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ABSTRACT 
 
The purpose of this paper is to describe a framework for evaluating image segmentation algorithms. Image segmentation 
consists of object recognition and delineation. For evaluating segmentation methods, three factors - precision 
(reproducibility), accuracy (agreement with truth), and efficiency (time taken) – need to be considered for both 
recognition and delineation. To assess precision, we need to choose a figure of merit (FOM), repeat segmentation 
considering all sources of variation, and determine variations in FOM via statistical analysis. It is impossible usually to 
establish true segmentation. Hence, to assess accuracy, we need to choose a surrogate of true segmentation and proceed 
as for precision. To assess efficiency, both the computational and the user time required for algorithm and operator 
training and for algorithm execution should be measured and analyzed. Precision, accuracy, and efficiency are 
interdependent. It is difficult to improve one factor without affecting others. Segmentation methods must be compared 
based on all three factors. The weight given to each factor depends on application. 
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1. INTRODUCTION 
1.1 Background 

Image segmentation – the process of defining objects in images – is the most crucial among all operations done on 
acquired images. Even seemingly unrelated operations such as image (gray level) display [1], interpolation [2], filtering 
[3], and registration [4] depend to some extent on image segmentation since they all would need some object information 
for their optimum performance. Ironically, segmentation is needed for segmentation itself since object knowledge 
facilitates segmentation. In spite of nearly four decades of research [5], segmentation remains a challenging problem in 
image processing and computer vision. 
 

A related, tightly coupled problem is the evaluation of segmentation methods. Part of the difficulty faced in 
developing segmentation methods is the lack of a unified framework for their evaluation. Methods published expressly 



for addressing segmentation evaluation are rare and are very restricted in scope [6, 7]. Evaluation methods proposed in 
papers reporting new segmentation algorithms are even more ad hoc and restricted. In spite of the numerous workshops, 
panel discussions, and special sessions devoted to this subject in many conferences, nothing tangible has resulted. 
 

1.2 Purpose 
 

We have been working on image segmentation since the 1970s [8] and have been thinking about a framework for 
evaluating segmentation algorithms for the past 7 years. The purpose of this paper is to describe a unified framework for 
segmentation evaluation that resulted from our investigation on developing a variety of segmentation algorithms [9-15] 
and their use and evaluation in a variety of medical applications [16-22]. This paper does not actually compare any 
particular segmentation algorithms but describes the concepts of evaluation with examples. 
 

 
2. THE METHODOLOGY 

2.1 Notation 
 

Any method of evaluation of segmentation algorithms has to, at the outset, specify the application domain under 
consideration. We consider the application domain to be determined by the following three entities. 
 

A:  An application or task; example: volume estimation of tumors. 
B:  A body region; example: brain. 
P:  An imaging protocol; example; FLAIR MR imaging with a particular set of parameters. 

 
An evaluation description of a particular algorithm α for a given application domain <A, B, P> that signals high 

performance for α may tell nothing at all about  α for a different application domain <A′, B′, P′>. Therefore, evaluation 
must be performed for each application domain separately. The following additional notations are needed for our 
description. 
 

Object:  A physical object of interest in B for which images are acquired; example: brain tumor. 
 

Scene:   A 3D volume image, denoted by C = (C, f), where C is a rectangular array of voxels, and f(c) 
denotes the scene intensity of any voxel c in C. C may be a vectorial scene, meaning that f(c) may 
be a vector whose components represent several imaged properties. C is referred to as a binary 
scene if the range of f(c) is {0, 1}. 

 
S        :   A set of scenes acquired for the same given application domain <A, B, P>. 

 

2.2 Segmentation 
 

Segmentation of an object  in a given scene acquired for an application domain <A, B, P> is the process of 
defining the region/boundary of  in the given scene. It consists of two related tasks – recognition and delineation. 
Recognition is a high-level and qualitative task of determining roughly the whereabouts of the object in the scene. 
Delineation is a lower-level and quantitative task of specifying the precise location and extent of the object’s 
region/boundary in the scene. Knowledgeable humans can outperform computer algorithms in the recognition task, 
whereas algorithms can be devised that can do delineation better than humans. 

