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Abstract

Introduction: MAPT encodes for tau, the predominant component of neurofibrillary tangles that are neuropathological
hallmarks of Alzheimer’s disease (AD). Genetic association of MAPT variants with late-onset AD (LOAD) risk has been
inconsistent, although insufficient power and incomplete assessment of MAPT haplotypes may account for this.

Methods: We examined the association of MAPT haplotypes with LOAD risk in more than 20,000 subjects
(n-cases = 9,814, n-controls = 11,550) from Mayo Clinic (n-cases = 2,052, n-controls = 3,406) and the Alzheimer’s
Disease Genetics Consortium (ADGC, n-cases = 7,762, n-controls = 8,144). We also assessed associations with
brain MAPT gene expression levels measured in the cerebellum (n = 197) and temporal cortex (n = 202) of LOAD
subjects. Six single nucleotide polymorphisms (SNPs) which tag MAPT haplotypes with frequencies greater than
1% were evaluated.

Results: H2-haplotype tagging rs8070723-G allele associated with reduced risk of LOAD (odds ratio, OR = 0.90,
95% confidence interval, CI = 0.85-0.95, p = 5.2E-05) with consistent results in the Mayo (OR = 0.81, p = 7.0E-04)
and ADGC (OR = 0.89, p = 1.26E-04) cohorts. rs3785883-A allele was also nominally significantly associated with
LOAD risk (OR = 1.06, 95% CI = 1.01-1.13, p = 0.034). Haplotype analysis revealed significant global association
with LOAD risk in the combined cohort (p = 0.033), with significant association of the H2 haplotype with reduced risk of
LOAD as expected (p = 1.53E-04) and suggestive association with additional haplotypes. MAPT SNPs and haplotypes also
associated with brain MAPT levels in the cerebellum and temporal cortex of AD subjects with the strongest associations
observed for the H2 haplotype and reduced brain MAPT levels (β = −0.16 to −0.20, p = 1.0E-03 to 3.0E-03).

Conclusions: These results confirm the previously reported MAPT H2 associations with LOAD risk in two large series,
that this haplotype has the strongest effect on brain MAPT expression amongst those tested and identify additional
haplotypes with suggestive associations, which require replication in independent series. These biologically congruent
results provide compelling evidence to screen the MAPT region for regulatory variants which confer LOAD risk by
influencing its brain gene expression.
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Introduction
Alzheimer’s disease (AD), the most prevalent cause of
dementia, is defined by two neuropathological hallmarks:
senile plaques primarily composed of extracellular amyloid-
beta (Aβ) deposits and intracellular neurofibrillary tangles
(NFTs) comprised of hyper-phosphorylated tau protein.
MAPT (micro-tubule associated protein) encodes tau and
resides within a ~900 kilobase (kb) inversion polymorphism
(reviewed [1]) that generates a ~1.3 megabase (Mb) region
of linkage disequilibrium (LD) defined by two extended
haplotypes, referred to as H1 and H2. Variants have
evolved that occur on only the H1 haplotype resulting
in multiple sub-haplotypes.
Both common and rare genetic variation in MAPT

have been strongly implicated in primary tauopathies.
Rare missense and exon 10 splicing mutations, which lead
to increased levels of tau isoforms with four microtubule
binding domains (aka 4-repeat or 4R tau) lead to familial
frontotemporal dementia with parkinsonism linked to
chromosome 17 (FTDP-17) [2,3], whereas the common
MAPT H1 haplotype strongly associates with increased
risk of progressive supranuclear palsy (PSP) and cortico-
basal degeneration (CBD) [4-8]. A recent genome-wide
association study (GWAS) of PSP risk identified MAPT
as the strongest locus, with risk alleles at rs8070723 which
tags the H1 haplotype and also for rs242557, which partially
tags the H1c subhaplotype [8].
Despite having tauopathy as a defining lesion, reports

of association between AD and genetic variants at the
MAPT locus are inconsistent. While MAPT H1 [9] haplo-
type or H1c subhaplotype [10-13] showed association with
AD risk in some studies, others failed to detect association
with H1 [10,13,14], H1c [15] or other MAPT variants [16].
The sample size for most of these studies range from a
few hundred to a few thousand; and the largest published
study of ~17,000 subjects only evaluated the H1/H2
haplotypes but none of the H1-subhaplotypes [9].
In addition to investigations of MAPT variants with

risk for tauopathies, some studies also assessed their role
in gene expression. MAPT exons 2, 3, 4a, 6 8 and 10 are
known to be alternatively spliced [1], there are FTDP-17
splicing mutations which increase 4R tau [2,3] and 4R
tau is increased in affected brain regions in PSP and
CBD [17,18]. Allele-specific gene expression studies in
human brains and neuronal cell lines identified higher
levels of exon 10 containing transcripts but not total
MAPT associated with the H1-haplotype [19] and higher
levels of exon 2- and 3-containing transcripts associated
with the H2 haplotype [20]. MAPT H1c-subhaplotype
was associated with higher total and 4R MAPT levels in
human brains [11]. A study of exon levels in multiple
brain regions from humans identified higher expression
levels of exon 3 associated with the H2 haplotype, but no
association of MAPT levels with the H1c-subhaplotype
[21]. We have previously reported association of MAPT
H1-tagging and rs242557 SNPs with increased brain
MAPT levels in ~400 brains from a combined cohort of
subjects with AD and other brain pathologies [22].
Collectively, these findings suggest that the disease risk
conferred by some MAPT variants could be due to
higher total or 4R tau levels and/or that the protective
effect of MAPT H2-haplotype might be secondary to an in-
crease in N-terminal exon-containing MAPT transcripts.
While these studies are informative, to date, there has not
been a systematic and well-powered analysis of MAPT
subhaplotypes for association with MAPT brain expres-
sion levels.
Herein, we present a comprehensive assessment of

