Following Leibowitz, Kogelman and Bader (1992)
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Table 2.1: Data Summary Statistics

Correlations

Mean Volatility Bond Equity Liability

Bond 6.92% 8.60% 1.00
Equity 11.04% 14.69% 0.25 1.00
Liability 6.92% 10.00% 0.98 0.35 1.00

Risk-Free 4.00%

The table reports annualized expected returns, volatilities, and correlations of bonds and
equities, which are total returns of the Ibbotson U.S. Long-Term Corporate Debt Index and
the S&P 500 Index between January 1952 and December 2011. These are monthly frequency
series and we annualize the means and volatilities by multiplying the monthly frequency mean
and volatility by 12 and

√
12, respectively. Parameters for the liability and the risk-free rate

are set by assumption and follow closely those set by Leibowitz, Kogelman and Bader (1992)
and Jaeger and Zimmermann (1996).

and Jaeger and Zimmermann (1996), we assume that the liability has the same

expected return as the bond fund and set the volatility of the liability to be

slightly higher than the volatility of the bond fund at 10%. We also follow

Leibowitz, Kogelman and Bader and set the correlation of the liabilities with

bonds and equities to be 0.98 and 0.35, respectively.5 We report these summary

statistics, which we use in our calibrations, in Table 2.1. In all our calibrations

we assume a horizon of one year.

2.3.2 Cash and Equities

We first assume that the pension plan allocates between a risk-free asset

and equities.

5 Leibowitz, Kogelman and Bader (1992) assume the correlation between the pension
liability and bonds to be 1.00, but we set it at 0.98 as liabilities of pension funds are generally
not tradeable and cannot be hedged perfectly. They also incorporate longevity and other risks
as well as credit spread risk.
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We set the risk aversion coefficient, λ, by taking the value of risk aversion

such that the mean-variance efficient portfolio consists of a 60% equities/40%

risk-free bond portfolio. This turns out to be λ = 5.88.

2.3.2.1 Comparison with Mean-Variance and Sharpe-Tint LDI

Table 2.2 reports the optimal portfolio weights held in equities in the mean-

variance efficient portfolio, the Sharpe-Tint (1990) LDI portfolio, and our LDI

portfolio that takes into account the downside shortfall risk. We assume a fully

funded portfolio, A0/L0 = 1. By assumption of the value of λ, we start with

a mean-variance efficient portfolio of 60% equities. The Sharpe-Tint portfolio

places more weight on equities, at 84%, than the mean-variance portfolio be-

cause the liability is positively correlated with equities. Thus, equities serve

to hedge the liabilities and the optimal Sharpe-Tint portfolio tilts towards the

liability hedge portfolio. We report the effective risk aversion, which is the risk

aversion required under mean-variance utility to produce the same portfolio as

the optimal holding. An equity holding of 84% is produced by a risk aversion

level of 4.21 in a mean-variance setting.

In the last column of Table 2.2, we report the optimal portfolio of the LDI

with downside risk. We assume that c = 1. The LDI with downside risk port-

folio undoes the higher equity position in the traditional Sharpe-Tint position.

Taking into account the liability shortfall pushes the manager toward a lower

holding in equities. The LDI position holds an equity proportion of 48%, which

is lower than the mean-variance efficient portfolio. This is exactly the oppo-

site of the Sharpe-Tint advice! The LDI with the downside penalty recognizes

that although equities are positively correlated with the liabilities, there can
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Table 2.2: Optimal Portfolio Choice Over Equities and Risk-Free Cash

MV Efficient Sharpe-Tint LDI LDI with Downside Risk

Equity Portfolio Weight 0.60 0.84 0.48
Effective Risk Aversion 5.88 4.21 7.30

The table reports the portfolio weights for the mean-variance (MV) efficient, Sharpe-Tint
(1990) LDI and the LDI with downside risk optimizations for a risk-free asset (cash) and
equities. The “portfolio weight” row lists the proportion of the portfolio held in equities. We
compute these using the expected returns, volatilities, and correlations given in Table 2.1. We
use the parameters λ = 5.88, c = 1, and A0/L0 = 1 with a one-year horizon. The “effective
risk aversion” is the risk aversion required in the mean-variance efficient portfolio weight to
give the same weight in equities as the optimal portfolio weight.

be instances of substantial underperformance when investing in equities. This

is costly, and reflected in the value of the put option. Thus, the downside risk

averse manager cuts back on equities.

In Figure 2.1, we show further the effect of the downside penalty, c, on

the optimal portfolio weight in equities. The portfolio corresponding to c = 0

on the y-axis is the mean-variance efficient weight of 60% in Table 2.2. As

c increases, the downside LDI strategy allocates less weight on equities. The

dash dotted line draws the Sharpe-Tint LDI optimal weight on equity of 84%.

As c increases, the optimal weight asymptotes to the liability-hedging portfolio,

which holds 24% in equity (see equation (2.9)).

2.3.2.2 Funding Ratios and Endogenous Risk Aversion

In Figure 2.2, we compare the traditional Sharpe-Tint LDI with our LDI

with downside risk. The top panel plots the optimal equity weight as a function

of the initial funding ratio, A0/L0. We show four cases: the horizontal dotted

line represents the case of no downside penalty, which is the regular mean-
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Figure 2.1: Downside Risk Penalty: Stocks and Cash
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The figure plots the optimal weight in equities as a function of the penalty cost, c, on downside
shortfall risk for the LDI problem with downside risk with only a risk-free asset and equities. We
use the expected returns, volatilities, and correlations given in Table 2.1 and the parameters λ = 5.88
and A0/L0 = 1 with a one-year horizon.
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variance portfolio (60%); the dashed-dotted line shows the Sharpe-Tint LDI

portfolio; the solid line plots the downside risk LDI with c = 1, and the dashed

line plots the downside risk LDI with c = 2. The Sharpe-Tint portfolio holds

more equities as the funding ratio decreases because the funding ratio decreases,

the hedging demand increases. As equities are correlated with the liabilities,

the fund holds more equities to hedge the liabilities as the funding drops. But

this effect is a linear effect due to the liabilities entering surplus one-for-one.

The downside risk induced by the put option (c > 0) is highly nonlinear and

totally different from the Sharpe-Tint advice.

When downside risk is taken into account, the weight on equities reaches

a minimum close to the fully funded case. At this point, the downside risk-

averse manager places much less weight on the equities. In the case of c = 1,

the equity weight reaches its minimum at 45% when the funding ratio is 1.03.

The intuition is that at full funding, the fund value could easily just cover, or

just be below, the liabilities at the end of the period. The manager dislikes

this sensitivity and hedges by moving the portfolio towards lower holdings on

equity.

As the initial funding ratio increases, it is less likely there will be a liability

shortfall and the option value falls. For highly over-funded plans, the value

of the option is negligible and the asset allocation problem is equivalent to

mean-variance optimization.

When the plan is very underfunded, the shortfall option is deep in the

money. As a result, the objective function starts to put less weight on the

shortfall risk because there is less ability of the manager to alter the portfolio

choice to meet the liabilities. In extreme cases of chronic underfunding, the
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Figure 2.2: Funding Ratios
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We consider a LDI problem with downside risk with only a risk-free asset and equities. Both
plots are functions of the initial funding ratio, A0/L0. In the top panel, we plot the optimal
weight in equities. The effective risk aversion in the bottom panel is the risk aversion required
in the mean-variance efficient portfolio weight to give the same weight in equities as the
optimal portfolio weight. We plot the portfolio in the bottom panel. We use the expected
returns, volatilities, and correlations listed in Table 2.1 and the parameters λ = 5.88, c = 1,
and c = 2 with a one-year horizon.
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liabilities cannot be met in most states of the world and then the liabilities

become irrelevant to the portfolio choice problem. In the limit as the funding

ratio goes to zero, the fund just moves towards the mean-variance efficient

portfolio to maximize performance.

Thus, there is an overall U-shaped equity weight as a function of the funding

ratio, with a minimum weight on equities at a funding ratio close to one.

The bottom panel of Figure 2.2 plots the effective risk aversion, which is

the risk aversion required in a standard mean-variance optimization over as-

set returns to yield the same portfolio weight in equities. By construction,

as the equity weight decreases, effective risk aversion increases. The pension

fund manager is most risk averse at the fully funded case where the option

value reaches a maximum. For c = 1, the maximum of effective risk aversion

is achieved when the funding ratio is 1.03. The corresponding effective risk

aversion is 7.83. The manager is highly sensitive to the shortfall risk at this

point and tilts the optimal portfolio resolutely towards holding more risk-free

assets to minimize the cost of the shortfall.

In summary, both highly under-funded and over-funded plans are less risk

averse than fully funded plans under LDI with downside risk and hold more

equities. In particular, the manager “swings for the fences” as funding ratios

decrease. There is some empirical evidence for this behavior, as Addoum, van

Binsbergen and Brandt (2010) and Pennachi and Rastad (2011) find. Addoum,

van Binsbergen and Brandt (2010) show that pension plans approaching a fund-

ing ratio of 80%, which subject plan sponsors to severe mandatory additional

contributions, increase the risk of their portfolios. They also find similar, but

weaker, results at a threshold of 100% where there are milder forms of re-
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quired contributions. Pennachi and Rastad (2011) find that public pensions

funds choose riskier portfolios following periods of relatively poor investment

performance after their funding ratios have declined.

2.3.2.3 Funding Ratios and Option Values

Figure 2.3 characterizes the shortfall option value as a function of the fund-

ing ratio. We take c = 1 for both plots. The top panel plots the option value.

Not surprisingly, the option value decreases as the funding ratio increases as

the higher the funding level, the lower the probability of a shortfall at the end

of the period. In the bottom panel, we graph the shortfall option’s sensitivity

to the optimal weight on the equity, Pw, as a function of the funding ratio. The

sensitivity is concave in A0/L0, and reaches a maximum when A0/L0 = 1.04.

The option’s sensitivity is highest when the pension plan is close to fully funded

because the probability of the shortfall risk is highest at this point.

2.3.3 Equities and Bonds

Our second example is allocation over equities and bonds without a risk-free

asset. In this case, we set the risk aversion coefficient, λ, by choosing its value

so that it corresponds to a 60% equity/40% risky bond mean-variance efficient

portfolio. This value is λ = 4.37.

Table 2.3 reports the optimal portfolios for the equities and bond allocation

case. All three optimal portfolios are computed under the fully funded condi-

tion, A0/L0 = 1. The first column lists the mean-variance efficient portfolio of

60% in equities, and its effective risk aversion of λ = 4.37 by construction. The

Sharpe-Tint (1990) LDI portfolio holds 45% equities, which corresponds to an
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Figure 2.3: Shortfall Penalty Option Value and Option’s Sensitivity to Opti-
mal Portfolio Weight
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We consider an LDI problem with downside risk with only a risk-free asset and equities. Both
plots are functions of the initial funding ratio, A0/L0. In the top panel, we plot the option
value, P (w,A0, L0). We plot ∂P (w,A0, L0)/∂w in the bottom panel. We use the expected
returns, volatilities, and correlations listed in Table 2.1 and the parameters λ = 5.88 and
c = 1 with a one-year horizon.
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Table 2.3: Optimal Portfolio Choice Over Stocks and Bonds

MV Efficient Sharpe-Tint LDI LDI with Downside Risk

Equity Portfolio Weight 0.60 0.45 0.18
Effective Risk Aversion 4.37 6.73 –

The table reports the portfolio weights for mean-variance (MV) efficient, Sharpe-Tint (1990)
LDI and the LDI with downside risk optimizations, respectively, for bonds and equities. The
“portfolio weight” row lists the proportion of the portfolio held in equities. We compute
these using the expected returns, volatilities, and correlations given in Table 2.1. We use
the parameters λ = 4.37, c = 1, and A0/L0 = 1 with a one-year horizon. The “Effective
risk aversion” is the risk aversion required in the mean-variance efficient portfolio weight to
give the same weight in equities as the optimal portfolio weight. The LDI with downside
risk portfolio does not have a corresponding effective mean-variance risk aversion coefficient
because the mean-variance efficient portfolios are bounded below by 23%, which corresponds
to a risk aversion of infinity.

effective mean-variance efficient risk aversion of 6.73. There is a decrease in

the equity weight here compared to an increase in equities when only equities

and cash were held (see Table 2.2) because now both equities and bonds are

correlated with the liability, and the bond is a much better liability-hedging

instrument than equities (bonds have a correlation of 0.98 with the liabilities).

The last column in Table 2.3 reports the optimal portfolio under LDI with

downside risk, which has a weight of just 18% in equities. This does not have

a corresponding effective mean-variance risk aversion coefficient. The mean-

variance efficient portfolios are bounded below by 23%, which corresponds to

a risk aversion of infinity. Taking into account downside risk tilts the optimal

portfolio markedly towards bonds, rather than equities.

We plot the optimal equity portfolio weight in the top panel of Figure 2.4

as a function of the downside risk parameter, c. The Sharpe-Tint portfolio cor-

responds to the 45% horizontal dashed-dotted line. Like the equities-cash case

in Figure 2.1, the optimal downside LDI portfolio weight decreases with c and
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asymptotes to the downside risk liability hedging portfolio of 4% equity/96%

bond, as the weight on the shortfall risk increases. As the Sharpe-Tint portfo-

lio holds less equity than the mean-variance efficient portfolio, when c is small

(c ≤ 0.25), the downside risk LDI put more weight on wealth on equities than

the Sharpe-Tint portfolio. When meeting the liabilities is not so important (c

is small), the downside risk LDI objective function seeks mean-variance perfor-

mance. Even for modest c, there are marked reductions in the equity holdings.

In the bottom panel of Figure 2.4, we investigate the relation between the

optimal portfolio weight and the initial funding ratio. The Sharpe-Tint LDI

portfolio in the equity-bond case is upward sloping, and lies below the mean-

variance portfolio. This is different from the equity-cash case because of the

high correlation of the liability with bonds. The downside risk LDI portfolio

weight is highly nonlinear and the manager holds the largest amount of equities

at very low and high funding ratios.

The manager is most risk averse around the fully funded case and holds the

minimum amount of equities at this level. The minimum equity holdings are

18% for c = 1 and 11% for c = 2 and are both reached at A0/L0 = 1.0. As the

funding ratio decreases, the manager “swings for the fences” and holds more

equity because the manager’s best option is to hold the mean-variance portfolio.

When funding ratio is large, the manager can afford to take on risk because

the option value is small. Only when the funding ratio is around one does the

downside risk LDI optimally recommend a position heavily tilted towards risky

bonds to hedge the liability.
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Figure 2.4: Stocks and Bonds
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We consider an LDI problem with downside risk, investing in equities and risky bonds. The
top panel plots the optimal weight in equities as a function of the penalty cost, c, while fixing
the parameter of funding ratio A0/L0 = 1. The bottom panel plots the optimal equity weight
as a function of funding ratio A0/L0, the mean-variance efficient portfolio, the Sharpe-Tint
(1990) LDI, and the LDI with downside risk. . We use the expected returns, volatilities, and
correlations listed in Table 2.2 and the parameters c = 1, c = 2, and λ = 4.37 with a one-year
horizon.
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2.4 Conclusion

We extend the liability driven investment (LDI) framework to incorporate

downside risk. We include a penalty term for the liability shortfall. This can

reflect penalties on a plan sponsor, which could be imposed by a regulatory

agency, or represent the opportunity cost of capital of a firm required to be

diverted to the pension plan if the assets are not sufficient to meet the liabilities.

It can also reflect the additional, asymmetric, risk borne by plan participants

in shortfall situations.

We show the shortfall between assets and liabilities can be valued as an

option. The option pays the difference between liability and asset value at

maturity, if the liabilities are greater than the assets, and zero otherwise. The

value of the option is determined simultaneously with the optimal portfolio,

since an optimally chosen portfolio affects the probability of a liability shortfall

in the future. The exposure to shortfall risk is controlled by a downside risk pa-

rameter. Optimal portfolio allocation with downside risk is very different from

traditional Sharpe-Tint (1990) surplus optimization, which produces portfolio

weights that are monotonic in funding ratios.

Under LDI with downside risk, the optimal portfolio exhibits endogenous

risk aversion. Risk aversion peaks when the plan is approximately fully funded.

At this point the optimal portfolio holds the lowest proportion in equities. The

manager wishes to minimize the sensitivity of the portfolio to a shortfall event

and the optimal portfolio is heavily tilted to the liability hedging portfolio,

which has a low proportion of equities. As the funding ratio moves away from

one in both directions, endogenous risk aversion decreases and the manager

takes on more risk. Under-funded plans “swing for the fences” on the chance
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that the portfolio return may be sufficiently high to avoid a shortfall. When the

plan is drastically under-funded, the shortfall option is way in the money and

the manager has little ability to avoid the shortfall. In this case, the manager’s

best option is to hold the traditional mean-variance portfolio. For over-funded

plans, the probability of a shortfall event is small and this allows the pension

plan seek mean-variance performance and take on more risk.

