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We study the relaxation dynamics of a semiflexible chain by introducing a time-dependent tension.
The chain has one of its ends attached to a large bead, and the other end is fixed. We focus on the initial
relaxation of the chain that is initially strongly stretched. Using a tension that is self-consistently
determined, we obtain the evolution of the end-to-end distance with no free parameters. Our results are
in good agreement with single molecule experiments on double stranded DNA.
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bead, which, in turn, is a result of the DNA contraction. 2 0 @s2
Semiflexible polymers, such as DNA, f-actin, and mi-
crotubule filaments, are common examples of biomateri-
als. The near equilibrium dynamics of semiflexible
polymers in solutions have been extensively studied ex-
perimentally [1] and theoretically [2–4] in the past de-
cade, both because of the possible implications in biology
and because their dynamics is rather different from the
flexible chain dynamics.

The far from equilibrium dynamics of such systems
received much less attention. Perkins et al. [5] studied
the shape of relaxing DNA that is hydrodynamically
stretched. Their results were interpreted by Brochard
and co-workers [6], who considered the propagation along
the chain of the relaxing tension. However, their work
builds on the freely jointed chain model and so does not
include bending energy. Therefore, it may not be applied
to strongly stretched chains even when their length L is
much longer than their persistence length Lp. The strong
stretching regime corresponds to tensions � * kBT=Lp
associated with extensions above 0:5L. For such tensions,
excess length—associated with bending energy domi-
nated undulations—is being pulled out.

Modern experiments on single DNA molecules often
use a bead that is attached to one or both ends of the chain.
This allows one to exert a controlled force on the chain by
means of optical or magnetic traps [7–10]. When the end
is released, the contraction of the chain involves motion
of the bead with a time-dependent velocity. The Stokes
force acting on the bead, which is transmitted to the DNA
as tension, slows down the dynamics [10]. Hence, the
interpretation of such experiments requires a detailed
theory that describes the dynamics of the DNA-bead
complex. The purpose of this Letter is to provide such a
description. We introduce a time-dependent tension that is
used to calculate the end-to-end distance. We solve for
this tension by relating it to the Stokes drag acting on the
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This allows us to fully describe the short time evolution of
the end-to-end distance.

A time-dependent tension has been previously intro-
duced [11,12] and, in particular, has been used to describe
the propagation of equilibrium tension fluctuations [3]. A
key feature in these studies is that the propagation of
polymer density (or, equivalently, tension) is given as a
ratio of the compression modulus B and a longitudinal
drag coefficient. The compression modulus is found to be
large and depends on the local tension as B� �3=2 [12],
which leads to a tension propagation time 
‘ shorter than
the transverse undulation relaxation time by a factor of
4�kBT=Lp��1=2 [12]. For the large tensions considered
here, this factor is larger than 10. This implies that tension
can be assumed uniform along the chain when we de-
scribe the dynamics of transverse undulations. Therefore,
the propagation of the tension and the associated longi-
tudinal drag coefficient become irrelevant. Only the slow
variables, i.e., the transverse undulations and the bead
velocity, limit the motion. The uniform tension assump-
tion is also justified considering the time resolution of our
experiment. The tension propagation time is [12] 
‘ ’
0:04�kBT=Lp��

1=2�L2=�, where � is the solvent viscos-
ity. For the tensions and chain lengths that we use in
experiment, � ’ 10kBT=Lp and L ’ 20 
m, this leads to

‘ ’ 0:006 s, significantly shorter than the experimental
time resolution, 0.04 s.

The bending energy H o of a semiflexible polymer is
well described by the wormlike chain (WLC) or Kratky-
Porod model [2,3,8]. When an external force, �, acts at
the polymer ends pulling them apart, the energy becomes
H � H o � �z, where z is the end-to-end distance
of the chain. In this model, the chain conformation en-
ergy is

H �
�Z L

ds
�
@2R

�
2
��z; (1)
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where R�s� is the 3D position vector of the s polymer
segment, � is the bending constant, and L is the total
arclength of the chain. The term �@2R�=�@s2� evaluates
the curvature at point s. When � � 0, this energy leads to
a persistence length Lp � �=kBT, that describes the
arclength over which the local tangents decorrelate.
The equilibrium force-extension relation, which re-
sults from the WLC model, has been investigated by
Marko and Siggia [8] and verified in a wide range of
experiments [7,8].

We now consider the dynamics of a chain-bead system.
The system we study consists of a large bead attached to
an end of a semiflexible polymer, while its other end is
fixed. Although the ratio L=Lp can take any value, for
L * Lp our treatment below applies only to the strong
stretching regime, where roughness is small. The WLC
Hamiltonian adopted for this case includes a time-
dependent tension ��t� that replaces the constant tension
� [11]. ��t� will be identified as the Stokes drag acting on
the bead, which is transmitted to the polymer itself as an
external force. It acts as a time-dependent Lagrange
multiplier conjugated to the extension z�t�.