O
O

 
We assume that the output of any segmentation algorithm corresponding to a given scene C = (C, f) is a set O ⊂ C 

of voxels. This set represents the region occupied by (the support of) an object O of B in C. The fuzzy object defined by 
in  is a scene , where, for any c ∈ C, O C ( ,  O C f=C )o
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We shall (for simplicity) call  itself a fuzzy object. Here η is a function that assigns a degree of objectness to every 
voxel c in O depending on the scene intensity f(c). We shall always denote a hard segmentation in C of an object O in B 
by O and the corresponding fuzzy object by . 
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OC
 

The efficacy of any segmentation method M in an application domain <A, B, P> is to be measured in terms of 
three factors: Precision which represent repeatability of segmentation taking into account all subjective actions required 
in producing the result; Accuracy, which denotes the degree to which the segmentation agrees with truth; Efficiency, 
which describes the practical viability of the segmentation method. In evaluating segmentation efficacy, both recognition 
and delineation aspects must be considered. Commonly, only delineation is considered to represent entire segmentation. 
Our methodology attempts to capture both recognition and delineation within the same framework in the factors 
considered for evaluation. 
 

We will use the following operations on fuzzy objects. Let ( ) ( ),  ,  ,  ox x oy yC f C f= =C C  and ( ),  oz zC f=C  be 

any fuzzy objects defined by the same object O  in a scene . Then, the cardinality C oxC  of the fuzzy object  is 

defined as 
oxC

( ) ox xc C
f c

∈
= ∑C .  Fuzzy set union  oz ox oy= ∪C C C  is defined by, for any c ∈ C 

( ) ( ) ( )( max ,  .yxz )f c f c f= c  Fuzzy set intersection  oz ox oy= ∩C C C  is defined by, for any c ∈ C, 
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Fuzzy set difference  is defined by, for any c ∈ C, oz ox oy= −C C C
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A fuzzy masking operation , called inside, is defined by, for any c ∈ C,   oz ox oy= •C C C
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Another fuzzy masking operation  called outside is defined by, for any c ∈ C,   oz ox oy=C C C
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2.3 Surrogate of Truth 

 
For patient images, since it is impossible to establish absolute true segmentation, some surrogate of truth is 

needed. Our basic premise in developing this framework is that humans outperform computer algorithms in recognition 
tasks, while computer algorithms are far more efficacious in delineation than humans. Accordingly, the surrogates that 
are used reflect this premise. We will treat the delineation and recognition aspects separately. 
 

2.3.1  Delineation 

Four possible choices of the surrogate for delineation are outlined below. 

 
(1) Manual Delineation: Object boundaries are traced or regions are painted manually by experts (see Figure 1). 

Corresponding to a given set S of scenes for the application domain <A, B, P>, manual delineation produces a set Std of 
scenes representing the fuzzy objects defined by the same object represented in the scenes in S. Manual delineation 
produces a hard set O for each scene C in S, which is converted to a fuzzy object via Equation (1). When object 
regions/boundaries are fuzzy or very complex (fractal like) in a given scene, manual delineation becomes very ill 
defined. For example, in Figure 1, it is difficult to decide what aspects of the edematous region of the tumor should be 
included/excluded. Further, to minimize variability, it is important to follow strict protocols for window level and width 
setting, magnification factor, and the interpolation method used for slice display (Figure 1), and the method of 
tracing/painting. Multiple repetitions of segmentation by multiple-operators should be performed. There are several ways 
of averaging the results to get Std. The binary objects (O) segmented in each scene C ∈ S in multiple trials may be 
averaged first and then the fuzzy object may be computed via Equation (1), or the fuzzy objects  may be computed 
first for the multiple trials which may be averaged. The later is perhaps a better strategy. Manual delineation is inherently 
binary; that is, it cannot specify tissue percentages. We convert these binary results into fuzzy objects via Equation (1). 
However, if only binary segmentation is desired, then the manual segmentations are output as binary scenes. In that case, 
S

OC

td contains binary scenes. 
 