We illustrate the LDI with downside risk framework with allocations only

over equities and cash, and an equities and bond case. More practical appli-

cation would require extension to many more asset classes. The same asym-

metries for shortfall risk arise in many other asset management contexts like

central bank reserves, sovereign wealth funds, and stabilization funds. These

funds also bear downside risk. We also deliberately restrict our analysis to a

simple two-date setting in order to compare the implications of our downside

risk analysis with two well-known benchmarks in the pension fund industry

that do not take into account downside risk: the mean-variance efficient port-

folio and the Sharpe-Tint (1990) portfolio. Much of the economic intuition that

we develop in this simplified static setting will carry over to an intertemporal

setting, albeit with considerably more notational complexity. Developing our

ideas into an intertemporal setting like Rudolf and Ziemba (2004) is a fruitful

direction for future research.
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Chapter 3
Estimating Private Equity Returns from

Limited Partner Cash Flows

3.1 Introduction

Private equity is a major institutional asset class and represents a significant

fraction of investments by colleges, foundations, pension funds and sovereign

wealth funds, among others. 1A major drawback of private equity is the lack

of transactions-based performance measures. This greatly hampers the use of

optimal portfolio allocation, which requires information about the risk, return,

and covariance of asset classes. In liquid markets, these estimates are typically

derived from statistical analysis of time-series returns. Most private equity time

1In 2011, institutional investors had over $2 trillion worth of investments in pri-
vate equity funds worldwide, up from less than $0.4 trillion just ten years earlier.
These funds are structured as private partnerships, invest in non-traded assets, and
specialize in buyout, venture capital, real estate, etc. In these partnerships, in-
vestors commit capital ex ante and fund managers call this capital at their own dis-
cretion. The total amount of capital committed but uncalled in private equity funds
stands at $1 trillion. This makes it, in a sense, a $3 trillion asset class. Source:
https://www.preqin.com/docs/quarterly/PE/Private Equity Quarterly Q3 2012.pdf
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series are based on updated non-market estimates or on multi-year internal

rates of return broken down by fund vintage years. We develop a methodology

to estimate a time series of private equity returns based on cash flows accru-

ing to limited partners. We analyze the dynamics of private equity over 1993

to 2011, as well as investigate private equity returns for different subclasses:

venture capital, buyout, real estate, and debt funds. We decompose returns

into a component due to exposure to traded factors and a time-varying pri-

vate equity premium. The latter can be interpreted as the unique value-added

by private equity which cannot be replicated by passive, liquid instruments.

Given assumptions on the traded factors, the private equity premium can be

interpreted as the time-varying private equity alpha.

Our methodology identifies private equity discount rates by using a net

present value (NPV) framework. Under the null that the discount rates are

correct and appropriate for the risk of the investment, the present value of the

capital calls paid into the fund must equal the present value of the distributions

from the fund. The NPV equation involving all limited partner (LP) cash flows

should thus be zero in expected value both across time and across funds (cf.

Driessen, Lin, and Phalippou (2012)). Using a Bayesian Markov Chain Monte

Carlo (MCMC) procedure, we filter the time-varying private equity discount

rates using the fund-level NPV equations as observation equations. As long as

we have at least one fund in existence at a given time we can identify the pri-

vate equity discount rate prevailing at that time, given additional assumptions

about the data-generating process of the private equity returns. Intuitively,

as the discount rate changes, the NPVs of those funds whose cash flows are

affected by those discount rates also change. The estimation procedure can be
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interpreted as finding the set of discount rates which produce the smallest errors

(statistically defined with respect to a distribution of those errors) in the NPV

equations, given the dynamics of the discount rates. Through the appropriate

use of priors, the procedure is robust to sparse data and can handle unbalanced

panels of contributions and distributions. We find that the estimated time se-

ries of private equity returns are more volatile than standard industry indexes.

For example, the volatility of our cash flow-based return time series for buy-

out funds is 25% per annum compared to 11% for the Cambridge Associates

buyout index. Similarly, the NCREIF real estate index has a volatility of only

5%, while our estimated volatility of private real estate funds is 19%, which is

close to the volatility of publicly traded REITS. There is a smaller difference in

volatilities for venture capital, at 35% for our sample and 27% for the Venture

Capital index produced by Cambridge Associates; but the volatility of the lat-

ter is largely due to a sharp spike in 1999. In addition, we find that our private

equity return time series exhibit less serial dependence than industry indexes,

even after allowing for a persistent component specific to private equity. This

suggests that private equity return time series currently in use may be subject

to smoothing biases due to the appraisal process or delayed and partial ad-

justment to market prices. The second major contribution of this paper is to

introduce and apply a methodology for decomposing the time series of private

equity returns into systematic and idiosyncratic components. The systematic

component involves factor loadings on standard equity benchmarks including

large-cap, small-cap, value, and liquidity factors. In this specification, we find

that the most important systematic variable is the market factor, for which the

private equity returns have a beta loading significantly greater than one. We
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estimate the market factor exposure for different types of private equity and

find that they vary considerably, with venture funds having a high exposure

and real estate funds having a low exposure. We term the remaining idiosyn-

cratic portion of private equity returns the private equity premium. To the

extent that the returns on traded factors can be elsewhere earned by investors,

this private equity premium can be interpreted as a time-varying private eq-

uity alpha. We find that this premium is highly persistent and exhibits strong

cyclicality. The cycles we uncover differ according to fund type and coincide

with both anecdotal evidence and the time-series variation in private equity

fundraising. For instance, we find that venture capital returns were high in the

second half of the 1990s and low in the first half of 2000s, as was fundraising for

this asset class. We also find that the buyout premium was low from 1998 to

2002 and then increased sharply from 2003 until 2007, which coincides with the

well-known boom in buyout fundraising. Our broad finding about the private

equity premium is that it contributed positively to total returns in the first

half of the sample period and negatively in more recent years. This time-series

variation allows us to identify macroeconomic variables which significantly co-

move with private equity returns, including the spread in the free-cash flow yield

(EBITDA/Enterprise value) over the junk bond yield which was proposed and

studied by Kaplan and Strmberg (2009), and behavioral variables proposed by

Baker and Wurgler (2007) indicative of aggregate corporate mispricing. We

find evidence consistent with the Kaplan and Strmberg hypothesis that capital

market segmentation is a potential driver of the private equity premium, and

that the private equity premium may be related to behavioral frictions. The

rest of this paper is organized as follows. Section 3.2 describes the methodology.
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Section 3.3 details the data. In Section 3.4 we present the empirical results,

focusing on the estimated time-series of private equity returns and how they

differ from industry benchmarks. We conclude in Section 3.5.

3.2 Methodology

The estimation procedure requires only the cash flows paid and received by

investors (called Limited Partners; LPs) in different funds. The funds start

and end at different periods in time, which allows us to identify the underlying

unobservable discount rates. We present the model in Section 3.2.1 and the

estimation procedure in Section 3.2.2. For readers unfamiliar with the structure

of the data and the literature on non-traded asset risk evaluations, Appendix

C conveys the intuition of our approach with a simple example.

3.2.1 Model

The key assumption of the model is that the cash flows associated with any

investment market are generated by a time-varying portfolio of assets that have

unobserved but continuous latent values. These assets are heterogeneous. How-

ever, we assume their returns are a linear function of an underlying systematic

factor structure. Thus, if the latent asset values were observable, some portion

of their return variance could be explained by common factors using standard

regression methods. In addition, we allow (and test) for asset class-specific

latent factors.

Let gt denote the discount rate of private equity at time t, and get the excess
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discounted rate relative to the risk-free rate rft .

gt = get + rft (3.1)

The underlying return process, gt , cannot be directly observed in the private

equity data. We specify that private equity returns are driven by a set of J

common tradable factors, Ft = [F1,t, · · · , FJ,t] , which are observable in public

markets. We consider factors like the equity market, the Fama and French

(1993) factors, and the liquidity factor of Pstor and Stambaugh (2003). In

addition, we allow for an asset class-specific latent factor, ft . This potentially

makes private equity non-redundant in the space of tradable assets. Combining

the two sources of return, we consider the following model for the private equity

risk premium, get :

get = α + β′Ft + ft (3.2)

where β are the loadings (betas) on the common factors, Ft .2 We specify

that the private equity return component, ft , follows an AR(1) process:

ft = φft−1 + σfεt (3.3)

We specify that ft is mean zero so that the α in equation (3.3) reflects the

average level of private equity returns in excess of its systematic (and liquid)

component of the private equity return. The error, , is drawn from an i.i.d.

standard normal distribution. The latent factor process, ft , can be viewed

2It is equivalent to model the total private equity return, gt , as opposed to the private
equity return in excess of the risk-free rate, get . We choose the latter because we are interested
in the properties of the risk premium.
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as the idiosyncratic component of private equity returns. Usually, traditional

factor models for liquid asset returns specify that both systematic and idiosyn-

cratic returns are i.i.d. This is driven by the assumption of market efficiency;

predictable returns in a liquid market would be rapidly arbitraged away. In our

specification, the ft process is not exposed to the forces of arbitrage because,

by design, it is not tradable and is orthogonal to factors in the public markets.

Instead, it is intended to capture such features as persistent manager skill, the

inter-temporal variation in good investment opportunities or the trends in per-

formance due to non-constant returns to scale.3 The specification allows us to

test for trends in the private-equity-specific factor by testing whether φ = 0 and

also to more formally address the intuition that certain classes of private equity,

like venture capital or buyouts, have different return premium properties after

controlling for market effects.

The model nests the following special cases:

1. Constant expected returns, when β = 0 , φ = 0 ,and σf = 0 ;

2. CAPM, when α = 0 , φ = 0 , and σf = 0 , and Ft contains only market

excess returns as the systematic factor;

3. Constant excess returns above the CAPM model can be captured by α 6= 0

when φ = 0 , and σf = 0 , and Ft contains only market excess returns;

4. Private equity returns unrelated to public, systematic factors, when β = 0

; and

3Imperfect information environments combined with the inability to immediately deploy
capital can lead to large persistence in returns (see, for example, Abreu and Brunnermeier
(2003), Brunnermeier (2005), Duffie (2010)).
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5. The performance of private equity is explained entirely by liquid market

returns, when σf = 0 .

The full model allows for a rich set of dynamics for private equity returns. In

the full model, private equity returns are related to systematic factors ( β 6= 0 )

and they have characteristics unique to private equity, which may be persistent

( φ 6= 0 , σf 6= 0 ). Private equity may offer risk-adjusted returns in excess of

what is available in traded markets ( α 6= 0 ).

Our task is to estimate the latent factor, ft , with dynamics given in equation

(3.3). If the private equity returns were directly observable as would be the

case for listed equity returns, then equations (3.2) and (3.3) would constitute

a standard Kalman filter system (they actually represent a Kalman filter with

exogenous variables.) The private equity returns are not directly observable;

the non-observability can be thought of as a censoring process which renders the

estimation a signal-extraction problem conditional on censoring. We discuss a

Bayesian method of estimation to filter the returns.

3.2.2 Estimation

We observe cash flows to LPs across N private equity funds indexed by

i . The cash flows include investments Iit paid into fund i at time t and

distributions Dit received from fund i at time t. If the model is correctly

specified, the cash flows satisfy a NPV condition of

E[
∑
t

Iitδit] = E[
∑
t

Ditδit] (3.4)

where δit is the cumulative discount rate applicable to fund i at t, defined
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recursively as:

δit = δi,t−1(1 + gt)
−1 (3.5)

with δi,τ = 1 at the inception of fund i when t = τ and gt is the private

equity return given in equation (3.1). We take each period to be one quarter

in our estimation.

We specify that the ratio of the present value of investments to the Present

Value (PV) of distributions is lognormally distributed, or

ln
E[
∑

t Iitδit]

E[
∑

tDitδit]
∼ N(−1

2
σ2, σ2) (3.6)

The mean of the log distribution is set at −1
2
σ2 so that the raw ratio PV

of investments to the PV of distributions is centered at one. That is, this as-

sumes that the log ratio has zero mean, and takes into account the Jensens

inequality induced by taking the log transformation. We estimate the model

using a Bayesian MCMC procedure described in Appendix C. We use equa-

tion (6) as the likelihood function and treat the unobserved discount rates as

parameters to be estimated (which is called data augmentation), along with

the other parameters of the data generating process, . In Appendix C we also

report sensitivity analysis of the procedure to a range of assumptions, includ-

ing robustness to different priors. We also show the small sample properties

of the estimated parameters using Monte Carlo simulations. This estimation

procedure is similar to that of Driessen, Lin, and Phalippou (2012), Franzoni,

Nowak, and Phalippou (2012), and Korteweg and Nagel (2013). The key differ-

ence with respect to their work is that, in addition to estimating factor loadings,
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we estimate a quarterly time series of returns for private equityboth systematic

and idiosyncraticfrom investor cash flows, while the previous papers only in-

vestigate average private equity returns and risk exposures. There are several

caveats to our approach. First, a natural interpretation of the index is that it is

the net return to investing in all of the private equity vehicles in the database

in proportion to the aggregate inflows. This interpretation implicitly assumes

that the returned capital Dt in any given period is immediately re-investable in

all existing funds as opposed to only new funds. This is typically not the case.

This assumption, however, only affects interpretation of the premium factor

the latent factor series ft component of the total return index. The passive

component due to β′Ft comprises only marketable factors, in which investors

can re-invest or rebalance.

A more subtle point that is generally true in all manager performance studies

which rely on estimated linear factor exposures is that, by presuming that the

passive component is accessible to an investor, we are also implicitly assuming

that leverage may be used to achieve a factor exposure greater than one. As we

show below, a significant amount of the variation in the get series is explained

by large exposures to public equity factors. Private equity may offer a means

to relax borrowing constraints and this convenience may be priced (cf. Frazzini

and Pedersen (2010)). We also use long-short factors, and implicit assume

that short-selling is feasible and costless in replicating the performance of such

factors.

Third, our procedure solves for the best fit of the private equity discount

rates given fund cash flows. In computing present values, it may appear that we

are implicitly assuming that these cash flows are independent of the discount
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rates. If cash flows are correlated with discount rates, then we are effectively

solving for a time-varying series of discount rates that implicitly takes into

account this covariance.4

Finally, as we infer private equity returns from LP cash flows, we require

high quality data on cash flows. In theory, we would take funds that have termi-

nated so that complete histories of cash flows are observable. In our empirical

work, we relax this stringent constraint to take funds with a small portion of

unrealized investments in a way we make more precise below. Part of our con-

tribution is methodological, and the procedure can be used on any suitable

dataset. An advantage of our estimation technique is that we can estimate

private equity returns on data with very sparse cash flows, say a particular in-

stitutional investor track record, by using priors set from estimations on more

extensive data sets which collate information across many investors.

3.3 Data

We use the cash flow dataset of Preqin purchased in March 2012; data are

as of June 2011. Preqin collects the quarterly aggregated investments, distribu-

tions, and Net Asset Values (NAVs) made by private equity funds as recorded

by U.S. pension funds. Preqin collects this data from public reports and routine

Freedom of Information Act requests. The Preqin sample has some desirable

characteristics and some limitations. Cash flows are likely to be accurately re-

ported; pension funds would face serious regulatory issues if they deliberately

4Brennan (1997) and Ang and Liu (2004) consider the problem of discounting stochastic
cash flows with time-varying discount rates and formulate a series of discount rates under
these conditions. See also comments by Sorensen and Jagannathan (2013) and Korteweg and
Nagel (2013) on how PME implicitly incorporates correlation between the cash flows and the
discount rates.
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misreport or only selectively report returns. In addition, data on a given fund

can be cross-checked between the different pension funds which invest in it.

One of the potential limitations is that, by conditioning on pension fund in-

vestments, we may not be picking up investments made by other institutional

groups such as college endowments.5 Preqin data have similar characteristics,

including similar average and median returns, as those reported in other stud-

ies such as those of Robinson and Sensoy (2011) and Harris, Jenkinson, and

Kaplan (2013) (cf. Phalippou (2013)).6

To assess the risk profile of funds, we need to observe the cash flows of a

sufficient number of funds at any point in time. Because the number of funds

in the dataset increases rapidly over the time period, we start in a year with

at least five funds. This is 1992 for both venture capital and buyout funds.

Ideally, we would include all funds from that point on. This approach would,

however, assume that the reported NAVs are market values. Funds serving

fiduciaries such as pension funds report their audited calculations of portfolio

value (NAV) every year. In the U.S., FASB 157 requires fund assets to be fair

market-valued, however the private nature of these investments and varying

methodologies for evaluation leaves significant uncertainty. Ultimately reported

fund NAVs represent the opinion of the fund manager about the assets. 7 It

may therefore be problematic to take these NAVs at face value when trying to

5Lerner, Schoar, and Wongsunwai (2007) show that endowments have earned higher
returns than other investors in private equity investments. Sensoy, Wang, and Weisbach
(2013) show that the better performance of endowments is concentrated over the earlier part
of the sample and in early stage venture capital.

6An additional and unique advantage of Preqin data is that they are publicly available.
7The process typically involves a valuation committee and for audited funds, the chal-

lenging of valuation assumptions by an auditing firm. Jenkinson, Sousa, and Stucke (2013)
and Brown, Gredil, and Kaplan (2013) find that fund valuations are conservative except when
follow-on funds are raised.
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assess the underlying true returns.

One solution to this problem would be to include only funds that have

passed their eight or tenth anniversary in order to both minimize the impact

of NAVs and guarantee a representative sample for each of the included years.