We denote by R�s; t� the position of a polymer segment
s at time t, and by h�s; t� the 2D component of R�s; t�
perpendicular to the end-to-end vector, h � �h���; h����.
The extension z�t�, in the small roughness approximation,
is given by

z�t� ’
Z L

0
ds
�
1�

1

2

�
@h�s; t�
@s

�
2
�
: (2)

In this approximation, the Hamiltonian of Eq. (1) be-
comes

H �t� �
1

2

Z L

0
ds
�
�
�
@2h
@s2

�
2
	��t�

�
@h
@s

�
2
�
; (3)

where the constant ���t�L has been omitted.
The stochastic motion of the polymer is described by

the Langevin equation for h�s; t� [4]

@h�s; t�
@t

�
Z L

0
ds0 
�js� s0j�

�

�
��

�
@4h
@s04

�
	��t�

�
@2h
@s02

��
	f�s; t�: (4)

Here 
�s� � 1=8��s is the Oseen hydrodynamic inter-
action kernel obtained from the diagonal terms of the
Oseen tensor and f�s; t� is thermal white noise. Since the
tension ��t� originates from the Stokes friction force
acting on the bead, it may be related to the dynamics of
the extension hz�t�i, namely,

��t� � ��
@hzi
@t
; (5)

where � � 6��b is the friction constant of the bead of
radius b. In Fourier space, Eq. (4) becomes
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@hk�t�
@t

� �!k�t�hk�t� 	 fk�t�; (6)

where !k�t� � 
k��k
4 	 ��t�k2� and 
k ’

ln�1=ka�=4��. Here a is a short length scale cutoff
chosen as the thickness of the polymer. The correlation
function of fk�t� is given by the fluctuation-dissipation
theorem

hf���k �t�f����k �t
0�i � 2kBTL
k�����t� t

0�; (7)

where � and � denote the two transverse directions.
Solving the Langevin Eq. (6) allows us to calculate the

equal time undulation correlation function in Fourier
space

hhk�t� � h�k�t�i � hhk � h�kioe�2�k�t�

	 4kBTL
k
Z t

0
dt0 e�2��k�t���k�t0��;

(8)

where �k�t� �
R
t
0 dt

0!k�t
0� and hhk � h�kio is the initial

undulation correlator. Since the polymer is assumed to be
initially in equilibrium, we take

hhk � h�kio �
2kBTL

�ok
2 	 �k4

; (9)

where �o is the initial tension, i.e., the pulling force on
the bead prior to its release. Accordingly, the mean ex-
tension after the release, in the small roughness approxi-
mation, is

hz�t�i
L

� 1�
1

2L2

X�=a
k��=L

k2hhk�t� � h�k�t�i: (10)

The corresponding initial extension is hz�0�i=L �
1� kBT=

������������
4��o

p
, as obtained in Ref. [8].

Equation (10) determines the mean end-to-end distance
hz�t�i at time t given the full history of the tension ��t0� at
all times 0< t0 < t. This evolution may be determined
uniquely if we identify the physical source of the tension
as the Stokes force acting on the bead, Eq. (5). This leads
to a set of two equations for the two unknowns hz�t�i and
��t�. To obtain a single equation, we integrate the Stokes
law, Eq. (5), such that

��t� � ��hz�0�i � hz�t�i�; (11)

where ��t� �
R
t
0 dt

0 ��t0�. Equation (10) becomes an in-
tegral equation for ��t�

��t�
�L

�
kBT
�

Z �=a

�=L
dk

�e�2�k�t� � 1�

�k2 	 �o

	
2kBT
�

Z �=a

�=L
dk
kk2

Z t

0
dt0 e�2��k�t���k�t0��;

(12)

where �k�t� � 
k���t�k2 	 �tk4�.
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FIG. 1. DNA extension plotted vs time. (a) DNA length L �
14:5 
m, bead radius b � 0:5 
m, and initial extension z�0� �
0:825L; (b) L � 20:1 
m, b � 1:4 
m, and z�0� � 0:848L.
The solution of Eqs. (11) and (14) (solid line) and the experi-
mental data points are shown. The computational error in the
solid line is about 4% at the longest times shown and dimin-
ishes at shorter times. For comparison, the solution of Eq. (13)
(dashed line) is also shown.
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In order to verify the validity of Eq. (12), we consider
the (nonphysical) limit where the polymer feels no drag.
This may be achieved by formally taking the limit 
k !
1. Using lim
!1
e�
x � �	�x� and performing the
integrations in Eq. (12), we obtain the limiting equation
of motion:

6��b
dhzi
dt

� �kBT=�4Lp�1� hzi=L�2� � ��eq�hzi�:

(13)

Indeed, in this case we expect that the polymer rapidly
explores all of its configurations at any given extension,
thus passing through quasiequilibrium states as it relaxes.
This implies that the forces acting on the bead are the
equilibrium polymer force and the Stokes drag force, as
described by Eq. (13). While an equation of this type has
been previously used to explain the relaxation curve, it
failed to quantitatively describe the experimental data
[10]. Although reasonable agreement can be obtained
using the persistence length as a fitting parameter, the
best fitting value is about 3 times larger than the known
value, Lp � 50 nm [10].