     
 

(a) (b) (c) 
 

FIGURE 1: A slice from the MR FLAIR scene of a patient’s brain. Different window settings (a) and (b) and magnification factors 
(c) can cause significant variations in the result of manual delineations, especially for fuzzy objects. 
 
 

(2) Mathematical Phantoms: A set of mathematical phantoms is created to depict the application domain <A, B, 
P> as realistically as possible in terms of blurring, relative tissue contrast and heterogeneity, noise, and background 
inhomogeneity (see Figure 2) in the scenes. The starting point for this simulation is a set Std of binary scenes (true 



delineation is known to begin with). Each scene in Std is gradually corrupted to yield the actual set of scenes S. We may 
also start with gray scenes depicting true fuzzy objects and then follow the same procedure. 
 

     
 
 

(a) (b) (c) 
 

FIGURE 2: White matter (WM) in a gray matter background, simulated by segmenting WM from real MR images and by adding 
blur, noise, background variation to various degrees: (a) low, (b) medium, and (c) high. 
 

(3) Simulated Scenes I: Use the method of mathematical phantoms described above to generate scenes and apply 
to both the segmentations and the simulated scenes known 3D deformations (to capture variations that exist among 
patients) to generate more scenes and their segmentations. The same method is applicable to the method of manual 
segmentation also (see Figure 3). The complete set of scenes (original + deformed) in this case constitutes S, and the 
complete set of segmentations represents Std. 

 
 

       
 

(a) (b) (c) (d) 
 

FIGURE 3: Simulating more scenes (c) and their “true” segmentations (d) from existing scenes (a) and their manual segmentation (b) 
by applying known realistic deformations. 
 
 

(4) Simulated Scenes II: Another method to simulate scenes is to first create an ensemble of “cut-outs” of object 
regions from actual acquired scenes and to bury them realistically in different scenes. Each cut-out is segmented 
carefully by using an appropriate segmentation method. This should not be difficult since the cut-out contains just the 
object region with a background tissue region only and no other confounding tissue regions. The resulting scenes and the 
segmentations constitute S and Std, respectively. See Figure 4. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 
 
 
FIGURE 4: A slice (a) of a scene simulated from an acquired MR proton density scene of a Multiple Sclerosis patient’s brain and its 
“true” segmentation (b) of the lesions. 
 

2.3.2 Recognition 

The approach for ensuring that information related to certain key features or landmarks related to the object (the 
recognition aspect) is included in the surrogate used for assessing accuracy of segmentation is as follows. 
 

(1) Compile a list of features/landmarks that are vital for <A, B, P> through help from a set of experts (radiologists, 
surgeons, anatomists). 
 
(2) Each expert assigns a score to each feature to indicate its level of importance in <A, B, P>. 
 
(3) Compute an average of the scores. Normalize these to the range [0, 1]. In this fashion, we generate a feature vector F 
whose components have values in [0, 1]. 
 
(4) Have experts locate features in scenes in S repeatedly. 
 
(5) Use the mean location and spread information and the mean vector F to generate a scene Ctr (for each scene C ∈ S) 
which is a composite of the Gaussian weighted scores for all features in the set. In this composite scene Ctr = (C, ftr), a 
high value ftr(c) for a voxel c ∈ C indicates that c is both close to the mean location for a particular feature and the 
importance of the feature is high. We may also think of generating a scene  for each feature i in F or make Ci

trC tr a 
vectorial scene. Alternatively, these individual scenes  may be combined into a composite scene Ci

trC tr as indicated 
above by taking an average or a fuzzy union. Fuzzy union is perhaps more appropriate. In any case, let Str denote the set 
of resulting scenes containing information about truth in recognition. 
 