MAPT variants that tag all MAPT subhaplotypes of fre-
quency >1% in the largest to date MAPT association
study of 9,814 LOAD cases vs. 11,550 controls. Further,
we evaluate association of these MAPT variants in two
brain regions: the cerebellum, which is predominantly
unaffected in AD and the typically affected temporal
cortex from ~200 autopsied LOAD subjects. Our well-
powered and complementary investigation of disease
risk and gene expression provides compelling evidence
for a role of transcriptional regulatory variants of
MAPT in conferring LOAD risk.

Methods
Subjects and samples
Mayo clinic cohort
We evaluated LOAD risk association with MAPT vari-
ants in 2,052 LOAD cases vs. 3,406 controls from Mayo
Clinic. These elderly European-American subjects were
from two clinical case–control series recruited at the
Mayo Clinic in Rochester, MN (RS series: 615 LOAD
cases, 2,425 controls) and Jacksonville, FL (JS series:
886 LOAD cases, 981 controls), as well as 551 autopsy-
confirmed LOAD subjects from the Brain Bank at Mayo
Clinic Florida (Additional file 1: Table S1). All clinical
subjects were evaluated by a Mayo Clinic neurologist
and autopsied subjects were diagnosed by our neuro-
pathologist (DWD). All clinical LOAD cases had prob-
able or possible AD and all pathologic LOAD cases had
definite AD according to NINCDS-ADRDA criteria
[23]. All controls had a clinical dementia rating score of
0. All LOAD subjects had an age at disease diagnosis
(clinical), death (autopsied) and controls at their most
recent visit ≥60 years. A subset of the Mayo Clinic co-
hort was included in the Mayo LOAD GWAS [24]
(Additional file 1: Table S1) and gene expression GWAS
(eGWAS) [22] from the temporal cortex (TCX, n = 202)
and cerebellum (CER, n = 197). This study was approved
by the Mayo Clinic institutional review board and
appropriate informed consent was obtained from all
individuals.
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ADGC cohort
We utilized genetic data and covariate information on
the European-American subjects from the Alzheimer’s
Disease Genetics Consortium (ADGC) cohort. These
subjects were collected from multiple research centers
and designated into the following 14 series: Adult
Changes in Thought (ACT)/Electronic Medical Records
and Genetics (eMERGE), National Institute on Aging
(NIA) Alzheimer Disease Centers (ADCs), Alzheimer
Disease Neuroimaging Initiative (ADNI), Multi-Site Col-
laborative Study for Genotype-Phenotype Associations in
Alzheimer’s Disease (GenADA), University of Miami/
Vanderbilt University/Mt. Sinai School of Medicine
(UM/VU/MSSM), MIRAGE Study, Oregon Health and
Science University (OHSU), NIA-LOAD, Translational
Genomics Research Institute series 2 (TGEN2), Rush
University Religious Orders Study/Memory and Aging
Project (ROSMAP), University of Pittsburgh (UP), and
Washington University (WU). Detailed descriptions of
these cohorts are provided elsewhere [25,26].
The ADGC cohort included subjects from the Mayo

Clinic. To avoid any overlap, all subjects from Mayo
Clinic were removed from the ADGC cohort. Standard
quality control (QC) measures were applied to the ADGC
dataset [27] with the following cutoffs, 95% call rate per
person, 1% minor allele frequency (MAF) and 95% call rate
for SNP, Hardy-Weinberg equilibrium (HWE) p > 1E-06 in
controls. Additionally, directly observed (not imputed)
SNPs from subjects across all series were evaluated for
relatedness by using KING (Kinship-based INference
for Gwas)-Robust [27] and a single representative was
chosen for each pair of individuals who were third degree
relatives or closer. Similarly, one representative was
chosen for each family for the MIRAGE and NIA-LOAD
family based studies. All cohort genotypes were imputed
to a common set of >2 million SNPs (HapMap2) by the
ADGC, as described [26]. The 7,762 LOAD cases and
8,144 controls from the ADGC (Additional file 1:
Table S1), which remained after the QC, were utilized
for the MAPT variant associations.