But doing so would result in the frequency of cash flows significantly decreasing

in the later part of the sample. We thus include all (post-1992) funds as long

as they have a relatively low NAV (50% of fund size or less). We exclude funds

that do not have at least one distribution of at least 10% of fund size (which can

be a cash distribution or the final NAV). These criteria mean that we keep a

few funds each year in the sample all the way to 2008. This is essential in order

to estimate the quarterly return of private equity. We label this sub-sample of

funds the quasi-liquidated sub-sample. When reporting abnormal performance,

we will show the results for both the quasi-liquidated sample of funds and the

full sample of funds. The estimation of risk loadings, however, necessitates the

use of the quasi-liquidated sample. This constraint has some potential effect if,

for example, younger funds have different characteristics, or the management

style and factor exposures for funds launched in the mid-2000s was not rep-

resentative, then our estimates will be weighted away from these and towards

more mature funds (cf. Barrot (2012)). Table 3.1 reports descriptive statistics

for our data.8 Panel A shows the number of funds entering the sample in each

year. The Preqin sample appears to be similar to that of Harris, Jenkinson,

and Kaplan (2013) in terms of size and years covered. Panel B compares the

number of observations of the full sample and the quasi liquidated sample. It

8Selected funds are “closed” or “liquidated,” and based in the United States. We exclude
GCP California Fund, a partnership between Leonard Green and CalPERS to invest in
California-related industries and underserved markets.
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also breaks down the statistics of the quasi-liquidated sample per fund cate-

gories. The venture capital category includes funds classified as general venture

capital, balanced, seeds, start-up, early stage, expansion and late stage. The

buyout category includes funds classified as buyout and turnaround. The real

estate and high yield debt categories include all funds classified as such. Note

that the number of real estate and debt funds is relatively small.
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Table 3.1: Descriptive Statistics

This table shows the number of observations in different samples. Panel A compares the

Preqin dataset to that of proprietary dataset recently used in the literature. Panel B shows

statistics on Preqin full sample and sub-samples. Venture Capital (VC) funds include funds

classified (by Preqin) as either: expansion, late stage, general venture, balanced or growth.

Buyout (BO) funds include funds classified as either turnaround or buyout. Debt funds

include funds classified as either distressed debt or mezzanine. Private Equity (PE) funds

refer to funds that are either VC, BO, Debt (D) or Real Estate (RE). Funds are from vintage

years 1992 to 2008. The quasi liquidated sample is the sub-sample of funds with the latest

NAV reported that is less or equal to 50% of fund size, with at least one cash distribution,

and with the latest NAV reported (or the largest distribution) larger or equal to 10% of fund

size.

Panel A: Number of observations Comparing Preqin and proprietary datasets
Venture capital funds Buyout funds

Harris, Jenkinson Robinson Preqin Harris, Jenkinson Robinson Preqin
&Kaplan &Sensoy Full sample &Kaplan &Sensoy Full sample

1992 17 4 10 5 4 7
1993 13 5 9 11 9 12
1994 20 7 12 13 24 15
1995 18 13 15 17 24 11
1996 20 13 16 9 41 18
1997 33 19 21 30 40 22
1998 46 36 31 38 59 39
1999 65 40 44 28 59 31
2000 80 55 79 39 68 38
2001 48 18 50 26 26 17
2002 18 7 28 21 5 19
2003 25 15 13 8 17
2004 32 28 46 3 29
2005 48 1 35 57 2 52
2006 62 49 67 8 52
2007 65 2 48 74 6 57
2008 45 26 68 12 42
Total 655 220 516 562 398 478
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Panel B: Number of observations Preqin samples
Full sample Preqin equasi-liquidated sub-sample of funds

All PE funds All PE funds VC BO RE Debt
(VC,BO,RE,D) (VC,BO,RE,D) funds funds funds funds

1992 21 21 11 6 1 3
1993 22 22 9 12 0 1
1994 31 30 15 15 1 3
1995 29 28 15 10 1 2
1996 41 39 20 17 3 4
1997 52 50 27 22 1 7
1998 78 74 36 39 4 4
1999 81 67 60 26 1 4
2000 126 97 60 28 6 3
2001 77 52 28 14 2 8
2002 55 33 15 10 3 5
2003 42 12 2 2 4 4
2004 74 17 3 6 7 1
2005 114 11 3 4 4 0
2006 140 19 7 5 4 3
2007 146 27 3 12 8 4
2008 93 31 7 15 4 5
Total 1222 630 272 243 54 61

3.4 Empirical Results

3.4.1 Time-series estimates of private equity total re-

turns and premiums

In this subsection, we discuss and plot the time series of our estimated

private equity total returns and premiums. Recall that Appendix C offer further

details on the methodology, the choice of priors, and robustness checks.

We apply the methodology to the sample of 630 quasi-liquidated funds de-

scribed in Table 3.1. Figure 1 plots the cumulated total return index (get )

obtained with a four-factor model for systematic risk. The four factors are the

market portfolio, the Fama and French (1993) small-large and value-growth
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factors, and the Pstor and Stambaugh (2003) liquidity factor that goes long

illiquid stocks with high returns and shorts more liquid stocks with relatively

low returns. Figure 1 plots our estimated private equity returns expressed as

an index, which starts with the value 1.0 in March 1993.

Figure 3.1: Private Equity Total Return Index v.s. US Index Funds

Figure 1 compares the return of our private equity index to the returns of

two low-cost passive index portfolios offered by Vanguard: an S&P 500 index

fund and a small-cap fund. Consistent with the findings of Harris, Jenkinson,

and Kaplan (2013), and Robinson and Sensoy (2011), private equity beats the

index portfolios over the time period 1993 to 2010. Part of the private equity

performance, however, may be replicable using some passive factor exposures.

Indeed, Figure 1 shows that there is significant co-movement between the pri-

vate equity total returns and the Vanguard S&P 500 and small-cap index funds.
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Figure 2 plots the total return, get , the return of the passive factor expo-

sures, β′Ft, and the spread between the two which is the private equity return

premium, ft. The return ft can also be interpreted as private equitys time-

varying alpha. Over the sample, the cumulated private equity premium, ft, is

zero, so private equity has had an alpha of zero (when using the four factor as-

set pricing model). Nevertheless, over some time periods, there is a significant

spread between the total return, get , and the systematic return, β′Ft, indicating

that there is a non-negligible idiosyncratic component of private equity returns.

Figure 3.2: Decomposition of Private Equity Return Index into Passive and
Premium Components

Figure 3 provides more detail about the timing of the premium, ft , and

shows the quarterly returns to the private equity premium, ft , as bars in each

period (so they are not cumulated like Figures 1 and 2). Although the overall
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average is zero, there is significant time variation. The premium is large and

positive in the second half of the 1990s, approximately zero for the first half

of the 2000s and then negative from 2006 including during the financial crisis.

The pattern suggests that the private equity premium is cyclical, with as much

as 10 years from peak to trough.

Figure 3.3: Private Equity Premium

The cyclical pattern of the private equity premium is most interesting when

broken down into sub-asset classes. In Figure 4, we plot the premiums for our

four subsets: buyouts, venture capital, real estate, and high yield (see Table

3.1, Panel B). The premiums for each asset types behave quite differently.

Buyout funds experienced premiums of more than 1% in 1995-1996 and over

2005-2007, consistent with conventional beliefs as reflected in industry reports

and press coverage. Venture capital funds had one very large peak of more

than 5% in 1999-2000, coinciding with high valuations of internet companies
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during this time. Real estate peaked at more than 3% in 2006 (notably before

available appraisal-based commercial property indexes captured a downturn).

The premium to investing in high yield debt funds had two peaks of 2%–one in

1995 and another in 2009, co-moving only approximately with the premium to

buyout funds.

Figure 3.4: Quarterly Private Equity Premium per Sub-classes

59 
 

Figure 4 
Quarterly Private Equity Premiums per Sub-Classes 
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High Yield Premium 

These imperfect co-movements suggest that the cycles to venture capital

and real estate differ from those of buyout and high-yield funds, and that

there are benefits to diversifying across private equity investment classesfor

example high-yield premiums were positive when venture capital premiums

were negative. More generally the evidence suggests that, even conditional on

differing exposures for systematic factors, private equity premiums in different

asset classes are exposed to different underlying factors unrelated to publicly
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traded securities.

3.4.2 Factor exposures and private equity premium

The private equity premium displayed in Figures 1-4 is computed using a

four-factor asset pricing model with market, size, value, and liquidity factors.

We find that the estimated overall private equity premiums, get , are relatively

insensitive to the assumed model for systematic risk, but the systematic factors

do affect the estimates of the private equity premium, ft. In Table 3.2, we

report parameter estimates of the factor loadings, β, the α coefficients, and

the persistence of the private equity premiums, φ, with different asset pricing

factor models. The table reports posterior means and standard deviations of

the parameters.

We take models with one, three, and four systematic factors. The one factor

model is the CAPM; the three-factor model is from Fama and French (1993)

which adds SMB and HML factors, and the four-factor model is that of Pstor

and Stambaugh (2003) which adds a liquidity factor. For robustness, we also

report models for which we use the CRSP equally-weighted (EW) index in-

stead of the CRSP value-weighted index as a measure of market returns. This

is equivalent to the assumption that private equity funds acquire companies

that are drawn from a pool resembling the CRSP sample; i.e. they are as likely

to acquire a firm from the bottom decile as from the top decile of capitalization.

This assumption is useful because the typical company purchased by a private

equity fund is small compared to the firms in the S&P 500. The drawback is

that the equal-weighted CRSP index is not investable. Table 3.2 shows that the

CAPM estimate of the beta of private equity is 1.41, which is almost unchanged
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Table 3.2: Private Equity Factor Exposures

This table shows the estimated risk loadings, abnormal returns and the persistence in ab-

normal returns using six different asset pricing factor models. All quasi-liquidated private

equity funds are used in the analysis, irrespective of their type (venture capital, buyout, real

estate, high yield). The quasi liquidated sample is the sub-sample of funds with the latest

NAV reported that is less or equal to 50% of fund size, with at least one cash distribution,

and with the latest NAV reported (or the largest distribution) larger or equal to 10% of

fund size. The risk loadings are estimated using the quasi liquidated sample. The reported

alpha is annualized (by compounding) and defined as the constant that makes the (equally

weighted) average NPV equal to zero in either the full sample or the quasi-liquidated fund

sample, given the estimated risk loadings. Underneath each coefficient, in italics, we report

the posterior standard deviation of the estimated parameters. The factor models that we use

are: the CAPM, the three factor model of Fama and French (1993), and the four factor model

is that of Pstor and Stambaugh (2003). The equally weighted (EW) factor models are the

same as the original model but with the CRSP equally-weighted index instead of the CRSP

value-weighted index as a measure of market returns. The priors for the factor loadings are

detailed in Appendix C.

βmarket βsize βvalue βilliquidity In-sample Persistence Full sample R-square
Model Alpha of Alpha Alpha
CAPM 1.41*** 0.05*** 0.4 0.04*** 0.93

0.24 0.01 0.19 0.01
3 factors (FF) 1.49*** 0.41 0.09 0.04*** 0.43 0.03*** 0.95

0.23 0.31 0.27 0.01 0.19 0.01
4 factors (PS) 1.41*** 0.41 0.03 0.36 0 0.48 0 0.97

0.21 0.26 0.23 0.27 0.02 0.19 0.01
EW CAPM 1.42*** -0.04*** 0.45 -0.04*** 0.98

0.18 0.01 0.19 0.01
EW FF 1.47*** 0.4 -0.11 -0.04*** 0.47 -0.04*** 0.98

0.2 0.25 0.21 0.01 0.19 0.01
EW PS 1.40*** 0.33 -0.19 0.26 -0.05*** 0.47 -0.05*** 0.97

0.22 0.3 0.25 0.27 0.02 0.19 0.01
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using an EW market index. The estimates for the four-factor loadings on mar-

ket, size, value, and liquidity factors are 1.49 for the market excess return, 0.41

for SMB, 0.03 for HML, and 0.36 for the liquidity factor. In the four-factor

model, the posterior means of the market and SMB loadings are more than two

posterior standard deviations away from zero, but this is not the case for the

value and liquidity factor loadings. Nevertheless, the economic magnitude of

0.36 for the liquidity factor beta is relatively large. We report two sets of alphas.

The in-sample alpha is the premium computed, given the estimated set of risk

loadings, using the sample of funds on which the model was estimated (i.e. the

630 quasi-liquidated sample). The full-sample alpha is the premium estimated

using the full sample of 1,222 funds given the estimated set of risk loadings

(from the quasi-liquidated sample). The two sets of alpha generally agree with

each other, which indicates that our selection procedure does not lead to a bias

towards better or worse performing funds. All alpha estimates in the table are

annualized. Consistent with the literature (Robinson and Sensoy (2011) and

Harris, Jenkinson, and Kaplan (2013)), we find that the alphas with respect

to the S&P 500 and a three-factor model accounting for size and value effects

are positive at 0.05 and 0.04, respectively, using in-sample estimates. Adding

the liquidity factor drives the alpha to zero. Also consistent with the literature,

substituting an index which weights small companies heavilythe equal-weighted

CRSP indexreduces the alpha estimates dramatically. The alpha in the EW

CAPM specification is negative at -0.04, and this is largely unchanged when the

SMB, HML, and liquidity factors are added. In our model, the private equity

premium is a non-arbitragable factor which is auto-correlated. Table 3.3 re-

ports the persistence in the private equity premium measured at the quarterly
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horizon. Depending on the specification, this value ranges from 0.40 to 0.47. In

all cases, the estimates are significantly different from zero. The autocorrelation

estimates are a potentially useful measure because a variable with a significant

autocorrelation coefficient is potentially forecastable. Our auto-correlation esti-

mates indicate there is fairly strong persistence in the aggregate private equity

premium. Value-enhancing shocks have a half-life of about one-quarter. A year

later, the effect is 1/16 of its original intensity but still contributes to the net

return. For example, Figure 3 shows an upward trend at the end of the time

period, indicative of a potential reversion to a positive value in the future.

3.4.3 Factor exposures and private equity premium bro-

ken down by fund type

Table 3.3 reports estimations on the different private equity sub-classes.

Venture capital funds have the highest estimated CAPM beta, followed by

buyout, real estate, and high yield funds. The venture capital market beta

is 1.67 in Panel A, which is a slight decrease from the previous estimates in

the literature (see Appendix B and Appendix Table A.1). Venture capital

has a significant negative loading on the Fama-French value factor, which is

what we would expect from a strategy of buying high growth companies. The

robustness specifications for venture capital use an equal-weighted portfolio of

Nasdaq stocks instead of the equal-weighted CRSP. As expected, this change

decreases the market beta and drives alpha to (close to) zero.

Two remarks are worth making on the venture capital alpha. First, there

is a negative loading on the value premium. Venture capital strategies appear

to be loading up on growth stocks, which have low average returns. Thus, the
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Table 3.3: Risk Exposures Broken Down by Fund Type

This is the same table as Table 2. Instead of using all the funds we use (independently)

sub-samples of funds based on their type: venture capital, buyout, real estate and high

yield. Venture capital funds include funds classified (by Preqin) as either: expansion, late

stage, general venture, balanced or growth. Buyout funds include funds classified as either

turnaround or buyout. High yield funds include funds classified as either distressed debt or

mezzanine. We report posterior means. The reported alpha is annualized (by compounding)

and defined as the constant that makes the (equally weighted) average NPV equal to zero in

either the full sample or the quasi-liquidated fund sample, given the estimated risk loadings.

Underneath each coefficient, in italics, we report the posterior standard deviation of the

estimated parameters. The bottom three models in each Panel are the same as the original

models but with a different proxy used for market returns. The proxies used in each of the

panels are, respectively: Equally-weighted Nasdaq index, Equally-weighted AMEX/NYSE

index, FTSE REITS index, 10 years T-bonds returns.