2.4 Assessment of Precision 
 
Two types of subjective actions need to be addressed in evaluating segmentation precision: (1) Patient positioning in the 
scanner. (2) Operator input required for segmentation. Let S1(= S), S2,….,Sn be n sets of scenes which represent repeat 
scans, registered and redigitized, of the same subjects and for the same application domain <A, B, P>. Let H1, H2,….,Hm 
be m human operators and let M be a particular segmentation method. Let CO1 and CO2 be segmentations (fuzzy 
segmented objects) of the same object  in two repeated trials. CO O1 and CO2 have resulted from one of the following 
situations. 



T1:  The same operator segments the same object in the same scene twice by using method M (intra-operator). 
 
T2:  Two operators segment the same object in the same scene once by using method M (inter-operator). 
 
T3:  The same operator segments the same object once in two corresponding scenes in Si and Sj (i ≠ j) by using method M 
(inter-scan). 
 

For the given method of segmentation M, all possible pairs (O1, O2) for T1 will allow us to assess intra-operator 
precision of M. Analogously, T2 and T3 correspond to the assessment of inter-operator and repeat-scan precision. A 
measure of precision for method M in a trial that produced segmented objects O1 and O2 for situation Ti is given by  
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( )1 2,  iT
MPR O O  represents the total amount of the tissue that is common to both O1 and O2 as a fraction of the total 

amount of tissue in the union of O1 and O2. ( )1 2,  iT
MPR O O  values estimated over the scenes in S1, S2,….,Sn utilizing 

operators H1, H2,….,Hm characterize the intra-operator, inter-operator, and repeat-scan repeatability (respectively for i = 
1, 2, 3) of method M. The precision of method M for a given situation (i = 1, 2, 3) can be characterized by computing the 
coefficient of variation or confidence intervals of the iT

MPR  values. The precision of any two segmentation methods M1 

and M2 for each Ti can be compared by comparing the set of iT
MPR  values by using a paired t-test.  

 
Note that just determining how much the volumes (a commonly used figure of merit) of O1 and O2 agree will not 

be a robust measure of precision as illustrated in Figure 5. This is because O1 and O2 may have identical volumes but 
may constitute substantially different delineations. 
 
 

     

(a) (b) (c) 
 

FIGURE 5: Segmented objects (muscles) obtained in two different situations Ti and Tj ((b), (c)) in a slice of a CT scene of a knee 
((a)). The two segmentations have nearly identical volumes, still they differ substantially. 
 



2.5 Assessment of Accuracy 
 
Let Std be the set of scenes containing “true” delineations for the scenes in S. For any scene C ∈ S, let M

OC be the scene 
representing the fuzzy object defined by an object O of B in C obtained by using method M, and let td tdS∈C  be the 
corresponding scene of “true” delineation, all under the application domain <A, B, P>. The following measures are 
defined to characterize the accuracy of method M under <A, B, P> for delineation. 
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The meaning of these measures is illustrated in Figure 6 for the binary case. They are all expressed as a fraction of 
the volume of “true” delineation. d

MFNVF  indicates the fraction of tissue defined in  that was missed by method M in 
delineation 

tdC
d

MFPVF  denotes the amount of tissue falsely identified by method M as a fraction of the total amount of 
tissue in . tdC d

MTPVF  describes the fraction of the total amount of tissue in  with which the fuzzy object tdC M
OC  

overlaps. Note that the three measures are independent; that is, none of them can be derived from the other two. True 
negative volume fraction has no meaning in this context since it would depend on the rectangular cuboidal region 
defining the scene domain C. Figure 7 presents an example showing the three factors for the application domain of brain 
parenchymal volume estimation via MRI T2 and PD scenes and by using the fuzzy connectedness method [13-15].  The 
surrogate of truth is obtained by manual delineation, and the estimates are based on binary objects. 
 