RNA isolation and gene expression measurements
All samples utilized in the brain gene expression analyses
in this study are a subset of the previously published Mayo
Clinic expression GWAS (eGWAS) [22]. In the current
study brain gene expression levels of autopsied LOAD
subjects measured from the cerebellum (n = 197) and
temporal cortex (n = 202) were used. RNA extraction and
gene expression measurements were previously reported
[22]. Briefly, total RNA was isolated from frozen post-
mortem brain tissue using the Ambion RNAqueous kit
according to the manufacturer’s instructions. The quan-
tity and quality of the RNA were evaluated using the
Agilent 2100 Bioanalyzer and RNA 6000 Nano Chip.
Whole Genome DASL assay (WG-DASL, Illumina, San
Diego, CA) was used to measure transcript levels. This
platform is designed for gene expression measurements
for partially degraded RNA such as is typically isolated
from frozen human brains. Details of gene expression
measurements, data processing and QC were already
published [22]. Briefly, 15 replicate samples measured
on 5–6 different plates and on 2–3 different days were
included in the study for QC and also for intra-class
coefficient (ICC) [28] estimations. Raw probe level mRNA
expression data were exported from GenomeStudio soft-
ware (Illumina Inc.) for preprocessing with background
correction, variance stabilizing transformation, quantile
normalization and probe filtering using the lumi package
of BioConductor [29,30]. Probes with detectable signal
in >75% of the samples were used in subsequent analyses.
We also annotated all of the probes by comparing their
positions according to NCBI Ref Seq, Build 36.3 to those
of all variants within dbSNP131 and identified the list of
probes which have ≥1 variants within their sequence.

Genotyping
Six MAPT locus haplotype tagging (ht) SNPs were selected
for genotyping in the Mayo Clinic cohort (Additional file 1:
Figure S1, Tables S1 and S2). SNP rs8070723 was used as
a proxy for the H1/H2 haplotypes defining del-In9. The
remaining 5 SNPs have been previously described to tag
the majority of H1 sub-haplotypes [6]. Genotypes for three
SNPs (rs1467967, rs242557 and rs8070723) for a subset of
the samples were obtained from the Mayo Clinic LOAD
GWAS (Additional file 1: Table S1). The remaining geno-
types for these and all genotypes for an additional three
SNPs (rs3785883, rs2471738 and rs7521) were obtained
using Applied Biosystems® Taqman genotyping assays.
The genotypes for these six SNPs were extracted from the
ADGC GWAS data [27] using PLINK [31].

Statistical analysis
MAPT single SNP association analysis with LOAD risk
All six htSNPs were tested for association with disease risk
in the combined Mayo Clinic cohort, as well as individu-
ally in the JS and RS series. The same SNPs were also
tested in the ADGC cohort, as well as in the ADGC +
Mayo combined cohorts. All SNPs were tested for devia-
tions from Hardy-Weinberg equilibrium (HWE) [31] in
controls.
Single SNP associations with disease risk were tested

assuming an additive model, using multivariable logistic
regression implemented in PLINK [31] including the
following covariates: Age (defined for Mayo Clinic co-
hort as age at diagnosis/death/last diagnosis for clinical
LOAD/autopsied LOAD/controls), sex, APOE ε4 dosage
and series. The analyses in the ADGC-only cohort in-
cluded these covariates and also ten principal components
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obtained from EIGENSTRAT [32]. Mayo Clinic-only
and Mayo + ADGC analyses did not include principal
components, as they were not available for many of the
Mayo subjects.

MAPT haplotype association analysis with LOAD risk
PLINK was used to estimate haplotype frequencies using
the sliding window specification with a window size of six
to encompass all six of the htSNPs. Haplotype associations
with LOAD risk in the Mayo Clinic series were performed
with both PLINK and haplo.score [33], which revealed
identical results for the single haplotype analyses. Accord-
ing to the score statistic approach, all possible haplotypes
consistent with the observed marker genotypes are ob-
tained, maximum likelihood estimates of the haplotype
frequencies, as well as the posterior probabilities of the
pairs of haplotypes for each subject are computed. These
posterior probabilities are then used to compute the score
statistics for the association of (ambiguous) haplotypes
with LOAD risk using multivariable logistic regression
analysis with inclusion of the same covariates as discussed
above. Only those haplotypes with frequencies >1% in the
cohorts that they were tested in were included in the asso-
ciation analyses.

MAPT variant association analysis with gene expression levels
Each of the MAPT htSNPs and the estimated haplotypes
were also tested for association with gene expression
levels of MAPT in the TCX and CER of LOAD sub-
jects, as measured using three probes: ILMN_1710903,
ILMN_2310814 and ILMN_2298727. These LOAD
subjects were also participants in our previously pub-
lished eGWAS [22]. Association analysis was carried
out in PLINK using linear regression approach, whereby
preprocessed probe transcript levels for the three probes
in each brain region (TCX and CER) were assessed as six
individual quantitative phenotypes. Covariates included in
the models were age at death, sex, APOE ε4 dosage, PCR
plate, RNA integrity number (RIN) and adjusted RIN2, as
described previously [22,34]. Only those haplotypes with
frequencies >1% in the autopsy series that they were tested
in were included in the association analyses.