Panel A: Venture Capital Funds
βmarket βsize βvalue βilliquidity In-sample Persistence Full sample R-square

Model Alpha of Alpha Alpha
CAPM 1.67*** 0.05*** 0.54*** 0.04*** 94.10%

0.27 0.01 0.19 0.01
3 factors (FF) 1.51*** 0.45 -0.62* 0.08*** 0.60*** 0.06*** 93.50%

0.33 0.42 0.38 0.02 0.17 0.02
4 factors (PS) 1.60*** 0.53 -0.68* 0.16 0.06*** 0.63*** 0.05** 95.90%

0.29 0.42 0.37 0.36 0.02 0.17 0.02
EW CAPM 1.32*** -0.02 0.71*** -0.04*** 97.30%

0.19 0.01 0.14 0.01
EW FF 1.11*** 0.28 -0.59* 0.02 0.71*** 0 96.00%

0.25 0.4 0.31 0.02 0.14 0.02
EW PS 1.15*** 0.36 -0.57** 0 0.02 0.71*** 0 97.00%

0.23 0.43 0.28 0.36 0.02 0.15 0.02
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Panel B: Venture Capital Funds
βmarket βsize βvalue βilliquidity In-sample Persistence Full sample R-square

Model Alpha of Alpha Alpha
CAPM 1.31*** 0.05*** 0.42** 0.04*** 88.70%

0.25 0.01 0.2 0.01
3 factors (FF) 1.39*** -0.07 0.74** 0.03*** 0.42** 0.01 92.30%

0.21 0.3 0.29 0.01 0.19 0.01
4 factors (PS) 1.33*** -0.04 0.57** 0.59*** -0.02** 0.50*** -0.03*** 96.90%

0.14 0.25 0.22 0.21 0.01 0.17 0.01
EW CAPM 1.30*** 0 0.64*** -0.01 90.30%

0.27 0.01 0.16 0.01
EW FF 1.29*** -0.38 0.46 0 0.62*** -0.01 90.50%

0.25 0.37 0.33 0.01 0.18 0.01
EW PS 1.15*** -0.28 0.39 0.50* -0.03** 0.70*** -0.04** 93.90%

0.22 0.36 0.32 0.3 0.02 0.15 0.02
Panel C: Venture Capital Funds

βmarket βsize βvalue βilliquidity In-sample Persistence Full sample R-square
Model Alpha of Alpha Alpha
CAPM 0.77*** 0 0.72*** 0 79.60%

0.23 0.01 0.11 0.01
3 factors (FF) 0.79*** 0.21 0.76** -0.03*** 0.61*** -0.03** 87.10%

0.22 0.3 0.3 0.01 0.17 0.01
4 factors (PS) 0.74*** 0.09 0.54 0.66* -0.08*** 0.54*** -0.07*** 87.80%

0.23 0.37 0.37 0.38 0.02 0.19 0.02
EW CAPM 0.75*** -0.04*** 0.61*** -0.04** 83.80%

0.18 0.01 0.16 0.02
EW FF 0.66*** 0.1 0.49 -0.05*** 0.58*** -0.04** 88.70%

0.2 0.29 0.3 0.01 0.18 0.02
EW PS 0.49** 0 0.26 0.59* -0.07*** 0.58*** -0.07*** 83.40%

0.24 0.39 0.37 0.36 0.02 0.18 0.02
Panel D: Venture Capital Funds

βmarket βsize βvalue βilliquidity In-sample Persistence Full sample R-square
Model Alpha of Alpha Alpha
CAPM 0.62** 0.03 0.36* 0.03* 66.30%

0.27 0.02 0.19 0.02
3 factors (FF) 0.88*** 1.18*** 1.05*** -0.02** 0.49*** -0.03** 96.70%

0.2 0.26 0.27 0.01 0.18 0.01
4 factors (PS) 0.87*** 1.14*** 0.97*** 0.29 -0.06*** 0.49** -0.06*** 96.50%

0.22 0.26 0.28 0.24 0.02 0.19 0.02
EW CAPM 0.58*** -0.01 0.41** -0.01 79.40%

0.2 0.02 0.18 0.02
EW FF 0.44 1.02*** 0.73** -0.03 0.58*** -0.02 88.90%

0.28 0.38 0.36 0.02 0.19 0.02
EW PS 0.36 0.99*** 0.72* 0.16 -0.05* 0.57*** -0.04 89.60%

0.24 0.33 0.38 0.32 0.03 0.2 0.03
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total returns of venture capital are relatively low, but the alpha is boosted up

by the negative loading on the value factor. The second remark is that the

value-weighted stock-market index used in the CAPM has low returns over our

sample period, which sets a low bar in terms of performance. When the index

is changed to the EW Nasdaq stocks, which have delivered better performance,

then venture capital exhibits a negative alpha. Panel B of Table 3.3 reports

results for the largest fund type in terms of asset under management, buyout

funds. The buyout fund market beta for the standard specification is around

1.3, similar to previous estimates in the literature (see Appendix Table 1). The

coefficients on value and liquidity factors are positive. The single-factor CAPM

alpha is 0.05 in the estimation sample and 0.04 in the full Preqin sample. The

alpha drops to 0.03, but remains significant in the estimation sample in the

standard three-factor Fama-French specification. The inclusion of the Pstor-

Stambaugh liquidity factor, however, changes the sign of the alpha. This can be

interpreted as buyout funds harvesting a liquidity risk premium in the Pstor-

Stambaugh sense (cf. Franzoni, Nowak, and Phalippou (2012)). Although we

have relatively few real estate funds, results in Panel C show that the estimation

procedure generates intuitively reasonable results. Real estate market betas

vary from 0.74 to 0.79, consistent with previous estimates of a beta less than

1.0 for real property. The beta on the REIT index is less than one as well,

ranging from 0.49 to 0.75. Most specifications show a negative alpha for real

estate funds. For high yield funds in Panel D, we estimate a CAPM beta of

0.66, and find that all three of the factor loadings on the Fama-French model

are significant: high yield has a beta greater than one for both size and value

factors. As with real estate funds, most specifications show a negative alpha
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for high yield funds. Note that we have estimated the exposure of private

equity investment to factors commonly used in the analysis of equity returns;

and we have modeled a private equity premium as an auto-correlated latent

factor. In several specifications we reject the null that private equity assets are

redundant with respect to the standard Fama-French and Pstor-Stambaugh

equity factors. Yet, these factors capture a large part of (and in some cases

fully explain) the total returns to investing in private equity. This, however,

does not necessarily imply that there is no value to private equity because none

of these equity factors returns are available without incurring transaction costs.

The next question is whether an investor can cheaply access the premiums of

the tradable factors passively, or whether private equity investments are a more

efficient way to access these factor premiums. This would involve an analysis

of transactions costs (and investor size) that is beyond the scope of this paper.

Finally, it is interesting to note that the persistence in the premium is strongest

in venture capital and real estate, as reported in Table 3.3. It is less strong in

buyout and even lower in high yield funds. These results are consistent with the

idea that persistence is driven by non-scalability. Certainly venture capital and

real estate are the most illiquid assets and are the most difficult investments to

scale. The buyout and high yield debt strategies have more capacity.

3.4.4 Comparison to industry indices

One practical advantage of our cash flow-based index is that it seeks to at-

tribute returns to the time period in which they occur. In practice, there are

some industry indexes with the same objective but they use estimated asset

values. These estimated values are potentially subject to inertiafor example
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anchoring on prior appraisal values. The econometrics of appraisal-based in-

dexes have been well-studied for commercial real estate (cf. Geltner (1991)).

Among other things, they have volatilities which under-estimate true volatilities

and lag market values. In this section we examine the relationship of the cash-

flow based index to industry indexes. In Table 3.4, we label our estimated index

the CF PE index, which is produced using the four-factor model for systematic

risk (see also Figures 1-3). The table shows the annualized mean, standard de-

viation, inter-quartile range and autocorrelation coefficient for some standard

industry indexes and for our cash flow-based indexes. For buyout and venture

capital we use the Cambridge Associates indexes; they are the most promi-

nent ones in practice. For real estate we use the NCREIF index. This is the

industry-standard appraisal-based index of unlevered property returns, which is

computed using data reported by institutional investors to the National Council

for Real Estate Investment Fiduciaries. All the mean and volatility estimates

in Table 3.4 are annualized.

Table 3.4 shows that the cash flow-based indexes are more volatile than the

industry indexes. The difference is particularly dramatic for real estate. We

estimate a volatility of 19% per annum for real estate, compared to the NCREIF

index volatility of 5%. The 19% is closer to the volatility of publicly traded real

estate portfolios, REITS. This suggests that our estimated index may provide

a more realistic estimate of real estate portfolio risk for investment managers.

For buyout, the volatility of our cash flow-based return time series is more than

twice as high as that of Cambridge Associates (25% compared to 11%). There

is a smaller difference in volatilities for venture capital, at 35% for our sample

and 27% for the venture capital index produced by Cambridge Associates; but
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Table 3.4: Comparison of Private Equity Index with Industry Indices

This is the same table as Table 3.2. Instead of using all the funds we use (independently)

sub-samples of funds based on their type: venture capital, buyout, real estate and high

yield. Venture capital funds include funds classified (by Preqin) as either: expansion, late

stage, general venture, balanced or growth. Buyout funds include funds classified as either

turnaround or buyout. High yield funds include funds classified as either distressed debt or

mezzanine. We report posterior means. The reported alpha is annualized (by compounding)

and defined as the constant that makes the (equally weighted) average NPV equal to zero in

either the full sample or the quasi-liquidated fund sample, given the estimated risk loadings.

Underneath each coefficient, in italics, we report the posterior standard deviation of the

estimated parameters. The bottom three models in each Panel are the same as the original

models but with a different proxy used for market returns. The proxies used in each of the

panels are, respectively: Equally-weighted Nasdaq index, Equally-weighted AMEX/NYSE

index, FTSE REITS index, 10 years T-bonds returns.

Mean Volatility Percentiles Autocorrelation
25th 75th

CF buyout index 0.15 0.26 -0.12 0.53 0.06
Cambridge Associates buyout index 0.16 0.12 0.04 0.33 0.41

LPX listed buyout index 0.16 0.3 -0.05 0.45 0.22

CF venture capital index 0.18 0.34 -0.18 0.67 0.03
Cambridge Associates venture index 0.19 0.28 -0.03 0.35 0.61

LPX listed venture capital index 0.13 0.39 -0.33 0.64 0.14

CF real estate index 0.05 0.17 -0.12 0.31 0.24
NCREIF (Real Estate) index 0.09 0.05 0.07 0.15 0.82

CF private equity index 0.15 0.29 -0.15 0.58 0
LPX 50 index 0.13 0.35 -0.21 0.52 0.18
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the latter is solely driven by a sharp spike in 1999. These results indicate that

existing private equity return time series exhibit smoothing biases likely due to

the appraisal process and the fact that valuations of illiquid assets may only

partially adjust to market prices. In addition, we find that our private equity

return time series exhibit much less serial dependence, if any, than industry

indexes.

3.4.5 Vintage year comparisons

Industry participants and academic researchers have traditionally used vin-

tage year IRRs, multiples of returned cash to investment, and PMEs to iden-

tify the cyclical behavior of private equity. Table 3.5 examines the relationship

between these measures, our cash flow private equity indexes, and flows into

private equity (changes in the number of funds and amount of capital entering

the industry). Vintage year returns are computed by first aggregating all

the cash flows of the funds from a given vintage year, and then computing the

IRR, multiple and public market equivalent (PME) of that aggregated cash

flow stream. We compute the PME with the discount rates derived from the

factor loadings estimated with the four-factor model. In this respect it differs

from a standard PME calculation that uses only S&P 500 returns to discount

cash-flows. We do this to highlight the difference between our private equity

returns with the PME on the basis of how the measures are computed, rather

than having different discount rates in each measure. The sample is all the

Preqin quasi-liquidated private equity funds.

The IRR, multiple, and PME measures display some common trends (Panel

A of Table 3.5). They all start to decrease from 1994 and reach a low in 1999.
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Table 3.5: Alternative Performance Measures and Capital Flows

This table compares different performance measures. The forward moving average of our

private equity index, gt, is the geometric yearly average return calculated from year t+1 to

t+5. It is computed using the four-factor Pstor -Stambaugh (2003) model for systematic risk.

The last year is 2009 and the forward moving average is not computed for 2008 as it is not

meaningful (n.m.). Vintage year returns are computed by first aggregating all the cash flows

of the funds from a given vintage year, and then computing the IRR, multiple and public

market equivalent (PME) of that aggregated cash flow stream. The PME is calculated using

the four-factor model cost of capital to discount cash flows. The sample is all Preqin quasi-

liquidated private equity funds. The number of funds / capital allocated in a given year is

taken from the full Preqin sample (see Table 3.1). Growth in year t refers to the growth rate

in number of funds / capital raised from year t to year t+1. Panel D shows results from an

OLS time series regression. The t-statistics are reported in italics and are based on Newest-

West (1987) standard errors with four lags. Superscripts denote statistical significance at 1%,

5%, and 10% levels are denoted by a, b, and c, respectively. Cambridge Associates (CA)

publishes one buyout quarterly return index and one venture capital quarterly return index.

In regression analysis with either the full sample (PE) or the buyout (BO) sample we use

the CA buyout index; when we use the sub-sample of venture capital funds we use the CA

venture capital index.

Panel A: Yearly time-series of returns, flow, and yield spread
Vintage year CF PE annual Forward moving Growth Growth

Year IRR Multiple PME PE index (gt) average of gt N-funds Capital
1993 0.27 2.71 1.13 0.19 0.27 0.41 0.58
1994 0.36 2.77 1.38 -0.01 0.38 -0.06 0.19
1995 0.3 2.33 1.27 0.44 0.23 0.41 0.36
1996 0.17 1.77 1.06 0.28 0.16 0.27 0.84
1997 0.13 1.69 1.14 0.45 0.02 0.5 1.18
1998 0.09 1.5 1.05 0.27 0.08 0.04 -0.05
1999 0.07 1.36 0.89 0.5 0.04 0.56 0.95
2000 0.12 1.61 0.98 -0.19 0.11 -0.39 -0.41
2001 0.2 1.68 1.05 -0.05 0.17 -0.29 -0.33
2002 0.26 1.77 1.14 -0.25 0.25 -0.24 -0.09
2003 0.12 1.25 0.97 0.68 -0.05 0.76 0.47
2004 0.22 1.53 1.25 0.25 -0.01 0.54 1.56
2005 0.07 1.16 1.02 0.12 -0.04 0.23 0.79
2006 -0.21 0.67 0.62 0.23 -0.11 0.04 0.03
2007 -0.18 0.94 0.69 0.04 -0.18 -0.36 -0.32
2008 0.09 1.12 0.8 -0.57 n.m. -0.51 -0.7
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Panel B: Correlation matrix
Vintage year CF PE annual Forward moving Growth

IRR Multiple PME PE index (gt) average of gt Nfunds Capital
IRR 1 0.9 0.9 -0.05 0.87 0.16 0.21
Multiple 0.9 1 0.82 0.03 0.92 0.2 0.24
PME 0.9 0.82 1 0.17 0.75 0.37 0.46
Index (gt) -0.05 0.03 0.17 1 -0.16 0.9 0.78
Forward gt 0.87 0.92 0.75 -0.16 1 0.02 0.06
Growth N-funds 0.16 0.2 0.37 0.9 0.02 1 0.92
Growth capital 0.21 0.24 0.46 0.78 0.06 0.92 1

Panel C:Venture capital funds and buyout funds
Venture Capital funds Buyout funds

CF index Cambridge Growth CF index Cambridge Growth
Year (gvc,t) Associates index Nfunds Capital (gbo,t) Associates index Nfunds Capital
1993 0.09 0.19 0.33 0.3 0.23 0.24 0.25 0.61
1994 0 0.17 0.25 0.93 0 0.13 -0.27 0.1
1995 0.52 0.47 0.07 0.18 0.4 0.24 0.64 0.21
1996 0.36 0.41 0.31 0.28 0.27 0.28 0.22 0.76
1997 0.46 0.34 0.48 0.71 0.52 0.31 0.77 1.61
1998 0.43 0.31 0.42 1.58 0.27 0.15 -0.21 -0.22
1999 1.14 2.93 0.8 1.43 0.06 0.44 0.23 0.79
2000 -0.29 0.2 -0.37 -0.39 -0.11 0.06 -0.55 -0.67
2001 -0.16 -0.4 -0.44 -0.68 0.05 -0.12 0.12 0.62
2002 -0.35 -0.34 -0.46 -0.42 -0.17 -0.08 -0.11 -0.14
2003 0.71 -0.04 0.87 0.77 0.5 0.22 0.71 0.36
2004 0.18 0.15 0.25 0.33 0.29 0.25 0.79 1.9
2005 0.06 0.07 0.4 1.48 0.26 0.28 0 0.71
2006 0.14 0.18 -0.02 -0.4 0.45 0.29 0.1 -0.13
2007 0.1 0.15 -0.46 -0.3 0.13 0.2 -0.26 -0.13
2008 -0.61 -0.16 -0.46 -0.3 -0.54 -0.22 -0.45 -0.71
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Panel D: Regression analysis - capital flows and past performance
Private equity Venture capital Buyout

growth in Nfunds Capital Nfunds Capital Nfunds Capital
Constant -0.19** -0.09 -0.03 0.11 -0.27*** -0.43***

-1.99 -0.38 -0.59 1.07 -2.6 -4.91
Our CF index, year t 1.11*** 1.51*** 1.01*** 1.06*** 1.52*** 1.53***

4.67 5.76 5.09 5.17 7.3 2.74
IRR, vintage year t 0.11 0.51 0.25 0.72 1.87*** 3.80***

0.77 1.48 0.85 1.02 6.11 5.54
Cambridge Associates index, year t 0.01 0.08* -0.1 0.08 0.21 1.82***

0.39 1.76 -1.56 0.89 0.53 2.93
IRR, vintage year t-1 -0.02 -0.39 -0.2 -0.51 -1.06*** -2.18***

-0.12 -0.96 -0.52 -0.63 -5.16 -2.66
Adjusted R-square 75% 34% 59% 22% 64% 47%
Number of observations 16 16 16 16 16 16

Then, they start to increase. After the 2005 vintage year, the measures are also

low. These patterns are counterintuitive because 1999 was anecdotally the best

year ever for venture capital, as was the 2003-2007 time periods for buyout

funds. In contrast, the returns in our cash flow-based index show 1999 and

2003 as high return years, while 2008 was the worst year. In other words, by

unbundling vintage year returns we are able to more accurately identify good

and bad years for private equity.

To further demonstrate that our contrasting result is mainly due to un-

bundling, we use our index to simulate vintage year returns by constructing

a forward moving average of our index return. This forward moving average

of the cash flow-based private equity index, , is the geometric yearly average

return calculated from year t + 1 to t + 5. The four-year horizon reflects the

typical duration of a private equity investment. 9 Our forward measure has a

correlation of 0.87 with the vintage year IRR, which shows that our index is

mainly an unbundled version of what is done in practice and in the literature.