 

 
FIGURE 6: A geometric illustration of the three precision factors for delineation. 
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2.5 Assessment of Efficiency 
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determine optimal parameter settings for the algorithm in the application domain <A, B, P>. The first component  

above corresponds to this aspect of computation. Let 
1c

1c
Mt  denote the total computational time needed for this one-time 

training. Then,  
 

1

1
1

1c
M c

M
E

t L
=

+
      (11) 

 

describes the first component of computational efficiency. Here L1 is a constant. Its purpose is to handle methods, which 

do not require algorithmic training ( . L)1 0c
Mt = 1 should be chosen to be sufficiently small so that there is enough 

“resolution” in the resulting 1c
ME  values to distinguish among methods. Alternatively, the methods can be compared 

directly based on 1c
Mt  values. The second component c2 refers to the total computational time required (including any 

per-study training needed) to segment each scene. Let 2c
Mt  denote this time. Then, 

 

2

2
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1c
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M
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t L
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+
      (12) 

 
describes the second component of computational efficiency, where L2 is a constant. The purpose of L2 is similar to that 
of L1 (for completely manual segmentation, 2 0c

Mt ≈ ). 
 

To assess h
ME , the following three factors should be considered: (h1) operator training time, (h2) algorithm 

training, (h3) and operator time per segmentation. In a clinical setting, for the routine use of a method, typically a 
technician runs the software that implements the method. Among methods, there is considerable variation in their 
complexity and intuition for use. The first component in  above expresses the efficiency of method M from the point 

of view of ease of training of a medical technician for the routine clinical use of method M. Let 
1h

1h
Mt  denote the total time 

required to train each of a set of technicians for method M. then,  
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      (13) 

 
describes the first component of h

ME . Here K1 is a constant similar to L1. In the second component  of 2h h
ME , we 

consider the degree of operator help required for one-time initial training of the algorithm. Let 2h
Mt  denote the total 

operator time required for training for method M for each of a set of operators. Then 
 

2

2
2

1h
M h

M

E
t K

=
+

      (14) 

 
describes the second component of h

ME . Here K2 is a constant analogous to L1. Most algorithms require per-study (for 
each scene under <A, B, P>) help from an operator for initialization (specifying initial boundary, seeds, initial 
segmentation, identifying landmarks) and/or for training to set values of the parameters of the method. The third 
component h3 of h

ME  considers the extent of this help required in segmentation. This component is the most crucial 



among all factors affecting efficiency since it represents the human effort needed to segment each scene. Let 3h
Mt  denote 

the total operator time required (including time for algorithm training) for segmenting each scene in S for method M. 
Then  
 

3

3

3

1h
M h

M

E
t K

=
+

      (15) 

 
describes the third component of h

ME . The role of K3 is analogous to that of L1. This is for handling methods that do not 
require human intervention. 
 
 

3. HOW TO COMPARE METHODS 
 

The procedure for comparing two methods M1 and M2 under a given <A, B, P> consists of the following steps. 

 
(1) Collect scenes  corresponding to n repeat scans of each of the scenes in S acquired for <A, B, 
P>. Produce scenes  representing surrogate of true delineations for the scenes in S. 

( )1 2 ,  ,...., nS S S S=

tdS

 
(2) For methods M1 and M2, have operators 1 2,  ,...., mH H H  repeat segmentations of scenes in S. Have one operator 
segment scenes in  for methods M( )1 2 ,  ,...., nS S S S= 1 and M2. 
 
(3) For i = 1, 2, 3, determine all possible values of 

1 2
 and i iT T

M MPR PR . 

 
(4) Knowing  and the segmentations of S produced by the operators, compute 

. 
tdS

,  ,  ,  ,  and  ,   for  1, 2
j j j j j

d d d r r
M M M M MFNVF FPVF TPVF TPVF FNVF j =

 
(5) Record  during the segmentation experiments, and from these compute the 

respective efficiency parameters. 

1 2 1 2 3,  ,  ,  ,   for  1,  2
j j j j j

c c h h h
M M M M Mt t t t t j =

 
(6) For each method jM , we get a set of values for each of the 13 parameters: 

31 2 21 1 2,  ,  , , , ,  ,  ,  ,  ,  ,  ,  
jj j j j j j j j j j j

c
M

TT T d d d r r c h h 3
j

h
M M M M M M M M M M M MPR PR PR FNVF FPVF TPVF TPVF FNVF E E E E E . There are 

several choices for the statistical analysis of the 13 sets of values. 
 