Results
Association of MAPT single SNPs with LOAD risk
Six MAPT htSNPs were tested for association with LOAD
risk in the Mayo Clinic and ADGC cohorts both individu-
ally and combined (Table 1). All SNPs had genotyping call
rates ≥90% in the Mayo Cohort (~90-97%), ~83-100% in
the ADGC cohort and ~85-100% in the combined cohort
(Additional file 1: Table S2). MAPT rs242557 had the
lowest call rate of 83% in the ADGC cohort, with all
other SNPs having call rates of ≥89%. All SNPs passed
the HWE cutoff of p > 1E-06 in controls, although
rs242557 had HWE p < 0.05 in the Mayo Clinic, but
not the ADGC controls.
There was highly significant association of H2-tagging

rs8070723-G allele with reduced risk of LOAD in the
Mayo Clinic cohort (odds ratio = OR = 0.81, p = 7.0E-4)
with remarkably similar OR estimates in the JS and RS
series (Additional file 1: Table S3) and in the independent
ADGC cohort (OR = 0.89, p = 1.3E-4) (Table 1). The asso-
ciation in the combined Mayo + ADGC cohort for this
variant was highly significant (OR = 0.90, p = 5.3E-5) and
would withstand Bonferroni correction for the six tested
variants but not achieve significance at a genome-wide
level.
In addition, rs3785883-A allele was nominally sig-

nificant in the combined Mayo + ADGC cohort (OR =
1.06, p = 0.034) with very similar OR estimates in the
Mayo Clinic (OR = 1.07, 95% confidence interval = 95%
CI = 0.95-1.22) and ADGC (OR = 1.08, 95% CI = 1.01-1.15)
cohorts. MAPT SNP rs1467967-G allele had suggestive
LOAD risk association in the combined cohort (OR =
1.05, 95% CI = 1.0-1.10, p = 0.062) with risky OR esti-
mates in both cohorts. MAPT SNP rs242557, previ-
ously implicated in AD [11-13] is not associated with
LOAD in the combined ADGC+Mayo cohort of 18,342
subjects (p = 0.974), or the individual Mayo Clinic or
ADGC cohorts.

Association of MAPT haplotypes with LOAD risk
In the Mayo Clinic cohort of ~5,000 subjects, we identi-
fied 19 MAPT haplotypes with a frequency >1%. In this
cohort, rs8070723-G allele tagged the H2 haplotype,
present in 21.5% of the subjects, perfectly. Eighteen sub-
haplotypes were identified on the H1 background. Three
MAPT haplotypes were nominally significantly associated
with LOAD risk (Table 2) and a global test for haplotypic
association was also significant (p = 0.012).
As expected, the MAPT H2 haplotype was significantly

associated with decreased risk for LOAD in the Mayo
Clinic cohort (OR = 0.80, p = 4.1E-04). Additionally the
most common sub-haplotype on the H1 background,
H1b (frequency = 17.3%), was nominally significantly
associated with increased risk for LOAD (OR = 1.15,
p = 0.046); as was a less frequent H1 sub-haplotype J
(frequency = 1.2%, OR = 1.88, p = 0.031), while three
other H1 sub-haplotypes were marginally associated,
also with increased LOAD risk (L, X and Y).
In the ADGC cohort, the MAPT H2 haplotype, was

present in 22% of the subjects. On the H1 background,
19 sub-haplotypes were identified with a frequency of ≥1%.
As with the Mayo Clinic cohort, H2 haplotype was sig-
nificantly associated with reduced risk of LOAD in the
ADGC cohort (OR = 0.90, p = 6.29E-04). None of the
H1-subhaplotypes had significant association with LOAD
risk in this cohort.



Table 1 MAPT single SNPs association results with LOAD risk in the Mayo, ADGC and combined Mayo + ADGC cohorts

SNP A1 Mayo cohort ADGC cohort Mayo + ADGC

N MAF_A MAF_U OR 95% CI P N MAF_A MAF_U OR 95% CI P N MAF_A MAF_U OR 95% CI P

rs1467967 G 4,986 0.335 0.330 1.10 0.99 - 1.22 0.079 14,365 0.329 0.327 1.05 0.99 - 1.11 0.102 19,351 0.330 0.327 1.05 1.00 - 1.10 0.062

rs242557 A 4,935 0.377 0.379 1.00 0.90 - 1.11 0.988 13,407 0.358 0.356 1.01 0.95 - 1.07 0.721 18,342 0.363 0.364 1.00 0.95 - 1.05 0.974

rs3785883 A 5,247 0.182 0.183 1.07 0.95 - 1.22 0.274 15,187 0.178 0.171 1.08 1.01 - 1.15 0.032 20,434 0.179 0.175 1.06 1.01 - 1.13 0.034

rs2471738 T 5,282 0.223 0.209 1.07 0.95 - 1.21 0.250 14,181 0.207 0.201 1.05 0.98 - 1.12 0.194 19,463 0.209 0.203 1.05 0.99 - 1.11 0.109

rs8070723 G 5,129 0.209 0.222 0.81 0.71 - 0.91 7.0E-04 15,895 0.211 0.221 0.89 0.84 - 0.94 1.3E-04 21,024 0.211 0.221 0.90 0.85 - 0.95 5.3E-05

rs7521 A 5,171 0.458 0.457 1.08 0.97 - 1.19 0.152 15,656 0.466 0.468 1.02 0.97 - 1.07 0.529 20,827 0.465 0.465 1.02 0.97 - 1.06 0.437

Results of multivariable logistic regression analyses are shown. CHR = chromosome. A1 =Minor Allele, N = number of subjects with genotype calls, A = Affected (LOAD subjects), U = Unaffected (Control), MAF =Minor
Allele Frequency, OR = Odds Ratio, 95% CI = 95% Confidence intervals, P = p-value.
Boldface values within the tables indicate significant or suggestive associations with a p-value <0.10.
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Table 2 MAPT haplotype association results with LOAD risk in the Mayo, ADGC and combined Mayo + ADGC cohorts