9See Lopez-de-Silanes, Phalippou, and Gottschalg (2013). Note: The last year we use is
2009 and the forward moving average is not computed for 2008 as it is not meaningful.
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This unbundling is important because it allows the identification of the perfor-

mance cycles. These cycles cannot be identified with vintage years IRR (e.g.

our yearly index exhibits a correlation of -0.05 with the vintage year IRR).

To assess whether our index captures actual performance cycles, we study

the correlation between capital flows in the private equity fund industry and

different past performance measures. Results in Panel B of Table 3.5 show

that our index correlates highly with capital flows. 10 The correlation is as

high as 90% with year-on-year growth in the number of funds. In contrast,

the vintage-based performance measures have correlations close to zero with

industry growth.

Panel C of Table 3.5 breaks down results for venture capital and buyout fund

sub-samples and compares them with existing industry annual returns. The

Cambridge Associate indexes track our indices fairly closely although significant

differences occur for the venture capital series in 1999 and 2000. Our cash flow-

based venture capital index is 114% in 1999 (while the Cambridge Associates

index reaches 293%) and is -29% in 2000, while the downturn manifested itself

in the Cambridge Associates indexes only in the following year.

Panel D documents the relationship between capital flows and different re-

turn series. We regress the measures of industry growth on the various indus-

try return measures as well as our cash flow-based index. With only 16 years

of data, the regression should be carefully interpreted and is only suggestive

evidence of relative significance. With this caveat, we note that the coeffi-

cient on our index based private equity index and capital flows is positive and

10Growth in the number of funds and in capital raised have a 92% correlation with one
another. The metric using number of funds is less sensitive to one large fund missing. Data
source is the full Preqin sample (Table 3.1).
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strongly statistically significant in all cases. In contrast the coefficient on both

the vintage-based return measures and Cambridge Associates return series are

only significant for the buyout sub-sample.

3.4.6 Private equity return cycles

Table 3.6 uses our cash flow-based private equity premium indexesthe al-

phas, to identify peaks and troughs in returns specific to private equity. The

time-varying alpha is the pure private equity return component. Table 3.6

shows the start and end of private equity cycles broken down by fund types. In

Panels A and B, a boom period is one that has more than two quarters in a row

with time-varying alpha above one standard deviation above the mean. A bust

period is one that has more than two quarters in a row with the time-varying

alpha below one standard deviation below the mean. We thus identify cycles

in a similar way various economic institutions, like the NBER, define economic

cycles.
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Table 3.6: Private Equity Premium Return Cycles

This table shows the start and end of private equity cycles broken down by fund types. In Panels A and B, a boom period is one that

has more than two quarters in a row with the private equity return premium, , more than one standard deviation above the mean.

A bust period is one that has more than two quarters in a row with more than one standard deviation below the mean. In panel A,

alpha is derived from the four-factor model of Pstor and Stambaugh (2003). In Panel B, alpha is derived from the CAPM model. In

Panel C, the definition of a boom/bust is the same except that we use the Cambridge Associates NAV-based quarterly return series.

The time series starts at 1993:Q1 and ends at 2010:Q4.

Panel A: Alpha cycle in private equity using the Pstor -Stambaugh four-factor model

Boom Bust Boom Bust

Starts Ends Starts Ends Starts Ends Starts Ends

All private equity funds Q1-1997 Q3-2000 Q4-2007 -

Venture capital funds Q1-1998 Q1-2001 Q2-2008 -

Buyout funds Q4-1995 Q1-1997 Q4-1998 Q2-2001 Q2-2005 Q3-2007

Real estate funds Q4-2005 Q4-2006 Q4-2007 Q3-2010

High yield debt funds Q1-1995 Q2-1996 Q4-1999 Q2-2002 Q3-2007 Q1-2008
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Panel B: Alpha cycle in private equity using the CAPM

Boom Bust Boom Bust

Starts Ends Starts Ends Starts Ends Starts Ends

All private equity funds Q3-1998 Q4-2000 Q3-2007 -

Venture capital funds Q1-1998 Q4-2000 Q3-2008 -

Buyout funds Q2-1996 Q3-1996 Q3-1998 Q3-2000 Q1-2005 Q1-2007

Real estate funds Q4-2002 Q4-2006 Q4-2007 Q2-2010

High yield debt funds Q1-1997 Q2-2001 Q2-2002 Q1-2004

Panel C: Return cycles in private equity according to the Cambridge Associates NAV-based index

Boom Bust Boom Bust

Starts Ends Starts Ends Starts Ends Starts Ends

Venture capital funds Q1-1999 Q1-2000 Q2-2002 Q4-2002

Buyout funds Q3-2008 Q1-2009

Real estate funds Q4-2008 Q4-2009
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In Panel A of Table 3.6, the alpha is derived from the four-factor model

of Pstor and Stambaugh (2003). In Panel B, alpha is computed using the

CAPM model. In Panel C, the definition of a boom or bust is the same as

the other panels, except that we use the Cambridge Associates NAV-based

quarterly return series. Table 3.6 clearly identifies the venture capital boom

of late 1990s, along with the buyout boom of the mid-2000s. The real estate

boom in the mid-2000s coincides with the buyout boom. The real estate bust

around the crisis can also be seen in the data. These results are similar if we

use a single-factor CAPM model to derive alpha or a four-factor model (Panels

B and C). In contrast, cycles identified from the Cambridge Associates returns

do not exhibit much boom-bust dynamics, if at all.

3.4.7 Test of the market segmentation hypothesis

The cyclicality of private equity represents a challenge to private equity

investors who are faced with the decision to time their investments, or to main-

tain a continuous commitment to the asset class and manage expectations about

short-term performance. This pattern is also difficult to explain in a standard

economic framework. Kaplan and Strmberg (2009) introduce a novel theory

of boom and bust cycles in private equity. They propose that buyout funds

exploit segmentation between the debt and equity markets. 11 Kaplan and

Strmberg (2009) extend the insights of the behavioral corporate finance liter-

ature to explain this correlation. In particular, Baker, Greenwood, and Wur-

gler (2003), and Baker and Wurgler (2000) present evidence that corporations

11Prior researchers have noted the connection between low interest rates and buyout
fundraising, such as Ljungqvist, Richardson, and Wolfenzon (2008), Demiroglu and James
(2010), Ivashina and Kovner (2011), Axelson et al. (2013).
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choose financing channels based on the relative capital market demand for eq-

uity vs. debt. Kaplan and Strmberg (2009) argue that the ultimate source of

the variation in relative demand for debt vs. equity is market sentiment, and

they report suggestive evidence of this by charting a variable defined as the

EBITDA/enterprise value minus the high yield spread. When this variable is

high, private equity buyouts should be relatively profitable because the cost of

debt financing in low compared to the return on asset.

Our cash flow-based private equity indexes allow us to empirically test the

behavioral market segmentation hypothesis. In particular, we test whether

private equity is profitable when the Kaplan-Stromberg asset-debt yield spread

is higher. Table 3.7 reports the results of regressions in which our private

equity cash flow returns are dependent variables and the independent variables

include the asset-debt yield spread, the Baker-Wurgler sentiment index and

a set of macro-economic variables that capture credit conditions (the default

spread, which is the difference in yields on AAA and BAA AAA rated debt, and

a survey of loan officers) and the health of the economy (growth in industrial

production, inflation, and the change in the VIX index). 12

Our specification jointly tests the theory that market sentiment provides the

opportunity for private equity managers to create value, and that the source of

that value is the asset-debt yield spread. If market sentiment is a significant

determinant of the private equity return premium, we expect a positive sign

on the sentiment index and a negative sign on the change in the VIX. In our

specification the sign on the default spread may go either way since, by con-

struction, it is negatively correlated to the asset-debt spread. Chen, Roll, and

12We use Newey and West (1987) standard errors and have 72 quarters of observations.
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Ross (1986) argue that the default spread captures investor confidence about

the economy. Another measure of confidence is the survey of loan officers. This

and industrial production growth should be positively associated with the ag-

gregate cash flow private equity indexes since buyout funds are, in effect, a

levered exposure to the corporate sector of the economy. Innovations in these

macroeconomic variables are rapidly priced in public capital markets, but not

necessarily incorporated in private capital markets. Likewise, inflation is likely

to have negative effects on nominal cash flow measures. The key prediction

is that the asset-debt spread should be a positive determinant of the private

equity return premium.

Panel A of Table 3.7 reports results for three specifications using both the

aggregate cash flow- based private equity indices (gt) and the private equity

premium series (ft). The specifications include either the asset-debt spread,

industrial production or both. The first three columns of coefficients show

that the index is significantly positively related to the asset-debt spread and

the sentiment index, consistent with the Kaplan-Stromberg hypothesis. It is

negatively related to the VIX inflation and the default spread and positively

correlated to production and the survey of loan officers. The coefficients on

production and inflation are insignificantly different from zero. These results are

consistent with the hypothesis that private equity does well when the economy

does well and when sentiment about the economy is positive. The second set

of regressions repeats the estimate using the private equity premium. In this

specification, only two variables are significant: growth in industrial production

and the VIX.

One problem with interpreting the results based on the aggregate indices
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is that the Kaplan- Strmberg theory is actually about buyout funds. Our

aggregate cash flow-based private equity indices are comprised of the returns

for all four types of funds. To the extent that all asset types are similarly

exposed to macro-economic conditions, this improves the power for estimate

the relationship of private equity to the general economy, but it adds noise to

the estimate of the co-variates of the premium series, ft . We have seen that

the premium cycles for buyout, venture capital, private equity and high yield

funds differ significantly. Panel B uses only the cash flow-based buyout return

indices. It also reports results for the Cambridge Associates buyout index.

The first two specifications show the results for our private equity total

return index. As with the broad index results, the asset-debt yield variable is

positive and significant, the survey of loan officers is positive and significant, the

default spread and VIX coefficients are negative and significant. Sentiment and

production lose significance for the buyout sub-index. Turning to the buyout

premium index results, we see that the asset-debt coefficient is positive and

significant as predicted, while the signs on the default spread and the VIX

change. The significant, positive coefficient on the buyout premium represents

a rejection of the null hypothesis that cheap relative financing terms are not a

source of value-creation by private equity managers.13

One qualification of these findings is that we are measuring the contempo-

raneous effects of the asset-debt yield spread. The proposed channel by which

this adds value is via the purchase of a higher yielding asset financed by issuing

cheap debt. The fund cash flows we observe are deployment or realization of

13In the last two columns of Panel B we report regressions for the Cambridge buyout
index. The results are consistent with theory and with the estimates from our aggregate cash
flow private equity index.
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capital and are thus conditional on such a transaction occurring. Nevertheless,

our premium index assumes that all firms in operation at a given date experi-

ence the same shocks. If we could separate transacting firms from firms that

were not exploiting the spread, we may find a larger effect.

3.5 Conclusion

Researchers and practitioners interested in understanding private equity in-

vestment have been limited by the structure and nature of the data. This

has made it particularly difficult to evaluate its time-series characteristics. We

present a methodology for extracting a latent performance measure from non-

periodic cash flow information, and demonstrate how it may be further decom-

posed into passive and active components. We find that private equity returns

are only partially spanned by investable passive indices. Our estimate suggests

that private equity is, to a first approximation, a levered investment in small

and mid-cap equities. We model the residual component of private equity re-

turns which cannot be replicated in traded, public markets as an orthogonal

variable with cyclical characteristics. We find that in the first part of our sam-

ple period the private equity premium contributed positively to returns and

in the second period it detracted from returns. Our estimated autocorrelation

coefficient is consistent with long-horizon cyclical behavior. We estimate the

private equity premium for separate classes and show that their cycles are not

highly correlated. This suggests that a diversified strategy across sub-asset

classes of private equity may be beneficial. Our cash flow-based private equity

indexes allow us to test current theories about the cyclical nature of private

equity returns. In particular, we test the Kaplan and Strmberg (2009) hypoth-
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esis that relative yields on corporate asset compared to high-yield debt explain

returns of buyout investment. We find evidence that the buyout premium is

higher in quarters for which the asset-debt yield spread is higher. Consistent

with the conjecture that this investment opportunity is related to behavioral

frictions, we also find that the Baker-Wurgler sentiment variable is correlated

to total private equity returns.
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Table 3.7: Private Equity Premium Return Cycles

This Table shows how our cash flow-based total private equity return indexes and those of industry

relate to macroeconomic variables. There are three different dependent variables: i) Time varying

alpha ( ft) for private equity funds or only buyout funds; ii) the total private equity return index

( gt), either for all private equity funds or only buyout funds; iii) Cambridge Associates quarterly

NAV-based buyout returns. The factor model used to derive and is the four-factor model of Pstor

and Stambaugh (2003). We compute t-statistics using Newey-West (1987) standard errors with four

lags, which are shown underneath each coefficient in italics. Time period is from the first quarter of

1993 to the last quarter of 2010.

Panel A:Cash flow-based private equity indices
CF PE index (gt) Premium (ft)

Constant 0 0.05*** 0 0 0 0

-0.05 4.36 0.09 -0.13 -0.88 0.71

Ebitda/EV - High Yield spread 2.82*** 2.55** 0.02 -0.24

3.49 2.46 0.09 -1.55

Industrial Production growth 2.01*** 0.47 0.30*** 0.44***

2.67 0.48 2.72 3.38

Default Spread (BAA-AAA) -1.64*** -2.18*** -1.61*** 0.02 0.1 0.04

-2.73 -4.53 -2.71 0.24 1.6 0.66

Inflation -1.72 -1.79 -1.69 0.1 0.14 0.13

-1.19 -1.32 -1.22 0.55 0.8 0.76

Sentiment index 0.73*** 0.67*** 0.70*** 0.04 0.01 0.01

3.5 3.02 3.15 1.3 0.34 0.27

Survey of Loan Officer 0.24** 0.26** 0.24** 0.02 0.01 0.02

2.09 2.4 2.13 1.19 1.05 1.16

Return VIX -0.22*** -0.26*** -0.22*** 0 0 0

-6.04 -5.92 -4.85 0.3 -0.51 -1.32

Adjusted R-square 67% 64% 67% -2% 12% 17%

Number of observations 72 72 72 72 72 72

123



Panel B: Cash flow-based buyout indices
Dependent Variable: CF BO index (gBO,t) Premium (fBO,t) CA index

Constant 0.05*** -0.01 0 -0.01** 0.04*** 0.01

5.41 -0.49 -0.21 -2.48 5.07 0.46

Ebitda/EV - High yield spread 3.01a 0.51*** 1.45***

3.06 2.78 3.41

Industrial production growth 2.02*** 0.21 0.04 -0.27* 1.51*** 0.63*

2.74 0.2 0.35 -1.75 5.41 1.86

Default spread (BAA-AAA) -2.55*** -1.88*** 0.06 0.17** -0.37 -0.04

-5.72 -3.8 1.11 2.54 -1.45 -0.17

Inflation -0.85 -0.73 0.04 0.06 -0.22 -0.16

-0.61 -0.54 0.38 0.7 -0.46 -0.32

Sentiment index 0.03 0.06 0.01 0.01 0.36*** 0.38***

0.2 0.43 0.2 0.43 3.09 3.17

Survey of loan officer 0.23*** 0.21*** 0.01 0 0.05 0.04

3.12 2.6 0.38 0.11 1.63 1.44

Return VIX -0.22*** -0.18*** 0 0.01** -0.06*** -0.04**

-5.25 -4.07 0.75 2.34 -3.55 -2.34

Adjusted R-square 58% 64% -7% 14% 57% 63%

Number of observations 72 72 72 72 72 72
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Appendix A
Appendix to Chapter 1

A.1 Proof of the Propositions

In this section, I present the proofs of the Propositions 1.3, 1.1, 1.2 in the
main body of the text.

Proof of Proposition 1.1

In following Bansal, Kiku, Shaliastovich and Yaron (2013), I assume that the
market portfolio gives the aggregate consumption.1 The total wealth portfolio’s
return, i.e. market return, is of the form

rM,t+1 = κ0 + κ1lnpd
M
t+1 − lnpdMt + ∆dMt+1

According to the assumption of long-run risk model, the log price-dividend ratio
only depend on the long-run expectation and conditional volatility of ∆dMt+1.

lnpdMt+1 = A0 + A1g
M
t + A2σ

2
g,t

In the equation above, A0, A1 and A2 are parameters, whose exact forms are
ready to pinned down, but not important.

The log of pricing kernel in the Bansal Yaron (2004) model is mt+1 =
θ log δ − θ

ψ
∆dMt+1 + (θ − 1)ra,t+1. Without loss of generality, I identify ra,t+1

with the market return. By log-linearization in Campbell and Shiller (1991),
the return is approximated by ra,t+1 = κ0 + κ1lnpd

M
t+1 − lnpdMt+1 + ∆dMt+1. Here

the log of price-dividend ratio depends only on the long-run component in div-
idend growth and its conditional volatility by the assumption of long-run risk

1 It is a traditional practice of substituting the return to aggregate wealth with the return
on the stock marke in the static CAPM literature. It has also been practiced in empirical
work based on recursive preferences (e.g., Epstein and Zin (1991) among others). The main
reason of my choice of this assumption is that the empirical analysis this paper focus is
the relative pricing in cross sections, this expedition in modeling has no influence on the
covariances of the cash-flows and the discount rates.
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model.
lnpdMt = A0 + A1g

M
t + A2(σMg,t)

2

Plug it into the equation of aggregate returns, I can show that the innovation
in the aggregate return is

ra,t+1 − Et(ra,t+1) = κ1A1Σ
1
2
ggε

g
t+1 + κ1A2Σ

1
2
σgσgε

σg
t+1 + σMg,tu

d
t+1

As a result the conditional variance in the return is linear in (σMg,t)
2.