(a) Do a paired t-test of the two sets of values for each parameter for the two methods. 
 

(b) Combine the 13 parameters for each method jM  by a weighted sum, the weight reflecting the 
importance given to that parameter for <A, B, P> and then do a paired t-test of the resulting single 
parameter. 

 
(c) Do analysis of variance considering all 13 parameters. 

 



4. CONCLUDING REMARKS 
 
(1) The factors describing precision, accuracy, and efficiency are all essential in assessing the performance of 
segmentation methods.  Most published methods of evaluation have ignored a majority of these factors. 
 
(2) The question “Is method M1 better than M2 under <A, B, P>?” cannot be answered by a simple “yes” or “no”. A 
descriptive answer in terms of the 13 parameters gives a more meaningful and complete assessment of the methods. 
 
(3) Since binary results are produced by most segmentation methods in practice, and only delineation is considered, we 
suggest that, at a minimum, the following set of 8 parameters be evaluated: 

3 31 2 2,  ,  ,  ,  ,  ,  ,  T hT T cd d d
M M M M M M M MPR PR PR FPVF FNVF TPVF E E  for any given method M. 

 
(4) General statements about the merit of segmentation algorithms cannot be made independent of the application 
domain <A, B, P>. The evaluative results of two methods M1 and M2 observed under one <A, B, P> may not foretell 
anything about their comparative behavior for a different <A, B, P>. 
 
(5) We are not aware of any attempt in the past to incorporate into the evaluation method the aspect of how well key 
features of an object that are considered important for <A, B, P> are captured in the segmentation. We are able to 
include this qualitative aspect of recognition also within the same common framework of evaluation. 
 
(6) Most published methods have ignored the efficiency factor. The five components of efficiency are essential, 3h

ME  
being the most crucial among these. There is no such thing as “an automatic segmentation method.” Any method may 
fail (for example, it may produce high FNVF and/or FPVF and low TPVF for a particular data set) if a sufficiently large 
set of scenes is processed, and then it will need human intervention. “Automatic” is only a design intent and not 
necessarily the end result for a segmentation method. Therefore, the phrase has no meaning unless the method’s 
efficiency is proven to be 100% (for all 5 factors) over a large (essentially infinite) number of data sets. 
 
(7) The factors describing precision, accuracy, and efficiency are interdependent. To simultaneously improve all three 
factors for a method is difficult and requires considerable research. An attempt to increase accuracy may be 
accompanied by a decrease in efficiency and/or precision. These assertions are illustrated in Figure 8, wherein <A, B, P> 
is the application domain considered in Figure 7. Here thresholding using a fixed threshold value is the segmentation 
method M. Obviously 1T

MPR  and 2T
MPR  are both 100%. However, with repeat scan (Figures 8 (a), (b)) there is much 

variation in the result (Figures 8 (c), (d)) and 3T
MPR  = 70.2%. The “true” delineations for the two scans of Figures 8 (a) 

and (b) are shown in Figures 8(e) and (f), respectively. It is clear that, although this method has high precision (except 
for the third factor 3T

MPR ) and efficiency, its accuracy is poor: . 
A possible way of improving accuracy is to modify M by having a human operator correct the results. This will of course 
bring down both efficiency and precision. 

14.2%, =9.6%,  and 76.1%d d d
M M MFNVF FPVF TPVF= =

 
(8) Once the surrogates are determined, the framework can be easily implemented and utilized to evaluate any image 
segmentation method. 



 
 
 
 
 
 
 
 
 (a) (c) (e)  
 
 
 
 
 
 

 

 
 
 
 
 
 

(b) (d) (f)  
 

FIGURE 8: (a), (b). Two corresponding slices after registration of a pair of repeat scans (with a short time gap in between scans) of a 
patient’s brain. (c), (d). Segmentation of (a) and (b) by fixed thresholding. The object of interest is brain parenchyma. (e), (f). “True” 
segmentations of (a) and (b). 
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