Haplotype Alleles Mayo cohort ADGC cohort Mayo + ADGC cohort

F_All F_A F_U OR P F_All F_A F_U OR P F_All F_A F_U OR P

A (H2a) AGGCGG 0.215 0.205 0.221 0.80 4.1E-04 0.220 0.225 0.236 0.90 6.29E-04 0.221 0.228 0.240 0.90 1.53E-04

B (H1b) GGGCAA 0.173 0.180 0.169 1.15 0.046 0.190 0.194 0.197 1.05 0.208 0.185 0.197 0.196 1.05 0.089

C (H1c) AAGTAG 0.118 0.118 0.118 0.91 0.277 0.127 0.131 0.131 1.03 0.545 0.124 0.132 0.131 1.00 0.997

D (H1d) AAGCAA 0.076 0.071 0.078 0.99 0.905 0.075 0.074 0.079 0.93 0.195 0.074 0.077 0.081 0.91 0.074

E (H1e) AGGCAA 0.074 0.075 0.073 1.12 0.308 0.077 0.082 0.081 1.00 0.961 0.077 0.083 0.081 1.02 0.618

G GAACAA 0.017 0.014 0.018 0.91 0.692 0.012 0.013 0.013 0.84 0.256 0.014 0.014 0.015 0.85 0.176

H AGACAA 0.044 0.038 0.048 0.91 0.506 0.042 0.045 0.041 1.08 0.309 0.042 0.045 0.045 1.03 0.641

I GAGCAA 0.037 0.041 0.035 1.06 0.732 0.034 0.035 0.035 1.03 0.718 0.035 0.037 0.036 1.06 0.422

J AGGCAG 0.012 0.015 0.010 1.88 0.031 0.010 0.011 0.010 1.20 0.292 0.011 0.012 0.010 1.32 0.049

L AGACAG 0.029 0.032 0.027 1.37 0.059 0.032 0.034 0.033 1.06 0.483 0.031 0.034 0.032 1.10 0.187

M GAGCAG 0.025 0.020 0.027 0.78 0.215 0.021 0.022 0.020 1.09 0.459 0.022 0.023 0.023 1.00 0.978

N GGACAG NA 0.011 0.011 0.011 1.12 0.527 NA

O AAACAA 0.016 0.016 0.017 0.90 0.696 0.018 0.020 0.018 1.18 0.192 0.018 0.020 0.019 1.09 0.457

P GGGTAG 0.014 0.014 0.014 1.31 0.301 0.013 0.014 0.014 1.07 0.628 0.014 0.015 0.014 1.06 0.626

R AGGTAG 0.017 0.017 0.017 1.01 0.952 0.012 0.013 0.011 1.26 0.162 0.013 0.014 0.013 1.21 0.144

U AAGCAG 0.025 0.028 0.024 1.14 0.517 0.025 0.026 0.025 1.05 0.667 0.025 0.027 0.025 1.04 0.642

V GGATAG 0.011 0.012 0.010 1.41 0.233 0.010 0.011 0.010 1.14 0.463 0.011 0.012 0.011 1.20 0.210

W GGGCAG 0.012 <0.010 0.013 0.92 0.783 NA NA

X GAATAG 0.016 0.018 0.014 1.59 0.054 0.013 0.014 0.014 1.03 0.817 0.014 0.015 0.014 1.16 0.223

Y* AAATAG 0.015 0.017 0.014 1.64 0.056 0.013 0.014 0.013 1.19 0.306 0.013 0.015 0.013 1.22 0.147

Z* GAGTAG NA 0.011 0.011 0.010 1.10 0.590 NA

Global p value 0.0123 0.375 0.0329

Results of multivariable logistic regression analyses for MAPT haplotypes with frequencies >1% are shown. Haplotype nomenclature is assigned as previously reported [6,35]. Alleles for the SNPs defining the
haplotypes are given in the 5’ to 3’ order as follows: rs1467967, rs242557, rs3785883, rs2471738, rs8070723, rs7521. Haplotypes not previously observed are designated by an asterisk (*). F_All = haplotype frequency in
all subjects; F_A = in affected (LOAD) and F_U = unaffected (Control) subjects. OR = Odds Ratio, P = p-value.
Boldface values within the tables indicate significant or suggestive associations with a p-value <0.10.
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In the combined Mayo + ADGC cohort, there was sig-
nificant global haplotypic association (p = 0.033). MAPT
H2 haplotype had highly significant association with re-
duced risk of LOAD (OR = 0.90, p = 1.53E-04). MAPT J
subhaplotype had nominally significant association with
LOAD risk in the combined cohort (OR = 1.32, p = 0.049)
with suggestive association observed for H1b and in-
creased LOAD risk (OR = 1.05, p = 0.089) and for H1d
and reduced LOAD risk (OR = 0.91, p = 0.074). H1c sub-
haplotype did not achieve significance in the Mayo Clinic,
ADGC or Mayo +ADGC cohorts.