(σMz,t)
2 ≡ Vart(ra,t+1) = (σMg,t)

2 + const

Plug the innovation in aggregate returns in the log of pricing kernel, I get the
innovation in the pricing kernel as

mt+1 − Et(mt+1) = (θ − 1− θ

ψ
)σMg,tu

d
t+1 + (θ − 1)[κ1A1Σ

1
2
ggε

g
t+1 + κ1A2Σ

1
2
σgσgε

σg
t+1]

The risk premium is therefore given by

zt ≡ Et(ra,t+1 − rft ) = −Covt(mt+1, ra,t+1)− 1

2
Vart(ra,t+1)

= −(θ − 1− θ

ψ
)(σMg,t)

2 − (θ − 1)κ2A2
1Σgg

−(θ − 1)κ2
1A

2
2Σσgσg −

1

2
(σMz,t)

2

I show that zt is linear in (σMg,t)
2 and (σMg,t)

2, and since (σMz,t)
2 is linear in (σMg,t)

2,
zt is only a linear function of (σMg,t)

2. The restrictions in the parameters are
necessary given the linear relationships.

Proof of Proposition 1.2

It suffices to show that the market risk β is linear in the cash-flow exposure
γ. For a specific Portfolio P , the pricing equation is

Et(r
P
t+1) +

1

2
Vart(r

P
t+1)− rft = −Covt(r

P
t+1,mt+1)

=
Covt(r

P
t+1,mt+1)

Covt(ra,t+1,mt+1)
[−Covt(ra,t+1,mt+1)]

The term in the bracket is the price of risk, and the ratio of covariances is the
market risk β. Given the assumption that the only resource is the long-run risk
from the cash-flow. The β is therefore linear in the cash-flow exposure γ.

135



Proof of Proposition 1.3

In reviewing Campbell and Cochrane (1999), the utility function maximized
by identical agents

E
∞∑
t=0

δt
(Ct −Hbt)−ν − 1

ν − 1

Here δ is the time discount factor, Ct is the level of consumption and Hbt is the
level of habit. Without loss of generality, I follow the original paper by setting
the consumption growth as i.i.d.

∆ct+1 ≡ log
Ct+1

Ct
= gct + σc,tvt+1

The log of pricing kernel is therefore

mt = log δ − ν(st+1 − st)− ν∆ct+1

Here st is the log of surplus consumption ratio St ≡ Ct−Hbt
Ct

, and it subjects to
a heteroskedastic AR(1)

st+1 = (1− φ)s̄+ φst + Λ(st)σc,tvt+1

where Λ(st) is the sensitivity function characterizing the heteroskedastic inno-
vation in st. Denote λt as zt + 1

2
(σMz,t)

2. If the pricing kernel can be put in the
form of

mt+1 = −rft −
1

2

λ2
t

(σMz,t)
2
− λt
σMz,t

vt+1

, then equations (1.31) and (1.32) are satisfied. Comparing the above form of
pricing kernel with the Campbell and Cochrane (1999) pricing kernel, as long
as Λ(st) and gMt satisfying

λt = ν(1 + Λ(st))σg,tσz,t

rft = − log δ + νgMt + ν[(φ− 1)(st − s̄)]−
1

2
ν2(1 + Λ(st))

2(σMg,t)
2,

then the Campbell and Cochrane (1999) model is embedded in the present-value
model as a special case automatically.

A.2 Detail of Portfolio Sorting

I employ 35 test portfolios, which are seven groups of quintile portfolios
sorted on different stock characteristics. These portfolios are common portfolios
reflecting the anomali in the cross-sectional returns. For each sorting, I label
the portfolios according to the alpha relative to the unconditional CAPM. The
portfolios with the lowest alpha are labeled by number “1”, while the portfolios
with highest alpha are labled as number “5”.
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The size portfolios (SIZE1-SIZE5) are formed at the end of each Decem-
ber based on the market capitalization at the end of year.The book-to-market
portfolios (BM1-BM5) are rebalanced at the end of June in every year, based
on the book-to-market ratio of each stock. The practice of forming both sets
of portfolios follow the instruction in Fama and French (1992). We form and
rebalance the momentum portfolios (MOM1-MOM5) by the rank of past re-
turns between month t − 12 and month t − 1, at the end of each quarter of a
year, following Jegadeesh and Titman (1993). The set of idiosyncratic volatility
portfolios (VOL1-VOL5) are constructed as described in Ang et al (2006). In
accordance with the notation in their paper, we construct a 3/0/3 portfolio,
which means the portfolios are rebalanced at the end of a quarter and held
for three months, according to the idiosyncratic volatility in the past quarter.
We form the the quintile Accruals portfolios (ACC1-ACC5) at the end of each
March in year t based on the Accrual component in the earnings at the end of
the year t−1. The definition of the accrual is from Sloan (1996). We sort tertile
portfolios (CI1-CI5) at the end of each June based on the capital investment
of the previous year, following Titman, et al (2004) and Liu, et al (2009). The
last sets of tertile portfolios (LIQ1-LIQ5) are formed by sorting on the liquidity
of the stocks, using the liquidity measure constructed in Amihud (2002).

A.3 Details of Calculating Bayes Factor

Denote M1 as the model characterized by the hypothesis I want to test
and M0 is the general model without hypothetical constraints. The Bayes
factor to test the hypothesis characterizing model M1 is calculated as 2(L(M0 |
Y ) − L(M1 | Y )), which is twice of the difference between marginal likelihood
of the the two models given observable data Y . It suffices to show how to
calculate these two marginal likelihood.

The methods of calculating these two marginal likelihoods are the same,
following Chibs (1995). The marginal likelihood is obtained using output from
Gibbs sampling. Without loss of generality, I show this algorithm of L(M0 | Y )
only.

Suppose p(Y |Θ, X) is the sampling density (likelihood function) and π(Θ)
and π(X) are the prior density. Then, the marginal likelihood can be written
as

p(M0 | Y ) =
p(Y |Θ, X)π(X)π(Θ)

p(X,Θ | Y )

owing to normalized by posterior density of latent variables and parameters
p(X,Θ | Y ). This identity holds for any Θ and Xt. For any value of Θ∗ and
X∗t , the proposed estimates of log of marginal density is therefore

L(M0 | Y ) = log p(Y | Θ∗, X∗) + log π(Θ∗) + log π(X∗)− log p(Θ∗, X∗ | Y )
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The likelihood function and priors density are ready given any specification
of X∗ and Θ∗. I only need to estimate the posterior density. As the Gibbs
sampler is defined through iterations of conditional density of X and Θ, the log
of posterior density of latent variables and parameters can be written as

log p(Θ∗, X∗ | Y ) = log p(Θ∗ | X∗, Y ) log p(X∗ | Y )

The first term is the marginal coordinate, which can be estimated by initial
draw of Gibbs sampler. The second term is given by

p(X∗ | Y ) =

∫
p(X∗ | Θ, Y )p(Θ | Y )dΘ

This can be estimated by draws from the reduced complete conditional Gibbs
run.

p̂(X∗ | Y ) = N−1

N∑
j=1

p(X∗ | Θ(j), Y )

A.4 Details of Calculating Fractions of Varia-
tion in Variance Decomposition

In this section, I present how to calculate the fractions accounted by state
variables, in decomposition of the time-series and cross-sectional variance of
lnpd, expected and realized returns.

In general, the state vector with I variables can be written as Xt = (x
(i)
t )Ii=1.

Notate the state vector muting the i− th variable as X
(−i)
t .

A.4.1 Time-series Variance Decomposition

I first address the time-series variance decomposition. As aforementioned
in Equation (??), the lnpd is a function of these state variables.

lnpdt = lnpd(Xt) ≡ AP +BP ′Xt +X ′tQ
PX ′t (A.4.1)

The the fraction of time-series variance of lnpd explained by the i− th (i ≤ I)
state variable is therefore,

R2
i = 1− var(lnpd(X−it ))

var(lnpd(Xt))

The expected and realized return can also be written as function of state vec-
tor Xt, by virtue of lnpd. Using Campbell and Shiller (1988) log-linearization,
the expected return relates to the expected and current lnpd.

Et(r
P
t+1) = κ0 + κ1Et(lnpd

P
t+1)− lnpdPt + Et(∆d

P
t+1) (A.4.2)

From Equation (A.4.1), one can derive the expected lnpd as function of state

138



vector Xt.
Et(lnpdt+1) = AP +BP ′ΦPXt +X ′tΦ

′
PQ

PΦPXt (A.4.3)

Therefore one can see Et(rt+1) = Er(Xt) is a function of the state vector Xt.
Then the fraction of time-series variance of expected return explained by

the i− th (i ≤ I) state variable is,

R2
i = 1− var(Er(X−it ))

var(Er(Xt))

For the realized return, Campbell and Shiller (1988) shows it has three
components, expected return, unexpected shock in lnpd and unexpected distri-
bution in CF.

rt+1 = Et(rt+1) + κ1(lnpdt+1 − Et(lnpdt+1)) + (∆dt+1 − Et(∆dt+1)) (A.4.4)

As the shock in lnpd has both DR and CF information, I further decompose
it into two shocks: one is purely due to change in DR (IDR) and the other is
purely due to change in CF (ICF ).

κ1(lnpdt+1 − Et(lnpdt+1)) = IDR,t+1 + I ′CF,t+1 (A.4.5)

where

IDR,t+1 =
1

2
κ1[(lnpd(µt+1, ωt+1)−lnpd(µt, ωt+1))+(lnpd(µt+1, ωt)−Et(lnpdt+1))]

(A.4.6)

I ′CF,t+1 =
1

2
κ1[(lnpd(µt+1, ωt+1)−lnpd(µt+1, ωt))+(lnpd(µt, ωt+1)−Et(lnpdt+1))]

(A.4.7)
I then combine the shocks due to update in CF and unexpected realization of
CF together to get ICF,t+1 = I ′CF,t+1 + (∆dt+1 − Et(∆dt+1)).

As a result, besides the state vector Xt, the realized return is also func-
tion of these two unexpected components, rt+1 = r(Xt, IDR,t+1, ICF,t+1). For
convenience, I notate IDR,t+1 as xI+1

t , and ICF,t+1 as xI+2
t .

The fraction of time-series variance of realized return explained by the i−th
(i ≤ I + 2)state variable is

R2
i = 1− var(r(X−it ))

var(r(Xt))

A.4.2 Cross-sectional Variance Decomposition

I first illustrate the cross-section variation decomposition in a general nota-
tion. Suppose one is interested in analyzing the cross-sectional variation in the
average of f , and the average of f is of the function form of K cross-sectional
statistics s1, ..., sK .

f̄P = f̄(sP1 , ..., s
P
K)
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Therefore, the fraction of the cross-sectional variance attributed to the k − th
cross-sectional statistics is calculated as the remaining portion that cannot be
explained by the other arguments.

R2
k = 1−

var(f̄(sP1 , ..., s
P
k−1, 0, s

P
k+1, ..., s

P
K)

var(f̄(sP1 , ..., s
P
K))

(A.4.8)

To analyze the cross-sectional variance of lnpd, expected and realized re-
turns, one need to find the function forms of their mean. Taking unconditional
expectation on both sides of Equation (A.4.1), (A.4.2) and (A.4.4), one can see
the mean of lnpd and returns as function of cross-sectional statistics character-
izing mean of DR and CF of individual stocks. I use over-line to notate for the
average.

lnpdPt = lnpd(β̄P , αP , cov(βP , z), cov(βP , (σz)
2), γP , cP , cov(γP , g), cov(γP , (σg)

2))
(A.4.9)

Et(rPt+1) = Er(β̄P , αP , cov(βP , z), cov(βP , (σz)
2), γP , cP , cov(γP , g), cov(γP , (σg)

2))
(A.4.10)

rPt+1 = r(β̄P , αP , cov(βP , z), cov(βP , (σz)
2), γP , cP , cov(γP , g), cov(γP , (σg)

2), IDR, ICF )
(A.4.11)

Plugging these functions forms in Equation (A.4.8), one can obtain the
fraction of the total cross-section variance of various observables attributed to
each explaining components.
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Appendix B
Appendix to Chapter 2

In this appendix, we value the shortfall option. Our approach follows the
analytical approximation in Alexander and Venkatramanan (2011). The time
to maturity of the option is assumed to be one year.

B.1 Spread Option Interpretation

In the first place, we study the asset allocation between risky equity and
risk-free cash, as a benchmark case. The case of allocation between equities and
risky bonds will be addressed in the next section. We denote the market value
of liability and the asset portfolio by Lt and At respectively, and the payoff of
the option by max{L1 − A1, 0}.

The market value of the liability at the end of the year is

L1 = L0 exp

(
(µL −

σ2
L

2
) + σLW

L
1

)
,

where WL
t is a Brownian motion process for the liabilities. We assume that the

weight on equity and cash are chosen at the beginning of the period and not
rebalanced during the year. The market value of the portfolio managed by the
fund is

A1 = wA0 exp

(
(µ− σ2

E

2
) + σEW

E
1

)
+ (1− w)A0 exp(rf ),

where WE
t is a Brownian motion process for equities. Note that A1 does not

satisfy the assumption of a log-normal diffusion. Thus, the exchange option
pricing formulas of Fisher (1978) and Margrabe (1978) do not apply for valuing
P (w,A0, L0) = EQ[max(L1−A1, 0)], where Q is the risk-neutral measure. The
exchange options are good approximations when option maturities are very
short, as Alexander and Venkatramanan (2011) comment.
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Let us define

S1,t = Lt

S2,t = wA0 exp

(
(µ− σ2

E

2
)t+ σWE

t

)
K = (1− w)A0 exp(rf ). (B.1)

As both S1 and S2 are log-normally distributed, we can transform the problem
into pricing a spread option with the underlying assets being S1 and S2, and
the strike spread being K:

P (w,A0, L0) = EQ[max(L1 − A1, 0)] = EQ[max(S1,1 − S2,1 −K, 0)]. (B.2)

We employ the analytical approximation of spread options as compound ex-
change options following Alexander and Venkaramanan (2011). The compound
exchange option representation appears to provide the most precise estimate of
the value of spread options.

B.2 Valuation of the Shortfall Option

Define m to be a real number such that m ≥ 1. Let us define the regions:

L = {S1,1 − S2,1 −K ≥ 0}
A = {S1,1 −mK ≥ 0}
B = {S2,1 − (m− 1)K ≥ 0}. (B.3)

Then the spread option’s payoff of strike K at year end can be written as:

1L[S1,1 − S2,1 −K] = 1L(1A[S1,1 −mK]− 1B[S2,1 − (m− 1)K]

+(1− 1A)[S1,1 −mK]− (1− 1B)[S2,1 − (m− 1)K]).
(B.4)

With some algebraic manipulation, Alexander and Venaramanan (2011)
show that

P (w,L0, A0) = e−rf (EQ{[(U1,1 − U2,1)+}+ EQ{[(V2,1 − V1,1)+]}) (B.5)

where U1,1, V1,1 are payoffs to European call and put options on S1 with strike
mK, respectively. Likewise, U2,1, V2,1 are European call and put options on S2

with strike (m − 1)K, respectively. The spread option is thus equivalent to
compound exchange options on two calls and two puts. The parameter m is
chosen such that the single-asset call options are deep-in-the-money. For our
calibrations we choose m = 5 which satisfies the approximation conditions in
Alexander and Venaramanan (2011).
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The calls and puts can be described as:

dUi,t = rfUi,tdt+ ξiUi,tdW
Q
i,t

dVi,t = rfVi,tdt+ ηiVi,tdW
Q
i,t. (B.6)

Note that U1,0 and V1,0 are the Black-Scholes prices at t = 0. By applying Ito’s
theorem on the calls and the puts, the parameters ξ and η are:

ξi = σi
Si,t
Ui,t

∂Ui,t
∂Si,t

ηi = σi
Si,t
Vi,t

∣∣∣∣∂Vi,t∂Si,t

∣∣∣∣ (B.7)

Under our assumption that S1 and S2 are driven by geometrical Brownian
motion processes, the calls and puts in equation (B.5) can be approximated as
log normal even though the spread option is not log normal by suitable choice
of m.