An alternative form of Eq. (12), which is convenient for
numerical analysis, is obtained by writing ��t� � �o �
���t� and integrating by parts the terms involving t0

explicitly. A further simplification, with little effect on
the final result (as verified numerically), is made by
replacing k in 
k by k" � 1=", where " �

������������
�=�o

p
.

Transforming to dimensionless variables ~kk � k", ~tt �
t=
, and ~�� � �=��o
�, where 
 � "2=�2
k"�o�, and de-
fining C � 3 ln�"=a�bL=��"Lp�, leads to

~���~tt� �C
Z ~tt

0
d~tt0

�
1�

d~���~tt0�
d~tt0

�Z �"=a

�"=L
d~kk

~kk2

~kk2 	 1

� e��~tt�~tt0�~kk4��~���~tt��~���~tt0��~kk2 : (14)

Equation (14) is a nonlinear integrodifferential equa-
tion. A straightforward numerical algorithm that uses a
single time step has been found to be time consuming. In
order to reduce computing time, we divide the total time
scale into blocks; each block comprises many integration
steps. The time step in each block is constant and doubles
from one block to the next. At each time step, Eq. (14) is
iteratively solved for ~���~tt�. The solution at a given block is
based only on half of the data points (i.e., every second
point) calculated in the previous block, one quarter of the
points calculated in the second previous block, and so on.
This algorithm speeds up the computation by about 1.5
orders of magnitude. Once ~���~tt� is found, the extension z�t�
is obtained from Eq. (11).

The numerical results were compared to recent mea-
surements on a setup identical to the one described in
Refs. [9,10]. We use double stranded DNA from the $
phage (Promega, L � 16:5 
m). The DNA is attached
at one end to a polystyrene bead (Polysciences) and at
098101-3
the other end to the cover slip at the bottom of the sample.
This is obtained using a low pH protocol [9] that allows
one to vary L. A laser beam (SDL, $ � 830 nm) is
focused through a 100� objective (Zeiss, 1.3 NA, oil
immersion) to give an optical trap. Trapped beads are
used to stretch the DNA to extensions that are close to
L. After turning off the trap, the relaxation is monitored
by tracking the bead at video rate, 25 frames=s, and with
low spatial resolution, 0:3 
m. Experiments were per-
formed with different bead sizes, b � 0:5, 1, and 1:4 
m.

In Figs. 1–3, we compare the predictions of our theory
to the experimental data. In the numerical simulations, we
used the viscosity of water at room temperature � �
0:89 mP s, DNA persistence length Lp � 50 nm, and
DNA thickness a � 2 nm. There are no free parameters.
The initial extension of the DNA molecule known from
098101-3
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FIG. 2. Theoretical extension, computed from Eqs. (11) and
(14), vs the scaled time t=to, where to � 6��LpLb=kBT, for
three different bead radii: b � 0:25 
m (full line), b � 0:5 
m
(dashed line), and b � 1 
m (dotted line). L � 14:5 
m and
z�0�=L � 0:825. Inset: Same as above but against the time
(unscaled).
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FIG. 3. Experimental results for DNA relaxation. The time
axis is divided by to. Circles are for b � 1:4 
m [same system
as for Fig. 1(b)], plusses are for b � 0:5 
m [same system as for
Fig. 1(a)], and triangles are for a system with b � 1 
m,
z�0�=L � 0:84, and L � 17:7 
m.

P H Y S I C A L R E V I E W L E T T E R S week ending
5 MARCH 2004VOLUME 92, NUMBER 9
the experiment determines the initial tension used in the
numerical solution, �o � kBT=f4Lp�1� z�0�=L�2g. In
Figs. 1(a) and 1(b), we plot the relative extension z=L
against time t for two systems differing in chain length,
bead size, and initial conditions. Good agreement be-
tween theory and experiment is found. For comparison,
we also show the solution of Eq. (13) (dashed line) which
fails to account for the experimental data. Figure 2 shows
theoretical predictions for a system with three different
bead sizes, with the time rescaled to t=to, where to �
6��LpLb=kBT, while in the inset we plot the results
against time. We find that the collapse of the three theo-
retical curves is nearly perfect, signifying a weak break-
down of scaling. A nearly perfect scaling is also found
when we vary the chain length L. Note that this scaling
cannot be inferred directly from Eq. (14), although it is
obeyed by the b! 1 limiting Eq. (13). In Fig. 3, we
demonstrate a similar scaling behavior in the experimen-
tal data.

In this Letter, we have developed a first principle
approach to dynamics of strongly stretched semiflexible
chains. This approach employs a time-dependent tension
that is uniquely determined by a supplementary physical
constraint. By comparing to experiments, we have shown
that our theory works well with no free parameters. Our
approach may be extended to other problems, e.g., the
nonlinear viscoelasticity of actin networks and the dy-
namics of DNA-protein complexes [13].
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