Association of MAPT single SNPs and haplotypes with
gene expression levels
In our published eGWAS [22], there were three probes
on the WG-DASL platform that were used to measure
MAPT levels: ILMN_1710903 and ILMN_2310814 that
anneal to different regions of the MAPT 3’UTR and
ILMN_2298727 that anneals to Exon 4a (Additional file 1:
Figure S1). Given that the inclusion of exon 4a in tau tran-
scripts in the central nervous system was not reported
previously, we generated a quantitative PCR assay against
this exon, and were able to successfully measure it in the
human brain (data not shown). All three probes passed
our QC threshold of detectability in >75% of subjects, with
ILMN_1710903 and ILMN_2310814 detected in 100% of
all AD brains tested in both the cerebellum (CER) and
temporal cortex (TCX) and with ILMN_2298727 detect-
able in 98.0% of AD CER and 83.7% of AD TCX tissue.
We previously estimated intraclass coefficients [28] for all
gene expression probes, which represent the percentage
of variance in expression between samples over total
variance and which reflect the genetic component that
contributes to variability in gene expression. We deter-
mined that both ILMN_2298727 and ILMN_1710903
had high ICC estimates of 87%, whereas ILMN_2310814
had a low ICC estimate of 18%. The variances of gene
expression estimated from all subjects in our eGWAS of
cerebellar tissue (n = 374) [22] revealed consistent findings
for these three MAPT probes, with both ILMN_2298727
(0.24) and ILMN_1710903 (0.12) having variance esti-
mates that are ~ an order of magnitude greater than
that of ILMN_2310814 (0.03). We thus conclude that
ILMN_2310814 is unlikely to be an informative probe.
We previously annotated all our probes for variants in

their sequence [22], given the concern that such variants
may result in differential binding of probes with artifactual
variance in the expression levels, and therefore could
result in false positive associations with genetic variants in
LD with probe sequence variants [36,37]. Our annotation
detected two variants within the probe sequence of
ILMN_1710903 (rs67759530, rs66561280) that were also
polymorphic in our autopsied AD series. ILMN_2310814
did not have any variants within its probe sequence.
ILMN_2298727 annotation identified rs73314997 within
its sequence, although this variant was essentially mono-
morphic in our eGWAS subjects [22]. Thus, of the three
MAPT probes assessed in our gene expression ana-
lyses, ILMN_2310814 is unlikely to be informative and
ILMN_1710903 may be prone to artifactual results.
We therefore focused on ILMN_2298727 in our MAPT
expression analyses (Tables 3 and 4), although we show
results from all 3 MAPT probes for completeness.
Evaluation of the six MAPT SNPs revealed significant

associations between ILMN_2298727 and rs1467967,
rs242557, rs8070723 and rs7521. The MAPT H2 haplo-
type tagging rs8070723 was associated with lower
MAPT levels in both CER (β = −0.16, p = 0.002) and
TCX (β = −0.20, p = 4.9E-04) of LOAD subjects (Table 3),
as we previously reported in this cohort [22]. The other
significant variants were associated with higher MAPT
levels in both brain regions. Interestingly, the same vari-
ants showed associations in the same direction with the
ILMN_1710903 probe, although with higher levels of
significance.
Fifteen MAPT haplotypes with frequencies >1% were

identified in the autopsied LOAD subjects with complete
genotypes for the 6 variants (n = 178). There was globally
significant haplotype association with the TCX gene ex-
pression levels measured with ILMN_2298727 (p = 0.004)
(Table 4), that may be a reflection of the significant MAPT
H2 association. MAPT H2 haplotype, as expected, was as-
sociated with lower CER (β = −0.16, p = 0.003) and TCX
(β = −0.20, p = 0.001) MAPT levels. MAPT H1b was
marginally associated with higher TCX levels (β = 0.13,
p = 0.058), I with higher CER MAPT levels (β = 0.20,
p = 0.07), and L with lower TCX MAPT levels (β = −0.33,
p = 0.009). Significant associations with similar directions
of effect were also observed with ILMN_1710903 and
MAPT H2, H1b and I haplotypes.

Discussion
In this largest to date evaluation of haplotypic variation
at the MAPT locus in 9,814 LOAD cases and 11,550
controls, we find robust and replicable association of the
MAPT H2 haplotype with reduced risk of LOAD or,
equivalently, increased risk of LOAD with the MAPT
H1 haplotype- in two independent cohorts from Mayo
Clinic and ADGC, with similar effect size estimates. Most
prior reports of haplotypic association identified LOAD
risk conferred by MAPT H1c subhaplotype [10-12], which
we were unable to replicate. One group identified an asso-
ciation between the MAPT H1 haplotype and an increased
risk for amnestic mild cognitive impairment [38], which
can be a prodrome to clinical AD. The only other study to
evaluate MAPT in a large cohort (3,940 cases and 13,373
controls) also identified an association between the H2
haplotype and decreased LOAD risk [9]. In that study by



Table 3 MAPT single SNPs association results with brain MAPT gene expression levels