We can now apply the Margrabe’s (1978) formula for exchange options on
equation (B.5):

P (w,L0, A0) = e−rf [U1,0N(d1U)− U2,0N(d2U)− (V1,0N(−d1V )− V2,0N(−d2V )]
(B.8)

where N(·) represents the normal cumulative density function, and the param-
eters d1X and d2X for X ∈ {U, V } are given by

d1X =
ln
(
X10

X20

)
+ 1

2
σ2
X

σX
d2X = d1X − σX (B.9)

The volatilities of the call and put are given by

σU =
√
ξ2

1 + ξ2
2 − 2ρξ1ξ2

σV =
√
η2

1 + η2
2 − 2ρη1η2 (B.10)

The correlation used to compute the exchange option volatility is the implied
correlation between two vanilla calls or puts. They are the same as the corre-
lation between the underlying prices of the two assets, as the options and the
underlying prices are driven by the same Brownian motions. Note also that
as the underlying asset 1 is the liability, S1,0 = L0 and σ1 = σL. Similarly as
the underlying asset 2 is the equity portion of the portfolio, S2,0 = wA0 and
σ2 = σE.
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B.3 Equity and Risky Bond Case

In this section, we value the shortfall option when the bond is risky. The
risky bond has log normal price process:

dB

B
= (µB −

σ2
B

2
)dt+ σBdWB,t (B.11)

We choose the risky bond as the numeraire, and the equivalent martingale
measure associated with this numeraire is denoted as R. The liability and
equities have the following normalized price processes:

d(L/B)

L/B
= σLdW

R
L,t − σBdWR

B,t

d(E/B)

E/B
= σEdW

R
E,t − σBdWR

B,t (B.12)

The contingent claim [L1 − A1]+ can be priced as

P (w,A0, L0, B0) = B0E
R{[L1 − A1]+/B1} (B.13)

We can then write [L1 − A1]+/B1 in the form of (S1,1 − S2,1 −K)+, where

S1,t = Lt/Bt

S2,t = w
A0

B0

exp

(
−σ

2
E − 2ρEBσEσB − σ2

B

2
t+ σEW

R
E,t − σBWR

B,t

)
K = (1− w)A0/B0 (B.14)

The rest of the pricing approach is identical to what we outlined in the previous
section.

144



Appendix C
Appendix to Chapter 3

C.1 Identification of Private Equity Returns

Consider the following four funds, which live between times t = 0 and t = 4
:

Times PE return (g) Fund 1 Fund 2 Fund 3 Fund 4
0 -100 -100
1 5.90% 53.0 0 -100 -100
2 17.50% 31.1 124.4 117.5 0
3 -4.80% 29.6 0 111.9
4 31.70% 131.7

All the cash flows represent money paid or received by Limited Partners (LPs).
The contributions into the funds are denoted by negative signs and have all
been normalized to 100. Distributions from the funds are marked in bold and
are represented by positive numbers. Each of the four funds begins with an
initial investment of 100. Funds 1 and 2 start at time 0, and funds 3 and 4
start at time 1. Fund 1 pays intermediary dividends and pays half of the fund
value out each year, except in the last year where it pays out the remainder.
Fund 3 invests in two projects sequentially and the other funds dissolve after
only one project.

We do not observe the private equity return, gt . If the funds are correctly
priced, then the fund investments must satisfy a NPV condition, which is

PV (I) = PV (D) (C.1)
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where PV denotes present value, I represents the investments made, and D the
distributions received. The NPV conditions for the four funds are:

Fund1 :100 =
53

1 + g1

+
31.1

(1 + g1)(1 + g2)
+

29.6

(1 + g1)(1 + g2)(1 + g3)
,

Fund2 :100 =
124.4

(1 + g1)(1 + g2)
, (C.2)

Fund3 :100 +
100

(1 + g2)(1 + g3)
=

117.5

1 + g1

+
131.7

(1 + g2)(1 + g3)(1 + g4)
,

Fund4 :100 =
111.9

(1 + g2)(1 + g3)
.

This constitutes a non-linear system of four equations with four unknowns, g1,
g2, g3, and g4 . Treating each of these discount rates as separate parameters, we
can solve this system (with a non-linear root solver). This yields the solution of
the private equity returns listed in the table. Hence, using the NPV conditions
allows us to estimate the private equity returns each period using LP cash flows.

The NPVs of all the funds do not involve the complete set of discount rates.
Since only funds 1 and 2 are alive at time 1, only those funds identify g1. All
funds are alive at time 2, so all their NPVs involve the time 2 discount rate,
g2. As only fund 4 is alive at time 4, g4 enters only the NPV equation of fund
4. Intuitively, identification is obtained because when we change a particular
discount rate, like g4, only certain NPVs are affected by that change. At a given
time, all funds that are alive at that time are subject to the same discount rate.
If the discount rate at that time changes, the NPVs of the funds alive at that
time are affected.

Now suppose that the same discount rate applies at all periods, so gt = ḡ for
t = 1, · · · , 4. Then, there are four NPV equations but only one discount rate.
Thus, the system is over-identified. We can estimate the constant discount rate
by assuming an orthogonality condition or distribution for the NPV equations.
In our empirical work, we work with the ratio

PV (I)

PV (D)
= 1 (C.3)
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which is equivalent to equation (C.1). 1 If we use the NPV itself in equation
(C.1), the error in fitting the NPV condition may be large simply because the
fund size is large. In equation (C.3), the ratio of the present value of investments
to the present value of distributions does not have this problem as the size of
the cash flows roughly cancels out in both the numerator and denominator.

There is an intermediate case between assuming that each discount rate for
each period is a free parameter and the case of a constant discount rate for all
periods. We parameterize the private equity return to be a persistent process,
so that we require fewer funds than discount rates for identification. In fact,
it is precisely over-identification which makes our procedure robust. The many
funds in existence at a point in time provide over-identifying restrictions to
estimate the latent discount rate. Since there are different funds that start and
end across time, we can identify discount rates across time.

It is useful to contrast the returns with the IRR. Our returns apply to
all funds. In contrast, the internal rate of return (IRR) commonly used as a
return heuristic by private equity industry participants is usually computed at
the fund level. Funds are often grouped into separate vintages, and the IRRs
associated with funds in different vintages are taken as performance measures.
Our approach differs in two ways from the IRR. First, we estimate the same
set of discount rates across funds, rather than inferring one discount rate, the
IRR, from each fund. Second, by using many simultaneous funds with different
cash flows in different periods, we can identify a time series of returns which
are common to all private equity projects. The only time variation that can be
achieved by fund-level IRRs is to examine ten-years overlapping IRRs of funds
in different vintage years.

The literature has used various estimation procedures when the system is
over-identified. In the real estate literature, estimation has typically involved
(generalized) least-squares procedures. These techniques have been applied
to residential real estate (Bailey, Muth, and Nourse (1963), Case and Shiller
(1987)) and commercial property (Geltner and Goetzmann (2000)). Similar
procedures have been used by Peng (2001) and Hwang, Quigley, and Woodward
(2005) to estimate returns to venture capital. In the private equity literature,
Driessen, Lin, and Phalippou (2012) employ a generalized method of moments

1Equation (C.3) is similar to the ratios introduced by Ljungqvist and Richardson (2003)
and Kaplan and Schoar (2005). In the public market equivalent (PME) ratio of Kaplan and
Schoar (2005), the present values of the investments and distributions are computed with
the market return, or equivalently it is assumed that the private equitys discount rate is the
same as the aggregate equity market. They interpret private equity as out-performing the
market if the PME is greater than one. In equation (C.3), we compute the present values
using discount rates which are endogenously determined. Nevertheless, the same intuition as
Kaplan and Schoar holds in the sense that when private equity investments are fairly priced
with appropriate discount rates, the ratio of the PV of investments to the PV of distributions
should equal one.
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estimator to a set of counstant discount rates, similar to the assumption that
gt = ḡ for all t.

Our innovation is to introduce a way to extract multiple latent factorsand
factor loadingfrom infrequent transactions data when the latent factor can be
persistent, and there are also observable factors. The estimation is detailed in
the following section.

C.2 Estimation of the Model

We re-state the model here for convenience. We can merge equations (3.2)
and (3.3) into one equation containing only the latent state variable,get , which
is the state equation:

g2
t = (1− φ)α + φget−1 + β′(Ft − φFt−1) + σgεt, (C.4)

where the systematic factors, Ft, are observable. We assume that the zero NPV
condition in equation (3.4) holds, and we specify that the log ratio of the PV
of the distributions to the PV of investments is normally distributed:

ln
PVi(D)

PVi(I)
∼ N(µ, σ2), (C.5)

Equation (C.2) which repeats equation (3.6) represents the likelihood func-
tion of the cash flows. To ensure that the ratio of the present value of distribu-
tions and the present value of investments are centered at one, we set µ = −1

2
σ2

. This is equivalent to assuming that the errors of the log ratio of the PV of
distributions to the PV of investments have zero mean.

Equations (C.1) and (C.2) constitute a state equation and a non-linear
observation equation. The following algorithm filters the latent state variable
get given the observation equations. Once get is estimated, we can infer the
private equity-specific return, ft , using

ft = get − (α + β′Ft), (C.6)

We denote the parameters θ = (α, β, φ, σg, σ) and let θ denote the full set
of parameters less the parameter that is being estimated in each conditional
draw. We collect the exogenous private equity cash flow data and the common
tradable factors Ft as Yt = {{Iit}, {Dit}, {Ft}} . We estimate the model de-
scribed by MCMC and Gibbs sampling. Other similar models are estimated
by Jacquier, Polson, and Rossi (2004), Jacquier, Polson, and Rossi (1994), Ang
and Chen (2007), which involve latent state variables. These papers are able
to directly use observable returns. In contrast, we use non-linear NPV equa-
tions to infer returns. This makes our estimation more similar to Chen (2013),
who infers latent discount rate and cash flow factors from price-dividend ratios.
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A textbook exposition of Gibbs sampling is provided by Robert and Casella
(1999).

In each of our estimations, we use a burn-in period of 20,000 draws and
sample for 80,000 draws to produce the posterior distributions of latent state
variables and parameters. With this large number of sampling, our estimation
converges in a sense of passing the Geweke (1992) convergence test.

The Gibbs sampler iterates over the following sets of states and parame-
ters conditioned on other parameters and states variables, to converge to the
posterior distribution of p({get }, θ|Y ) :

1. Private equity returns: p({get }|θ, Y ) ,

2. Parameters of the private equity-specific return: p(β, φ, α|θ−, {get }, Y ) ,

3. Standard deviation of the private equity return shocks: p(σg|θ−, {get }, Y )
, and

4. Standard deviation of likelihood errorsp(σ|θ−, {get }, Y ) :

We discuss each one in turn.

Private equity returns, p({get }|θ, Y )

We draw get using single-state updating Metropolis-Hasting algorithm (see
Jacquier, Polson, and Rossi (1994), Jacquier, Polson, and Rossi (2004)). For a
single state update, the joint posterior is:

p(get |{gei }i 6=tθ, Y ) ∝ p(Y |{get }Tt=1, θ)p({get }Tt=1, θ, Y )

∝ p(Y |{get }Tt=1, θ)p(g
e
t |get−1, g

e
t+1, θ, Y )

∝ p(Y |{get }Tt=1, θ)p(g
e
t |get−1, θ, Y )p(get+1|get , θ, Y )p(get ) (C.7)

We can go from the second to third line in equation (C.7) because get
is Markov. In equation (C.7), the distribution p(Y |{get }Tt=1, θ) is the like-
lihood function in equation (C.5). The distribution of p(get |get−1, θ, Y ) and
p(get+1|get , θ, Y ) are implied by the dynamics of get in equation (C.4).

They can be expressed as:

p(get |get−1, θ, Y ) ∝ exp(− 1

2σ2
g

(get − (1− φ)α− φget−1 − β′(Ft − φFt−1))2)

p(get+1|get , θ, Y ) ∝ exp(− 1

2σ2
g

(get+1 − (1− φ)α− φget − β′(Ft+1 − φFt))2) (C.8)

Collecting terms and completing the squares, we obtain

p(get |{gei }i 6=t, θ, Y ) ∝ p(Y |{get }Tt=1, θ) exp(−(get − µ)2

2σ2
g

(1 + σ2))p(get ) (C.9)
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where

µt =
φ(get−1 + get+1 + (1− φ)α + β′((1 + φ2)Ft − φ(Ft+1 + Ft−1)))

1 + φ2
(C.10)

For the prior of get , we impose an uninformative prior, p(get ) ∝ 1. We use a
Metropolis-Hasting draw with the proposal density

q(get ) ∝ exp(−(get − µt)2

2σ2
g

(1 + φ2)) (C.11)

The acceptance probability for the (k + 1)− th draw, g
e,(k+1)
t , is

min(
p(Y |ge,(k+1)

t , {gei }i 6=t, θ)
p(Y |ge,(k)

t , {gei }i 6=t, θ)
, 1). (C.12)

When drawing get at the beginning or the end of the sample, we integrate
out the initial and end values drawing from the process in equation (C.4).

Parameters of the private equity-specific return: p(β, φ, α|θ−, {get }, Y )

Consider the factor loadings, β. We can write the posterior

p(β|θ−, {get }, Y ) ∝ p(Y |β, θ−, {get })p({get }|β, θ−)p(β)

∝ p({get }|β, θ−)p(β) (C.13)

because β does not enter the dynamics of the private equity returns, get . We
can rewrite equation (C.4) as

get − (1− φ)α− φget−1 = β′(Ft − φFt−1) + σgεt, (C.14)

which implies a standard regression draw for β . We use a normal conjugate
prior. The draws of φ and α are similar. Although they could be drawn directly
in a multivariate conjugate regression draw, we separate them. This allows us
to place separate priors on each parameter.

Standard deviation of the private equity return shocks: p(σg|θ−, {get }, Y )

We draw σ2
g using a conjugate Inverse Gamma draw. We select a truncated

conjugate prior by confining the range of between 0.1% and 100% per quarter.
We assume the prior

p(σ2
g) ∼ IG(

a0

2
,
b0

2
)1[10−6,1] (C.15)

where a0 = 2 and b0 = 10−6. The peak of this prior is far left to the lower
bound of our range; therefore, the truncated prior is approximately a uniform
distribution on the range.
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We draw the posterior distribution of σ2
g from its truncated conjugate pos-

terior:

p(σ2
g |θ−, Y ) ∼ IG(

a1

2
,
b1

2
)1[10−6,1] (C.16)

where a1 = a0 + T − 1, and b1 = b0 + u, and u is given by

u =
∑

(get − (1− φ)α− φget − β′(Ft − Ft−1))2 (C.17)

Standard deviation of likelihood errorsp(σ|θ−, {get }, Y )

We draw σ2 using a conjugate truncated Inverse Gamma distribution. This
follows a similar method to the draw for σ2 . We assume the prior

p(σ2) ∼ IG(
A0

2
,
B0

2
)1[10−6,1] (C.18)

with A0 = 10−6 and B0 = 10−6. Denote

s =
∑
i

(ln
PV (Di)

PV (Ii)
)2.

Then the posterior distribution is

p(σ2|θ−, Y ) ∼ IG(
A0 +N

2
,
B0 + s

2
)1[10−6,1] (C.19)

Priors

Like any Bayesian procedure, the estimation requires assumptions on the
prior distributions of parameters. The prior on betas are taken from the cur-
rent literature on private equity as listed in Appendix Table C.1 (Brav and
Gompers (1997), Driessen, Lin, and Phalippou (2012), Derwall et al. (2009),
Ewens, Jones, and Rhodes-Kropf (2013), Korteweg and Sorensen (2010), Cao
and Lerner (2009), Franzoni, Nowak, and Phalippou (2012), Jegadeesh, Krussl,
and Pollet (2009), Chiang, Lee, and Wisen (2005), Lin and Yung (2004), Elton
et al. (2001)). These studies estimate a three factor Fama-French model for
venture capital, buyout, real estate or high yield bonds. 2 Real estate esti-
mates are derived from REITs, and high yield debt estimates are derived from
Industrial BBB-rated bonds of 10-year maturities. The weighted average across
sub-classes takes the four sub-classes averages and weights them by the number
of funds in each sub-classes. The loadings are rounded at 0.05. The average
loading in each category is used as priors.

2Note that Jegadeesh, Krussl, and Pollet (2009) use a dataset that contains predominantly
but not exclusively buyout related vehicles (the rest of their sample is venture capital related).
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Table C.1: Literature Estimates of the Risk Exposures of Private Equity
Funds

This table shows the factor loading estimates shown in the literature. Selected papers are

those that estimated a three factor model for venture capital, buyout, real estate or high yield

bonds. Jegadeesh, Kraussl and Pollet (2010) use a dataset that contains predominantly but

not exclusively buyout related vehicles (the rest of their sample is venture capital related).

Real estate estimates are derived from real estate investment trusts, and high yield debt

estimates are derived from Industrial BBB-rated bonds of 10-year maturities. The weighted

average across sub-classes takes the four sub-classes averages and weights them by the number

of funds in each sub-class. The loadings are rounded to increments of 0.05. The average

loading in each category is used as priors in our Bayesian estimations.