SNP Brain region N ILMN_1710903 ILMN_2298727 ILMN_2310814

BETA P BETA P BETA P

rs1467967 CER 166 0.16 9.3E-06 0.11 0.011 0.00 0.859

TCX 171 0.15 2.6E-04 0.12 0.019 −0.01 0.604

rs242557 CER 173 0.17 1.2E-05 0.08 0.091 0.01 0.584

TCX 180 0.23 3.4E-08 0.10 0.050 −0.02 0.196

rs3785883 CER 175 0.14 0.005 0.00 0.977 −0.01 0.621

TCX 181 0.03 0.548 −0.07 0.266 0.01 0.706

rs2471738 CER 176 0.07 0.101 0.02 0.665 0.02 0.386

TCX 182 0.11 0.016 0.09 0.089 −0.01 0.397

rs8070723 CER 174 −0.44 2.1E-30 −0.16 0.002 0.01 0.666

TCX 181 −0.48 8.9E-31 −0.20 4.9E-04 0.02 0.222

rs7521 CER 176 0.12 2.8E-04 0.08 0.048 0.00 0.897

TCX 182 0.16 1.1E-05 0.08 0.084 0.00 0.976

Results of multivariable linear regression analyses are shown. Probes ILMN_1710903 and ILMN_2310814 anneal to the 3’UTR sequence and ILMN_2298727 targets
exon 4a. CER = cerebellum, TCX = temporal cortex. Beta: Coefficient of association with the minor allele. P = p-value.
Boldface values within the tables indicate significant or suggestive associations with a p-value <0.10.
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Gerrish et al. [9] the H2-haplotype tagging SNP had an
OR estimate of 0.89 (p = 5.20E-04), which is remarkably
similar to the estimate of the H2-tagging SNP (OR = 0.90,
p = 5.3E-05) and H2 haplotype (OR = 0.90, p = 1.53E-04)
in our study. It should be noted that both the present
study and Gerrish et al. included samples from the ADNI
and TGen series. We confirmed that the MAPT H2
association retains its significance in the ADGC cohort
even after removal of these two datasets (OR = 0.87, p =
6.1E-04). Thus, there is evidence of MAPT H2 association
with reduced risk of LOAD in two large and independent
studies. Though robust, this LOAD risk association does
not achieve genome wide significance in either study or a
p value < 1.0E-7 in the recent meta-analysis of 74,046
individuals by the IGAP consortium [39]. It will be im-
portant to evaluate the IGAP dataset for availability of
MAPT haplotype tagging variants and to pursue an in-
depth analysis of haplotypic association at this locus.
Although the MAPT H2 haplotypic association with

LOAD was clearly the strongest of the MAPT haplotypes
and one that we previously reported [22], we identified
additional SNPs and haplotypes with nominal significance
in our study. These weaker associations would not with-
stand multiple testing and could represent false positives
and require replication in additional series. It should be
noted that some of these variants, such as rs3785883,
H1b, H1d and J showed consistent direction of effect in
the Mayo Clinic and ADGC cohorts. MAPT rs3785883
minor allele was previously shown to associate with
higher levels of CSF tau, phospho-tau and earlier age at
onset [16]. Although this prior smaller study did not
identify association with LOAD risk, the biological effect
of this variant which associates with increased LOAD risk
in our study appears to be consistent between these two
studies.
We and others previously reported association between

MAPT haplotypes and brain MAPT levels [11,19-22]. In
this study, we evaluated MAPT subhaplotypes for asso-
ciation with brain MAPT levels in two brain regions
from LOAD subjects. The most robust gene expression
association occurs with the H2 haplotype, as we had
reported [22] (βCER = −0.16, pCER = 0.003; βTCX = −0.20,
pTCX = 0.001), that also has the strongest association
with LOAD risk in our study. We find that this haplo-
type with a protective effect on LOAD associates with
lower brain MAPT levels. Given multiple MAPT alter-
natively spliced exons leading to multiple transcripts,
each with potentially different effects on function
[1,20], uncovering the precise regulatory change asso-
ciated with genotypic variation in this region is critical.
In our study, we mainly focus on results from one
probe, ILMN_2298727, that is both informative and
does not have a variant in its sequence based on annota-
tion and genotyping. This probe is expected to anneal to
exon 4a, however the expression levels obtained from it
can be a surrogate for total MAPT levels or levels of any
of the alternatively spliced exon-containing transcripts
that reside with exon 4a. Indeed, gene expression associa-
tions with this probe are consistent with those from
ILMN_1710903, which should recognize all transcripts,
although ILMN_1710903 is confounded by a confirmed
variant within its sequence. Our findings are also con-
gruous with prior reports of associations of H1 haplo-
type or H1c sub-haplotype with higher 4R [19] and or
total MAPT [11] levels, as measured by alternative
gene expression measurement methods.



Table 4 MAPT haplotype association results with brain MAPT gene expression levels

Haplotype Alleles Brain region Freq ILMN_1710903 ILMN_2298727 ILMN_2310814

BETA P BETA P BETA P

A (H2a) AGGCGG CER 0.212 −0.45 8.7E-33 −0.16 0.003 0.00 0.832

TCX 0.212 −0.49 1.1E-31 −0.20 0.001 0.02 0.308

B (H1b) GGGCAA CER 0.180 0.15 0.003 0.07 0.207 −0.01 0.691

TCX 0.180 0.13 0.026 0.13 0.058 0.01 0.630

C (H1c) AAGTAG CER 0.104 0.11 0.057 0.02 0.807 0.02 0.338

TCX 0.104 0.17 0.008 0.05 0.536 −0.02 0.309

D (H1d) AAGCAA CER 0.057 0.00 0.970 0.04 0.721 0.07 0.098

TCX 0.057 0.30 0.007 0.14 0.314 −0.02 0.646

E (H1e) AGGCAA CER 0.079 0.09 0.273 0.04 0.621 0.02 0.554

TCX 0.079 0.15 0.079 0.13 0.212 0.00 0.964

H AGACAA CER 0.025 0.05 0.748 −0.13 0.478 0.04 0.538

TCX 0.025 0.13 0.424 −0.05 0.803 −0.05 0.353

I GAGCAA CER 0.059 0.24 0.010 0.20 0.070 −0.04 0.322

TCX 0.059 0.07 0.422 −0.09 0.434 −0.01 0.766

L AGACAG CER 0.043 0.17 0.062 0.01 0.921 −0.02 0.634

TCX 0.043 −0.01 0.954 −0.33 0.009 0.01 0.841

M GAGCAG CER 0.028 0.26 0.043 0.01 0.936 0.01 0.829

TCX 0.028 0.16 0.298 −0.23 0.204 0.00 0.927

O AAACAA CER 0.037 0.19 0.104 0.00 0.985 −0.04 0.435

TCX 0.037 0.20 0.070 0.21 0.110 0.00 0.933

P GGGTAG CER 0.019 0.04 0.765 0.07 0.637 0.02 0.731

TCX 0.019 0.07 0.725 0.26 0.259 −0.03 0.613

T AGATAG CER 0.016 0.01 0.935 −0.24 0.212 −0.07 0.285

TCX 0.016 0.00 0.994 0.47 0.075 0.02 0.729

U AAGCAG CER 0.029 0.15 0.251 0.04 0.786 −0.14 0.008

TCX 0.029 0.35 0.008 0.25 0.112 −0.01 0.836

X GAATAG CER 0.025 0.10 0.406 0.19 0.168 0.06 0.248

TCX 0.025 −0.04 0.756 0.11 0.510 0.02 0.584

Y* AAATAG CER 0.022 −0.02 0.884 −0.13 0.458 −0.02 0.761

TCX 0.022 −0.03 0.841 −0.03 0.882 0.00 0.933

CER Global p 3.0E-42 0.352 0.271

TCX 3.2E-36 0.004 0.999

Haplotypes with frequencies > 1% are assessed with multivariable linear regression analysis. Alleles for the SNPs defining the haplotypes are given in the 5’ to 3’
order as follows: rs1467967, rs242557, rs3785883, rs2471738, rs8070723, rs7521. Haplotypes not previously observed are designated by an asterisk (*). CER = cerebellum,
TCX = temporal cortex. Beta: Coefficient of association with the minor allele. P = p-value.
Boldface values within the tables indicate significant or suggestive associations with a p-value <0.10.
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We did not identify significant associations between
the H1c subhaplotype and brain MAPT levels, though
we did observe suggestive associations between both
CER and TCX MAPT levels and rs242557, a variant
that partially tags H1c. MAPT rs1467967 associated
with significant MAPT elevations in both brain regions
and a suggestive association with LOAD risk, which is
biologically consistent. These and additional weaker gene
expression associations with variants such as H1b, I, L
and rs7521 requires further replications.
In summary, our study provides evidence of robust

LOAD risk and brain MAPT level associations with
MAPT H2 haplotype and nominates additional variants
and subhaplotypes for further investigations in LOAD.
The overall genetic contribution of MAPT variants to
LOAD risk appears to be modest, in contrast to primary
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tauopathies, where the H1 haplotype, for example, has
an estimated OR of 5.5 from the PSP GWAS [8]. This
may be due to different sets of functional variants residing
in the same haplotypic backbone and leading to different
biological outcomes resulting either in a primary tauopa-
thy vs. tau pathology in LOAD; a more complex genetic
architecture in LOAD with contribution from multiple
functional variants in different pathways; or a combination
of both. Discovering the precise sets of MAPT functional
variants; and assessing their biologic consequence, es-
pecially on transcriptional regulation, may be critical
to deciphering the commonalities and distinctions in
the etiology of LOAD vs. primary tauopathies. Our
study highlights the importance of in-depth association
of MAPT haplotypic variation in well-powered cohorts
and nominates H2 and additional variants as LOAD
risk factors with effects on gene expression. Larger scale
MAPT haplotype LOAD risk association studies, variant
discovery efforts targeting specific haplotypes and tran-
scriptional studies that jointly evaluate haplotypes and
specific transcripts are warranted.
Conclusions
In summary, these findings confirm associations between
MAPT H2 haplotype and both reduced risk of LOAD
and lower MAPT transcript brain levels. In addition, we
describe additional MAPT variants and subhaplotypes
that associate with LOAD risk and/or brain MAPT
levels, which require confirmation in additional series.
These results highlight the importance of joint utilization
of gene expression and disease risk phenotypes. Addition-
ally, these biologically consistent findings should encour-
age screening efforts in the MAPT region for discovery of
regulatory variants that confer LOAD risk via influencing
brain levels of MAPT transcripts.
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