Venture capital funds
Authors Year βmkt βsmb βhml
Brav, and Gompers 1997 1.1 1.3 -0.7
Driessen, Lin and Phalippou 2012 2.4 0.9 -0.25
Ewens, Jones and Rhodes-Kropf 2013 1.05 -0.1 -0.9
Korteweg, and Sorensen 2009 2.3 1 -1.55
Average venture capital funds 1.7 0.8 -0.85

Buyout funds
Authors Year βmkt βsmb βhml
Cao, and Lerner 2007 1.3 0.75 0.2
Driessen, Lin and Phalippou 2012 1.7 -0.9 1.4
Ewens, Jones and Rhodes-Kropf 2013 0.8 0.1 0.25
Franzoni, Nowak and Phalippou 2012 1.4 -0.1 0.7
Jegadeesh, Krussl and Pollet 2010 1.05 0.6 0.35
Average buyout funds 1.25 0.1 0.6

Real estate
Authors Year βmkt βsmb βhml
Chiang, Lee and Wisen 2005 0.55 0.4 0.5
Derwall, Huij, Brounen, and Marquering 2009 0.65 0.4 0.6
Lin and Yung 2004 0.55 0.4 0.7
Average real estate 0.6 0.4 0.6

High yield debt
Authors Year βmkt βsmb βhml
Elton, Gruber, Agrawal, and Mann 2001 0.7 1.3 1.45
Average high yield debt 0.7 1.3 1.45

Weighted average across sub-classes 1.3 0.55 0.05
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For the loading on the liquidity factor, there is only the Franzoni, Nowak,
and Phalippou (2012) estimate available in the literature and it is available
only for buyout. They find a beta of 0.7, which we then use as a prior for
buyout funds. For the other sub-samples and the pooled private equity fund
samples we use a prior of 0.5. From the estimates in Table C.1, we set prior
means for market, size, value, and liquidity factors at 1.30, 0.55, 0.05, and 0.50,
respectively, for the private equity sample. When we estimate factor loadings
per fund category (venture capital, buyout etc.) we use the average estimate
in the literature in the corresponding category. The prior for alpha is set at
zero for simplicity. Since are computed at the end of each iteration by setting
the NPV to zero from the factor loadings in that iteration, the estimation is
insensitive to the alpha priors.

To compute the prior for the premium persistence, we use the individ-
ual buyout investment return database of Lopez-de-Silanes, Phalippou, and
Gottschalg (2013). We compute the correlation between successive investment
IRRs of the same private equity firm (IRR of investment i and IRR of invest-
ment i+1) and find it to be 0.25. The average spread in starting dates is around
six months and investments last for four years. If the process is assumed to
be AR(1), this means an autocorrelation coefficient of 0.5 at yearly frequency,
which is what we use as a prior.

We set bounds of ±1 around the prior mean for betas. There are no bounds
on alpha. The autocorrelation parameter, φ , is restricted to lie between 0
and 0.9 and the latent return is restricted to lie in between -0.50 and 1.00 per
quarter.

The standard deviation of the prior captures how diffuse the priors are. We
choose a large standard deviation for the priors equal to 10. This would rep-
resent an extremely diffuse prior in most contexts. We find, however, that the
posterior distributions depend on the volatility of the latent factors more than
the priors of the parameters. The volatility of the latent factor is equivalent
to determining the R2 , that is how much of the private equity return is at-
tributable to systematic factors. Since ft is latent, we could exactly match any
private equity return process if there were no restrictions. This can be clearly
seen in a traditional linear context, but also occurs in the likelihood for our
private equity cashflows. Thus, the volatility of the latent process effectively
influences the informativeness of the priors.

We cap the volatility of the latent returns at a large 100% per quarter.
For the prior for the volatility of the latent return, we use a mean of 20%
per quarter. We examine robustness to these choice and the sample selection
choices in next section.
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C.3 Robustness Checks And Small Sample Prop-
erties

In this appendix, we show that our estimation method is robust. First, we
report the sensitivity of the estimation procedure to different choices of the
priors of the parameters, their informativeness, and sample selection; we find
no substantial influence on the estimation results. Second, we run Monte Carlo
simulations with known (pre-set) parameters and state factors. We find that
our Bayesian Gibbs sampling method and identification strategy generates little
small-sample bias.

Sensitivity to priors and assumptions

Since we use a Bayesian framework, it is useful to understand how the priors
and their informativeness affect the results. In addition, an important decision
in our framework is the threshold to use as a NAV cut-off for definition of a
quasi-liquidated fund. In Table C.2, we examine robustness of our estimations
to different priors and NAV thresholds. The first line shows the results with
the default specification; the estimates coincide with those reported in the main
tables. Each line then shows the results of implementing one change. Panel A
shows results for the CAPM for the sample of private equity funds. We first
examine the effects of changing the priors about the likelihood standard error,
σ , in equation (9). Raising the maximum prior for σ slightly increases the
mean of the estimated betas to 1.43. The alpha estimates are unchanged. Note
also that persistence estimates drop when the maximum on σ increases.

Priors on beta obviously make a difference. The prior mean used in our
estimation is 1.30. Increasing the prior mean to 1.80 results in a posterior
mean estimate of 1.65, roughly one standard error above the default estimated
mean value. Decreasing the prior by 0.5, i.e. from 1.3 to 0.8 yields a beta of
1.15. Thus, priors on betas matter to estimate the systematic risk exposure,
although we cannot statistically reject the null that these are equal to the
baseline estimation. Variation of the beta priors has little effect on the in-
sample alpha. The fact that the posterior always move in the direction of our
original prior can be seen as additional support for our original set of priors.

Turning to the NAV cutoff assumption we find that beta estimates are rel-
atively unchanged if we lower the threshold for the percentage of the fund
liquidated from 50% to 33%. The CAPM alpha increases to 0.07. Raising the
threshold to 66% and 75% has little effect. In other words, restricting the sam-
ple to funds that have more liquidated investments makes private equity look
more attractive (in that sample). This is consistent with private equity funds
holding on to losers, making better performing funds liquidating faster (Lopez-
de-Silanes, Phalippou, and Gottschalg (2013)). This may reflect an upward
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Table C.2: Risk Exposures of Private Equity Funds – Robustness Tests

The risk loading estimates are re-estimated separately with one change in our estimation
methodology at a time. The first line shows the results with the default specification; the
estimates coincide with those reported in the main tables. Each line then specifies the change
made and the corresponding results. Panel A shows results for the CAPM for the sample of
private equity funds. Panels B, C, and D show results for the four-factor model of Pstor and
Stambaugh (2003) for the sample of private equity funds, venture capital funds, and buyout
funds, respectively.

Panel A: CAPM
Change βmkt In-sample Persistence R-square Nobs

Alpha of Alpha
Default 1.41*** 0.05*** 0.4 93.00% 630

0.24 0.01 0.19
Sigma max from 50% to 75% 1.43*** 0.05*** 0.27 81.10% 630

0.4 0.01 0.18
Sigma priors from 10 to 5 1.35*** 0.05*** 0.42*** 90.10% 630

0.18 0.01 0.16
Sigma priors from 10 to 2 1.31*** 0.05*** 0.46*** 86.60% 630

0.1 0.01 0.1
Beta priors increase by 0.5 1.65*** 0.04*** 0.40** 95.50% 630

0.22 0.00 0.19
Beta priors decrease by 0.5 1.15*** 0.05*** 0.40** 87.80% 630

0.26 0.01 0.19
NAV threshold from 50% to 33% 1.39*** 0.07*** 0.41** 92.60% 484

0.26 0.01 0.2
NAV threshold from 50% to 66% 1.37*** 0.04*** 0.34* 93.20% 790

0.23 0.00 0.18
NAV threshold from 50% to 75% 1.34*** 0.04*** 0.32* 93.10% 868

0.23 0.00 0.17
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Panel B: Four-factor model
Change βmkt βsize βvalue βilliquidity In-sample Persistence R-square Nobs

Alpha of Alpha
Default 1.41*** 0.41 0.03 0.36 0 0.48 97.00% 630

0.21 0.26 0.23 0.27 0.02 0.19
Sigma max from 50% to 75% 1.46*** 0.4 -0.13 0.22 0.02 0.28 88.20% 630

0.38 0.52 0.47 0.53 0.02 0.18
Sigma priors from 10 to 5 1.36*** 0.50*** 0.03 0.46*** -0.01** 0.49*** 96.30% 630

0.14 0.15 0.15 0.15 0.01 0.13
Sigma priors from 10 to 2 1.31*** 0.54*** 0.04 0.49*** -0.02*** 0.50*** 95.10% 630

0.07 0.07 0.07 0.07 0.01 0.07
Beta priors increase by 0.5 1.53*** 0.78*** 0.25 0.50* -0.04*** 0.51*** 98.50% 630

0.18 0.28 0.24 0.26 0.01 0.19
Beta priors decrease by 0.5 1.13*** -0.01 -0.29 -0.01 0.07*** 0.41** 88.50% 630

0.32 0.39 0.34 0.42 0.01 0.19
NAV threshold from 50% to 33% 1.41*** 0.42 0.03 0.36 0.02* 0.48*** 96.70% 484

0.22 0.28 0.25 0.29 0.01 0.19
NAV threshold from 50% to 66% 1.40*** 0.41 -0.02 0.35 -0.01 0.44** 97.00% 790

0.2 0.26 0.23 0.28 0.01 0.17
NAV threshold from 50% to 75% 1.37*** 0.39 -0.05 0.31 -0.01 0.41** 96.50% 868

0.22 0.27 0.24 0.29 0.01 0.18

Panel C: Four-factor for VC
Change Alpha Alpha Persistence βmkt R2 Nobs

Full sample Est. sample
Default 1.60% 3.90% 0.56*** 1.62*** 0.94 272

0.60% 0.18 0.26
Sigma max from 50% to 75% 1.60% 3.80% 0.38* 1.66*** 0.82 272

0.80% 0.2 0.41
Sigma priors from 10 to 5 1.60% 3.80% 0.52*** 1.66*** 0.93 272

0.60% 0.16 0.19
Sigma priors from 10 to 2 1.60% 3.80% 0.49*** 1.69*** 0.9 272

0.60% 0.1 0.11
Beta priors increase by 0.5 1.70% 3.70% 0.54*** 1.84*** 0.96 272

0.60% 0.19 0.22
Beta priors decrease by 0.5 1.90% 4.40% 0.58*** 1.35*** 0.9 272

0.60% 0.18 0.3
NAV threshold from 50% to 33% 1.60% 7.30% 0.58*** 1.63*** 0.94 203

0.60% 0.19 0.26
NAV threshold from 50% to 66% 1.60% 2.60% 0.51*** 1.62*** 0.94 344

0.60% 0.19 0.27
NAV threshold from 50% to 75% 1.60% 2.40% 0.50** 1.60*** 0.93 376

0.60% 0.19 0.27

156



Panel D: Four-factor for BO
Change Alpha Alpha Persistence βmkt R2 Nobs

Full sample Est. sample
Default 4.70% 5.60% 0.41** 1.22*** 0.87 243

0.50% 0.19 0.27
Sigma max from 50% to 75% 4.70% 5.60% 0.38* 1.20*** 0.82 243

0.50% 0.2 0.29
Sigma priors from 10 to 5 4.70% 5.60% 0.42** 1.23*** 0.85 243

0.50% 0.17 0.2
Sigma priors from 10 to 2 4.70% 5.60% 0.46*** 1.24*** 0.81 243

0.50% 0.11 0.12
Beta priors increase by 0.5 4.70% 5.50% 0.42** 1.42*** 0.91 243

0.50% 0.2 0.26
Beta priors decrease by 0.5 4.90% 5.80% 0.42** 1.01*** 0.79 243

0.50% 0.2 0.3
NAV threshold from 50% to 33% 4.70% 6.00% 0.36* 1.15*** 0.86 193

0.60% 0.2 0.29
NAV threshold from 50% to 66% 4.70% 5.10% 0.40** 1.16*** 0.88 306

0.40% 0.19 0.23
NAV threshold from 50% to 75% 4.80% 5.10% 0.42** 1.12*** 0.86 336

0.40% 0.19 0.23

bias in estimated NAVs. More comforting is the evidence from increasing the
threshold. Including more funds leaves the estimate unchanged. This suggests
that higher alpha based on looser censoring is upward-biased but that results
using the 50% threshold are representative. Persistence estimates decrease with
a greater threshold. This may be due to the decreasing sample size. 3

Panels B, C, and D show results for the four-factor Pstor and Stambaugh
(2003) model for the sample of private equity funds, venture capital funds,
and buyout funds, respectively. In general, changes in priors about have sim-
ilar effects to those noted for the CAPM specification. Raising the maximum
increases the posterior mean of the market beta, while decreasing the prior low-
ers the posterior mean of beta. Interestingly, widening the prior increases the
in-sample alpha (even though beta goes up), while tightening the sigma prior
decreases the in-sample alpha. This latter result appears to be due to an in-
crease in the size and illiquidity betas. As with the single factor model, varying
the priors on beta changes the estimated betas, although does not push them
beyond approximately one posterior standard deviation from the estimates un-
der the default assumptions. The beta priors do, however, significantly affect
the estimated in-sample alphas. Naturally, decreasing betas by 0.5 raises the
posterior alpha mean estimate to 0.07 and raising betas by 0.5 lowers the pos-
terior in-sample mean alpha to -0.04. The posterior standard deviations of the

3Goetzmann (1992) shows that, in a similar estimation procedure, negative autocorrela-
tion is induced by thin data.
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alphas are about 0.01, so this difference is large. The effect of varying the NAV
threshold is similar to that observed for the CAPM model, raising the thresh-
old lowers the alpha. It is likely that the higher NAV threshold reduces the
likelihood of upward bias due to stale marks.

Simulations with known alphas and betas

In order to test the precision and potential bias in the estimation procedure
we conduct a simulation that constructs hypothetical funds for which we assume
what the true parameters are. The procedure uses the timing of actual cash
flows from funds sampled from the Preqin data. The time span is set to match
our sample, at 20 years. For each simulated fund, we randomly choose a fund
from our sample and randomly choose a date to start our simulated fund. We
match the timing of cash flows of the simulated fund with the selected fund. We
simulate the return over the investment period using a true alpha set at 1.25%
per quarter (5% per year), a true beta as 1.5 and true phi as 0.5. These are
applied to the actual S&P 500 returns over the sample interval. This exercise
is repeated 100 times for different sample sizes of simulated funds. Table C.3
shows the results. The mean, standard deviation and the quartile threshold of
the 100 estimations are displayed in Panel A. The mean of the alpha distribution
appears to be downward biased in small samples but the bias is modest at about
1% per year. The autocorrelation coefficient is also slightly downward biased in
small sample, which is consistent with the well-known bias of autocorrelation
parameters from Kendall (1952). Beta and sigma estimates are less affected by
small sample bias.

Panel B shows the summary statistics for the simulated cash flow private
equity total return index, gt , and the time-varying private equity component,
ft, measured at the quarterly horizon. The mean of the simulated is slightly
higher than the true value for all sample sizes, as is the median of the time-
varying private equity component, ft. The most important requirement of our
index is that it captures the true dynamics of the private equity index. Since
we know the actual returns of the true index by construction, we can measure
its average correlation to the estimated indices. Panel C reports the average
correlation between the true return gt and the Gibbs sampler estimates. Even
in small sample the correlation is greater than 50%. This may explain why
our real estate index, measured with relatively few funds, appears to capture
the dynamics of a broad-based commercial property return index. As sample
size increases, the correlation increases rapidly towards one. The correlation of
the true return gt to other performance measures (IRR, multiple, and PME) is
around zero.
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Table C.3: Monte Carlo Simulations

The time span in the simulation is set at 80 quarters. For each simulated fund, we randomly
choose a fund in the buyout funds collection as a matching fund. After randomly choose a
time to start our simulated fund, we match the timing of cash flows of the simulated fund with
the matching fund. Our market return is the same as the S&P 500. This exercise is repeated
with 100 times with the true set at 1.25% per quarter (5% per year), true of 1.5, and true of
0.5. The mean, standard deviation, and the component, . The frequency is quarterly. Panel
C reports the correlations between the true return of and our Gibbs sampling estimates,
and other performance measures (IRR, multiple, and PME). quartile threshold of the 100
estimations are reported in Panel A. Panel B shows the summary statistics of the latent total
returns, gt , and the private equity premium ft

Panel A: Factor parameters
True Value N=200 N=400 N=1000

Mean α 0.0125 0.007 0.01 0.011
Std α 0.008 0.006 0.005
Mean φ 0.5 0.423 0.444 0.478
Std φ 0.083 0.076 0.074
Mean β 1.5 1.486 1.533 1.498
Std β 0.287 0.257 0.188
Mean σf 0.05 0.046 0.052 0.048
Std σf 0.008 0.007 0.005
Mean σ 0.1 0.11 0.129 0.12
Std σ 0.035 0.016 0.014
Mean RMSE(gt) 0.051 0.05 0.045
Std σ 0.008 0.007 0.004
Lower quartile α 0.002 0.004 0.004
Upper quartile α 0.011 0.014 0.015
Lower quartile β 1.363 1.344 1.402
Upper quartile β 1.636 1.702 1.675
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Panel B: Index estimates
N=200 N=400 N=1000

True value Estimation True value Estimation True value Estimation
Mean gt 3.76% 3.90% 3.72% 4.08% 3.91% 4.09%
Std gt 14.32% 13.29% 14.44% 13.81% 14.09% 13.95%
Lower quartile ft -3.58% -0.73% -3.82% -0.83% -3.83% -2.13%
Median ft 0.20% 0.57% 0.03% 0.72% 0.06% 0.86%
Upper quartile ft 3.87% 1.93% 3.82% 2.33% 3.98% 2.87%

Panel C: Correlation between true and other performance measures
N=200 N=400 N=1000

Estimated 54.97% 94.55% 95.24%
IRR 1.91% 3.28% 3.77%
Multiple -2.45% -2.36% -4.58%
PME -1.15% -0.89% -3.00%
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